xref: /openbmc/linux/net/core/skbuff.c (revision 5bd8e16d)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69 
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73 
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76 
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 				  struct pipe_buffer *buf)
79 {
80 	put_page(buf->page);
81 }
82 
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 				struct pipe_buffer *buf)
85 {
86 	get_page(buf->page);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /**
108  *	skb_panic - private function for out-of-line support
109  *	@skb:	buffer
110  *	@sz:	size
111  *	@addr:	address
112  *	@msg:	skb_over_panic or skb_under_panic
113  *
114  *	Out-of-line support for skb_put() and skb_push().
115  *	Called via the wrapper skb_over_panic() or skb_under_panic().
116  *	Keep out of line to prevent kernel bloat.
117  *	__builtin_return_address is not used because it is not always reliable.
118  */
119 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
120 		      const char msg[])
121 {
122 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
123 		 msg, addr, skb->len, sz, skb->head, skb->data,
124 		 (unsigned long)skb->tail, (unsigned long)skb->end,
125 		 skb->dev ? skb->dev->name : "<NULL>");
126 	BUG();
127 }
128 
129 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130 {
131 	skb_panic(skb, sz, addr, __func__);
132 }
133 
134 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
135 {
136 	skb_panic(skb, sz, addr, __func__);
137 }
138 
139 /*
140  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
141  * the caller if emergency pfmemalloc reserves are being used. If it is and
142  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
143  * may be used. Otherwise, the packet data may be discarded until enough
144  * memory is free
145  */
146 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
147 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
148 
149 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
150 			       unsigned long ip, bool *pfmemalloc)
151 {
152 	void *obj;
153 	bool ret_pfmemalloc = false;
154 
155 	/*
156 	 * Try a regular allocation, when that fails and we're not entitled
157 	 * to the reserves, fail.
158 	 */
159 	obj = kmalloc_node_track_caller(size,
160 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
161 					node);
162 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
163 		goto out;
164 
165 	/* Try again but now we are using pfmemalloc reserves */
166 	ret_pfmemalloc = true;
167 	obj = kmalloc_node_track_caller(size, flags, node);
168 
169 out:
170 	if (pfmemalloc)
171 		*pfmemalloc = ret_pfmemalloc;
172 
173 	return obj;
174 }
175 
176 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
177  *	'private' fields and also do memory statistics to find all the
178  *	[BEEP] leaks.
179  *
180  */
181 
182 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
183 {
184 	struct sk_buff *skb;
185 
186 	/* Get the HEAD */
187 	skb = kmem_cache_alloc_node(skbuff_head_cache,
188 				    gfp_mask & ~__GFP_DMA, node);
189 	if (!skb)
190 		goto out;
191 
192 	/*
193 	 * Only clear those fields we need to clear, not those that we will
194 	 * actually initialise below. Hence, don't put any more fields after
195 	 * the tail pointer in struct sk_buff!
196 	 */
197 	memset(skb, 0, offsetof(struct sk_buff, tail));
198 	skb->head = NULL;
199 	skb->truesize = sizeof(struct sk_buff);
200 	atomic_set(&skb->users, 1);
201 
202 	skb->mac_header = (typeof(skb->mac_header))~0U;
203 out:
204 	return skb;
205 }
206 
207 /**
208  *	__alloc_skb	-	allocate a network buffer
209  *	@size: size to allocate
210  *	@gfp_mask: allocation mask
211  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
212  *		instead of head cache and allocate a cloned (child) skb.
213  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
214  *		allocations in case the data is required for writeback
215  *	@node: numa node to allocate memory on
216  *
217  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
218  *	tail room of at least size bytes. The object has a reference count
219  *	of one. The return is the buffer. On a failure the return is %NULL.
220  *
221  *	Buffers may only be allocated from interrupts using a @gfp_mask of
222  *	%GFP_ATOMIC.
223  */
224 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
225 			    int flags, int node)
226 {
227 	struct kmem_cache *cache;
228 	struct skb_shared_info *shinfo;
229 	struct sk_buff *skb;
230 	u8 *data;
231 	bool pfmemalloc;
232 
233 	cache = (flags & SKB_ALLOC_FCLONE)
234 		? skbuff_fclone_cache : skbuff_head_cache;
235 
236 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
237 		gfp_mask |= __GFP_MEMALLOC;
238 
239 	/* Get the HEAD */
240 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
241 	if (!skb)
242 		goto out;
243 	prefetchw(skb);
244 
245 	/* We do our best to align skb_shared_info on a separate cache
246 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
247 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
248 	 * Both skb->head and skb_shared_info are cache line aligned.
249 	 */
250 	size = SKB_DATA_ALIGN(size);
251 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
252 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
253 	if (!data)
254 		goto nodata;
255 	/* kmalloc(size) might give us more room than requested.
256 	 * Put skb_shared_info exactly at the end of allocated zone,
257 	 * to allow max possible filling before reallocation.
258 	 */
259 	size = SKB_WITH_OVERHEAD(ksize(data));
260 	prefetchw(data + size);
261 
262 	/*
263 	 * Only clear those fields we need to clear, not those that we will
264 	 * actually initialise below. Hence, don't put any more fields after
265 	 * the tail pointer in struct sk_buff!
266 	 */
267 	memset(skb, 0, offsetof(struct sk_buff, tail));
268 	/* Account for allocated memory : skb + skb->head */
269 	skb->truesize = SKB_TRUESIZE(size);
270 	skb->pfmemalloc = pfmemalloc;
271 	atomic_set(&skb->users, 1);
272 	skb->head = data;
273 	skb->data = data;
274 	skb_reset_tail_pointer(skb);
275 	skb->end = skb->tail + size;
276 	skb->mac_header = (typeof(skb->mac_header))~0U;
277 	skb->transport_header = (typeof(skb->transport_header))~0U;
278 
279 	/* make sure we initialize shinfo sequentially */
280 	shinfo = skb_shinfo(skb);
281 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
282 	atomic_set(&shinfo->dataref, 1);
283 	kmemcheck_annotate_variable(shinfo->destructor_arg);
284 
285 	if (flags & SKB_ALLOC_FCLONE) {
286 		struct sk_buff *child = skb + 1;
287 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
288 
289 		kmemcheck_annotate_bitfield(child, flags1);
290 		kmemcheck_annotate_bitfield(child, flags2);
291 		skb->fclone = SKB_FCLONE_ORIG;
292 		atomic_set(fclone_ref, 1);
293 
294 		child->fclone = SKB_FCLONE_UNAVAILABLE;
295 		child->pfmemalloc = pfmemalloc;
296 	}
297 out:
298 	return skb;
299 nodata:
300 	kmem_cache_free(cache, skb);
301 	skb = NULL;
302 	goto out;
303 }
304 EXPORT_SYMBOL(__alloc_skb);
305 
306 /**
307  * build_skb - build a network buffer
308  * @data: data buffer provided by caller
309  * @frag_size: size of fragment, or 0 if head was kmalloced
310  *
311  * Allocate a new &sk_buff. Caller provides space holding head and
312  * skb_shared_info. @data must have been allocated by kmalloc() only if
313  * @frag_size is 0, otherwise data should come from the page allocator.
314  * The return is the new skb buffer.
315  * On a failure the return is %NULL, and @data is not freed.
316  * Notes :
317  *  Before IO, driver allocates only data buffer where NIC put incoming frame
318  *  Driver should add room at head (NET_SKB_PAD) and
319  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
320  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
321  *  before giving packet to stack.
322  *  RX rings only contains data buffers, not full skbs.
323  */
324 struct sk_buff *build_skb(void *data, unsigned int frag_size)
325 {
326 	struct skb_shared_info *shinfo;
327 	struct sk_buff *skb;
328 	unsigned int size = frag_size ? : ksize(data);
329 
330 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
331 	if (!skb)
332 		return NULL;
333 
334 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
335 
336 	memset(skb, 0, offsetof(struct sk_buff, tail));
337 	skb->truesize = SKB_TRUESIZE(size);
338 	skb->head_frag = frag_size != 0;
339 	atomic_set(&skb->users, 1);
340 	skb->head = data;
341 	skb->data = data;
342 	skb_reset_tail_pointer(skb);
343 	skb->end = skb->tail + size;
344 	skb->mac_header = (typeof(skb->mac_header))~0U;
345 	skb->transport_header = (typeof(skb->transport_header))~0U;
346 
347 	/* make sure we initialize shinfo sequentially */
348 	shinfo = skb_shinfo(skb);
349 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
350 	atomic_set(&shinfo->dataref, 1);
351 	kmemcheck_annotate_variable(shinfo->destructor_arg);
352 
353 	return skb;
354 }
355 EXPORT_SYMBOL(build_skb);
356 
357 struct netdev_alloc_cache {
358 	struct page_frag	frag;
359 	/* we maintain a pagecount bias, so that we dont dirty cache line
360 	 * containing page->_count every time we allocate a fragment.
361 	 */
362 	unsigned int		pagecnt_bias;
363 };
364 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
365 
366 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
367 {
368 	struct netdev_alloc_cache *nc;
369 	void *data = NULL;
370 	int order;
371 	unsigned long flags;
372 
373 	local_irq_save(flags);
374 	nc = &__get_cpu_var(netdev_alloc_cache);
375 	if (unlikely(!nc->frag.page)) {
376 refill:
377 		for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
378 			gfp_t gfp = gfp_mask;
379 
380 			if (order)
381 				gfp |= __GFP_COMP | __GFP_NOWARN;
382 			nc->frag.page = alloc_pages(gfp, order);
383 			if (likely(nc->frag.page))
384 				break;
385 			if (--order < 0)
386 				goto end;
387 		}
388 		nc->frag.size = PAGE_SIZE << order;
389 recycle:
390 		atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
391 		nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
392 		nc->frag.offset = 0;
393 	}
394 
395 	if (nc->frag.offset + fragsz > nc->frag.size) {
396 		/* avoid unnecessary locked operations if possible */
397 		if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
398 		    atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
399 			goto recycle;
400 		goto refill;
401 	}
402 
403 	data = page_address(nc->frag.page) + nc->frag.offset;
404 	nc->frag.offset += fragsz;
405 	nc->pagecnt_bias--;
406 end:
407 	local_irq_restore(flags);
408 	return data;
409 }
410 
411 /**
412  * netdev_alloc_frag - allocate a page fragment
413  * @fragsz: fragment size
414  *
415  * Allocates a frag from a page for receive buffer.
416  * Uses GFP_ATOMIC allocations.
417  */
418 void *netdev_alloc_frag(unsigned int fragsz)
419 {
420 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
421 }
422 EXPORT_SYMBOL(netdev_alloc_frag);
423 
424 /**
425  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
426  *	@dev: network device to receive on
427  *	@length: length to allocate
428  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
429  *
430  *	Allocate a new &sk_buff and assign it a usage count of one. The
431  *	buffer has unspecified headroom built in. Users should allocate
432  *	the headroom they think they need without accounting for the
433  *	built in space. The built in space is used for optimisations.
434  *
435  *	%NULL is returned if there is no free memory.
436  */
437 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
438 				   unsigned int length, gfp_t gfp_mask)
439 {
440 	struct sk_buff *skb = NULL;
441 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
442 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
443 
444 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
445 		void *data;
446 
447 		if (sk_memalloc_socks())
448 			gfp_mask |= __GFP_MEMALLOC;
449 
450 		data = __netdev_alloc_frag(fragsz, gfp_mask);
451 
452 		if (likely(data)) {
453 			skb = build_skb(data, fragsz);
454 			if (unlikely(!skb))
455 				put_page(virt_to_head_page(data));
456 		}
457 	} else {
458 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
459 				  SKB_ALLOC_RX, NUMA_NO_NODE);
460 	}
461 	if (likely(skb)) {
462 		skb_reserve(skb, NET_SKB_PAD);
463 		skb->dev = dev;
464 	}
465 	return skb;
466 }
467 EXPORT_SYMBOL(__netdev_alloc_skb);
468 
469 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
470 		     int size, unsigned int truesize)
471 {
472 	skb_fill_page_desc(skb, i, page, off, size);
473 	skb->len += size;
474 	skb->data_len += size;
475 	skb->truesize += truesize;
476 }
477 EXPORT_SYMBOL(skb_add_rx_frag);
478 
479 static void skb_drop_list(struct sk_buff **listp)
480 {
481 	kfree_skb_list(*listp);
482 	*listp = NULL;
483 }
484 
485 static inline void skb_drop_fraglist(struct sk_buff *skb)
486 {
487 	skb_drop_list(&skb_shinfo(skb)->frag_list);
488 }
489 
490 static void skb_clone_fraglist(struct sk_buff *skb)
491 {
492 	struct sk_buff *list;
493 
494 	skb_walk_frags(skb, list)
495 		skb_get(list);
496 }
497 
498 static void skb_free_head(struct sk_buff *skb)
499 {
500 	if (skb->head_frag)
501 		put_page(virt_to_head_page(skb->head));
502 	else
503 		kfree(skb->head);
504 }
505 
506 static void skb_release_data(struct sk_buff *skb)
507 {
508 	if (!skb->cloned ||
509 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
510 			       &skb_shinfo(skb)->dataref)) {
511 		if (skb_shinfo(skb)->nr_frags) {
512 			int i;
513 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
514 				skb_frag_unref(skb, i);
515 		}
516 
517 		/*
518 		 * If skb buf is from userspace, we need to notify the caller
519 		 * the lower device DMA has done;
520 		 */
521 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
522 			struct ubuf_info *uarg;
523 
524 			uarg = skb_shinfo(skb)->destructor_arg;
525 			if (uarg->callback)
526 				uarg->callback(uarg, true);
527 		}
528 
529 		if (skb_has_frag_list(skb))
530 			skb_drop_fraglist(skb);
531 
532 		skb_free_head(skb);
533 	}
534 }
535 
536 /*
537  *	Free an skbuff by memory without cleaning the state.
