1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #include <linux/module.h> 40 #include <linux/types.h> 41 #include <linux/kernel.h> 42 #include <linux/mm.h> 43 #include <linux/interrupt.h> 44 #include <linux/in.h> 45 #include <linux/inet.h> 46 #include <linux/slab.h> 47 #include <linux/netdevice.h> 48 #ifdef CONFIG_NET_CLS_ACT 49 #include <net/pkt_sched.h> 50 #endif 51 #include <linux/string.h> 52 #include <linux/skbuff.h> 53 #include <linux/splice.h> 54 #include <linux/cache.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/init.h> 57 #include <linux/scatterlist.h> 58 59 #include <net/protocol.h> 60 #include <net/dst.h> 61 #include <net/sock.h> 62 #include <net/checksum.h> 63 #include <net/xfrm.h> 64 65 #include <asm/uaccess.h> 66 #include <asm/system.h> 67 68 #include "kmap_skb.h" 69 70 static struct kmem_cache *skbuff_head_cache __read_mostly; 71 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 72 73 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 74 struct pipe_buffer *buf) 75 { 76 struct sk_buff *skb = (struct sk_buff *) buf->private; 77 78 kfree_skb(skb); 79 } 80 81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 82 struct pipe_buffer *buf) 83 { 84 struct sk_buff *skb = (struct sk_buff *) buf->private; 85 86 skb_get(skb); 87 } 88 89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 90 struct pipe_buffer *buf) 91 { 92 return 1; 93 } 94 95 96 /* Pipe buffer operations for a socket. */ 97 static struct pipe_buf_operations sock_pipe_buf_ops = { 98 .can_merge = 0, 99 .map = generic_pipe_buf_map, 100 .unmap = generic_pipe_buf_unmap, 101 .confirm = generic_pipe_buf_confirm, 102 .release = sock_pipe_buf_release, 103 .steal = sock_pipe_buf_steal, 104 .get = sock_pipe_buf_get, 105 }; 106 107 /* 108 * Keep out-of-line to prevent kernel bloat. 109 * __builtin_return_address is not used because it is not always 110 * reliable. 111 */ 112 113 /** 114 * skb_over_panic - private function 115 * @skb: buffer 116 * @sz: size 117 * @here: address 118 * 119 * Out of line support code for skb_put(). Not user callable. 120 */ 121 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 122 { 123 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 124 "data:%p tail:%#lx end:%#lx dev:%s\n", 125 here, skb->len, sz, skb->head, skb->data, 126 (unsigned long)skb->tail, (unsigned long)skb->end, 127 skb->dev ? skb->dev->name : "<NULL>"); 128 BUG(); 129 } 130 131 /** 132 * skb_under_panic - private function 133 * @skb: buffer 134 * @sz: size 135 * @here: address 136 * 137 * Out of line support code for skb_push(). Not user callable. 138 */ 139 140 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 141 { 142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 143 "data:%p tail:%#lx end:%#lx dev:%s\n", 144 here, skb->len, sz, skb->head, skb->data, 145 (unsigned long)skb->tail, (unsigned long)skb->end, 146 skb->dev ? skb->dev->name : "<NULL>"); 147 BUG(); 148 } 149 150 void skb_truesize_bug(struct sk_buff *skb) 151 { 152 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 153 "len=%u, sizeof(sk_buff)=%Zd\n", 154 skb->truesize, skb->len, sizeof(struct sk_buff)); 155 } 156 EXPORT_SYMBOL(skb_truesize_bug); 157 158 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 159 * 'private' fields and also do memory statistics to find all the 160 * [BEEP] leaks. 161 * 162 */ 163 164 /** 165 * __alloc_skb - allocate a network buffer 166 * @size: size to allocate 167 * @gfp_mask: allocation mask 168 * @fclone: allocate from fclone cache instead of head cache 169 * and allocate a cloned (child) skb 170 * @node: numa node to allocate memory on 171 * 172 * Allocate a new &sk_buff. The returned buffer has no headroom and a 173 * tail room of size bytes. The object has a reference count of one. 174 * The return is the buffer. On a failure the return is %NULL. 175 * 176 * Buffers may only be allocated from interrupts using a @gfp_mask of 177 * %GFP_ATOMIC. 178 */ 179 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 180 int fclone, int node) 181 { 182 struct kmem_cache *cache; 183 struct skb_shared_info *shinfo; 184 struct sk_buff *skb; 185 u8 *data; 186 187 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 188 189 /* Get the HEAD */ 190 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 191 if (!skb) 192 goto out; 193 194 size = SKB_DATA_ALIGN(size); 195 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 196 gfp_mask, node); 197 if (!data) 198 goto nodata; 199 200 /* 201 * Only clear those fields we need to clear, not those that we will 202 * actually initialise below. Hence, don't put any more fields after 203 * the tail pointer in struct sk_buff! 204 */ 205 memset(skb, 0, offsetof(struct sk_buff, tail)); 206 skb->truesize = size + sizeof(struct sk_buff); 207 atomic_set(&skb->users, 1); 208 skb->head = data; 209 skb->data = data; 210 skb_reset_tail_pointer(skb); 211 skb->end = skb->tail + size; 212 /* make sure we initialize shinfo sequentially */ 213 shinfo = skb_shinfo(skb); 214 atomic_set(&shinfo->dataref, 1); 215 shinfo->nr_frags = 0; 216 shinfo->gso_size = 0; 217 shinfo->gso_segs = 0; 218 shinfo->gso_type = 0; 219 shinfo->ip6_frag_id = 0; 220 shinfo->frag_list = NULL; 221 222 if (fclone) { 223 struct sk_buff *child = skb + 1; 224 atomic_t *fclone_ref = (atomic_t *) (child + 1); 225 226 skb->fclone = SKB_FCLONE_ORIG; 227 atomic_set(fclone_ref, 1); 228 229 child->fclone = SKB_FCLONE_UNAVAILABLE; 230 } 231 out: 232 return skb; 233 nodata: 234 kmem_cache_free(cache, skb); 235 skb = NULL; 236 goto out; 237 } 238 239 /** 240 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 241 * @dev: network device to receive on 242 * @length: length to allocate 243 * @gfp_mask: get_free_pages mask, passed to alloc_skb 244 * 245 * Allocate a new &sk_buff and assign it a usage count of one. The 246 * buffer has unspecified headroom built in. Users should allocate 247 * the headroom they think they need without accounting for the 248 * built in space. The built in space is used for optimisations. 249 * 250 * %NULL is returned if there is no free memory. 251 */ 252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 253 unsigned int length, gfp_t gfp_mask) 254 { 255 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 256 struct sk_buff *skb; 257 258 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 259 if (likely(skb)) { 260 skb_reserve(skb, NET_SKB_PAD); 261 skb->dev = dev; 262 } 263 return skb; 264 } 265 266 /** 267 * dev_alloc_skb - allocate an skbuff for receiving 268 * @length: length to allocate 269 * 270 * Allocate a new &sk_buff and assign it a usage count of one. The 271 * buffer has unspecified headroom built in. Users should allocate 272 * the headroom they think they need without accounting for the 273 * built in space. The built in space is used for optimisations. 274 * 275 * %NULL is returned if there is no free memory. Although this function 276 * allocates memory it can be called from an interrupt. 277 */ 278 struct sk_buff *dev_alloc_skb(unsigned int length) 279 { 280 /* 281 * There is more code here than it seems: 282 * __dev_alloc_skb is an inline 283 */ 284 return __dev_alloc_skb(length, GFP_ATOMIC); 285 } 286 EXPORT_SYMBOL(dev_alloc_skb); 287 288 static void skb_drop_list(struct sk_buff **listp) 289 { 290 struct sk_buff *list = *listp; 291 292 *listp = NULL; 293 294 do { 295 struct sk_buff *this = list; 296 list = list->next; 297 kfree_skb(this); 298 } while (list); 299 } 300 301 static inline void skb_drop_fraglist(struct sk_buff *skb) 302 { 303 skb_drop_list(&skb_shinfo(skb)->frag_list); 304 } 305 306 static void skb_clone_fraglist(struct sk_buff *skb) 307 { 308 struct sk_buff *list; 309 310 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 311 skb_get(list); 312 } 313 314 static void skb_release_data(struct sk_buff *skb) 315 { 316 if (!skb->cloned || 317 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 318 &skb_shinfo(skb)->dataref)) { 319 if (skb_shinfo(skb)->nr_frags) { 320 int i; 321 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 322 put_page(skb_shinfo(skb)->frags[i].page); 323 } 324 325 if (skb_shinfo(skb)->frag_list) 326 skb_drop_fraglist(skb); 327 328 kfree(skb->head); 329 } 330 } 331 332 /* 333 * Free an skbuff by memory without cleaning the state. 334 */ 335 static void kfree_skbmem(struct sk_buff *skb) 336 { 337 struct sk_buff *other; 338 atomic_t *fclone_ref; 339 340 switch (skb->fclone) { 341 case SKB_FCLONE_UNAVAILABLE: 342 kmem_cache_free(skbuff_head_cache, skb); 343 break; 344 345 case SKB_FCLONE_ORIG: 346 fclone_ref = (atomic_t *) (skb + 2); 347 if (atomic_dec_and_test(fclone_ref)) 348 kmem_cache_free(skbuff_fclone_cache, skb); 349 break; 350 351 case SKB_FCLONE_CLONE: 352 fclone_ref = (atomic_t *) (skb + 1); 353 other = skb - 1; 354 355 /* The clone portion is available for 356 * fast-cloning again. 