1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #include <linux/module.h> 40 #include <linux/types.h> 41 #include <linux/kernel.h> 42 #include <linux/kmemcheck.h> 43 #include <linux/mm.h> 44 #include <linux/interrupt.h> 45 #include <linux/in.h> 46 #include <linux/inet.h> 47 #include <linux/slab.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 61 #include <net/protocol.h> 62 #include <net/dst.h> 63 #include <net/sock.h> 64 #include <net/checksum.h> 65 #include <net/xfrm.h> 66 67 #include <asm/uaccess.h> 68 #include <asm/system.h> 69 #include <trace/events/skb.h> 70 71 #include "kmap_skb.h" 72 73 static struct kmem_cache *skbuff_head_cache __read_mostly; 74 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 75 76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 77 struct pipe_buffer *buf) 78 { 79 put_page(buf->page); 80 } 81 82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 83 struct pipe_buffer *buf) 84 { 85 get_page(buf->page); 86 } 87 88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 89 struct pipe_buffer *buf) 90 { 91 return 1; 92 } 93 94 95 /* Pipe buffer operations for a socket. */ 96 static const struct pipe_buf_operations sock_pipe_buf_ops = { 97 .can_merge = 0, 98 .map = generic_pipe_buf_map, 99 .unmap = generic_pipe_buf_unmap, 100 .confirm = generic_pipe_buf_confirm, 101 .release = sock_pipe_buf_release, 102 .steal = sock_pipe_buf_steal, 103 .get = sock_pipe_buf_get, 104 }; 105 106 /* 107 * Keep out-of-line to prevent kernel bloat. 108 * __builtin_return_address is not used because it is not always 109 * reliable. 110 */ 111 112 /** 113 * skb_over_panic - private function 114 * @skb: buffer 115 * @sz: size 116 * @here: address 117 * 118 * Out of line support code for skb_put(). Not user callable. 119 */ 120 static void skb_over_panic(struct sk_buff *skb, int sz, void *here) 121 { 122 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 123 "data:%p tail:%#lx end:%#lx dev:%s\n", 124 here, skb->len, sz, skb->head, skb->data, 125 (unsigned long)skb->tail, (unsigned long)skb->end, 126 skb->dev ? skb->dev->name : "<NULL>"); 127 BUG(); 128 } 129 130 /** 131 * skb_under_panic - private function 132 * @skb: buffer 133 * @sz: size 134 * @here: address 135 * 136 * Out of line support code for skb_push(). Not user callable. 137 */ 138 139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here) 140 { 141 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 142 "data:%p tail:%#lx end:%#lx dev:%s\n", 143 here, skb->len, sz, skb->head, skb->data, 144 (unsigned long)skb->tail, (unsigned long)skb->end, 145 skb->dev ? skb->dev->name : "<NULL>"); 146 BUG(); 147 } 148 149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 150 * 'private' fields and also do memory statistics to find all the 151 * [BEEP] leaks. 152 * 153 */ 154 155 /** 156 * __alloc_skb - allocate a network buffer 157 * @size: size to allocate 158 * @gfp_mask: allocation mask 159 * @fclone: allocate from fclone cache instead of head cache 160 * and allocate a cloned (child) skb 161 * @node: numa node to allocate memory on 162 * 163 * Allocate a new &sk_buff. The returned buffer has no headroom and a 164 * tail room of size bytes. The object has a reference count of one. 165 * The return is the buffer. On a failure the return is %NULL. 166 * 167 * Buffers may only be allocated from interrupts using a @gfp_mask of 168 * %GFP_ATOMIC. 169 */ 170 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 171 int fclone, int node) 172 { 173 struct kmem_cache *cache; 174 struct skb_shared_info *shinfo; 175 struct sk_buff *skb; 176 u8 *data; 177 178 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 179 180 /* Get the HEAD */ 181 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 182 if (!skb) 183 goto out; 184 prefetchw(skb); 185 186 size = SKB_DATA_ALIGN(size); 187 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 188 gfp_mask, node); 189 if (!data) 190 goto nodata; 191 prefetchw(data + size); 192 193 /* 194 * Only clear those fields we need to clear, not those that we will 195 * actually initialise below. Hence, don't put any more fields after 196 * the tail pointer in struct sk_buff! 197 */ 198 memset(skb, 0, offsetof(struct sk_buff, tail)); 199 skb->truesize = size + sizeof(struct sk_buff); 200 atomic_set(&skb->users, 1); 201 skb->head = data; 202 skb->data = data; 203 skb_reset_tail_pointer(skb); 204 skb->end = skb->tail + size; 205 #ifdef NET_SKBUFF_DATA_USES_OFFSET 206 skb->mac_header = ~0U; 207 #endif 208 209 /* make sure we initialize shinfo sequentially */ 210 shinfo = skb_shinfo(skb); 211 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 212 atomic_set(&shinfo->dataref, 1); 213 kmemcheck_annotate_variable(shinfo->destructor_arg); 214 215 if (fclone) { 216 struct sk_buff *child = skb + 1; 217 atomic_t *fclone_ref = (atomic_t *) (child + 1); 218 219 kmemcheck_annotate_bitfield(child, flags1); 220 kmemcheck_annotate_bitfield(child, flags2); 221 skb->fclone = SKB_FCLONE_ORIG; 222 atomic_set(fclone_ref, 1); 223 224 child->fclone = SKB_FCLONE_UNAVAILABLE; 225 } 226 out: 227 return skb; 228 nodata: 229 kmem_cache_free(cache, skb); 230 skb = NULL; 231 goto out; 232 } 233 EXPORT_SYMBOL(__alloc_skb); 234 235 /** 236 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 237 * @dev: network device to receive on 238 * @length: length to allocate 239 * @gfp_mask: get_free_pages mask, passed to alloc_skb 240 * 241 * Allocate a new &sk_buff and assign it a usage count of one. The 242 * buffer has unspecified headroom built in. Users should allocate 243 * the headroom they think they need without accounting for the 244 * built in space. The built in space is used for optimisations. 245 * 246 * %NULL is returned if there is no free memory. 247 */ 248 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 249 unsigned int length, gfp_t gfp_mask) 250 { 251 struct sk_buff *skb; 252 253 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE); 254 if (likely(skb)) { 255 skb_reserve(skb, NET_SKB_PAD); 256 skb->dev = dev; 257 } 258 return skb; 259 } 260 EXPORT_SYMBOL(__netdev_alloc_skb); 261 262 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 263 int size) 264 { 265 skb_fill_page_desc(skb, i, page, off, size); 266 skb->len += size; 267 skb->data_len += size; 268 skb->truesize += size; 269 } 270 EXPORT_SYMBOL(skb_add_rx_frag); 271 272 /** 273 * dev_alloc_skb - allocate an skbuff for receiving 274 * @length: length to allocate 275 * 276 * Allocate a new &sk_buff and assign it a usage count of one. The 277 * buffer has unspecified headroom built in. Users should allocate 278 * the headroom they think they need without accounting for the 279 * built in space. The built in space is used for optimisations. 280 * 281 * %NULL is returned if there is no free memory. Although this function 282 * allocates memory it can be called from an interrupt. 283 */ 284 struct sk_buff *dev_alloc_skb(unsigned int length) 285 { 286 /* 287 * There is more code here than it seems: 288 * __dev_alloc_skb is an inline 289 */ 290 return __dev_alloc_skb(length, GFP_ATOMIC); 291 } 292 EXPORT_SYMBOL(dev_alloc_skb); 293 294 static void skb_drop_list(struct sk_buff **listp) 295 { 296 struct sk_buff *list = *listp; 297 298 *listp = NULL; 299 300 do { 301 struct sk_buff *this = list; 302 list = list->next; 303 kfree_skb(this); 304 } while (list); 305 } 306 307 static inline void skb_drop_fraglist(struct sk_buff *skb) 308 { 309 skb_drop_list(&skb_shinfo(skb)->frag_list); 310 } 311 312 static void skb_clone_fraglist(struct sk_buff *skb) 313 { 314 struct sk_buff *list; 315 316 skb_walk_frags(skb, list) 317 skb_get(list); 318 } 319 320 static void skb_release_data(struct sk_buff *skb) 321 { 322 if (!skb->cloned || 323 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 324 &skb_shinfo(skb)->dataref)) { 325 if (skb_shinfo(skb)->nr_frags) { 326 int i; 327 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 328 put_page(skb_shinfo(skb)->frags[i].page); 329 } 330 331 if (skb_has_frag_list(skb)) 332 skb_drop_fraglist(skb); 333 334 kfree(skb->head); 335 } 336 } 337 338 /* 339 * Free an skbuff by memory without cleaning the state. 340 */ 341 static void kfree_skbmem(struct sk_buff *skb) 342 { 343 struct sk_buff *other; 344 atomic_t *fclone_ref; 345 346 switch (skb->fclone) { 347 case SKB_FCLONE_UNAVAILABLE: 348 kmem_cache_free(skbuff_head_cache, skb); 349 break; 350 351 case SKB_FCLONE_ORIG: 352 fclone_ref = (atomic_t *) (skb + 2); 353 if (atomic_dec_and_test(fclone_ref)) 354 kmem_cache_free(skbuff_fclone_cache, skb); 355 break; 356 357 case SKB_FCLONE_CLONE: 358 fclone_ref = (atomic_t *) (skb + 1); 359 other = skb - 1; 360 361 /* The clone portion is available for 362 * fast-cloning again. 363 */ 364 skb->fclone = SKB_FCLONE_UNAVAILABLE; 365 366 if (atomic_dec_and_test(fclone_ref)) 367 kmem_cache_free(skbuff_fclone_cache, other); 368 break; 369 } 370 } 371 372 static void skb_release_head_state(struct sk_buff *skb) 373 { 374 skb_dst_drop(skb); 375 #ifdef CONFIG_XFRM 376 secpath_put(skb->sp); 377 #endif 378 if (skb->destructor) { 379 WARN_ON(in_irq()); 380 skb->destructor(skb); 381 } 382 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 383 nf_conntrack_put(skb->nfct); 384 #endif 385 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 386 nf_conntrack_put_reasm(skb->nfct_reasm); 387 #endif 388 #ifdef CONFIG_BRIDGE_NETFILTER 389 nf_bridge_put(skb->nf_bridge); 390 #endif 391 /* XXX: IS this still necessary? - JHS */ 392 #ifdef CONFIG_NET_SCHED 393 skb->tc_index = 0; 394 #ifdef CONFIG_NET_CLS_ACT 395 skb->tc_verd = 0; 396 #endif 397 #endif 398 } 399 400 /* Free everything but the sk_buff shell. */ 401 static void skb_release_all(struct sk_buff *skb) 402 { 403 skb_release_head_state(skb); 404 skb_release_data(skb); 405 } 406 407 /** 408 * __kfree_skb - private function 409 * @skb: buffer 410 * 411 * Free an sk_buff. Release anything attached to the buffer. 