538  */
539 static void kfree_skbmem(struct sk_buff *skb)
540 {
541 	struct sk_buff *other;
542 	atomic_t *fclone_ref;
543 
544 	switch (skb->fclone) {
545 	case SKB_FCLONE_UNAVAILABLE:
546 		kmem_cache_free(skbuff_head_cache, skb);
547 		break;
548 
549 	case SKB_FCLONE_ORIG:
550 		fclone_ref = (atomic_t *) (skb + 2);
551 		if (atomic_dec_and_test(fclone_ref))
552 			kmem_cache_free(skbuff_fclone_cache, skb);
553 		break;
554 
555 	case SKB_FCLONE_CLONE:
556 		fclone_ref = (atomic_t *) (skb + 1);
557 		other = skb - 1;
558 
559 		/* The clone portion is available for
560 		 * fast-cloning again.
561 		 */
562 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
563 
564 		if (atomic_dec_and_test(fclone_ref))
565 			kmem_cache_free(skbuff_fclone_cache, other);
566 		break;
567 	}
568 }
569 
570 static void skb_release_head_state(struct sk_buff *skb)
571 {
572 	skb_dst_drop(skb);
573 #ifdef CONFIG_XFRM
574 	secpath_put(skb->sp);
575 #endif
576 	if (skb->destructor) {
577 		WARN_ON(in_irq());
578 		skb->destructor(skb);
579 	}
580 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
581 	nf_conntrack_put(skb->nfct);
582 #endif
583 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
584 	nf_conntrack_put_reasm(skb->nfct_reasm);
585 #endif
586 #ifdef CONFIG_BRIDGE_NETFILTER
587 	nf_bridge_put(skb->nf_bridge);
588 #endif
589 /* XXX: IS this still necessary? - JHS */
590 #ifdef CONFIG_NET_SCHED
591 	skb->tc_index = 0;
592 #ifdef CONFIG_NET_CLS_ACT
593 	skb->tc_verd = 0;
594 #endif
595 #endif
596 }
597 
598 /* Free everything but the sk_buff shell. */
599 static void skb_release_all(struct sk_buff *skb)
600 {
601 	skb_release_head_state(skb);
602 	if (likely(skb->head))
603 		skb_release_data(skb);
604 }
605 
606 /**
607  *	__kfree_skb - private function
608  *	@skb: buffer
609  *
610  *	Free an sk_buff. Release anything attached to the buffer.
611  *	Clean the state. This is an internal helper function. Users should
612  *	always call kfree_skb
613  */
614 
615 void __kfree_skb(struct sk_buff *skb)
616 {
617 	skb_release_all(skb);
618 	kfree_skbmem(skb);
619 }
620 EXPORT_SYMBOL(__kfree_skb);
621 
622 /**
623  *	kfree_skb - free an sk_buff
624  *	@skb: buffer to free
625  *
626  *	Drop a reference to the buffer and free it if the usage count has
627  *	hit zero.
628  */
629 void kfree_skb(struct sk_buff *skb)
630 {
631 	if (unlikely(!skb))
632 		return;
633 	if (likely(atomic_read(&skb->users) == 1))
634 		smp_rmb();
635 	else if (likely(!atomic_dec_and_test(&skb->users)))
636 		return;
637 	trace_kfree_skb(skb, __builtin_return_address(0));
638 	__kfree_skb(skb);
639 }
640 EXPORT_SYMBOL(kfree_skb);
641 
642 void kfree_skb_list(struct sk_buff *segs)
643 {
644 	while (segs) {
645 		struct sk_buff *next = segs->next;
646 
647 		kfree_skb(segs);
648 		segs = next;
649 	}
650 }
651 EXPORT_SYMBOL(kfree_skb_list);
652 
653 /**
654  *	skb_tx_error - report an sk_buff xmit error
655  *	@skb: buffer that triggered an error
656  *
657  *	Report xmit error if a device callback is tracking this skb.
658  *	skb must be freed afterwards.
659  */
660 void skb_tx_error(struct sk_buff *skb)
661 {
662 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
663 		struct ubuf_info *uarg;
664 
665 		uarg = skb_shinfo(skb)->destructor_arg;
666 		if (uarg->callback)
667 			uarg->callback(uarg, false);
668 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
669 	}
670 }
671 EXPORT_SYMBOL(skb_tx_error);
672 
673 /**
674  *	consume_skb - free an skbuff
675  *	@skb: buffer to free
676  *
677  *	Drop a ref to the buffer and free it if the usage count has hit zero
678  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
679  *	is being dropped after a failure and notes that
680  */
681 void consume_skb(struct sk_buff *skb)
682 {
683 	if (unlikely(!skb))
684 		return;
685 	if (likely(atomic_read(&skb->users) == 1))
686 		smp_rmb();
687 	else if (likely(!atomic_dec_and_test(&skb->users)))
688 		return;
689 	trace_consume_skb(skb);
690 	__kfree_skb(skb);
691 }
692 EXPORT_SYMBOL(consume_skb);
693 
694 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
695 {
696 	new->tstamp		= old->tstamp;
697 	new->dev		= old->dev;
698 	new->transport_header	= old->transport_header;
699 	new->network_header	= old->network_header;
700 	new->mac_header		= old->mac_header;
701 	new->inner_protocol	= old->inner_protocol;
702 	new->inner_transport_header = old->inner_transport_header;
703 	new->inner_network_header = old->inner_network_header;
704 	new->inner_mac_header = old->inner_mac_header;
705 	skb_dst_copy(new, old);
706 	new->rxhash		= old->rxhash;
707 	new->ooo_okay		= old->ooo_okay;
708 	new->l4_rxhash		= old->l4_rxhash;
709 	new->no_fcs		= old->no_fcs;
710 	new->encapsulation	= old->encapsulation;
711 #ifdef CONFIG_XFRM
712 	new->sp			= secpath_get(old->sp);
713 #endif
714 	memcpy(new->cb, old->cb, sizeof(old->cb));
715 	new->csum		= old->csum;
716 	new->local_df		= old->local_df;
717 	new->pkt_type		= old->pkt_type;
718 	new->ip_summed		= old->ip_summed;
719 	skb_copy_queue_mapping(new, old);
720 	new->priority		= old->priority;
721 #if IS_ENABLED(CONFIG_IP_VS)
722 	new->ipvs_property	= old->ipvs_property;
723 #endif
724 	new->pfmemalloc		= old->pfmemalloc;
725 	new->protocol		= old->protocol;
726 	new->mark		= old->mark;
727 	new->skb_iif		= old->skb_iif;
728 	__nf_copy(new, old);
729 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
730 	new->nf_trace		= old->nf_trace;
731 #endif
732 #ifdef CONFIG_NET_SCHED
733 	new->tc_index		= old->tc_index;
734 #ifdef CONFIG_NET_CLS_ACT
735 	new->tc_verd		= old->tc_verd;
736 #endif
737 #endif
738 	new->vlan_proto		= old->vlan_proto;
739 	new->vlan_tci		= old->vlan_tci;
740 
741 	skb_copy_secmark(new, old);
742 
743 #ifdef CONFIG_NET_RX_BUSY_POLL
744 	new->napi_id	= old->napi_id;
745 #endif
746 }
747 
748 /*
749  * You should not add any new code to this function.  Add it to
750  * __copy_skb_header above instead.
751  */
752 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
753 {
754 #define C(x) n->x = skb->x
755 
756 	n->next = n->prev = NULL;
757 	n->sk = NULL;
758 	__copy_skb_header(n, skb);
759 
760 	C(len);
761 	C(data_len);
762 	C(mac_len);
763 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
764 	n->cloned = 1;
765 	n->nohdr = 0;
766 	n->destructor = NULL;
767 	C(tail);
768 	C(end);
769 	C(head);
770 	C(head_frag);
771 	C(data);
772 	C(truesize);
773 	atomic_set(&n->users, 1);
774 
775 	atomic_inc(&(skb_shinfo(skb)->dataref));
776 	skb->cloned = 1;
777 
778 	return n;
779 #undef C
780 }
781 
782 /**
783  *	skb_morph	-	morph one skb into another
784  *	@dst: the skb to receive the contents
785  *	@src: the skb to supply the contents
786  *
787  *	This is identical to skb_clone except that the target skb is
788  *	supplied by the user.
789  *
790  *	The target skb is returned upon exit.
791  */
792 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
793 {
794 	skb_release_all(dst);
795 	return __skb_clone(dst, src);
796 }
797 EXPORT_SYMBOL_GPL(skb_morph);
798 
799 /**
800  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
801  *	@skb: the skb to modify
802  *	@gfp_mask: allocation priority
803  *
804  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
805  *	It will copy all frags into kernel and drop the reference
806  *	to userspace pages.
807  *
808  *	If this function is called from an interrupt gfp_mask() must be
809  *	%GFP_ATOMIC.
810  *
811  *	Returns 0 on success or a negative error code on failure
812  *	to allocate kernel memory to copy to.
813  */
814 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
815 {
816 	int i;
817 	int num_frags = skb_shinfo(skb)->nr_frags;
818 	struct page *page, *head = NULL;
819 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
820 
821 	for (i = 0; i < num_frags; i++) {
822 		u8 *vaddr;
823 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
824 
825 		page = alloc_page(gfp_mask);
826 		if (!page) {
827 			while (head) {
828 				struct page *next = (struct page *)page_private(head);
829 				put_page(head);
830 				head = next;
831 			}
832 			return -ENOMEM;
833 		}
834 		vaddr = kmap_atomic(skb_frag_page(f));
835 		memcpy(page_address(page),
836 		       vaddr + f->page_offset, skb_frag_size(f));
837 		kunmap_atomic(vaddr);
838 		set_page_private(page, (unsigned long)head);
839 		head = page;
840 	}
841 
842 	/* skb frags release userspace buffers */
843 	for (i = 0; i < num_frags; i++)
844 		skb_frag_unref(skb, i);
845 
846 	uarg->callback(uarg, false);
847 
848 	/* skb frags point to kernel buffers */
849 	for (i = num_frags - 1; i >= 0; i--) {
850 		__skb_fill_page_desc(skb, i, head, 0,
851 				     skb_shinfo(skb)->frags[i].size);
852 		head = (struct page *)page_private(head);
853 	}
854 
855 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
856 	return 0;
857 }
858 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
859 
860 /**
861  *	skb_clone	-	duplicate an sk_buff
862  *	@skb: buffer to clone
863  *	@gfp_mask: allocation priority
864  *
865  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
866  *	copies share the same packet data but not structure. The new
867  *	buffer has a reference count of 1. If the allocation fails the
868  *	function returns %NULL otherwise the new buffer is returned.
869  *
870  *	If this function is called from an interrupt gfp_mask() must be
871  *	%GFP_ATOMIC.
872  */
873 
874 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
875 {
876 	struct sk_buff *n;
877 
878 	if (skb_orphan_frags(skb, gfp_mask))
879 		return NULL;
880 
881 	n = skb + 1;
882 	if (skb->fclone == SKB_FCLONE_ORIG &&
883 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
884 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
885 		n->fclone = SKB_FCLONE_CLONE;
886 		atomic_inc(fclone_ref);
887 	} else {
888 		if (skb_pfmemalloc(skb))
889 			gfp_mask |= __GFP_MEMALLOC;
890 
891 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
892 		if (!n)
893 			return NULL;
894 
895 		kmemcheck_annotate_bitfield(n, flags1);
896 		kmemcheck_annotate_bitfield(n, flags2);
897 		n->fclone = SKB_FCLONE_UNAVAILABLE;
898 	}
899 
900 	return __skb_clone(n, skb);
901 }
902 EXPORT_SYMBOL(skb_clone);
903 
904 static void skb_headers_offset_update(struct sk_buff *skb, int off)
905 {
906 	/* {transport,network,mac}_header and tail are relative to skb->head */
907 	skb->transport_header += off;
908 	skb->network_header   += off;
909 	if (skb_mac_header_was_set(skb))
910 		skb->mac_header += off;
911 	skb->inner_transport_header += off;
912 	skb->inner_network_header += off;
913 	skb->inner_mac_header += off;
914 }
915 
916 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
917 {
918 	__copy_skb_header(new, old);
919 
920 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
921 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
922 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
923 }
924 
925 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
926 {
927 	if (skb_pfmemalloc(skb))
928 		return SKB_ALLOC_RX;
929 	return 0;
930 }
931 
932 /**
933  *	skb_copy	-	create private copy of an sk_buff
934  *	@skb: buffer to copy
935  *	@gfp_mask: allocation priority
936  *
937  *	Make a copy of both an &sk_buff and its data. This is used when the
938  *	caller wishes to modify the data and needs a private copy of the
939  *	data to alter. Returns %NULL on failure or the pointer to the buffer
940  *	on success. The returned buffer has a reference count of 1.
941  *
942  *	As by-product this function converts non-linear &sk_buff to linear
943  *	one, so that &sk_buff becomes completely private and caller is allowed
944  *	to modify all the data of returned buffer. This means that this
945  *	function is not recommended for use in circumstances when only
946  *	header is going to be modified. Use pskb_copy() instead.
