xref: /openbmc/linux/net/core/skbuff.c (revision 545e4006)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/in.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
50 #endif
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
58 
59 #include <net/protocol.h>
60 #include <net/dst.h>
61 #include <net/sock.h>
62 #include <net/checksum.h>
63 #include <net/xfrm.h>
64 
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
67 
68 #include "kmap_skb.h"
69 
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
72 
73 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
74 				  struct pipe_buffer *buf)
75 {
76 	struct sk_buff *skb = (struct sk_buff *) buf->private;
77 
78 	kfree_skb(skb);
79 }
80 
81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
82 				struct pipe_buffer *buf)
83 {
84 	struct sk_buff *skb = (struct sk_buff *) buf->private;
85 
86 	skb_get(skb);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /*
108  *	Keep out-of-line to prevent kernel bloat.
109  *	__builtin_return_address is not used because it is not always
110  *	reliable.
111  */
112 
113 /**
114  *	skb_over_panic	- 	private function
115  *	@skb: buffer
116  *	@sz: size
117  *	@here: address
118  *
119  *	Out of line support code for skb_put(). Not user callable.
120  */
121 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
125 	       here, skb->len, sz, skb->head, skb->data,
126 	       (unsigned long)skb->tail, (unsigned long)skb->end,
127 	       skb->dev ? skb->dev->name : "<NULL>");
128 	BUG();
129 }
130 
131 /**
132  *	skb_under_panic	- 	private function
133  *	@skb: buffer
134  *	@sz: size
135  *	@here: address
136  *
137  *	Out of line support code for skb_push(). Not user callable.
138  */
139 
140 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 {
142 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
144 	       here, skb->len, sz, skb->head, skb->data,
145 	       (unsigned long)skb->tail, (unsigned long)skb->end,
146 	       skb->dev ? skb->dev->name : "<NULL>");
147 	BUG();
148 }
149 
150 void skb_truesize_bug(struct sk_buff *skb)
151 {
152 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
153 	       "len=%u, sizeof(sk_buff)=%Zd\n",
154 	       skb->truesize, skb->len, sizeof(struct sk_buff));
155 }
156 EXPORT_SYMBOL(skb_truesize_bug);
157 
158 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
159  *	'private' fields and also do memory statistics to find all the
160  *	[BEEP] leaks.
161  *
162  */
163 
164 /**
165  *	__alloc_skb	-	allocate a network buffer
166  *	@size: size to allocate
167  *	@gfp_mask: allocation mask
168  *	@fclone: allocate from fclone cache instead of head cache
169  *		and allocate a cloned (child) skb
170  *	@node: numa node to allocate memory on
171  *
172  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
173  *	tail room of size bytes. The object has a reference count of one.
174  *	The return is the buffer. On a failure the return is %NULL.
175  *
176  *	Buffers may only be allocated from interrupts using a @gfp_mask of
177  *	%GFP_ATOMIC.
178  */
179 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
180 			    int fclone, int node)
181 {
182 	struct kmem_cache *cache;
183 	struct skb_shared_info *shinfo;
184 	struct sk_buff *skb;
185 	u8 *data;
186 
187 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	/* Get the HEAD */
190 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
191 	if (!skb)
192 		goto out;
193 
194 	size = SKB_DATA_ALIGN(size);
195 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
196 			gfp_mask, node);
197 	if (!data)
198 		goto nodata;
199 
200 	/*
201 	 * Only clear those fields we need to clear, not those that we will
202 	 * actually initialise below. Hence, don't put any more fields after
203 	 * the tail pointer in struct sk_buff!
204 	 */
205 	memset(skb, 0, offsetof(struct sk_buff, tail));
206 	skb->truesize = size + sizeof(struct sk_buff);
207 	atomic_set(&skb->users, 1);
208 	skb->head = data;
209 	skb->data = data;
210 	skb_reset_tail_pointer(skb);
211 	skb->end = skb->tail + size;
212 	/* make sure we initialize shinfo sequentially */
213 	shinfo = skb_shinfo(skb);
214 	atomic_set(&shinfo->dataref, 1);
215 	shinfo->nr_frags  = 0;
216 	shinfo->gso_size = 0;
217 	shinfo->gso_segs = 0;
218 	shinfo->gso_type = 0;
219 	shinfo->ip6_frag_id = 0;
220 	shinfo->frag_list = NULL;
221 
222 	if (fclone) {
223 		struct sk_buff *child = skb + 1;
224 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
225 
226 		skb->fclone = SKB_FCLONE_ORIG;
227 		atomic_set(fclone_ref, 1);
228 
229 		child->fclone = SKB_FCLONE_UNAVAILABLE;
230 	}
231 out:
232 	return skb;
233 nodata:
234 	kmem_cache_free(cache, skb);
235 	skb = NULL;
236 	goto out;
237 }
238 
239 /**
240  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
241  *	@dev: network device to receive on
242  *	@length: length to allocate
243  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
244  *
245  *	Allocate a new &sk_buff and assign it a usage count of one. The
246  *	buffer has unspecified headroom built in. Users should allocate
247  *	the headroom they think they need without accounting for the
248  *	built in space. The built in space is used for optimisations.