412 * Clean the state. This is an internal helper function. Users should 413 * always call kfree_skb 414 */ 415 416 void __kfree_skb(struct sk_buff *skb) 417 { 418 skb_release_all(skb); 419 kfree_skbmem(skb); 420 } 421 EXPORT_SYMBOL(__kfree_skb); 422 423 /** 424 * kfree_skb - free an sk_buff 425 * @skb: buffer to free 426 * 427 * Drop a reference to the buffer and free it if the usage count has 428 * hit zero. 429 */ 430 void kfree_skb(struct sk_buff *skb) 431 { 432 if (unlikely(!skb)) 433 return; 434 if (likely(atomic_read(&skb->users) == 1)) 435 smp_rmb(); 436 else if (likely(!atomic_dec_and_test(&skb->users))) 437 return; 438 trace_kfree_skb(skb, __builtin_return_address(0)); 439 __kfree_skb(skb); 440 } 441 EXPORT_SYMBOL(kfree_skb); 442 443 /** 444 * consume_skb - free an skbuff 445 * @skb: buffer to free 446 * 447 * Drop a ref to the buffer and free it if the usage count has hit zero 448 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 449 * is being dropped after a failure and notes that 450 */ 451 void consume_skb(struct sk_buff *skb) 452 { 453 if (unlikely(!skb)) 454 return; 455 if (likely(atomic_read(&skb->users) == 1)) 456 smp_rmb(); 457 else if (likely(!atomic_dec_and_test(&skb->users))) 458 return; 459 trace_consume_skb(skb); 460 __kfree_skb(skb); 461 } 462 EXPORT_SYMBOL(consume_skb); 463 464 /** 465 * skb_recycle_check - check if skb can be reused for receive 466 * @skb: buffer 467 * @skb_size: minimum receive buffer size 468 * 469 * Checks that the skb passed in is not shared or cloned, and 470 * that it is linear and its head portion at least as large as 471 * skb_size so that it can be recycled as a receive buffer. 472 * If these conditions are met, this function does any necessary 473 * reference count dropping and cleans up the skbuff as if it 474 * just came from __alloc_skb(). 475 */ 476 bool skb_recycle_check(struct sk_buff *skb, int skb_size) 477 { 478 struct skb_shared_info *shinfo; 479 480 if (irqs_disabled()) 481 return false; 482 483 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE) 484 return false; 485 486 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD); 487 if (skb_end_pointer(skb) - skb->head < skb_size) 488 return false; 489 490 if (skb_shared(skb) || skb_cloned(skb)) 491 return false; 492 493 skb_release_head_state(skb); 494 495 shinfo = skb_shinfo(skb); 496 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 497 atomic_set(&shinfo->dataref, 1); 498 499 memset(skb, 0, offsetof(struct sk_buff, tail)); 500 skb->data = skb->head + NET_SKB_PAD; 501 skb_reset_tail_pointer(skb); 502 503 return true; 504 } 505 EXPORT_SYMBOL(skb_recycle_check); 506 507 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 508 { 509 new->tstamp = old->tstamp; 510 new->dev = old->dev; 511 new->transport_header = old->transport_header; 512 new->network_header = old->network_header; 513 new->mac_header = old->mac_header; 514 skb_dst_copy(new, old); 515 new->rxhash = old->rxhash; 516 #ifdef CONFIG_XFRM 517 new->sp = secpath_get(old->sp); 518 #endif 519 memcpy(new->cb, old->cb, sizeof(old->cb)); 520 new->csum = old->csum; 521 new->local_df = old->local_df; 522 new->pkt_type = old->pkt_type; 523 new->ip_summed = old->ip_summed; 524 skb_copy_queue_mapping(new, old); 525 new->priority = old->priority; 526 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 527 new->ipvs_property = old->ipvs_property; 528 #endif 529 new->protocol = old->protocol; 530 new->mark = old->mark; 531 new->skb_iif = old->skb_iif; 532 __nf_copy(new, old); 533 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 534 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 535 new->nf_trace = old->nf_trace; 536 #endif 537 #ifdef CONFIG_NET_SCHED 538 new->tc_index = old->tc_index; 539 #ifdef CONFIG_NET_CLS_ACT 540 new->tc_verd = old->tc_verd; 541 #endif 542 #endif 543 new->vlan_tci = old->vlan_tci; 544 545 skb_copy_secmark(new, old); 546 } 547 548 /* 549 * You should not add any new code to this function. Add it to 550 * __copy_skb_header above instead. 551 */ 552 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 553 { 554 #define C(x) n->x = skb->x 555 556 n->next = n->prev = NULL; 557 n->sk = NULL; 558 __copy_skb_header(n, skb); 559 560 C(len); 561 C(data_len); 562 C(mac_len); 563 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 564 n->cloned = 1; 565 n->nohdr = 0; 566 n->destructor = NULL; 567 C(tail); 568 C(end); 569 C(head); 570 C(data); 571 C(truesize); 572 atomic_set(&n->users, 1); 573 574 atomic_inc(&(skb_shinfo(skb)->dataref)); 575 skb->cloned = 1; 576 577 return n; 578 #undef C 579 } 580 581 /** 582 * skb_morph - morph one skb into another 583 * @dst: the skb to receive the contents 584 * @src: the skb to supply the contents 585 * 586 * This is identical to skb_clone except that the target skb is 587 * supplied by the user. 588 * 589 * The target skb is returned upon exit. 590 */ 591 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 592 { 593 skb_release_all(dst); 594 return __skb_clone(dst, src); 595 } 596 EXPORT_SYMBOL_GPL(skb_morph); 597 598 /** 599 * skb_clone - duplicate an sk_buff 600 * @skb: buffer to clone 601 * @gfp_mask: allocation priority 602 * 603 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 604 * copies share the same packet data but not structure. The new 605 * buffer has a reference count of 1. If the allocation fails the 606 * function returns %NULL otherwise the new buffer is returned. 607 * 608 * If this function is called from an interrupt gfp_mask() must be 609 * %GFP_ATOMIC. 610 */ 611 612 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 613 { 614 struct sk_buff *n; 615 616 n = skb + 1; 617 if (skb->fclone == SKB_FCLONE_ORIG && 618 n->fclone == SKB_FCLONE_UNAVAILABLE) { 619 atomic_t *fclone_ref = (atomic_t *) (n + 1); 620 n->fclone = SKB_FCLONE_CLONE; 621 atomic_inc(fclone_ref); 622 } else { 623 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 624 if (!n) 625 return NULL; 626 627 kmemcheck_annotate_bitfield(n, flags1); 628 kmemcheck_annotate_bitfield(n, flags2); 629 n->fclone = SKB_FCLONE_UNAVAILABLE; 630 } 631 632 return __skb_clone(n, skb); 633 } 634 EXPORT_SYMBOL(skb_clone); 635 636 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 637 { 638 #ifndef NET_SKBUFF_DATA_USES_OFFSET 639 /* 640 * Shift between the two data areas in bytes 641 */ 642 unsigned long offset = new->data - old->data; 643 #endif 644 645 __copy_skb_header(new, old); 646 647 #ifndef NET_SKBUFF_DATA_USES_OFFSET 648 /* {transport,network,mac}_header are relative to skb->head */ 649 new->transport_header += offset; 650 new->network_header += offset; 651 if (skb_mac_header_was_set(new)) 652 new->mac_header += offset; 653 #endif 654 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 655 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 656 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 657 } 658 659 /** 660 * skb_copy - create private copy of an sk_buff 661 * @skb: buffer to copy 662 * @gfp_mask: allocation priority 663 * 664 * Make a copy of both an &sk_buff and its data. This is used when the 665 * caller wishes to modify the data and needs a private copy of the 666 * data to alter. Returns %NULL on failure or the pointer to the buffer 667 * on success. The returned buffer has a reference count of 1. 668 * 669 * As by-product this function converts non-linear &sk_buff to linear 670 * one, so that &sk_buff becomes completely private and caller is allowed 671 * to modify all the data of returned buffer. This means that this 672 * function is not recommended for use in circumstances when only 673 * header is going to be modified. Use pskb_copy() instead. 674 */ 675 676 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 677 { 678 int headerlen = skb_headroom(skb); 679 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len; 680 struct sk_buff *n = alloc_skb(size, gfp_mask); 681 682 if (!n) 683 return NULL; 684 685 /* Set the data pointer */ 686 skb_reserve(n, headerlen); 687 /* Set the tail pointer and length */ 688 skb_put(n, skb->len); 689 690 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 691 BUG(); 692 693 copy_skb_header(n, skb); 694 return n; 695 } 696 EXPORT_SYMBOL(skb_copy); 697 698 /** 699 * pskb_copy - create copy of an sk_buff with private head. 700 * @skb: buffer to copy 701 * @gfp_mask: allocation priority 702 * 703 * Make a copy of both an &sk_buff and part of its data, located 704 * in header. Fragmented data remain shared. This is used when 705 * the caller wishes to modify only header of &sk_buff and needs 706 * private copy of the header to alter. Returns %NULL on failure 707 * or the pointer to the buffer on success. 708 * The returned buffer has a reference count of 1. 709 */ 710 711 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 712 { 713 unsigned int size = skb_end_pointer(skb) - skb->head; 714 struct sk_buff *n = alloc_skb(size, gfp_mask); 715 716 if (!n) 717 goto out; 718 719 /* Set the data pointer */ 720 skb_reserve(n, skb_headroom(skb)); 721 /* Set the tail pointer and length */ 722 skb_put(n, skb_headlen(skb)); 723 /* Copy the bytes */ 724 skb_copy_from_linear_data(skb, n->data, n->len); 725 726 n->truesize += skb->data_len; 727 n->data_len = skb->data_len; 728 n->len = skb->len; 729 730 if (skb_shinfo(skb)->nr_frags) { 731 int i; 732 733 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 734 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 735 get_page(skb_shinfo(n)->frags[i].page); 736 } 737 skb_shinfo(n)->nr_frags = i; 738 } 739 740 if (skb_has_frag_list(skb)) { 741 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 742 skb_clone_fraglist(n); 743 } 744 745 copy_skb_header(n, skb); 746 out: 747 return n; 748 } 749 EXPORT_SYMBOL(pskb_copy); 750 751 /** 752 * pskb_expand_head - reallocate header of &sk_buff 753 * @skb: buffer to reallocate 754 * @nhead: room to add at head 755 * @ntail: room to add at tail 756 * @gfp_mask: allocation priority 757 * 758 * Expands (or creates identical copy, if &nhead and &ntail are zero) 759 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 760 * reference count of 1. Returns zero in the case of success or error, 761 * if expansion failed. In the last case, &sk_buff is not changed. 762 * 763 * All the pointers pointing into skb header may change and must be 764 * reloaded after call to this function. 