947  */
948 
949 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
950 {
951 	int headerlen = skb_headroom(skb);
952 	unsigned int size = skb_end_offset(skb) + skb->data_len;
953 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
954 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
955 
956 	if (!n)
957 		return NULL;
958 
959 	/* Set the data pointer */
960 	skb_reserve(n, headerlen);
961 	/* Set the tail pointer and length */
962 	skb_put(n, skb->len);
963 
964 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
965 		BUG();
966 
967 	copy_skb_header(n, skb);
968 	return n;
969 }
970 EXPORT_SYMBOL(skb_copy);
971 
972 /**
973  *	__pskb_copy	-	create copy of an sk_buff with private head.
974  *	@skb: buffer to copy
975  *	@headroom: headroom of new skb
976  *	@gfp_mask: allocation priority
977  *
978  *	Make a copy of both an &sk_buff and part of its data, located
979  *	in header. Fragmented data remain shared. This is used when
980  *	the caller wishes to modify only header of &sk_buff and needs
981  *	private copy of the header to alter. Returns %NULL on failure
982  *	or the pointer to the buffer on success.
983  *	The returned buffer has a reference count of 1.
984  */
985 
986 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
987 {
988 	unsigned int size = skb_headlen(skb) + headroom;
989 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
990 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
991 
992 	if (!n)
993 		goto out;
994 
995 	/* Set the data pointer */
996 	skb_reserve(n, headroom);
997 	/* Set the tail pointer and length */
998 	skb_put(n, skb_headlen(skb));
999 	/* Copy the bytes */
1000 	skb_copy_from_linear_data(skb, n->data, n->len);
1001 
1002 	n->truesize += skb->data_len;
1003 	n->data_len  = skb->data_len;
1004 	n->len	     = skb->len;
1005 
1006 	if (skb_shinfo(skb)->nr_frags) {
1007 		int i;
1008 
1009 		if (skb_orphan_frags(skb, gfp_mask)) {
1010 			kfree_skb(n);
1011 			n = NULL;
1012 			goto out;
1013 		}
1014 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1015 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1016 			skb_frag_ref(skb, i);
1017 		}
1018 		skb_shinfo(n)->nr_frags = i;
1019 	}
1020 
1021 	if (skb_has_frag_list(skb)) {
1022 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1023 		skb_clone_fraglist(n);
1024 	}
1025 
1026 	copy_skb_header(n, skb);
1027 out:
1028 	return n;
1029 }
1030 EXPORT_SYMBOL(__pskb_copy);
1031 
1032 /**
1033  *	pskb_expand_head - reallocate header of &sk_buff
1034  *	@skb: buffer to reallocate
1035  *	@nhead: room to add at head
1036  *	@ntail: room to add at tail
1037  *	@gfp_mask: allocation priority
1038  *
1039  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
1040  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1041  *	reference count of 1. Returns zero in the case of success or error,
1042  *	if expansion failed. In the last case, &sk_buff is not changed.
1043  *
1044  *	All the pointers pointing into skb header may change and must be
1045  *	reloaded after call to this function.
1046  */
1047 
1048 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1049 		     gfp_t gfp_mask)
1050 {
1051 	int i;
1052 	u8 *data;
1053 	int size = nhead + skb_end_offset(skb) + ntail;
1054 	long off;
1055 
1056 	BUG_ON(nhead < 0);
1057 
1058 	if (skb_shared(skb))
1059 		BUG();
1060 
1061 	size = SKB_DATA_ALIGN(size);
1062 
1063 	if (skb_pfmemalloc(skb))
1064 		gfp_mask |= __GFP_MEMALLOC;
1065 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1066 			       gfp_mask, NUMA_NO_NODE, NULL);
1067 	if (!data)
1068 		goto nodata;
1069 	size = SKB_WITH_OVERHEAD(ksize(data));
1070 
1071 	/* Copy only real data... and, alas, header. This should be
1072 	 * optimized for the cases when header is void.
1073 	 */
1074 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1075 
1076 	memcpy((struct skb_shared_info *)(data + size),
1077 	       skb_shinfo(skb),
1078 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1079 
1080 	/*
1081 	 * if shinfo is shared we must drop the old head gracefully, but if it
1082 	 * is not we can just drop the old head and let the existing refcount
1083 	 * be since all we did is relocate the values
1084 	 */
1085 	if (skb_cloned(skb)) {
1086 		/* copy this zero copy skb frags */
1087 		if (skb_orphan_frags(skb, gfp_mask))
1088 			goto nofrags;
1089 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1090 			skb_frag_ref(skb, i);
1091 
1092 		if (skb_has_frag_list(skb))
1093 			skb_clone_fraglist(skb);
1094 
1095 		skb_release_data(skb);
1096 	} else {
1097 		skb_free_head(skb);
1098 	}
1099 	off = (data + nhead) - skb->head;
1100 
1101 	skb->head     = data;
1102 	skb->head_frag = 0;
1103 	skb->data    += off;
1104 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1105 	skb->end      = size;
1106 	off           = nhead;
1107 #else
1108 	skb->end      = skb->head + size;
1109 #endif
1110 	skb->tail	      += off;
1111 	skb_headers_offset_update(skb, nhead);
1112 	/* Only adjust this if it actually is csum_start rather than csum */
1113 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1114 		skb->csum_start += nhead;
1115 	skb->cloned   = 0;
1116 	skb->hdr_len  = 0;
1117 	skb->nohdr    = 0;
1118 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1119 	return 0;
1120 
1121 nofrags:
1122 	kfree(data);
1123 nodata:
1124 	return -ENOMEM;
1125 }
1126 EXPORT_SYMBOL(pskb_expand_head);
1127 
1128 /* Make private copy of skb with writable head and some headroom */
1129 
1130 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1131 {
1132 	struct sk_buff *skb2;
1133 	int delta = headroom - skb_headroom(skb);
1134 
1135 	if (delta <= 0)
1136 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1137 	else {
1138 		skb2 = skb_clone(skb, GFP_ATOMIC);
1139 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1140 					     GFP_ATOMIC)) {
1141 			kfree_skb(skb2);
1142 			skb2 = NULL;
1143 		}
1144 	}
1145 	return skb2;
1146 }
1147 EXPORT_SYMBOL(skb_realloc_headroom);
1148 
1149 /**
1150  *	skb_copy_expand	-	copy and expand sk_buff
1151  *	@skb: buffer to copy
1152  *	@newheadroom: new free bytes at head
1153  *	@newtailroom: new free bytes at tail
1154  *	@gfp_mask: allocation priority
1155  *
1156  *	Make a copy of both an &sk_buff and its data and while doing so
1157  *	allocate additional space.
1158  *
1159  *	This is used when the caller wishes to modify the data and needs a
1160  *	private copy of the data to alter as well as more space for new fields.
1161  *	Returns %NULL on failure or the pointer to the buffer
1162  *	on success. The returned buffer has a reference count of 1.
1163  *
1164  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1165  *	is called from an interrupt.
1166  */
1167 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1168 				int newheadroom, int newtailroom,
1169 				gfp_t gfp_mask)
1170 {
1171 	/*
1172 	 *	Allocate the copy buffer
1173 	 */
1174 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1175 					gfp_mask, skb_alloc_rx_flag(skb),
1176 					NUMA_NO_NODE);
1177 	int oldheadroom = skb_headroom(skb);
1178 	int head_copy_len, head_copy_off;
1179 	int off;
1180 
1181 	if (!n)
1182 		return NULL;
1183 
1184 	skb_reserve(n, newheadroom);
1185 
1186 	/* Set the tail pointer and length */
1187 	skb_put(n, skb->len);
1188 
1189 	head_copy_len = oldheadroom;
1190 	head_copy_off = 0;
1191 	if (newheadroom <= head_copy_len)
1192 		head_copy_len = newheadroom;
1193 	else
1194 		head_copy_off = newheadroom - head_copy_len;
1195 
1196 	/* Copy the linear header and data. */
1197 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1198 			  skb->len + head_copy_len))
1199 		BUG();
1200 
1201 	copy_skb_header(n, skb);
1202 
1203 	off                  = newheadroom - oldheadroom;
1204 	if (n->ip_summed == CHECKSUM_PARTIAL)
1205 		n->csum_start += off;
1206 
1207 	skb_headers_offset_update(n, off);
1208 
1209 	return n;
1210 }
1211 EXPORT_SYMBOL(skb_copy_expand);
1212 
1213 /**
1214  *	skb_pad			-	zero pad the tail of an skb
1215  *	@skb: buffer to pad
1216  *	@pad: space to pad
1217  *
1218  *	Ensure that a buffer is followed by a padding area that is zero
1219  *	filled. Used by network drivers which may DMA or transfer data
1220  *	beyond the buffer end onto the wire.
1221  *
1222  *	May return error in out of memory cases. The skb is freed on error.
1223  */
1224 
1225 int skb_pad(struct sk_buff *skb, int pad)
1226 {
1227 	int err;
1228 	int ntail;
1229 
1230 	/* If the skbuff is non linear tailroom is always zero.. */
1231 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1232 		memset(skb->data+skb->len, 0, pad);
1233 		return 0;
1234 	}
1235 
1236 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1237 	if (likely(skb_cloned(skb) || ntail > 0)) {
1238 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1239 		if (unlikely(err))
1240 			goto free_skb;
1241 	}
1242 
1243 	/* FIXME: The use of this function with non-linear skb's really needs
1244 	 * to be audited.
1245 	 */
1246 	err = skb_linearize(skb);
1247 	if (unlikely(err))
1248 		goto free_skb;
1249 
1250 	memset(skb->data + skb->len, 0, pad);
1251 	return 0;
1252 
1253 free_skb:
1254 	kfree_skb(skb);
1255 	return err;
1256 }
1257 EXPORT_SYMBOL(skb_pad);
1258 
1259 /**
1260  *	skb_put - add data to a buffer
1261  *	@skb: buffer to use
1262  *	@len: amount of data to add
1263  *
1264  *	This function extends the used data area of the buffer. If this would
1265  *	exceed the total buffer size the kernel will panic. A pointer to the
1266  *	first byte of the extra data is returned.
1267  */
1268 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1269 {
1270 	unsigned char *tmp = skb_tail_pointer(skb);
1271 	SKB_LINEAR_ASSERT(skb);
1272 	skb->tail += len;
1273 	skb->len  += len;
1274 	if (unlikely(skb->tail > skb->end))
1275 		skb_over_panic(skb, len, __builtin_return_address(0));
1276 	return tmp;
1277 }
1278 EXPORT_SYMBOL(skb_put);
1279 
1280 /**
1281  *	skb_push - add data to the start of a buffer
1282  *	@skb: buffer to use
1283  *	@len: amount of data to add
1284  *
1285  *	This function extends the used data area of the buffer at the buffer
1286  *	start. If this would exceed the total buffer headroom the kernel will
1287  *	panic. A pointer to the first byte of the extra data is returned.
1288  */
1289 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1290 {
1291 	skb->data -= len;
1292 	skb->len  += len;
1293 	if (unlikely(skb->data<skb->head))
1294 		skb_under_panic(skb, len, __builtin_return_address(0));
1295 	return skb->data;
1296 }
1297 EXPORT_SYMBOL(skb_push);
1298 
1299 /**
1300  *	skb_pull - remove data from the start of a buffer
1301  *	@skb: buffer to use
1302  *	@len: amount of data to remove
1303  *
1304  *	This function removes data from the start of a buffer, returning
1305  *	the memory to the headroom. A pointer to the next data in the buffer
1306  *	is returned. Once the data has been pulled future pushes will overwrite
1307  *	the old data.
1308  */
1309 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1310 {
1311 	return skb_pull_inline(skb, len);
1312 }
1313 EXPORT_SYMBOL(skb_pull);
1314 
1315 /**
1316  *	skb_trim - remove end from a buffer
1317  *	@skb: buffer to alter
1318  *	@len: new length
1319  *
1320  *	Cut the length of a buffer down by removing data from the tail. If
1321  *	the buffer is already under the length specified it is not modified.
1322  *	The skb must be linear.
1323  */
1324 void skb_trim(struct sk_buff *skb, unsigned int len)
1325 {
1326 	if (skb->len > len)
1327 		__skb_trim(skb, len);
1328 }
1329 EXPORT_SYMBOL(skb_trim);
1330 
1331 /* Trims skb to length len. It can change skb pointers.