249  *
250  *	%NULL is returned if there is no free memory.
251  */
252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
253 		unsigned int length, gfp_t gfp_mask)
254 {
255 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
256 	struct sk_buff *skb;
257 
258 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
259 	if (likely(skb)) {
260 		skb_reserve(skb, NET_SKB_PAD);
261 		skb->dev = dev;
262 	}
263 	return skb;
264 }
265 
266 /**
267  *	dev_alloc_skb - allocate an skbuff for receiving
268  *	@length: length to allocate
269  *
270  *	Allocate a new &sk_buff and assign it a usage count of one. The
271  *	buffer has unspecified headroom built in. Users should allocate
272  *	the headroom they think they need without accounting for the
273  *	built in space. The built in space is used for optimisations.
274  *
275  *	%NULL is returned if there is no free memory. Although this function
276  *	allocates memory it can be called from an interrupt.
277  */
278 struct sk_buff *dev_alloc_skb(unsigned int length)
279 {
280 	/*
281 	 * There is more code here than it seems:
282 	 * __dev_alloc_skb is an inline
283 	 */
284 	return __dev_alloc_skb(length, GFP_ATOMIC);
285 }
286 EXPORT_SYMBOL(dev_alloc_skb);
287 
288 static void skb_drop_list(struct sk_buff **listp)
289 {
290 	struct sk_buff *list = *listp;
291 
292 	*listp = NULL;
293 
294 	do {
295 		struct sk_buff *this = list;
296 		list = list->next;
297 		kfree_skb(this);
298 	} while (list);
299 }
300 
301 static inline void skb_drop_fraglist(struct sk_buff *skb)
302 {
303 	skb_drop_list(&skb_shinfo(skb)->frag_list);
304 }
305 
306 static void skb_clone_fraglist(struct sk_buff *skb)
307 {
308 	struct sk_buff *list;
309 
310 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
311 		skb_get(list);
312 }
313 
314 static void skb_release_data(struct sk_buff *skb)
315 {
316 	if (!skb->cloned ||
317 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
318 			       &skb_shinfo(skb)->dataref)) {
319 		if (skb_shinfo(skb)->nr_frags) {
320 			int i;
321 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
322 				put_page(skb_shinfo(skb)->frags[i].page);
323 		}
324 
325 		if (skb_shinfo(skb)->frag_list)
326 			skb_drop_fraglist(skb);
327 
328 		kfree(skb->head);
329 	}
330 }
331 
332 /*
333  *	Free an skbuff by memory without cleaning the state.
334  */
335 static void kfree_skbmem(struct sk_buff *skb)
336 {
337 	struct sk_buff *other;
338 	atomic_t *fclone_ref;
339 
340 	switch (skb->fclone) {
341 	case SKB_FCLONE_UNAVAILABLE:
342 		kmem_cache_free(skbuff_head_cache, skb);
343 		break;
344 
345 	case SKB_FCLONE_ORIG:
346 		fclone_ref = (atomic_t *) (skb + 2);
347 		if (atomic_dec_and_test(fclone_ref))
348 			kmem_cache_free(skbuff_fclone_cache, skb);
349 		break;
350 
351 	case SKB_FCLONE_CLONE:
352 		fclone_ref = (atomic_t *) (skb + 1);
353 		other = skb - 1;
354 
355 		/* The clone portion is available for
356 		 * fast-cloning again.
357 		 */
358 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
359 
360 		if (atomic_dec_and_test(fclone_ref))
361 			kmem_cache_free(skbuff_fclone_cache, other);
362 		break;
363 	}
364 }
365 
366 /* Free everything but the sk_buff shell. */
367 static void skb_release_all(struct sk_buff *skb)
368 {
369 	dst_release(skb->dst);
370 #ifdef CONFIG_XFRM
371 	secpath_put(skb->sp);
372 #endif
373 	if (skb->destructor) {
374 		WARN_ON(in_irq());
375 		skb->destructor(skb);
376 	}
377 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
378 	nf_conntrack_put(skb->nfct);
379 	nf_conntrack_put_reasm(skb->nfct_reasm);
380 #endif
381 #ifdef CONFIG_BRIDGE_NETFILTER
382 	nf_bridge_put(skb->nf_bridge);
383 #endif
384 /* XXX: IS this still necessary? - JHS */
385 #ifdef CONFIG_NET_SCHED
386 	skb->tc_index = 0;
387 #ifdef CONFIG_NET_CLS_ACT
388 	skb->tc_verd = 0;
389 #endif
390 #endif
391 	skb_release_data(skb);
392 }
393 
394 /**
395  *	__kfree_skb - private function
396  *	@skb: buffer
397  *
398  *	Free an sk_buff. Release anything attached to the buffer.
