1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/netdevice.h> 51 #ifdef CONFIG_NET_CLS_ACT 52 #include <net/pkt_sched.h> 53 #endif 54 #include <linux/string.h> 55 #include <linux/skbuff.h> 56 #include <linux/splice.h> 57 #include <linux/cache.h> 58 #include <linux/rtnetlink.h> 59 #include <linux/init.h> 60 #include <linux/scatterlist.h> 61 #include <linux/errqueue.h> 62 #include <linux/prefetch.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/xfrm.h> 69 70 #include <asm/uaccess.h> 71 #include <trace/events/skb.h> 72 #include <linux/highmem.h> 73 74 struct kmem_cache *skbuff_head_cache __read_mostly; 75 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 76 77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 78 struct pipe_buffer *buf) 79 { 80 put_page(buf->page); 81 } 82 83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 84 struct pipe_buffer *buf) 85 { 86 get_page(buf->page); 87 } 88 89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 90 struct pipe_buffer *buf) 91 { 92 return 1; 93 } 94 95 96 /* Pipe buffer operations for a socket. */ 97 static const struct pipe_buf_operations sock_pipe_buf_ops = { 98 .can_merge = 0, 99 .map = generic_pipe_buf_map, 100 .unmap = generic_pipe_buf_unmap, 101 .confirm = generic_pipe_buf_confirm, 102 .release = sock_pipe_buf_release, 103 .steal = sock_pipe_buf_steal, 104 .get = sock_pipe_buf_get, 105 }; 106 107 /** 108 * skb_panic - private function for out-of-line support 109 * @skb: buffer 110 * @sz: size 111 * @addr: address 112 * @msg: skb_over_panic or skb_under_panic 113 * 114 * Out-of-line support for skb_put() and skb_push(). 115 * Called via the wrapper skb_over_panic() or skb_under_panic(). 116 * Keep out of line to prevent kernel bloat. 117 * __builtin_return_address is not used because it is not always reliable. 118 */ 119 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 120 const char msg[]) 121 { 122 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 123 msg, addr, skb->len, sz, skb->head, skb->data, 124 (unsigned long)skb->tail, (unsigned long)skb->end, 125 skb->dev ? skb->dev->name : "<NULL>"); 126 BUG(); 127 } 128 129 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 130 { 131 skb_panic(skb, sz, addr, __func__); 132 } 133 134 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 135 { 136 skb_panic(skb, sz, addr, __func__); 137 } 138 139 /* 140 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 141 * the caller if emergency pfmemalloc reserves are being used. If it is and 142 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 143 * may be used. Otherwise, the packet data may be discarded until enough 144 * memory is free 145 */ 146 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 147 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 148 149 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 150 unsigned long ip, bool *pfmemalloc) 151 { 152 void *obj; 153 bool ret_pfmemalloc = false; 154 155 /* 156 * Try a regular allocation, when that fails and we're not entitled 157 * to the reserves, fail. 158 */ 159 obj = kmalloc_node_track_caller(size, 160 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 161 node); 162 if (obj || !(gfp_pfmemalloc_allowed(flags))) 163 goto out; 164 165 /* Try again but now we are using pfmemalloc reserves */ 166 ret_pfmemalloc = true; 167 obj = kmalloc_node_track_caller(size, flags, node); 168 169 out: 170 if (pfmemalloc) 171 *pfmemalloc = ret_pfmemalloc; 172 173 return obj; 174 } 175 176 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 177 * 'private' fields and also do memory statistics to find all the 178 * [BEEP] leaks. 179 * 180 */ 181 182 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node) 183 { 184 struct sk_buff *skb; 185 186 /* Get the HEAD */ 187 skb = kmem_cache_alloc_node(skbuff_head_cache, 188 gfp_mask & ~__GFP_DMA, node); 189 if (!skb) 190 goto out; 191 192 /* 193 * Only clear those fields we need to clear, not those that we will 194 * actually initialise below. Hence, don't put any more fields after 195 * the tail pointer in struct sk_buff! 196 */ 197 memset(skb, 0, offsetof(struct sk_buff, tail)); 198 skb->head = NULL; 199 skb->truesize = sizeof(struct sk_buff); 200 atomic_set(&skb->users, 1); 201 202 skb->mac_header = (typeof(skb->mac_header))~0U; 203 out: 204 return skb; 205 } 206 207 /** 208 * __alloc_skb - allocate a network buffer 209 * @size: size to allocate 210 * @gfp_mask: allocation mask 211 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 212 * instead of head cache and allocate a cloned (child) skb. 213 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 214 * allocations in case the data is required for writeback 215 * @node: numa node to allocate memory on 216 * 217 * Allocate a new &sk_buff. The returned buffer has no headroom and a 218 * tail room of at least size bytes. The object has a reference count 219 * of one. The return is the buffer. On a failure the return is %NULL. 220 * 221 * Buffers may only be allocated from interrupts using a @gfp_mask of 222 * %GFP_ATOMIC. 223 */ 224 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 225 int flags, int node) 226 { 227 struct kmem_cache *cache; 228 struct skb_shared_info *shinfo; 229 struct sk_buff *skb; 230 u8 *data; 231 bool pfmemalloc; 232 233 cache = (flags & SKB_ALLOC_FCLONE) 234 ? skbuff_fclone_cache : skbuff_head_cache; 235 236 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 237 gfp_mask |= __GFP_MEMALLOC; 238 239 /* Get the HEAD */ 240 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 241 if (!skb) 242 goto out; 243 prefetchw(skb); 244 245 /* We do our best to align skb_shared_info on a separate cache 246 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 247 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 248 * Both skb->head and skb_shared_info are cache line aligned. 249 */ 250 size = SKB_DATA_ALIGN(size); 251 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 252 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 253 if (!data) 254 goto nodata; 255 /* kmalloc(size) might give us more room than requested. 256 * Put skb_shared_info exactly at the end of allocated zone, 257 * to allow max possible filling before reallocation. 258 */ 259 size = SKB_WITH_OVERHEAD(ksize(data)); 260 prefetchw(data + size); 261 262 /* 263 * Only clear those fields we need to clear, not those that we will 264 * actually initialise below. Hence, don't put any more fields after 265 * the tail pointer in struct sk_buff! 266 */ 267 memset(skb, 0, offsetof(struct sk_buff, tail)); 268 /* Account for allocated memory : skb + skb->head */ 269 skb->truesize = SKB_TRUESIZE(size); 270 skb->pfmemalloc = pfmemalloc; 271 atomic_set(&skb->users, 1); 272 skb->head = data; 273 skb->data = data; 274 skb_reset_tail_pointer(skb); 275 skb->end = skb->tail + size; 276 skb->mac_header = (typeof(skb->mac_header))~0U; 277 skb->transport_header = (typeof(skb->transport_header))~0U; 278 279 /* make sure we initialize shinfo sequentially */ 280 shinfo = skb_shinfo(skb); 281 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 282 atomic_set(&shinfo->dataref, 1); 283 kmemcheck_annotate_variable(shinfo->destructor_arg); 284 285 if (flags & SKB_ALLOC_FCLONE) { 286 struct sk_buff *child = skb + 1; 287 atomic_t *fclone_ref = (atomic_t *) (child + 1); 288 289 kmemcheck_annotate_bitfield(child, flags1); 290 kmemcheck_annotate_bitfield(child, flags2); 291 skb->fclone = SKB_FCLONE_ORIG; 292 atomic_set(fclone_ref, 1); 293 294 child->fclone = SKB_FCLONE_UNAVAILABLE; 295 child->pfmemalloc = pfmemalloc; 296 } 297 out: 298 return skb; 299 nodata: 300 kmem_cache_free(cache, skb); 301 skb = NULL; 302 goto out; 303 } 304 EXPORT_SYMBOL(__alloc_skb); 305 306 /** 307 * build_skb - build a network buffer 308 * @data: data buffer provided by caller 309 * @frag_size: size of fragment, or 0 if head was kmalloced 310 * 311 * Allocate a new &sk_buff. Caller provides space holding head and 312 * skb_shared_info. @data must have been allocated by kmalloc() only if 313 * @frag_size is 0, otherwise data should come from the page allocator. 314 * The return is the new skb buffer. 315 * On a failure the return is %NULL, and @data is not freed. 316 * Notes : 317 * Before IO, driver allocates only data buffer where NIC put incoming frame 318 * Driver should add room at head (NET_SKB_PAD) and 319 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 320 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 321 * before giving packet to stack. 322 * RX rings only contains data buffers, not full skbs. 323 */ 324 struct sk_buff *build_skb(void *data, unsigned int frag_size) 325 { 326 struct skb_shared_info *shinfo; 327 struct sk_buff *skb; 328 unsigned int size = frag_size ? : ksize(data); 329 330 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 331 if (!skb) 332 return NULL; 333 334 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 335 336 memset(skb, 0, offsetof(struct sk_buff, tail)); 337 skb->truesize = SKB_TRUESIZE(size); 338 skb->head_frag = frag_size != 0; 339 atomic_set(&skb->users, 1); 340 skb->head = data; 341 skb->data = data; 342 skb_reset_tail_pointer(skb); 343 skb->end = skb->tail + size; 344 skb->mac_header = (typeof(skb->mac_header))~0U; 345 skb->transport_header = (typeof(skb->transport_header))~0U; 346 347 /* make sure we initialize shinfo sequentially */ 348 shinfo = skb_shinfo(skb); 349 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 350 atomic_set(&shinfo->dataref, 1); 351 kmemcheck_annotate_variable(shinfo->destructor_arg); 352 353 return skb; 354 } 355 EXPORT_SYMBOL(build_skb); 356 357 struct netdev_alloc_cache { 358 struct page_frag frag; 359 /* we maintain a pagecount bias, so that we dont dirty cache line 360 * containing page->_count every time we allocate a fragment. 361 */ 362 unsigned int pagecnt_bias; 363 }; 364 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache); 365 366 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 367 { 368 struct netdev_alloc_cache *nc; 369 void *data = NULL; 370 int order; 371 unsigned long flags; 372 373 local_irq_save(flags); 374 nc = &__get_cpu_var(netdev_alloc_cache); 375 if (unlikely(!nc->frag.page)) { 376 refill: 377 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) { 378 gfp_t gfp = gfp_mask; 379 380 if (order) 381 gfp |= __GFP_COMP | __GFP_NOWARN; 382 nc->frag.page = alloc_pages(gfp, order); 383 if (likely(nc->frag.page)) 384 break; 385 if (--order < 0) 386 goto end; 387 } 388 nc->frag.size = PAGE_SIZE << order; 389 recycle: 390 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS); 391 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS; 392 nc->frag.offset = 0; 393 } 394 395 if (nc->frag.offset + fragsz > nc->frag.size) { 396 /* avoid unnecessary locked operations if possible */ 397 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) || 398 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count)) 399 goto recycle; 400 goto refill; 401 } 402 403 data = page_address(nc->frag.page) + nc->frag.offset; 404 nc->frag.offset += fragsz; 405 nc->pagecnt_bias--; 406 end: 407 local_irq_restore(flags); 408 return data; 409 } 410 411 /** 412 * netdev_alloc_frag - allocate a page fragment 413 * @fragsz: fragment size 414 * 415 * Allocates a frag from a page for receive buffer. 416 * Uses GFP_ATOMIC allocations. 417 */ 418 void *netdev_alloc_frag(unsigned int fragsz) 419 { 420 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 421 } 422 EXPORT_SYMBOL(netdev_alloc_frag); 423 424 /** 425 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 426 * @dev: network device to receive on 427 * @length: length to allocate 428 * @gfp_mask: get_free_pages mask, passed to alloc_skb 429 * 430 * Allocate a new &sk_buff and assign it a usage count of one. The 431 * buffer has unspecified headroom built in. Users should allocate 432 * the headroom they think they need without accounting for the 433 * built in space. The built in space is used for optimisations. 434 * 435 * %NULL is returned if there is no free memory. 