1332  */
1333 
1334 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1335 {
1336 	struct sk_buff **fragp;
1337 	struct sk_buff *frag;
1338 	int offset = skb_headlen(skb);
1339 	int nfrags = skb_shinfo(skb)->nr_frags;
1340 	int i;
1341 	int err;
1342 
1343 	if (skb_cloned(skb) &&
1344 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1345 		return err;
1346 
1347 	i = 0;
1348 	if (offset >= len)
1349 		goto drop_pages;
1350 
1351 	for (; i < nfrags; i++) {
1352 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1353 
1354 		if (end < len) {
1355 			offset = end;
1356 			continue;
1357 		}
1358 
1359 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1360 
1361 drop_pages:
1362 		skb_shinfo(skb)->nr_frags = i;
1363 
1364 		for (; i < nfrags; i++)
1365 			skb_frag_unref(skb, i);
1366 
1367 		if (skb_has_frag_list(skb))
1368 			skb_drop_fraglist(skb);
1369 		goto done;
1370 	}
1371 
1372 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1373 	     fragp = &frag->next) {
1374 		int end = offset + frag->len;
1375 
1376 		if (skb_shared(frag)) {
1377 			struct sk_buff *nfrag;
1378 
1379 			nfrag = skb_clone(frag, GFP_ATOMIC);
1380 			if (unlikely(!nfrag))
1381 				return -ENOMEM;
1382 
1383 			nfrag->next = frag->next;
1384 			consume_skb(frag);
1385 			frag = nfrag;
1386 			*fragp = frag;
1387 		}
1388 
1389 		if (end < len) {
1390 			offset = end;
1391 			continue;
1392 		}
1393 
1394 		if (end > len &&
1395 		    unlikely((err = pskb_trim(frag, len - offset))))
1396 			return err;
1397 
1398 		if (frag->next)
1399 			skb_drop_list(&frag->next);
1400 		break;
1401 	}
1402 
1403 done:
1404 	if (len > skb_headlen(skb)) {
1405 		skb->data_len -= skb->len - len;
1406 		skb->len       = len;
1407 	} else {
1408 		skb->len       = len;
1409 		skb->data_len  = 0;
1410 		skb_set_tail_pointer(skb, len);
1411 	}
1412 
1413 	return 0;
1414 }
1415 EXPORT_SYMBOL(___pskb_trim);
1416 
1417 /**
1418  *	__pskb_pull_tail - advance tail of skb header
1419  *	@skb: buffer to reallocate
1420  *	@delta: number of bytes to advance tail
1421  *
1422  *	The function makes a sense only on a fragmented &sk_buff,
1423  *	it expands header moving its tail forward and copying necessary
1424  *	data from fragmented part.
1425  *
1426  *	&sk_buff MUST have reference count of 1.
1427  *
1428  *	Returns %NULL (and &sk_buff does not change) if pull failed
1429  *	or value of new tail of skb in the case of success.
1430  *
1431  *	All the pointers pointing into skb header may change and must be
1432  *	reloaded after call to this function.
1433  */
1434 
1435 /* Moves tail of skb head forward, copying data from fragmented part,
1436  * when it is necessary.
1437  * 1. It may fail due to malloc failure.
1438  * 2. It may change skb pointers.
1439  *
1440  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1441  */
1442 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1443 {
1444 	/* If skb has not enough free space at tail, get new one
1445 	 * plus 128 bytes for future expansions. If we have enough
1446 	 * room at tail, reallocate without expansion only if skb is cloned.
1447 	 */
1448 	int i, k, eat = (skb->tail + delta) - skb->end;
1449 
1450 	if (eat > 0 || skb_cloned(skb)) {
1451 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1452 				     GFP_ATOMIC))
1453 			return NULL;
1454 	}
1455 
1456 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1457 		BUG();
1458 
1459 	/* Optimization: no fragments, no reasons to preestimate
1460 	 * size of pulled pages. Superb.
1461 	 */
1462 	if (!skb_has_frag_list(skb))
1463 		goto pull_pages;
1464 
1465 	/* Estimate size of pulled pages. */
1466 	eat = delta;
1467 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1468 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1469 
1470 		if (size >= eat)
1471 			goto pull_pages;
1472 		eat -= size;
1473 	}
1474 
1475 	/* If we need update frag list, we are in troubles.
1476 	 * Certainly, it possible to add an offset to skb data,
1477 	 * but taking into account that pulling is expected to
1478 	 * be very rare operation, it is worth to fight against
1479 	 * further bloating skb head and crucify ourselves here instead.
1480 	 * Pure masohism, indeed. 8)8)
1481 	 */
1482 	if (eat) {
1483 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1484 		struct sk_buff *clone = NULL;
1485 		struct sk_buff *insp = NULL;
1486 
1487 		do {
1488 			BUG_ON(!list);
1489 
1490 			if (list->len <= eat) {
1491 				/* Eaten as whole. */
1492 				eat -= list->len;
1493 				list = list->next;
1494 				insp = list;
1495 			} else {
1496 				/* Eaten partially. */
1497 
1498 				if (skb_shared(list)) {
1499 					/* Sucks! We need to fork list. :-( */
1500 					clone = skb_clone(list, GFP_ATOMIC);
1501 					if (!clone)
1502 						return NULL;
1503 					insp = list->next;
1504 					list = clone;
1505 				} else {
1506 					/* This may be pulled without
1507 					 * problems. */
1508 					insp = list;
1509 				}
1510 				if (!pskb_pull(list, eat)) {
1511 					kfree_skb(clone);
1512 					return NULL;
1513 				}
1514 				break;
1515 			}
1516 		} while (eat);
1517 
1518 		/* Free pulled out fragments. */
1519 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1520 			skb_shinfo(skb)->frag_list = list->next;
1521 			kfree_skb(list);
1522 		}
1523 		/* And insert new clone at head. */
1524 		if (clone) {
1525 			clone->next = list;
1526 			skb_shinfo(skb)->frag_list = clone;
1527 		}
1528 	}
1529 	/* Success! Now we may commit changes to skb data. */
1530 
1531 pull_pages:
1532 	eat = delta;
1533 	k = 0;
1534 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1535 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1536 
1537 		if (size <= eat) {
1538 			skb_frag_unref(skb, i);
1539 			eat -= size;
1540 		} else {
1541 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1542 			if (eat) {
1543 				skb_shinfo(skb)->frags[k].page_offset += eat;
1544 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1545 				eat = 0;
1546 			}
1547 			k++;
1548 		}
1549 	}
1550 	skb_shinfo(skb)->nr_frags = k;
1551 
1552 	skb->tail     += delta;
1553 	skb->data_len -= delta;
1554 
1555 	return skb_tail_pointer(skb);
1556 }
1557 EXPORT_SYMBOL(__pskb_pull_tail);
1558 
1559 /**
1560  *	skb_copy_bits - copy bits from skb to kernel buffer
1561  *	@skb: source skb
1562  *	@offset: offset in source
1563  *	@to: destination buffer
1564  *	@len: number of bytes to copy
1565  *
1566  *	Copy the specified number of bytes from the source skb to the
1567  *	destination buffer.
1568  *
1569  *	CAUTION ! :
1570  *		If its prototype is ever changed,
1571  *		check arch/{*}/net/{*}.S files,
1572  *		since it is called from BPF assembly code.
1573  */
1574 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1575 {
1576 	int start = skb_headlen(skb);
1577 	struct sk_buff *frag_iter;
1578 	int i, copy;
1579 
1580 	if (offset > (int)skb->len - len)
1581 		goto fault;
1582 
1583 	/* Copy header. */
1584 	if ((copy = start - offset) > 0) {
1585 		if (copy > len)
1586 			copy = len;
1587 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1588 		if ((len -= copy) == 0)
1589 			return 0;
1590 		offset += copy;
1591 		to     += copy;
1592 	}
1593 
1594 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1595 		int end;
1596 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1597 
1598 		WARN_ON(start > offset + len);
1599 
1600 		end = start + skb_frag_size(f);
1601 		if ((copy = end - offset) > 0) {
1602 			u8 *vaddr;
1603 
1604 			if (copy > len)
1605 				copy = len;
1606 
1607 			vaddr = kmap_atomic(skb_frag_page(f));
1608 			memcpy(to,
1609 			       vaddr + f->page_offset + offset - start,
1610 			       copy);
1611 			kunmap_atomic(vaddr);
1612 
1613 			if ((len -= copy) == 0)
1614 				return 0;
1615 			offset += copy;
1616 			to     += copy;
1617 		}
1618 		start = end;
1619 	}
1620 
1621 	skb_walk_frags(skb, frag_iter) {
1622 		int end;
1623 
1624 		WARN_ON(start > offset + len);
1625 
1626 		end = start + frag_iter->len;
1627 		if ((copy = end - offset) > 0) {
1628 			if (copy > len)
1629 				copy = len;
1630 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1631 				goto fault;
1632 			if ((len -= copy) == 0)
1633 				return 0;
1634 			offset += copy;
1635 			to     += copy;
1636 		}
1637 		start = end;
1638 	}
1639 
1640 	if (!len)
1641 		return 0;
1642 
1643 fault:
1644 	return -EFAULT;
1645 }
1646 EXPORT_SYMBOL(skb_copy_bits);
1647 
1648 /*
1649  * Callback from splice_to_pipe(), if we need to release some pages
1650  * at the end of the spd in case we error'ed out in filling the pipe.
1651  */
1652 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1653 {
1654 	put_page(spd->pages[i]);
1655 }
1656 
1657 static struct page *linear_to_page(struct page *page, unsigned int *len,
1658 				   unsigned int *offset,
1659 				   struct sock *sk)
1660 {
1661 	struct page_frag *pfrag = sk_page_frag(sk);
1662 
1663 	if (!sk_page_frag_refill(sk, pfrag))
1664 		return NULL;
1665 
1666 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1667 
1668 	memcpy(page_address(pfrag->page) + pfrag->offset,
1669 	       page_address(page) + *offset, *len);
1670 	*offset = pfrag->offset;
1671 	pfrag->offset += *len;
1672 
1673 	return pfrag->page;
1674 }
1675 
1676 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1677 			     struct page *page,
1678 			     unsigned int offset)
1679 {
1680 	return	spd->nr_pages &&
1681 		spd->pages[spd->nr_pages - 1] == page &&
1682 		(spd->partial[spd->nr_pages - 1].offset +
1683 		 spd->partial[spd->nr_pages - 1].len == offset);
1684 }
1685 
1686 /*
1687  * Fill page/offset/length into spd, if it can hold more pages.
1688  */
1689 static bool spd_fill_page(struct splice_pipe_desc *spd,
1690 			  struct pipe_inode_info *pipe, struct page *page,
1691 			  unsigned int *len, unsigned int offset,
1692 			  bool linear,
1693 			  struct sock *sk)
1694 {
1695 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1696 		return true;
1697 
1698 	if (linear) {
1699 		page = linear_to_page(page, len, &offset, sk);
1700 		if (!page)
1701 			return true;
1702 	}
1703 	if (spd_can_coalesce(spd, page, offset)) {
1704 		spd->partial[spd->nr_pages - 1].len += *len;
1705 		return false;
1706 	}
1707 	get_page(page);
1708 	spd->pages[spd->nr_pages] = page;
1709 	spd->partial[spd->nr_pages].len = *len;
1710 	spd->partial[spd->nr_pages].offset = offset;
1711 	spd->nr_pages++;
1712 
1713 	return false;
1714 }
1715 
1716 static bool __splice_segment(struct page *page, unsigned int poff,
1717 			     unsigned int plen, unsigned int *off,
1718 			     unsigned int *len,
1719 			     struct splice_pipe_desc *spd, bool linear,
1720 			     struct sock *sk,
1721 			     struct pipe_inode_info *pipe)
1722 {
1723 	if (!*len)
1724 		return true;
1725 
1726 	/* skip this segment if already processed */
1727 	if (*off >= plen) {
1728 		*off -= plen;
1729 		return false;
1730 	}
1731 
1732 	/* ignore any bits we already processed */
1733 	poff += *off;
1734 	plen -= *off;
1735 	*off = 0;
1736 
1737 	do {
1738 		unsigned int flen = min(*len, plen);
1739 
1740 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1741 				  linear, sk))
1742 			return true;
1743 		poff += flen;
1744 		plen -= flen;
1745 		*len -= flen;
1746 	} while (*len && plen);
1747 
1748 	return false;
1749 }
1750 
1751 /*
1752  * Map linear and fragment data from the skb to spd. It reports true if the
1753  * pipe is full or if we already spliced the requested length.
1754  */
1755 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1756 			      unsigned int *offset, unsigned int *len,
1757 			      struct splice_pipe_desc *spd, struct sock *sk)
1758 {
1759 	int seg;
1760 
1761 	/* map the linear part :
1762 	 * If skb->head_frag is set, this 'linear' part is backed by a
1763 	 * fragment, and if the head is not shared with any clones then
1764 	 * we can avoid a copy since we own the head portion of this page.
1765 	 */
1766 	if (__splice_segment(virt_to_page(skb->data),
1767 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1768 			     skb_headlen(skb),
1769 			     offset, len, spd,
1770 			     skb_head_is_locked(skb),
1771 			     sk, pipe))
1772 		return true;
1773 
1774 	/*
1775 	 * then map the fragments
1776 	 */
1777 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1778 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1779 
1780 		if (__splice_segment(skb_frag_page(f),
1781 				     f->page_offset, skb_frag_size(f),
1782 				     offset, len, spd, false, sk, pipe))
1783 			return true;
1784 	}
1785 
1786 	return false;
1787 }
1788 
1789 /*
1790  * Map data from the skb to a pipe. Should handle both the linear part,
1791  * the fragments, and the frag list. It does NOT handle frag lists within
1792  * the frag list, if such a thing exists. We'd probably need to recurse to
1793  * handle that cleanly.
1794  */
1795 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1796 		    struct pipe_inode_info *pipe, unsigned int tlen,
1797 		    unsigned int flags)
1798 {
1799 	struct partial_page partial[MAX_SKB_FRAGS];
1800 	struct page *pages[MAX_SKB_FRAGS];
1801 	struct splice_pipe_desc spd = {
1802 		.pages = pages,
1803 		.partial = partial,
1804 		.nr_pages_max = MAX_SKB_FRAGS,
1805 		.flags = flags,
1806 		.ops = &sock_pipe_buf_ops,
1807 		.spd_release = sock_spd_release,
1808 	};
1809 	struct sk_buff *frag_iter;
1810 	struct sock *sk = skb->sk;
1811 	int ret = 0;
1812 
1813 	/*
1814 	 * __skb_splice_bits() only fails if the output has no room left,
1815 	 * so no point in going over the frag_list for the error case.