765 */ 766 767 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 768 gfp_t gfp_mask) 769 { 770 int i; 771 u8 *data; 772 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail; 773 long off; 774 bool fastpath; 775 776 BUG_ON(nhead < 0); 777 778 if (skb_shared(skb)) 779 BUG(); 780 781 size = SKB_DATA_ALIGN(size); 782 783 /* Check if we can avoid taking references on fragments if we own 784 * the last reference on skb->head. (see skb_release_data()) 785 */ 786 if (!skb->cloned) 787 fastpath = true; 788 else { 789 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; 790 791 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta; 792 } 793 794 if (fastpath && 795 size + sizeof(struct skb_shared_info) <= ksize(skb->head)) { 796 memmove(skb->head + size, skb_shinfo(skb), 797 offsetof(struct skb_shared_info, 798 frags[skb_shinfo(skb)->nr_frags])); 799 memmove(skb->head + nhead, skb->head, 800 skb_tail_pointer(skb) - skb->head); 801 off = nhead; 802 goto adjust_others; 803 } 804 805 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 806 if (!data) 807 goto nodata; 808 809 /* Copy only real data... and, alas, header. This should be 810 * optimized for the cases when header is void. 811 */ 812 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 813 814 memcpy((struct skb_shared_info *)(data + size), 815 skb_shinfo(skb), 816 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 817 818 if (fastpath) { 819 kfree(skb->head); 820 } else { 821 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 822 get_page(skb_shinfo(skb)->frags[i].page); 823 824 if (skb_has_frag_list(skb)) 825 skb_clone_fraglist(skb); 826 827 skb_release_data(skb); 828 } 829 off = (data + nhead) - skb->head; 830 831 skb->head = data; 832 adjust_others: 833 skb->data += off; 834 #ifdef NET_SKBUFF_DATA_USES_OFFSET 835 skb->end = size; 836 off = nhead; 837 #else 838 skb->end = skb->head + size; 839 #endif 840 /* {transport,network,mac}_header and tail are relative to skb->head */ 841 skb->tail += off; 842 skb->transport_header += off; 843 skb->network_header += off; 844 if (skb_mac_header_was_set(skb)) 845 skb->mac_header += off; 846 /* Only adjust this if it actually is csum_start rather than csum */ 847 if (skb->ip_summed == CHECKSUM_PARTIAL) 848 skb->csum_start += nhead; 849 skb->cloned = 0; 850 skb->hdr_len = 0; 851 skb->nohdr = 0; 852 atomic_set(&skb_shinfo(skb)->dataref, 1); 853 return 0; 854 855 nodata: 856 return -ENOMEM; 857 } 858 EXPORT_SYMBOL(pskb_expand_head); 859 860 /* Make private copy of skb with writable head and some headroom */ 861 862 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 863 { 864 struct sk_buff *skb2; 865 int delta = headroom - skb_headroom(skb); 866 867 if (delta <= 0) 868 skb2 = pskb_copy(skb, GFP_ATOMIC); 869 else { 870 skb2 = skb_clone(skb, GFP_ATOMIC); 871 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 872 GFP_ATOMIC)) { 873 kfree_skb(skb2); 874 skb2 = NULL; 875 } 876 } 877 return skb2; 878 } 879 EXPORT_SYMBOL(skb_realloc_headroom); 880 881 /** 882 * skb_copy_expand - copy and expand sk_buff 883 * @skb: buffer to copy 884 * @newheadroom: new free bytes at head 885 * @newtailroom: new free bytes at tail 886 * @gfp_mask: allocation priority 887 * 888 * Make a copy of both an &sk_buff and its data and while doing so 889 * allocate additional space. 890 * 891 * This is used when the caller wishes to modify the data and needs a 892 * private copy of the data to alter as well as more space for new fields. 893 * Returns %NULL on failure or the pointer to the buffer 894 * on success. The returned buffer has a reference count of 1. 895 * 896 * You must pass %GFP_ATOMIC as the allocation priority if this function 897 * is called from an interrupt. 898 */ 899 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 900 int newheadroom, int newtailroom, 901 gfp_t gfp_mask) 902 { 903 /* 904 * Allocate the copy buffer 905 */ 906 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 907 gfp_mask); 908 int oldheadroom = skb_headroom(skb); 909 int head_copy_len, head_copy_off; 910 int off; 911 912 if (!n) 913 return NULL; 914 915 skb_reserve(n, newheadroom); 916 917 /* Set the tail pointer and length */ 918 skb_put(n, skb->len); 919 920 head_copy_len = oldheadroom; 921 head_copy_off = 0; 922 if (newheadroom <= head_copy_len) 923 head_copy_len = newheadroom; 924 else 925 head_copy_off = newheadroom - head_copy_len; 926 927 /* Copy the linear header and data. */ 928 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 929 skb->len + head_copy_len)) 930 BUG(); 931 932 copy_skb_header(n, skb); 933 934 off = newheadroom - oldheadroom; 935 if (n->ip_summed == CHECKSUM_PARTIAL) 936 n->csum_start += off; 937 #ifdef NET_SKBUFF_DATA_USES_OFFSET 938 n->transport_header += off; 939 n->network_header += off; 940 if (skb_mac_header_was_set(skb)) 941 n->mac_header += off; 942 #endif 943 944 return n; 945 } 946 EXPORT_SYMBOL(skb_copy_expand); 947 948 /** 949 * skb_pad - zero pad the tail of an skb 950 * @skb: buffer to pad 951 * @pad: space to pad 952 * 953 * Ensure that a buffer is followed by a padding area that is zero 954 * filled. Used by network drivers which may DMA or transfer data 955 * beyond the buffer end onto the wire. 956 * 957 * May return error in out of memory cases. The skb is freed on error. 958 */ 959 960 int skb_pad(struct sk_buff *skb, int pad) 961 { 962 int err; 963 int ntail; 964 965 /* If the skbuff is non linear tailroom is always zero.. */ 966 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 967 memset(skb->data+skb->len, 0, pad); 968 return 0; 969 } 970 971 ntail = skb->data_len + pad - (skb->end - skb->tail); 972 if (likely(skb_cloned(skb) || ntail > 0)) { 973 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 974 if (unlikely(err)) 975 goto free_skb; 976 } 977 978 /* FIXME: The use of this function with non-linear skb's really needs 979 * to be audited. 980 */ 981 err = skb_linearize(skb); 982 if (unlikely(err)) 983 goto free_skb; 984 985 memset(skb->data + skb->len, 0, pad); 986 return 0; 987 988 free_skb: 989 kfree_skb(skb); 990 return err; 991 } 992 EXPORT_SYMBOL(skb_pad); 993 994 /** 995 * skb_put - add data to a buffer 996 * @skb: buffer to use 997 * @len: amount of data to add 998 * 999 * This function extends the used data area of the buffer. If this would 1000 * exceed the total buffer size the kernel will panic. A pointer to the 1001 * first byte of the extra data is returned. 1002 */ 1003 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1004 { 1005 unsigned char *tmp = skb_tail_pointer(skb); 1006 SKB_LINEAR_ASSERT(skb); 1007 skb->tail += len; 1008 skb->len += len; 1009 if (unlikely(skb->tail > skb->end)) 1010 skb_over_panic(skb, len, __builtin_return_address(0)); 1011 return tmp; 1012 } 1013 EXPORT_SYMBOL(skb_put); 1014 1015 /** 1016 * skb_push - add data to the start of a buffer 1017 * @skb: buffer to use 1018 * @len: amount of data to add 1019 * 1020 * This function extends the used data area of the buffer at the buffer 1021 * start. If this would exceed the total buffer headroom the kernel will 1022 * panic. A pointer to the first byte of the extra data is returned. 1023 */ 1024 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1025 { 1026 skb->data -= len; 1027 skb->len += len; 1028 if (unlikely(skb->data<skb->head)) 1029 skb_under_panic(skb, len, __builtin_return_address(0)); 1030 return skb->data; 1031 } 1032 EXPORT_SYMBOL(skb_push); 1033 1034 /** 1035 * skb_pull - remove data from the start of a buffer 1036 * @skb: buffer to use 1037 * @len: amount of data to remove 1038 * 1039 * This function removes data from the start of a buffer, returning 1040 * the memory to the headroom. A pointer to the next data in the buffer 1041 * is returned. Once the data has been pulled future pushes will overwrite 1042 * the old data. 1043 */ 1044 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1045 { 1046 return skb_pull_inline(skb, len); 1047 } 1048 EXPORT_SYMBOL(skb_pull); 1049 1050 /** 1051 * skb_trim - remove end from a buffer 1052 * @skb: buffer to alter 1053 * @len: new length 1054 * 1055 * Cut the length of a buffer down by removing data from the tail. If 1056 * the buffer is already under the length specified it is not modified. 1057 * The skb must be linear. 1058 */ 1059 void skb_trim(struct sk_buff *skb, unsigned int len) 1060 { 1061 if (skb->len > len) 1062 __skb_trim(skb, len); 1063 } 1064 EXPORT_SYMBOL(skb_trim); 1065 1066 /* Trims skb to length len. It can change skb pointers. 1067 */ 1068 1069 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1070 { 1071 struct sk_buff **fragp; 1072 struct sk_buff *frag; 1073 int offset = skb_headlen(skb); 1074 int nfrags = skb_shinfo(skb)->nr_frags; 1075 int i; 1076 int err; 1077 1078 if (skb_cloned(skb) && 1079 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1080 return err; 1081 1082 i = 0; 1083 if (offset >= len) 1084 goto drop_pages; 1085 1086 for (; i < nfrags; i++) { 1087 int end = offset + skb_shinfo(skb)->frags[i].size; 1088 1089 if (end < len) { 1090 offset = end; 1091 continue; 1092 } 1093 1094 skb_shinfo(skb)->frags[i++].size = len - offset; 1095 1096 drop_pages: 1097 skb_shinfo(skb)->nr_frags = i; 1098 1099 for (; i < nfrags; i++) 1100 put_page(skb_shinfo(skb)->frags[i].page); 1101 1102 if (skb_has_frag_list(skb)) 1103 skb_drop_fraglist(skb); 1104 goto done; 1105 } 1106 1107 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1108 fragp = &frag->next) { 1109 int end = offset + frag->len; 1110 1111 if (skb_shared(frag)) { 1112 struct sk_buff *nfrag; 1113 1114 nfrag = skb_clone(frag, GFP_ATOMIC); 1115 if (unlikely(!nfrag)) 1116 return -ENOMEM; 1117 1118 nfrag->next = frag->next; 1119 kfree_skb(frag); 1120 frag = nfrag; 1121 *fragp = frag; 1122 } 1123 1124 if (end < len) { 1125 offset = end; 1126 continue; 1127 } 1128 1129 if (end > len && 1130 unlikely((err = pskb_trim(frag, len - offset)))) 1131 return err; 1132 1133 if (frag->next) 1134 skb_drop_list(&frag->next); 1135 break; 1136 } 1137 1138 done: 1139 if (len > skb_headlen(skb)) { 1140 skb->data_len -= skb->len - len; 1141 skb->len = len; 1142 } else { 1143 skb->len = len; 1144 skb->data_len = 0; 1145 skb_set_tail_pointer(skb, len); 1146 } 1147 1148 return 0; 1149 } 1150 EXPORT_SYMBOL(___pskb_trim); 1151 1152 /** 1153 * __pskb_pull_tail - advance tail of skb header 1154 * @skb: buffer to reallocate 1155 * @delta: number of bytes to advance tail 1156 * 1157 * The function makes a sense only on a fragmented &sk_buff, 1158 * it expands header moving its tail forward and copying necessary 1159 * data from fragmented part. 1160 * 1161 * &sk_buff MUST have reference count of 1. 1162 * 1163 * Returns %NULL (and &sk_buff does not change) if pull failed 1164 * or value of new tail of skb in the case of success. 1165 * 1166 * All the pointers pointing into skb header may change and must be 1167 * reloaded after call to this function. 1168 */ 1169 1170 /* Moves tail of skb head forward, copying data from fragmented part, 1171 * when it is necessary. 1172 * 1. It may fail due to malloc failure. 1173 * 2. It may change skb pointers. 