357 */ 358 skb->fclone = SKB_FCLONE_UNAVAILABLE; 359 360 if (atomic_dec_and_test(fclone_ref)) 361 kmem_cache_free(skbuff_fclone_cache, other); 362 break; 363 } 364 } 365 366 /* Free everything but the sk_buff shell. */ 367 static void skb_release_all(struct sk_buff *skb) 368 { 369 dst_release(skb->dst); 370 #ifdef CONFIG_XFRM 371 secpath_put(skb->sp); 372 #endif 373 if (skb->destructor) { 374 WARN_ON(in_irq()); 375 skb->destructor(skb); 376 } 377 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 378 nf_conntrack_put(skb->nfct); 379 nf_conntrack_put_reasm(skb->nfct_reasm); 380 #endif 381 #ifdef CONFIG_BRIDGE_NETFILTER 382 nf_bridge_put(skb->nf_bridge); 383 #endif 384 /* XXX: IS this still necessary? - JHS */ 385 #ifdef CONFIG_NET_SCHED 386 skb->tc_index = 0; 387 #ifdef CONFIG_NET_CLS_ACT 388 skb->tc_verd = 0; 389 #endif 390 #endif 391 skb_release_data(skb); 392 } 393 394 /** 395 * __kfree_skb - private function 396 * @skb: buffer 397 * 398 * Free an sk_buff. Release anything attached to the buffer. 399 * Clean the state. This is an internal helper function. Users should 400 * always call kfree_skb 401 */ 402 403 void __kfree_skb(struct sk_buff *skb) 404 { 405 skb_release_all(skb); 406 kfree_skbmem(skb); 407 } 408 409 /** 410 * kfree_skb - free an sk_buff 411 * @skb: buffer to free 412 * 413 * Drop a reference to the buffer and free it if the usage count has 414 * hit zero. 415 */ 416 void kfree_skb(struct sk_buff *skb) 417 { 418 if (unlikely(!skb)) 419 return; 420 if (likely(atomic_read(&skb->users) == 1)) 421 smp_rmb(); 422 else if (likely(!atomic_dec_and_test(&skb->users))) 423 return; 424 __kfree_skb(skb); 425 } 426 427 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 428 { 429 new->tstamp = old->tstamp; 430 new->dev = old->dev; 431 new->transport_header = old->transport_header; 432 new->network_header = old->network_header; 433 new->mac_header = old->mac_header; 434 new->dst = dst_clone(old->dst); 435 #ifdef CONFIG_INET 436 new->sp = secpath_get(old->sp); 437 #endif 438 memcpy(new->cb, old->cb, sizeof(old->cb)); 439 new->csum_start = old->csum_start; 440 new->csum_offset = old->csum_offset; 441 new->local_df = old->local_df; 442 new->pkt_type = old->pkt_type; 443 new->ip_summed = old->ip_summed; 444 skb_copy_queue_mapping(new, old); 445 new->priority = old->priority; 446 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 447 new->ipvs_property = old->ipvs_property; 448 #endif 449 new->protocol = old->protocol; 450 new->mark = old->mark; 451 __nf_copy(new, old); 452 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 453 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 454 new->nf_trace = old->nf_trace; 455 #endif 456 #ifdef CONFIG_NET_SCHED 457 new->tc_index = old->tc_index; 458 #ifdef CONFIG_NET_CLS_ACT 459 new->tc_verd = old->tc_verd; 460 #endif 461 #endif 462 new->vlan_tci = old->vlan_tci; 463 464 skb_copy_secmark(new, old); 465 } 466 467 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 468 { 469 #define C(x) n->x = skb->x 470 471 n->next = n->prev = NULL; 472 n->sk = NULL; 473 __copy_skb_header(n, skb); 474 475 C(len); 476 C(data_len); 477 C(mac_len); 478 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 479 n->cloned = 1; 480 n->nohdr = 0; 481 n->destructor = NULL; 482 C(iif); 483 C(tail); 484 C(end); 485 C(head); 486 C(data); 487 C(truesize); 488 atomic_set(&n->users, 1); 489 490 atomic_inc(&(skb_shinfo(skb)->dataref)); 491 skb->cloned = 1; 492 493 return n; 494 #undef C 495 } 496 497 /** 498 * skb_morph - morph one skb into another 499 * @dst: the skb to receive the contents 500 * @src: the skb to supply the contents 501 * 502 * This is identical to skb_clone except that the target skb is 503 * supplied by the user. 504 * 505 * The target skb is returned upon exit. 506 */ 507 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 508 { 509 skb_release_all(dst); 510 return __skb_clone(dst, src); 511 } 512 EXPORT_SYMBOL_GPL(skb_morph); 513 514 /** 515 * skb_clone - duplicate an sk_buff 516 * @skb: buffer to clone 517 * @gfp_mask: allocation priority 518 * 519 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 520 * copies share the same packet data but not structure. The new 521 * buffer has a reference count of 1. If the allocation fails the 522 * function returns %NULL otherwise the new buffer is returned. 523 * 524 * If this function is called from an interrupt gfp_mask() must be 525 * %GFP_ATOMIC. 526 */ 527 528 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 529 { 530 struct sk_buff *n; 531 532 n = skb + 1; 533 if (skb->fclone == SKB_FCLONE_ORIG && 534 n->fclone == SKB_FCLONE_UNAVAILABLE) { 535 atomic_t *fclone_ref = (atomic_t *) (n + 1); 536 n->fclone = SKB_FCLONE_CLONE; 537 atomic_inc(fclone_ref); 538 } else { 539 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 540 if (!n) 541 return NULL; 542 n->fclone = SKB_FCLONE_UNAVAILABLE; 543 } 544 545 return __skb_clone(n, skb); 546 } 547 548 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 549 { 550 #ifndef NET_SKBUFF_DATA_USES_OFFSET 551 /* 552 * Shift between the two data areas in bytes 553 */ 554 unsigned long offset = new->data - old->data; 555 #endif 556 557 __copy_skb_header(new, old); 558 559 #ifndef NET_SKBUFF_DATA_USES_OFFSET 560 /* {transport,network,mac}_header are relative to skb->head */ 561 new->transport_header += offset; 562 new->network_header += offset; 563 new->mac_header += offset; 564 #endif 565 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 566 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 567 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 568 } 569 570 /** 571 * skb_copy - create private copy of an sk_buff 572 * @skb: buffer to copy 573 * @gfp_mask: allocation priority 574 * 575 * Make a copy of both an &sk_buff and its data. This is used when the 576 * caller wishes to modify the data and needs a private copy of the 577 * data to alter. Returns %NULL on failure or the pointer to the buffer 578 * on success. The returned buffer has a reference count of 1. 579 * 580 * As by-product this function converts non-linear &sk_buff to linear 581 * one, so that &sk_buff becomes completely private and caller is allowed 582 * to modify all the data of returned buffer. This means that this 583 * function is not recommended for use in circumstances when only 584 * header is going to be modified. Use pskb_copy() instead. 585 */ 586 587 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 588 { 589 int headerlen = skb->data - skb->head; 590 /* 591 * Allocate the copy buffer 592 */ 593 struct sk_buff *n; 594 #ifdef NET_SKBUFF_DATA_USES_OFFSET 595 n = alloc_skb(skb->end + skb->data_len, gfp_mask); 596 #else 597 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); 598 #endif 599 if (!n) 600 return NULL; 601 602 /* Set the data pointer */ 603 skb_reserve(n, headerlen); 604 /* Set the tail pointer and length */ 605 skb_put(n, skb->len); 606 607 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 608 BUG(); 609 610 copy_skb_header(n, skb); 611 return n; 612 } 613 614 615 /** 616 * pskb_copy - create copy of an sk_buff with private head. 617 * @skb: buffer to copy 618 * @gfp_mask: allocation priority 619 * 620 * Make a copy of both an &sk_buff and part of its data, located 621 * in header. Fragmented data remain shared. This is used when 622 * the caller wishes to modify only header of &sk_buff and needs 623 * private copy of the header to alter. Returns %NULL on failure 624 * or the pointer to the buffer on success. 625 * The returned buffer has a reference count of 1. 626 */ 627 628 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 629 { 630 /* 631 * Allocate the copy buffer 632 */ 633 struct sk_buff *n; 634 #ifdef NET_SKBUFF_DATA_USES_OFFSET 635 n = alloc_skb(skb->end, gfp_mask); 636 #else 637 n = alloc_skb(skb->end - skb->head, gfp_mask); 638 #endif 639 if (!n) 640 goto out; 641 642 /* Set the data pointer */ 643 skb_reserve(n, skb->data - skb->head); 644 /* Set the tail pointer and length */ 645 skb_put(n, skb_headlen(skb)); 646 /* Copy the bytes */ 647 skb_copy_from_linear_data(skb, n->data, n->len); 648 649 n->truesize += skb->data_len; 650 n->data_len = skb->data_len; 651 n->len = skb->len; 652 653 if (skb_shinfo(skb)->nr_frags) { 654 int i; 655 656 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 657 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 658 get_page(skb_shinfo(n)->frags[i].page); 659 } 660 skb_shinfo(n)->nr_frags = i; 661 } 662 663 if (skb_shinfo(skb)->frag_list) { 664 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 665 skb_clone_fraglist(n); 666 } 667 668 copy_skb_header(n, skb); 669 out: 670 return n; 671 } 672 673 /** 674 * pskb_expand_head - reallocate header of &sk_buff 675 * @skb: buffer to reallocate 676 * @nhead: room to add at head 677 * @ntail: room to add at tail 678 * @gfp_mask: allocation priority 679 * 680 * Expands (or creates identical copy, if &nhead and &ntail are zero) 681 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 682 * reference count of 1. Returns zero in the case of success or error, 683 * if expansion failed. In the last case, &sk_buff is not changed. 