436 */ 437 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 438 unsigned int length, gfp_t gfp_mask) 439 { 440 struct sk_buff *skb = NULL; 441 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) + 442 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 443 444 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) { 445 void *data; 446 447 if (sk_memalloc_socks()) 448 gfp_mask |= __GFP_MEMALLOC; 449 450 data = __netdev_alloc_frag(fragsz, gfp_mask); 451 452 if (likely(data)) { 453 skb = build_skb(data, fragsz); 454 if (unlikely(!skb)) 455 put_page(virt_to_head_page(data)); 456 } 457 } else { 458 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 459 SKB_ALLOC_RX, NUMA_NO_NODE); 460 } 461 if (likely(skb)) { 462 skb_reserve(skb, NET_SKB_PAD); 463 skb->dev = dev; 464 } 465 return skb; 466 } 467 EXPORT_SYMBOL(__netdev_alloc_skb); 468 469 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 470 int size, unsigned int truesize) 471 { 472 skb_fill_page_desc(skb, i, page, off, size); 473 skb->len += size; 474 skb->data_len += size; 475 skb->truesize += truesize; 476 } 477 EXPORT_SYMBOL(skb_add_rx_frag); 478 479 static void skb_drop_list(struct sk_buff **listp) 480 { 481 kfree_skb_list(*listp); 482 *listp = NULL; 483 } 484 485 static inline void skb_drop_fraglist(struct sk_buff *skb) 486 { 487 skb_drop_list(&skb_shinfo(skb)->frag_list); 488 } 489 490 static void skb_clone_fraglist(struct sk_buff *skb) 491 { 492 struct sk_buff *list; 493 494 skb_walk_frags(skb, list) 495 skb_get(list); 496 } 497 498 static void skb_free_head(struct sk_buff *skb) 499 { 500 if (skb->head_frag) 501 put_page(virt_to_head_page(skb->head)); 502 else 503 kfree(skb->head); 504 } 505 506 static void skb_release_data(struct sk_buff *skb) 507 { 508 if (!skb->cloned || 509 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 510 &skb_shinfo(skb)->dataref)) { 511 if (skb_shinfo(skb)->nr_frags) { 512 int i; 513 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 514 skb_frag_unref(skb, i); 515 } 516 517 /* 518 * If skb buf is from userspace, we need to notify the caller 519 * the lower device DMA has done; 520 */ 521 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 522 struct ubuf_info *uarg; 523 524 uarg = skb_shinfo(skb)->destructor_arg; 525 if (uarg->callback) 526 uarg->callback(uarg, true); 527 } 528 529 if (skb_has_frag_list(skb)) 530 skb_drop_fraglist(skb); 531 532 skb_free_head(skb); 533 } 534 } 535 536 /* 537 * Free an skbuff by memory without cleaning the state. 538 */ 539 static void kfree_skbmem(struct sk_buff *skb) 540 { 541 struct sk_buff *other; 542 atomic_t *fclone_ref; 543 544 switch (skb->fclone) { 545 case SKB_FCLONE_UNAVAILABLE: 546 kmem_cache_free(skbuff_head_cache, skb); 547 break; 548 549 case SKB_FCLONE_ORIG: 550 fclone_ref = (atomic_t *) (skb + 2); 551 if (atomic_dec_and_test(fclone_ref)) 552 kmem_cache_free(skbuff_fclone_cache, skb); 553 break; 554 555 case SKB_FCLONE_CLONE: 556 fclone_ref = (atomic_t *) (skb + 1); 557 other = skb - 1; 558 559 /* The clone portion is available for 560 * fast-cloning again. 561 */ 562 skb->fclone = SKB_FCLONE_UNAVAILABLE; 563 564 if (atomic_dec_and_test(fclone_ref)) 565 kmem_cache_free(skbuff_fclone_cache, other); 566 break; 567 } 568 } 569 570 static void skb_release_head_state(struct sk_buff *skb) 571 { 572 skb_dst_drop(skb); 573 #ifdef CONFIG_XFRM 574 secpath_put(skb->sp); 575 #endif 576 if (skb->destructor) { 577 WARN_ON(in_irq()); 578 skb->destructor(skb); 579 } 580 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 581 nf_conntrack_put(skb->nfct); 582 #endif 583 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 584 nf_conntrack_put_reasm(skb->nfct_reasm); 585 #endif 586 #ifdef CONFIG_BRIDGE_NETFILTER 587 nf_bridge_put(skb->nf_bridge); 588 #endif 589 /* XXX: IS this still necessary? - JHS */ 590 #ifdef CONFIG_NET_SCHED 591 skb->tc_index = 0; 592 #ifdef CONFIG_NET_CLS_ACT 593 skb->tc_verd = 0; 594 #endif 595 #endif 596 } 597 598 /* Free everything but the sk_buff shell. */ 599 static void skb_release_all(struct sk_buff *skb) 600 { 601 skb_release_head_state(skb); 602 if (likely(skb->head)) 603 skb_release_data(skb); 604 } 605 606 /** 607 * __kfree_skb - private function 608 * @skb: buffer 609 * 610 * Free an sk_buff. Release anything attached to the buffer. 611 * Clean the state. This is an internal helper function. Users should 612 * always call kfree_skb 613 */ 614 615 void __kfree_skb(struct sk_buff *skb) 616 { 617 skb_release_all(skb); 618 kfree_skbmem(skb); 619 } 620 EXPORT_SYMBOL(__kfree_skb); 621 622 /** 623 * kfree_skb - free an sk_buff 624 * @skb: buffer to free 625 * 626 * Drop a reference to the buffer and free it if the usage count has 627 * hit zero. 628 */ 629 void kfree_skb(struct sk_buff *skb) 630 { 631 if (unlikely(!skb)) 632 return; 633 if (likely(atomic_read(&skb->users) == 1)) 634 smp_rmb(); 635 else if (likely(!atomic_dec_and_test(&skb->users))) 636 return; 637 trace_kfree_skb(skb, __builtin_return_address(0)); 638 __kfree_skb(skb); 639 } 640 EXPORT_SYMBOL(kfree_skb); 641 642 void kfree_skb_list(struct sk_buff *segs) 643 { 644 while (segs) { 645 struct sk_buff *next = segs->next; 646 647 kfree_skb(segs); 648 segs = next; 649 } 650 } 651 EXPORT_SYMBOL(kfree_skb_list); 652 653 /** 654 * skb_tx_error - report an sk_buff xmit error 655 * @skb: buffer that triggered an error 656 * 657 * Report xmit error if a device callback is tracking this skb. 658 * skb must be freed afterwards. 659 */ 660 void skb_tx_error(struct sk_buff *skb) 661 { 662 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 663 struct ubuf_info *uarg; 664 665 uarg = skb_shinfo(skb)->destructor_arg; 666 if (uarg->callback) 667 uarg->callback(uarg, false); 668 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 669 } 670 } 671 EXPORT_SYMBOL(skb_tx_error); 672 673 /** 674 * consume_skb - free an skbuff 675 * @skb: buffer to free 676 * 677 * Drop a ref to the buffer and free it if the usage count has hit zero 678 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 679 * is being dropped after a failure and notes that 680 */ 681 void consume_skb(struct sk_buff *skb) 682 { 683 if (unlikely(!skb)) 684 return; 685 if (likely(atomic_read(&skb->users) == 1)) 686 smp_rmb(); 687 else if (likely(!atomic_dec_and_test(&skb->users))) 688 return; 689 trace_consume_skb(skb); 690 __kfree_skb(skb); 691 } 692 EXPORT_SYMBOL(consume_skb); 693 694 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 695 { 696 new->tstamp = old->tstamp; 697 new->dev = old->dev; 698 new->transport_header = old->transport_header; 699 new->network_header = old->network_header; 700 new->mac_header = old->mac_header; 701 new->inner_protocol = old->inner_protocol; 702 new->inner_transport_header = old->inner_transport_header; 703 new->inner_network_header = old->inner_network_header; 704 new->inner_mac_header = old->inner_mac_header; 705 skb_dst_copy(new, old); 706 new->rxhash = old->rxhash; 707 new->ooo_okay = old->ooo_okay; 708 new->l4_rxhash = old->l4_rxhash; 709 new->no_fcs = old->no_fcs; 710 new->encapsulation = old->encapsulation; 711 #ifdef CONFIG_XFRM 712 new->sp = secpath_get(old->sp); 713 #endif 714 memcpy(new->cb, old->cb, sizeof(old->cb)); 715 new->csum = old->csum; 716 new->local_df = old->local_df; 717 new->pkt_type = old->pkt_type; 718 new->ip_summed = old->ip_summed; 719 skb_copy_queue_mapping(new, old); 720 new->priority = old->priority; 721 #if IS_ENABLED(CONFIG_IP_VS) 722 new->ipvs_property = old->ipvs_property; 723 #endif 724 new->pfmemalloc = old->pfmemalloc; 725 new->protocol = old->protocol; 726 new->mark = old->mark; 727 new->skb_iif = old->skb_iif; 728 __nf_copy(new, old); 729 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) 730 new->nf_trace = old->nf_trace; 731 #endif 732 #ifdef CONFIG_NET_SCHED 733 new->tc_index = old->tc_index; 734 #ifdef CONFIG_NET_CLS_ACT 735 new->tc_verd = old->tc_verd; 736 #endif 737 #endif 738 new->vlan_proto = old->vlan_proto; 739 new->vlan_tci = old->vlan_tci; 740 741 skb_copy_secmark(new, old); 742 743 #ifdef CONFIG_NET_RX_BUSY_POLL 744 new->napi_id = old->napi_id; 745 #endif 746 } 747 748 /* 749 * You should not add any new code to this function. Add it to 750 * __copy_skb_header above instead. 751 */ 752 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 753 { 754 #define C(x) n->x = skb->x 755 756 n->next = n->prev = NULL; 757 n->sk = NULL; 758 __copy_skb_header(n, skb); 759 760 C(len); 761 C(data_len); 762 C(mac_len); 763 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 764 n->cloned = 1; 765 n->nohdr = 0; 766 n->destructor = NULL; 767 C(tail); 768 C(end); 769 C(head); 770 C(head_frag); 771 C(data); 772 C(truesize); 773 atomic_set(&n->users, 1); 774 775 atomic_inc(&(skb_shinfo(skb)->dataref)); 776 skb->cloned = 1; 777 778 return n; 779 #undef C 780 } 781 782 /** 783 * skb_morph - morph one skb into another 784 * @dst: the skb to receive the contents 785 * @src: the skb to supply the contents 786 * 787 * This is identical to skb_clone except that the target skb is 788 * supplied by the user. 789 * 790 * The target skb is returned upon exit. 791 */ 792 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 793 { 794 skb_release_all(dst); 795 return __skb_clone(dst, src); 796 } 797 EXPORT_SYMBOL_GPL(skb_morph); 798 799 /** 800 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 801 * @skb: the skb to modify 802 * @gfp_mask: allocation priority 803 * 804 * This must be called on SKBTX_DEV_ZEROCOPY skb. 805 * It will copy all frags into kernel and drop the reference 806 * to userspace pages. 807 * 808 * If this function is called from an interrupt gfp_mask() must be 809 * %GFP_ATOMIC. 810 * 811 * Returns 0 on success or a negative error code on failure 812 * to allocate kernel memory to copy to. 813 */ 814 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 815 { 816 int i; 817 int num_frags = skb_shinfo(skb)->nr_frags; 818 struct page *page, *head = NULL; 819 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 820 821 for (i = 0; i < num_frags; i++) { 822 u8 *vaddr; 823 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 824 825 page = alloc_page(gfp_mask); 826 if (!page) { 827 while (head) { 828 struct page *next = (struct page *)page_private(head); 829 put_page(head); 830 head = next; 831 } 832 return -ENOMEM; 833 } 834 vaddr = kmap_atomic(skb_frag_page(f)); 835 memcpy(page_address(page), 836 vaddr + f->page_offset, skb_frag_size(f)); 837 kunmap_atomic(vaddr); 838 set_page_private(page, (unsigned long)head); 839 head = page; 840 } 841 842 /* skb frags release userspace buffers */ 843 for (i = 0; i < num_frags; i++) 844 skb_frag_unref(skb, i); 845 846 uarg->callback(uarg, false); 847 848 /* skb frags point to kernel buffers */ 849 for (i = num_frags - 1; i >= 0; i--) { 850 __skb_fill_page_desc(skb, i, head, 0, 851 skb_shinfo(skb)->frags[i].size); 852 head = (struct page *)page_private(head); 853 } 854 855 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 856 return 0; 857 } 858 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 859 860 /** 861 * skb_clone - duplicate an sk_buff 862 * @skb: buffer to clone 863 * @gfp_mask: allocation priority 864 * 865 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 866 * copies share the same packet data but not structure. The new 867 * buffer has a reference count of 1. If the allocation fails the 868 * function returns %NULL otherwise the new buffer is returned. 869 * 870 * If this function is called from an interrupt gfp_mask() must be 871 * %GFP_ATOMIC. 