1174 * 1175 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1176 */ 1177 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1178 { 1179 /* If skb has not enough free space at tail, get new one 1180 * plus 128 bytes for future expansions. If we have enough 1181 * room at tail, reallocate without expansion only if skb is cloned. 1182 */ 1183 int i, k, eat = (skb->tail + delta) - skb->end; 1184 1185 if (eat > 0 || skb_cloned(skb)) { 1186 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1187 GFP_ATOMIC)) 1188 return NULL; 1189 } 1190 1191 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1192 BUG(); 1193 1194 /* Optimization: no fragments, no reasons to preestimate 1195 * size of pulled pages. Superb. 1196 */ 1197 if (!skb_has_frag_list(skb)) 1198 goto pull_pages; 1199 1200 /* Estimate size of pulled pages. */ 1201 eat = delta; 1202 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1203 if (skb_shinfo(skb)->frags[i].size >= eat) 1204 goto pull_pages; 1205 eat -= skb_shinfo(skb)->frags[i].size; 1206 } 1207 1208 /* If we need update frag list, we are in troubles. 1209 * Certainly, it possible to add an offset to skb data, 1210 * but taking into account that pulling is expected to 1211 * be very rare operation, it is worth to fight against 1212 * further bloating skb head and crucify ourselves here instead. 1213 * Pure masohism, indeed. 8)8) 1214 */ 1215 if (eat) { 1216 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1217 struct sk_buff *clone = NULL; 1218 struct sk_buff *insp = NULL; 1219 1220 do { 1221 BUG_ON(!list); 1222 1223 if (list->len <= eat) { 1224 /* Eaten as whole. */ 1225 eat -= list->len; 1226 list = list->next; 1227 insp = list; 1228 } else { 1229 /* Eaten partially. */ 1230 1231 if (skb_shared(list)) { 1232 /* Sucks! We need to fork list. :-( */ 1233 clone = skb_clone(list, GFP_ATOMIC); 1234 if (!clone) 1235 return NULL; 1236 insp = list->next; 1237 list = clone; 1238 } else { 1239 /* This may be pulled without 1240 * problems. */ 1241 insp = list; 1242 } 1243 if (!pskb_pull(list, eat)) { 1244 kfree_skb(clone); 1245 return NULL; 1246 } 1247 break; 1248 } 1249 } while (eat); 1250 1251 /* Free pulled out fragments. */ 1252 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1253 skb_shinfo(skb)->frag_list = list->next; 1254 kfree_skb(list); 1255 } 1256 /* And insert new clone at head. */ 1257 if (clone) { 1258 clone->next = list; 1259 skb_shinfo(skb)->frag_list = clone; 1260 } 1261 } 1262 /* Success! Now we may commit changes to skb data. */ 1263 1264 pull_pages: 1265 eat = delta; 1266 k = 0; 1267 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1268 if (skb_shinfo(skb)->frags[i].size <= eat) { 1269 put_page(skb_shinfo(skb)->frags[i].page); 1270 eat -= skb_shinfo(skb)->frags[i].size; 1271 } else { 1272 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1273 if (eat) { 1274 skb_shinfo(skb)->frags[k].page_offset += eat; 1275 skb_shinfo(skb)->frags[k].size -= eat; 1276 eat = 0; 1277 } 1278 k++; 1279 } 1280 } 1281 skb_shinfo(skb)->nr_frags = k; 1282 1283 skb->tail += delta; 1284 skb->data_len -= delta; 1285 1286 return skb_tail_pointer(skb); 1287 } 1288 EXPORT_SYMBOL(__pskb_pull_tail); 1289 1290 /* Copy some data bits from skb to kernel buffer. */ 1291 1292 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1293 { 1294 int start = skb_headlen(skb); 1295 struct sk_buff *frag_iter; 1296 int i, copy; 1297 1298 if (offset > (int)skb->len - len) 1299 goto fault; 1300 1301 /* Copy header. */ 1302 if ((copy = start - offset) > 0) { 1303 if (copy > len) 1304 copy = len; 1305 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1306 if ((len -= copy) == 0) 1307 return 0; 1308 offset += copy; 1309 to += copy; 1310 } 1311 1312 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1313 int end; 1314 1315 WARN_ON(start > offset + len); 1316 1317 end = start + skb_shinfo(skb)->frags[i].size; 1318 if ((copy = end - offset) > 0) { 1319 u8 *vaddr; 1320 1321 if (copy > len) 1322 copy = len; 1323 1324 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1325 memcpy(to, 1326 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1327 offset - start, copy); 1328 kunmap_skb_frag(vaddr); 1329 1330 if ((len -= copy) == 0) 1331 return 0; 1332 offset += copy; 1333 to += copy; 1334 } 1335 start = end; 1336 } 1337 1338 skb_walk_frags(skb, frag_iter) { 1339 int end; 1340 1341 WARN_ON(start > offset + len); 1342 1343 end = start + frag_iter->len; 1344 if ((copy = end - offset) > 0) { 1345 if (copy > len) 1346 copy = len; 1347 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1348 goto fault; 1349 if ((len -= copy) == 0) 1350 return 0; 1351 offset += copy; 1352 to += copy; 1353 } 1354 start = end; 1355 } 1356 if (!len) 1357 return 0; 1358 1359 fault: 1360 return -EFAULT; 1361 } 1362 EXPORT_SYMBOL(skb_copy_bits); 1363 1364 /* 1365 * Callback from splice_to_pipe(), if we need to release some pages 1366 * at the end of the spd in case we error'ed out in filling the pipe. 1367 */ 1368 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1369 { 1370 put_page(spd->pages[i]); 1371 } 1372 1373 static inline struct page *linear_to_page(struct page *page, unsigned int *len, 1374 unsigned int *offset, 1375 struct sk_buff *skb, struct sock *sk) 1376 { 1377 struct page *p = sk->sk_sndmsg_page; 1378 unsigned int off; 1379 1380 if (!p) { 1381 new_page: 1382 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0); 1383 if (!p) 1384 return NULL; 1385 1386 off = sk->sk_sndmsg_off = 0; 1387 /* hold one ref to this page until it's full */ 1388 } else { 1389 unsigned int mlen; 1390 1391 off = sk->sk_sndmsg_off; 1392 mlen = PAGE_SIZE - off; 1393 if (mlen < 64 && mlen < *len) { 1394 put_page(p); 1395 goto new_page; 1396 } 1397 1398 *len = min_t(unsigned int, *len, mlen); 1399 } 1400 1401 memcpy(page_address(p) + off, page_address(page) + *offset, *len); 1402 sk->sk_sndmsg_off += *len; 1403 *offset = off; 1404 get_page(p); 1405 1406 return p; 1407 } 1408 1409 /* 1410 * Fill page/offset/length into spd, if it can hold more pages. 1411 */ 1412 static inline int spd_fill_page(struct splice_pipe_desc *spd, 1413 struct pipe_inode_info *pipe, struct page *page, 1414 unsigned int *len, unsigned int offset, 1415 struct sk_buff *skb, int linear, 1416 struct sock *sk) 1417 { 1418 if (unlikely(spd->nr_pages == pipe->buffers)) 1419 return 1; 1420 1421 if (linear) { 1422 page = linear_to_page(page, len, &offset, skb, sk); 1423 if (!page) 1424 return 1; 1425 } else 1426 get_page(page); 1427 1428 spd->pages[spd->nr_pages] = page; 1429 spd->partial[spd->nr_pages].len = *len; 1430 spd->partial[spd->nr_pages].offset = offset; 1431 spd->nr_pages++; 1432 1433 return 0; 1434 } 1435 1436 static inline void __segment_seek(struct page **page, unsigned int *poff, 1437 unsigned int *plen, unsigned int off) 1438 { 1439 unsigned long n; 1440 1441 *poff += off; 1442 n = *poff / PAGE_SIZE; 1443 if (n) 1444 *page = nth_page(*page, n); 1445 1446 *poff = *poff % PAGE_SIZE; 1447 *plen -= off; 1448 } 1449 1450 static inline int __splice_segment(struct page *page, unsigned int poff, 1451 unsigned int plen, unsigned int *off, 1452 unsigned int *len, struct sk_buff *skb, 1453 struct splice_pipe_desc *spd, int linear, 1454 struct sock *sk, 1455 struct pipe_inode_info *pipe) 1456 { 1457 if (!*len) 1458 return 1; 1459 1460 /* skip this segment if already processed */ 1461 if (*off >= plen) { 1462 *off -= plen; 1463 return 0; 1464 } 1465 1466 /* ignore any bits we already processed */ 1467 if (*off) { 1468 __segment_seek(&page, &poff, &plen, *off); 1469 *off = 0; 1470 } 1471 1472 do { 1473 unsigned int flen = min(*len, plen); 1474 1475 /* the linear region may spread across several pages */ 1476 flen = min_t(unsigned int, flen, PAGE_SIZE - poff); 1477 1478 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk)) 1479 return 1; 1480 1481 __segment_seek(&page, &poff, &plen, flen); 1482 *len -= flen; 1483 1484 } while (*len && plen); 1485 1486 return 0; 1487 } 1488 1489 /* 1490 * Map linear and fragment data from the skb to spd. It reports failure if the 1491 * pipe is full or if we already spliced the requested length. 1492 */ 1493 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1494 unsigned int *offset, unsigned int *len, 1495 struct splice_pipe_desc *spd, struct sock *sk) 1496 { 1497 int seg; 1498 1499 /* 1500 * map the linear part 1501 */ 1502 if (__splice_segment(virt_to_page(skb->data), 1503 (unsigned long) skb->data & (PAGE_SIZE - 1), 1504 skb_headlen(skb), 1505 offset, len, skb, spd, 1, sk, pipe)) 1506 return 1; 1507 1508 /* 1509 * then map the fragments 1510 */ 1511 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1512 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1513 1514 if (__splice_segment(f->page, f->page_offset, f->size, 1515 offset, len, skb, spd, 0, sk, pipe)) 1516 return 1; 1517 } 1518 1519 return 0; 1520 } 1521 1522 /* 1523 * Map data from the skb to a pipe. Should handle both the linear part, 1524 * the fragments, and the frag list. It does NOT handle frag lists within 1525 * the frag list, if such a thing exists. We'd probably need to recurse to 1526 * handle that cleanly. 