399  *	Clean the state. This is an internal helper function. Users should
400  *	always call kfree_skb
401  */
402 
403 void __kfree_skb(struct sk_buff *skb)
404 {
405 	skb_release_all(skb);
406 	kfree_skbmem(skb);
407 }
408 
409 /**
410  *	kfree_skb - free an sk_buff
411  *	@skb: buffer to free
412  *
413  *	Drop a reference to the buffer and free it if the usage count has
414  *	hit zero.
415  */
416 void kfree_skb(struct sk_buff *skb)
417 {
418 	if (unlikely(!skb))
419 		return;
420 	if (likely(atomic_read(&skb->users) == 1))
421 		smp_rmb();
422 	else if (likely(!atomic_dec_and_test(&skb->users)))
423 		return;
424 	__kfree_skb(skb);
425 }
426 
427 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
428 {
429 	new->tstamp		= old->tstamp;
430 	new->dev		= old->dev;
431 	new->transport_header	= old->transport_header;
432 	new->network_header	= old->network_header;
433 	new->mac_header		= old->mac_header;
434 	new->dst		= dst_clone(old->dst);
435 #ifdef CONFIG_INET
436 	new->sp			= secpath_get(old->sp);
437 #endif
438 	memcpy(new->cb, old->cb, sizeof(old->cb));
439 	new->csum_start		= old->csum_start;
440 	new->csum_offset	= old->csum_offset;
441 	new->local_df		= old->local_df;
442 	new->pkt_type		= old->pkt_type;
443 	new->ip_summed		= old->ip_summed;
444 	skb_copy_queue_mapping(new, old);
445 	new->priority		= old->priority;
446 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
447 	new->ipvs_property	= old->ipvs_property;
448 #endif
449 	new->protocol		= old->protocol;
450 	new->mark		= old->mark;
451 	__nf_copy(new, old);
452 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
453     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
454 	new->nf_trace		= old->nf_trace;
455 #endif
456 #ifdef CONFIG_NET_SCHED
457 	new->tc_index		= old->tc_index;
458 #ifdef CONFIG_NET_CLS_ACT
459 	new->tc_verd		= old->tc_verd;
460 #endif
461 #endif
462 	new->vlan_tci		= old->vlan_tci;
463 
464 	skb_copy_secmark(new, old);
465 }
466 
467 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
468 {
469 #define C(x) n->x = skb->x
470 
471 	n->next = n->prev = NULL;
472 	n->sk = NULL;
473 	__copy_skb_header(n, skb);
474 
475 	C(len);
476 	C(data_len);
477 	C(mac_len);
478 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
479 	n->cloned = 1;
480 	n->nohdr = 0;
481 	n->destructor = NULL;
482 	C(iif);
483 	C(tail);
484 	C(end);
485 	C(head);
486 	C(data);
487 	C(truesize);
488 	atomic_set(&n->users, 1);
489 
490 	atomic_inc(&(skb_shinfo(skb)->dataref));
491 	skb->cloned = 1;
492 
493 	return n;
494 #undef C
495 }
496 
497 /**
498  *	skb_morph	-	morph one skb into another
499  *	@dst: the skb to receive the contents
500  *	@src: the skb to supply the contents
501  *
502  *	This is identical to skb_clone except that the target skb is
503  *	supplied by the user.
504  *
505  *	The target skb is returned upon exit.
506  */
507 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
508 {
509 	skb_release_all(dst);
510 	return __skb_clone(dst, src);
511 }
512 EXPORT_SYMBOL_GPL(skb_morph);
513 
514 /**
515  *	skb_clone	-	duplicate an sk_buff
516  *	@skb: buffer to clone
517  *	@gfp_mask: allocation priority
518  *
519  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
520  *	copies share the same packet data but not structure. The new
521  *	buffer has a reference count of 1. If the allocation fails the
522  *	function returns %NULL otherwise the new buffer is returned.
523  *
524  *	If this function is called from an interrupt gfp_mask() must be
525  *	%GFP_ATOMIC.
526  */
527 
528 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
529 {
530 	struct sk_buff *n;
531 
532 	n = skb + 1;
533 	if (skb->fclone == SKB_FCLONE_ORIG &&
534 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
535 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
536 		n->fclone = SKB_FCLONE_CLONE;
537 		atomic_inc(fclone_ref);
538 	} else {
539 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
540 		if (!n)
541 			return NULL;
542 		n->fclone = SKB_FCLONE_UNAVAILABLE;
543 	}
544 
545 	return __skb_clone(n, skb);
546 }
547 
548 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
549 {
550 #ifndef NET_SKBUFF_DATA_USES_OFFSET
551 	/*
552 	 *	Shift between the two data areas in bytes
553 	 */
554 	unsigned long offset = new->data - old->data;
555 #endif
556 
557 	__copy_skb_header(new, old);
558 
559 #ifndef NET_SKBUFF_DATA_USES_OFFSET
560 	/* {transport,network,mac}_header are relative to skb->head */
561 	new->transport_header += offset;
562 	new->network_header   += offset;
563 	new->mac_header	      += offset;
564 #endif
565 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
566 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
567 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
568 }
569 
570 /**
571  *	skb_copy	-	create private copy of an sk_buff
572  *	@skb: buffer to copy
573  *	@gfp_mask: allocation priority
574  *
575  *	Make a copy of both an &sk_buff and its data. This is used when the
576  *	caller wishes to modify the data and needs a private copy of the
577  *	data to alter. Returns %NULL on failure or the pointer to the buffer
578  *	on success. The returned buffer has a reference count of 1.