872 */ 873 874 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 875 { 876 struct sk_buff *n; 877 878 if (skb_orphan_frags(skb, gfp_mask)) 879 return NULL; 880 881 n = skb + 1; 882 if (skb->fclone == SKB_FCLONE_ORIG && 883 n->fclone == SKB_FCLONE_UNAVAILABLE) { 884 atomic_t *fclone_ref = (atomic_t *) (n + 1); 885 n->fclone = SKB_FCLONE_CLONE; 886 atomic_inc(fclone_ref); 887 } else { 888 if (skb_pfmemalloc(skb)) 889 gfp_mask |= __GFP_MEMALLOC; 890 891 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 892 if (!n) 893 return NULL; 894 895 kmemcheck_annotate_bitfield(n, flags1); 896 kmemcheck_annotate_bitfield(n, flags2); 897 n->fclone = SKB_FCLONE_UNAVAILABLE; 898 } 899 900 return __skb_clone(n, skb); 901 } 902 EXPORT_SYMBOL(skb_clone); 903 904 static void skb_headers_offset_update(struct sk_buff *skb, int off) 905 { 906 /* {transport,network,mac}_header and tail are relative to skb->head */ 907 skb->transport_header += off; 908 skb->network_header += off; 909 if (skb_mac_header_was_set(skb)) 910 skb->mac_header += off; 911 skb->inner_transport_header += off; 912 skb->inner_network_header += off; 913 skb->inner_mac_header += off; 914 } 915 916 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 917 { 918 __copy_skb_header(new, old); 919 920 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 921 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 922 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 923 } 924 925 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 926 { 927 if (skb_pfmemalloc(skb)) 928 return SKB_ALLOC_RX; 929 return 0; 930 } 931 932 /** 933 * skb_copy - create private copy of an sk_buff 934 * @skb: buffer to copy 935 * @gfp_mask: allocation priority 936 * 937 * Make a copy of both an &sk_buff and its data. This is used when the 938 * caller wishes to modify the data and needs a private copy of the 939 * data to alter. Returns %NULL on failure or the pointer to the buffer 940 * on success. The returned buffer has a reference count of 1. 941 * 942 * As by-product this function converts non-linear &sk_buff to linear 943 * one, so that &sk_buff becomes completely private and caller is allowed 944 * to modify all the data of returned buffer. This means that this 945 * function is not recommended for use in circumstances when only 946 * header is going to be modified. Use pskb_copy() instead. 947 */ 948 949 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 950 { 951 int headerlen = skb_headroom(skb); 952 unsigned int size = skb_end_offset(skb) + skb->data_len; 953 struct sk_buff *n = __alloc_skb(size, gfp_mask, 954 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 955 956 if (!n) 957 return NULL; 958 959 /* Set the data pointer */ 960 skb_reserve(n, headerlen); 961 /* Set the tail pointer and length */ 962 skb_put(n, skb->len); 963 964 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 965 BUG(); 966 967 copy_skb_header(n, skb); 968 return n; 969 } 970 EXPORT_SYMBOL(skb_copy); 971 972 /** 973 * __pskb_copy - create copy of an sk_buff with private head. 974 * @skb: buffer to copy 975 * @headroom: headroom of new skb 976 * @gfp_mask: allocation priority 977 * 978 * Make a copy of both an &sk_buff and part of its data, located 979 * in header. Fragmented data remain shared. This is used when 980 * the caller wishes to modify only header of &sk_buff and needs 981 * private copy of the header to alter. Returns %NULL on failure 982 * or the pointer to the buffer on success. 983 * The returned buffer has a reference count of 1. 984 */ 985 986 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask) 987 { 988 unsigned int size = skb_headlen(skb) + headroom; 989 struct sk_buff *n = __alloc_skb(size, gfp_mask, 990 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 991 992 if (!n) 993 goto out; 994 995 /* Set the data pointer */ 996 skb_reserve(n, headroom); 997 /* Set the tail pointer and length */ 998 skb_put(n, skb_headlen(skb)); 999 /* Copy the bytes */ 1000 skb_copy_from_linear_data(skb, n->data, n->len); 1001 1002 n->truesize += skb->data_len; 1003 n->data_len = skb->data_len; 1004 n->len = skb->len; 1005 1006 if (skb_shinfo(skb)->nr_frags) { 1007 int i; 1008 1009 if (skb_orphan_frags(skb, gfp_mask)) { 1010 kfree_skb(n); 1011 n = NULL; 1012 goto out; 1013 } 1014 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1015 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1016 skb_frag_ref(skb, i); 1017 } 1018 skb_shinfo(n)->nr_frags = i; 1019 } 1020 1021 if (skb_has_frag_list(skb)) { 1022 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1023 skb_clone_fraglist(n); 1024 } 1025 1026 copy_skb_header(n, skb); 1027 out: 1028 return n; 1029 } 1030 EXPORT_SYMBOL(__pskb_copy); 1031 1032 /** 1033 * pskb_expand_head - reallocate header of &sk_buff 1034 * @skb: buffer to reallocate 1035 * @nhead: room to add at head 1036 * @ntail: room to add at tail 1037 * @gfp_mask: allocation priority 1038 * 1039 * Expands (or creates identical copy, if &nhead and &ntail are zero) 1040 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 1041 * reference count of 1. Returns zero in the case of success or error, 1042 * if expansion failed. In the last case, &sk_buff is not changed. 1043 * 1044 * All the pointers pointing into skb header may change and must be 1045 * reloaded after call to this function. 1046 */ 1047 1048 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1049 gfp_t gfp_mask) 1050 { 1051 int i; 1052 u8 *data; 1053 int size = nhead + skb_end_offset(skb) + ntail; 1054 long off; 1055 1056 BUG_ON(nhead < 0); 1057 1058 if (skb_shared(skb)) 1059 BUG(); 1060 1061 size = SKB_DATA_ALIGN(size); 1062 1063 if (skb_pfmemalloc(skb)) 1064 gfp_mask |= __GFP_MEMALLOC; 1065 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1066 gfp_mask, NUMA_NO_NODE, NULL); 1067 if (!data) 1068 goto nodata; 1069 size = SKB_WITH_OVERHEAD(ksize(data)); 1070 1071 /* Copy only real data... and, alas, header. This should be 1072 * optimized for the cases when header is void. 1073 */ 1074 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1075 1076 memcpy((struct skb_shared_info *)(data + size), 1077 skb_shinfo(skb), 1078 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1079 1080 /* 1081 * if shinfo is shared we must drop the old head gracefully, but if it 1082 * is not we can just drop the old head and let the existing refcount 1083 * be since all we did is relocate the values 1084 */ 1085 if (skb_cloned(skb)) { 1086 /* copy this zero copy skb frags */ 1087 if (skb_orphan_frags(skb, gfp_mask)) 1088 goto nofrags; 1089 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1090 skb_frag_ref(skb, i); 1091 1092 if (skb_has_frag_list(skb)) 1093 skb_clone_fraglist(skb); 1094 1095 skb_release_data(skb); 1096 } else { 1097 skb_free_head(skb); 1098 } 1099 off = (data + nhead) - skb->head; 1100 1101 skb->head = data; 1102 skb->head_frag = 0; 1103 skb->data += off; 1104 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1105 skb->end = size; 1106 off = nhead; 1107 #else 1108 skb->end = skb->head + size; 1109 #endif 1110 skb->tail += off; 1111 skb_headers_offset_update(skb, nhead); 1112 /* Only adjust this if it actually is csum_start rather than csum */ 1113 if (skb->ip_summed == CHECKSUM_PARTIAL) 1114 skb->csum_start += nhead; 1115 skb->cloned = 0; 1116 skb->hdr_len = 0; 1117 skb->nohdr = 0; 1118 atomic_set(&skb_shinfo(skb)->dataref, 1); 1119 return 0; 1120 1121 nofrags: 1122 kfree(data); 1123 nodata: 1124 return -ENOMEM; 1125 } 1126 EXPORT_SYMBOL(pskb_expand_head); 1127 1128 /* Make private copy of skb with writable head and some headroom */ 1129 1130 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1131 { 1132 struct sk_buff *skb2; 1133 int delta = headroom - skb_headroom(skb); 1134 1135 if (delta <= 0) 1136 skb2 = pskb_copy(skb, GFP_ATOMIC); 1137 else { 1138 skb2 = skb_clone(skb, GFP_ATOMIC); 1139 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1140 GFP_ATOMIC)) { 1141 kfree_skb(skb2); 1142 skb2 = NULL; 1143 } 1144 } 1145 return skb2; 1146 } 1147 EXPORT_SYMBOL(skb_realloc_headroom); 1148 1149 /** 1150 * skb_copy_expand - copy and expand sk_buff 1151 * @skb: buffer to copy 1152 * @newheadroom: new free bytes at head 1153 * @newtailroom: new free bytes at tail 1154 * @gfp_mask: allocation priority 1155 * 1156 * Make a copy of both an &sk_buff and its data and while doing so 1157 * allocate additional space. 1158 * 1159 * This is used when the caller wishes to modify the data and needs a 1160 * private copy of the data to alter as well as more space for new fields. 1161 * Returns %NULL on failure or the pointer to the buffer 1162 * on success. The returned buffer has a reference count of 1. 1163 * 1164 * You must pass %GFP_ATOMIC as the allocation priority if this function 1165 * is called from an interrupt. 1166 */ 1167 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1168 int newheadroom, int newtailroom, 1169 gfp_t gfp_mask) 1170 { 1171 /* 1172 * Allocate the copy buffer 1173 */ 1174 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1175 gfp_mask, skb_alloc_rx_flag(skb), 1176 NUMA_NO_NODE); 1177 int oldheadroom = skb_headroom(skb); 1178 int head_copy_len, head_copy_off; 1179 int off; 1180 1181 if (!n) 1182 return NULL; 1183 1184 skb_reserve(n, newheadroom); 1185 1186 /* Set the tail pointer and length */ 1187 skb_put(n, skb->len); 1188 1189 head_copy_len = oldheadroom; 1190 head_copy_off = 0; 1191 if (newheadroom <= head_copy_len) 1192 head_copy_len = newheadroom; 1193 else 1194 head_copy_off = newheadroom - head_copy_len; 1195 1196 /* Copy the linear header and data. */ 1197 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1198 skb->len + head_copy_len)) 1199 BUG(); 1200 1201 copy_skb_header(n, skb); 1202 1203 off = newheadroom - oldheadroom; 1204 if (n->ip_summed == CHECKSUM_PARTIAL) 1205 n->csum_start += off; 1206 1207 skb_headers_offset_update(n, off); 1208 1209 return n; 1210 } 1211 EXPORT_SYMBOL(skb_copy_expand); 1212 1213 /** 1214 * skb_pad - zero pad the tail of an skb 1215 * @skb: buffer to pad 1216 * @pad: space to pad 1217 * 1218 * Ensure that a buffer is followed by a padding area that is zero 1219 * filled. Used by network drivers which may DMA or transfer data 1220 * beyond the buffer end onto the wire. 1221 * 1222 * May return error in out of memory cases. The skb is freed on error. 1223 */ 1224 1225 int skb_pad(struct sk_buff *skb, int pad) 1226 { 1227 int err; 1228 int ntail; 1229 1230 /* If the skbuff is non linear tailroom is always zero.. */ 1231 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1232 memset(skb->data+skb->len, 0, pad); 1233 return 0; 1234 } 1235 1236 ntail = skb->data_len + pad - (skb->end - skb->tail); 1237 if (likely(skb_cloned(skb) || ntail > 0)) { 1238 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1239 if (unlikely(err)) 1240 goto free_skb; 1241 } 1242 1243 /* FIXME: The use of this function with non-linear skb's really needs 1244 * to be audited. 1245 */ 1246 err = skb_linearize(skb); 1247 if (unlikely(err)) 1248 goto free_skb; 1249 1250 memset(skb->data + skb->len, 0, pad); 1251 return 0; 1252 1253 free_skb: 1254 kfree_skb(skb); 1255 return err; 1256 } 1257 EXPORT_SYMBOL(skb_pad); 1258 1259 /** 1260 * skb_put - add data to a buffer 1261 * @skb: buffer to use 1262 * @len: amount of data to add 1263 * 1264 * This function extends the used data area of the buffer. If this would 1265 * exceed the total buffer size the kernel will panic. A pointer to the 1266 * first byte of the extra data is returned. 1267 */ 1268 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1269 { 1270 unsigned char *tmp = skb_tail_pointer(skb); 1271 SKB_LINEAR_ASSERT(skb); 1272 skb->tail += len; 1273 skb->len += len; 1274 if (unlikely(skb->tail > skb->end)) 1275 skb_over_panic(skb, len, __builtin_return_address(0)); 1276 return tmp; 1277 } 1278 EXPORT_SYMBOL(skb_put); 1279 1280 /** 1281 * skb_push - add data to the start of a buffer 1282 * @skb: buffer to use 1283 * @len: amount of data to add 1284 * 1285 * This function extends the used data area of the buffer at the buffer 1286 * start. If this would exceed the total buffer headroom the kernel will 1287 * panic. A pointer to the first byte of the extra data is returned. 1288 */ 1289 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1290 { 1291 skb->data -= len; 1292 skb->len += len; 1293 if (unlikely(skb->data<skb->head)) 1294 skb_under_panic(skb, len, __builtin_return_address(0)); 1295 return skb->data; 1296 } 1297 EXPORT_SYMBOL(skb_push); 1298 1299 /** 1300 * skb_pull - remove data from the start of a buffer 1301 * @skb: buffer to use 1302 * @len: amount of data to remove 1303 * 1304 * This function removes data from the start of a buffer, returning 1305 * the memory to the headroom. A pointer to the next data in the buffer 1306 * is returned. Once the data has been pulled future pushes will overwrite 1307 * the old data. 1308 */ 1309 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1310 { 1311 return skb_pull_inline(skb, len); 1312 } 1313 EXPORT_SYMBOL(skb_pull); 1314 1315 /** 1316 * skb_trim - remove end from a buffer 1317 * @skb: buffer to alter 1318 * @len: new length 1319 * 1320 * Cut the length of a buffer down by removing data from the tail. If 1321 * the buffer is already under the length specified it is not modified. 