1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #include <linux/module.h> 40 #include <linux/types.h> 41 #include <linux/kernel.h> 42 #include <linux/kmemcheck.h> 43 #include <linux/mm.h> 44 #include <linux/interrupt.h> 45 #include <linux/in.h> 46 #include <linux/inet.h> 47 #include <linux/slab.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 62 #include <net/protocol.h> 63 #include <net/dst.h> 64 #include <net/sock.h> 65 #include <net/checksum.h> 66 #include <net/xfrm.h> 67 68 #include <asm/uaccess.h> 69 #include <asm/system.h> 70 #include <trace/events/skb.h> 71 72 #include "kmap_skb.h" 73 74 static struct kmem_cache *skbuff_head_cache __read_mostly; 75 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 76 77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 78 struct pipe_buffer *buf) 79 { 80 put_page(buf->page); 81 } 82 83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 84 struct pipe_buffer *buf) 85 { 86 get_page(buf->page); 87 } 88 89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 90 struct pipe_buffer *buf) 91 { 92 return 1; 93 } 94 95 96 /* Pipe buffer operations for a socket. */ 97 static const struct pipe_buf_operations sock_pipe_buf_ops = { 98 .can_merge = 0, 99 .map = generic_pipe_buf_map, 100 .unmap = generic_pipe_buf_unmap, 101 .confirm = generic_pipe_buf_confirm, 102 .release = sock_pipe_buf_release, 103 .steal = sock_pipe_buf_steal, 104 .get = sock_pipe_buf_get, 105 }; 106 107 /* 108 * Keep out-of-line to prevent kernel bloat. 109 * __builtin_return_address is not used because it is not always 110 * reliable. 111 */ 112 113 /** 114 * skb_over_panic - private function 115 * @skb: buffer 116 * @sz: size 117 * @here: address 118 * 119 * Out of line support code for skb_put(). Not user callable. 120 */ 121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here) 122 { 123 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 124 "data:%p tail:%#lx end:%#lx dev:%s\n", 125 here, skb->len, sz, skb->head, skb->data, 126 (unsigned long)skb->tail, (unsigned long)skb->end, 127 skb->dev ? skb->dev->name : "<NULL>"); 128 BUG(); 129 } 130 131 /** 132 * skb_under_panic - private function 133 * @skb: buffer 134 * @sz: size 135 * @here: address 136 * 137 * Out of line support code for skb_push(). Not user callable. 138 */ 139 140 static void skb_under_panic(struct sk_buff *skb, int sz, void *here) 141 { 142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 143 "data:%p tail:%#lx end:%#lx dev:%s\n", 144 here, skb->len, sz, skb->head, skb->data, 145 (unsigned long)skb->tail, (unsigned long)skb->end, 146 skb->dev ? skb->dev->name : "<NULL>"); 147 BUG(); 148 } 149 150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 151 * 'private' fields and also do memory statistics to find all the 152 * [BEEP] leaks. 153 * 154 */ 155 156 /** 157 * __alloc_skb - allocate a network buffer 158 * @size: size to allocate 159 * @gfp_mask: allocation mask 160 * @fclone: allocate from fclone cache instead of head cache 161 * and allocate a cloned (child) skb 162 * @node: numa node to allocate memory on 163 * 164 * Allocate a new &sk_buff. The returned buffer has no headroom and a 165 * tail room of size bytes. The object has a reference count of one. 166 * The return is the buffer. On a failure the return is %NULL. 167 * 168 * Buffers may only be allocated from interrupts using a @gfp_mask of 169 * %GFP_ATOMIC. 170 */ 171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 172 int fclone, int node) 173 { 174 struct kmem_cache *cache; 175 struct skb_shared_info *shinfo; 176 struct sk_buff *skb; 177 u8 *data; 178 179 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 180 181 /* Get the HEAD */ 182 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 183 if (!skb) 184 goto out; 185 prefetchw(skb); 186 187 /* We do our best to align skb_shared_info on a separate cache 188 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 189 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 190 * Both skb->head and skb_shared_info are cache line aligned. 191 */ 192 size = SKB_DATA_ALIGN(size); 193 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 194 data = kmalloc_node_track_caller(size, gfp_mask, node); 195 if (!data) 196 goto nodata; 197 /* kmalloc(size) might give us more room than requested. 198 * Put skb_shared_info exactly at the end of allocated zone, 199 * to allow max possible filling before reallocation. 200 */ 201 size = SKB_WITH_OVERHEAD(ksize(data)); 202 prefetchw(data + size); 203 204 /* 205 * Only clear those fields we need to clear, not those that we will 206 * actually initialise below. Hence, don't put any more fields after 207 * the tail pointer in struct sk_buff! 208 */ 209 memset(skb, 0, offsetof(struct sk_buff, tail)); 210 /* Account for allocated memory : skb + skb->head */ 211 skb->truesize = SKB_TRUESIZE(size); 212 atomic_set(&skb->users, 1); 213 skb->head = data; 214 skb->data = data; 215 skb_reset_tail_pointer(skb); 216 skb->end = skb->tail + size; 217 #ifdef NET_SKBUFF_DATA_USES_OFFSET 218 skb->mac_header = ~0U; 219 #endif 220 221 /* make sure we initialize shinfo sequentially */ 222 shinfo = skb_shinfo(skb); 223 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 224 atomic_set(&shinfo->dataref, 1); 225 kmemcheck_annotate_variable(shinfo->destructor_arg); 226 227 if (fclone) { 228 struct sk_buff *child = skb + 1; 229 atomic_t *fclone_ref = (atomic_t *) (child + 1); 230 231 kmemcheck_annotate_bitfield(child, flags1); 232 kmemcheck_annotate_bitfield(child, flags2); 233 skb->fclone = SKB_FCLONE_ORIG; 234 atomic_set(fclone_ref, 1); 235 236 child->fclone = SKB_FCLONE_UNAVAILABLE; 237 } 238 out: 239 return skb; 240 nodata: 241 kmem_cache_free(cache, skb); 242 skb = NULL; 243 goto out; 244 } 245 EXPORT_SYMBOL(__alloc_skb); 246 247 /** 248 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 249 * @dev: network device to receive on 250 * @length: length to allocate 251 * @gfp_mask: get_free_pages mask, passed to alloc_skb 252 * 253 * Allocate a new &sk_buff and assign it a usage count of one. The 254 * buffer has unspecified headroom built in. Users should allocate 255 * the headroom they think they need without accounting for the 256 * built in space. The built in space is used for optimisations. 257 * 258 * %NULL is returned if there is no free memory. 259 */ 260 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 261 unsigned int length, gfp_t gfp_mask) 262 { 263 struct sk_buff *skb; 264 265 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE); 266 if (likely(skb)) { 267 skb_reserve(skb, NET_SKB_PAD); 268 skb->dev = dev; 269 } 270 return skb; 271 } 272 EXPORT_SYMBOL(__netdev_alloc_skb); 273 274 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 275 int size) 276 { 277 skb_fill_page_desc(skb, i, page, off, size); 278 skb->len += size; 279 skb->data_len += size; 280 skb->truesize += size; 281 } 282 EXPORT_SYMBOL(skb_add_rx_frag); 283 284 /** 285 * dev_alloc_skb - allocate an skbuff for receiving 286 * @length: length to allocate 287 * 288 * Allocate a new &sk_buff and assign it a usage count of one. The 289 * buffer has unspecified headroom built in. Users should allocate 290 * the headroom they think they need without accounting for the 291 * built in space. The built in space is used for optimisations. 292 * 293 * %NULL is returned if there is no free memory. Although this function 294 * allocates memory it can be called from an interrupt. 295 */ 296 struct sk_buff *dev_alloc_skb(unsigned int length) 297 { 298 /* 299 * There is more code here than it seems: 300 * __dev_alloc_skb is an inline 301 */ 302 return __dev_alloc_skb(length, GFP_ATOMIC); 303 } 304 EXPORT_SYMBOL(dev_alloc_skb); 305 306 static void skb_drop_list(struct sk_buff **listp) 307 { 308 struct sk_buff *list = *listp; 309 310 *listp = NULL; 311 312 do { 313 struct sk_buff *this = list; 314 list = list->next; 315 kfree_skb(this); 316 } while (list); 317 } 318 319 static inline void skb_drop_fraglist(struct sk_buff *skb) 320 { 321 skb_drop_list(&skb_shinfo(skb)->frag_list); 322 } 323 324 static void skb_clone_fraglist(struct sk_buff *skb) 325 { 326 struct sk_buff *list; 327 328 skb_walk_frags(skb, list) 329 skb_get(list); 330 } 331 332 static void skb_release_data(struct sk_buff *skb) 333 { 334 if (!skb->cloned || 335 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 336 &skb_shinfo(skb)->dataref)) { 337 if (skb_shinfo(skb)->nr_frags) { 338 int i; 339 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 340 skb_frag_unref(skb, i); 341 } 342 343 /* 344 * If skb buf is from userspace, we need to notify the caller 345 * the lower device DMA has done; 346 */ 347 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 348 struct ubuf_info *uarg; 349 350 uarg = skb_shinfo(skb)->destructor_arg; 351 if (uarg->callback) 352 uarg->callback(uarg); 353 } 354 355 if (skb_has_frag_list(skb)) 356 skb_drop_fraglist(skb); 357 358 kfree(skb->head); 359 } 360 } 361 362 /* 363 * Free an skbuff by memory without cleaning the state. 364 */ 365 static void kfree_skbmem(struct sk_buff *skb) 366 { 367 struct sk_buff *other; 368 atomic_t *fclone_ref; 369 370 switch (skb->fclone) { 371 case SKB_FCLONE_UNAVAILABLE: 372 kmem_cache_free(skbuff_head_cache, skb); 373 break; 374 375 case SKB_FCLONE_ORIG: 376 fclone_ref = (atomic_t *) (skb + 2); 377 if (atomic_dec_and_test(fclone_ref)) 378 kmem_cache_free(skbuff_fclone_cache, skb); 379 break; 380 381 case SKB_FCLONE_CLONE: 382 fclone_ref = (atomic_t *) (skb + 1); 383 other = skb - 1; 384 385 /* The clone portion is available for 386 * fast-cloning again. 387 */ 388 skb->fclone = SKB_FCLONE_UNAVAILABLE; 389 390 if (atomic_dec_and_test(fclone_ref)) 391 kmem_cache_free(skbuff_fclone_cache, other); 392 break; 393 } 394 } 395 396 static void skb_release_head_state(struct sk_buff *skb) 397 { 398 skb_dst_drop(skb); 399 #ifdef CONFIG_XFRM 400 secpath_put(skb->sp); 401 #endif 402 if (skb->destructor) { 403 WARN_ON(in_irq()); 404 skb->destructor(skb); 405 } 406 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 407 nf_conntrack_put(skb->nfct); 408 #endif 409 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 410 nf_conntrack_put_reasm(skb->nfct_reasm); 411 #endif 412 #ifdef CONFIG_BRIDGE_NETFILTER 413 nf_bridge_put(skb->nf_bridge); 414 #endif 415 /* XXX: IS this still necessary? - JHS */ 416 #ifdef CONFIG_NET_SCHED 417 skb->tc_index = 0; 418 #ifdef CONFIG_NET_CLS_ACT 419 skb->tc_verd = 0; 420 #endif 421 #endif 422 } 423 424 /* Free everything but the sk_buff shell. */ 425 static void skb_release_all(struct sk_buff *skb) 426 { 427 skb_release_head_state(skb); 428 skb_release_data(skb); 429 } 430 431 /** 432 * __kfree_skb - private function 433 * @skb: buffer 434 * 435 * Free an sk_buff. Release anything attached to the buffer. 