1527 */ 1528 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1529 struct pipe_inode_info *pipe, unsigned int tlen, 1530 unsigned int flags) 1531 { 1532 struct partial_page partial[PIPE_DEF_BUFFERS]; 1533 struct page *pages[PIPE_DEF_BUFFERS]; 1534 struct splice_pipe_desc spd = { 1535 .pages = pages, 1536 .partial = partial, 1537 .flags = flags, 1538 .ops = &sock_pipe_buf_ops, 1539 .spd_release = sock_spd_release, 1540 }; 1541 struct sk_buff *frag_iter; 1542 struct sock *sk = skb->sk; 1543 int ret = 0; 1544 1545 if (splice_grow_spd(pipe, &spd)) 1546 return -ENOMEM; 1547 1548 /* 1549 * __skb_splice_bits() only fails if the output has no room left, 1550 * so no point in going over the frag_list for the error case. 1551 */ 1552 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) 1553 goto done; 1554 else if (!tlen) 1555 goto done; 1556 1557 /* 1558 * now see if we have a frag_list to map 1559 */ 1560 skb_walk_frags(skb, frag_iter) { 1561 if (!tlen) 1562 break; 1563 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) 1564 break; 1565 } 1566 1567 done: 1568 if (spd.nr_pages) { 1569 /* 1570 * Drop the socket lock, otherwise we have reverse 1571 * locking dependencies between sk_lock and i_mutex 1572 * here as compared to sendfile(). We enter here 1573 * with the socket lock held, and splice_to_pipe() will 1574 * grab the pipe inode lock. For sendfile() emulation, 1575 * we call into ->sendpage() with the i_mutex lock held 1576 * and networking will grab the socket lock. 1577 */ 1578 release_sock(sk); 1579 ret = splice_to_pipe(pipe, &spd); 1580 lock_sock(sk); 1581 } 1582 1583 splice_shrink_spd(pipe, &spd); 1584 return ret; 1585 } 1586 1587 /** 1588 * skb_store_bits - store bits from kernel buffer to skb 1589 * @skb: destination buffer 1590 * @offset: offset in destination 1591 * @from: source buffer 1592 * @len: number of bytes to copy 1593 * 1594 * Copy the specified number of bytes from the source buffer to the 1595 * destination skb. This function handles all the messy bits of 1596 * traversing fragment lists and such. 1597 */ 1598 1599 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1600 { 1601 int start = skb_headlen(skb); 1602 struct sk_buff *frag_iter; 1603 int i, copy; 1604 1605 if (offset > (int)skb->len - len) 1606 goto fault; 1607 1608 if ((copy = start - offset) > 0) { 1609 if (copy > len) 1610 copy = len; 1611 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1612 if ((len -= copy) == 0) 1613 return 0; 1614 offset += copy; 1615 from += copy; 1616 } 1617 1618 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1619 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1620 int end; 1621 1622 WARN_ON(start > offset + len); 1623 1624 end = start + frag->size; 1625 if ((copy = end - offset) > 0) { 1626 u8 *vaddr; 1627 1628 if (copy > len) 1629 copy = len; 1630 1631 vaddr = kmap_skb_frag(frag); 1632 memcpy(vaddr + frag->page_offset + offset - start, 1633 from, copy); 1634 kunmap_skb_frag(vaddr); 1635 1636 if ((len -= copy) == 0) 1637 return 0; 1638 offset += copy; 1639 from += copy; 1640 } 1641 start = end; 1642 } 1643 1644 skb_walk_frags(skb, frag_iter) { 1645 int end; 1646 1647 WARN_ON(start > offset + len); 1648 1649 end = start + frag_iter->len; 1650 if ((copy = end - offset) > 0) { 1651 if (copy > len) 1652 copy = len; 1653 if (skb_store_bits(frag_iter, offset - start, 1654 from, copy)) 1655 goto fault; 1656 if ((len -= copy) == 0) 1657 return 0; 1658 offset += copy; 1659 from += copy; 1660 } 1661 start = end; 1662 } 1663 if (!len) 1664 return 0; 1665 1666 fault: 1667 return -EFAULT; 1668 } 1669 EXPORT_SYMBOL(skb_store_bits); 1670 1671 /* Checksum skb data. */ 1672 1673 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1674 int len, __wsum csum) 1675 { 1676 int start = skb_headlen(skb); 1677 int i, copy = start - offset; 1678 struct sk_buff *frag_iter; 1679 int pos = 0; 1680 1681 /* Checksum header. */ 1682 if (copy > 0) { 1683 if (copy > len) 1684 copy = len; 1685 csum = csum_partial(skb->data + offset, copy, csum); 1686 if ((len -= copy) == 0) 1687 return csum; 1688 offset += copy; 1689 pos = copy; 1690 } 1691 1692 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1693 int end; 1694 1695 WARN_ON(start > offset + len); 1696 1697 end = start + skb_shinfo(skb)->frags[i].size; 1698 if ((copy = end - offset) > 0) { 1699 __wsum csum2; 1700 u8 *vaddr; 1701 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1702 1703 if (copy > len) 1704 copy = len; 1705 vaddr = kmap_skb_frag(frag); 1706 csum2 = csum_partial(vaddr + frag->page_offset + 1707 offset - start, copy, 0); 1708 kunmap_skb_frag(vaddr); 1709 csum = csum_block_add(csum, csum2, pos); 1710 if (!(len -= copy)) 1711 return csum; 1712 offset += copy; 1713 pos += copy; 1714 } 1715 start = end; 1716 } 1717 1718 skb_walk_frags(skb, frag_iter) { 1719 int end; 1720 1721 WARN_ON(start > offset + len); 1722 1723 end = start + frag_iter->len; 1724 if ((copy = end - offset) > 0) { 1725 __wsum csum2; 1726 if (copy > len) 1727 copy = len; 1728 csum2 = skb_checksum(frag_iter, offset - start, 1729 copy, 0); 1730 csum = csum_block_add(csum, csum2, pos); 1731 if ((len -= copy) == 0) 1732 return csum; 1733 offset += copy; 1734 pos += copy; 1735 } 1736 start = end; 1737 } 1738 BUG_ON(len); 1739 1740 return csum; 1741 } 1742 EXPORT_SYMBOL(skb_checksum); 1743 1744 /* Both of above in one bottle. */ 1745 1746 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1747 u8 *to, int len, __wsum csum) 1748 { 1749 int start = skb_headlen(skb); 1750 int i, copy = start - offset; 1751 struct sk_buff *frag_iter; 1752 int pos = 0; 1753 1754 /* Copy header. */ 1755 if (copy > 0) { 1756 if (copy > len) 1757 copy = len; 1758 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1759 copy, csum); 1760 if ((len -= copy) == 0) 1761 return csum; 1762 offset += copy; 1763 to += copy; 1764 pos = copy; 1765 } 1766 1767 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1768 int end; 1769 1770 WARN_ON(start > offset + len); 1771 1772 end = start + skb_shinfo(skb)->frags[i].size; 1773 if ((copy = end - offset) > 0) { 1774 __wsum csum2; 1775 u8 *vaddr; 1776 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1777 1778 if (copy > len) 1779 copy = len; 1780 vaddr = kmap_skb_frag(frag); 1781 csum2 = csum_partial_copy_nocheck(vaddr + 1782 frag->page_offset + 1783 offset - start, to, 1784 copy, 0); 1785 kunmap_skb_frag(vaddr); 1786 csum = csum_block_add(csum, csum2, pos); 1787 if (!(len -= copy)) 1788 return csum; 1789 offset += copy; 1790 to += copy; 1791 pos += copy; 1792 } 1793 start = end; 1794 } 1795 1796 skb_walk_frags(skb, frag_iter) { 1797 __wsum csum2; 1798 int end; 1799 1800 WARN_ON(start > offset + len); 1801 1802 end = start + frag_iter->len; 1803 if ((copy = end - offset) > 0) { 1804 if (copy > len) 1805 copy = len; 1806 csum2 = skb_copy_and_csum_bits(frag_iter, 1807 offset - start, 1808 to, copy, 0); 1809 csum = csum_block_add(csum, csum2, pos); 1810 if ((len -= copy) == 0) 1811 return csum; 1812 offset += copy; 1813 to += copy; 1814 pos += copy; 1815 } 1816 start = end; 1817 } 1818 BUG_ON(len); 1819 return csum; 1820 } 1821 EXPORT_SYMBOL(skb_copy_and_csum_bits); 1822 1823 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1824 { 1825 __wsum csum; 1826 long csstart; 1827 1828 if (skb->ip_summed == CHECKSUM_PARTIAL) 1829 csstart = skb_checksum_start_offset(skb); 1830 else 1831 csstart = skb_headlen(skb); 1832 1833 BUG_ON(csstart > skb_headlen(skb)); 1834 1835 skb_copy_from_linear_data(skb, to, csstart); 1836 1837 csum = 0; 1838 if (csstart != skb->len) 1839 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1840 skb->len - csstart, 0); 1841 1842 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1843 long csstuff = csstart + skb->csum_offset; 1844 1845 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1846 } 1847 } 1848 EXPORT_SYMBOL(skb_copy_and_csum_dev); 1849 1850 /** 1851 * skb_dequeue - remove from the head of the queue 1852 * @list: list to dequeue from 1853 * 1854 * Remove the head of the list. The list lock is taken so the function 1855 * may be used safely with other locking list functions. The head item is 1856 * returned or %NULL if the list is empty. 1857 */ 1858 1859 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1860 { 1861 unsigned long flags; 1862 struct sk_buff *result; 1863 1864 spin_lock_irqsave(&list->lock, flags); 1865 result = __skb_dequeue(list); 1866 spin_unlock_irqrestore(&list->lock, flags); 1867 return result; 1868 } 1869 EXPORT_SYMBOL(skb_dequeue); 1870 1871 /** 1872 * skb_dequeue_tail - remove from the tail of the queue 1873 * @list: list to dequeue from 1874 * 1875 * Remove the tail of the list. The list lock is taken so the function 1876 * may be used safely with other locking list functions. The tail item is 1877 * returned or %NULL if the list is empty. 1878 */ 1879 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1880 { 1881 unsigned long flags; 1882 struct sk_buff *result; 1883 1884 spin_lock_irqsave(&list->lock, flags); 1885 result = __skb_dequeue_tail(list); 1886 spin_unlock_irqrestore(&list->lock, flags); 1887 return result; 1888 } 1889 EXPORT_SYMBOL(skb_dequeue_tail); 1890 1891 /** 1892 * skb_queue_purge - empty a list 1893 * @list: list to empty 1894 * 1895 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1896 * the list and one reference dropped. This function takes the list 1897 * lock and is atomic with respect to other list locking functions. 1898 */ 1899 void skb_queue_purge(struct sk_buff_head *list) 1900 { 1901 struct sk_buff *skb; 1902 while ((skb = skb_dequeue(list)) != NULL) 1903 kfree_skb(skb); 1904 } 1905 EXPORT_SYMBOL(skb_queue_purge); 1906 1907 /** 1908 * skb_queue_head - queue a buffer at the list head 1909 * @list: list to use 1910 * @newsk: buffer to queue 1911 * 1912 * Queue a buffer at the start of the list. This function takes the 1913 * list lock and can be used safely with other locking &sk_buff functions 1914 * safely. 1915 * 1916 * A buffer cannot be placed on two lists at the same time. 1917 */ 1918 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1919 { 1920 unsigned long flags; 1921 1922 spin_lock_irqsave(&list->lock, flags); 1923 __skb_queue_head(list, newsk); 1924 spin_unlock_irqrestore(&list->lock, flags); 1925 } 1926 EXPORT_SYMBOL(skb_queue_head); 1927 1928 /** 1929 * skb_queue_tail - queue a buffer at the list tail 1930 * @list: list to use 1931 * @newsk: buffer to queue 1932 * 1933 * Queue a buffer at the tail of the list. This function takes the 1934 * list lock and can be used safely with other locking &sk_buff functions 1935 * safely. 1936 * 1937 * A buffer cannot be placed on two lists at the same time. 1938 */ 1939 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1940 { 1941 unsigned long flags; 1942 1943 spin_lock_irqsave(&list->lock, flags); 1944 __skb_queue_tail(list, newsk); 1945 spin_unlock_irqrestore(&list->lock, flags); 1946 } 1947 EXPORT_SYMBOL(skb_queue_tail); 1948 1949 /** 1950 * skb_unlink - remove a buffer from a list 1951 * @skb: buffer to remove 1952 * @list: list to use 1953 * 1954 * Remove a packet from a list. The list locks are taken and this 1955 * function is atomic with respect to other list locked calls 1956 * 1957 * You must know what list the SKB is on. 1958 */ 1959 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1960 { 1961 unsigned long flags; 1962 1963 spin_lock_irqsave(&list->lock, flags); 1964 __skb_unlink(skb, list); 1965 spin_unlock_irqrestore(&list->lock, flags); 1966 } 1967 EXPORT_SYMBOL(skb_unlink); 1968 1969 /** 1970 * skb_append - append a buffer 1971 * @old: buffer to insert after 1972 * @newsk: buffer to insert 1973 * @list: list to use 1974 * 1975 * Place a packet after a given packet in a list. The list locks are taken 1976 * and this function is atomic with respect to other list locked calls. 