1322 * The skb must be linear. 1323 */ 1324 void skb_trim(struct sk_buff *skb, unsigned int len) 1325 { 1326 if (skb->len > len) 1327 __skb_trim(skb, len); 1328 } 1329 EXPORT_SYMBOL(skb_trim); 1330 1331 /* Trims skb to length len. It can change skb pointers. 1332 */ 1333 1334 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1335 { 1336 struct sk_buff **fragp; 1337 struct sk_buff *frag; 1338 int offset = skb_headlen(skb); 1339 int nfrags = skb_shinfo(skb)->nr_frags; 1340 int i; 1341 int err; 1342 1343 if (skb_cloned(skb) && 1344 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1345 return err; 1346 1347 i = 0; 1348 if (offset >= len) 1349 goto drop_pages; 1350 1351 for (; i < nfrags; i++) { 1352 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1353 1354 if (end < len) { 1355 offset = end; 1356 continue; 1357 } 1358 1359 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1360 1361 drop_pages: 1362 skb_shinfo(skb)->nr_frags = i; 1363 1364 for (; i < nfrags; i++) 1365 skb_frag_unref(skb, i); 1366 1367 if (skb_has_frag_list(skb)) 1368 skb_drop_fraglist(skb); 1369 goto done; 1370 } 1371 1372 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1373 fragp = &frag->next) { 1374 int end = offset + frag->len; 1375 1376 if (skb_shared(frag)) { 1377 struct sk_buff *nfrag; 1378 1379 nfrag = skb_clone(frag, GFP_ATOMIC); 1380 if (unlikely(!nfrag)) 1381 return -ENOMEM; 1382 1383 nfrag->next = frag->next; 1384 consume_skb(frag); 1385 frag = nfrag; 1386 *fragp = frag; 1387 } 1388 1389 if (end < len) { 1390 offset = end; 1391 continue; 1392 } 1393 1394 if (end > len && 1395 unlikely((err = pskb_trim(frag, len - offset)))) 1396 return err; 1397 1398 if (frag->next) 1399 skb_drop_list(&frag->next); 1400 break; 1401 } 1402 1403 done: 1404 if (len > skb_headlen(skb)) { 1405 skb->data_len -= skb->len - len; 1406 skb->len = len; 1407 } else { 1408 skb->len = len; 1409 skb->data_len = 0; 1410 skb_set_tail_pointer(skb, len); 1411 } 1412 1413 return 0; 1414 } 1415 EXPORT_SYMBOL(___pskb_trim); 1416 1417 /** 1418 * __pskb_pull_tail - advance tail of skb header 1419 * @skb: buffer to reallocate 1420 * @delta: number of bytes to advance tail 1421 * 1422 * The function makes a sense only on a fragmented &sk_buff, 1423 * it expands header moving its tail forward and copying necessary 1424 * data from fragmented part. 1425 * 1426 * &sk_buff MUST have reference count of 1. 1427 * 1428 * Returns %NULL (and &sk_buff does not change) if pull failed 1429 * or value of new tail of skb in the case of success. 1430 * 1431 * All the pointers pointing into skb header may change and must be 1432 * reloaded after call to this function. 1433 */ 1434 1435 /* Moves tail of skb head forward, copying data from fragmented part, 1436 * when it is necessary. 1437 * 1. It may fail due to malloc failure. 1438 * 2. It may change skb pointers. 1439 * 1440 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1441 */ 1442 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1443 { 1444 /* If skb has not enough free space at tail, get new one 1445 * plus 128 bytes for future expansions. If we have enough 1446 * room at tail, reallocate without expansion only if skb is cloned. 1447 */ 1448 int i, k, eat = (skb->tail + delta) - skb->end; 1449 1450 if (eat > 0 || skb_cloned(skb)) { 1451 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1452 GFP_ATOMIC)) 1453 return NULL; 1454 } 1455 1456 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1457 BUG(); 1458 1459 /* Optimization: no fragments, no reasons to preestimate 1460 * size of pulled pages. Superb. 1461 */ 1462 if (!skb_has_frag_list(skb)) 1463 goto pull_pages; 1464 1465 /* Estimate size of pulled pages. */ 1466 eat = delta; 1467 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1468 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1469 1470 if (size >= eat) 1471 goto pull_pages; 1472 eat -= size; 1473 } 1474 1475 /* If we need update frag list, we are in troubles. 1476 * Certainly, it possible to add an offset to skb data, 1477 * but taking into account that pulling is expected to 1478 * be very rare operation, it is worth to fight against 1479 * further bloating skb head and crucify ourselves here instead. 1480 * Pure masohism, indeed. 8)8) 1481 */ 1482 if (eat) { 1483 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1484 struct sk_buff *clone = NULL; 1485 struct sk_buff *insp = NULL; 1486 1487 do { 1488 BUG_ON(!list); 1489 1490 if (list->len <= eat) { 1491 /* Eaten as whole. */ 1492 eat -= list->len; 1493 list = list->next; 1494 insp = list; 1495 } else { 1496 /* Eaten partially. */ 1497 1498 if (skb_shared(list)) { 1499 /* Sucks! We need to fork list. :-( */ 1500 clone = skb_clone(list, GFP_ATOMIC); 1501 if (!clone) 1502 return NULL; 1503 insp = list->next; 1504 list = clone; 1505 } else { 1506 /* This may be pulled without 1507 * problems. */ 1508 insp = list; 1509 } 1510 if (!pskb_pull(list, eat)) { 1511 kfree_skb(clone); 1512 return NULL; 1513 } 1514 break; 1515 } 1516 } while (eat); 1517 1518 /* Free pulled out fragments. */ 1519 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1520 skb_shinfo(skb)->frag_list = list->next; 1521 kfree_skb(list); 1522 } 1523 /* And insert new clone at head. */ 1524 if (clone) { 1525 clone->next = list; 1526 skb_shinfo(skb)->frag_list = clone; 1527 } 1528 } 1529 /* Success! Now we may commit changes to skb data. */ 1530 1531 pull_pages: 1532 eat = delta; 1533 k = 0; 1534 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1535 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1536 1537 if (size <= eat) { 1538 skb_frag_unref(skb, i); 1539 eat -= size; 1540 } else { 1541 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1542 if (eat) { 1543 skb_shinfo(skb)->frags[k].page_offset += eat; 1544 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1545 eat = 0; 1546 } 1547 k++; 1548 } 1549 } 1550 skb_shinfo(skb)->nr_frags = k; 1551 1552 skb->tail += delta; 1553 skb->data_len -= delta; 1554 1555 return skb_tail_pointer(skb); 1556 } 1557 EXPORT_SYMBOL(__pskb_pull_tail); 1558 1559 /** 1560 * skb_copy_bits - copy bits from skb to kernel buffer 1561 * @skb: source skb 1562 * @offset: offset in source 1563 * @to: destination buffer 1564 * @len: number of bytes to copy 1565 * 1566 * Copy the specified number of bytes from the source skb to the 1567 * destination buffer. 1568 * 1569 * CAUTION ! : 1570 * If its prototype is ever changed, 1571 * check arch/{*}/net/{*}.S files, 1572 * since it is called from BPF assembly code. 1573 */ 1574 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1575 { 1576 int start = skb_headlen(skb); 1577 struct sk_buff *frag_iter; 1578 int i, copy; 1579 1580 if (offset > (int)skb->len - len) 1581 goto fault; 1582 1583 /* Copy header. */ 1584 if ((copy = start - offset) > 0) { 1585 if (copy > len) 1586 copy = len; 1587 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1588 if ((len -= copy) == 0) 1589 return 0; 1590 offset += copy; 1591 to += copy; 1592 } 1593 1594 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1595 int end; 1596 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1597 1598 WARN_ON(start > offset + len); 1599 1600 end = start + skb_frag_size(f); 1601 if ((copy = end - offset) > 0) { 1602 u8 *vaddr; 1603 1604 if (copy > len) 1605 copy = len; 1606 1607 vaddr = kmap_atomic(skb_frag_page(f)); 1608 memcpy(to, 1609 vaddr + f->page_offset + offset - start, 1610 copy); 1611 kunmap_atomic(vaddr); 1612 1613 if ((len -= copy) == 0) 1614 return 0; 1615 offset += copy; 1616 to += copy; 1617 } 1618 start = end; 1619 } 1620 1621 skb_walk_frags(skb, frag_iter) { 1622 int end; 1623 1624 WARN_ON(start > offset + len); 1625 1626 end = start + frag_iter->len; 1627 if ((copy = end - offset) > 0) { 1628 if (copy > len) 1629 copy = len; 1630 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1631 goto fault; 1632 if ((len -= copy) == 0) 1633 return 0; 1634 offset += copy; 1635 to += copy; 1636 } 1637 start = end; 1638 } 1639 1640 if (!len) 1641 return 0; 1642 1643 fault: 1644 return -EFAULT; 1645 } 1646 EXPORT_SYMBOL(skb_copy_bits); 1647 1648 /* 1649 * Callback from splice_to_pipe(), if we need to release some pages 1650 * at the end of the spd in case we error'ed out in filling the pipe. 1651 */ 1652 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1653 { 1654 put_page(spd->pages[i]); 1655 } 1656 1657 static struct page *linear_to_page(struct page *page, unsigned int *len, 1658 unsigned int *offset, 1659 struct sock *sk) 1660 { 1661 struct page_frag *pfrag = sk_page_frag(sk); 1662 1663 if (!sk_page_frag_refill(sk, pfrag)) 1664 return NULL; 1665 1666 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 1667 1668 memcpy(page_address(pfrag->page) + pfrag->offset, 1669 page_address(page) + *offset, *len); 1670 *offset = pfrag->offset; 1671 pfrag->offset += *len; 1672 1673 return pfrag->page; 1674 } 1675 1676 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 1677 struct page *page, 1678 unsigned int offset) 1679 { 1680 return spd->nr_pages && 1681 spd->pages[spd->nr_pages - 1] == page && 1682 (spd->partial[spd->nr_pages - 1].offset + 1683 spd->partial[spd->nr_pages - 1].len == offset); 1684 } 1685 1686 /* 1687 * Fill page/offset/length into spd, if it can hold more pages. 1688 */ 1689 static bool spd_fill_page(struct splice_pipe_desc *spd, 1690 struct pipe_inode_info *pipe, struct page *page, 1691 unsigned int *len, unsigned int offset, 1692 bool linear, 1693 struct sock *sk) 1694 { 1695 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 1696 return true; 1697 1698 if (linear) { 1699 page = linear_to_page(page, len, &offset, sk); 1700 if (!page) 1701 return true; 1702 } 1703 if (spd_can_coalesce(spd, page, offset)) { 1704 spd->partial[spd->nr_pages - 1].len += *len; 1705 return false; 1706 } 1707 get_page(page); 1708 spd->pages[spd->nr_pages] = page; 1709 spd->partial[spd->nr_pages].len = *len; 1710 spd->partial[spd->nr_pages].offset = offset; 1711 spd->nr_pages++; 1712 1713 return false; 1714 } 1715 1716 static bool __splice_segment(struct page *page, unsigned int poff, 1717 unsigned int plen, unsigned int *off, 1718 unsigned int *len, 1719 struct splice_pipe_desc *spd, bool linear, 1720 struct sock *sk, 1721 struct pipe_inode_info *pipe) 1722 { 1723 if (!*len) 1724 return true; 1725 1726 /* skip this segment if already processed */ 1727 if (*off >= plen) { 1728 *off -= plen; 1729 return false; 1730 } 1731 1732 /* ignore any bits we already processed */ 1733 poff += *off; 1734 plen -= *off; 1735 *off = 0; 1736 1737 do { 1738 unsigned int flen = min(*len, plen); 1739 1740 if (spd_fill_page(spd, pipe, page, &flen, poff, 1741 linear, sk)) 1742 return true; 1743 poff += flen; 1744 plen -= flen; 1745 *len -= flen; 1746 } while (*len && plen); 1747 1748 return false; 1749 } 1750 1751 /* 1752 * Map linear and fragment data from the skb to spd. It reports true if the 1753 * pipe is full or if we already spliced the requested length. 1754 */ 1755 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1756 unsigned int *offset, unsigned int *len, 1757 struct splice_pipe_desc *spd, struct sock *sk) 1758 { 1759 int seg; 1760 1761 /* map the linear part : 1762 * If skb->head_frag is set, this 'linear' part is backed by a 1763 * fragment, and if the head is not shared with any clones then 1764 * we can avoid a copy since we own the head portion of this page. 1765 */ 1766 if (__splice_segment(virt_to_page(skb->data), 1767 (unsigned long) skb->data & (PAGE_SIZE - 1), 1768 skb_headlen(skb), 1769 offset, len, spd, 1770 skb_head_is_locked(skb), 1771 sk, pipe)) 1772 return true; 1773 1774 /* 1775 * then map the fragments 1776 */ 1777 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1778 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1779 1780 if (__splice_segment(skb_frag_page(f), 1781 f->page_offset, skb_frag_size(f), 1782 offset, len, spd, false, sk, pipe)) 1783 return true; 1784 } 1785 1786 return false; 1787 } 1788 1789 /* 1790 * Map data from the skb to a pipe. Should handle both the linear part, 1791 * the fragments, and the frag list. It does NOT handle frag lists within 1792 * the frag list, if such a thing exists. We'd probably need to recurse to 1793 * handle that cleanly. 