579  *
580  *	As by-product this function converts non-linear &sk_buff to linear
581  *	one, so that &sk_buff becomes completely private and caller is allowed
582  *	to modify all the data of returned buffer. This means that this
583  *	function is not recommended for use in circumstances when only
584  *	header is going to be modified. Use pskb_copy() instead.
585  */
586 
587 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
588 {
589 	int headerlen = skb->data - skb->head;
590 	/*
591 	 *	Allocate the copy buffer
592 	 */
593 	struct sk_buff *n;
594 #ifdef NET_SKBUFF_DATA_USES_OFFSET
595 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
596 #else
597 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
598 #endif
599 	if (!n)
600 		return NULL;
601 
602 	/* Set the data pointer */
603 	skb_reserve(n, headerlen);
604 	/* Set the tail pointer and length */
605 	skb_put(n, skb->len);
606 
607 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
608 		BUG();
609 
610 	copy_skb_header(n, skb);
611 	return n;
612 }
613 
614 
615 /**
616  *	pskb_copy	-	create copy of an sk_buff with private head.
617  *	@skb: buffer to copy
618  *	@gfp_mask: allocation priority
619  *
620  *	Make a copy of both an &sk_buff and part of its data, located
621  *	in header. Fragmented data remain shared. This is used when
622  *	the caller wishes to modify only header of &sk_buff and needs
623  *	private copy of the header to alter. Returns %NULL on failure
624  *	or the pointer to the buffer on success.
625  *	The returned buffer has a reference count of 1.
626  */
627 
628 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
629 {
630 	/*
631 	 *	Allocate the copy buffer
632 	 */
633 	struct sk_buff *n;
634 #ifdef NET_SKBUFF_DATA_USES_OFFSET
635 	n = alloc_skb(skb->end, gfp_mask);
636 #else
637 	n = alloc_skb(skb->end - skb->head, gfp_mask);
638 #endif
639 	if (!n)
640 		goto out;
641 
642 	/* Set the data pointer */
643 	skb_reserve(n, skb->data - skb->head);
644 	/* Set the tail pointer and length */
645 	skb_put(n, skb_headlen(skb));
646 	/* Copy the bytes */
647 	skb_copy_from_linear_data(skb, n->data, n->len);
648 
649 	n->truesize += skb->data_len;
650 	n->data_len  = skb->data_len;
651 	n->len	     = skb->len;
652 
653 	if (skb_shinfo(skb)->nr_frags) {
654 		int i;
655 
656 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
657 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
658 			get_page(skb_shinfo(n)->frags[i].page);
659 		}
660 		skb_shinfo(n)->nr_frags = i;
661 	}
662 
663 	if (skb_shinfo(skb)->frag_list) {
664 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
665 		skb_clone_fraglist(n);
666 	}
667 
668 	copy_skb_header(n, skb);
669 out:
670 	return n;
671 }
672 
673 /**
674  *	pskb_expand_head - reallocate header of &sk_buff
675  *	@skb: buffer to reallocate
676  *	@nhead: room to add at head
677  *	@ntail: room to add at tail
678  *	@gfp_mask: allocation priority
679  *
680  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
681  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
682  *	reference count of 1. Returns zero in the case of success or error,
683  *	if expansion failed. In the last case, &sk_buff is not changed.
684  *
685  *	All the pointers pointing into skb header may change and must be
686  *	reloaded after call to this function.