684 * 685 * All the pointers pointing into skb header may change and must be 686 * reloaded after call to this function. 687 */ 688 689 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 690 gfp_t gfp_mask) 691 { 692 int i; 693 u8 *data; 694 #ifdef NET_SKBUFF_DATA_USES_OFFSET 695 int size = nhead + skb->end + ntail; 696 #else 697 int size = nhead + (skb->end - skb->head) + ntail; 698 #endif 699 long off; 700 701 if (skb_shared(skb)) 702 BUG(); 703 704 size = SKB_DATA_ALIGN(size); 705 706 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 707 if (!data) 708 goto nodata; 709 710 /* Copy only real data... and, alas, header. This should be 711 * optimized for the cases when header is void. */ 712 #ifdef NET_SKBUFF_DATA_USES_OFFSET 713 memcpy(data + nhead, skb->head, skb->tail); 714 #else 715 memcpy(data + nhead, skb->head, skb->tail - skb->head); 716 #endif 717 memcpy(data + size, skb_end_pointer(skb), 718 sizeof(struct skb_shared_info)); 719 720 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 721 get_page(skb_shinfo(skb)->frags[i].page); 722 723 if (skb_shinfo(skb)->frag_list) 724 skb_clone_fraglist(skb); 725 726 skb_release_data(skb); 727 728 off = (data + nhead) - skb->head; 729 730 skb->head = data; 731 skb->data += off; 732 #ifdef NET_SKBUFF_DATA_USES_OFFSET 733 skb->end = size; 734 off = nhead; 735 #else 736 skb->end = skb->head + size; 737 #endif 738 /* {transport,network,mac}_header and tail are relative to skb->head */ 739 skb->tail += off; 740 skb->transport_header += off; 741 skb->network_header += off; 742 skb->mac_header += off; 743 skb->csum_start += nhead; 744 skb->cloned = 0; 745 skb->hdr_len = 0; 746 skb->nohdr = 0; 747 atomic_set(&skb_shinfo(skb)->dataref, 1); 748 return 0; 749 750 nodata: 751 return -ENOMEM; 752 } 753 754 /* Make private copy of skb with writable head and some headroom */ 755 756 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 757 { 758 struct sk_buff *skb2; 759 int delta = headroom - skb_headroom(skb); 760 761 if (delta <= 0) 762 skb2 = pskb_copy(skb, GFP_ATOMIC); 763 else { 764 skb2 = skb_clone(skb, GFP_ATOMIC); 765 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 766 GFP_ATOMIC)) { 767 kfree_skb(skb2); 768 skb2 = NULL; 769 } 770 } 771 return skb2; 772 } 773 774 775 /** 776 * skb_copy_expand - copy and expand sk_buff 777 * @skb: buffer to copy 778 * @newheadroom: new free bytes at head 779 * @newtailroom: new free bytes at tail 780 * @gfp_mask: allocation priority 781 * 782 * Make a copy of both an &sk_buff and its data and while doing so 783 * allocate additional space. 784 * 785 * This is used when the caller wishes to modify the data and needs a 786 * private copy of the data to alter as well as more space for new fields. 787 * Returns %NULL on failure or the pointer to the buffer 788 * on success. The returned buffer has a reference count of 1. 789 * 790 * You must pass %GFP_ATOMIC as the allocation priority if this function 791 * is called from an interrupt. 792 */ 793 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 794 int newheadroom, int newtailroom, 795 gfp_t gfp_mask) 796 { 797 /* 798 * Allocate the copy buffer 799 */ 800 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 801 gfp_mask); 802 int oldheadroom = skb_headroom(skb); 803 int head_copy_len, head_copy_off; 804 int off; 805 806 if (!n) 807 return NULL; 808 809 skb_reserve(n, newheadroom); 810 811 /* Set the tail pointer and length */ 812 skb_put(n, skb->len); 813 814 head_copy_len = oldheadroom; 815 head_copy_off = 0; 816 if (newheadroom <= head_copy_len) 817 head_copy_len = newheadroom; 818 else 819 head_copy_off = newheadroom - head_copy_len; 820 821 /* Copy the linear header and data. */ 822 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 823 skb->len + head_copy_len)) 824 BUG(); 825 826 copy_skb_header(n, skb); 827 828 off = newheadroom - oldheadroom; 829 n->csum_start += off; 830 #ifdef NET_SKBUFF_DATA_USES_OFFSET 831 n->transport_header += off; 832 n->network_header += off; 833 n->mac_header += off; 834 #endif 835 836 return n; 837 } 838 839 /** 840 * skb_pad - zero pad the tail of an skb 841 * @skb: buffer to pad 842 * @pad: space to pad 843 * 844 * Ensure that a buffer is followed by a padding area that is zero 845 * filled. Used by network drivers which may DMA or transfer data 846 * beyond the buffer end onto the wire. 847 * 848 * May return error in out of memory cases. The skb is freed on error. 849 */ 850 851 int skb_pad(struct sk_buff *skb, int pad) 852 { 853 int err; 854 int ntail; 855 856 /* If the skbuff is non linear tailroom is always zero.. */ 857 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 858 memset(skb->data+skb->len, 0, pad); 859 return 0; 860 } 861 862 ntail = skb->data_len + pad - (skb->end - skb->tail); 863 if (likely(skb_cloned(skb) || ntail > 0)) { 864 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 865 if (unlikely(err)) 866 goto free_skb; 867 } 868 869 /* FIXME: The use of this function with non-linear skb's really needs 870 * to be audited. 871 */ 872 err = skb_linearize(skb); 873 if (unlikely(err)) 874 goto free_skb; 875 876 memset(skb->data + skb->len, 0, pad); 877 return 0; 878 879 free_skb: 880 kfree_skb(skb); 881 return err; 882 } 883 884 /** 885 * skb_put - add data to a buffer 886 * @skb: buffer to use 887 * @len: amount of data to add 888 * 889 * This function extends the used data area of the buffer. If this would 890 * exceed the total buffer size the kernel will panic. A pointer to the 891 * first byte of the extra data is returned. 892 */ 893 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 894 { 895 unsigned char *tmp = skb_tail_pointer(skb); 896 SKB_LINEAR_ASSERT(skb); 897 skb->tail += len; 898 skb->len += len; 899 if (unlikely(skb->tail > skb->end)) 900 skb_over_panic(skb, len, __builtin_return_address(0)); 901 return tmp; 902 } 903 EXPORT_SYMBOL(skb_put); 904 905 /** 906 * skb_push - add data to the start of a buffer 907 * @skb: buffer to use 908 * @len: amount of data to add 909 * 910 * This function extends the used data area of the buffer at the buffer 911 * start. If this would exceed the total buffer headroom the kernel will 912 * panic. A pointer to the first byte of the extra data is returned. 913 */ 914 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 915 { 916 skb->data -= len; 917 skb->len += len; 918 if (unlikely(skb->data<skb->head)) 919 skb_under_panic(skb, len, __builtin_return_address(0)); 920 return skb->data; 921 } 922 EXPORT_SYMBOL(skb_push); 923 924 /** 925 * skb_pull - remove data from the start of a buffer 926 * @skb: buffer to use 927 * @len: amount of data to remove 928 * 929 * This function removes data from the start of a buffer, returning 930 * the memory to the headroom. A pointer to the next data in the buffer 931 * is returned. Once the data has been pulled future pushes will overwrite 932 * the old data. 933 */ 934 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 935 { 936 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 937 } 938 EXPORT_SYMBOL(skb_pull); 939 940 /** 941 * skb_trim - remove end from a buffer 942 * @skb: buffer to alter 943 * @len: new length 944 * 945 * Cut the length of a buffer down by removing data from the tail. If 946 * the buffer is already under the length specified it is not modified. 947 * The skb must be linear. 948 */ 949 void skb_trim(struct sk_buff *skb, unsigned int len) 950 { 951 if (skb->len > len) 952 __skb_trim(skb, len); 953 } 954 EXPORT_SYMBOL(skb_trim); 955 956 /* Trims skb to length len. It can change skb pointers. 957 */ 958 959 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 960 { 961 struct sk_buff **fragp; 962 struct sk_buff *frag; 963 int offset = skb_headlen(skb); 964 int nfrags = skb_shinfo(skb)->nr_frags; 965 int i; 966 int err; 967 968 if (skb_cloned(skb) && 969 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 970 return err; 971 972 i = 0; 973 if (offset >= len) 974 goto drop_pages; 975 976 for (; i < nfrags; i++) { 977 int end = offset + skb_shinfo(skb)->frags[i].size; 978 979 if (end < len) { 980 offset = end; 981 continue; 982 } 983 984 skb_shinfo(skb)->frags[i++].size = len - offset; 985 986 drop_pages: 987 skb_shinfo(skb)->nr_frags = i; 988 989 for (; i < nfrags; i++) 990 put_page(skb_shinfo(skb)->frags[i].page); 991 992 if (skb_shinfo(skb)->frag_list) 993 skb_drop_fraglist(skb); 994 goto done; 995 } 996 997 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 998 fragp = &frag->next) { 999 int end = offset + frag->len; 1000 1001 if (skb_shared(frag)) { 1002 struct sk_buff *nfrag; 1003 1004 nfrag = skb_clone(frag, GFP_ATOMIC); 1005 if (unlikely(!nfrag)) 1006 return -ENOMEM; 1007 1008 nfrag->next = frag->next; 1009 kfree_skb(frag); 1010 frag = nfrag; 1011 *fragp = frag; 1012 } 1013 1014 if (end < len) { 1015 offset = end; 1016 continue; 1017 } 1018 1019 if (end > len && 1020 unlikely((err = pskb_trim(frag, len - offset)))) 1021 return err; 1022 1023 if (frag->next) 1024 skb_drop_list(&frag->next); 1025 break; 1026 } 1027 1028 done: 1029 if (len > skb_headlen(skb)) { 1030 skb->data_len -= skb->len - len; 1031 skb->len = len; 1032 } else { 1033 skb->len = len; 1034 skb->data_len = 0; 1035 skb_set_tail_pointer(skb, len); 1036 } 1037 1038 return 0; 1039 } 1040 1041 /** 1042 * __pskb_pull_tail - advance tail of skb header 1043 * @skb: buffer to reallocate 1044 * @delta: number of bytes to advance tail 1045 * 1046 * The function makes a sense only on a fragmented &sk_buff, 1047 * it expands header moving its tail forward and copying necessary 1048 * data from fragmented part. 1049 * 1050 * &sk_buff MUST have reference count of 1. 