1794 */ 1795 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1796 struct pipe_inode_info *pipe, unsigned int tlen, 1797 unsigned int flags) 1798 { 1799 struct partial_page partial[MAX_SKB_FRAGS]; 1800 struct page *pages[MAX_SKB_FRAGS]; 1801 struct splice_pipe_desc spd = { 1802 .pages = pages, 1803 .partial = partial, 1804 .nr_pages_max = MAX_SKB_FRAGS, 1805 .flags = flags, 1806 .ops = &sock_pipe_buf_ops, 1807 .spd_release = sock_spd_release, 1808 }; 1809 struct sk_buff *frag_iter; 1810 struct sock *sk = skb->sk; 1811 int ret = 0; 1812 1813 /* 1814 * __skb_splice_bits() only fails if the output has no room left, 1815 * so no point in going over the frag_list for the error case. 1816 */ 1817 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) 1818 goto done; 1819 else if (!tlen) 1820 goto done; 1821 1822 /* 1823 * now see if we have a frag_list to map 1824 */ 1825 skb_walk_frags(skb, frag_iter) { 1826 if (!tlen) 1827 break; 1828 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) 1829 break; 1830 } 1831 1832 done: 1833 if (spd.nr_pages) { 1834 /* 1835 * Drop the socket lock, otherwise we have reverse 1836 * locking dependencies between sk_lock and i_mutex 1837 * here as compared to sendfile(). We enter here 1838 * with the socket lock held, and splice_to_pipe() will 1839 * grab the pipe inode lock. For sendfile() emulation, 1840 * we call into ->sendpage() with the i_mutex lock held 1841 * and networking will grab the socket lock. 1842 */ 1843 release_sock(sk); 1844 ret = splice_to_pipe(pipe, &spd); 1845 lock_sock(sk); 1846 } 1847 1848 return ret; 1849 } 1850 1851 /** 1852 * skb_store_bits - store bits from kernel buffer to skb 1853 * @skb: destination buffer 1854 * @offset: offset in destination 1855 * @from: source buffer 1856 * @len: number of bytes to copy 1857 * 1858 * Copy the specified number of bytes from the source buffer to the 1859 * destination skb. This function handles all the messy bits of 1860 * traversing fragment lists and such. 1861 */ 1862 1863 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1864 { 1865 int start = skb_headlen(skb); 1866 struct sk_buff *frag_iter; 1867 int i, copy; 1868 1869 if (offset > (int)skb->len - len) 1870 goto fault; 1871 1872 if ((copy = start - offset) > 0) { 1873 if (copy > len) 1874 copy = len; 1875 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1876 if ((len -= copy) == 0) 1877 return 0; 1878 offset += copy; 1879 from += copy; 1880 } 1881 1882 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1883 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1884 int end; 1885 1886 WARN_ON(start > offset + len); 1887 1888 end = start + skb_frag_size(frag); 1889 if ((copy = end - offset) > 0) { 1890 u8 *vaddr; 1891 1892 if (copy > len) 1893 copy = len; 1894 1895 vaddr = kmap_atomic(skb_frag_page(frag)); 1896 memcpy(vaddr + frag->page_offset + offset - start, 1897 from, copy); 1898 kunmap_atomic(vaddr); 1899 1900 if ((len -= copy) == 0) 1901 return 0; 1902 offset += copy; 1903 from += copy; 1904 } 1905 start = end; 1906 } 1907 1908 skb_walk_frags(skb, frag_iter) { 1909 int end; 1910 1911 WARN_ON(start > offset + len); 1912 1913 end = start + frag_iter->len; 1914 if ((copy = end - offset) > 0) { 1915 if (copy > len) 1916 copy = len; 1917 if (skb_store_bits(frag_iter, offset - start, 1918 from, copy)) 1919 goto fault; 1920 if ((len -= copy) == 0) 1921 return 0; 1922 offset += copy; 1923 from += copy; 1924 } 1925 start = end; 1926 } 1927 if (!len) 1928 return 0; 1929 1930 fault: 1931 return -EFAULT; 1932 } 1933 EXPORT_SYMBOL(skb_store_bits); 1934 1935 /* Checksum skb data. */ 1936 1937 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1938 int len, __wsum csum) 1939 { 1940 int start = skb_headlen(skb); 1941 int i, copy = start - offset; 1942 struct sk_buff *frag_iter; 1943 int pos = 0; 1944 1945 /* Checksum header. */ 1946 if (copy > 0) { 1947 if (copy > len) 1948 copy = len; 1949 csum = csum_partial(skb->data + offset, copy, csum); 1950 if ((len -= copy) == 0) 1951 return csum; 1952 offset += copy; 1953 pos = copy; 1954 } 1955 1956 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1957 int end; 1958 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1959 1960 WARN_ON(start > offset + len); 1961 1962 end = start + skb_frag_size(frag); 1963 if ((copy = end - offset) > 0) { 1964 __wsum csum2; 1965 u8 *vaddr; 1966 1967 if (copy > len) 1968 copy = len; 1969 vaddr = kmap_atomic(skb_frag_page(frag)); 1970 csum2 = csum_partial(vaddr + frag->page_offset + 1971 offset - start, copy, 0); 1972 kunmap_atomic(vaddr); 1973 csum = csum_block_add(csum, csum2, pos); 1974 if (!(len -= copy)) 1975 return csum; 1976 offset += copy; 1977 pos += copy; 1978 } 1979 start = end; 1980 } 1981 1982 skb_walk_frags(skb, frag_iter) { 1983 int end; 1984 1985 WARN_ON(start > offset + len); 1986 1987 end = start + frag_iter->len; 1988 if ((copy = end - offset) > 0) { 1989 __wsum csum2; 1990 if (copy > len) 1991 copy = len; 1992 csum2 = skb_checksum(frag_iter, offset - start, 1993 copy, 0); 1994 csum = csum_block_add(csum, csum2, pos); 1995 if ((len -= copy) == 0) 1996 return csum; 1997 offset += copy; 1998 pos += copy; 1999 } 2000 start = end; 2001 } 2002 BUG_ON(len); 2003 2004 return csum; 2005 } 2006 EXPORT_SYMBOL(skb_checksum); 2007 2008 /* Both of above in one bottle. */ 2009 2010 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2011 u8 *to, int len, __wsum csum) 2012 { 2013 int start = skb_headlen(skb); 2014 int i, copy = start - offset; 2015 struct sk_buff *frag_iter; 2016 int pos = 0; 2017 2018 /* Copy header. */ 2019 if (copy > 0) { 2020 if (copy > len) 2021 copy = len; 2022 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2023 copy, csum); 2024 if ((len -= copy) == 0) 2025 return csum; 2026 offset += copy; 2027 to += copy; 2028 pos = copy; 2029 } 2030 2031 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2032 int end; 2033 2034 WARN_ON(start > offset + len); 2035 2036 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2037 if ((copy = end - offset) > 0) { 2038 __wsum csum2; 2039 u8 *vaddr; 2040 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2041 2042 if (copy > len) 2043 copy = len; 2044 vaddr = kmap_atomic(skb_frag_page(frag)); 2045 csum2 = csum_partial_copy_nocheck(vaddr + 2046 frag->page_offset + 2047 offset - start, to, 2048 copy, 0); 2049 kunmap_atomic(vaddr); 2050 csum = csum_block_add(csum, csum2, pos); 2051 if (!(len -= copy)) 2052 return csum; 2053 offset += copy; 2054 to += copy; 2055 pos += copy; 2056 } 2057 start = end; 2058 } 2059 2060 skb_walk_frags(skb, frag_iter) { 2061 __wsum csum2; 2062 int end; 2063 2064 WARN_ON(start > offset + len); 2065 2066 end = start + frag_iter->len; 2067 if ((copy = end - offset) > 0) { 2068 if (copy > len) 2069 copy = len; 2070 csum2 = skb_copy_and_csum_bits(frag_iter, 2071 offset - start, 2072 to, copy, 0); 2073 csum = csum_block_add(csum, csum2, pos); 2074 if ((len -= copy) == 0) 2075 return csum; 2076 offset += copy; 2077 to += copy; 2078 pos += copy; 2079 } 2080 start = end; 2081 } 2082 BUG_ON(len); 2083 return csum; 2084 } 2085 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2086 2087 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2088 { 2089 __wsum csum; 2090 long csstart; 2091 2092 if (skb->ip_summed == CHECKSUM_PARTIAL) 2093 csstart = skb_checksum_start_offset(skb); 2094 else 2095 csstart = skb_headlen(skb); 2096 2097 BUG_ON(csstart > skb_headlen(skb)); 2098 2099 skb_copy_from_linear_data(skb, to, csstart); 2100 2101 csum = 0; 2102 if (csstart != skb->len) 2103 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2104 skb->len - csstart, 0); 2105 2106 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2107 long csstuff = csstart + skb->csum_offset; 2108 2109 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2110 } 2111 } 2112 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2113 2114 /** 2115 * skb_dequeue - remove from the head of the queue 2116 * @list: list to dequeue from 2117 * 2118 * Remove the head of the list. The list lock is taken so the function 2119 * may be used safely with other locking list functions. The head item is 2120 * returned or %NULL if the list is empty. 2121 */ 2122 2123 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2124 { 2125 unsigned long flags; 2126 struct sk_buff *result; 2127 2128 spin_lock_irqsave(&list->lock, flags); 2129 result = __skb_dequeue(list); 2130 spin_unlock_irqrestore(&list->lock, flags); 2131 return result; 2132 } 2133 EXPORT_SYMBOL(skb_dequeue); 2134 2135 /** 2136 * skb_dequeue_tail - remove from the tail of the queue 2137 * @list: list to dequeue from 2138 * 2139 * Remove the tail of the list. The list lock is taken so the function 2140 * may be used safely with other locking list functions. The tail item is 2141 * returned or %NULL if the list is empty. 2142 */ 2143 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2144 { 2145 unsigned long flags; 2146 struct sk_buff *result; 2147 2148 spin_lock_irqsave(&list->lock, flags); 2149 result = __skb_dequeue_tail(list); 2150 spin_unlock_irqrestore(&list->lock, flags); 2151 return result; 2152 } 2153 EXPORT_SYMBOL(skb_dequeue_tail); 2154 2155 /** 2156 * skb_queue_purge - empty a list 2157 * @list: list to empty 2158 * 2159 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2160 * the list and one reference dropped. This function takes the list 2161 * lock and is atomic with respect to other list locking functions. 2162 */ 2163 void skb_queue_purge(struct sk_buff_head *list) 2164 { 2165 struct sk_buff *skb; 2166 while ((skb = skb_dequeue(list)) != NULL) 2167 kfree_skb(skb); 2168 } 2169 EXPORT_SYMBOL(skb_queue_purge); 2170 2171 /** 2172 * skb_queue_head - queue a buffer at the list head 2173 * @list: list to use 2174 * @newsk: buffer to queue 2175 * 2176 * Queue a buffer at the start of the list. This function takes the 2177 * list lock and can be used safely with other locking &sk_buff functions 2178 * safely. 2179 * 2180 * A buffer cannot be placed on two lists at the same time. 2181 */ 2182 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2183 { 2184 unsigned long flags; 2185 2186 spin_lock_irqsave(&list->lock, flags); 2187 __skb_queue_head(list, newsk); 2188 spin_unlock_irqrestore(&list->lock, flags); 2189 } 2190 EXPORT_SYMBOL(skb_queue_head); 2191 2192 /** 2193 * skb_queue_tail - queue a buffer at the list tail 2194 * @list: list to use 2195 * @newsk: buffer to queue 2196 * 2197 * Queue a buffer at the tail of the list. This function takes the 2198 * list lock and can be used safely with other locking &sk_buff functions 2199 * safely. 2200 * 2201 * A buffer cannot be placed on two lists at the same time. 2202 */ 2203 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2204 { 2205 unsigned long flags; 2206 2207 spin_lock_irqsave(&list->lock, flags); 2208 __skb_queue_tail(list, newsk); 2209 spin_unlock_irqrestore(&list->lock, flags); 2210 } 2211 EXPORT_SYMBOL(skb_queue_tail); 2212 2213 /** 2214 * skb_unlink - remove a buffer from a list 2215 * @skb: buffer to remove 2216 * @list: list to use 2217 * 2218 * Remove a packet from a list. The list locks are taken and this 2219 * function is atomic with respect to other list locked calls 2220 * 2221 * You must know what list the SKB is on. 2222 */ 2223 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2224 { 2225 unsigned long flags; 2226 2227 spin_lock_irqsave(&list->lock, flags); 2228 __skb_unlink(skb, list); 2229 spin_unlock_irqrestore(&list->lock, flags); 2230 } 2231 EXPORT_SYMBOL(skb_unlink); 2232 2233 /** 2234 * skb_append - append a buffer 2235 * @old: buffer to insert after 2236 * @newsk: buffer to insert 2237 * @list: list to use 2238 * 2239 * Place a packet after a given packet in a list. The list locks are taken 2240 * and this function is atomic with respect to other list locked calls. 