436 * Clean the state. This is an internal helper function. Users should 437 * always call kfree_skb 438 */ 439 440 void __kfree_skb(struct sk_buff *skb) 441 { 442 skb_release_all(skb); 443 kfree_skbmem(skb); 444 } 445 EXPORT_SYMBOL(__kfree_skb); 446 447 /** 448 * kfree_skb - free an sk_buff 449 * @skb: buffer to free 450 * 451 * Drop a reference to the buffer and free it if the usage count has 452 * hit zero. 453 */ 454 void kfree_skb(struct sk_buff *skb) 455 { 456 if (unlikely(!skb)) 457 return; 458 if (likely(atomic_read(&skb->users) == 1)) 459 smp_rmb(); 460 else if (likely(!atomic_dec_and_test(&skb->users))) 461 return; 462 trace_kfree_skb(skb, __builtin_return_address(0)); 463 __kfree_skb(skb); 464 } 465 EXPORT_SYMBOL(kfree_skb); 466 467 /** 468 * consume_skb - free an skbuff 469 * @skb: buffer to free 470 * 471 * Drop a ref to the buffer and free it if the usage count has hit zero 472 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 473 * is being dropped after a failure and notes that 474 */ 475 void consume_skb(struct sk_buff *skb) 476 { 477 if (unlikely(!skb)) 478 return; 479 if (likely(atomic_read(&skb->users) == 1)) 480 smp_rmb(); 481 else if (likely(!atomic_dec_and_test(&skb->users))) 482 return; 483 trace_consume_skb(skb); 484 __kfree_skb(skb); 485 } 486 EXPORT_SYMBOL(consume_skb); 487 488 /** 489 * skb_recycle - clean up an skb for reuse 490 * @skb: buffer 491 * 492 * Recycles the skb to be reused as a receive buffer. This 493 * function does any necessary reference count dropping, and 494 * cleans up the skbuff as if it just came from __alloc_skb(). 495 */ 496 void skb_recycle(struct sk_buff *skb) 497 { 498 struct skb_shared_info *shinfo; 499 500 skb_release_head_state(skb); 501 502 shinfo = skb_shinfo(skb); 503 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 504 atomic_set(&shinfo->dataref, 1); 505 506 memset(skb, 0, offsetof(struct sk_buff, tail)); 507 skb->data = skb->head + NET_SKB_PAD; 508 skb_reset_tail_pointer(skb); 509 } 510 EXPORT_SYMBOL(skb_recycle); 511 512 /** 513 * skb_recycle_check - check if skb can be reused for receive 514 * @skb: buffer 515 * @skb_size: minimum receive buffer size 516 * 517 * Checks that the skb passed in is not shared or cloned, and 518 * that it is linear and its head portion at least as large as 519 * skb_size so that it can be recycled as a receive buffer. 520 * If these conditions are met, this function does any necessary 521 * reference count dropping and cleans up the skbuff as if it 522 * just came from __alloc_skb(). 523 */ 524 bool skb_recycle_check(struct sk_buff *skb, int skb_size) 525 { 526 if (!skb_is_recycleable(skb, skb_size)) 527 return false; 528 529 skb_recycle(skb); 530 531 return true; 532 } 533 EXPORT_SYMBOL(skb_recycle_check); 534 535 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 536 { 537 new->tstamp = old->tstamp; 538 new->dev = old->dev; 539 new->transport_header = old->transport_header; 540 new->network_header = old->network_header; 541 new->mac_header = old->mac_header; 542 skb_dst_copy(new, old); 543 new->rxhash = old->rxhash; 544 new->ooo_okay = old->ooo_okay; 545 new->l4_rxhash = old->l4_rxhash; 546 #ifdef CONFIG_XFRM 547 new->sp = secpath_get(old->sp); 548 #endif 549 memcpy(new->cb, old->cb, sizeof(old->cb)); 550 new->csum = old->csum; 551 new->local_df = old->local_df; 552 new->pkt_type = old->pkt_type; 553 new->ip_summed = old->ip_summed; 554 skb_copy_queue_mapping(new, old); 555 new->priority = old->priority; 556 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 557 new->ipvs_property = old->ipvs_property; 558 #endif 559 new->protocol = old->protocol; 560 new->mark = old->mark; 561 new->skb_iif = old->skb_iif; 562 __nf_copy(new, old); 563 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 564 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 565 new->nf_trace = old->nf_trace; 566 #endif 567 #ifdef CONFIG_NET_SCHED 568 new->tc_index = old->tc_index; 569 #ifdef CONFIG_NET_CLS_ACT 570 new->tc_verd = old->tc_verd; 571 #endif 572 #endif 573 new->vlan_tci = old->vlan_tci; 574 575 skb_copy_secmark(new, old); 576 } 577 578 /* 579 * You should not add any new code to this function. Add it to 580 * __copy_skb_header above instead. 581 */ 582 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 583 { 584 #define C(x) n->x = skb->x 585 586 n->next = n->prev = NULL; 587 n->sk = NULL; 588 __copy_skb_header(n, skb); 589 590 C(len); 591 C(data_len); 592 C(mac_len); 593 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 594 n->cloned = 1; 595 n->nohdr = 0; 596 n->destructor = NULL; 597 C(tail); 598 C(end); 599 C(head); 600 C(data); 601 C(truesize); 602 atomic_set(&n->users, 1); 603 604 atomic_inc(&(skb_shinfo(skb)->dataref)); 605 skb->cloned = 1; 606 607 return n; 608 #undef C 609 } 610 611 /** 612 * skb_morph - morph one skb into another 613 * @dst: the skb to receive the contents 614 * @src: the skb to supply the contents 615 * 616 * This is identical to skb_clone except that the target skb is 617 * supplied by the user. 618 * 619 * The target skb is returned upon exit. 620 */ 621 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 622 { 623 skb_release_all(dst); 624 return __skb_clone(dst, src); 625 } 626 EXPORT_SYMBOL_GPL(skb_morph); 627 628 /* skb_copy_ubufs - copy userspace skb frags buffers to kernel 629 * @skb: the skb to modify 630 * @gfp_mask: allocation priority 631 * 632 * This must be called on SKBTX_DEV_ZEROCOPY skb. 633 * It will copy all frags into kernel and drop the reference 634 * to userspace pages. 635 * 636 * If this function is called from an interrupt gfp_mask() must be 637 * %GFP_ATOMIC. 638 * 639 * Returns 0 on success or a negative error code on failure 640 * to allocate kernel memory to copy to. 641 */ 642 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 643 { 644 int i; 645 int num_frags = skb_shinfo(skb)->nr_frags; 646 struct page *page, *head = NULL; 647 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 648 649 for (i = 0; i < num_frags; i++) { 650 u8 *vaddr; 651 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 652 653 page = alloc_page(GFP_ATOMIC); 654 if (!page) { 655 while (head) { 656 struct page *next = (struct page *)head->private; 657 put_page(head); 658 head = next; 659 } 660 return -ENOMEM; 661 } 662 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 663 memcpy(page_address(page), 664 vaddr + f->page_offset, skb_frag_size(f)); 665 kunmap_skb_frag(vaddr); 666 page->private = (unsigned long)head; 667 head = page; 668 } 669 670 /* skb frags release userspace buffers */ 671 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 672 skb_frag_unref(skb, i); 673 674 uarg->callback(uarg); 675 676 /* skb frags point to kernel buffers */ 677 for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) { 678 __skb_fill_page_desc(skb, i-1, head, 0, 679 skb_shinfo(skb)->frags[i - 1].size); 680 head = (struct page *)head->private; 681 } 682 683 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 684 return 0; 685 } 686 687 688 /** 689 * skb_clone - duplicate an sk_buff 690 * @skb: buffer to clone 691 * @gfp_mask: allocation priority 692 * 693 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 694 * copies share the same packet data but not structure. The new 695 * buffer has a reference count of 1. If the allocation fails the 696 * function returns %NULL otherwise the new buffer is returned. 697 * 698 * If this function is called from an interrupt gfp_mask() must be 699 * %GFP_ATOMIC. 700 */ 701 702 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 703 { 704 struct sk_buff *n; 705 706 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 707 if (skb_copy_ubufs(skb, gfp_mask)) 708 return NULL; 709 } 710 711 n = skb + 1; 712 if (skb->fclone == SKB_FCLONE_ORIG && 713 n->fclone == SKB_FCLONE_UNAVAILABLE) { 714 atomic_t *fclone_ref = (atomic_t *) (n + 1); 715 n->fclone = SKB_FCLONE_CLONE; 716 atomic_inc(fclone_ref); 717 } else { 718 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 719 if (!n) 720 return NULL; 721 722 kmemcheck_annotate_bitfield(n, flags1); 723 kmemcheck_annotate_bitfield(n, flags2); 724 n->fclone = SKB_FCLONE_UNAVAILABLE; 725 } 726 727 return __skb_clone(n, skb); 728 } 729 EXPORT_SYMBOL(skb_clone); 730 731 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 732 { 733 #ifndef NET_SKBUFF_DATA_USES_OFFSET 734 /* 735 * Shift between the two data areas in bytes 736 */ 737 unsigned long offset = new->data - old->data; 738 #endif 739 740 __copy_skb_header(new, old); 741 742 #ifndef NET_SKBUFF_DATA_USES_OFFSET 743 /* {transport,network,mac}_header are relative to skb->head */ 744 new->transport_header += offset; 745 new->network_header += offset; 746 if (skb_mac_header_was_set(new)) 747 new->mac_header += offset; 748 #endif 749 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 750 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 751 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 752 } 753 754 /** 755 * skb_copy - create private copy of an sk_buff 756 * @skb: buffer to copy 757 * @gfp_mask: allocation priority 758 * 759 * Make a copy of both an &sk_buff and its data. This is used when the 760 * caller wishes to modify the data and needs a private copy of the 761 * data to alter. Returns %NULL on failure or the pointer to the buffer 762 * on success. The returned buffer has a reference count of 1. 763 * 764 * As by-product this function converts non-linear &sk_buff to linear 765 * one, so that &sk_buff becomes completely private and caller is allowed 766 * to modify all the data of returned buffer. This means that this 767 * function is not recommended for use in circumstances when only 768 * header is going to be modified. Use pskb_copy() instead. 769 */ 770 771 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 772 { 773 int headerlen = skb_headroom(skb); 774 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len; 775 struct sk_buff *n = alloc_skb(size, gfp_mask); 776 777 if (!n) 778 return NULL; 779 780 /* Set the data pointer */ 781 skb_reserve(n, headerlen); 782 /* Set the tail pointer and length */ 783 skb_put(n, skb->len); 784 785 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 786 BUG(); 787 788 copy_skb_header(n, skb); 789 return n; 790 } 791 EXPORT_SYMBOL(skb_copy); 792 793 /** 794 * pskb_copy - create copy of an sk_buff with private head. 795 * @skb: buffer to copy 796 * @gfp_mask: allocation priority 797 * 798 * Make a copy of both an &sk_buff and part of its data, located 799 * in header. Fragmented data remain shared. This is used when 800 * the caller wishes to modify only header of &sk_buff and needs 801 * private copy of the header to alter. Returns %NULL on failure 802 * or the pointer to the buffer on success. 803 * The returned buffer has a reference count of 1. 