687  */
688 
689 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
690 		     gfp_t gfp_mask)
691 {
692 	int i;
693 	u8 *data;
694 #ifdef NET_SKBUFF_DATA_USES_OFFSET
695 	int size = nhead + skb->end + ntail;
696 #else
697 	int size = nhead + (skb->end - skb->head) + ntail;
698 #endif
699 	long off;
700 
701 	if (skb_shared(skb))
702 		BUG();
703 
704 	size = SKB_DATA_ALIGN(size);
705 
706 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
707 	if (!data)
708 		goto nodata;
709 
710 	/* Copy only real data... and, alas, header. This should be
711 	 * optimized for the cases when header is void. */
712 #ifdef NET_SKBUFF_DATA_USES_OFFSET
713 	memcpy(data + nhead, skb->head, skb->tail);
714 #else
715 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
716 #endif
717 	memcpy(data + size, skb_end_pointer(skb),
718 	       sizeof(struct skb_shared_info));
719 
720 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
721 		get_page(skb_shinfo(skb)->frags[i].page);
722 
723 	if (skb_shinfo(skb)->frag_list)
724 		skb_clone_fraglist(skb);
725 
726 	skb_release_data(skb);
727 
728 	off = (data + nhead) - skb->head;
729 
730 	skb->head     = data;
731 	skb->data    += off;
732 #ifdef NET_SKBUFF_DATA_USES_OFFSET
733 	skb->end      = size;
734 	off           = nhead;
735 #else
736 	skb->end      = skb->head + size;
737 #endif
738 	/* {transport,network,mac}_header and tail are relative to skb->head */
739 	skb->tail	      += off;
740 	skb->transport_header += off;
741 	skb->network_header   += off;
742 	skb->mac_header	      += off;
743 	skb->csum_start       += nhead;
744 	skb->cloned   = 0;
745 	skb->hdr_len  = 0;
746 	skb->nohdr    = 0;
747 	atomic_set(&skb_shinfo(skb)->dataref, 1);
748 	return 0;
749 
750 nodata:
751 	return -ENOMEM;
752 }
753 
754 /* Make private copy of skb with writable head and some headroom */
755 
756 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
757 {
758 	struct sk_buff *skb2;
759 	int delta = headroom - skb_headroom(skb);
760 
761 	if (delta <= 0)
762 		skb2 = pskb_copy(skb, GFP_ATOMIC);
763 	else {
764 		skb2 = skb_clone(skb, GFP_ATOMIC);
765 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
766 					     GFP_ATOMIC)) {
767 			kfree_skb(skb2);
768 			skb2 = NULL;
769 		}
770 	}
771 	return skb2;
772 }
773 
774 
775 /**
776  *	skb_copy_expand	-	copy and expand sk_buff
777  *	@skb: buffer to copy
778  *	@newheadroom: new free bytes at head
779  *	@newtailroom: new free bytes at tail
780  *	@gfp_mask: allocation priority
781  *
782  *	Make a copy of both an &sk_buff and its data and while doing so
783  *	allocate additional space.
784  *
785  *	This is used when the caller wishes to modify the data and needs a
786  *	private copy of the data to alter as well as more space for new fields.
787  *	Returns %NULL on failure or the pointer to the buffer
788  *	on success. The returned buffer has a reference count of 1.
789  *
790  *	You must pass %GFP_ATOMIC as the allocation priority if this function
791  *	is called from an interrupt.
792  */
793 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
794 				int newheadroom, int newtailroom,
795 				gfp_t gfp_mask)
796 {
797 	/*
798 	 *	Allocate the copy buffer
799 	 */
800 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
801 				      gfp_mask);
802 	int oldheadroom = skb_headroom(skb);
803 	int head_copy_len, head_copy_off;
804 	int off;
805 
806 	if (!n)
807 		return NULL;
808 
809 	skb_reserve(n, newheadroom);
810 
811 	/* Set the tail pointer and length */
812 	skb_put(n, skb->len);
813 
814 	head_copy_len = oldheadroom;
815 	head_copy_off = 0;
816 	if (newheadroom <= head_copy_len)
817 		head_copy_len = newheadroom;
818 	else
819 		head_copy_off = newheadroom - head_copy_len;
820 
821 	/* Copy the linear header and data. */
822 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
823 			  skb->len + head_copy_len))
824 		BUG();
825 
826 	copy_skb_header(n, skb);
827 
828 	off                  = newheadroom - oldheadroom;
829 	n->csum_start       += off;
830 #ifdef NET_SKBUFF_DATA_USES_OFFSET
831 	n->transport_header += off;
832 	n->network_header   += off;
833 	n->mac_header	    += off;
834 #endif
835 
836 	return n;
837 }
838 
839 /**
840  *	skb_pad			-	zero pad the tail of an skb
841  *	@skb: buffer to pad
842  *	@pad: space to pad
843  *
844  *	Ensure that a buffer is followed by a padding area that is zero
845  *	filled. Used by network drivers which may DMA or transfer data
846  *	beyond the buffer end onto the wire.
847  *
848  *	May return error in out of memory cases. The skb is freed on error.
849  */
850 
851 int skb_pad(struct sk_buff *skb, int pad)
852 {
853 	int err;
854 	int ntail;
855 
856 	/* If the skbuff is non linear tailroom is always zero.. */
857 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
858 		memset(skb->data+skb->len, 0, pad);
859 		return 0;
860 	}
861 
862 	ntail = skb->data_len + pad - (skb->end - skb->tail);
863 	if (likely(skb_cloned(skb) || ntail > 0)) {
864 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
865 		if (unlikely(err))
866 			goto free_skb;
867 	}
868 
869 	/* FIXME: The use of this function with non-linear skb's really needs
870 	 * to be audited.