1816 	 */
1817 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1818 		goto done;
1819 	else if (!tlen)
1820 		goto done;
1821 
1822 	/*
1823 	 * now see if we have a frag_list to map
1824 	 */
1825 	skb_walk_frags(skb, frag_iter) {
1826 		if (!tlen)
1827 			break;
1828 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1829 			break;
1830 	}
1831 
1832 done:
1833 	if (spd.nr_pages) {
1834 		/*
1835 		 * Drop the socket lock, otherwise we have reverse
1836 		 * locking dependencies between sk_lock and i_mutex
1837 		 * here as compared to sendfile(). We enter here
1838 		 * with the socket lock held, and splice_to_pipe() will
1839 		 * grab the pipe inode lock. For sendfile() emulation,
1840 		 * we call into ->sendpage() with the i_mutex lock held
1841 		 * and networking will grab the socket lock.
1842 		 */
1843 		release_sock(sk);
1844 		ret = splice_to_pipe(pipe, &spd);
1845 		lock_sock(sk);
1846 	}
1847 
1848 	return ret;
1849 }
1850 
1851 /**
1852  *	skb_store_bits - store bits from kernel buffer to skb
1853  *	@skb: destination buffer
1854  *	@offset: offset in destination
1855  *	@from: source buffer
1856  *	@len: number of bytes to copy
1857  *
1858  *	Copy the specified number of bytes from the source buffer to the
1859  *	destination skb.  This function handles all the messy bits of
1860  *	traversing fragment lists and such.
1861  */
1862 
1863 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1864 {
1865 	int start = skb_headlen(skb);
1866 	struct sk_buff *frag_iter;
1867 	int i, copy;
1868 
1869 	if (offset > (int)skb->len - len)
1870 		goto fault;
1871 
1872 	if ((copy = start - offset) > 0) {
1873 		if (copy > len)
1874 			copy = len;
1875 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1876 		if ((len -= copy) == 0)
1877 			return 0;
1878 		offset += copy;
1879 		from += copy;
1880 	}
1881 
1882 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1883 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1884 		int end;
1885 
1886 		WARN_ON(start > offset + len);
1887 
1888 		end = start + skb_frag_size(frag);
1889 		if ((copy = end - offset) > 0) {
1890 			u8 *vaddr;
1891 
1892 			if (copy > len)
1893 				copy = len;
1894 
1895 			vaddr = kmap_atomic(skb_frag_page(frag));
1896 			memcpy(vaddr + frag->page_offset + offset - start,
1897 			       from, copy);
1898 			kunmap_atomic(vaddr);
1899 
1900 			if ((len -= copy) == 0)
1901 				return 0;
1902 			offset += copy;
1903 			from += copy;
1904 		}
1905 		start = end;
1906 	}
1907 
1908 	skb_walk_frags(skb, frag_iter) {
1909 		int end;
1910 
1911 		WARN_ON(start > offset + len);
1912 
1913 		end = start + frag_iter->len;
1914 		if ((copy = end - offset) > 0) {
1915 			if (copy > len)
1916 				copy = len;
1917 			if (skb_store_bits(frag_iter, offset - start,
1918 					   from, copy))
1919 				goto fault;
1920 			if ((len -= copy) == 0)
1921 				return 0;
1922 			offset += copy;
1923 			from += copy;
1924 		}
1925 		start = end;
1926 	}
1927 	if (!len)
1928 		return 0;
1929 
1930 fault:
1931 	return -EFAULT;
1932 }
1933 EXPORT_SYMBOL(skb_store_bits);
1934 
1935 /* Checksum skb data. */
1936 
1937 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1938 			  int len, __wsum csum)
1939 {
1940 	int start = skb_headlen(skb);
1941 	int i, copy = start - offset;
1942 	struct sk_buff *frag_iter;
1943 	int pos = 0;
1944 
1945 	/* Checksum header. */
1946 	if (copy > 0) {
1947 		if (copy > len)
1948 			copy = len;
1949 		csum = csum_partial(skb->data + offset, copy, csum);
1950 		if ((len -= copy) == 0)
1951 			return csum;
1952 		offset += copy;
1953 		pos	= copy;
1954 	}
1955 
1956 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1957 		int end;
1958 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1959 
1960 		WARN_ON(start > offset + len);
1961 
1962 		end = start + skb_frag_size(frag);
1963 		if ((copy = end - offset) > 0) {
1964 			__wsum csum2;
1965 			u8 *vaddr;
1966 
1967 			if (copy > len)
1968 				copy = len;
1969 			vaddr = kmap_atomic(skb_frag_page(frag));
1970 			csum2 = csum_partial(vaddr + frag->page_offset +
1971 					     offset - start, copy, 0);
1972 			kunmap_atomic(vaddr);
1973 			csum = csum_block_add(csum, csum2, pos);
1974 			if (!(len -= copy))
1975 				return csum;
1976 			offset += copy;
1977 			pos    += copy;
1978 		}
1979 		start = end;
1980 	}
1981 
1982 	skb_walk_frags(skb, frag_iter) {
1983 		int end;
1984 
1985 		WARN_ON(start > offset + len);
1986 
1987 		end = start + frag_iter->len;
1988 		if ((copy = end - offset) > 0) {
1989 			__wsum csum2;
1990 			if (copy > len)
1991 				copy = len;
1992 			csum2 = skb_checksum(frag_iter, offset - start,
1993 					     copy, 0);
1994 			csum = csum_block_add(csum, csum2, pos);
1995 			if ((len -= copy) == 0)
1996 				return csum;
1997 			offset += copy;
1998 			pos    += copy;
1999 		}
2000 		start = end;
2001 	}
2002 	BUG_ON(len);
2003 
2004 	return csum;
2005 }
2006 EXPORT_SYMBOL(skb_checksum);
2007 
2008 /* Both of above in one bottle. */
2009 
2010 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2011 				    u8 *to, int len, __wsum csum)
2012 {
2013 	int start = skb_headlen(skb);
2014 	int i, copy = start - offset;
2015 	struct sk_buff *frag_iter;
2016 	int pos = 0;
2017 
2018 	/* Copy header. */
2019 	if (copy > 0) {
2020 		if (copy > len)
2021 			copy = len;
2022 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2023 						 copy, csum);
2024 		if ((len -= copy) == 0)
2025 			return csum;
2026 		offset += copy;
2027 		to     += copy;
2028 		pos	= copy;
2029 	}
2030 
2031 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2032 		int end;
2033 
2034 		WARN_ON(start > offset + len);
2035 
2036 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2037 		if ((copy = end - offset) > 0) {
2038 			__wsum csum2;
2039 			u8 *vaddr;
2040 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2041 
2042 			if (copy > len)
2043 				copy = len;
2044 			vaddr = kmap_atomic(skb_frag_page(frag));
2045 			csum2 = csum_partial_copy_nocheck(vaddr +
2046 							  frag->page_offset +
2047 							  offset - start, to,
2048 							  copy, 0);
2049 			kunmap_atomic(vaddr);
2050 			csum = csum_block_add(csum, csum2, pos);
2051 			if (!(len -= copy))
2052 				return csum;
2053 			offset += copy;
2054 			to     += copy;
2055 			pos    += copy;
2056 		}
2057 		start = end;
2058 	}
2059 
2060 	skb_walk_frags(skb, frag_iter) {
2061 		__wsum csum2;
2062 		int end;
2063 
2064 		WARN_ON(start > offset + len);
2065 
2066 		end = start + frag_iter->len;
2067 		if ((copy = end - offset) > 0) {
2068 			if (copy > len)
2069 				copy = len;
2070 			csum2 = skb_copy_and_csum_bits(frag_iter,
2071 						       offset - start,
2072 						       to, copy, 0);
2073 			csum = csum_block_add(csum, csum2, pos);
2074 			if ((len -= copy) == 0)
2075 				return csum;
2076 			offset += copy;
2077 			to     += copy;
2078 			pos    += copy;
2079 		}
2080 		start = end;
2081 	}
2082 	BUG_ON(len);
2083 	return csum;
2084 }
2085 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2086 
2087 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2088 {
2089 	__wsum csum;
2090 	long csstart;
2091 
2092 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2093 		csstart = skb_checksum_start_offset(skb);
2094 	else
2095 		csstart = skb_headlen(skb);
2096 
2097 	BUG_ON(csstart > skb_headlen(skb));
2098 
2099 	skb_copy_from_linear_data(skb, to, csstart);
2100 
2101 	csum = 0;
2102 	if (csstart != skb->len)
2103 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2104 					      skb->len - csstart, 0);
2105 
2106 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2107 		long csstuff = csstart + skb->csum_offset;
2108 
2109 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2110 	}
2111 }
2112 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2113 
2114 /**
2115  *	skb_dequeue - remove from the head of the queue
2116  *	@list: list to dequeue from
2117  *
2118  *	Remove the head of the list. The list lock is taken so the function
2119  *	may be used safely with other locking list functions. The head item is
2120  *	returned or %NULL if the list is empty.
2121  */
2122 
2123 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2124 {
2125 	unsigned long flags;
2126 	struct sk_buff *result;
2127 
2128 	spin_lock_irqsave(&list->lock, flags);
2129 	result = __skb_dequeue(list);
2130 	spin_unlock_irqrestore(&list->lock, flags);
2131 	return result;
2132 }
2133 EXPORT_SYMBOL(skb_dequeue);
2134 
2135 /**
2136  *	skb_dequeue_tail - remove from the tail of the queue
2137  *	@list: list to dequeue from
2138  *
2139  *	Remove the tail of the list. The list lock is taken so the function
2140  *	may be used safely with other locking list functions. The tail item is
2141  *	returned or %NULL if the list is empty.
2142  */
2143 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2144 {
2145 	unsigned long flags;
2146 	struct sk_buff *result;
2147 
2148 	spin_lock_irqsave(&list->lock, flags);
2149 	result = __skb_dequeue_tail(list);
2150 	spin_unlock_irqrestore(&list->lock, flags);
2151 	return result;
2152 }
2153 EXPORT_SYMBOL(skb_dequeue_tail);
2154 
2155 /**
2156  *	skb_queue_purge - empty a list
2157  *	@list: list to empty
2158  *
2159  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2160  *	the list and one reference dropped. This function takes the list
2161  *	lock and is atomic with respect to other list locking functions.
2162  */
2163 void skb_queue_purge(struct sk_buff_head *list)
2164 {
2165 	struct sk_buff *skb;
2166 	while ((skb = skb_dequeue(list)) != NULL)
2167 		kfree_skb(skb);
2168 }
2169 EXPORT_SYMBOL(skb_queue_purge);
2170 
2171 /**
2172  *	skb_queue_head - queue a buffer at the list head
2173  *	@list: list to use
2174  *	@newsk: buffer to queue
2175  *
2176  *	Queue a buffer at the start of the list. This function takes the
2177  *	list lock and can be used safely with other locking &sk_buff functions
2178  *	safely.
2179  *
2180  *	A buffer cannot be placed on two lists at the same time.
2181  */
2182 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2183 {
2184 	unsigned long flags;
2185 
2186 	spin_lock_irqsave(&list->lock, flags);
2187 	__skb_queue_head(list, newsk);
2188 	spin_unlock_irqrestore(&list->lock, flags);
2189 }
2190 EXPORT_SYMBOL(skb_queue_head);
2191 
2192 /**
2193  *	skb_queue_tail - queue a buffer at the list tail
2194  *	@list: list to use
2195  *	@newsk: buffer to queue
2196  *
2197  *	Queue a buffer at the tail of the list. This function takes the
2198  *	list lock and can be used safely with other locking &sk_buff functions
2199  *	safely.
2200  *
2201  *	A buffer cannot be placed on two lists at the same time.
2202  */
2203 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2204 {
2205 	unsigned long flags;
2206 
2207 	spin_lock_irqsave(&list->lock, flags);
2208 	__skb_queue_tail(list, newsk);
2209 	spin_unlock_irqrestore(&list->lock, flags);
2210 }
2211 EXPORT_SYMBOL(skb_queue_tail);
2212 
2213 /**
2214  *	skb_unlink	-	remove a buffer from a list
2215  *	@skb: buffer to remove
2216  *	@list: list to use
2217  *
2218  *	Remove a packet from a list. The list locks are taken and this
2219  *	function is atomic with respect to other list locked calls
2220  *
2221  *	You must know what list the SKB is on.
2222  */
2223 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2224 {
2225 	unsigned long flags;
2226 
2227 	spin_lock_irqsave(&list->lock, flags);
2228 	__skb_unlink(skb, list);
2229 	spin_unlock_irqrestore(&list->lock, flags);
2230 }
2231 EXPORT_SYMBOL(skb_unlink);
2232 
2233 /**
2234  *	skb_append	-	append a buffer
2235  *	@old: buffer to insert after
2236  *	@newsk: buffer to insert
2237  *	@list: list to use
2238  *
2239  *	Place a packet after a given packet in a list. The list locks are taken
2240  *	and this function is atomic with respect to other list locked calls.
2241  *	A buffer cannot be placed on two lists at the same time.
2242  */
2243 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2244 {
2245 	unsigned long flags;
2246 
2247 	spin_lock_irqsave(&list->lock, flags);
2248 	__skb_queue_after(list, old, newsk);
2249 	spin_unlock_irqrestore(&list->lock, flags);
2250 }
2251 EXPORT_SYMBOL(skb_append);
2252 
2253 /**
2254  *	skb_insert	-	insert a buffer
2255  *	@old: buffer to insert before
2256  *	@newsk: buffer to insert
2257  *	@list: list to use
2258  *
2259  *	Place a packet before a given packet in a list. The list locks are
2260  * 	taken and this function is atomic with respect to other list locked
2261  *	calls.