804 */ 805 806 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 807 { 808 unsigned int size = skb_end_pointer(skb) - skb->head; 809 struct sk_buff *n = alloc_skb(size, gfp_mask); 810 811 if (!n) 812 goto out; 813 814 /* Set the data pointer */ 815 skb_reserve(n, skb_headroom(skb)); 816 /* Set the tail pointer and length */ 817 skb_put(n, skb_headlen(skb)); 818 /* Copy the bytes */ 819 skb_copy_from_linear_data(skb, n->data, n->len); 820 821 n->truesize += skb->data_len; 822 n->data_len = skb->data_len; 823 n->len = skb->len; 824 825 if (skb_shinfo(skb)->nr_frags) { 826 int i; 827 828 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 829 if (skb_copy_ubufs(skb, gfp_mask)) { 830 kfree_skb(n); 831 n = NULL; 832 goto out; 833 } 834 } 835 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 836 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 837 skb_frag_ref(skb, i); 838 } 839 skb_shinfo(n)->nr_frags = i; 840 } 841 842 if (skb_has_frag_list(skb)) { 843 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 844 skb_clone_fraglist(n); 845 } 846 847 copy_skb_header(n, skb); 848 out: 849 return n; 850 } 851 EXPORT_SYMBOL(pskb_copy); 852 853 /** 854 * pskb_expand_head - reallocate header of &sk_buff 855 * @skb: buffer to reallocate 856 * @nhead: room to add at head 857 * @ntail: room to add at tail 858 * @gfp_mask: allocation priority 859 * 860 * Expands (or creates identical copy, if &nhead and &ntail are zero) 861 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 862 * reference count of 1. Returns zero in the case of success or error, 863 * if expansion failed. In the last case, &sk_buff is not changed. 864 * 865 * All the pointers pointing into skb header may change and must be 866 * reloaded after call to this function. 867 */ 868 869 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 870 gfp_t gfp_mask) 871 { 872 int i; 873 u8 *data; 874 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail; 875 long off; 876 bool fastpath; 877 878 BUG_ON(nhead < 0); 879 880 if (skb_shared(skb)) 881 BUG(); 882 883 size = SKB_DATA_ALIGN(size); 884 885 /* Check if we can avoid taking references on fragments if we own 886 * the last reference on skb->head. (see skb_release_data()) 887 */ 888 if (!skb->cloned) 889 fastpath = true; 890 else { 891 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; 892 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta; 893 } 894 895 if (fastpath && 896 size + sizeof(struct skb_shared_info) <= ksize(skb->head)) { 897 memmove(skb->head + size, skb_shinfo(skb), 898 offsetof(struct skb_shared_info, 899 frags[skb_shinfo(skb)->nr_frags])); 900 memmove(skb->head + nhead, skb->head, 901 skb_tail_pointer(skb) - skb->head); 902 off = nhead; 903 goto adjust_others; 904 } 905 906 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 907 if (!data) 908 goto nodata; 909 910 /* Copy only real data... and, alas, header. This should be 911 * optimized for the cases when header is void. 912 */ 913 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 914 915 memcpy((struct skb_shared_info *)(data + size), 916 skb_shinfo(skb), 917 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 918 919 if (fastpath) { 920 kfree(skb->head); 921 } else { 922 /* copy this zero copy skb frags */ 923 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 924 if (skb_copy_ubufs(skb, gfp_mask)) 925 goto nofrags; 926 } 927 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 928 skb_frag_ref(skb, i); 929 930 if (skb_has_frag_list(skb)) 931 skb_clone_fraglist(skb); 932 933 skb_release_data(skb); 934 } 935 off = (data + nhead) - skb->head; 936 937 skb->head = data; 938 adjust_others: 939 skb->data += off; 940 #ifdef NET_SKBUFF_DATA_USES_OFFSET 941 skb->end = size; 942 off = nhead; 943 #else 944 skb->end = skb->head + size; 945 #endif 946 /* {transport,network,mac}_header and tail are relative to skb->head */ 947 skb->tail += off; 948 skb->transport_header += off; 949 skb->network_header += off; 950 if (skb_mac_header_was_set(skb)) 951 skb->mac_header += off; 952 /* Only adjust this if it actually is csum_start rather than csum */ 953 if (skb->ip_summed == CHECKSUM_PARTIAL) 954 skb->csum_start += nhead; 955 skb->cloned = 0; 956 skb->hdr_len = 0; 957 skb->nohdr = 0; 958 atomic_set(&skb_shinfo(skb)->dataref, 1); 959 return 0; 960 961 nofrags: 962 kfree(data); 963 nodata: 964 return -ENOMEM; 965 } 966 EXPORT_SYMBOL(pskb_expand_head); 967 968 /* Make private copy of skb with writable head and some headroom */ 969 970 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 971 { 972 struct sk_buff *skb2; 973 int delta = headroom - skb_headroom(skb); 974 975 if (delta <= 0) 976 skb2 = pskb_copy(skb, GFP_ATOMIC); 977 else { 978 skb2 = skb_clone(skb, GFP_ATOMIC); 979 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 980 GFP_ATOMIC)) { 981 kfree_skb(skb2); 982 skb2 = NULL; 983 } 984 } 985 return skb2; 986 } 987 EXPORT_SYMBOL(skb_realloc_headroom); 988 989 /** 990 * skb_copy_expand - copy and expand sk_buff 991 * @skb: buffer to copy 992 * @newheadroom: new free bytes at head 993 * @newtailroom: new free bytes at tail 994 * @gfp_mask: allocation priority 995 * 996 * Make a copy of both an &sk_buff and its data and while doing so 997 * allocate additional space. 998 * 999 * This is used when the caller wishes to modify the data and needs a 1000 * private copy of the data to alter as well as more space for new fields. 1001 * Returns %NULL on failure or the pointer to the buffer 1002 * on success. The returned buffer has a reference count of 1. 1003 * 1004 * You must pass %GFP_ATOMIC as the allocation priority if this function 1005 * is called from an interrupt. 1006 */ 1007 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1008 int newheadroom, int newtailroom, 1009 gfp_t gfp_mask) 1010 { 1011 /* 1012 * Allocate the copy buffer 1013 */ 1014 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 1015 gfp_mask); 1016 int oldheadroom = skb_headroom(skb); 1017 int head_copy_len, head_copy_off; 1018 int off; 1019 1020 if (!n) 1021 return NULL; 1022 1023 skb_reserve(n, newheadroom); 1024 1025 /* Set the tail pointer and length */ 1026 skb_put(n, skb->len); 1027 1028 head_copy_len = oldheadroom; 1029 head_copy_off = 0; 1030 if (newheadroom <= head_copy_len) 1031 head_copy_len = newheadroom; 1032 else 1033 head_copy_off = newheadroom - head_copy_len; 1034 1035 /* Copy the linear header and data. */ 1036 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1037 skb->len + head_copy_len)) 1038 BUG(); 1039 1040 copy_skb_header(n, skb); 1041 1042 off = newheadroom - oldheadroom; 1043 if (n->ip_summed == CHECKSUM_PARTIAL) 1044 n->csum_start += off; 1045 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1046 n->transport_header += off; 1047 n->network_header += off; 1048 if (skb_mac_header_was_set(skb)) 1049 n->mac_header += off; 1050 #endif 1051 1052 return n; 1053 } 1054 EXPORT_SYMBOL(skb_copy_expand); 1055 1056 /** 1057 * skb_pad - zero pad the tail of an skb 1058 * @skb: buffer to pad 1059 * @pad: space to pad 1060 * 1061 * Ensure that a buffer is followed by a padding area that is zero 1062 * filled. Used by network drivers which may DMA or transfer data 1063 * beyond the buffer end onto the wire. 1064 * 1065 * May return error in out of memory cases. The skb is freed on error. 1066 */ 1067 1068 int skb_pad(struct sk_buff *skb, int pad) 1069 { 1070 int err; 1071 int ntail; 1072 1073 /* If the skbuff is non linear tailroom is always zero.. */ 1074 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1075 memset(skb->data+skb->len, 0, pad); 1076 return 0; 1077 } 1078 1079 ntail = skb->data_len + pad - (skb->end - skb->tail); 1080 if (likely(skb_cloned(skb) || ntail > 0)) { 1081 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1082 if (unlikely(err)) 1083 goto free_skb; 1084 } 1085 1086 /* FIXME: The use of this function with non-linear skb's really needs 1087 * to be audited. 1088 */ 1089 err = skb_linearize(skb); 1090 if (unlikely(err)) 1091 goto free_skb; 1092 1093 memset(skb->data + skb->len, 0, pad); 1094 return 0; 1095 1096 free_skb: 1097 kfree_skb(skb); 1098 return err; 1099 } 1100 EXPORT_SYMBOL(skb_pad); 1101 1102 /** 1103 * skb_put - add data to a buffer 1104 * @skb: buffer to use 1105 * @len: amount of data to add 1106 * 1107 * This function extends the used data area of the buffer. If this would 1108 * exceed the total buffer size the kernel will panic. A pointer to the 1109 * first byte of the extra data is returned. 1110 */ 1111 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1112 { 1113 unsigned char *tmp = skb_tail_pointer(skb); 1114 SKB_LINEAR_ASSERT(skb); 1115 skb->tail += len; 1116 skb->len += len; 1117 if (unlikely(skb->tail > skb->end)) 1118 skb_over_panic(skb, len, __builtin_return_address(0)); 1119 return tmp; 1120 } 1121 EXPORT_SYMBOL(skb_put); 1122 1123 /** 1124 * skb_push - add data to the start of a buffer 1125 * @skb: buffer to use 1126 * @len: amount of data to add 1127 * 1128 * This function extends the used data area of the buffer at the buffer 1129 * start. If this would exceed the total buffer headroom the kernel will 1130 * panic. A pointer to the first byte of the extra data is returned. 1131 */ 1132 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1133 { 1134 skb->data -= len; 1135 skb->len += len; 1136 if (unlikely(skb->data<skb->head)) 1137 skb_under_panic(skb, len, __builtin_return_address(0)); 1138 return skb->data; 1139 } 1140 EXPORT_SYMBOL(skb_push); 1141 1142 /** 1143 * skb_pull - remove data from the start of a buffer 1144 * @skb: buffer to use 1145 * @len: amount of data to remove 1146 * 1147 * This function removes data from the start of a buffer, returning 1148 * the memory to the headroom. A pointer to the next data in the buffer 1149 * is returned. Once the data has been pulled future pushes will overwrite 1150 * the old data. 1151 */ 1152 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1153 { 1154 return skb_pull_inline(skb, len); 1155 } 1156 EXPORT_SYMBOL(skb_pull); 1157 1158 /** 1159 * skb_trim - remove end from a buffer 1160 * @skb: buffer to alter 1161 * @len: new length 1162 * 1163 * Cut the length of a buffer down by removing data from the tail. If 1164 * the buffer is already under the length specified it is not modified. 1165 * The skb must be linear. 1166 */ 1167 void skb_trim(struct sk_buff *skb, unsigned int len) 1168 { 1169 if (skb->len > len) 1170 __skb_trim(skb, len); 1171 } 1172 EXPORT_SYMBOL(skb_trim); 1173 1174 /* Trims skb to length len. It can change skb pointers. 