2241 * A buffer cannot be placed on two lists at the same time. 2242 */ 2243 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2244 { 2245 unsigned long flags; 2246 2247 spin_lock_irqsave(&list->lock, flags); 2248 __skb_queue_after(list, old, newsk); 2249 spin_unlock_irqrestore(&list->lock, flags); 2250 } 2251 EXPORT_SYMBOL(skb_append); 2252 2253 /** 2254 * skb_insert - insert a buffer 2255 * @old: buffer to insert before 2256 * @newsk: buffer to insert 2257 * @list: list to use 2258 * 2259 * Place a packet before a given packet in a list. The list locks are 2260 * taken and this function is atomic with respect to other list locked 2261 * calls. 2262 * 2263 * A buffer cannot be placed on two lists at the same time. 2264 */ 2265 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2266 { 2267 unsigned long flags; 2268 2269 spin_lock_irqsave(&list->lock, flags); 2270 __skb_insert(newsk, old->prev, old, list); 2271 spin_unlock_irqrestore(&list->lock, flags); 2272 } 2273 EXPORT_SYMBOL(skb_insert); 2274 2275 static inline void skb_split_inside_header(struct sk_buff *skb, 2276 struct sk_buff* skb1, 2277 const u32 len, const int pos) 2278 { 2279 int i; 2280 2281 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2282 pos - len); 2283 /* And move data appendix as is. */ 2284 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2285 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2286 2287 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2288 skb_shinfo(skb)->nr_frags = 0; 2289 skb1->data_len = skb->data_len; 2290 skb1->len += skb1->data_len; 2291 skb->data_len = 0; 2292 skb->len = len; 2293 skb_set_tail_pointer(skb, len); 2294 } 2295 2296 static inline void skb_split_no_header(struct sk_buff *skb, 2297 struct sk_buff* skb1, 2298 const u32 len, int pos) 2299 { 2300 int i, k = 0; 2301 const int nfrags = skb_shinfo(skb)->nr_frags; 2302 2303 skb_shinfo(skb)->nr_frags = 0; 2304 skb1->len = skb1->data_len = skb->len - len; 2305 skb->len = len; 2306 skb->data_len = len - pos; 2307 2308 for (i = 0; i < nfrags; i++) { 2309 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2310 2311 if (pos + size > len) { 2312 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2313 2314 if (pos < len) { 2315 /* Split frag. 2316 * We have two variants in this case: 2317 * 1. Move all the frag to the second 2318 * part, if it is possible. F.e. 2319 * this approach is mandatory for TUX, 2320 * where splitting is expensive. 2321 * 2. Split is accurately. We make this. 2322 */ 2323 skb_frag_ref(skb, i); 2324 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2325 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2326 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2327 skb_shinfo(skb)->nr_frags++; 2328 } 2329 k++; 2330 } else 2331 skb_shinfo(skb)->nr_frags++; 2332 pos += size; 2333 } 2334 skb_shinfo(skb1)->nr_frags = k; 2335 } 2336 2337 /** 2338 * skb_split - Split fragmented skb to two parts at length len. 2339 * @skb: the buffer to split 2340 * @skb1: the buffer to receive the second part 2341 * @len: new length for skb 2342 */ 2343 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2344 { 2345 int pos = skb_headlen(skb); 2346 2347 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2348 if (len < pos) /* Split line is inside header. */ 2349 skb_split_inside_header(skb, skb1, len, pos); 2350 else /* Second chunk has no header, nothing to copy. */ 2351 skb_split_no_header(skb, skb1, len, pos); 2352 } 2353 EXPORT_SYMBOL(skb_split); 2354 2355 /* Shifting from/to a cloned skb is a no-go. 2356 * 2357 * Caller cannot keep skb_shinfo related pointers past calling here! 2358 */ 2359 static int skb_prepare_for_shift(struct sk_buff *skb) 2360 { 2361 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2362 } 2363 2364 /** 2365 * skb_shift - Shifts paged data partially from skb to another 2366 * @tgt: buffer into which tail data gets added 2367 * @skb: buffer from which the paged data comes from 2368 * @shiftlen: shift up to this many bytes 2369 * 2370 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2371 * the length of the skb, from skb to tgt. Returns number bytes shifted. 2372 * It's up to caller to free skb if everything was shifted. 2373 * 2374 * If @tgt runs out of frags, the whole operation is aborted. 2375 * 2376 * Skb cannot include anything else but paged data while tgt is allowed 2377 * to have non-paged data as well. 2378 * 2379 * TODO: full sized shift could be optimized but that would need 2380 * specialized skb free'er to handle frags without up-to-date nr_frags. 2381 */ 2382 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2383 { 2384 int from, to, merge, todo; 2385 struct skb_frag_struct *fragfrom, *fragto; 2386 2387 BUG_ON(shiftlen > skb->len); 2388 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2389 2390 todo = shiftlen; 2391 from = 0; 2392 to = skb_shinfo(tgt)->nr_frags; 2393 fragfrom = &skb_shinfo(skb)->frags[from]; 2394 2395 /* Actual merge is delayed until the point when we know we can 2396 * commit all, so that we don't have to undo partial changes 2397 */ 2398 if (!to || 2399 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2400 fragfrom->page_offset)) { 2401 merge = -1; 2402 } else { 2403 merge = to - 1; 2404 2405 todo -= skb_frag_size(fragfrom); 2406 if (todo < 0) { 2407 if (skb_prepare_for_shift(skb) || 2408 skb_prepare_for_shift(tgt)) 2409 return 0; 2410 2411 /* All previous frag pointers might be stale! */ 2412 fragfrom = &skb_shinfo(skb)->frags[from]; 2413 fragto = &skb_shinfo(tgt)->frags[merge]; 2414 2415 skb_frag_size_add(fragto, shiftlen); 2416 skb_frag_size_sub(fragfrom, shiftlen); 2417 fragfrom->page_offset += shiftlen; 2418 2419 goto onlymerged; 2420 } 2421 2422 from++; 2423 } 2424 2425 /* Skip full, not-fitting skb to avoid expensive operations */ 2426 if ((shiftlen == skb->len) && 2427 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2428 return 0; 2429 2430 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2431 return 0; 2432 2433 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2434 if (to == MAX_SKB_FRAGS) 2435 return 0; 2436 2437 fragfrom = &skb_shinfo(skb)->frags[from]; 2438 fragto = &skb_shinfo(tgt)->frags[to]; 2439 2440 if (todo >= skb_frag_size(fragfrom)) { 2441 *fragto = *fragfrom; 2442 todo -= skb_frag_size(fragfrom); 2443 from++; 2444 to++; 2445 2446 } else { 2447 __skb_frag_ref(fragfrom); 2448 fragto->page = fragfrom->page; 2449 fragto->page_offset = fragfrom->page_offset; 2450 skb_frag_size_set(fragto, todo); 2451 2452 fragfrom->page_offset += todo; 2453 skb_frag_size_sub(fragfrom, todo); 2454 todo = 0; 2455 2456 to++; 2457 break; 2458 } 2459 } 2460 2461 /* Ready to "commit" this state change to tgt */ 2462 skb_shinfo(tgt)->nr_frags = to; 2463 2464 if (merge >= 0) { 2465 fragfrom = &skb_shinfo(skb)->frags[0]; 2466 fragto = &skb_shinfo(tgt)->frags[merge]; 2467 2468 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2469 __skb_frag_unref(fragfrom); 2470 } 2471 2472 /* Reposition in the original skb */ 2473 to = 0; 2474 while (from < skb_shinfo(skb)->nr_frags) 2475 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2476 skb_shinfo(skb)->nr_frags = to; 2477 2478 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2479 2480 onlymerged: 2481 /* Most likely the tgt won't ever need its checksum anymore, skb on 2482 * the other hand might need it if it needs to be resent 2483 */ 2484 tgt->ip_summed = CHECKSUM_PARTIAL; 2485 skb->ip_summed = CHECKSUM_PARTIAL; 2486 2487 /* Yak, is it really working this way? Some helper please? */ 2488 skb->len -= shiftlen; 2489 skb->data_len -= shiftlen; 2490 skb->truesize -= shiftlen; 2491 tgt->len += shiftlen; 2492 tgt->data_len += shiftlen; 2493 tgt->truesize += shiftlen; 2494 2495 return shiftlen; 2496 } 2497 2498 /** 2499 * skb_prepare_seq_read - Prepare a sequential read of skb data 2500 * @skb: the buffer to read 2501 * @from: lower offset of data to be read 2502 * @to: upper offset of data to be read 2503 * @st: state variable 2504 * 2505 * Initializes the specified state variable. Must be called before 2506 * invoking skb_seq_read() for the first time. 2507 */ 2508 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2509 unsigned int to, struct skb_seq_state *st) 2510 { 2511 st->lower_offset = from; 2512 st->upper_offset = to; 2513 st->root_skb = st->cur_skb = skb; 2514 st->frag_idx = st->stepped_offset = 0; 2515 st->frag_data = NULL; 2516 } 2517 EXPORT_SYMBOL(skb_prepare_seq_read); 2518 2519 /** 2520 * skb_seq_read - Sequentially read skb data 2521 * @consumed: number of bytes consumed by the caller so far 2522 * @data: destination pointer for data to be returned 2523 * @st: state variable 2524 * 2525 * Reads a block of skb data at &consumed relative to the 2526 * lower offset specified to skb_prepare_seq_read(). Assigns 2527 * the head of the data block to &data and returns the length 2528 * of the block or 0 if the end of the skb data or the upper 2529 * offset has been reached. 2530 * 2531 * The caller is not required to consume all of the data 2532 * returned, i.e. &consumed is typically set to the number 2533 * of bytes already consumed and the next call to 2534 * skb_seq_read() will return the remaining part of the block. 2535 * 2536 * Note 1: The size of each block of data returned can be arbitrary, 2537 * this limitation is the cost for zerocopy seqeuental 2538 * reads of potentially non linear data. 2539 * 2540 * Note 2: Fragment lists within fragments are not implemented 2541 * at the moment, state->root_skb could be replaced with 2542 * a stack for this purpose. 2543 */ 2544 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2545 struct skb_seq_state *st) 2546 { 2547 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2548 skb_frag_t *frag; 2549 2550 if (unlikely(abs_offset >= st->upper_offset)) { 2551 if (st->frag_data) { 2552 kunmap_atomic(st->frag_data); 2553 st->frag_data = NULL; 2554 } 2555 return 0; 2556 } 2557 2558 next_skb: 2559 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2560 2561 if (abs_offset < block_limit && !st->frag_data) { 2562 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2563 return block_limit - abs_offset; 2564 } 2565 2566 if (st->frag_idx == 0 && !st->frag_data) 2567 st->stepped_offset += skb_headlen(st->cur_skb); 2568 2569 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2570 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2571 block_limit = skb_frag_size(frag) + st->stepped_offset; 2572 2573 if (abs_offset < block_limit) { 2574 if (!st->frag_data) 2575 st->frag_data = kmap_atomic(skb_frag_page(frag)); 2576 2577 *data = (u8 *) st->frag_data + frag->page_offset + 2578 (abs_offset - st->stepped_offset); 2579 2580 return block_limit - abs_offset; 2581 } 2582 2583 if (st->frag_data) { 2584 kunmap_atomic(st->frag_data); 2585 st->frag_data = NULL; 2586 } 2587 2588 st->frag_idx++; 2589 st->stepped_offset += skb_frag_size(frag); 2590 } 2591 2592 if (st->frag_data) { 2593 kunmap_atomic(st->frag_data); 2594 st->frag_data = NULL; 2595 } 2596 2597 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2598 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2599 st->frag_idx = 0; 2600 goto next_skb; 2601 } else if (st->cur_skb->next) { 2602 st->cur_skb = st->cur_skb->next; 2603 st->frag_idx = 0; 2604 goto next_skb; 2605 } 2606 2607 return 0; 2608 } 2609 EXPORT_SYMBOL(skb_seq_read); 2610 2611 /** 2612 * skb_abort_seq_read - Abort a sequential read of skb data 2613 * @st: state variable 2614 * 2615 * Must be called if skb_seq_read() was not called until it 2616 * returned 0. 2617 */ 2618 void skb_abort_seq_read(struct skb_seq_state *st) 2619 { 2620 if (st->frag_data) 2621 kunmap_atomic(st->frag_data); 2622 } 2623 EXPORT_SYMBOL(skb_abort_seq_read); 2624 2625 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2626 2627 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2628 struct ts_config *conf, 2629 struct ts_state *state) 2630 { 2631 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2632 } 2633 2634 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2635 { 2636 skb_abort_seq_read(TS_SKB_CB(state)); 2637 } 2638 2639 /** 2640 * skb_find_text - Find a text pattern in skb data 2641 * @skb: the buffer to look in 2642 * @from: search offset 2643 * @to: search limit 2644 * @config: textsearch configuration 2645 * @state: uninitialized textsearch state variable 2646 * 2647 * Finds a pattern in the skb data according to the specified 2648 * textsearch configuration. Use textsearch_next() to retrieve 2649 * subsequent occurrences of the pattern. Returns the offset 2650 * to the first occurrence or UINT_MAX if no match was found. 