1051 * 1052 * Returns %NULL (and &sk_buff does not change) if pull failed 1053 * or value of new tail of skb in the case of success. 1054 * 1055 * All the pointers pointing into skb header may change and must be 1056 * reloaded after call to this function. 1057 */ 1058 1059 /* Moves tail of skb head forward, copying data from fragmented part, 1060 * when it is necessary. 1061 * 1. It may fail due to malloc failure. 1062 * 2. It may change skb pointers. 1063 * 1064 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1065 */ 1066 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1067 { 1068 /* If skb has not enough free space at tail, get new one 1069 * plus 128 bytes for future expansions. If we have enough 1070 * room at tail, reallocate without expansion only if skb is cloned. 1071 */ 1072 int i, k, eat = (skb->tail + delta) - skb->end; 1073 1074 if (eat > 0 || skb_cloned(skb)) { 1075 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1076 GFP_ATOMIC)) 1077 return NULL; 1078 } 1079 1080 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1081 BUG(); 1082 1083 /* Optimization: no fragments, no reasons to preestimate 1084 * size of pulled pages. Superb. 1085 */ 1086 if (!skb_shinfo(skb)->frag_list) 1087 goto pull_pages; 1088 1089 /* Estimate size of pulled pages. */ 1090 eat = delta; 1091 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1092 if (skb_shinfo(skb)->frags[i].size >= eat) 1093 goto pull_pages; 1094 eat -= skb_shinfo(skb)->frags[i].size; 1095 } 1096 1097 /* If we need update frag list, we are in troubles. 1098 * Certainly, it possible to add an offset to skb data, 1099 * but taking into account that pulling is expected to 1100 * be very rare operation, it is worth to fight against 1101 * further bloating skb head and crucify ourselves here instead. 1102 * Pure masohism, indeed. 8)8) 1103 */ 1104 if (eat) { 1105 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1106 struct sk_buff *clone = NULL; 1107 struct sk_buff *insp = NULL; 1108 1109 do { 1110 BUG_ON(!list); 1111 1112 if (list->len <= eat) { 1113 /* Eaten as whole. */ 1114 eat -= list->len; 1115 list = list->next; 1116 insp = list; 1117 } else { 1118 /* Eaten partially. */ 1119 1120 if (skb_shared(list)) { 1121 /* Sucks! We need to fork list. :-( */ 1122 clone = skb_clone(list, GFP_ATOMIC); 1123 if (!clone) 1124 return NULL; 1125 insp = list->next; 1126 list = clone; 1127 } else { 1128 /* This may be pulled without 1129 * problems. */ 1130 insp = list; 1131 } 1132 if (!pskb_pull(list, eat)) { 1133 if (clone) 1134 kfree_skb(clone); 1135 return NULL; 1136 } 1137 break; 1138 } 1139 } while (eat); 1140 1141 /* Free pulled out fragments. */ 1142 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1143 skb_shinfo(skb)->frag_list = list->next; 1144 kfree_skb(list); 1145 } 1146 /* And insert new clone at head. */ 1147 if (clone) { 1148 clone->next = list; 1149 skb_shinfo(skb)->frag_list = clone; 1150 } 1151 } 1152 /* Success! Now we may commit changes to skb data. */ 1153 1154 pull_pages: 1155 eat = delta; 1156 k = 0; 1157 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1158 if (skb_shinfo(skb)->frags[i].size <= eat) { 1159 put_page(skb_shinfo(skb)->frags[i].page); 1160 eat -= skb_shinfo(skb)->frags[i].size; 1161 } else { 1162 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1163 if (eat) { 1164 skb_shinfo(skb)->frags[k].page_offset += eat; 1165 skb_shinfo(skb)->frags[k].size -= eat; 1166 eat = 0; 1167 } 1168 k++; 1169 } 1170 } 1171 skb_shinfo(skb)->nr_frags = k; 1172 1173 skb->tail += delta; 1174 skb->data_len -= delta; 1175 1176 return skb_tail_pointer(skb); 1177 } 1178 1179 /* Copy some data bits from skb to kernel buffer. */ 1180 1181 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1182 { 1183 int i, copy; 1184 int start = skb_headlen(skb); 1185 1186 if (offset > (int)skb->len - len) 1187 goto fault; 1188 1189 /* Copy header. */ 1190 if ((copy = start - offset) > 0) { 1191 if (copy > len) 1192 copy = len; 1193 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1194 if ((len -= copy) == 0) 1195 return 0; 1196 offset += copy; 1197 to += copy; 1198 } 1199 1200 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1201 int end; 1202 1203 BUG_TRAP(start <= offset + len); 1204 1205 end = start + skb_shinfo(skb)->frags[i].size; 1206 if ((copy = end - offset) > 0) { 1207 u8 *vaddr; 1208 1209 if (copy > len) 1210 copy = len; 1211 1212 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1213 memcpy(to, 1214 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1215 offset - start, copy); 1216 kunmap_skb_frag(vaddr); 1217 1218 if ((len -= copy) == 0) 1219 return 0; 1220 offset += copy; 1221 to += copy; 1222 } 1223 start = end; 1224 } 1225 1226 if (skb_shinfo(skb)->frag_list) { 1227 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1228 1229 for (; list; list = list->next) { 1230 int end; 1231 1232 BUG_TRAP(start <= offset + len); 1233 1234 end = start + list->len; 1235 if ((copy = end - offset) > 0) { 1236 if (copy > len) 1237 copy = len; 1238 if (skb_copy_bits(list, offset - start, 1239 to, copy)) 1240 goto fault; 1241 if ((len -= copy) == 0) 1242 return 0; 1243 offset += copy; 1244 to += copy; 1245 } 1246 start = end; 1247 } 1248 } 1249 if (!len) 1250 return 0; 1251 1252 fault: 1253 return -EFAULT; 1254 } 1255 1256 /* 1257 * Callback from splice_to_pipe(), if we need to release some pages 1258 * at the end of the spd in case we error'ed out in filling the pipe. 1259 */ 1260 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1261 { 1262 struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private; 1263 1264 kfree_skb(skb); 1265 } 1266 1267 /* 1268 * Fill page/offset/length into spd, if it can hold more pages. 1269 */ 1270 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 1271 unsigned int len, unsigned int offset, 1272 struct sk_buff *skb) 1273 { 1274 if (unlikely(spd->nr_pages == PIPE_BUFFERS)) 1275 return 1; 1276 1277 spd->pages[spd->nr_pages] = page; 1278 spd->partial[spd->nr_pages].len = len; 1279 spd->partial[spd->nr_pages].offset = offset; 1280 spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb); 1281 spd->nr_pages++; 1282 return 0; 1283 } 1284 1285 static inline void __segment_seek(struct page **page, unsigned int *poff, 1286 unsigned int *plen, unsigned int off) 1287 { 1288 *poff += off; 1289 *page += *poff / PAGE_SIZE; 1290 *poff = *poff % PAGE_SIZE; 1291 *plen -= off; 1292 } 1293 1294 static inline int __splice_segment(struct page *page, unsigned int poff, 1295 unsigned int plen, unsigned int *off, 1296 unsigned int *len, struct sk_buff *skb, 1297 struct splice_pipe_desc *spd) 1298 { 1299 if (!*len) 1300 return 1; 1301 1302 /* skip this segment if already processed */ 1303 if (*off >= plen) { 1304 *off -= plen; 1305 return 0; 1306 } 1307 1308 /* ignore any bits we already processed */ 1309 if (*off) { 1310 __segment_seek(&page, &poff, &plen, *off); 1311 *off = 0; 1312 } 1313 1314 do { 1315 unsigned int flen = min(*len, plen); 1316 1317 /* the linear region may spread across several pages */ 1318 flen = min_t(unsigned int, flen, PAGE_SIZE - poff); 1319 1320 if (spd_fill_page(spd, page, flen, poff, skb)) 1321 return 1; 1322 1323 __segment_seek(&page, &poff, &plen, flen); 1324 *len -= flen; 1325 1326 } while (*len && plen); 1327 1328 return 0; 1329 } 1330 1331 /* 1332 * Map linear and fragment data from the skb to spd. It reports failure if the 1333 * pipe is full or if we already spliced the requested length. 1334 */ 1335 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset, 1336 unsigned int *len, 1337 struct splice_pipe_desc *spd) 1338 { 1339 int seg; 1340 1341 /* 1342 * map the linear part 1343 */ 1344 if (__splice_segment(virt_to_page(skb->data), 1345 (unsigned long) skb->data & (PAGE_SIZE - 1), 1346 skb_headlen(skb), 1347 offset, len, skb, spd)) 1348 return 1; 1349 1350 /* 1351 * then map the fragments 1352 */ 1353 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1354 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1355 1356 if (__splice_segment(f->page, f->page_offset, f->size, 1357 offset, len, skb, spd)) 1358 return 1; 1359 } 1360 1361 return 0; 1362 } 1363 1364 /* 1365 * Map data from the skb to a pipe. Should handle both the linear part, 1366 * the fragments, and the frag list. It does NOT handle frag lists within 1367 * the frag list, if such a thing exists. We'd probably need to recurse to 1368 * handle that cleanly. 