1175 */ 1176 1177 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1178 { 1179 struct sk_buff **fragp; 1180 struct sk_buff *frag; 1181 int offset = skb_headlen(skb); 1182 int nfrags = skb_shinfo(skb)->nr_frags; 1183 int i; 1184 int err; 1185 1186 if (skb_cloned(skb) && 1187 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1188 return err; 1189 1190 i = 0; 1191 if (offset >= len) 1192 goto drop_pages; 1193 1194 for (; i < nfrags; i++) { 1195 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1196 1197 if (end < len) { 1198 offset = end; 1199 continue; 1200 } 1201 1202 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1203 1204 drop_pages: 1205 skb_shinfo(skb)->nr_frags = i; 1206 1207 for (; i < nfrags; i++) 1208 skb_frag_unref(skb, i); 1209 1210 if (skb_has_frag_list(skb)) 1211 skb_drop_fraglist(skb); 1212 goto done; 1213 } 1214 1215 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1216 fragp = &frag->next) { 1217 int end = offset + frag->len; 1218 1219 if (skb_shared(frag)) { 1220 struct sk_buff *nfrag; 1221 1222 nfrag = skb_clone(frag, GFP_ATOMIC); 1223 if (unlikely(!nfrag)) 1224 return -ENOMEM; 1225 1226 nfrag->next = frag->next; 1227 kfree_skb(frag); 1228 frag = nfrag; 1229 *fragp = frag; 1230 } 1231 1232 if (end < len) { 1233 offset = end; 1234 continue; 1235 } 1236 1237 if (end > len && 1238 unlikely((err = pskb_trim(frag, len - offset)))) 1239 return err; 1240 1241 if (frag->next) 1242 skb_drop_list(&frag->next); 1243 break; 1244 } 1245 1246 done: 1247 if (len > skb_headlen(skb)) { 1248 skb->data_len -= skb->len - len; 1249 skb->len = len; 1250 } else { 1251 skb->len = len; 1252 skb->data_len = 0; 1253 skb_set_tail_pointer(skb, len); 1254 } 1255 1256 return 0; 1257 } 1258 EXPORT_SYMBOL(___pskb_trim); 1259 1260 /** 1261 * __pskb_pull_tail - advance tail of skb header 1262 * @skb: buffer to reallocate 1263 * @delta: number of bytes to advance tail 1264 * 1265 * The function makes a sense only on a fragmented &sk_buff, 1266 * it expands header moving its tail forward and copying necessary 1267 * data from fragmented part. 1268 * 1269 * &sk_buff MUST have reference count of 1. 1270 * 1271 * Returns %NULL (and &sk_buff does not change) if pull failed 1272 * or value of new tail of skb in the case of success. 1273 * 1274 * All the pointers pointing into skb header may change and must be 1275 * reloaded after call to this function. 1276 */ 1277 1278 /* Moves tail of skb head forward, copying data from fragmented part, 1279 * when it is necessary. 1280 * 1. It may fail due to malloc failure. 1281 * 2. It may change skb pointers. 1282 * 1283 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1284 */ 1285 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1286 { 1287 /* If skb has not enough free space at tail, get new one 1288 * plus 128 bytes for future expansions. If we have enough 1289 * room at tail, reallocate without expansion only if skb is cloned. 1290 */ 1291 int i, k, eat = (skb->tail + delta) - skb->end; 1292 1293 if (eat > 0 || skb_cloned(skb)) { 1294 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1295 GFP_ATOMIC)) 1296 return NULL; 1297 } 1298 1299 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1300 BUG(); 1301 1302 /* Optimization: no fragments, no reasons to preestimate 1303 * size of pulled pages. Superb. 1304 */ 1305 if (!skb_has_frag_list(skb)) 1306 goto pull_pages; 1307 1308 /* Estimate size of pulled pages. */ 1309 eat = delta; 1310 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1311 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1312 1313 if (size >= eat) 1314 goto pull_pages; 1315 eat -= size; 1316 } 1317 1318 /* If we need update frag list, we are in troubles. 1319 * Certainly, it possible to add an offset to skb data, 1320 * but taking into account that pulling is expected to 1321 * be very rare operation, it is worth to fight against 1322 * further bloating skb head and crucify ourselves here instead. 1323 * Pure masohism, indeed. 8)8) 1324 */ 1325 if (eat) { 1326 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1327 struct sk_buff *clone = NULL; 1328 struct sk_buff *insp = NULL; 1329 1330 do { 1331 BUG_ON(!list); 1332 1333 if (list->len <= eat) { 1334 /* Eaten as whole. */ 1335 eat -= list->len; 1336 list = list->next; 1337 insp = list; 1338 } else { 1339 /* Eaten partially. */ 1340 1341 if (skb_shared(list)) { 1342 /* Sucks! We need to fork list. :-( */ 1343 clone = skb_clone(list, GFP_ATOMIC); 1344 if (!clone) 1345 return NULL; 1346 insp = list->next; 1347 list = clone; 1348 } else { 1349 /* This may be pulled without 1350 * problems. */ 1351 insp = list; 1352 } 1353 if (!pskb_pull(list, eat)) { 1354 kfree_skb(clone); 1355 return NULL; 1356 } 1357 break; 1358 } 1359 } while (eat); 1360 1361 /* Free pulled out fragments. */ 1362 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1363 skb_shinfo(skb)->frag_list = list->next; 1364 kfree_skb(list); 1365 } 1366 /* And insert new clone at head. */ 1367 if (clone) { 1368 clone->next = list; 1369 skb_shinfo(skb)->frag_list = clone; 1370 } 1371 } 1372 /* Success! Now we may commit changes to skb data. */ 1373 1374 pull_pages: 1375 eat = delta; 1376 k = 0; 1377 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1378 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1379 1380 if (size <= eat) { 1381 skb_frag_unref(skb, i); 1382 eat -= size; 1383 } else { 1384 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1385 if (eat) { 1386 skb_shinfo(skb)->frags[k].page_offset += eat; 1387 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1388 eat = 0; 1389 } 1390 k++; 1391 } 1392 } 1393 skb_shinfo(skb)->nr_frags = k; 1394 1395 skb->tail += delta; 1396 skb->data_len -= delta; 1397 1398 return skb_tail_pointer(skb); 1399 } 1400 EXPORT_SYMBOL(__pskb_pull_tail); 1401 1402 /** 1403 * skb_copy_bits - copy bits from skb to kernel buffer 1404 * @skb: source skb 1405 * @offset: offset in source 1406 * @to: destination buffer 1407 * @len: number of bytes to copy 1408 * 1409 * Copy the specified number of bytes from the source skb to the 1410 * destination buffer. 1411 * 1412 * CAUTION ! : 1413 * If its prototype is ever changed, 1414 * check arch/{*}/net/{*}.S files, 1415 * since it is called from BPF assembly code. 1416 */ 1417 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1418 { 1419 int start = skb_headlen(skb); 1420 struct sk_buff *frag_iter; 1421 int i, copy; 1422 1423 if (offset > (int)skb->len - len) 1424 goto fault; 1425 1426 /* Copy header. */ 1427 if ((copy = start - offset) > 0) { 1428 if (copy > len) 1429 copy = len; 1430 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1431 if ((len -= copy) == 0) 1432 return 0; 1433 offset += copy; 1434 to += copy; 1435 } 1436 1437 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1438 int end; 1439 1440 WARN_ON(start > offset + len); 1441 1442 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1443 if ((copy = end - offset) > 0) { 1444 u8 *vaddr; 1445 1446 if (copy > len) 1447 copy = len; 1448 1449 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1450 memcpy(to, 1451 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1452 offset - start, copy); 1453 kunmap_skb_frag(vaddr); 1454 1455 if ((len -= copy) == 0) 1456 return 0; 1457 offset += copy; 1458 to += copy; 1459 } 1460 start = end; 1461 } 1462 1463 skb_walk_frags(skb, frag_iter) { 1464 int end; 1465 1466 WARN_ON(start > offset + len); 1467 1468 end = start + frag_iter->len; 1469 if ((copy = end - offset) > 0) { 1470 if (copy > len) 1471 copy = len; 1472 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1473 goto fault; 1474 if ((len -= copy) == 0) 1475 return 0; 1476 offset += copy; 1477 to += copy; 1478 } 1479 start = end; 1480 } 1481 1482 if (!len) 1483 return 0; 1484 1485 fault: 1486 return -EFAULT; 1487 } 1488 EXPORT_SYMBOL(skb_copy_bits); 1489 1490 /* 1491 * Callback from splice_to_pipe(), if we need to release some pages 1492 * at the end of the spd in case we error'ed out in filling the pipe. 1493 */ 1494 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1495 { 1496 put_page(spd->pages[i]); 1497 } 1498 1499 static inline struct page *linear_to_page(struct page *page, unsigned int *len, 1500 unsigned int *offset, 1501 struct sk_buff *skb, struct sock *sk) 1502 { 1503 struct page *p = sk->sk_sndmsg_page; 1504 unsigned int off; 1505 1506 if (!p) { 1507 new_page: 1508 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0); 1509 if (!p) 1510 return NULL; 1511 1512 off = sk->sk_sndmsg_off = 0; 1513 /* hold one ref to this page until it's full */ 1514 } else { 1515 unsigned int mlen; 1516 1517 off = sk->sk_sndmsg_off; 1518 mlen = PAGE_SIZE - off; 1519 if (mlen < 64 && mlen < *len) { 1520 put_page(p); 1521 goto new_page; 1522 } 1523 1524 *len = min_t(unsigned int, *len, mlen); 1525 } 1526 1527 memcpy(page_address(p) + off, page_address(page) + *offset, *len); 1528 sk->sk_sndmsg_off += *len; 1529 *offset = off; 1530 get_page(p); 1531 1532 return p; 1533 } 1534 1535 /* 1536 * Fill page/offset/length into spd, if it can hold more pages. 1537 */ 1538 static inline int spd_fill_page(struct splice_pipe_desc *spd, 1539 struct pipe_inode_info *pipe, struct page *page, 1540 unsigned int *len, unsigned int offset, 1541 struct sk_buff *skb, int linear, 1542 struct sock *sk) 1543 { 1544 if (unlikely(spd->nr_pages == pipe->buffers)) 1545 return 1; 1546 1547 if (linear) { 1548 page = linear_to_page(page, len, &offset, skb, sk); 1549 if (!page) 1550 return 1; 1551 } else 1552 get_page(page); 1553 1554 spd->pages[spd->nr_pages] = page; 1555 spd->partial[spd->nr_pages].len = *len; 1556 spd->partial[spd->nr_pages].offset = offset; 1557 spd->nr_pages++; 1558 1559 return 0; 1560 } 1561 1562 static inline void __segment_seek(struct page **page, unsigned int *poff, 1563 unsigned int *plen, unsigned int off) 1564 { 1565 unsigned long n; 1566 1567 *poff += off; 1568 n = *poff / PAGE_SIZE; 1569 if (n) 1570 *page = nth_page(*page, n); 1571 1572 *poff = *poff % PAGE_SIZE; 1573 *plen -= off; 1574 } 1575 1576 static inline int __splice_segment(struct page *page, unsigned int poff, 1577 unsigned int plen, unsigned int *off, 1578 unsigned int *len, struct sk_buff *skb, 1579 struct splice_pipe_desc *spd, int linear, 1580 struct sock *sk, 1581 struct pipe_inode_info *pipe) 1582 { 1583 if (!*len) 1584 return 1; 1585 1586 /* skip this segment if already processed */ 1587 if (*off >= plen) { 1588 *off -= plen; 1589 return 0; 1590 } 1591 1592 /* ignore any bits we already processed */ 1593 if (*off) { 1594 __segment_seek(&page, &poff, &plen, *off); 1595 *off = 0; 1596 } 1597 1598 do { 1599 unsigned int flen = min(*len, plen); 1600 1601 /* the linear region may spread across several pages */ 1602 flen = min_t(unsigned int, flen, PAGE_SIZE - poff); 1603 1604 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk)) 1605 return 1; 1606 1607 __segment_seek(&page, &poff, &plen, flen); 1608 *len -= flen; 1609 1610 } while (*len && plen); 1611 1612 return 0; 1613 } 1614 1615 /* 1616 * Map linear and fragment data from the skb to spd. It reports failure if the 1617 * pipe is full or if we already spliced the requested length. 1618 */ 1619 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1620 unsigned int *offset, unsigned int *len, 1621 struct splice_pipe_desc *spd, struct sock *sk) 1622 { 1623 int seg; 1624 1625 /* 1626 * map the linear part 1627 */ 1628 if (__splice_segment(virt_to_page(skb->data), 1629 (unsigned long) skb->data & (PAGE_SIZE - 1), 1630 skb_headlen(skb), 1631 offset, len, skb, spd, 1, sk, pipe)) 1632 return 1; 1633 1634 /* 1635 * then map the fragments 1636 */ 1637 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1638 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1639 1640 if (__splice_segment(skb_frag_page(f), 1641 f->page_offset, skb_frag_size(f), 1642 offset, len, skb, spd, 0, sk, pipe)) 1643 return 1; 1644 } 1645 1646 return 0; 1647 } 1648 1649 /* 1650 * Map data from the skb to a pipe. Should handle both the linear part, 1651 * the fragments, and the frag list. It does NOT handle frag lists within 1652 * the frag list, if such a thing exists. We'd probably need to recurse to 1653 * handle that cleanly. 