871 	 */
872 	err = skb_linearize(skb);
873 	if (unlikely(err))
874 		goto free_skb;
875 
876 	memset(skb->data + skb->len, 0, pad);
877 	return 0;
878 
879 free_skb:
880 	kfree_skb(skb);
881 	return err;
882 }
883 
884 /**
885  *	skb_put - add data to a buffer
886  *	@skb: buffer to use
887  *	@len: amount of data to add
888  *
889  *	This function extends the used data area of the buffer. If this would
890  *	exceed the total buffer size the kernel will panic. A pointer to the
891  *	first byte of the extra data is returned.
892  */
893 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
894 {
895 	unsigned char *tmp = skb_tail_pointer(skb);
896 	SKB_LINEAR_ASSERT(skb);
897 	skb->tail += len;
898 	skb->len  += len;
899 	if (unlikely(skb->tail > skb->end))
900 		skb_over_panic(skb, len, __builtin_return_address(0));
901 	return tmp;
902 }
903 EXPORT_SYMBOL(skb_put);
904 
905 /**
906  *	skb_push - add data to the start of a buffer
907  *	@skb: buffer to use
908  *	@len: amount of data to add
909  *
910  *	This function extends the used data area of the buffer at the buffer
911  *	start. If this would exceed the total buffer headroom the kernel will
912  *	panic. A pointer to the first byte of the extra data is returned.
913  */
914 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
915 {
916 	skb->data -= len;
917 	skb->len  += len;
918 	if (unlikely(skb->data<skb->head))
919 		skb_under_panic(skb, len, __builtin_return_address(0));
920 	return skb->data;
921 }
922 EXPORT_SYMBOL(skb_push);
923 
924 /**
925  *	skb_pull - remove data from the start of a buffer
926  *	@skb: buffer to use
927  *	@len: amount of data to remove
928  *
929  *	This function removes data from the start of a buffer, returning
930  *	the memory to the headroom. A pointer to the next data in the buffer
931  *	is returned. Once the data has been pulled future pushes will overwrite
932  *	the old data.
933  */
934 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
935 {
936 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
937 }
938 EXPORT_SYMBOL(skb_pull);
939 
940 /**
941  *	skb_trim - remove end from a buffer
942  *	@skb: buffer to alter
943  *	@len: new length
944  *
945  *	Cut the length of a buffer down by removing data from the tail. If
946  *	the buffer is already under the length specified it is not modified.
947  *	The skb must be linear.
948  */
949 void skb_trim(struct sk_buff *skb, unsigned int len)
950 {
951 	if (skb->len > len)
952 		__skb_trim(skb, len);
953 }
954 EXPORT_SYMBOL(skb_trim);
955 
956 /* Trims skb to length len. It can change skb pointers.
957  */
958 
959 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
960 {
961 	struct sk_buff **fragp;
962 	struct sk_buff *frag;
963 	int offset = skb_headlen(skb);
964 	int nfrags = skb_shinfo(skb)->nr_frags;
965 	int i;
966 	int err;
967 
968 	if (skb_cloned(skb) &&
969 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
970 		return err;
971 
972 	i = 0;
973 	if (offset >= len)
974 		goto drop_pages;
975 
976 	for (; i < nfrags; i++) {
977 		int end = offset + skb_shinfo(skb)->frags[i].size;
978 
979 		if (end < len) {
980 			offset = end;
981 			continue;
982 		}
983 
984 		skb_shinfo(skb)->frags[i++].size = len - offset;
985 
986 drop_pages:
987 		skb_shinfo(skb)->nr_frags = i;
988 
989 		for (; i < nfrags; i++)
990 			put_page(skb_shinfo(skb)->frags[i].page);
991 
992 		if (skb_shinfo(skb)->frag_list)
993 			skb_drop_fraglist(skb);
994 		goto done;
995 	}
996 
997 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
998 	     fragp = &frag->next) {
999 		int end = offset + frag->len;
1000 
1001 		if (skb_shared(frag)) {
1002 			struct sk_buff *nfrag;
1003 
1004 			nfrag = skb_clone(frag, GFP_ATOMIC);
1005 			if (unlikely(!nfrag))
1006 				return -ENOMEM;
1007 
1008 			nfrag->next = frag->next;
1009 			kfree_skb(frag);
1010 			frag = nfrag;
1011 			*fragp = frag;
1012 		}
1013 
1014 		if (end < len) {
1015 			offset = end;
1016 			continue;
1017 		}
1018 
1019 		if (end > len &&
1020 		    unlikely((err = pskb_trim(frag, len - offset))))
1021 			return err;
1022 
1023 		if (frag->next)
1024 			skb_drop_list(&frag->next);
1025 		break;
1026 	}
1027 
1028 done:
1029 	if (len > skb_headlen(skb)) {
1030 		skb->data_len -= skb->len - len;
1031 		skb->len       = len;
1032 	} else {
1033 		skb->len       = len;
1034 		skb->data_len  = 0;
1035 		skb_set_tail_pointer(skb, len);
1036 	}
1037 
1038 	return 0;
1039 }
1040 
1041 /**
1042  *	__pskb_pull_tail - advance tail of skb header
1043  *	@skb: buffer to reallocate
1044  *	@delta: number of bytes to advance tail
1045  *
1046  *	The function makes a sense only on a fragmented &sk_buff,
1047  *	it expands header moving its tail forward and copying necessary
1048  *	data from fragmented part.