1369 */ 1370 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset, 1371 struct pipe_inode_info *pipe, unsigned int tlen, 1372 unsigned int flags) 1373 { 1374 struct partial_page partial[PIPE_BUFFERS]; 1375 struct page *pages[PIPE_BUFFERS]; 1376 struct splice_pipe_desc spd = { 1377 .pages = pages, 1378 .partial = partial, 1379 .flags = flags, 1380 .ops = &sock_pipe_buf_ops, 1381 .spd_release = sock_spd_release, 1382 }; 1383 struct sk_buff *skb; 1384 1385 /* 1386 * I'd love to avoid the clone here, but tcp_read_sock() 1387 * ignores reference counts and unconditonally kills the sk_buff 1388 * on return from the actor. 1389 */ 1390 skb = skb_clone(__skb, GFP_KERNEL); 1391 if (unlikely(!skb)) 1392 return -ENOMEM; 1393 1394 /* 1395 * __skb_splice_bits() only fails if the output has no room left, 1396 * so no point in going over the frag_list for the error case. 1397 */ 1398 if (__skb_splice_bits(skb, &offset, &tlen, &spd)) 1399 goto done; 1400 else if (!tlen) 1401 goto done; 1402 1403 /* 1404 * now see if we have a frag_list to map 1405 */ 1406 if (skb_shinfo(skb)->frag_list) { 1407 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1408 1409 for (; list && tlen; list = list->next) { 1410 if (__skb_splice_bits(list, &offset, &tlen, &spd)) 1411 break; 1412 } 1413 } 1414 1415 done: 1416 /* 1417 * drop our reference to the clone, the pipe consumption will 1418 * drop the rest. 1419 */ 1420 kfree_skb(skb); 1421 1422 if (spd.nr_pages) { 1423 int ret; 1424 struct sock *sk = __skb->sk; 1425 1426 /* 1427 * Drop the socket lock, otherwise we have reverse 1428 * locking dependencies between sk_lock and i_mutex 1429 * here as compared to sendfile(). We enter here 1430 * with the socket lock held, and splice_to_pipe() will 1431 * grab the pipe inode lock. For sendfile() emulation, 1432 * we call into ->sendpage() with the i_mutex lock held 1433 * and networking will grab the socket lock. 1434 */ 1435 release_sock(sk); 1436 ret = splice_to_pipe(pipe, &spd); 1437 lock_sock(sk); 1438 return ret; 1439 } 1440 1441 return 0; 1442 } 1443 1444 /** 1445 * skb_store_bits - store bits from kernel buffer to skb 1446 * @skb: destination buffer 1447 * @offset: offset in destination 1448 * @from: source buffer 1449 * @len: number of bytes to copy 1450 * 1451 * Copy the specified number of bytes from the source buffer to the 1452 * destination skb. This function handles all the messy bits of 1453 * traversing fragment lists and such. 1454 */ 1455 1456 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1457 { 1458 int i, copy; 1459 int start = skb_headlen(skb); 1460 1461 if (offset > (int)skb->len - len) 1462 goto fault; 1463 1464 if ((copy = start - offset) > 0) { 1465 if (copy > len) 1466 copy = len; 1467 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1468 if ((len -= copy) == 0) 1469 return 0; 1470 offset += copy; 1471 from += copy; 1472 } 1473 1474 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1475 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1476 int end; 1477 1478 BUG_TRAP(start <= offset + len); 1479 1480 end = start + frag->size; 1481 if ((copy = end - offset) > 0) { 1482 u8 *vaddr; 1483 1484 if (copy > len) 1485 copy = len; 1486 1487 vaddr = kmap_skb_frag(frag); 1488 memcpy(vaddr + frag->page_offset + offset - start, 1489 from, copy); 1490 kunmap_skb_frag(vaddr); 1491 1492 if ((len -= copy) == 0) 1493 return 0; 1494 offset += copy; 1495 from += copy; 1496 } 1497 start = end; 1498 } 1499 1500 if (skb_shinfo(skb)->frag_list) { 1501 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1502 1503 for (; list; list = list->next) { 1504 int end; 1505 1506 BUG_TRAP(start <= offset + len); 1507 1508 end = start + list->len; 1509 if ((copy = end - offset) > 0) { 1510 if (copy > len) 1511 copy = len; 1512 if (skb_store_bits(list, offset - start, 1513 from, copy)) 1514 goto fault; 1515 if ((len -= copy) == 0) 1516 return 0; 1517 offset += copy; 1518 from += copy; 1519 } 1520 start = end; 1521 } 1522 } 1523 if (!len) 1524 return 0; 1525 1526 fault: 1527 return -EFAULT; 1528 } 1529 1530 EXPORT_SYMBOL(skb_store_bits); 1531 1532 /* Checksum skb data. */ 1533 1534 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1535 int len, __wsum csum) 1536 { 1537 int start = skb_headlen(skb); 1538 int i, copy = start - offset; 1539 int pos = 0; 1540 1541 /* Checksum header. */ 1542 if (copy > 0) { 1543 if (copy > len) 1544 copy = len; 1545 csum = csum_partial(skb->data + offset, copy, csum); 1546 if ((len -= copy) == 0) 1547 return csum; 1548 offset += copy; 1549 pos = copy; 1550 } 1551 1552 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1553 int end; 1554 1555 BUG_TRAP(start <= offset + len); 1556 1557 end = start + skb_shinfo(skb)->frags[i].size; 1558 if ((copy = end - offset) > 0) { 1559 __wsum csum2; 1560 u8 *vaddr; 1561 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1562 1563 if (copy > len) 1564 copy = len; 1565 vaddr = kmap_skb_frag(frag); 1566 csum2 = csum_partial(vaddr + frag->page_offset + 1567 offset - start, copy, 0); 1568 kunmap_skb_frag(vaddr); 1569 csum = csum_block_add(csum, csum2, pos); 1570 if (!(len -= copy)) 1571 return csum; 1572 offset += copy; 1573 pos += copy; 1574 } 1575 start = end; 1576 } 1577 1578 if (skb_shinfo(skb)->frag_list) { 1579 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1580 1581 for (; list; list = list->next) { 1582 int end; 1583 1584 BUG_TRAP(start <= offset + len); 1585 1586 end = start + list->len; 1587 if ((copy = end - offset) > 0) { 1588 __wsum csum2; 1589 if (copy > len) 1590 copy = len; 1591 csum2 = skb_checksum(list, offset - start, 1592 copy, 0); 1593 csum = csum_block_add(csum, csum2, pos); 1594 if ((len -= copy) == 0) 1595 return csum; 1596 offset += copy; 1597 pos += copy; 1598 } 1599 start = end; 1600 } 1601 } 1602 BUG_ON(len); 1603 1604 return csum; 1605 } 1606 1607 /* Both of above in one bottle. */ 1608 1609 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1610 u8 *to, int len, __wsum csum) 1611 { 1612 int start = skb_headlen(skb); 1613 int i, copy = start - offset; 1614 int pos = 0; 1615 1616 /* Copy header. */ 1617 if (copy > 0) { 1618 if (copy > len) 1619 copy = len; 1620 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1621 copy, csum); 1622 if ((len -= copy) == 0) 1623 return csum; 1624 offset += copy; 1625 to += copy; 1626 pos = copy; 1627 } 1628 1629 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1630 int end; 1631 1632 BUG_TRAP(start <= offset + len); 1633 1634 end = start + skb_shinfo(skb)->frags[i].size; 1635 if ((copy = end - offset) > 0) { 1636 __wsum csum2; 1637 u8 *vaddr; 1638 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1639 1640 if (copy > len) 1641 copy = len; 1642 vaddr = kmap_skb_frag(frag); 1643 csum2 = csum_partial_copy_nocheck(vaddr + 1644 frag->page_offset + 1645 offset - start, to, 1646 copy, 0); 1647 kunmap_skb_frag(vaddr); 1648 csum = csum_block_add(csum, csum2, pos); 1649 if (!(len -= copy)) 1650 return csum; 1651 offset += copy; 1652 to += copy; 1653 pos += copy; 1654 } 1655 start = end; 1656 } 1657 1658 if (skb_shinfo(skb)->frag_list) { 1659 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1660 1661 for (; list; list = list->next) { 1662 __wsum csum2; 1663 int end; 1664 1665 BUG_TRAP(start <= offset + len); 1666 1667 end = start + list->len; 1668 if ((copy = end - offset) > 0) { 1669 if (copy > len) 1670 copy = len; 1671 csum2 = skb_copy_and_csum_bits(list, 1672 offset - start, 1673 to, copy, 0); 1674 csum = csum_block_add(csum, csum2, pos); 1675 if ((len -= copy) == 0) 1676 return csum; 1677 offset += copy; 1678 to += copy; 1679 pos += copy; 1680 } 1681 start = end; 1682 } 1683 } 1684 BUG_ON(len); 1685 return csum; 1686 } 1687 1688 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1689 { 1690 __wsum csum; 1691 long csstart; 1692 1693 if (skb->ip_summed == CHECKSUM_PARTIAL) 1694 csstart = skb->csum_start - skb_headroom(skb); 1695 else 1696 csstart = skb_headlen(skb); 1697 1698 BUG_ON(csstart > skb_headlen(skb)); 1699 1700 skb_copy_from_linear_data(skb, to, csstart); 1701 1702 csum = 0; 1703 if (csstart != skb->len) 1704 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1705 skb->len - csstart, 0); 1706 1707 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1708 long csstuff = csstart + skb->csum_offset; 1709 1710 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1711 } 1712 } 1713 1714 /** 1715 * skb_dequeue - remove from the head of the queue 1716 * @list: list to dequeue from 1717 * 1718 * Remove the head of the list. The list lock is taken so the function 1719 * may be used safely with other locking list functions. The head item is 1720 * returned or %NULL if the list is empty. 