2262  *
2263  *	A buffer cannot be placed on two lists at the same time.
2264  */
2265 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2266 {
2267 	unsigned long flags;
2268 
2269 	spin_lock_irqsave(&list->lock, flags);
2270 	__skb_insert(newsk, old->prev, old, list);
2271 	spin_unlock_irqrestore(&list->lock, flags);
2272 }
2273 EXPORT_SYMBOL(skb_insert);
2274 
2275 static inline void skb_split_inside_header(struct sk_buff *skb,
2276 					   struct sk_buff* skb1,
2277 					   const u32 len, const int pos)
2278 {
2279 	int i;
2280 
2281 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2282 					 pos - len);
2283 	/* And move data appendix as is. */
2284 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2285 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2286 
2287 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2288 	skb_shinfo(skb)->nr_frags  = 0;
2289 	skb1->data_len		   = skb->data_len;
2290 	skb1->len		   += skb1->data_len;
2291 	skb->data_len		   = 0;
2292 	skb->len		   = len;
2293 	skb_set_tail_pointer(skb, len);
2294 }
2295 
2296 static inline void skb_split_no_header(struct sk_buff *skb,
2297 				       struct sk_buff* skb1,
2298 				       const u32 len, int pos)
2299 {
2300 	int i, k = 0;
2301 	const int nfrags = skb_shinfo(skb)->nr_frags;
2302 
2303 	skb_shinfo(skb)->nr_frags = 0;
2304 	skb1->len		  = skb1->data_len = skb->len - len;
2305 	skb->len		  = len;
2306 	skb->data_len		  = len - pos;
2307 
2308 	for (i = 0; i < nfrags; i++) {
2309 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2310 
2311 		if (pos + size > len) {
2312 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2313 
2314 			if (pos < len) {
2315 				/* Split frag.
2316 				 * We have two variants in this case:
2317 				 * 1. Move all the frag to the second
2318 				 *    part, if it is possible. F.e.
2319 				 *    this approach is mandatory for TUX,
2320 				 *    where splitting is expensive.
2321 				 * 2. Split is accurately. We make this.
2322 				 */
2323 				skb_frag_ref(skb, i);
2324 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2325 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2326 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2327 				skb_shinfo(skb)->nr_frags++;
2328 			}
2329 			k++;
2330 		} else
2331 			skb_shinfo(skb)->nr_frags++;
2332 		pos += size;
2333 	}
2334 	skb_shinfo(skb1)->nr_frags = k;
2335 }
2336 
2337 /**
2338  * skb_split - Split fragmented skb to two parts at length len.
2339  * @skb: the buffer to split
2340  * @skb1: the buffer to receive the second part
2341  * @len: new length for skb
2342  */
2343 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2344 {
2345 	int pos = skb_headlen(skb);
2346 
2347 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2348 	if (len < pos)	/* Split line is inside header. */
2349 		skb_split_inside_header(skb, skb1, len, pos);
2350 	else		/* Second chunk has no header, nothing to copy. */
2351 		skb_split_no_header(skb, skb1, len, pos);
2352 }
2353 EXPORT_SYMBOL(skb_split);
2354 
2355 /* Shifting from/to a cloned skb is a no-go.
2356  *
2357  * Caller cannot keep skb_shinfo related pointers past calling here!
2358  */
2359 static int skb_prepare_for_shift(struct sk_buff *skb)
2360 {
2361 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2362 }
2363 
2364 /**
2365  * skb_shift - Shifts paged data partially from skb to another
2366  * @tgt: buffer into which tail data gets added
2367  * @skb: buffer from which the paged data comes from
2368  * @shiftlen: shift up to this many bytes
2369  *
2370  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2371  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2372  * It's up to caller to free skb if everything was shifted.
2373  *
2374  * If @tgt runs out of frags, the whole operation is aborted.
2375  *
2376  * Skb cannot include anything else but paged data while tgt is allowed
2377  * to have non-paged data as well.
2378  *
2379  * TODO: full sized shift could be optimized but that would need
2380  * specialized skb free'er to handle frags without up-to-date nr_frags.
2381  */
2382 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2383 {
2384 	int from, to, merge, todo;
2385 	struct skb_frag_struct *fragfrom, *fragto;
2386 
2387 	BUG_ON(shiftlen > skb->len);
2388 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2389 
2390 	todo = shiftlen;
2391 	from = 0;
2392 	to = skb_shinfo(tgt)->nr_frags;
2393 	fragfrom = &skb_shinfo(skb)->frags[from];
2394 
2395 	/* Actual merge is delayed until the point when we know we can
2396 	 * commit all, so that we don't have to undo partial changes
2397 	 */
2398 	if (!to ||
2399 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2400 			      fragfrom->page_offset)) {
2401 		merge = -1;
2402 	} else {
2403 		merge = to - 1;
2404 
2405 		todo -= skb_frag_size(fragfrom);
2406 		if (todo < 0) {
2407 			if (skb_prepare_for_shift(skb) ||
2408 			    skb_prepare_for_shift(tgt))
2409 				return 0;
2410 
2411 			/* All previous frag pointers might be stale! */
2412 			fragfrom = &skb_shinfo(skb)->frags[from];
2413 			fragto = &skb_shinfo(tgt)->frags[merge];
2414 
2415 			skb_frag_size_add(fragto, shiftlen);
2416 			skb_frag_size_sub(fragfrom, shiftlen);
2417 			fragfrom->page_offset += shiftlen;
2418 
2419 			goto onlymerged;
2420 		}
2421 
2422 		from++;
2423 	}
2424 
2425 	/* Skip full, not-fitting skb to avoid expensive operations */
2426 	if ((shiftlen == skb->len) &&
2427 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2428 		return 0;
2429 
2430 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2431 		return 0;
2432 
2433 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2434 		if (to == MAX_SKB_FRAGS)
2435 			return 0;
2436 
2437 		fragfrom = &skb_shinfo(skb)->frags[from];
2438 		fragto = &skb_shinfo(tgt)->frags[to];
2439 
2440 		if (todo >= skb_frag_size(fragfrom)) {
2441 			*fragto = *fragfrom;
2442 			todo -= skb_frag_size(fragfrom);
2443 			from++;
2444 			to++;
2445 
2446 		} else {
2447 			__skb_frag_ref(fragfrom);
2448 			fragto->page = fragfrom->page;
2449 			fragto->page_offset = fragfrom->page_offset;
2450 			skb_frag_size_set(fragto, todo);
2451 
2452 			fragfrom->page_offset += todo;
2453 			skb_frag_size_sub(fragfrom, todo);
2454 			todo = 0;
2455 
2456 			to++;
2457 			break;
2458 		}
2459 	}
2460 
2461 	/* Ready to "commit" this state change to tgt */
2462 	skb_shinfo(tgt)->nr_frags = to;
2463 
2464 	if (merge >= 0) {
2465 		fragfrom = &skb_shinfo(skb)->frags[0];
2466 		fragto = &skb_shinfo(tgt)->frags[merge];
2467 
2468 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2469 		__skb_frag_unref(fragfrom);
2470 	}
2471 
2472 	/* Reposition in the original skb */
2473 	to = 0;
2474 	while (from < skb_shinfo(skb)->nr_frags)
2475 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2476 	skb_shinfo(skb)->nr_frags = to;
2477 
2478 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2479 
2480 onlymerged:
2481 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2482 	 * the other hand might need it if it needs to be resent
2483 	 */
2484 	tgt->ip_summed = CHECKSUM_PARTIAL;
2485 	skb->ip_summed = CHECKSUM_PARTIAL;
2486 
2487 	/* Yak, is it really working this way? Some helper please? */
2488 	skb->len -= shiftlen;
2489 	skb->data_len -= shiftlen;
2490 	skb->truesize -= shiftlen;
2491 	tgt->len += shiftlen;
2492 	tgt->data_len += shiftlen;
2493 	tgt->truesize += shiftlen;
2494 
2495 	return shiftlen;
2496 }
2497 
2498 /**
2499  * skb_prepare_seq_read - Prepare a sequential read of skb data
2500  * @skb: the buffer to read
2501  * @from: lower offset of data to be read
2502  * @to: upper offset of data to be read
2503  * @st: state variable
2504  *
2505  * Initializes the specified state variable. Must be called before
2506  * invoking skb_seq_read() for the first time.
2507  */
2508 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2509 			  unsigned int to, struct skb_seq_state *st)
2510 {
2511 	st->lower_offset = from;
2512 	st->upper_offset = to;
2513 	st->root_skb = st->cur_skb = skb;
2514 	st->frag_idx = st->stepped_offset = 0;
2515 	st->frag_data = NULL;
2516 }
2517 EXPORT_SYMBOL(skb_prepare_seq_read);
2518 
2519 /**
2520  * skb_seq_read - Sequentially read skb data
2521  * @consumed: number of bytes consumed by the caller so far
2522  * @data: destination pointer for data to be returned
2523  * @st: state variable
2524  *
2525  * Reads a block of skb data at &consumed relative to the
2526  * lower offset specified to skb_prepare_seq_read(). Assigns
2527  * the head of the data block to &data and returns the length
2528  * of the block or 0 if the end of the skb data or the upper
2529  * offset has been reached.
2530  *
2531  * The caller is not required to consume all of the data
2532  * returned, i.e. &consumed is typically set to the number
2533  * of bytes already consumed and the next call to
2534  * skb_seq_read() will return the remaining part of the block.
2535  *
2536  * Note 1: The size of each block of data returned can be arbitrary,
2537  *       this limitation is the cost for zerocopy seqeuental
2538  *       reads of potentially non linear data.
2539  *
2540  * Note 2: Fragment lists within fragments are not implemented
2541  *       at the moment, state->root_skb could be replaced with
2542  *       a stack for this purpose.
2543  */
2544 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2545 			  struct skb_seq_state *st)
2546 {
2547 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2548 	skb_frag_t *frag;
2549 
2550 	if (unlikely(abs_offset >= st->upper_offset)) {
2551 		if (st->frag_data) {
2552 			kunmap_atomic(st->frag_data);
2553 			st->frag_data = NULL;
2554 		}
2555 		return 0;
2556 	}
2557 
2558 next_skb:
2559 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2560 
2561 	if (abs_offset < block_limit && !st->frag_data) {
2562 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2563 		return block_limit - abs_offset;
2564 	}
2565 
2566 	if (st->frag_idx == 0 && !st->frag_data)
2567 		st->stepped_offset += skb_headlen(st->cur_skb);
2568 
2569 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2570 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2571 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2572 
2573 		if (abs_offset < block_limit) {
2574 			if (!st->frag_data)
2575 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2576 
2577 			*data = (u8 *) st->frag_data + frag->page_offset +
2578 				(abs_offset - st->stepped_offset);
2579 
2580 			return block_limit - abs_offset;
2581 		}
2582 
2583 		if (st->frag_data) {
2584 			kunmap_atomic(st->frag_data);
2585 			st->frag_data = NULL;
2586 		}
2587 
2588 		st->frag_idx++;
2589 		st->stepped_offset += skb_frag_size(frag);
2590 	}
2591 
2592 	if (st->frag_data) {
2593 		kunmap_atomic(st->frag_data);
2594 		st->frag_data = NULL;
2595 	}
2596 
2597 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2598 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2599 		st->frag_idx = 0;
2600 		goto next_skb;
2601 	} else if (st->cur_skb->next) {
2602 		st->cur_skb = st->cur_skb->next;
2603 		st->frag_idx = 0;
2604 		goto next_skb;
2605 	}
2606 
2607 	return 0;
2608 }
2609 EXPORT_SYMBOL(skb_seq_read);
2610 
2611 /**
2612  * skb_abort_seq_read - Abort a sequential read of skb data
2613  * @st: state variable
2614  *
2615  * Must be called if skb_seq_read() was not called until it
2616  * returned 0.
2617  */
2618 void skb_abort_seq_read(struct skb_seq_state *st)
2619 {
2620 	if (st->frag_data)
2621 		kunmap_atomic(st->frag_data);
2622 }
2623 EXPORT_SYMBOL(skb_abort_seq_read);
2624 
2625 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2626 
2627 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2628 					  struct ts_config *conf,
2629 					  struct ts_state *state)
2630 {
2631 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2632 }
2633 
2634 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2635 {
2636 	skb_abort_seq_read(TS_SKB_CB(state));
2637 }
2638 
2639 /**
2640  * skb_find_text - Find a text pattern in skb data
2641  * @skb: the buffer to look in
2642  * @from: search offset
2643  * @to: search limit
2644  * @config: textsearch configuration
2645  * @state: uninitialized textsearch state variable
2646  *
2647  * Finds a pattern in the skb data according to the specified
2648  * textsearch configuration. Use textsearch_next() to retrieve
2649  * subsequent occurrences of the pattern. Returns the offset
2650  * to the first occurrence or UINT_MAX if no match was found.
2651  */
2652 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2653 			   unsigned int to, struct ts_config *config,
2654 			   struct ts_state *state)
2655 {
2656 	unsigned int ret;
2657 
2658 	config->get_next_block = skb_ts_get_next_block;
2659 	config->finish = skb_ts_finish;
2660 
2661 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2662 
2663 	ret = textsearch_find(config, state);
2664 	return (ret <= to - from ? ret : UINT_MAX);
2665 }
2666 EXPORT_SYMBOL(skb_find_text);
2667 
2668 /**
2669  * skb_append_datato_frags - append the user data to a skb
2670  * @sk: sock  structure
2671  * @skb: skb structure to be appened with user data.