1977 * A buffer cannot be placed on two lists at the same time. 1978 */ 1979 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1980 { 1981 unsigned long flags; 1982 1983 spin_lock_irqsave(&list->lock, flags); 1984 __skb_queue_after(list, old, newsk); 1985 spin_unlock_irqrestore(&list->lock, flags); 1986 } 1987 EXPORT_SYMBOL(skb_append); 1988 1989 /** 1990 * skb_insert - insert a buffer 1991 * @old: buffer to insert before 1992 * @newsk: buffer to insert 1993 * @list: list to use 1994 * 1995 * Place a packet before a given packet in a list. The list locks are 1996 * taken and this function is atomic with respect to other list locked 1997 * calls. 1998 * 1999 * A buffer cannot be placed on two lists at the same time. 2000 */ 2001 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2002 { 2003 unsigned long flags; 2004 2005 spin_lock_irqsave(&list->lock, flags); 2006 __skb_insert(newsk, old->prev, old, list); 2007 spin_unlock_irqrestore(&list->lock, flags); 2008 } 2009 EXPORT_SYMBOL(skb_insert); 2010 2011 static inline void skb_split_inside_header(struct sk_buff *skb, 2012 struct sk_buff* skb1, 2013 const u32 len, const int pos) 2014 { 2015 int i; 2016 2017 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2018 pos - len); 2019 /* And move data appendix as is. */ 2020 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2021 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2022 2023 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2024 skb_shinfo(skb)->nr_frags = 0; 2025 skb1->data_len = skb->data_len; 2026 skb1->len += skb1->data_len; 2027 skb->data_len = 0; 2028 skb->len = len; 2029 skb_set_tail_pointer(skb, len); 2030 } 2031 2032 static inline void skb_split_no_header(struct sk_buff *skb, 2033 struct sk_buff* skb1, 2034 const u32 len, int pos) 2035 { 2036 int i, k = 0; 2037 const int nfrags = skb_shinfo(skb)->nr_frags; 2038 2039 skb_shinfo(skb)->nr_frags = 0; 2040 skb1->len = skb1->data_len = skb->len - len; 2041 skb->len = len; 2042 skb->data_len = len - pos; 2043 2044 for (i = 0; i < nfrags; i++) { 2045 int size = skb_shinfo(skb)->frags[i].size; 2046 2047 if (pos + size > len) { 2048 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2049 2050 if (pos < len) { 2051 /* Split frag. 2052 * We have two variants in this case: 2053 * 1. Move all the frag to the second 2054 * part, if it is possible. F.e. 2055 * this approach is mandatory for TUX, 2056 * where splitting is expensive. 2057 * 2. Split is accurately. We make this. 2058 */ 2059 get_page(skb_shinfo(skb)->frags[i].page); 2060 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2061 skb_shinfo(skb1)->frags[0].size -= len - pos; 2062 skb_shinfo(skb)->frags[i].size = len - pos; 2063 skb_shinfo(skb)->nr_frags++; 2064 } 2065 k++; 2066 } else 2067 skb_shinfo(skb)->nr_frags++; 2068 pos += size; 2069 } 2070 skb_shinfo(skb1)->nr_frags = k; 2071 } 2072 2073 /** 2074 * skb_split - Split fragmented skb to two parts at length len. 2075 * @skb: the buffer to split 2076 * @skb1: the buffer to receive the second part 2077 * @len: new length for skb 2078 */ 2079 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2080 { 2081 int pos = skb_headlen(skb); 2082 2083 if (len < pos) /* Split line is inside header. */ 2084 skb_split_inside_header(skb, skb1, len, pos); 2085 else /* Second chunk has no header, nothing to copy. */ 2086 skb_split_no_header(skb, skb1, len, pos); 2087 } 2088 EXPORT_SYMBOL(skb_split); 2089 2090 /* Shifting from/to a cloned skb is a no-go. 2091 * 2092 * Caller cannot keep skb_shinfo related pointers past calling here! 2093 */ 2094 static int skb_prepare_for_shift(struct sk_buff *skb) 2095 { 2096 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2097 } 2098 2099 /** 2100 * skb_shift - Shifts paged data partially from skb to another 2101 * @tgt: buffer into which tail data gets added 2102 * @skb: buffer from which the paged data comes from 2103 * @shiftlen: shift up to this many bytes 2104 * 2105 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2106 * the length of the skb, from tgt to skb. Returns number bytes shifted. 2107 * It's up to caller to free skb if everything was shifted. 2108 * 2109 * If @tgt runs out of frags, the whole operation is aborted. 2110 * 2111 * Skb cannot include anything else but paged data while tgt is allowed 2112 * to have non-paged data as well. 2113 * 2114 * TODO: full sized shift could be optimized but that would need 2115 * specialized skb free'er to handle frags without up-to-date nr_frags. 2116 */ 2117 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2118 { 2119 int from, to, merge, todo; 2120 struct skb_frag_struct *fragfrom, *fragto; 2121 2122 BUG_ON(shiftlen > skb->len); 2123 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2124 2125 todo = shiftlen; 2126 from = 0; 2127 to = skb_shinfo(tgt)->nr_frags; 2128 fragfrom = &skb_shinfo(skb)->frags[from]; 2129 2130 /* Actual merge is delayed until the point when we know we can 2131 * commit all, so that we don't have to undo partial changes 2132 */ 2133 if (!to || 2134 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) { 2135 merge = -1; 2136 } else { 2137 merge = to - 1; 2138 2139 todo -= fragfrom->size; 2140 if (todo < 0) { 2141 if (skb_prepare_for_shift(skb) || 2142 skb_prepare_for_shift(tgt)) 2143 return 0; 2144 2145 /* All previous frag pointers might be stale! */ 2146 fragfrom = &skb_shinfo(skb)->frags[from]; 2147 fragto = &skb_shinfo(tgt)->frags[merge]; 2148 2149 fragto->size += shiftlen; 2150 fragfrom->size -= shiftlen; 2151 fragfrom->page_offset += shiftlen; 2152 2153 goto onlymerged; 2154 } 2155 2156 from++; 2157 } 2158 2159 /* Skip full, not-fitting skb to avoid expensive operations */ 2160 if ((shiftlen == skb->len) && 2161 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2162 return 0; 2163 2164 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2165 return 0; 2166 2167 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2168 if (to == MAX_SKB_FRAGS) 2169 return 0; 2170 2171 fragfrom = &skb_shinfo(skb)->frags[from]; 2172 fragto = &skb_shinfo(tgt)->frags[to]; 2173 2174 if (todo >= fragfrom->size) { 2175 *fragto = *fragfrom; 2176 todo -= fragfrom->size; 2177 from++; 2178 to++; 2179 2180 } else { 2181 get_page(fragfrom->page); 2182 fragto->page = fragfrom->page; 2183 fragto->page_offset = fragfrom->page_offset; 2184 fragto->size = todo; 2185 2186 fragfrom->page_offset += todo; 2187 fragfrom->size -= todo; 2188 todo = 0; 2189 2190 to++; 2191 break; 2192 } 2193 } 2194 2195 /* Ready to "commit" this state change to tgt */ 2196 skb_shinfo(tgt)->nr_frags = to; 2197 2198 if (merge >= 0) { 2199 fragfrom = &skb_shinfo(skb)->frags[0]; 2200 fragto = &skb_shinfo(tgt)->frags[merge]; 2201 2202 fragto->size += fragfrom->size; 2203 put_page(fragfrom->page); 2204 } 2205 2206 /* Reposition in the original skb */ 2207 to = 0; 2208 while (from < skb_shinfo(skb)->nr_frags) 2209 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2210 skb_shinfo(skb)->nr_frags = to; 2211 2212 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2213 2214 onlymerged: 2215 /* Most likely the tgt won't ever need its checksum anymore, skb on 2216 * the other hand might need it if it needs to be resent 2217 */ 2218 tgt->ip_summed = CHECKSUM_PARTIAL; 2219 skb->ip_summed = CHECKSUM_PARTIAL; 2220 2221 /* Yak, is it really working this way? Some helper please? */ 2222 skb->len -= shiftlen; 2223 skb->data_len -= shiftlen; 2224 skb->truesize -= shiftlen; 2225 tgt->len += shiftlen; 2226 tgt->data_len += shiftlen; 2227 tgt->truesize += shiftlen; 2228 2229 return shiftlen; 2230 } 2231 2232 /** 2233 * skb_prepare_seq_read - Prepare a sequential read of skb data 2234 * @skb: the buffer to read 2235 * @from: lower offset of data to be read 2236 * @to: upper offset of data to be read 2237 * @st: state variable 2238 * 2239 * Initializes the specified state variable. Must be called before 2240 * invoking skb_seq_read() for the first time. 2241 */ 2242 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2243 unsigned int to, struct skb_seq_state *st) 2244 { 2245 st->lower_offset = from; 2246 st->upper_offset = to; 2247 st->root_skb = st->cur_skb = skb; 2248 st->frag_idx = st->stepped_offset = 0; 2249 st->frag_data = NULL; 2250 } 2251 EXPORT_SYMBOL(skb_prepare_seq_read); 2252 2253 /** 2254 * skb_seq_read - Sequentially read skb data 2255 * @consumed: number of bytes consumed by the caller so far 2256 * @data: destination pointer for data to be returned 2257 * @st: state variable 2258 * 2259 * Reads a block of skb data at &consumed relative to the 2260 * lower offset specified to skb_prepare_seq_read(). Assigns 2261 * the head of the data block to &data and returns the length 2262 * of the block or 0 if the end of the skb data or the upper 2263 * offset has been reached. 2264 * 2265 * The caller is not required to consume all of the data 2266 * returned, i.e. &consumed is typically set to the number 2267 * of bytes already consumed and the next call to 2268 * skb_seq_read() will return the remaining part of the block. 2269 * 2270 * Note 1: The size of each block of data returned can be arbitary, 2271 * this limitation is the cost for zerocopy seqeuental 2272 * reads of potentially non linear data. 2273 * 2274 * Note 2: Fragment lists within fragments are not implemented 2275 * at the moment, state->root_skb could be replaced with 2276 * a stack for this purpose. 2277 */ 2278 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2279 struct skb_seq_state *st) 2280 { 2281 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2282 skb_frag_t *frag; 2283 2284 if (unlikely(abs_offset >= st->upper_offset)) 2285 return 0; 2286 2287 next_skb: 2288 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2289 2290 if (abs_offset < block_limit && !st->frag_data) { 2291 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2292 return block_limit - abs_offset; 2293 } 2294 2295 if (st->frag_idx == 0 && !st->frag_data) 2296 st->stepped_offset += skb_headlen(st->cur_skb); 2297 2298 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2299 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2300 block_limit = frag->size + st->stepped_offset; 2301 2302 if (abs_offset < block_limit) { 2303 if (!st->frag_data) 2304 st->frag_data = kmap_skb_frag(frag); 2305 2306 *data = (u8 *) st->frag_data + frag->page_offset + 2307 (abs_offset - st->stepped_offset); 2308 2309 return block_limit - abs_offset; 2310 } 2311 2312 if (st->frag_data) { 2313 kunmap_skb_frag(st->frag_data); 2314 st->frag_data = NULL; 2315 } 2316 2317 st->frag_idx++; 2318 st->stepped_offset += frag->size; 2319 } 2320 2321 if (st->frag_data) { 2322 kunmap_skb_frag(st->frag_data); 2323 st->frag_data = NULL; 2324 } 2325 2326 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2327 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2328 st->frag_idx = 0; 2329 goto next_skb; 2330 } else if (st->cur_skb->next) { 2331 st->cur_skb = st->cur_skb->next; 2332 st->frag_idx = 0; 2333 goto next_skb; 2334 } 2335 2336 return 0; 2337 } 2338 EXPORT_SYMBOL(skb_seq_read); 2339 2340 /** 2341 * skb_abort_seq_read - Abort a sequential read of skb data 2342 * @st: state variable 2343 * 2344 * Must be called if skb_seq_read() was not called until it 2345 * returned 0. 