1721 */ 1722 1723 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1724 { 1725 unsigned long flags; 1726 struct sk_buff *result; 1727 1728 spin_lock_irqsave(&list->lock, flags); 1729 result = __skb_dequeue(list); 1730 spin_unlock_irqrestore(&list->lock, flags); 1731 return result; 1732 } 1733 1734 /** 1735 * skb_dequeue_tail - remove from the tail of the queue 1736 * @list: list to dequeue from 1737 * 1738 * Remove the tail of the list. The list lock is taken so the function 1739 * may be used safely with other locking list functions. The tail item is 1740 * returned or %NULL if the list is empty. 1741 */ 1742 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1743 { 1744 unsigned long flags; 1745 struct sk_buff *result; 1746 1747 spin_lock_irqsave(&list->lock, flags); 1748 result = __skb_dequeue_tail(list); 1749 spin_unlock_irqrestore(&list->lock, flags); 1750 return result; 1751 } 1752 1753 /** 1754 * skb_queue_purge - empty a list 1755 * @list: list to empty 1756 * 1757 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1758 * the list and one reference dropped. This function takes the list 1759 * lock and is atomic with respect to other list locking functions. 1760 */ 1761 void skb_queue_purge(struct sk_buff_head *list) 1762 { 1763 struct sk_buff *skb; 1764 while ((skb = skb_dequeue(list)) != NULL) 1765 kfree_skb(skb); 1766 } 1767 1768 /** 1769 * skb_queue_head - queue a buffer at the list head 1770 * @list: list to use 1771 * @newsk: buffer to queue 1772 * 1773 * Queue a buffer at the start of the list. This function takes the 1774 * list lock and can be used safely with other locking &sk_buff functions 1775 * safely. 1776 * 1777 * A buffer cannot be placed on two lists at the same time. 1778 */ 1779 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1780 { 1781 unsigned long flags; 1782 1783 spin_lock_irqsave(&list->lock, flags); 1784 __skb_queue_head(list, newsk); 1785 spin_unlock_irqrestore(&list->lock, flags); 1786 } 1787 1788 /** 1789 * skb_queue_tail - queue a buffer at the list tail 1790 * @list: list to use 1791 * @newsk: buffer to queue 1792 * 1793 * Queue a buffer at the tail of the list. This function takes the 1794 * list lock and can be used safely with other locking &sk_buff functions 1795 * safely. 1796 * 1797 * A buffer cannot be placed on two lists at the same time. 1798 */ 1799 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1800 { 1801 unsigned long flags; 1802 1803 spin_lock_irqsave(&list->lock, flags); 1804 __skb_queue_tail(list, newsk); 1805 spin_unlock_irqrestore(&list->lock, flags); 1806 } 1807 1808 /** 1809 * skb_unlink - remove a buffer from a list 1810 * @skb: buffer to remove 1811 * @list: list to use 1812 * 1813 * Remove a packet from a list. The list locks are taken and this 1814 * function is atomic with respect to other list locked calls 1815 * 1816 * You must know what list the SKB is on. 1817 */ 1818 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1819 { 1820 unsigned long flags; 1821 1822 spin_lock_irqsave(&list->lock, flags); 1823 __skb_unlink(skb, list); 1824 spin_unlock_irqrestore(&list->lock, flags); 1825 } 1826 1827 /** 1828 * skb_append - append a buffer 1829 * @old: buffer to insert after 1830 * @newsk: buffer to insert 1831 * @list: list to use 1832 * 1833 * Place a packet after a given packet in a list. The list locks are taken 1834 * and this function is atomic with respect to other list locked calls. 1835 * A buffer cannot be placed on two lists at the same time. 1836 */ 1837 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1838 { 1839 unsigned long flags; 1840 1841 spin_lock_irqsave(&list->lock, flags); 1842 __skb_queue_after(list, old, newsk); 1843 spin_unlock_irqrestore(&list->lock, flags); 1844 } 1845 1846 1847 /** 1848 * skb_insert - insert a buffer 1849 * @old: buffer to insert before 1850 * @newsk: buffer to insert 1851 * @list: list to use 1852 * 1853 * Place a packet before a given packet in a list. The list locks are 1854 * taken and this function is atomic with respect to other list locked 1855 * calls. 1856 * 1857 * A buffer cannot be placed on two lists at the same time. 1858 */ 1859 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1860 { 1861 unsigned long flags; 1862 1863 spin_lock_irqsave(&list->lock, flags); 1864 __skb_insert(newsk, old->prev, old, list); 1865 spin_unlock_irqrestore(&list->lock, flags); 1866 } 1867 1868 static inline void skb_split_inside_header(struct sk_buff *skb, 1869 struct sk_buff* skb1, 1870 const u32 len, const int pos) 1871 { 1872 int i; 1873 1874 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 1875 pos - len); 1876 /* And move data appendix as is. */ 1877 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1878 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1879 1880 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1881 skb_shinfo(skb)->nr_frags = 0; 1882 skb1->data_len = skb->data_len; 1883 skb1->len += skb1->data_len; 1884 skb->data_len = 0; 1885 skb->len = len; 1886 skb_set_tail_pointer(skb, len); 1887 } 1888 1889 static inline void skb_split_no_header(struct sk_buff *skb, 1890 struct sk_buff* skb1, 1891 const u32 len, int pos) 1892 { 1893 int i, k = 0; 1894 const int nfrags = skb_shinfo(skb)->nr_frags; 1895 1896 skb_shinfo(skb)->nr_frags = 0; 1897 skb1->len = skb1->data_len = skb->len - len; 1898 skb->len = len; 1899 skb->data_len = len - pos; 1900 1901 for (i = 0; i < nfrags; i++) { 1902 int size = skb_shinfo(skb)->frags[i].size; 1903 1904 if (pos + size > len) { 1905 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1906 1907 if (pos < len) { 1908 /* Split frag. 1909 * We have two variants in this case: 1910 * 1. Move all the frag to the second 1911 * part, if it is possible. F.e. 1912 * this approach is mandatory for TUX, 1913 * where splitting is expensive. 1914 * 2. Split is accurately. We make this. 1915 */ 1916 get_page(skb_shinfo(skb)->frags[i].page); 1917 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1918 skb_shinfo(skb1)->frags[0].size -= len - pos; 1919 skb_shinfo(skb)->frags[i].size = len - pos; 1920 skb_shinfo(skb)->nr_frags++; 1921 } 1922 k++; 1923 } else 1924 skb_shinfo(skb)->nr_frags++; 1925 pos += size; 1926 } 1927 skb_shinfo(skb1)->nr_frags = k; 1928 } 1929 1930 /** 1931 * skb_split - Split fragmented skb to two parts at length len. 1932 * @skb: the buffer to split 1933 * @skb1: the buffer to receive the second part 1934 * @len: new length for skb 1935 */ 1936 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1937 { 1938 int pos = skb_headlen(skb); 1939 1940 if (len < pos) /* Split line is inside header. */ 1941 skb_split_inside_header(skb, skb1, len, pos); 1942 else /* Second chunk has no header, nothing to copy. */ 1943 skb_split_no_header(skb, skb1, len, pos); 1944 } 1945 1946 /** 1947 * skb_prepare_seq_read - Prepare a sequential read of skb data 1948 * @skb: the buffer to read 1949 * @from: lower offset of data to be read 1950 * @to: upper offset of data to be read 1951 * @st: state variable 1952 * 1953 * Initializes the specified state variable. Must be called before 1954 * invoking skb_seq_read() for the first time. 1955 */ 1956 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1957 unsigned int to, struct skb_seq_state *st) 1958 { 1959 st->lower_offset = from; 1960 st->upper_offset = to; 1961 st->root_skb = st->cur_skb = skb; 1962 st->frag_idx = st->stepped_offset = 0; 1963 st->frag_data = NULL; 1964 } 1965 1966 /** 1967 * skb_seq_read - Sequentially read skb data 1968 * @consumed: number of bytes consumed by the caller so far 1969 * @data: destination pointer for data to be returned 1970 * @st: state variable 1971 * 1972 * Reads a block of skb data at &consumed relative to the 1973 * lower offset specified to skb_prepare_seq_read(). Assigns 1974 * the head of the data block to &data and returns the length 1975 * of the block or 0 if the end of the skb data or the upper 1976 * offset has been reached. 1977 * 1978 * The caller is not required to consume all of the data 1979 * returned, i.e. &consumed is typically set to the number 1980 * of bytes already consumed and the next call to 1981 * skb_seq_read() will return the remaining part of the block. 1982 * 1983 * Note 1: The size of each block of data returned can be arbitary, 1984 * this limitation is the cost for zerocopy seqeuental 1985 * reads of potentially non linear data. 1986 * 1987 * Note 2: Fragment lists within fragments are not implemented 1988 * at the moment, state->root_skb could be replaced with 1989 * a stack for this purpose. 