2672  * @getfrag: call back function to be used for getting the user data
2673  * @from: pointer to user message iov
2674  * @length: length of the iov message
2675  *
2676  * Description: This procedure append the user data in the fragment part
2677  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2678  */
2679 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2680 			int (*getfrag)(void *from, char *to, int offset,
2681 					int len, int odd, struct sk_buff *skb),
2682 			void *from, int length)
2683 {
2684 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2685 	int copy;
2686 	int offset = 0;
2687 	int ret;
2688 	struct page_frag *pfrag = &current->task_frag;
2689 
2690 	do {
2691 		/* Return error if we don't have space for new frag */
2692 		if (frg_cnt >= MAX_SKB_FRAGS)
2693 			return -EMSGSIZE;
2694 
2695 		if (!sk_page_frag_refill(sk, pfrag))
2696 			return -ENOMEM;
2697 
2698 		/* copy the user data to page */
2699 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2700 
2701 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2702 			      offset, copy, 0, skb);
2703 		if (ret < 0)
2704 			return -EFAULT;
2705 
2706 		/* copy was successful so update the size parameters */
2707 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2708 				   copy);
2709 		frg_cnt++;
2710 		pfrag->offset += copy;
2711 		get_page(pfrag->page);
2712 
2713 		skb->truesize += copy;
2714 		atomic_add(copy, &sk->sk_wmem_alloc);
2715 		skb->len += copy;
2716 		skb->data_len += copy;
2717 		offset += copy;
2718 		length -= copy;
2719 
2720 	} while (length > 0);
2721 
2722 	return 0;
2723 }
2724 EXPORT_SYMBOL(skb_append_datato_frags);
2725 
2726 /**
2727  *	skb_pull_rcsum - pull skb and update receive checksum
2728  *	@skb: buffer to update
2729  *	@len: length of data pulled
2730  *
2731  *	This function performs an skb_pull on the packet and updates
2732  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2733  *	receive path processing instead of skb_pull unless you know
2734  *	that the checksum difference is zero (e.g., a valid IP header)
2735  *	or you are setting ip_summed to CHECKSUM_NONE.
2736  */
2737 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2738 {
2739 	BUG_ON(len > skb->len);
2740 	skb->len -= len;
2741 	BUG_ON(skb->len < skb->data_len);
2742 	skb_postpull_rcsum(skb, skb->data, len);
2743 	return skb->data += len;
2744 }
2745 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2746 
2747 /**
2748  *	skb_segment - Perform protocol segmentation on skb.
2749  *	@skb: buffer to segment
2750  *	@features: features for the output path (see dev->features)
2751  *
2752  *	This function performs segmentation on the given skb.  It returns
2753  *	a pointer to the first in a list of new skbs for the segments.
2754  *	In case of error it returns ERR_PTR(err).
2755  */
2756 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2757 {
2758 	struct sk_buff *segs = NULL;
2759 	struct sk_buff *tail = NULL;
2760 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2761 	unsigned int mss = skb_shinfo(skb)->gso_size;
2762 	unsigned int doffset = skb->data - skb_mac_header(skb);
2763 	unsigned int offset = doffset;
2764 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
2765 	unsigned int headroom;
2766 	unsigned int len;
2767 	__be16 proto;
2768 	bool csum;
2769 	int sg = !!(features & NETIF_F_SG);
2770 	int nfrags = skb_shinfo(skb)->nr_frags;
2771 	int err = -ENOMEM;
2772 	int i = 0;
2773 	int pos;
2774 
2775 	proto = skb_network_protocol(skb);
2776 	if (unlikely(!proto))
2777 		return ERR_PTR(-EINVAL);
2778 
2779 	csum = !!can_checksum_protocol(features, proto);
2780 	__skb_push(skb, doffset);
2781 	headroom = skb_headroom(skb);
2782 	pos = skb_headlen(skb);
2783 
2784 	do {
2785 		struct sk_buff *nskb;
2786 		skb_frag_t *frag;
2787 		int hsize;
2788 		int size;
2789 
2790 		len = skb->len - offset;
2791 		if (len > mss)
2792 			len = mss;
2793 
2794 		hsize = skb_headlen(skb) - offset;
2795 		if (hsize < 0)
2796 			hsize = 0;
2797 		if (hsize > len || !sg)
2798 			hsize = len;
2799 
2800 		if (!hsize && i >= nfrags) {
2801 			BUG_ON(fskb->len != len);
2802 
2803 			pos += len;
2804 			nskb = skb_clone(fskb, GFP_ATOMIC);
2805 			fskb = fskb->next;
2806 
2807 			if (unlikely(!nskb))
2808 				goto err;
2809 
2810 			hsize = skb_end_offset(nskb);
2811 			if (skb_cow_head(nskb, doffset + headroom)) {
2812 				kfree_skb(nskb);
2813 				goto err;
2814 			}
2815 
2816 			nskb->truesize += skb_end_offset(nskb) - hsize;
2817 			skb_release_head_state(nskb);
2818 			__skb_push(nskb, doffset);
2819 		} else {
2820 			nskb = __alloc_skb(hsize + doffset + headroom,
2821 					   GFP_ATOMIC, skb_alloc_rx_flag(skb),
2822 					   NUMA_NO_NODE);
2823 
2824 			if (unlikely(!nskb))
2825 				goto err;
2826 
2827 			skb_reserve(nskb, headroom);
2828 			__skb_put(nskb, doffset);
2829 		}
2830 
2831 		if (segs)
2832 			tail->next = nskb;
2833 		else
2834 			segs = nskb;
2835 		tail = nskb;
2836 
2837 		__copy_skb_header(nskb, skb);
2838 		nskb->mac_len = skb->mac_len;
2839 
2840 		/* nskb and skb might have different headroom */
2841 		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2842 			nskb->csum_start += skb_headroom(nskb) - headroom;
2843 
2844 		skb_reset_mac_header(nskb);
2845 		skb_set_network_header(nskb, skb->mac_len);
2846 		nskb->transport_header = (nskb->network_header +
2847 					  skb_network_header_len(skb));
2848 
2849 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
2850 						 nskb->data - tnl_hlen,
2851 						 doffset + tnl_hlen);
2852 
2853 		if (fskb != skb_shinfo(skb)->frag_list)
2854 			goto perform_csum_check;
2855 
2856 		if (!sg) {
2857 			nskb->ip_summed = CHECKSUM_NONE;
2858 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2859 							    skb_put(nskb, len),
2860 							    len, 0);
2861 			continue;
2862 		}
2863 
2864 		frag = skb_shinfo(nskb)->frags;
2865 
2866 		skb_copy_from_linear_data_offset(skb, offset,
2867 						 skb_put(nskb, hsize), hsize);
2868 
2869 		skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2870 
2871 		while (pos < offset + len && i < nfrags) {
2872 			*frag = skb_shinfo(skb)->frags[i];
2873 			__skb_frag_ref(frag);
2874 			size = skb_frag_size(frag);
2875 
2876 			if (pos < offset) {
2877 				frag->page_offset += offset - pos;
2878 				skb_frag_size_sub(frag, offset - pos);
2879 			}
2880 
2881 			skb_shinfo(nskb)->nr_frags++;
2882 
2883 			if (pos + size <= offset + len) {
2884 				i++;
2885 				pos += size;
2886 			} else {
2887 				skb_frag_size_sub(frag, pos + size - (offset + len));
2888 				goto skip_fraglist;
2889 			}
2890 
2891 			frag++;
2892 		}
2893 
2894 		if (pos < offset + len) {
2895 			struct sk_buff *fskb2 = fskb;
2896 
2897 			BUG_ON(pos + fskb->len != offset + len);
2898 
2899 			pos += fskb->len;
2900 			fskb = fskb->next;
2901 
2902 			if (fskb2->next) {
2903 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2904 				if (!fskb2)
2905 					goto err;
2906 			} else
2907 				skb_get(fskb2);
2908 
2909 			SKB_FRAG_ASSERT(nskb);
2910 			skb_shinfo(nskb)->frag_list = fskb2;
2911 		}
2912 
2913 skip_fraglist:
2914 		nskb->data_len = len - hsize;
2915 		nskb->len += nskb->data_len;
2916 		nskb->truesize += nskb->data_len;
2917 
2918 perform_csum_check:
2919 		if (!csum) {
2920 			nskb->csum = skb_checksum(nskb, doffset,
2921 						  nskb->len - doffset, 0);
2922 			nskb->ip_summed = CHECKSUM_NONE;
2923 		}
2924 	} while ((offset += len) < skb->len);
2925 
2926 	return segs;
2927 
2928 err:
2929 	while ((skb = segs)) {
2930 		segs = skb->next;
2931 		kfree_skb(skb);
2932 	}
2933 	return ERR_PTR(err);
2934 }
2935 EXPORT_SYMBOL_GPL(skb_segment);
2936 
2937 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2938 {
2939 	struct sk_buff *p = *head;
2940 	struct sk_buff *nskb;
2941 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2942 	struct skb_shared_info *pinfo = skb_shinfo(p);
2943 	unsigned int headroom;
2944 	unsigned int len = skb_gro_len(skb);
2945 	unsigned int offset = skb_gro_offset(skb);
2946 	unsigned int headlen = skb_headlen(skb);
2947 	unsigned int delta_truesize;
2948 
2949 	if (p->len + len >= 65536)
2950 		return -E2BIG;
2951 
2952 	if (pinfo->frag_list)
2953 		goto merge;
2954 	else if (headlen <= offset) {
2955 		skb_frag_t *frag;
2956 		skb_frag_t *frag2;
2957 		int i = skbinfo->nr_frags;
2958 		int nr_frags = pinfo->nr_frags + i;
2959 
2960 		offset -= headlen;
2961 
2962 		if (nr_frags > MAX_SKB_FRAGS)
2963 			return -E2BIG;
2964 
2965 		pinfo->nr_frags = nr_frags;
2966 		skbinfo->nr_frags = 0;
2967 
2968 		frag = pinfo->frags + nr_frags;
2969 		frag2 = skbinfo->frags + i;
2970 		do {
2971 			*--frag = *--frag2;
2972 		} while (--i);
2973 
2974 		frag->page_offset += offset;
2975 		skb_frag_size_sub(frag, offset);
2976 
2977 		/* all fragments truesize : remove (head size + sk_buff) */
2978 		delta_truesize = skb->truesize -
2979 				 SKB_TRUESIZE(skb_end_offset(skb));
2980 
2981 		skb->truesize -= skb->data_len;
2982 		skb->len -= skb->data_len;
2983 		skb->data_len = 0;
2984 
2985 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2986 		goto done;
2987 	} else if (skb->head_frag) {
2988 		int nr_frags = pinfo->nr_frags;
2989 		skb_frag_t *frag = pinfo->frags + nr_frags;
2990 		struct page *page = virt_to_head_page(skb->head);
2991 		unsigned int first_size = headlen - offset;
2992 		unsigned int first_offset;
2993 
2994 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2995 			return -E2BIG;
2996 
2997 		first_offset = skb->data -
2998 			       (unsigned char *)page_address(page) +
2999 			       offset;
3000 
3001 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3002 
3003 		frag->page.p	  = page;
3004 		frag->page_offset = first_offset;
3005 		skb_frag_size_set(frag, first_size);
3006 
3007 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3008 		/* We dont need to clear skbinfo->nr_frags here */
3009 
3010 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3011 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3012 		goto done;
3013 	} else if (skb_gro_len(p) != pinfo->gso_size)
3014 		return -E2BIG;
3015 
3016 	headroom = skb_headroom(p);
3017 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3018 	if (unlikely(!nskb))
3019 		return -ENOMEM;
3020 
3021 	__copy_skb_header(nskb, p);
3022 	nskb->mac_len = p->mac_len;
3023 
3024 	skb_reserve(nskb, headroom);
3025 	__skb_put(nskb, skb_gro_offset(p));
3026 
3027 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3028 	skb_set_network_header(nskb, skb_network_offset(p));
3029 	skb_set_transport_header(nskb, skb_transport_offset(p));
3030 
3031 	__skb_pull(p, skb_gro_offset(p));
3032 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
3033 	       p->data - skb_mac_header(p));
3034 
3035 	skb_shinfo(nskb)->frag_list = p;
3036 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3037 	pinfo->gso_size = 0;
3038 	skb_header_release(p);
3039 	NAPI_GRO_CB(nskb)->last = p;
3040 
3041 	nskb->data_len += p->len;
3042 	nskb->truesize += p->truesize;
3043 	nskb->len += p->len;
3044 
3045 	*head = nskb;
3046 	nskb->next = p->next;
3047 	p->next = NULL;
3048 
3049 	p = nskb;
3050 
3051 merge:
3052 	delta_truesize = skb->truesize;
3053 	if (offset > headlen) {
3054 		unsigned int eat = offset - headlen;
3055 
3056 		skbinfo->frags[0].page_offset += eat;
3057 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3058 		skb->data_len -= eat;
3059 		skb->len -= eat;
3060 		offset = headlen;
3061 	}
3062 
3063 	__skb_pull(skb, offset);
3064 
3065 	NAPI_GRO_CB(p)->last->next = skb;
3066 	NAPI_GRO_CB(p)->last = skb;
3067 	skb_header_release(skb);
3068 
3069 done:
3070 	NAPI_GRO_CB(p)->count++;
3071 	p->data_len += len;
3072 	p->truesize += delta_truesize;
3073 	p->len += len;
3074 
3075 	NAPI_GRO_CB(skb)->same_flow = 1;
3076 	return 0;
3077 }
3078 EXPORT_SYMBOL_GPL(skb_gro_receive);
3079 
3080 void __init skb_init(void)
3081 {
3082 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3083 					      sizeof(struct sk_buff),
3084 					      0,
3085 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3086 					      NULL);
3087 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3088 						(2*sizeof(struct sk_buff)) +
3089 						sizeof(atomic_t),
3090 						0,
3091 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3092 						NULL);
3093 }
3094 
3095 /**
3096  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3097  *	@skb: Socket buffer containing the buffers to be mapped
3098  *	@sg: The scatter-gather list to map into
3099  *	@offset: The offset into the buffer's contents to start mapping
3100  *	@len: Length of buffer space to be mapped
3101  *
3102  *	Fill the specified scatter-gather list with mappings/pointers into a
3103  *	region of the buffer space attached to a socket buffer.