2346 */ 2347 void skb_abort_seq_read(struct skb_seq_state *st) 2348 { 2349 if (st->frag_data) 2350 kunmap_skb_frag(st->frag_data); 2351 } 2352 EXPORT_SYMBOL(skb_abort_seq_read); 2353 2354 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2355 2356 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2357 struct ts_config *conf, 2358 struct ts_state *state) 2359 { 2360 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2361 } 2362 2363 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2364 { 2365 skb_abort_seq_read(TS_SKB_CB(state)); 2366 } 2367 2368 /** 2369 * skb_find_text - Find a text pattern in skb data 2370 * @skb: the buffer to look in 2371 * @from: search offset 2372 * @to: search limit 2373 * @config: textsearch configuration 2374 * @state: uninitialized textsearch state variable 2375 * 2376 * Finds a pattern in the skb data according to the specified 2377 * textsearch configuration. Use textsearch_next() to retrieve 2378 * subsequent occurrences of the pattern. Returns the offset 2379 * to the first occurrence or UINT_MAX if no match was found. 2380 */ 2381 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2382 unsigned int to, struct ts_config *config, 2383 struct ts_state *state) 2384 { 2385 unsigned int ret; 2386 2387 config->get_next_block = skb_ts_get_next_block; 2388 config->finish = skb_ts_finish; 2389 2390 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2391 2392 ret = textsearch_find(config, state); 2393 return (ret <= to - from ? ret : UINT_MAX); 2394 } 2395 EXPORT_SYMBOL(skb_find_text); 2396 2397 /** 2398 * skb_append_datato_frags: - append the user data to a skb 2399 * @sk: sock structure 2400 * @skb: skb structure to be appened with user data. 2401 * @getfrag: call back function to be used for getting the user data 2402 * @from: pointer to user message iov 2403 * @length: length of the iov message 2404 * 2405 * Description: This procedure append the user data in the fragment part 2406 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2407 */ 2408 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2409 int (*getfrag)(void *from, char *to, int offset, 2410 int len, int odd, struct sk_buff *skb), 2411 void *from, int length) 2412 { 2413 int frg_cnt = 0; 2414 skb_frag_t *frag = NULL; 2415 struct page *page = NULL; 2416 int copy, left; 2417 int offset = 0; 2418 int ret; 2419 2420 do { 2421 /* Return error if we don't have space for new frag */ 2422 frg_cnt = skb_shinfo(skb)->nr_frags; 2423 if (frg_cnt >= MAX_SKB_FRAGS) 2424 return -EFAULT; 2425 2426 /* allocate a new page for next frag */ 2427 page = alloc_pages(sk->sk_allocation, 0); 2428 2429 /* If alloc_page fails just return failure and caller will 2430 * free previous allocated pages by doing kfree_skb() 2431 */ 2432 if (page == NULL) 2433 return -ENOMEM; 2434 2435 /* initialize the next frag */ 2436 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 2437 skb->truesize += PAGE_SIZE; 2438 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 2439 2440 /* get the new initialized frag */ 2441 frg_cnt = skb_shinfo(skb)->nr_frags; 2442 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 2443 2444 /* copy the user data to page */ 2445 left = PAGE_SIZE - frag->page_offset; 2446 copy = (length > left)? left : length; 2447 2448 ret = getfrag(from, (page_address(frag->page) + 2449 frag->page_offset + frag->size), 2450 offset, copy, 0, skb); 2451 if (ret < 0) 2452 return -EFAULT; 2453 2454 /* copy was successful so update the size parameters */ 2455 frag->size += copy; 2456 skb->len += copy; 2457 skb->data_len += copy; 2458 offset += copy; 2459 length -= copy; 2460 2461 } while (length > 0); 2462 2463 return 0; 2464 } 2465 EXPORT_SYMBOL(skb_append_datato_frags); 2466 2467 /** 2468 * skb_pull_rcsum - pull skb and update receive checksum 2469 * @skb: buffer to update 2470 * @len: length of data pulled 2471 * 2472 * This function performs an skb_pull on the packet and updates 2473 * the CHECKSUM_COMPLETE checksum. It should be used on 2474 * receive path processing instead of skb_pull unless you know 2475 * that the checksum difference is zero (e.g., a valid IP header) 2476 * or you are setting ip_summed to CHECKSUM_NONE. 2477 */ 2478 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2479 { 2480 BUG_ON(len > skb->len); 2481 skb->len -= len; 2482 BUG_ON(skb->len < skb->data_len); 2483 skb_postpull_rcsum(skb, skb->data, len); 2484 return skb->data += len; 2485 } 2486 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2487 2488 /** 2489 * skb_segment - Perform protocol segmentation on skb. 2490 * @skb: buffer to segment 2491 * @features: features for the output path (see dev->features) 2492 * 2493 * This function performs segmentation on the given skb. It returns 2494 * a pointer to the first in a list of new skbs for the segments. 2495 * In case of error it returns ERR_PTR(err). 2496 */ 2497 struct sk_buff *skb_segment(struct sk_buff *skb, u32 features) 2498 { 2499 struct sk_buff *segs = NULL; 2500 struct sk_buff *tail = NULL; 2501 struct sk_buff *fskb = skb_shinfo(skb)->frag_list; 2502 unsigned int mss = skb_shinfo(skb)->gso_size; 2503 unsigned int doffset = skb->data - skb_mac_header(skb); 2504 unsigned int offset = doffset; 2505 unsigned int headroom; 2506 unsigned int len; 2507 int sg = !!(features & NETIF_F_SG); 2508 int nfrags = skb_shinfo(skb)->nr_frags; 2509 int err = -ENOMEM; 2510 int i = 0; 2511 int pos; 2512 2513 __skb_push(skb, doffset); 2514 headroom = skb_headroom(skb); 2515 pos = skb_headlen(skb); 2516 2517 do { 2518 struct sk_buff *nskb; 2519 skb_frag_t *frag; 2520 int hsize; 2521 int size; 2522 2523 len = skb->len - offset; 2524 if (len > mss) 2525 len = mss; 2526 2527 hsize = skb_headlen(skb) - offset; 2528 if (hsize < 0) 2529 hsize = 0; 2530 if (hsize > len || !sg) 2531 hsize = len; 2532 2533 if (!hsize && i >= nfrags) { 2534 BUG_ON(fskb->len != len); 2535 2536 pos += len; 2537 nskb = skb_clone(fskb, GFP_ATOMIC); 2538 fskb = fskb->next; 2539 2540 if (unlikely(!nskb)) 2541 goto err; 2542 2543 hsize = skb_end_pointer(nskb) - nskb->head; 2544 if (skb_cow_head(nskb, doffset + headroom)) { 2545 kfree_skb(nskb); 2546 goto err; 2547 } 2548 2549 nskb->truesize += skb_end_pointer(nskb) - nskb->head - 2550 hsize; 2551 skb_release_head_state(nskb); 2552 __skb_push(nskb, doffset); 2553 } else { 2554 nskb = alloc_skb(hsize + doffset + headroom, 2555 GFP_ATOMIC); 2556 2557 if (unlikely(!nskb)) 2558 goto err; 2559 2560 skb_reserve(nskb, headroom); 2561 __skb_put(nskb, doffset); 2562 } 2563 2564 if (segs) 2565 tail->next = nskb; 2566 else 2567 segs = nskb; 2568 tail = nskb; 2569 2570 __copy_skb_header(nskb, skb); 2571 nskb->mac_len = skb->mac_len; 2572 2573 /* nskb and skb might have different headroom */ 2574 if (nskb->ip_summed == CHECKSUM_PARTIAL) 2575 nskb->csum_start += skb_headroom(nskb) - headroom; 2576 2577 skb_reset_mac_header(nskb); 2578 skb_set_network_header(nskb, skb->mac_len); 2579 nskb->transport_header = (nskb->network_header + 2580 skb_network_header_len(skb)); 2581 skb_copy_from_linear_data(skb, nskb->data, doffset); 2582 2583 if (fskb != skb_shinfo(skb)->frag_list) 2584 continue; 2585 2586 if (!sg) { 2587 nskb->ip_summed = CHECKSUM_NONE; 2588 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2589 skb_put(nskb, len), 2590 len, 0); 2591 continue; 2592 } 2593 2594 frag = skb_shinfo(nskb)->frags; 2595 2596 skb_copy_from_linear_data_offset(skb, offset, 2597 skb_put(nskb, hsize), hsize); 2598 2599 while (pos < offset + len && i < nfrags) { 2600 *frag = skb_shinfo(skb)->frags[i]; 2601 get_page(frag->page); 2602 size = frag->size; 2603 2604 if (pos < offset) { 2605 frag->page_offset += offset - pos; 2606 frag->size -= offset - pos; 2607 } 2608 2609 skb_shinfo(nskb)->nr_frags++; 2610 2611 if (pos + size <= offset + len) { 2612 i++; 2613 pos += size; 2614 } else { 2615 frag->size -= pos + size - (offset + len); 2616 goto skip_fraglist; 2617 } 2618 2619 frag++; 2620 } 2621 2622 if (pos < offset + len) { 2623 struct sk_buff *fskb2 = fskb; 2624 2625 BUG_ON(pos + fskb->len != offset + len); 2626 2627 pos += fskb->len; 2628 fskb = fskb->next; 2629 2630 if (fskb2->next) { 2631 fskb2 = skb_clone(fskb2, GFP_ATOMIC); 2632 if (!fskb2) 2633 goto err; 2634 } else 2635 skb_get(fskb2); 2636 2637 SKB_FRAG_ASSERT(nskb); 2638 skb_shinfo(nskb)->frag_list = fskb2; 2639 } 2640 2641 skip_fraglist: 2642 nskb->data_len = len - hsize; 2643 nskb->len += nskb->data_len; 2644 nskb->truesize += nskb->data_len; 2645 } while ((offset += len) < skb->len); 2646 2647 return segs; 2648 2649 err: 2650 while ((skb = segs)) { 2651 segs = skb->next; 2652 kfree_skb(skb); 2653 } 2654 return ERR_PTR(err); 2655 } 2656 EXPORT_SYMBOL_GPL(skb_segment); 2657 2658 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2659 { 2660 struct sk_buff *p = *head; 2661 struct sk_buff *nskb; 2662 struct skb_shared_info *skbinfo = skb_shinfo(skb); 2663 struct skb_shared_info *pinfo = skb_shinfo(p); 2664 unsigned int headroom; 2665 unsigned int len = skb_gro_len(skb); 2666 unsigned int offset = skb_gro_offset(skb); 2667 unsigned int headlen = skb_headlen(skb); 2668 2669 if (p->len + len >= 65536) 2670 return -E2BIG; 2671 2672 if (pinfo->frag_list) 2673 goto merge; 2674 else if (headlen <= offset) { 2675 skb_frag_t *frag; 2676 skb_frag_t *frag2; 2677 int i = skbinfo->nr_frags; 2678 int nr_frags = pinfo->nr_frags + i; 2679 2680 offset -= headlen; 2681 2682 if (nr_frags > MAX_SKB_FRAGS) 2683 return -E2BIG; 2684 2685 pinfo->nr_frags = nr_frags; 2686 skbinfo->nr_frags = 0; 2687 2688 frag = pinfo->frags + nr_frags; 2689 frag2 = skbinfo->frags + i; 2690 do { 2691 *--frag = *--frag2; 2692 } while (--i); 2693 2694 frag->page_offset += offset; 2695 frag->size -= offset; 2696 2697 skb->truesize -= skb->data_len; 2698 skb->len -= skb->data_len; 2699 skb->data_len = 0; 2700 2701 NAPI_GRO_CB(skb)->free = 1; 2702 goto done; 2703 } else if (skb_gro_len(p) != pinfo->gso_size) 2704 return -E2BIG; 2705 2706 headroom = skb_headroom(p); 2707 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC); 2708 if (unlikely(!nskb)) 2709 return -ENOMEM; 2710 2711 __copy_skb_header(nskb, p); 2712 nskb->mac_len = p->mac_len; 2713 2714 skb_reserve(nskb, headroom); 2715 __skb_put(nskb, skb_gro_offset(p)); 2716 2717 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 2718 skb_set_network_header(nskb, skb_network_offset(p)); 2719 skb_set_transport_header(nskb, skb_transport_offset(p)); 2720 2721 __skb_pull(p, skb_gro_offset(p)); 2722 memcpy(skb_mac_header(nskb), skb_mac_header(p), 2723 p->data - skb_mac_header(p)); 2724 2725 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p); 2726 skb_shinfo(nskb)->frag_list = p; 2727 skb_shinfo(nskb)->gso_size = pinfo->gso_size; 2728 pinfo->gso_size = 0; 2729 skb_header_release(p); 2730 nskb->prev = p; 2731 2732 nskb->data_len += p->len; 2733 nskb->truesize += p->len; 2734 nskb->len += p->len; 2735 2736 *head = nskb; 2737 nskb->next = p->next; 2738 p->next = NULL; 2739 2740 p = nskb; 2741 2742 merge: 2743 if (offset > headlen) { 2744 unsigned int eat = offset - headlen; 2745 2746 skbinfo->frags[0].page_offset += eat; 2747 skbinfo->frags[0].size -= eat; 2748 skb->data_len -= eat; 2749 skb->len -= eat; 2750 offset = headlen; 2751 } 2752 2753 __skb_pull(skb, offset); 2754 2755 p->prev->next = skb; 2756 p->prev = skb; 2757 skb_header_release(skb); 2758 2759 done: 2760 NAPI_GRO_CB(p)->count++; 2761 p->data_len += len; 2762 p->truesize += len; 2763 p->len += len; 2764 2765 NAPI_GRO_CB(skb)->same_flow = 1; 2766 return 0; 2767 } 2768 EXPORT_SYMBOL_GPL(skb_gro_receive); 2769 2770 void __init skb_init(void) 2771 { 2772 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2773 sizeof(struct sk_buff), 2774 0, 2775 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2776 NULL); 2777 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2778 (2*sizeof(struct sk_buff)) + 2779 sizeof(atomic_t), 2780 0, 2781 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2782 NULL); 2783 } 2784 2785 /** 2786 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2787 * @skb: Socket buffer containing the buffers to be mapped 2788 * @sg: The scatter-gather list to map into 2789 * @offset: The offset into the buffer's contents to start mapping 2790 * @len: Length of buffer space to be mapped 2791 * 2792 * Fill the specified scatter-gather list with mappings/pointers into a 2793 * region of the buffer space attached to a socket buffer. 2794 */ 2795 static int 2796 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2797 { 2798 int start = skb_headlen(skb); 2799 int i, copy = start - offset; 2800 struct sk_buff *frag_iter; 2801 int elt = 0; 2802 2803 if (copy > 0) { 2804 if (copy > len) 2805 copy = len; 2806 sg_set_buf(sg, skb->data + offset, copy); 2807 elt++; 2808 if ((len -= copy) == 0) 2809 return elt; 2810 offset += copy; 2811 } 2812 2813 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2814 int end; 2815 2816 WARN_ON(start > offset + len); 2817 2818 end = start + skb_shinfo(skb)->frags[i].size; 2819 if ((copy = end - offset) > 0) { 2820 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2821 2822 if (copy > len) 2823 copy = len; 2824 sg_set_page(&sg[elt], frag->page, copy, 2825 frag->page_offset+offset-start); 2826 elt++; 2827 if (!(len -= copy)) 2828 return elt; 2829 offset += copy; 2830 } 2831 start = end; 2832 } 2833 2834 skb_walk_frags(skb, frag_iter) { 2835 int end; 2836 2837 WARN_ON(start > offset + len); 2838 2839 end = start + frag_iter->len; 2840 if ((copy = end - offset) > 0) { 2841 if (copy > len) 2842 copy = len; 2843 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 2844 copy); 2845 if ((len -= copy) == 0) 2846 return elt; 2847 offset += copy; 2848 } 2849 start = end; 2850 } 2851 BUG_ON(len); 2852 return elt; 2853 } 2854 2855 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2856 { 2857 int nsg = __skb_to_sgvec(skb, sg, offset, len); 2858 2859 sg_mark_end(&sg[nsg - 1]); 2860 2861 return nsg; 2862 } 2863 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2864 2865 /** 2866 * skb_cow_data - Check that a socket buffer's data buffers are writable 2867 * @skb: The socket buffer to check. 2868 * @tailbits: Amount of trailing space to be added 2869 * @trailer: Returned pointer to the skb where the @tailbits space begins 2870 * 2871 * Make sure that the data buffers attached to a socket buffer are 2872 * writable. If they are not, private copies are made of the data buffers 2873 * and the socket buffer is set to use these instead. 2874 * 2875 * If @tailbits is given, make sure that there is space to write @tailbits 2876 * bytes of data beyond current end of socket buffer. @trailer will be 2877 * set to point to the skb in which this space begins. 2878 * 2879 * The number of scatterlist elements required to completely map the 2880 * COW'd and extended socket buffer will be returned. 2881 */ 2882 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2883 { 2884 int copyflag; 2885 int elt; 2886 struct sk_buff *skb1, **skb_p; 2887 2888 /* If skb is cloned or its head is paged, reallocate 2889 * head pulling out all the pages (pages are considered not writable 2890 * at the moment even if they are anonymous). 2891 */ 2892 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2893 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2894 return -ENOMEM; 2895 2896 /* Easy case. Most of packets will go this way. */ 2897 if (!skb_has_frag_list(skb)) { 2898 /* A little of trouble, not enough of space for trailer. 2899 * This should not happen, when stack is tuned to generate 2900 * good frames. OK, on miss we reallocate and reserve even more 2901 * space, 128 bytes is fair. */ 2902 2903 if (skb_tailroom(skb) < tailbits && 2904 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2905 return -ENOMEM; 2906 2907 /* Voila! */ 2908 *trailer = skb; 2909 return 1; 2910 } 2911 2912 /* Misery. We are in troubles, going to mincer fragments... */ 2913 2914 elt = 1; 2915 skb_p = &skb_shinfo(skb)->frag_list; 2916 copyflag = 0; 2917 2918 while ((skb1 = *skb_p) != NULL) { 2919 int ntail = 0; 2920 2921 /* The fragment is partially pulled by someone, 2922 * this can happen on input. Copy it and everything 2923 * after it. */ 2924 2925 if (skb_shared(skb1)) 2926 copyflag = 1; 2927 2928 /* If the skb is the last, worry about trailer. */ 2929 2930 if (skb1->next == NULL && tailbits) { 2931 if (skb_shinfo(skb1)->nr_frags || 2932 skb_has_frag_list(skb1) || 2933 skb_tailroom(skb1) < tailbits) 2934 ntail = tailbits + 128; 2935 } 2936 2937 if (copyflag || 2938 skb_cloned(skb1) || 2939 ntail || 2940 skb_shinfo(skb1)->nr_frags || 2941 skb_has_frag_list(skb1)) { 2942 struct sk_buff *skb2; 2943 2944 /* Fuck, we are miserable poor guys... */ 2945 if (ntail == 0) 2946 skb2 = skb_copy(skb1, GFP_ATOMIC); 2947 else 2948 skb2 = skb_copy_expand(skb1, 2949 skb_headroom(skb1), 2950 ntail, 2951 GFP_ATOMIC); 2952 if (unlikely(skb2 == NULL)) 2953 return -ENOMEM; 2954 2955 if (skb1->sk) 2956 skb_set_owner_w(skb2, skb1->sk); 2957 2958 /* Looking around. Are we still alive? 2959 * OK, link new skb, drop old one */ 2960 2961 skb2->next = skb1->next; 2962 *skb_p = skb2; 2963 kfree_skb(skb1); 2964 skb1 = skb2; 2965 } 2966 elt++; 2967 *trailer = skb1; 2968 skb_p = &skb1->next; 2969 } 2970 2971 return elt; 2972 } 2973 EXPORT_SYMBOL_GPL(skb_cow_data); 2974 2975 static void sock_rmem_free(struct sk_buff *skb) 2976 { 2977 struct sock *sk = skb->sk; 2978 2979 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 2980 } 2981 2982 /* 2983 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 2984 */ 2985 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 2986 { 2987 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 2988 (unsigned)sk->sk_rcvbuf) 2989 return -ENOMEM; 2990 2991 skb_orphan(skb); 2992 skb->sk = sk; 2993 skb->destructor = sock_rmem_free; 2994 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2995 2996 skb_queue_tail(&sk->sk_error_queue, skb); 2997 if (!sock_flag(sk, SOCK_DEAD)) 2998 sk->sk_data_ready(sk, skb->len); 2999 return 0; 3000 } 3001 EXPORT_SYMBOL(sock_queue_err_skb); 3002 3003 void skb_tstamp_tx(struct sk_buff *orig_skb, 3004 struct skb_shared_hwtstamps *hwtstamps) 3005 { 3006 struct sock *sk = orig_skb->sk; 3007 struct sock_exterr_skb *serr; 3008 struct sk_buff *skb; 3009 int err; 3010 3011 if (!sk) 3012 return; 3013 3014 skb = skb_clone(orig_skb, GFP_ATOMIC); 3015 if (!skb) 3016 return; 3017 3018 if (hwtstamps) { 3019 *skb_hwtstamps(skb) = 3020 *hwtstamps; 3021 } else { 3022 /* 3023 * no hardware time stamps available, 3024 * so keep the shared tx_flags and only 3025 * store software time stamp 3026 */ 3027 skb->tstamp = ktime_get_real(); 3028 } 3029 3030 serr = SKB_EXT_ERR(skb); 3031 memset(serr, 0, sizeof(*serr)); 3032 serr->ee.ee_errno = ENOMSG; 3033 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3034 3035 err = sock_queue_err_skb(sk, skb); 3036 3037 if (err) 3038 kfree_skb(skb); 3039 } 3040 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3041 3042 3043 /** 3044 * skb_partial_csum_set - set up and verify partial csum values for packet 3045 * @skb: the skb to set 3046 * @start: the number of bytes after skb->data to start checksumming. 3047 * @off: the offset from start to place the checksum. 3048 * 3049 * For untrusted partially-checksummed packets, we need to make sure the values 3050 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3051 * 3052 * This function checks and sets those values and skb->ip_summed: if this 3053 * returns false you should drop the packet. 3054 */ 3055 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3056 { 3057 if (unlikely(start > skb_headlen(skb)) || 3058 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3059 if (net_ratelimit()) 3060 printk(KERN_WARNING 3061 "bad partial csum: csum=%u/%u len=%u\n", 3062 start, off, skb_headlen(skb)); 3063 return false; 3064 } 3065 skb->ip_summed = CHECKSUM_PARTIAL; 3066 skb->csum_start = skb_headroom(skb) + start; 3067 skb->csum_offset = off; 3068 return true; 3069 } 3070 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3071 3072 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3073 { 3074 if (net_ratelimit()) 3075 pr_warning("%s: received packets cannot be forwarded" 3076 " while LRO is enabled\n", skb->dev->name); 3077 } 3078 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3079