1990 */ 1991 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1992 struct skb_seq_state *st) 1993 { 1994 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1995 skb_frag_t *frag; 1996 1997 if (unlikely(abs_offset >= st->upper_offset)) 1998 return 0; 1999 2000 next_skb: 2001 block_limit = skb_headlen(st->cur_skb); 2002 2003 if (abs_offset < block_limit) { 2004 *data = st->cur_skb->data + abs_offset; 2005 return block_limit - abs_offset; 2006 } 2007 2008 if (st->frag_idx == 0 && !st->frag_data) 2009 st->stepped_offset += skb_headlen(st->cur_skb); 2010 2011 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2012 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2013 block_limit = frag->size + st->stepped_offset; 2014 2015 if (abs_offset < block_limit) { 2016 if (!st->frag_data) 2017 st->frag_data = kmap_skb_frag(frag); 2018 2019 *data = (u8 *) st->frag_data + frag->page_offset + 2020 (abs_offset - st->stepped_offset); 2021 2022 return block_limit - abs_offset; 2023 } 2024 2025 if (st->frag_data) { 2026 kunmap_skb_frag(st->frag_data); 2027 st->frag_data = NULL; 2028 } 2029 2030 st->frag_idx++; 2031 st->stepped_offset += frag->size; 2032 } 2033 2034 if (st->frag_data) { 2035 kunmap_skb_frag(st->frag_data); 2036 st->frag_data = NULL; 2037 } 2038 2039 if (st->cur_skb->next) { 2040 st->cur_skb = st->cur_skb->next; 2041 st->frag_idx = 0; 2042 goto next_skb; 2043 } else if (st->root_skb == st->cur_skb && 2044 skb_shinfo(st->root_skb)->frag_list) { 2045 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2046 goto next_skb; 2047 } 2048 2049 return 0; 2050 } 2051 2052 /** 2053 * skb_abort_seq_read - Abort a sequential read of skb data 2054 * @st: state variable 2055 * 2056 * Must be called if skb_seq_read() was not called until it 2057 * returned 0. 2058 */ 2059 void skb_abort_seq_read(struct skb_seq_state *st) 2060 { 2061 if (st->frag_data) 2062 kunmap_skb_frag(st->frag_data); 2063 } 2064 2065 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2066 2067 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2068 struct ts_config *conf, 2069 struct ts_state *state) 2070 { 2071 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2072 } 2073 2074 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2075 { 2076 skb_abort_seq_read(TS_SKB_CB(state)); 2077 } 2078 2079 /** 2080 * skb_find_text - Find a text pattern in skb data 2081 * @skb: the buffer to look in 2082 * @from: search offset 2083 * @to: search limit 2084 * @config: textsearch configuration 2085 * @state: uninitialized textsearch state variable 2086 * 2087 * Finds a pattern in the skb data according to the specified 2088 * textsearch configuration. Use textsearch_next() to retrieve 2089 * subsequent occurrences of the pattern. Returns the offset 2090 * to the first occurrence or UINT_MAX if no match was found. 2091 */ 2092 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2093 unsigned int to, struct ts_config *config, 2094 struct ts_state *state) 2095 { 2096 unsigned int ret; 2097 2098 config->get_next_block = skb_ts_get_next_block; 2099 config->finish = skb_ts_finish; 2100 2101 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2102 2103 ret = textsearch_find(config, state); 2104 return (ret <= to - from ? ret : UINT_MAX); 2105 } 2106 2107 /** 2108 * skb_append_datato_frags: - append the user data to a skb 2109 * @sk: sock structure 2110 * @skb: skb structure to be appened with user data. 2111 * @getfrag: call back function to be used for getting the user data 2112 * @from: pointer to user message iov 2113 * @length: length of the iov message 2114 * 2115 * Description: This procedure append the user data in the fragment part 2116 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2117 */ 2118 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2119 int (*getfrag)(void *from, char *to, int offset, 2120 int len, int odd, struct sk_buff *skb), 2121 void *from, int length) 2122 { 2123 int frg_cnt = 0; 2124 skb_frag_t *frag = NULL; 2125 struct page *page = NULL; 2126 int copy, left; 2127 int offset = 0; 2128 int ret; 2129 2130 do { 2131 /* Return error if we don't have space for new frag */ 2132 frg_cnt = skb_shinfo(skb)->nr_frags; 2133 if (frg_cnt >= MAX_SKB_FRAGS) 2134 return -EFAULT; 2135 2136 /* allocate a new page for next frag */ 2137 page = alloc_pages(sk->sk_allocation, 0); 2138 2139 /* If alloc_page fails just return failure and caller will 2140 * free previous allocated pages by doing kfree_skb() 2141 */ 2142 if (page == NULL) 2143 return -ENOMEM; 2144 2145 /* initialize the next frag */ 2146 sk->sk_sndmsg_page = page; 2147 sk->sk_sndmsg_off = 0; 2148 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 2149 skb->truesize += PAGE_SIZE; 2150 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 2151 2152 /* get the new initialized frag */ 2153 frg_cnt = skb_shinfo(skb)->nr_frags; 2154 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 2155 2156 /* copy the user data to page */ 2157 left = PAGE_SIZE - frag->page_offset; 2158 copy = (length > left)? left : length; 2159 2160 ret = getfrag(from, (page_address(frag->page) + 2161 frag->page_offset + frag->size), 2162 offset, copy, 0, skb); 2163 if (ret < 0) 2164 return -EFAULT; 2165 2166 /* copy was successful so update the size parameters */ 2167 sk->sk_sndmsg_off += copy; 2168 frag->size += copy; 2169 skb->len += copy; 2170 skb->data_len += copy; 2171 offset += copy; 2172 length -= copy; 2173 2174 } while (length > 0); 2175 2176 return 0; 2177 } 2178 2179 /** 2180 * skb_pull_rcsum - pull skb and update receive checksum 2181 * @skb: buffer to update 2182 * @len: length of data pulled 2183 * 2184 * This function performs an skb_pull on the packet and updates 2185 * the CHECKSUM_COMPLETE checksum. It should be used on 2186 * receive path processing instead of skb_pull unless you know 2187 * that the checksum difference is zero (e.g., a valid IP header) 2188 * or you are setting ip_summed to CHECKSUM_NONE. 2189 */ 2190 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2191 { 2192 BUG_ON(len > skb->len); 2193 skb->len -= len; 2194 BUG_ON(skb->len < skb->data_len); 2195 skb_postpull_rcsum(skb, skb->data, len); 2196 return skb->data += len; 2197 } 2198 2199 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2200 2201 /** 2202 * skb_segment - Perform protocol segmentation on skb. 2203 * @skb: buffer to segment 2204 * @features: features for the output path (see dev->features) 2205 * 2206 * This function performs segmentation on the given skb. It returns 2207 * a pointer to the first in a list of new skbs for the segments. 2208 * In case of error it returns ERR_PTR(err). 2209 */ 2210 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 2211 { 2212 struct sk_buff *segs = NULL; 2213 struct sk_buff *tail = NULL; 2214 unsigned int mss = skb_shinfo(skb)->gso_size; 2215 unsigned int doffset = skb->data - skb_mac_header(skb); 2216 unsigned int offset = doffset; 2217 unsigned int headroom; 2218 unsigned int len; 2219 int sg = features & NETIF_F_SG; 2220 int nfrags = skb_shinfo(skb)->nr_frags; 2221 int err = -ENOMEM; 2222 int i = 0; 2223 int pos; 2224 2225 __skb_push(skb, doffset); 2226 headroom = skb_headroom(skb); 2227 pos = skb_headlen(skb); 2228 2229 do { 2230 struct sk_buff *nskb; 2231 skb_frag_t *frag; 2232 int hsize; 2233 int k; 2234 int size; 2235 2236 len = skb->len - offset; 2237 if (len > mss) 2238 len = mss; 2239 2240 hsize = skb_headlen(skb) - offset; 2241 if (hsize < 0) 2242 hsize = 0; 2243 if (hsize > len || !sg) 2244 hsize = len; 2245 2246 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC); 2247 if (unlikely(!nskb)) 2248 goto err; 2249 2250 if (segs) 2251 tail->next = nskb; 2252 else 2253 segs = nskb; 2254 tail = nskb; 2255 2256 nskb->dev = skb->dev; 2257 skb_copy_queue_mapping(nskb, skb); 2258 nskb->priority = skb->priority; 2259 nskb->protocol = skb->protocol; 2260 nskb->vlan_tci = skb->vlan_tci; 2261 nskb->dst = dst_clone(skb->dst); 2262 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 2263 nskb->pkt_type = skb->pkt_type; 2264 nskb->mac_len = skb->mac_len; 2265 2266 skb_reserve(nskb, headroom); 2267 skb_reset_mac_header(nskb); 2268 skb_set_network_header(nskb, skb->mac_len); 2269 nskb->transport_header = (nskb->network_header + 2270 skb_network_header_len(skb)); 2271 skb_copy_from_linear_data(skb, skb_put(nskb, doffset), 2272 doffset); 2273 if (!sg) { 2274 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2275 skb_put(nskb, len), 2276 len, 0); 2277 continue; 2278 } 2279 2280 frag = skb_shinfo(nskb)->frags; 2281 k = 0; 2282 2283 nskb->ip_summed = CHECKSUM_PARTIAL; 2284 nskb->csum = skb->csum; 2285 skb_copy_from_linear_data_offset(skb, offset, 2286 skb_put(nskb, hsize), hsize); 2287 2288 while (pos < offset + len) { 2289 BUG_ON(i >= nfrags); 2290 2291 *frag = skb_shinfo(skb)->frags[i]; 2292 get_page(frag->page); 2293 size = frag->size; 2294 2295 if (pos < offset) { 2296 frag->page_offset += offset - pos; 2297 frag->size -= offset - pos; 2298 } 2299 2300 k++; 2301 2302 if (pos + size <= offset + len) { 2303 