1654 */ 1655 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1656 struct pipe_inode_info *pipe, unsigned int tlen, 1657 unsigned int flags) 1658 { 1659 struct partial_page partial[PIPE_DEF_BUFFERS]; 1660 struct page *pages[PIPE_DEF_BUFFERS]; 1661 struct splice_pipe_desc spd = { 1662 .pages = pages, 1663 .partial = partial, 1664 .flags = flags, 1665 .ops = &sock_pipe_buf_ops, 1666 .spd_release = sock_spd_release, 1667 }; 1668 struct sk_buff *frag_iter; 1669 struct sock *sk = skb->sk; 1670 int ret = 0; 1671 1672 if (splice_grow_spd(pipe, &spd)) 1673 return -ENOMEM; 1674 1675 /* 1676 * __skb_splice_bits() only fails if the output has no room left, 1677 * so no point in going over the frag_list for the error case. 1678 */ 1679 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) 1680 goto done; 1681 else if (!tlen) 1682 goto done; 1683 1684 /* 1685 * now see if we have a frag_list to map 1686 */ 1687 skb_walk_frags(skb, frag_iter) { 1688 if (!tlen) 1689 break; 1690 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) 1691 break; 1692 } 1693 1694 done: 1695 if (spd.nr_pages) { 1696 /* 1697 * Drop the socket lock, otherwise we have reverse 1698 * locking dependencies between sk_lock and i_mutex 1699 * here as compared to sendfile(). We enter here 1700 * with the socket lock held, and splice_to_pipe() will 1701 * grab the pipe inode lock. For sendfile() emulation, 1702 * we call into ->sendpage() with the i_mutex lock held 1703 * and networking will grab the socket lock. 1704 */ 1705 release_sock(sk); 1706 ret = splice_to_pipe(pipe, &spd); 1707 lock_sock(sk); 1708 } 1709 1710 splice_shrink_spd(pipe, &spd); 1711 return ret; 1712 } 1713 1714 /** 1715 * skb_store_bits - store bits from kernel buffer to skb 1716 * @skb: destination buffer 1717 * @offset: offset in destination 1718 * @from: source buffer 1719 * @len: number of bytes to copy 1720 * 1721 * Copy the specified number of bytes from the source buffer to the 1722 * destination skb. This function handles all the messy bits of 1723 * traversing fragment lists and such. 1724 */ 1725 1726 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1727 { 1728 int start = skb_headlen(skb); 1729 struct sk_buff *frag_iter; 1730 int i, copy; 1731 1732 if (offset > (int)skb->len - len) 1733 goto fault; 1734 1735 if ((copy = start - offset) > 0) { 1736 if (copy > len) 1737 copy = len; 1738 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1739 if ((len -= copy) == 0) 1740 return 0; 1741 offset += copy; 1742 from += copy; 1743 } 1744 1745 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1746 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1747 int end; 1748 1749 WARN_ON(start > offset + len); 1750 1751 end = start + skb_frag_size(frag); 1752 if ((copy = end - offset) > 0) { 1753 u8 *vaddr; 1754 1755 if (copy > len) 1756 copy = len; 1757 1758 vaddr = kmap_skb_frag(frag); 1759 memcpy(vaddr + frag->page_offset + offset - start, 1760 from, copy); 1761 kunmap_skb_frag(vaddr); 1762 1763 if ((len -= copy) == 0) 1764 return 0; 1765 offset += copy; 1766 from += copy; 1767 } 1768 start = end; 1769 } 1770 1771 skb_walk_frags(skb, frag_iter) { 1772 int end; 1773 1774 WARN_ON(start > offset + len); 1775 1776 end = start + frag_iter->len; 1777 if ((copy = end - offset) > 0) { 1778 if (copy > len) 1779 copy = len; 1780 if (skb_store_bits(frag_iter, offset - start, 1781 from, copy)) 1782 goto fault; 1783 if ((len -= copy) == 0) 1784 return 0; 1785 offset += copy; 1786 from += copy; 1787 } 1788 start = end; 1789 } 1790 if (!len) 1791 return 0; 1792 1793 fault: 1794 return -EFAULT; 1795 } 1796 EXPORT_SYMBOL(skb_store_bits); 1797 1798 /* Checksum skb data. */ 1799 1800 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1801 int len, __wsum csum) 1802 { 1803 int start = skb_headlen(skb); 1804 int i, copy = start - offset; 1805 struct sk_buff *frag_iter; 1806 int pos = 0; 1807 1808 /* Checksum header. */ 1809 if (copy > 0) { 1810 if (copy > len) 1811 copy = len; 1812 csum = csum_partial(skb->data + offset, copy, csum); 1813 if ((len -= copy) == 0) 1814 return csum; 1815 offset += copy; 1816 pos = copy; 1817 } 1818 1819 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1820 int end; 1821 1822 WARN_ON(start > offset + len); 1823 1824 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1825 if ((copy = end - offset) > 0) { 1826 __wsum csum2; 1827 u8 *vaddr; 1828 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1829 1830 if (copy > len) 1831 copy = len; 1832 vaddr = kmap_skb_frag(frag); 1833 csum2 = csum_partial(vaddr + frag->page_offset + 1834 offset - start, copy, 0); 1835 kunmap_skb_frag(vaddr); 1836 csum = csum_block_add(csum, csum2, pos); 1837 if (!(len -= copy)) 1838 return csum; 1839 offset += copy; 1840 pos += copy; 1841 } 1842 start = end; 1843 } 1844 1845 skb_walk_frags(skb, frag_iter) { 1846 int end; 1847 1848 WARN_ON(start > offset + len); 1849 1850 end = start + frag_iter->len; 1851 if ((copy = end - offset) > 0) { 1852 __wsum csum2; 1853 if (copy > len) 1854 copy = len; 1855 csum2 = skb_checksum(frag_iter, offset - start, 1856 copy, 0); 1857 csum = csum_block_add(csum, csum2, pos); 1858 if ((len -= copy) == 0) 1859 return csum; 1860 offset += copy; 1861 pos += copy; 1862 } 1863 start = end; 1864 } 1865 BUG_ON(len); 1866 1867 return csum; 1868 } 1869 EXPORT_SYMBOL(skb_checksum); 1870 1871 /* Both of above in one bottle. */ 1872 1873 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1874 u8 *to, int len, __wsum csum) 1875 { 1876 int start = skb_headlen(skb); 1877 int i, copy = start - offset; 1878 struct sk_buff *frag_iter; 1879 int pos = 0; 1880 1881 /* Copy header. */ 1882 if (copy > 0) { 1883 if (copy > len) 1884 copy = len; 1885 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1886 copy, csum); 1887 if ((len -= copy) == 0) 1888 return csum; 1889 offset += copy; 1890 to += copy; 1891 pos = copy; 1892 } 1893 1894 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1895 int end; 1896 1897 WARN_ON(start > offset + len); 1898 1899 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1900 if ((copy = end - offset) > 0) { 1901 __wsum csum2; 1902 u8 *vaddr; 1903 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1904 1905 if (copy > len) 1906 copy = len; 1907 vaddr = kmap_skb_frag(frag); 1908 csum2 = csum_partial_copy_nocheck(vaddr + 1909 frag->page_offset + 1910 offset - start, to, 1911 copy, 0); 1912 kunmap_skb_frag(vaddr); 1913 csum = csum_block_add(csum, csum2, pos); 1914 if (!(len -= copy)) 1915 return csum; 1916 offset += copy; 1917 to += copy; 1918 pos += copy; 1919 } 1920 start = end; 1921 } 1922 1923 skb_walk_frags(skb, frag_iter) { 1924 __wsum csum2; 1925 int end; 1926 1927 WARN_ON(start > offset + len); 1928 1929 end = start + frag_iter->len; 1930 if ((copy = end - offset) > 0) { 1931 if (copy > len) 1932 copy = len; 1933 csum2 = skb_copy_and_csum_bits(frag_iter, 1934 offset - start, 1935 to, copy, 0); 1936 csum = csum_block_add(csum, csum2, pos); 1937 if ((len -= copy) == 0) 1938 return csum; 1939 offset += copy; 1940 to += copy; 1941 pos += copy; 1942 } 1943 start = end; 1944 } 1945 BUG_ON(len); 1946 return csum; 1947 } 1948 EXPORT_SYMBOL(skb_copy_and_csum_bits); 1949 1950 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1951 { 1952 __wsum csum; 1953 long csstart; 1954 1955 if (skb->ip_summed == CHECKSUM_PARTIAL) 1956 csstart = skb_checksum_start_offset(skb); 1957 else 1958 csstart = skb_headlen(skb); 1959 1960 BUG_ON(csstart > skb_headlen(skb)); 1961 1962 skb_copy_from_linear_data(skb, to, csstart); 1963 1964 csum = 0; 1965 if (csstart != skb->len) 1966 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1967 skb->len - csstart, 0); 1968 1969 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1970 long csstuff = csstart + skb->csum_offset; 1971 1972 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1973 } 1974 } 1975 EXPORT_SYMBOL(skb_copy_and_csum_dev); 1976 1977 /** 1978 * skb_dequeue - remove from the head of the queue 1979 * @list: list to dequeue from 1980 * 1981 * Remove the head of the list. The list lock is taken so the function 1982 * may be used safely with other locking list functions. The head item is 1983 * returned or %NULL if the list is empty. 1984 */ 1985 1986 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1987 { 1988 unsigned long flags; 1989 struct sk_buff *result; 1990 1991 spin_lock_irqsave(&list->lock, flags); 1992 result = __skb_dequeue(list); 1993 spin_unlock_irqrestore(&list->lock, flags); 1994 return result; 1995 } 1996 EXPORT_SYMBOL(skb_dequeue); 1997 1998 /** 1999 * skb_dequeue_tail - remove from the tail of the queue 2000 * @list: list to dequeue from 2001 * 2002 * Remove the tail of the list. The list lock is taken so the function 2003 * may be used safely with other locking list functions. The tail item is 2004 * returned or %NULL if the list is empty. 2005 */ 2006 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2007 { 2008 unsigned long flags; 2009 struct sk_buff *result; 2010 2011 spin_lock_irqsave(&list->lock, flags); 2012 result = __skb_dequeue_tail(list); 2013 spin_unlock_irqrestore(&list->lock, flags); 2014 return result; 2015 } 2016 EXPORT_SYMBOL(skb_dequeue_tail); 2017 2018 /** 2019 * skb_queue_purge - empty a list 2020 * @list: list to empty 2021 * 2022 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2023 * the list and one reference dropped. This function takes the list 2024 * lock and is atomic with respect to other list locking functions. 2025 */ 2026 void skb_queue_purge(struct sk_buff_head *list) 2027 { 2028 struct sk_buff *skb; 2029 while ((skb = skb_dequeue(list)) != NULL) 2030 kfree_skb(skb); 2031 } 2032 EXPORT_SYMBOL(skb_queue_purge); 2033 2034 /** 2035 * skb_queue_head - queue a buffer at the list head 2036 * @list: list to use 2037 * @newsk: buffer to queue 2038 * 2039 * Queue a buffer at the start of the list. This function takes the 2040 * list lock and can be used safely with other locking &sk_buff functions 2041 * safely. 2042 * 2043 * A buffer cannot be placed on two lists at the same time. 2044 */ 2045 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2046 { 2047 unsigned long flags; 2048 2049 spin_lock_irqsave(&list->lock, flags); 2050 __skb_queue_head(list, newsk); 2051 spin_unlock_irqrestore(&list->lock, flags); 2052 } 2053 EXPORT_SYMBOL(skb_queue_head); 2054 2055 /** 2056 * skb_queue_tail - queue a buffer at the list tail 2057 * @list: list to use 2058 * @newsk: buffer to queue 2059 * 2060 * Queue a buffer at the tail of the list. This function takes the 2061 * list lock and can be used safely with other locking &sk_buff functions 2062 * safely. 