2651 */ 2652 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2653 unsigned int to, struct ts_config *config, 2654 struct ts_state *state) 2655 { 2656 unsigned int ret; 2657 2658 config->get_next_block = skb_ts_get_next_block; 2659 config->finish = skb_ts_finish; 2660 2661 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2662 2663 ret = textsearch_find(config, state); 2664 return (ret <= to - from ? ret : UINT_MAX); 2665 } 2666 EXPORT_SYMBOL(skb_find_text); 2667 2668 /** 2669 * skb_append_datato_frags - append the user data to a skb 2670 * @sk: sock structure 2671 * @skb: skb structure to be appened with user data. 2672 * @getfrag: call back function to be used for getting the user data 2673 * @from: pointer to user message iov 2674 * @length: length of the iov message 2675 * 2676 * Description: This procedure append the user data in the fragment part 2677 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2678 */ 2679 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2680 int (*getfrag)(void *from, char *to, int offset, 2681 int len, int odd, struct sk_buff *skb), 2682 void *from, int length) 2683 { 2684 int frg_cnt = skb_shinfo(skb)->nr_frags; 2685 int copy; 2686 int offset = 0; 2687 int ret; 2688 struct page_frag *pfrag = ¤t->task_frag; 2689 2690 do { 2691 /* Return error if we don't have space for new frag */ 2692 if (frg_cnt >= MAX_SKB_FRAGS) 2693 return -EMSGSIZE; 2694 2695 if (!sk_page_frag_refill(sk, pfrag)) 2696 return -ENOMEM; 2697 2698 /* copy the user data to page */ 2699 copy = min_t(int, length, pfrag->size - pfrag->offset); 2700 2701 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 2702 offset, copy, 0, skb); 2703 if (ret < 0) 2704 return -EFAULT; 2705 2706 /* copy was successful so update the size parameters */ 2707 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 2708 copy); 2709 frg_cnt++; 2710 pfrag->offset += copy; 2711 get_page(pfrag->page); 2712 2713 skb->truesize += copy; 2714 atomic_add(copy, &sk->sk_wmem_alloc); 2715 skb->len += copy; 2716 skb->data_len += copy; 2717 offset += copy; 2718 length -= copy; 2719 2720 } while (length > 0); 2721 2722 return 0; 2723 } 2724 EXPORT_SYMBOL(skb_append_datato_frags); 2725 2726 /** 2727 * skb_pull_rcsum - pull skb and update receive checksum 2728 * @skb: buffer to update 2729 * @len: length of data pulled 2730 * 2731 * This function performs an skb_pull on the packet and updates 2732 * the CHECKSUM_COMPLETE checksum. It should be used on 2733 * receive path processing instead of skb_pull unless you know 2734 * that the checksum difference is zero (e.g., a valid IP header) 2735 * or you are setting ip_summed to CHECKSUM_NONE. 2736 */ 2737 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2738 { 2739 BUG_ON(len > skb->len); 2740 skb->len -= len; 2741 BUG_ON(skb->len < skb->data_len); 2742 skb_postpull_rcsum(skb, skb->data, len); 2743 return skb->data += len; 2744 } 2745 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2746 2747 /** 2748 * skb_segment - Perform protocol segmentation on skb. 2749 * @skb: buffer to segment 2750 * @features: features for the output path (see dev->features) 2751 * 2752 * This function performs segmentation on the given skb. It returns 2753 * a pointer to the first in a list of new skbs for the segments. 2754 * In case of error it returns ERR_PTR(err). 2755 */ 2756 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features) 2757 { 2758 struct sk_buff *segs = NULL; 2759 struct sk_buff *tail = NULL; 2760 struct sk_buff *fskb = skb_shinfo(skb)->frag_list; 2761 unsigned int mss = skb_shinfo(skb)->gso_size; 2762 unsigned int doffset = skb->data - skb_mac_header(skb); 2763 unsigned int offset = doffset; 2764 unsigned int tnl_hlen = skb_tnl_header_len(skb); 2765 unsigned int headroom; 2766 unsigned int len; 2767 __be16 proto; 2768 bool csum; 2769 int sg = !!(features & NETIF_F_SG); 2770 int nfrags = skb_shinfo(skb)->nr_frags; 2771 int err = -ENOMEM; 2772 int i = 0; 2773 int pos; 2774 2775 proto = skb_network_protocol(skb); 2776 if (unlikely(!proto)) 2777 return ERR_PTR(-EINVAL); 2778 2779 csum = !!can_checksum_protocol(features, proto); 2780 __skb_push(skb, doffset); 2781 headroom = skb_headroom(skb); 2782 pos = skb_headlen(skb); 2783 2784 do { 2785 struct sk_buff *nskb; 2786 skb_frag_t *frag; 2787 int hsize; 2788 int size; 2789 2790 len = skb->len - offset; 2791 if (len > mss) 2792 len = mss; 2793 2794 hsize = skb_headlen(skb) - offset; 2795 if (hsize < 0) 2796 hsize = 0; 2797 if (hsize > len || !sg) 2798 hsize = len; 2799 2800 if (!hsize && i >= nfrags) { 2801 BUG_ON(fskb->len != len); 2802 2803 pos += len; 2804 nskb = skb_clone(fskb, GFP_ATOMIC); 2805 fskb = fskb->next; 2806 2807 if (unlikely(!nskb)) 2808 goto err; 2809 2810 hsize = skb_end_offset(nskb); 2811 if (skb_cow_head(nskb, doffset + headroom)) { 2812 kfree_skb(nskb); 2813 goto err; 2814 } 2815 2816 nskb->truesize += skb_end_offset(nskb) - hsize; 2817 skb_release_head_state(nskb); 2818 __skb_push(nskb, doffset); 2819 } else { 2820 nskb = __alloc_skb(hsize + doffset + headroom, 2821 GFP_ATOMIC, skb_alloc_rx_flag(skb), 2822 NUMA_NO_NODE); 2823 2824 if (unlikely(!nskb)) 2825 goto err; 2826 2827 skb_reserve(nskb, headroom); 2828 __skb_put(nskb, doffset); 2829 } 2830 2831 if (segs) 2832 tail->next = nskb; 2833 else 2834 segs = nskb; 2835 tail = nskb; 2836 2837 __copy_skb_header(nskb, skb); 2838 nskb->mac_len = skb->mac_len; 2839 2840 /* nskb and skb might have different headroom */ 2841 if (nskb->ip_summed == CHECKSUM_PARTIAL) 2842 nskb->csum_start += skb_headroom(nskb) - headroom; 2843 2844 skb_reset_mac_header(nskb); 2845 skb_set_network_header(nskb, skb->mac_len); 2846 nskb->transport_header = (nskb->network_header + 2847 skb_network_header_len(skb)); 2848 2849 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 2850 nskb->data - tnl_hlen, 2851 doffset + tnl_hlen); 2852 2853 if (fskb != skb_shinfo(skb)->frag_list) 2854 goto perform_csum_check; 2855 2856 if (!sg) { 2857 nskb->ip_summed = CHECKSUM_NONE; 2858 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2859 skb_put(nskb, len), 2860 len, 0); 2861 continue; 2862 } 2863 2864 frag = skb_shinfo(nskb)->frags; 2865 2866 skb_copy_from_linear_data_offset(skb, offset, 2867 skb_put(nskb, hsize), hsize); 2868 2869 skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2870 2871 while (pos < offset + len && i < nfrags) { 2872 *frag = skb_shinfo(skb)->frags[i]; 2873 __skb_frag_ref(frag); 2874 size = skb_frag_size(frag); 2875 2876 if (pos < offset) { 2877 frag->page_offset += offset - pos; 2878 skb_frag_size_sub(frag, offset - pos); 2879 } 2880 2881 skb_shinfo(nskb)->nr_frags++; 2882 2883 if (pos + size <= offset + len) { 2884 i++; 2885 pos += size; 2886 } else { 2887 skb_frag_size_sub(frag, pos + size - (offset + len)); 2888 goto skip_fraglist; 2889 } 2890 2891 frag++; 2892 } 2893 2894 if (pos < offset + len) { 2895 struct sk_buff *fskb2 = fskb; 2896 2897 BUG_ON(pos + fskb->len != offset + len); 2898 2899 pos += fskb->len; 2900 fskb = fskb->next; 2901 2902 if (fskb2->next) { 2903 fskb2 = skb_clone(fskb2, GFP_ATOMIC); 2904 if (!fskb2) 2905 goto err; 2906 } else 2907 skb_get(fskb2); 2908 2909 SKB_FRAG_ASSERT(nskb); 2910 skb_shinfo(nskb)->frag_list = fskb2; 2911 } 2912 2913 skip_fraglist: 2914 nskb->data_len = len - hsize; 2915 nskb->len += nskb->data_len; 2916 nskb->truesize += nskb->data_len; 2917 2918 perform_csum_check: 2919 if (!csum) { 2920 nskb->csum = skb_checksum(nskb, doffset, 2921 nskb->len - doffset, 0); 2922 nskb->ip_summed = CHECKSUM_NONE; 2923 } 2924 } while ((offset += len) < skb->len); 2925 2926 return segs; 2927 2928 err: 2929 while ((skb = segs)) { 2930 segs = skb->next; 2931 kfree_skb(skb); 2932 } 2933 return ERR_PTR(err); 2934 } 2935 EXPORT_SYMBOL_GPL(skb_segment); 2936 2937 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2938 { 2939 struct sk_buff *p = *head; 2940 struct sk_buff *nskb; 2941 struct skb_shared_info *skbinfo = skb_shinfo(skb); 2942 struct skb_shared_info *pinfo = skb_shinfo(p); 2943 unsigned int headroom; 2944 unsigned int len = skb_gro_len(skb); 2945 unsigned int offset = skb_gro_offset(skb); 2946 unsigned int headlen = skb_headlen(skb); 2947 unsigned int delta_truesize; 2948 2949 if (p->len + len >= 65536) 2950 return -E2BIG; 2951 2952 if (pinfo->frag_list) 2953 goto merge; 2954 else if (headlen <= offset) { 2955 skb_frag_t *frag; 2956 skb_frag_t *frag2; 2957 int i = skbinfo->nr_frags; 2958 int nr_frags = pinfo->nr_frags + i; 2959 2960 offset -= headlen; 2961 2962 if (nr_frags > MAX_SKB_FRAGS) 2963 return -E2BIG; 2964 2965 pinfo->nr_frags = nr_frags; 2966 skbinfo->nr_frags = 0; 2967 2968 frag = pinfo->frags + nr_frags; 2969 frag2 = skbinfo->frags + i; 2970 do { 2971 *--frag = *--frag2; 2972 } while (--i); 2973 2974 frag->page_offset += offset; 2975 skb_frag_size_sub(frag, offset); 2976 2977 /* all fragments truesize : remove (head size + sk_buff) */ 2978 delta_truesize = skb->truesize - 2979 SKB_TRUESIZE(skb_end_offset(skb)); 2980 2981 skb->truesize -= skb->data_len; 2982 skb->len -= skb->data_len; 2983 skb->data_len = 0; 2984 2985 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 2986 goto done; 2987 } else if (skb->head_frag) { 2988 int nr_frags = pinfo->nr_frags; 2989 skb_frag_t *frag = pinfo->frags + nr_frags; 2990 struct page *page = virt_to_head_page(skb->head); 2991 unsigned int first_size = headlen - offset; 2992 unsigned int first_offset; 2993 2994 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 2995 return -E2BIG; 2996 2997 first_offset = skb->data - 2998 (unsigned char *)page_address(page) + 2999 offset; 3000 3001 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3002 3003 frag->page.p = page; 3004 frag->page_offset = first_offset; 3005 skb_frag_size_set(frag, first_size); 3006 3007 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3008 /* We dont need to clear skbinfo->nr_frags here */ 3009 3010 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3011 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3012 goto done; 3013 } else if (skb_gro_len(p) != pinfo->gso_size) 3014 return -E2BIG; 3015 3016 headroom = skb_headroom(p); 3017 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC); 3018 if (unlikely(!nskb)) 3019 return -ENOMEM; 3020 3021 __copy_skb_header(nskb, p); 3022 nskb->mac_len = p->mac_len; 3023 3024 skb_reserve(nskb, headroom); 3025 __skb_put(nskb, skb_gro_offset(p)); 3026 3027 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 3028 skb_set_network_header(nskb, skb_network_offset(p)); 3029 skb_set_transport_header(nskb, skb_transport_offset(p)); 3030 3031 __skb_pull(p, skb_gro_offset(p)); 3032 memcpy(skb_mac_header(nskb), skb_mac_header(p), 3033 p->data - skb_mac_header(p)); 3034 3035 skb_shinfo(nskb)->frag_list = p; 3036 skb_shinfo(nskb)->gso_size = pinfo->gso_size; 3037 pinfo->gso_size = 0; 3038 skb_header_release(p); 3039 NAPI_GRO_CB(nskb)->last = p; 3040 3041 nskb->data_len += p->len; 3042 nskb->truesize += p->truesize; 3043 nskb->len += p->len; 3044 3045 *head = nskb; 3046 nskb->next = p->next; 3047 p->next = NULL; 3048 3049 p = nskb; 3050 3051 merge: 3052 delta_truesize = skb->truesize; 3053 if (offset > headlen) { 3054 unsigned int eat = offset - headlen; 3055 3056 skbinfo->frags[0].page_offset += eat; 3057 skb_frag_size_sub(&skbinfo->frags[0], eat); 3058 skb->data_len -= eat; 3059 skb->len -= eat; 3060 offset = headlen; 3061 } 3062 3063 __skb_pull(skb, offset); 3064 3065 NAPI_GRO_CB(p)->last->next = skb; 3066 NAPI_GRO_CB(p)->last = skb; 3067 skb_header_release(skb); 3068 3069 done: 3070 NAPI_GRO_CB(p)->count++; 3071 p->data_len += len; 3072 p->truesize += delta_truesize; 3073 p->len += len; 3074 3075 NAPI_GRO_CB(skb)->same_flow = 1; 3076 return 0; 3077 } 3078 EXPORT_SYMBOL_GPL(skb_gro_receive); 3079 3080 void __init skb_init(void) 3081 { 3082 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3083 sizeof(struct sk_buff), 3084 0, 3085 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3086 NULL); 3087 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3088 (2*sizeof(struct sk_buff)) + 3089 sizeof(atomic_t), 3090 0, 3091 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3092 NULL); 3093 } 3094 3095 /** 3096 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3097 * @skb: Socket buffer containing the buffers to be mapped 3098 * @sg: The scatter-gather list to map into 3099 * @offset: The offset into the buffer's contents to start mapping 3100 * @len: Length of buffer space to be mapped 3101 * 3102 * Fill the specified scatter-gather list with mappings/pointers into a 3103 * region of the buffer space attached to a socket buffer. 