i++; 2304 pos += size; 2305 } else { 2306 frag->size -= pos + size - (offset + len); 2307 break; 2308 } 2309 2310 frag++; 2311 } 2312 2313 skb_shinfo(nskb)->nr_frags = k; 2314 nskb->data_len = len - hsize; 2315 nskb->len += nskb->data_len; 2316 nskb->truesize += nskb->data_len; 2317 } while ((offset += len) < skb->len); 2318 2319 return segs; 2320 2321 err: 2322 while ((skb = segs)) { 2323 segs = skb->next; 2324 kfree_skb(skb); 2325 } 2326 return ERR_PTR(err); 2327 } 2328 2329 EXPORT_SYMBOL_GPL(skb_segment); 2330 2331 void __init skb_init(void) 2332 { 2333 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2334 sizeof(struct sk_buff), 2335 0, 2336 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2337 NULL); 2338 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2339 (2*sizeof(struct sk_buff)) + 2340 sizeof(atomic_t), 2341 0, 2342 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2343 NULL); 2344 } 2345 2346 /** 2347 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2348 * @skb: Socket buffer containing the buffers to be mapped 2349 * @sg: The scatter-gather list to map into 2350 * @offset: The offset into the buffer's contents to start mapping 2351 * @len: Length of buffer space to be mapped 2352 * 2353 * Fill the specified scatter-gather list with mappings/pointers into a 2354 * region of the buffer space attached to a socket buffer. 2355 */ 2356 static int 2357 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2358 { 2359 int start = skb_headlen(skb); 2360 int i, copy = start - offset; 2361 int elt = 0; 2362 2363 if (copy > 0) { 2364 if (copy > len) 2365 copy = len; 2366 sg_set_buf(sg, skb->data + offset, copy); 2367 elt++; 2368 if ((len -= copy) == 0) 2369 return elt; 2370 offset += copy; 2371 } 2372 2373 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2374 int end; 2375 2376 BUG_TRAP(start <= offset + len); 2377 2378 end = start + skb_shinfo(skb)->frags[i].size; 2379 if ((copy = end - offset) > 0) { 2380 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2381 2382 if (copy > len) 2383 copy = len; 2384 sg_set_page(&sg[elt], frag->page, copy, 2385 frag->page_offset+offset-start); 2386 elt++; 2387 if (!(len -= copy)) 2388 return elt; 2389 offset += copy; 2390 } 2391 start = end; 2392 } 2393 2394 if (skb_shinfo(skb)->frag_list) { 2395 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2396 2397 for (; list; list = list->next) { 2398 int end; 2399 2400 BUG_TRAP(start <= offset + len); 2401 2402 end = start + list->len; 2403 if ((copy = end - offset) > 0) { 2404 if (copy > len) 2405 copy = len; 2406 elt += __skb_to_sgvec(list, sg+elt, offset - start, 2407 copy); 2408 if ((len -= copy) == 0) 2409 return elt; 2410 offset += copy; 2411 } 2412 start = end; 2413 } 2414 } 2415 BUG_ON(len); 2416 return elt; 2417 } 2418 2419 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2420 { 2421 int nsg = __skb_to_sgvec(skb, sg, offset, len); 2422 2423 sg_mark_end(&sg[nsg - 1]); 2424 2425 return nsg; 2426 } 2427 2428 /** 2429 * skb_cow_data - Check that a socket buffer's data buffers are writable 2430 * @skb: The socket buffer to check. 2431 * @tailbits: Amount of trailing space to be added 2432 * @trailer: Returned pointer to the skb where the @tailbits space begins 2433 * 2434 * Make sure that the data buffers attached to a socket buffer are 2435 * writable. If they are not, private copies are made of the data buffers 2436 * and the socket buffer is set to use these instead. 2437 * 2438 * If @tailbits is given, make sure that there is space to write @tailbits 2439 * bytes of data beyond current end of socket buffer. @trailer will be 2440 * set to point to the skb in which this space begins. 2441 * 2442 * The number of scatterlist elements required to completely map the 2443 * COW'd and extended socket buffer will be returned. 2444 */ 2445 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2446 { 2447 int copyflag; 2448 int elt; 2449 struct sk_buff *skb1, **skb_p; 2450 2451 /* If skb is cloned or its head is paged, reallocate 2452 * head pulling out all the pages (pages are considered not writable 2453 * at the moment even if they are anonymous). 2454 */ 2455 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2456 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2457 return -ENOMEM; 2458 2459 /* Easy case. Most of packets will go this way. */ 2460 if (!skb_shinfo(skb)->frag_list) { 2461 /* A little of trouble, not enough of space for trailer. 2462 * This should not happen, when stack is tuned to generate 2463 * good frames. OK, on miss we reallocate and reserve even more 2464 * space, 128 bytes is fair. */ 2465 2466 if (skb_tailroom(skb) < tailbits && 2467 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2468 return -ENOMEM; 2469 2470 /* Voila! */ 2471 *trailer = skb; 2472 return 1; 2473 } 2474 2475 /* Misery. We are in troubles, going to mincer fragments... */ 2476 2477 elt = 1; 2478 skb_p = &skb_shinfo(skb)->frag_list; 2479 copyflag = 0; 2480 2481 while ((skb1 = *skb_p) != NULL) { 2482 int ntail = 0; 2483 2484 /* The fragment is partially pulled by someone, 2485 * this can happen on input. Copy it and everything 2486 * after it. */ 2487 2488 if (skb_shared(skb1)) 2489 copyflag = 1; 2490 2491 /* If the skb is the last, worry about trailer. */ 2492 2493 if (skb1->next == NULL && tailbits) { 2494 if (skb_shinfo(skb1)->nr_frags || 2495 skb_shinfo(skb1)->frag_list || 2496 skb_tailroom(skb1) < tailbits) 2497 ntail = tailbits + 128; 2498 } 2499 2500 if (copyflag || 2501 skb_cloned(skb1) || 2502 ntail || 2503 skb_shinfo(skb1)->nr_frags || 2504 skb_shinfo(skb1)->frag_list) { 2505 struct sk_buff *skb2; 2506 2507 /* Fuck, we are miserable poor guys... */ 2508 if (ntail == 0) 2509 skb2 = skb_copy(skb1, GFP_ATOMIC); 2510 else 2511 skb2 = skb_copy_expand(skb1, 2512 skb_headroom(skb1), 2513 ntail, 2514 GFP_ATOMIC); 2515 if (unlikely(skb2 == NULL)) 2516 return -ENOMEM; 2517 2518 if (skb1->sk) 2519 skb_set_owner_w(skb2, skb1->sk); 2520 2521 /* Looking around. Are we still alive? 2522 * OK, link new skb, drop old one */ 2523 2524 skb2->next = skb1->next; 2525 *skb_p = skb2; 2526 kfree_skb(skb1); 2527 skb1 = skb2; 2528 } 2529 elt++; 2530 *trailer = skb1; 2531 skb_p = &skb1->next; 2532 } 2533 2534 return elt; 2535 } 2536 2537 /** 2538 * skb_partial_csum_set - set up and verify partial csum values for packet 2539 * @skb: the skb to set 2540 * @start: the number of bytes after skb->data to start checksumming. 2541 * @off: the offset from start to place the checksum. 2542 * 2543 * For untrusted partially-checksummed packets, we need to make sure the values 2544 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 2545 * 2546 * This function checks and sets those values and skb->ip_summed: if this 2547 * returns false you should drop the packet. 2548 */ 2549 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 2550 { 2551 if (unlikely(start > skb->len - 2) || 2552 unlikely((int)start + off > skb->len - 2)) { 2553 if (net_ratelimit()) 2554 printk(KERN_WARNING 2555 "bad partial csum: csum=%u/%u len=%u\n", 2556 start, off, skb->len); 2557 return false; 2558 } 2559 skb->ip_summed = CHECKSUM_PARTIAL; 2560 skb->csum_start = skb_headroom(skb) + start; 2561 skb->csum_offset = off; 2562 return true; 2563 } 2564 2565 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 2566 { 2567 if (net_ratelimit()) 2568 pr_warning("%s: received packets cannot be forwarded" 2569 " while LRO is enabled\n", skb->dev->name); 2570 } 2571 2572 EXPORT_SYMBOL(___pskb_trim); 2573 EXPORT_SYMBOL(__kfree_skb); 2574 EXPORT_SYMBOL(kfree_skb); 2575 EXPORT_SYMBOL(__pskb_pull_tail); 2576 EXPORT_SYMBOL(__alloc_skb); 2577 EXPORT_SYMBOL(__netdev_alloc_skb); 2578 EXPORT_SYMBOL(pskb_copy); 2579 EXPORT_SYMBOL(pskb_expand_head); 2580 EXPORT_SYMBOL(skb_checksum); 2581 EXPORT_SYMBOL(skb_clone); 2582 EXPORT_SYMBOL(skb_copy); 2583 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2584 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2585 EXPORT_SYMBOL(skb_copy_bits); 2586 EXPORT_SYMBOL(skb_copy_expand); 2587 EXPORT_SYMBOL(skb_over_panic); 2588 EXPORT_SYMBOL(skb_pad); 2589 EXPORT_SYMBOL(skb_realloc_headroom); 2590 EXPORT_SYMBOL(skb_under_panic); 2591 EXPORT_SYMBOL(skb_dequeue); 2592 EXPORT_SYMBOL(skb_dequeue_tail); 2593 EXPORT_SYMBOL(skb_insert); 2594 EXPORT_SYMBOL(skb_queue_purge); 2595 EXPORT_SYMBOL(skb_queue_head); 2596 EXPORT_SYMBOL(skb_queue_tail); 2597 EXPORT_SYMBOL(skb_unlink); 2598 EXPORT_SYMBOL(skb_append); 2599 EXPORT_SYMBOL(skb_split); 2600 EXPORT_SYMBOL(skb_prepare_seq_read); 2601 EXPORT_SYMBOL(skb_seq_read); 2602 EXPORT_SYMBOL(skb_abort_seq_read); 2603 EXPORT_SYMBOL(skb_find_text); 2604 EXPORT_SYMBOL(skb_append_datato_frags); 2605 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 2606 2607 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2608 EXPORT_SYMBOL_GPL(skb_cow_data); 2609 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 2610