1049  *
1050  *	&sk_buff MUST have reference count of 1.
1051  *
1052  *	Returns %NULL (and &sk_buff does not change) if pull failed
1053  *	or value of new tail of skb in the case of success.
1054  *
1055  *	All the pointers pointing into skb header may change and must be
1056  *	reloaded after call to this function.
1057  */
1058 
1059 /* Moves tail of skb head forward, copying data from fragmented part,
1060  * when it is necessary.
1061  * 1. It may fail due to malloc failure.
1062  * 2. It may change skb pointers.
1063  *
1064  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1065  */
1066 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1067 {
1068 	/* If skb has not enough free space at tail, get new one
1069 	 * plus 128 bytes for future expansions. If we have enough
1070 	 * room at tail, reallocate without expansion only if skb is cloned.
1071 	 */
1072 	int i, k, eat = (skb->tail + delta) - skb->end;
1073 
1074 	if (eat > 0 || skb_cloned(skb)) {
1075 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1076 				     GFP_ATOMIC))
1077 			return NULL;
1078 	}
1079 
1080 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1081 		BUG();
1082 
1083 	/* Optimization: no fragments, no reasons to preestimate
1084 	 * size of pulled pages. Superb.
1085 	 */
1086 	if (!skb_shinfo(skb)->frag_list)
1087 		goto pull_pages;
1088 
1089 	/* Estimate size of pulled pages. */
1090 	eat = delta;
1091 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1092 		if (skb_shinfo(skb)->frags[i].size >= eat)
1093 			goto pull_pages;
1094 		eat -= skb_shinfo(skb)->frags[i].size;
1095 	}
1096 
1097 	/* If we need update frag list, we are in troubles.
1098 	 * Certainly, it possible to add an offset to skb data,
1099 	 * but taking into account that pulling is expected to
1100 	 * be very rare operation, it is worth to fight against
1101 	 * further bloating skb head and crucify ourselves here instead.
1102 	 * Pure masohism, indeed. 8)8)
1103 	 */
1104 	if (eat) {
1105 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1106 		struct sk_buff *clone = NULL;
1107 		struct sk_buff *insp = NULL;
1108 
1109 		do {
1110 			BUG_ON(!list);
1111 
1112 			if (list->len <= eat) {
1113 				/* Eaten as whole. */
1114 				eat -= list->len;
1115 				list = list->next;
1116 				insp = list;
1117 			} else {
1118 				/* Eaten partially. */
1119 
1120 				if (skb_shared(list)) {
1121 					/* Sucks! We need to fork list. :-( */
1122 					clone = skb_clone(list, GFP_ATOMIC);
1123 					if (!clone)
1124 						return NULL;
1125 					insp = list->next;
1126 					list = clone;
1127 				} else {
1128 					/* This may be pulled without
1129 					 * problems. */
1130 					insp = list;
1131 				}
1132 				if (!pskb_pull(list, eat)) {
1133 					if (clone)
1134 						kfree_skb(clone);
1135 					return NULL;
1136 				}
1137 				break;
1138 			}
1139 		} while (eat);
1140 
1141 		/* Free pulled out fragments. */
1142 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1143 			skb_shinfo(skb)->frag_list = list->next;
1144 			kfree_skb(list);
1145 		}
1146 		/* And insert new clone at head. */
1147 		if (clone) {
1148 			clone->next = list;
1149 			skb_shinfo(skb)->frag_list = clone;
1150 		}
1151 	}
1152 	/* Success! Now we may commit changes to skb data. */
1153 
1154 pull_pages:
1155 	eat = delta;
1156 	k = 0;
1157 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1158 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1159 			put_page(skb_shinfo(skb)->frags[i].page);
1160 			eat -= skb_shinfo(skb)->frags[i].size;
1161 		} else {
1162 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1163 			if (eat) {
1164 				skb_shinfo(skb)->frags[k].page_offset += eat;
1165 				skb_shinfo(skb)->frags[k].size -= eat;
1166 				eat = 0;
1167 			}
1168 			k++;
1169 		}
1170 	}
1171 	skb_shinfo(skb)->nr_frags = k;
1172 
1173 	skb->tail     += delta;
1174 	skb->data_len -= delta;
1175 
1176 	return skb_tail_pointer(skb);
1177 }
1178 
1179 /* Copy some data bits from skb to kernel buffer. */
1180 
1181 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1182 {
1183 	int i, copy;
1184 	int start = skb_headlen(skb);
1185 
1186 	if (offset > (int)skb->len - len)
1187 		goto fault;
1188 
1189 	/* Copy header. */
1190 	if ((copy = start - offset) > 0) {