2063 * 2064 * A buffer cannot be placed on two lists at the same time. 2065 */ 2066 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2067 { 2068 unsigned long flags; 2069 2070 spin_lock_irqsave(&list->lock, flags); 2071 __skb_queue_tail(list, newsk); 2072 spin_unlock_irqrestore(&list->lock, flags); 2073 } 2074 EXPORT_SYMBOL(skb_queue_tail); 2075 2076 /** 2077 * skb_unlink - remove a buffer from a list 2078 * @skb: buffer to remove 2079 * @list: list to use 2080 * 2081 * Remove a packet from a list. The list locks are taken and this 2082 * function is atomic with respect to other list locked calls 2083 * 2084 * You must know what list the SKB is on. 2085 */ 2086 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2087 { 2088 unsigned long flags; 2089 2090 spin_lock_irqsave(&list->lock, flags); 2091 __skb_unlink(skb, list); 2092 spin_unlock_irqrestore(&list->lock, flags); 2093 } 2094 EXPORT_SYMBOL(skb_unlink); 2095 2096 /** 2097 * skb_append - append a buffer 2098 * @old: buffer to insert after 2099 * @newsk: buffer to insert 2100 * @list: list to use 2101 * 2102 * Place a packet after a given packet in a list. The list locks are taken 2103 * and this function is atomic with respect to other list locked calls. 2104 * A buffer cannot be placed on two lists at the same time. 2105 */ 2106 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2107 { 2108 unsigned long flags; 2109 2110 spin_lock_irqsave(&list->lock, flags); 2111 __skb_queue_after(list, old, newsk); 2112 spin_unlock_irqrestore(&list->lock, flags); 2113 } 2114 EXPORT_SYMBOL(skb_append); 2115 2116 /** 2117 * skb_insert - insert a buffer 2118 * @old: buffer to insert before 2119 * @newsk: buffer to insert 2120 * @list: list to use 2121 * 2122 * Place a packet before a given packet in a list. The list locks are 2123 * taken and this function is atomic with respect to other list locked 2124 * calls. 2125 * 2126 * A buffer cannot be placed on two lists at the same time. 2127 */ 2128 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2129 { 2130 unsigned long flags; 2131 2132 spin_lock_irqsave(&list->lock, flags); 2133 __skb_insert(newsk, old->prev, old, list); 2134 spin_unlock_irqrestore(&list->lock, flags); 2135 } 2136 EXPORT_SYMBOL(skb_insert); 2137 2138 static inline void skb_split_inside_header(struct sk_buff *skb, 2139 struct sk_buff* skb1, 2140 const u32 len, const int pos) 2141 { 2142 int i; 2143 2144 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2145 pos - len); 2146 /* And move data appendix as is. */ 2147 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2148 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2149 2150 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2151 skb_shinfo(skb)->nr_frags = 0; 2152 skb1->data_len = skb->data_len; 2153 skb1->len += skb1->data_len; 2154 skb->data_len = 0; 2155 skb->len = len; 2156 skb_set_tail_pointer(skb, len); 2157 } 2158 2159 static inline void skb_split_no_header(struct sk_buff *skb, 2160 struct sk_buff* skb1, 2161 const u32 len, int pos) 2162 { 2163 int i, k = 0; 2164 const int nfrags = skb_shinfo(skb)->nr_frags; 2165 2166 skb_shinfo(skb)->nr_frags = 0; 2167 skb1->len = skb1->data_len = skb->len - len; 2168 skb->len = len; 2169 skb->data_len = len - pos; 2170 2171 for (i = 0; i < nfrags; i++) { 2172 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2173 2174 if (pos + size > len) { 2175 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2176 2177 if (pos < len) { 2178 /* Split frag. 2179 * We have two variants in this case: 2180 * 1. Move all the frag to the second 2181 * part, if it is possible. F.e. 2182 * this approach is mandatory for TUX, 2183 * where splitting is expensive. 2184 * 2. Split is accurately. We make this. 2185 */ 2186 skb_frag_ref(skb, i); 2187 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2188 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2189 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2190 skb_shinfo(skb)->nr_frags++; 2191 } 2192 k++; 2193 } else 2194 skb_shinfo(skb)->nr_frags++; 2195 pos += size; 2196 } 2197 skb_shinfo(skb1)->nr_frags = k; 2198 } 2199 2200 /** 2201 * skb_split - Split fragmented skb to two parts at length len. 2202 * @skb: the buffer to split 2203 * @skb1: the buffer to receive the second part 2204 * @len: new length for skb 2205 */ 2206 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2207 { 2208 int pos = skb_headlen(skb); 2209 2210 if (len < pos) /* Split line is inside header. */ 2211 skb_split_inside_header(skb, skb1, len, pos); 2212 else /* Second chunk has no header, nothing to copy. */ 2213 skb_split_no_header(skb, skb1, len, pos); 2214 } 2215 EXPORT_SYMBOL(skb_split); 2216 2217 /* Shifting from/to a cloned skb is a no-go. 2218 * 2219 * Caller cannot keep skb_shinfo related pointers past calling here! 2220 */ 2221 static int skb_prepare_for_shift(struct sk_buff *skb) 2222 { 2223 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2224 } 2225 2226 /** 2227 * skb_shift - Shifts paged data partially from skb to another 2228 * @tgt: buffer into which tail data gets added 2229 * @skb: buffer from which the paged data comes from 2230 * @shiftlen: shift up to this many bytes 2231 * 2232 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2233 * the length of the skb, from tgt to skb. Returns number bytes shifted. 2234 * It's up to caller to free skb if everything was shifted. 2235 * 2236 * If @tgt runs out of frags, the whole operation is aborted. 2237 * 2238 * Skb cannot include anything else but paged data while tgt is allowed 2239 * to have non-paged data as well. 2240 * 2241 * TODO: full sized shift could be optimized but that would need 2242 * specialized skb free'er to handle frags without up-to-date nr_frags. 2243 */ 2244 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2245 { 2246 int from, to, merge, todo; 2247 struct skb_frag_struct *fragfrom, *fragto; 2248 2249 BUG_ON(shiftlen > skb->len); 2250 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2251 2252 todo = shiftlen; 2253 from = 0; 2254 to = skb_shinfo(tgt)->nr_frags; 2255 fragfrom = &skb_shinfo(skb)->frags[from]; 2256 2257 /* Actual merge is delayed until the point when we know we can 2258 * commit all, so that we don't have to undo partial changes 2259 */ 2260 if (!to || 2261 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2262 fragfrom->page_offset)) { 2263 merge = -1; 2264 } else { 2265 merge = to - 1; 2266 2267 todo -= skb_frag_size(fragfrom); 2268 if (todo < 0) { 2269 if (skb_prepare_for_shift(skb) || 2270 skb_prepare_for_shift(tgt)) 2271 return 0; 2272 2273 /* All previous frag pointers might be stale! */ 2274 fragfrom = &skb_shinfo(skb)->frags[from]; 2275 fragto = &skb_shinfo(tgt)->frags[merge]; 2276 2277 skb_frag_size_add(fragto, shiftlen); 2278 skb_frag_size_sub(fragfrom, shiftlen); 2279 fragfrom->page_offset += shiftlen; 2280 2281 goto onlymerged; 2282 } 2283 2284 from++; 2285 } 2286 2287 /* Skip full, not-fitting skb to avoid expensive operations */ 2288 if ((shiftlen == skb->len) && 2289 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2290 return 0; 2291 2292 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2293 return 0; 2294 2295 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2296 if (to == MAX_SKB_FRAGS) 2297 return 0; 2298 2299 fragfrom = &skb_shinfo(skb)->frags[from]; 2300 fragto = &skb_shinfo(tgt)->frags[to]; 2301 2302 if (todo >= skb_frag_size(fragfrom)) { 2303 *fragto = *fragfrom; 2304 todo -= skb_frag_size(fragfrom); 2305 from++; 2306 to++; 2307 2308 } else { 2309 __skb_frag_ref(fragfrom); 2310 fragto->page = fragfrom->page; 2311 fragto->page_offset = fragfrom->page_offset; 2312 skb_frag_size_set(fragto, todo); 2313 2314 fragfrom->page_offset += todo; 2315 skb_frag_size_sub(fragfrom, todo); 2316 todo = 0; 2317 2318 to++; 2319 break; 2320 } 2321 } 2322 2323 /* Ready to "commit" this state change to tgt */ 2324 skb_shinfo(tgt)->nr_frags = to; 2325 2326 if (merge >= 0) { 2327 fragfrom = &skb_shinfo(skb)->frags[0]; 2328 fragto = &skb_shinfo(tgt)->frags[merge]; 2329 2330 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2331 __skb_frag_unref(fragfrom); 2332 } 2333 2334 /* Reposition in the original skb */ 2335 to = 0; 2336 while (from < skb_shinfo(skb)->nr_frags) 2337 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2338 skb_shinfo(skb)->nr_frags = to; 2339 2340 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2341 2342 onlymerged: 2343 /* Most likely the tgt won't ever need its checksum anymore, skb on 2344 * the other hand might need it if it needs to be resent 2345 */ 2346 tgt->ip_summed = CHECKSUM_PARTIAL; 2347 skb->ip_summed = CHECKSUM_PARTIAL; 2348 2349 /* Yak, is it really working this way? Some helper please? */ 2350 skb->len -= shiftlen; 2351 skb->data_len -= shiftlen; 2352 skb->truesize -= shiftlen; 2353 tgt->len += shiftlen; 2354 tgt->data_len += shiftlen; 2355 tgt->truesize += shiftlen; 2356 2357 return shiftlen; 2358 } 2359 2360 /** 2361 * skb_prepare_seq_read - Prepare a sequential read of skb data 2362 * @skb: the buffer to read 2363 * @from: lower offset of data to be read 2364 * @to: upper offset of data to be read 2365 * @st: state variable 2366 * 2367 * Initializes the specified state variable. Must be called before 2368 * invoking skb_seq_read() for the first time. 2369 */ 2370 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2371 unsigned int to, struct skb_seq_state *st) 2372 { 2373 st->lower_offset = from; 2374 st->upper_offset = to; 2375 st->root_skb = st->cur_skb = skb; 2376 st->frag_idx = st->stepped_offset = 0; 2377 st->frag_data = NULL; 2378 } 2379 EXPORT_SYMBOL(skb_prepare_seq_read); 2380 2381 /** 2382 * skb_seq_read - Sequentially read skb data 2383 * @consumed: number of bytes consumed by the caller so far 2384 * @data: destination pointer for data to be returned 2385 * @st: state variable 2386 * 2387 * Reads a block of skb data at &consumed relative to the 2388 * lower offset specified to skb_prepare_seq_read(). Assigns 2389 * the head of the data block to &data and returns the length 2390 * of the block or 0 if the end of the skb data or the upper 2391 * offset has been reached. 2392 * 2393 * The caller is not required to consume all of the data 2394 * returned, i.e. &consumed is typically set to the number 2395 * of bytes already consumed and the next call to 2396 * skb_seq_read() will return the remaining part of the block. 2397 * 2398 * Note 1: The size of each block of data returned can be arbitrary, 2399 * this limitation is the cost for zerocopy seqeuental 2400 * reads of potentially non linear data. 2401 * 2402 * Note 2: Fragment lists within fragments are not implemented 2403 * at the moment, state->root_skb could be replaced with 2404 * a stack for this purpose. 