3104 */ 3105 static int 3106 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3107 { 3108 int start = skb_headlen(skb); 3109 int i, copy = start - offset; 3110 struct sk_buff *frag_iter; 3111 int elt = 0; 3112 3113 if (copy > 0) { 3114 if (copy > len) 3115 copy = len; 3116 sg_set_buf(sg, skb->data + offset, copy); 3117 elt++; 3118 if ((len -= copy) == 0) 3119 return elt; 3120 offset += copy; 3121 } 3122 3123 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3124 int end; 3125 3126 WARN_ON(start > offset + len); 3127 3128 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3129 if ((copy = end - offset) > 0) { 3130 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3131 3132 if (copy > len) 3133 copy = len; 3134 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3135 frag->page_offset+offset-start); 3136 elt++; 3137 if (!(len -= copy)) 3138 return elt; 3139 offset += copy; 3140 } 3141 start = end; 3142 } 3143 3144 skb_walk_frags(skb, frag_iter) { 3145 int end; 3146 3147 WARN_ON(start > offset + len); 3148 3149 end = start + frag_iter->len; 3150 if ((copy = end - offset) > 0) { 3151 if (copy > len) 3152 copy = len; 3153 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3154 copy); 3155 if ((len -= copy) == 0) 3156 return elt; 3157 offset += copy; 3158 } 3159 start = end; 3160 } 3161 BUG_ON(len); 3162 return elt; 3163 } 3164 3165 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3166 { 3167 int nsg = __skb_to_sgvec(skb, sg, offset, len); 3168 3169 sg_mark_end(&sg[nsg - 1]); 3170 3171 return nsg; 3172 } 3173 EXPORT_SYMBOL_GPL(skb_to_sgvec); 3174 3175 /** 3176 * skb_cow_data - Check that a socket buffer's data buffers are writable 3177 * @skb: The socket buffer to check. 3178 * @tailbits: Amount of trailing space to be added 3179 * @trailer: Returned pointer to the skb where the @tailbits space begins 3180 * 3181 * Make sure that the data buffers attached to a socket buffer are 3182 * writable. If they are not, private copies are made of the data buffers 3183 * and the socket buffer is set to use these instead. 3184 * 3185 * If @tailbits is given, make sure that there is space to write @tailbits 3186 * bytes of data beyond current end of socket buffer. @trailer will be 3187 * set to point to the skb in which this space begins. 3188 * 3189 * The number of scatterlist elements required to completely map the 3190 * COW'd and extended socket buffer will be returned. 3191 */ 3192 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3193 { 3194 int copyflag; 3195 int elt; 3196 struct sk_buff *skb1, **skb_p; 3197 3198 /* If skb is cloned or its head is paged, reallocate 3199 * head pulling out all the pages (pages are considered not writable 3200 * at the moment even if they are anonymous). 3201 */ 3202 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3203 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3204 return -ENOMEM; 3205 3206 /* Easy case. Most of packets will go this way. */ 3207 if (!skb_has_frag_list(skb)) { 3208 /* A little of trouble, not enough of space for trailer. 3209 * This should not happen, when stack is tuned to generate 3210 * good frames. OK, on miss we reallocate and reserve even more 3211 * space, 128 bytes is fair. */ 3212 3213 if (skb_tailroom(skb) < tailbits && 3214 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3215 return -ENOMEM; 3216 3217 /* Voila! */ 3218 *trailer = skb; 3219 return 1; 3220 } 3221 3222 /* Misery. We are in troubles, going to mincer fragments... */ 3223 3224 elt = 1; 3225 skb_p = &skb_shinfo(skb)->frag_list; 3226 copyflag = 0; 3227 3228 while ((skb1 = *skb_p) != NULL) { 3229 int ntail = 0; 3230 3231 /* The fragment is partially pulled by someone, 3232 * this can happen on input. Copy it and everything 3233 * after it. */ 3234 3235 if (skb_shared(skb1)) 3236 copyflag = 1; 3237 3238 /* If the skb is the last, worry about trailer. */ 3239 3240 if (skb1->next == NULL && tailbits) { 3241 if (skb_shinfo(skb1)->nr_frags || 3242 skb_has_frag_list(skb1) || 3243 skb_tailroom(skb1) < tailbits) 3244 ntail = tailbits + 128; 3245 } 3246 3247 if (copyflag || 3248 skb_cloned(skb1) || 3249 ntail || 3250 skb_shinfo(skb1)->nr_frags || 3251 skb_has_frag_list(skb1)) { 3252 struct sk_buff *skb2; 3253 3254 /* Fuck, we are miserable poor guys... */ 3255 if (ntail == 0) 3256 skb2 = skb_copy(skb1, GFP_ATOMIC); 3257 else 3258 skb2 = skb_copy_expand(skb1, 3259 skb_headroom(skb1), 3260 ntail, 3261 GFP_ATOMIC); 3262 if (unlikely(skb2 == NULL)) 3263 return -ENOMEM; 3264 3265 if (skb1->sk) 3266 skb_set_owner_w(skb2, skb1->sk); 3267 3268 /* Looking around. Are we still alive? 3269 * OK, link new skb, drop old one */ 3270 3271 skb2->next = skb1->next; 3272 *skb_p = skb2; 3273 kfree_skb(skb1); 3274 skb1 = skb2; 3275 } 3276 elt++; 3277 *trailer = skb1; 3278 skb_p = &skb1->next; 3279 } 3280 3281 return elt; 3282 } 3283 EXPORT_SYMBOL_GPL(skb_cow_data); 3284 3285 static void sock_rmem_free(struct sk_buff *skb) 3286 { 3287 struct sock *sk = skb->sk; 3288 3289 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3290 } 3291 3292 /* 3293 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3294 */ 3295 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3296 { 3297 int len = skb->len; 3298 3299 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3300 (unsigned int)sk->sk_rcvbuf) 3301 return -ENOMEM; 3302 3303 skb_orphan(skb); 3304 skb->sk = sk; 3305 skb->destructor = sock_rmem_free; 3306 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3307 3308 /* before exiting rcu section, make sure dst is refcounted */ 3309 skb_dst_force(skb); 3310 3311 skb_queue_tail(&sk->sk_error_queue, skb); 3312 if (!sock_flag(sk, SOCK_DEAD)) 3313 sk->sk_data_ready(sk, len); 3314 return 0; 3315 } 3316 EXPORT_SYMBOL(sock_queue_err_skb); 3317 3318 void skb_tstamp_tx(struct sk_buff *orig_skb, 3319 struct skb_shared_hwtstamps *hwtstamps) 3320 { 3321 struct sock *sk = orig_skb->sk; 3322 struct sock_exterr_skb *serr; 3323 struct sk_buff *skb; 3324 int err; 3325 3326 if (!sk) 3327 return; 3328 3329 if (hwtstamps) { 3330 *skb_hwtstamps(orig_skb) = 3331 *hwtstamps; 3332 } else { 3333 /* 3334 * no hardware time stamps available, 3335 * so keep the shared tx_flags and only 3336 * store software time stamp 3337 */ 3338 orig_skb->tstamp = ktime_get_real(); 3339 } 3340 3341 skb = skb_clone(orig_skb, GFP_ATOMIC); 3342 if (!skb) 3343 return; 3344 3345 serr = SKB_EXT_ERR(skb); 3346 memset(serr, 0, sizeof(*serr)); 3347 serr->ee.ee_errno = ENOMSG; 3348 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3349 3350 err = sock_queue_err_skb(sk, skb); 3351 3352 if (err) 3353 kfree_skb(skb); 3354 } 3355 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3356 3357 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 3358 { 3359 struct sock *sk = skb->sk; 3360 struct sock_exterr_skb *serr; 3361 int err; 3362 3363 skb->wifi_acked_valid = 1; 3364 skb->wifi_acked = acked; 3365 3366 serr = SKB_EXT_ERR(skb); 3367 memset(serr, 0, sizeof(*serr)); 3368 serr->ee.ee_errno = ENOMSG; 3369 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 3370 3371 err = sock_queue_err_skb(sk, skb); 3372 if (err) 3373 kfree_skb(skb); 3374 } 3375 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 3376 3377 3378 /** 3379 * skb_partial_csum_set - set up and verify partial csum values for packet 3380 * @skb: the skb to set 3381 * @start: the number of bytes after skb->data to start checksumming. 3382 * @off: the offset from start to place the checksum. 3383 * 3384 * For untrusted partially-checksummed packets, we need to make sure the values 3385 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3386 * 3387 * This function checks and sets those values and skb->ip_summed: if this 3388 * returns false you should drop the packet. 3389 */ 3390 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3391 { 3392 if (unlikely(start > skb_headlen(skb)) || 3393 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3394 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 3395 start, off, skb_headlen(skb)); 3396 return false; 3397 } 3398 skb->ip_summed = CHECKSUM_PARTIAL; 3399 skb->csum_start = skb_headroom(skb) + start; 3400 skb->csum_offset = off; 3401 skb_set_transport_header(skb, start); 3402 return true; 3403 } 3404 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3405 3406 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3407 { 3408 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 3409 skb->dev->name); 3410 } 3411 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3412 3413 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 3414 { 3415 if (head_stolen) { 3416 skb_release_head_state(skb); 3417 kmem_cache_free(skbuff_head_cache, skb); 3418 } else { 3419 __kfree_skb(skb); 3420 } 3421 } 3422 EXPORT_SYMBOL(kfree_skb_partial); 3423 3424 /** 3425 * skb_try_coalesce - try to merge skb to prior one 3426 * @to: prior buffer 3427 * @from: buffer to add 3428 * @fragstolen: pointer to boolean 3429 * @delta_truesize: how much more was allocated than was requested 3430 */ 3431 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 3432 bool *fragstolen, int *delta_truesize) 3433 { 3434 int i, delta, len = from->len; 3435 3436 *fragstolen = false; 3437 3438 if (skb_cloned(to)) 3439 return false; 3440 3441 if (len <= skb_tailroom(to)) { 3442 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 3443 *delta_truesize = 0; 3444 return true; 3445 } 3446 3447 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 3448 return false; 3449 3450 if (skb_headlen(from) != 0) { 3451 struct page *page; 3452 unsigned int offset; 3453 3454 if (skb_shinfo(to)->nr_frags + 3455 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 3456 return false; 3457 3458 if (skb_head_is_locked(from)) 3459 return false; 3460 3461 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3462 3463 page = virt_to_head_page(from->head); 3464 offset = from->data - (unsigned char *)page_address(page); 3465 3466 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 3467 page, offset, skb_headlen(from)); 3468 *fragstolen = true; 3469 } else { 3470 if (skb_shinfo(to)->nr_frags + 3471 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 3472 return false; 3473 3474 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 3475 } 3476 3477 WARN_ON_ONCE(delta < len); 3478 3479 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 3480 skb_shinfo(from)->frags, 3481 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 3482 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 3483 3484 if (!skb_cloned(from)) 3485 skb_shinfo(from)->nr_frags = 0; 3486 3487 /* if the skb is not cloned this does nothing 3488 * since we set nr_frags to 0. 3489 */ 3490 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 3491 skb_frag_ref(from, i); 3492 3493 to->truesize += delta; 3494 to->len += len; 3495 to->data_len += len; 3496 3497 *delta_truesize = delta; 3498 return true; 3499 } 3500 EXPORT_SYMBOL(skb_try_coalesce); 3501 3502 /** 3503 * skb_scrub_packet - scrub an skb 3504 * 3505 * @skb: buffer to clean 3506 * @xnet: packet is crossing netns 3507 * 3508 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 3509 * into/from a tunnel. Some information have to be cleared during these 3510 * operations. 3511 * skb_scrub_packet can also be used to clean a skb before injecting it in 3512 * another namespace (@xnet == true). We have to clear all information in the 3513 * skb that could impact namespace isolation. 3514 */ 3515 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 3516 { 3517 if (xnet) 3518 skb_orphan(skb); 3519 skb->tstamp.tv64 = 0; 3520 skb->pkt_type = PACKET_HOST; 3521 skb->skb_iif = 0; 3522 skb_dst_drop(skb); 3523 skb->mark = 0; 3524 secpath_reset(skb); 3525 nf_reset(skb); 3526 nf_reset_trace(skb); 3527 } 3528 EXPORT_SYMBOL_GPL(skb_scrub_packet); 3529