3104  */
3105 static int
3106 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3107 {
3108 	int start = skb_headlen(skb);
3109 	int i, copy = start - offset;
3110 	struct sk_buff *frag_iter;
3111 	int elt = 0;
3112 
3113 	if (copy > 0) {
3114 		if (copy > len)
3115 			copy = len;
3116 		sg_set_buf(sg, skb->data + offset, copy);
3117 		elt++;
3118 		if ((len -= copy) == 0)
3119 			return elt;
3120 		offset += copy;
3121 	}
3122 
3123 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3124 		int end;
3125 
3126 		WARN_ON(start > offset + len);
3127 
3128 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3129 		if ((copy = end - offset) > 0) {
3130 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3131 
3132 			if (copy > len)
3133 				copy = len;
3134 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3135 					frag->page_offset+offset-start);
3136 			elt++;
3137 			if (!(len -= copy))
3138 				return elt;
3139 			offset += copy;
3140 		}
3141 		start = end;
3142 	}
3143 
3144 	skb_walk_frags(skb, frag_iter) {
3145 		int end;
3146 
3147 		WARN_ON(start > offset + len);
3148 
3149 		end = start + frag_iter->len;
3150 		if ((copy = end - offset) > 0) {
3151 			if (copy > len)
3152 				copy = len;
3153 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3154 					      copy);
3155 			if ((len -= copy) == 0)
3156 				return elt;
3157 			offset += copy;
3158 		}
3159 		start = end;
3160 	}
3161 	BUG_ON(len);
3162 	return elt;
3163 }
3164 
3165 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3166 {
3167 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3168 
3169 	sg_mark_end(&sg[nsg - 1]);
3170 
3171 	return nsg;
3172 }
3173 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3174 
3175 /**
3176  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3177  *	@skb: The socket buffer to check.
3178  *	@tailbits: Amount of trailing space to be added
3179  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3180  *
3181  *	Make sure that the data buffers attached to a socket buffer are
3182  *	writable. If they are not, private copies are made of the data buffers
3183  *	and the socket buffer is set to use these instead.
3184  *
3185  *	If @tailbits is given, make sure that there is space to write @tailbits
3186  *	bytes of data beyond current end of socket buffer.  @trailer will be
3187  *	set to point to the skb in which this space begins.
3188  *
3189  *	The number of scatterlist elements required to completely map the
3190  *	COW'd and extended socket buffer will be returned.
3191  */
3192 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3193 {
3194 	int copyflag;
3195 	int elt;
3196 	struct sk_buff *skb1, **skb_p;
3197 
3198 	/* If skb is cloned or its head is paged, reallocate
3199 	 * head pulling out all the pages (pages are considered not writable
3200 	 * at the moment even if they are anonymous).
3201 	 */
3202 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3203 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3204 		return -ENOMEM;
3205 
3206 	/* Easy case. Most of packets will go this way. */
3207 	if (!skb_has_frag_list(skb)) {
3208 		/* A little of trouble, not enough of space for trailer.
3209 		 * This should not happen, when stack is tuned to generate
3210 		 * good frames. OK, on miss we reallocate and reserve even more
3211 		 * space, 128 bytes is fair. */
3212 
3213 		if (skb_tailroom(skb) < tailbits &&
3214 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3215 			return -ENOMEM;
3216 
3217 		/* Voila! */
3218 		*trailer = skb;
3219 		return 1;
3220 	}
3221 
3222 	/* Misery. We are in troubles, going to mincer fragments... */
3223 
3224 	elt = 1;
3225 	skb_p = &skb_shinfo(skb)->frag_list;
3226 	copyflag = 0;
3227 
3228 	while ((skb1 = *skb_p) != NULL) {
3229 		int ntail = 0;
3230 
3231 		/* The fragment is partially pulled by someone,
3232 		 * this can happen on input. Copy it and everything
3233 		 * after it. */
3234 
3235 		if (skb_shared(skb1))
3236 			copyflag = 1;
3237 
3238 		/* If the skb is the last, worry about trailer. */
3239 
3240 		if (skb1->next == NULL && tailbits) {
3241 			if (skb_shinfo(skb1)->nr_frags ||
3242 			    skb_has_frag_list(skb1) ||
3243 			    skb_tailroom(skb1) < tailbits)
3244 				ntail = tailbits + 128;
3245 		}
3246 
3247 		if (copyflag ||
3248 		    skb_cloned(skb1) ||
3249 		    ntail ||
3250 		    skb_shinfo(skb1)->nr_frags ||
3251 		    skb_has_frag_list(skb1)) {
3252 			struct sk_buff *skb2;
3253 
3254 			/* Fuck, we are miserable poor guys... */
3255 			if (ntail == 0)
3256 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3257 			else
3258 				skb2 = skb_copy_expand(skb1,
3259 						       skb_headroom(skb1),
3260 						       ntail,
3261 						       GFP_ATOMIC);
3262 			if (unlikely(skb2 == NULL))
3263 				return -ENOMEM;
3264 
3265 			if (skb1->sk)
3266 				skb_set_owner_w(skb2, skb1->sk);
3267 
3268 			/* Looking around. Are we still alive?
3269 			 * OK, link new skb, drop old one */
3270 
3271 			skb2->next = skb1->next;
3272 			*skb_p = skb2;
3273 			kfree_skb(skb1);
3274 			skb1 = skb2;
3275 		}
3276 		elt++;
3277 		*trailer = skb1;
3278 		skb_p = &skb1->next;
3279 	}
3280 
3281 	return elt;
3282 }
3283 EXPORT_SYMBOL_GPL(skb_cow_data);
3284 
3285 static void sock_rmem_free(struct sk_buff *skb)
3286 {
3287 	struct sock *sk = skb->sk;
3288 
3289 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3290 }
3291 
3292 /*
3293  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3294  */
3295 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3296 {
3297 	int len = skb->len;
3298 
3299 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3300 	    (unsigned int)sk->sk_rcvbuf)
3301 		return -ENOMEM;
3302 
3303 	skb_orphan(skb);
3304 	skb->sk = sk;
3305 	skb->destructor = sock_rmem_free;
3306 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3307 
3308 	/* before exiting rcu section, make sure dst is refcounted */
3309 	skb_dst_force(skb);
3310 
3311 	skb_queue_tail(&sk->sk_error_queue, skb);
3312 	if (!sock_flag(sk, SOCK_DEAD))
3313 		sk->sk_data_ready(sk, len);
3314 	return 0;
3315 }
3316 EXPORT_SYMBOL(sock_queue_err_skb);
3317 
3318 void skb_tstamp_tx(struct sk_buff *orig_skb,
3319 		struct skb_shared_hwtstamps *hwtstamps)
3320 {
3321 	struct sock *sk = orig_skb->sk;
3322 	struct sock_exterr_skb *serr;
3323 	struct sk_buff *skb;
3324 	int err;
3325 
3326 	if (!sk)
3327 		return;
3328 
3329 	if (hwtstamps) {
3330 		*skb_hwtstamps(orig_skb) =
3331 			*hwtstamps;
3332 	} else {
3333 		/*
3334 		 * no hardware time stamps available,
3335 		 * so keep the shared tx_flags and only
3336 		 * store software time stamp
3337 		 */
3338 		orig_skb->tstamp = ktime_get_real();
3339 	}
3340 
3341 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3342 	if (!skb)
3343 		return;
3344 
3345 	serr = SKB_EXT_ERR(skb);
3346 	memset(serr, 0, sizeof(*serr));
3347 	serr->ee.ee_errno = ENOMSG;
3348 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3349 
3350 	err = sock_queue_err_skb(sk, skb);
3351 
3352 	if (err)
3353 		kfree_skb(skb);
3354 }
3355 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3356 
3357 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3358 {
3359 	struct sock *sk = skb->sk;
3360 	struct sock_exterr_skb *serr;
3361 	int err;
3362 
3363 	skb->wifi_acked_valid = 1;
3364 	skb->wifi_acked = acked;
3365 
3366 	serr = SKB_EXT_ERR(skb);
3367 	memset(serr, 0, sizeof(*serr));
3368 	serr->ee.ee_errno = ENOMSG;
3369 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3370 
3371 	err = sock_queue_err_skb(sk, skb);
3372 	if (err)
3373 		kfree_skb(skb);
3374 }
3375 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3376 
3377 
3378 /**
3379  * skb_partial_csum_set - set up and verify partial csum values for packet
3380  * @skb: the skb to set
3381  * @start: the number of bytes after skb->data to start checksumming.
3382  * @off: the offset from start to place the checksum.
3383  *
3384  * For untrusted partially-checksummed packets, we need to make sure the values
3385  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3386  *
3387  * This function checks and sets those values and skb->ip_summed: if this
3388  * returns false you should drop the packet.
3389  */
3390 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3391 {
3392 	if (unlikely(start > skb_headlen(skb)) ||
3393 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3394 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3395 				     start, off, skb_headlen(skb));
3396 		return false;
3397 	}
3398 	skb->ip_summed = CHECKSUM_PARTIAL;
3399 	skb->csum_start = skb_headroom(skb) + start;
3400 	skb->csum_offset = off;
3401 	skb_set_transport_header(skb, start);
3402 	return true;
3403 }
3404 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3405 
3406 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3407 {
3408 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3409 			     skb->dev->name);
3410 }
3411 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3412 
3413 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3414 {
3415 	if (head_stolen) {
3416 		skb_release_head_state(skb);
3417 		kmem_cache_free(skbuff_head_cache, skb);
3418 	} else {
3419 		__kfree_skb(skb);
3420 	}
3421 }
3422 EXPORT_SYMBOL(kfree_skb_partial);
3423 
3424 /**
3425  * skb_try_coalesce - try to merge skb to prior one
3426  * @to: prior buffer
3427  * @from: buffer to add
3428  * @fragstolen: pointer to boolean
3429  * @delta_truesize: how much more was allocated than was requested
3430  */
3431 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3432 		      bool *fragstolen, int *delta_truesize)
3433 {
3434 	int i, delta, len = from->len;
3435 
3436 	*fragstolen = false;
3437 
3438 	if (skb_cloned(to))
3439 		return false;
3440 
3441 	if (len <= skb_tailroom(to)) {
3442 		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3443 		*delta_truesize = 0;
3444 		return true;
3445 	}
3446 
3447 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3448 		return false;
3449 
3450 	if (skb_headlen(from) != 0) {
3451 		struct page *page;
3452 		unsigned int offset;
3453 
3454 		if (skb_shinfo(to)->nr_frags +
3455 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3456 			return false;
3457 
3458 		if (skb_head_is_locked(from))
3459 			return false;
3460 
3461 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3462 
3463 		page = virt_to_head_page(from->head);
3464 		offset = from->data - (unsigned char *)page_address(page);
3465 
3466 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3467 				   page, offset, skb_headlen(from));
3468 		*fragstolen = true;
3469 	} else {
3470 		if (skb_shinfo(to)->nr_frags +
3471 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3472 			return false;
3473 
3474 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3475 	}
3476 
3477 	WARN_ON_ONCE(delta < len);
3478 
3479 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3480 	       skb_shinfo(from)->frags,
3481 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3482 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3483 
3484 	if (!skb_cloned(from))
3485 		skb_shinfo(from)->nr_frags = 0;
3486 
3487 	/* if the skb is not cloned this does nothing
3488 	 * since we set nr_frags to 0.
3489 	 */
3490 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3491 		skb_frag_ref(from, i);
3492 
3493 	to->truesize += delta;
3494 	to->len += len;
3495 	to->data_len += len;
3496 
3497 	*delta_truesize = delta;
3498 	return true;
3499 }
3500 EXPORT_SYMBOL(skb_try_coalesce);
3501 
3502 /**
3503  * skb_scrub_packet - scrub an skb
3504  *
3505  * @skb: buffer to clean
3506  * @xnet: packet is crossing netns
3507  *
3508  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
3509  * into/from a tunnel. Some information have to be cleared during these
3510  * operations.
3511  * skb_scrub_packet can also be used to clean a skb before injecting it in
3512  * another namespace (@xnet == true). We have to clear all information in the
3513  * skb that could impact namespace isolation.
3514  */
3515 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
3516 {
3517 	if (xnet)
3518 		skb_orphan(skb);
3519 	skb->tstamp.tv64 = 0;
3520 	skb->pkt_type = PACKET_HOST;
3521 	skb->skb_iif = 0;
3522 	skb_dst_drop(skb);
3523 	skb->mark = 0;
3524 	secpath_reset(skb);
3525 	nf_reset(skb);
3526 	nf_reset_trace(skb);
3527 }
3528 EXPORT_SYMBOL_GPL(skb_scrub_packet);
3529