2405 */ 2406 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2407 struct skb_seq_state *st) 2408 { 2409 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2410 skb_frag_t *frag; 2411 2412 if (unlikely(abs_offset >= st->upper_offset)) 2413 return 0; 2414 2415 next_skb: 2416 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2417 2418 if (abs_offset < block_limit && !st->frag_data) { 2419 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2420 return block_limit - abs_offset; 2421 } 2422 2423 if (st->frag_idx == 0 && !st->frag_data) 2424 st->stepped_offset += skb_headlen(st->cur_skb); 2425 2426 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2427 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2428 block_limit = skb_frag_size(frag) + st->stepped_offset; 2429 2430 if (abs_offset < block_limit) { 2431 if (!st->frag_data) 2432 st->frag_data = kmap_skb_frag(frag); 2433 2434 *data = (u8 *) st->frag_data + frag->page_offset + 2435 (abs_offset - st->stepped_offset); 2436 2437 return block_limit - abs_offset; 2438 } 2439 2440 if (st->frag_data) { 2441 kunmap_skb_frag(st->frag_data); 2442 st->frag_data = NULL; 2443 } 2444 2445 st->frag_idx++; 2446 st->stepped_offset += skb_frag_size(frag); 2447 } 2448 2449 if (st->frag_data) { 2450 kunmap_skb_frag(st->frag_data); 2451 st->frag_data = NULL; 2452 } 2453 2454 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2455 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2456 st->frag_idx = 0; 2457 goto next_skb; 2458 } else if (st->cur_skb->next) { 2459 st->cur_skb = st->cur_skb->next; 2460 st->frag_idx = 0; 2461 goto next_skb; 2462 } 2463 2464 return 0; 2465 } 2466 EXPORT_SYMBOL(skb_seq_read); 2467 2468 /** 2469 * skb_abort_seq_read - Abort a sequential read of skb data 2470 * @st: state variable 2471 * 2472 * Must be called if skb_seq_read() was not called until it 2473 * returned 0. 2474 */ 2475 void skb_abort_seq_read(struct skb_seq_state *st) 2476 { 2477 if (st->frag_data) 2478 kunmap_skb_frag(st->frag_data); 2479 } 2480 EXPORT_SYMBOL(skb_abort_seq_read); 2481 2482 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2483 2484 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2485 struct ts_config *conf, 2486 struct ts_state *state) 2487 { 2488 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2489 } 2490 2491 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2492 { 2493 skb_abort_seq_read(TS_SKB_CB(state)); 2494 } 2495 2496 /** 2497 * skb_find_text - Find a text pattern in skb data 2498 * @skb: the buffer to look in 2499 * @from: search offset 2500 * @to: search limit 2501 * @config: textsearch configuration 2502 * @state: uninitialized textsearch state variable 2503 * 2504 * Finds a pattern in the skb data according to the specified 2505 * textsearch configuration. Use textsearch_next() to retrieve 2506 * subsequent occurrences of the pattern. Returns the offset 2507 * to the first occurrence or UINT_MAX if no match was found. 2508 */ 2509 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2510 unsigned int to, struct ts_config *config, 2511 struct ts_state *state) 2512 { 2513 unsigned int ret; 2514 2515 config->get_next_block = skb_ts_get_next_block; 2516 config->finish = skb_ts_finish; 2517 2518 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2519 2520 ret = textsearch_find(config, state); 2521 return (ret <= to - from ? ret : UINT_MAX); 2522 } 2523 EXPORT_SYMBOL(skb_find_text); 2524 2525 /** 2526 * skb_append_datato_frags: - append the user data to a skb 2527 * @sk: sock structure 2528 * @skb: skb structure to be appened with user data. 2529 * @getfrag: call back function to be used for getting the user data 2530 * @from: pointer to user message iov 2531 * @length: length of the iov message 2532 * 2533 * Description: This procedure append the user data in the fragment part 2534 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2535 */ 2536 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2537 int (*getfrag)(void *from, char *to, int offset, 2538 int len, int odd, struct sk_buff *skb), 2539 void *from, int length) 2540 { 2541 int frg_cnt = 0; 2542 skb_frag_t *frag = NULL; 2543 struct page *page = NULL; 2544 int copy, left; 2545 int offset = 0; 2546 int ret; 2547 2548 do { 2549 /* Return error if we don't have space for new frag */ 2550 frg_cnt = skb_shinfo(skb)->nr_frags; 2551 if (frg_cnt >= MAX_SKB_FRAGS) 2552 return -EFAULT; 2553 2554 /* allocate a new page for next frag */ 2555 page = alloc_pages(sk->sk_allocation, 0); 2556 2557 /* If alloc_page fails just return failure and caller will 2558 * free previous allocated pages by doing kfree_skb() 2559 */ 2560 if (page == NULL) 2561 return -ENOMEM; 2562 2563 /* initialize the next frag */ 2564 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 2565 skb->truesize += PAGE_SIZE; 2566 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 2567 2568 /* get the new initialized frag */ 2569 frg_cnt = skb_shinfo(skb)->nr_frags; 2570 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 2571 2572 /* copy the user data to page */ 2573 left = PAGE_SIZE - frag->page_offset; 2574 copy = (length > left)? left : length; 2575 2576 ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag), 2577 offset, copy, 0, skb); 2578 if (ret < 0) 2579 return -EFAULT; 2580 2581 /* copy was successful so update the size parameters */ 2582 skb_frag_size_add(frag, copy); 2583 skb->len += copy; 2584 skb->data_len += copy; 2585 offset += copy; 2586 length -= copy; 2587 2588 } while (length > 0); 2589 2590 return 0; 2591 } 2592 EXPORT_SYMBOL(skb_append_datato_frags); 2593 2594 /** 2595 * skb_pull_rcsum - pull skb and update receive checksum 2596 * @skb: buffer to update 2597 * @len: length of data pulled 2598 * 2599 * This function performs an skb_pull on the packet and updates 2600 * the CHECKSUM_COMPLETE checksum. It should be used on 2601 * receive path processing instead of skb_pull unless you know 2602 * that the checksum difference is zero (e.g., a valid IP header) 2603 * or you are setting ip_summed to CHECKSUM_NONE. 2604 */ 2605 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2606 { 2607 BUG_ON(len > skb->len); 2608 skb->len -= len; 2609 BUG_ON(skb->len < skb->data_len); 2610 skb_postpull_rcsum(skb, skb->data, len); 2611 return skb->data += len; 2612 } 2613 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2614 2615 /** 2616 * skb_segment - Perform protocol segmentation on skb. 2617 * @skb: buffer to segment 2618 * @features: features for the output path (see dev->features) 2619 * 2620 * This function performs segmentation on the given skb. It returns 2621 * a pointer to the first in a list of new skbs for the segments. 2622 * In case of error it returns ERR_PTR(err). 2623 */ 2624 struct sk_buff *skb_segment(struct sk_buff *skb, u32 features) 2625 { 2626 struct sk_buff *segs = NULL; 2627 struct sk_buff *tail = NULL; 2628 struct sk_buff *fskb = skb_shinfo(skb)->frag_list; 2629 unsigned int mss = skb_shinfo(skb)->gso_size; 2630 unsigned int doffset = skb->data - skb_mac_header(skb); 2631 unsigned int offset = doffset; 2632 unsigned int headroom; 2633 unsigned int len; 2634 int sg = !!(features & NETIF_F_SG); 2635 int nfrags = skb_shinfo(skb)->nr_frags; 2636 int err = -ENOMEM; 2637 int i = 0; 2638 int pos; 2639 2640 __skb_push(skb, doffset); 2641 headroom = skb_headroom(skb); 2642 pos = skb_headlen(skb); 2643 2644 do { 2645 struct sk_buff *nskb; 2646 skb_frag_t *frag; 2647 int hsize; 2648 int size; 2649 2650 len = skb->len - offset; 2651 if (len > mss) 2652 len = mss; 2653 2654 hsize = skb_headlen(skb) - offset; 2655 if (hsize < 0) 2656 hsize = 0; 2657 if (hsize > len || !sg) 2658 hsize = len; 2659 2660 if (!hsize && i >= nfrags) { 2661 BUG_ON(fskb->len != len); 2662 2663 pos += len; 2664 nskb = skb_clone(fskb, GFP_ATOMIC); 2665 fskb = fskb->next; 2666 2667 if (unlikely(!nskb)) 2668 goto err; 2669 2670 hsize = skb_end_pointer(nskb) - nskb->head; 2671 if (skb_cow_head(nskb, doffset + headroom)) { 2672 kfree_skb(nskb); 2673 goto err; 2674 } 2675 2676 nskb->truesize += skb_end_pointer(nskb) - nskb->head - 2677 hsize; 2678 skb_release_head_state(nskb); 2679 __skb_push(nskb, doffset); 2680 } else { 2681 nskb = alloc_skb(hsize + doffset + headroom, 2682 GFP_ATOMIC); 2683 2684 if (unlikely(!nskb)) 2685 goto err; 2686 2687 skb_reserve(nskb, headroom); 2688 __skb_put(nskb, doffset); 2689 } 2690 2691 if (segs) 2692 tail->next = nskb; 2693 else 2694 segs = nskb; 2695 tail = nskb; 2696 2697 __copy_skb_header(nskb, skb); 2698 nskb->mac_len = skb->mac_len; 2699 2700 /* nskb and skb might have different headroom */ 2701 if (nskb->ip_summed == CHECKSUM_PARTIAL) 2702 nskb->csum_start += skb_headroom(nskb) - headroom; 2703 2704 skb_reset_mac_header(nskb); 2705 skb_set_network_header(nskb, skb->mac_len); 2706 nskb->transport_header = (nskb->network_header + 2707 skb_network_header_len(skb)); 2708 skb_copy_from_linear_data(skb, nskb->data, doffset); 2709 2710 if (fskb != skb_shinfo(skb)->frag_list) 2711 continue; 2712 2713 if (!sg) { 2714 nskb->ip_summed = CHECKSUM_NONE; 2715 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2716 skb_put(nskb, len), 2717 len, 0); 2718 continue; 2719 } 2720 2721 frag = skb_shinfo(nskb)->frags; 2722 2723 skb_copy_from_linear_data_offset(skb, offset, 2724 skb_put(nskb, hsize), hsize); 2725 2726 while (pos < offset + len && i < nfrags) { 2727 *frag = skb_shinfo(skb)->frags[i]; 2728 __skb_frag_ref(frag); 2729 size = skb_frag_size(frag); 2730 2731 if (pos < offset) { 2732 frag->page_offset += offset - pos; 2733 skb_frag_size_sub(frag, offset - pos); 2734 } 2735 2736 skb_shinfo(nskb)->nr_frags++; 2737 2738 if (pos + size <= offset + len) { 2739 i++; 2740 pos += size; 2741 } else { 2742 skb_frag_size_sub(frag, pos + size - (offset + len)); 2743 goto skip_fraglist; 2744 } 2745 2746 frag++; 2747 } 2748 2749 if (pos < offset + len) { 2750 struct sk_buff *fskb2 = fskb; 2751 2752 BUG_ON(pos + fskb->len != offset + len); 2753 2754 pos += fskb->len; 2755 fskb = fskb->next; 2756 2757 if (fskb2->next) { 2758 fskb2 = skb_clone(fskb2, GFP_ATOMIC); 2759 if (!fskb2) 2760 goto err; 2761 } else 2762 skb_get(fskb2); 2763 2764 SKB_FRAG_ASSERT(nskb); 2765 skb_shinfo(nskb)->frag_list = fskb2; 2766 } 2767 2768 skip_fraglist: 2769 nskb->data_len = len - hsize; 2770 nskb->len += nskb->data_len; 2771 nskb->truesize += nskb->data_len; 2772 } while ((offset += len) < skb->len); 2773 2774 return segs; 2775 2776 err: 2777 while ((skb = segs)) { 2778 segs = skb->next; 2779 kfree_skb(skb); 2780 } 2781 return ERR_PTR(err); 2782 } 2783 EXPORT_SYMBOL_GPL(skb_segment); 2784 2785 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2786 { 2787 struct sk_buff *p = *head; 2788 struct sk_buff *nskb; 2789 struct skb_shared_info *skbinfo = skb_shinfo(skb); 2790 struct skb_shared_info *pinfo = skb_shinfo(p); 2791 unsigned int headroom; 2792 unsigned int len = skb_gro_len(skb); 2793 unsigned int offset = skb_gro_offset(skb); 2794 unsigned int headlen = skb_headlen(skb); 2795 2796 if (p->len + len >= 65536) 2797 return -E2BIG; 2798 2799 if (pinfo->frag_list) 2800 goto merge; 2801 else if (headlen <= offset) { 2802 skb_frag_t *frag; 2803 skb_frag_t *frag2; 2804 int i = skbinfo->nr_frags; 2805 int nr_frags = pinfo->nr_frags + i; 2806 2807 offset -= headlen; 2808 2809 if (nr_frags > MAX_SKB_FRAGS) 2810 return -E2BIG; 2811 2812 pinfo->nr_frags = nr_frags; 2813 skbinfo->nr_frags = 0; 2814 2815 frag = pinfo->frags + nr_frags; 2816 frag2 = skbinfo->frags + i; 2817 do { 2818 *--frag = *--frag2; 2819 } while (--i); 2820 2821 frag->page_offset += offset; 2822 skb_frag_size_sub(frag, offset); 2823 2824 skb->truesize -= skb->data_len; 2825 skb->len -= skb->data_len; 2826 skb->data_len = 0; 2827 2828 NAPI_GRO_CB(skb)->free = 1; 2829 goto done; 2830 } else if (skb_gro_len(p) != pinfo->gso_size) 2831 return -E2BIG; 2832 2833 headroom = skb_headroom(p); 2834 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC); 2835 if (unlikely(!nskb)) 2836 return -ENOMEM; 2837 2838 __copy_skb_header(nskb, p); 2839 nskb->mac_len = p->mac_len; 2840 2841 skb_reserve(nskb, headroom); 2842 __skb_put(nskb, skb_gro_offset(p)); 2843 2844 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 2845 skb_set_network_header(nskb, skb_network_offset(p)); 2846 skb_set_transport_header(nskb, skb_transport_offset(p)); 2847 2848 __skb_pull(p, skb_gro_offset(p)); 2849 memcpy(skb_mac_header(nskb), skb_mac_header(p), 2850 p->data - skb_mac_header(p)); 2851 2852 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p); 2853 skb_shinfo(nskb)->frag_list = p; 2854 skb_shinfo(nskb)->gso_size = pinfo->gso_size; 2855 pinfo->gso_size = 0; 2856 skb_header_release(p); 2857 nskb->prev = p; 2858 2859 nskb->data_len += p->len; 2860 nskb->truesize += p->len; 2861 nskb->len += p->len; 2862 2863 *head = nskb; 2864 nskb->next = p->next; 2865 p->next = NULL; 2866 2867 p = nskb; 2868 2869 merge: 2870 if (offset > headlen) { 2871 unsigned int eat = offset - headlen; 2872 2873 skbinfo->frags[0].page_offset += eat; 2874 skb_frag_size_sub(&skbinfo->frags[0], eat); 2875 skb->data_len -= eat; 2876 skb->len -= eat; 2877 offset = headlen; 2878 } 2879 2880 __skb_pull(skb, offset); 2881 2882 p->prev->next = skb; 2883 p->prev = skb; 2884 skb_header_release(skb); 2885 2886 done: 2887 NAPI_GRO_CB(p)->count++; 2888 p->data_len += len; 2889 p->truesize += len; 2890 p->len += len; 2891 2892 NAPI_GRO_CB(skb)->same_flow = 1; 2893 return 0; 2894 } 2895 EXPORT_SYMBOL_GPL(skb_gro_receive); 2896 2897 void __init skb_init(void) 2898 { 2899 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2900 sizeof(struct sk_buff), 2901 0, 2902 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2903 NULL); 2904 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2905 (2*sizeof(struct sk_buff)) + 2906 sizeof(atomic_t), 2907 0, 2908 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2909 NULL); 2910 } 2911 2912 /** 2913 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2914 * @skb: Socket buffer containing the buffers to be mapped 2915 * @sg: The scatter-gather list to map into 2916 * @offset: The offset into the buffer's contents to start mapping 2917 * @len: Length of buffer space to be mapped 2918 * 2919 * Fill the specified scatter-gather list with mappings/pointers into a 2920 * region of the buffer space attached to a socket buffer. 2921 */ 2922 static int 2923 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2924 { 2925 int start = skb_headlen(skb); 2926 int i, copy = start - offset; 2927 struct sk_buff *frag_iter; 2928 int elt = 0; 2929 2930 if (copy > 0) { 2931 if (copy > len) 2932 copy = len; 2933 sg_set_buf(sg, skb->data + offset, copy); 2934 elt++; 2935 if ((len -= copy) == 0) 2936 return elt; 2937 offset += copy; 2938 } 2939 2940 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2941 int end; 2942 2943 WARN_ON(start > offset + len); 2944 2945 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2946 if ((copy = end - offset) > 0) { 2947 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2948 2949 if (copy > len) 2950 copy = len; 2951 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 2952 frag->page_offset+offset-start); 2953 elt++; 2954 if (!(len -= copy)) 2955 return elt; 2956 offset += copy; 2957 } 2958 start = end; 2959 } 2960 2961 skb_walk_frags(skb, frag_iter) { 2962 int end; 2963 2964 WARN_ON(start > offset + len); 2965 2966 end = start + frag_iter->len; 2967 if ((copy = end - offset) > 0) { 2968 if (copy > len) 2969 copy = len; 2970 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 2971 copy); 2972 if ((len -= copy) == 0) 2973 return elt; 2974 offset += copy; 2975 } 2976 start = end; 2977 } 2978 BUG_ON(len); 2979 return elt; 2980 } 2981 2982 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2983 { 2984 int nsg = __skb_to_sgvec(skb, sg, offset, len); 2985 2986 sg_mark_end(&sg[nsg - 1]); 2987 2988 return nsg; 2989 } 2990 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2991 2992 /** 2993 * skb_cow_data - Check that a socket buffer's data buffers are writable 2994 * @skb: The socket buffer to check. 2995 * @tailbits: Amount of trailing space to be added 2996 * @trailer: Returned pointer to the skb where the @tailbits space begins 2997 * 2998 * Make sure that the data buffers attached to a socket buffer are 2999 * writable. If they are not, private copies are made of the data buffers 3000 * and the socket buffer is set to use these instead. 3001 * 3002 * If @tailbits is given, make sure that there is space to write @tailbits 3003 * bytes of data beyond current end of socket buffer. @trailer will be 3004 * set to point to the skb in which this space begins. 3005 * 3006 * The number of scatterlist elements required to completely map the 3007 * COW'd and extended socket buffer will be returned. 3008 */ 3009 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3010 { 3011 int copyflag; 3012 int elt; 3013 struct sk_buff *skb1, **skb_p; 3014 3015 /* If skb is cloned or its head is paged, reallocate 3016 * head pulling out all the pages (pages are considered not writable 3017 * at the moment even if they are anonymous). 3018 */ 3019 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3020 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3021 return -ENOMEM; 3022 3023 /* Easy case. Most of packets will go this way. */ 3024 if (!skb_has_frag_list(skb)) { 3025 /* A little of trouble, not enough of space for trailer. 3026 * This should not happen, when stack is tuned to generate 3027 * good frames. OK, on miss we reallocate and reserve even more 3028 * space, 128 bytes is fair. */ 3029 3030 if (skb_tailroom(skb) < tailbits && 3031 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3032 return -ENOMEM; 3033 3034 /* Voila! */ 3035 *trailer = skb; 3036 return 1; 3037 } 3038 3039 /* Misery. We are in troubles, going to mincer fragments... */ 3040 3041 elt = 1; 3042 skb_p = &skb_shinfo(skb)->frag_list; 3043 copyflag = 0; 3044 3045 while ((skb1 = *skb_p) != NULL) { 3046 int ntail = 0; 3047 3048 /* The fragment is partially pulled by someone, 3049 * this can happen on input. Copy it and everything 3050 * after it. */ 3051 3052 if (skb_shared(skb1)) 3053 copyflag = 1; 3054 3055 /* If the skb is the last, worry about trailer. */ 3056 3057 if (skb1->next == NULL && tailbits) { 3058 if (skb_shinfo(skb1)->nr_frags || 3059 skb_has_frag_list(skb1) || 3060 skb_tailroom(skb1) < tailbits) 3061 ntail = tailbits + 128; 3062 } 3063 3064 if (copyflag || 3065 skb_cloned(skb1) || 3066 ntail || 3067 skb_shinfo(skb1)->nr_frags || 3068 skb_has_frag_list(skb1)) { 3069 struct sk_buff *skb2; 3070 3071 /* Fuck, we are miserable poor guys... */ 3072 if (ntail == 0) 3073 skb2 = skb_copy(skb1, GFP_ATOMIC); 3074 else 3075 skb2 = skb_copy_expand(skb1, 3076 skb_headroom(skb1), 3077 ntail, 3078 GFP_ATOMIC); 3079 if (unlikely(skb2 == NULL)) 3080 return -ENOMEM; 3081 3082 if (skb1->sk) 3083 skb_set_owner_w(skb2, skb1->sk); 3084 3085 /* Looking around. Are we still alive? 3086 * OK, link new skb, drop old one */ 3087 3088 skb2->next = skb1->next; 3089 *skb_p = skb2; 3090 kfree_skb(skb1); 3091 skb1 = skb2; 3092 } 3093 elt++; 3094 *trailer = skb1; 3095 skb_p = &skb1->next; 3096 } 3097 3098 return elt; 3099 } 3100 EXPORT_SYMBOL_GPL(skb_cow_data); 3101 3102 static void sock_rmem_free(struct sk_buff *skb) 3103 { 3104 struct sock *sk = skb->sk; 3105 3106 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3107 } 3108 3109 /* 3110 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3111 */ 3112 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3113 { 3114 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3115 (unsigned)sk->sk_rcvbuf) 3116 return -ENOMEM; 3117 3118 skb_orphan(skb); 3119 skb->sk = sk; 3120 skb->destructor = sock_rmem_free; 3121 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3122 3123 /* before exiting rcu section, make sure dst is refcounted */ 3124 skb_dst_force(skb); 3125 3126 skb_queue_tail(&sk->sk_error_queue, skb); 3127 if (!sock_flag(sk, SOCK_DEAD)) 3128 sk->sk_data_ready(sk, skb->len); 3129 return 0; 3130 } 3131 EXPORT_SYMBOL(sock_queue_err_skb); 3132 3133 void skb_tstamp_tx(struct sk_buff *orig_skb, 3134 struct skb_shared_hwtstamps *hwtstamps) 3135 { 3136 struct sock *sk = orig_skb->sk; 3137 struct sock_exterr_skb *serr; 3138 struct sk_buff *skb; 3139 int err; 3140 3141 if (!sk) 3142 return; 3143 3144 skb = skb_clone(orig_skb, GFP_ATOMIC); 3145 if (!skb) 3146 return; 3147 3148 if (hwtstamps) { 3149 *skb_hwtstamps(skb) = 3150 *hwtstamps; 3151 } else { 3152 /* 3153 * no hardware time stamps available, 3154 * so keep the shared tx_flags and only 3155 * store software time stamp 3156 */ 3157 skb->tstamp = ktime_get_real(); 3158 } 3159 3160 serr = SKB_EXT_ERR(skb); 3161 memset(serr, 0, sizeof(*serr)); 3162 serr->ee.ee_errno = ENOMSG; 3163 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3164 3165 err = sock_queue_err_skb(sk, skb); 3166 3167 if (err) 3168 kfree_skb(skb); 3169 } 3170 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3171 3172 3173 /** 3174 * skb_partial_csum_set - set up and verify partial csum values for packet 3175 * @skb: the skb to set 3176 * @start: the number of bytes after skb->data to start checksumming. 3177 * @off: the offset from start to place the checksum. 3178 * 3179 * For untrusted partially-checksummed packets, we need to make sure the values 3180 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3181 * 3182 * This function checks and sets those values and skb->ip_summed: if this 3183 * returns false you should drop the packet. 3184 */ 3185 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3186 { 3187 if (unlikely(start > skb_headlen(skb)) || 3188 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3189 if (net_ratelimit()) 3190 printk(KERN_WARNING 3191 "bad partial csum: csum=%u/%u len=%u\n", 3192 start, off, skb_headlen(skb)); 3193 return false; 3194 } 3195 skb->ip_summed = CHECKSUM_PARTIAL; 3196 skb->csum_start = skb_headroom(skb) + start; 3197 skb->csum_offset = off; 3198 return true; 3199 } 3200 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3201 3202 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3203 { 3204 if (net_ratelimit()) 3205 pr_warning("%s: received packets cannot be forwarded" 3206 " while LRO is enabled\n", skb->dev->name); 3207 } 3208 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3209