1191 		if (copy > len)
1192 			copy = len;
1193 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1194 		if ((len -= copy) == 0)
1195 			return 0;
1196 		offset += copy;
1197 		to     += copy;
1198 	}
1199 
1200 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1201 		int end;
1202 
1203 		BUG_TRAP(start <= offset + len);
1204 
1205 		end = start + skb_shinfo(skb)->frags[i].size;
1206 		if ((copy = end - offset) > 0) {
1207 			u8 *vaddr;
1208 
1209 			if (copy > len)
1210 				copy = len;
1211 
1212 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1213 			memcpy(to,
1214 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1215 			       offset - start, copy);
1216 			kunmap_skb_frag(vaddr);
1217 
1218 			if ((len -= copy) == 0)
1219 				return 0;
1220 			offset += copy;
1221 			to     += copy;
1222 		}
1223 		start = end;
1224 	}
1225 
1226 	if (skb_shinfo(skb)->frag_list) {
1227 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1228 
1229 		for (; list; list = list->next) {
1230 			int end;
1231 
1232 			BUG_TRAP(start <= offset + len);
1233 
1234 			end = start + list->len;
1235 			if ((copy = end - offset) > 0) {
1236 				if (copy > len)
1237 					copy = len;
1238 				if (skb_copy_bits(list, offset - start,
1239 						  to, copy))
1240 					goto fault;
1241 				if ((len -= copy) == 0)
1242 					return 0;
1243 				offset += copy;
1244 				to     += copy;
1245 			}
1246 			start = end;
1247 		}
1248 	}
1249 	if (!len)
1250 		return 0;
1251 
1252 fault:
1253 	return -EFAULT;
1254 }
1255 
1256 /*
1257  * Callback from splice_to_pipe(), if we need to release some pages
1258  * at the end of the spd in case we error'ed out in filling the pipe.
1259  */
1260 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1261 {
1262 	struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private;
1263 
1264 	kfree_skb(skb);
1265 }
1266 
1267 /*
1268  * Fill page/offset/length into spd, if it can hold more pages.
1269  */
1270 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1271 				unsigned int len, unsigned int offset,
1272 				struct sk_buff *skb)
1273 {
1274 	if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1275 		return 1;
1276 
1277 	spd->pages[spd->nr_pages] = page;
1278 	spd->partial[spd->nr_pages].len = len;
1279 	spd->partial[spd->nr_pages].offset = offset;
1280 	spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb);
1281 	spd->nr_pages++;
1282 	return 0;
1283 }
1284 
1285 static inline void __segment_seek(struct page **page, unsigned int *poff,
1286 				  unsigned int *plen, unsigned int off)
1287 {
1288 	*poff += off;
1289 	*page += *poff / PAGE_SIZE;
1290 	*poff = *poff % PAGE_SIZE;
1291 	*plen -= off;
1292 }
1293 
1294 static inline int __splice_segment(struct page *page, unsigned int poff,
1295 				   unsigned int plen, unsigned int *off,
1296 				   unsigned int *len, struct sk_buff *skb,
1297 				   struct splice_pipe_desc *spd)
1298 {
1299 	if (!*len)
1300 		return 1;
1301 
1302 	/* skip this segment if already processed */
1303 	if (*off >= plen) {
1304 		*off -= plen;
1305 		return 0;
1306 	}
1307 
1308 	/* ignore any bits we already processed */
1309 	if (*off) {
1310 		__segment_seek(&page, &poff, &plen, *off);
1311 		*off = 0;
1312 	}
1313 
1314 	do {
1315 		unsigned int flen = min(*len, plen);
1316 
1317 		/* the linear region may spread across several pages  */
1318 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1319 
1320 		if (spd_fill_page(spd, page, flen, poff, skb))
1321 			return 1;
1322 
1323 		__segment_seek(&page, &poff, &plen, flen);
1324 		*len -= flen;
1325 
1326 	} while (*len && plen);
1327 
1328 	return 0;
1329 }
1330 
1331 /*
1332  * Map linear and fragment data from the skb to spd. It reports failure if the
1333  * pipe is full or if we already spliced the requested length.
1334  */
1335 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1336 		      unsigned int *len,
1337 		      struct splice_pipe_desc *spd)
1338 {
1339 	int seg;
1340 
1341 	/*
1342 	 * map the linear part
1343 	 */
1344 	if (__splice_segment(virt_to_page(skb->data),
1345 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1346 			     skb_headlen(skb),
1347 			     offset, len, skb, spd))
1348 		return 1;
1349 
1350 	/*
1351 	 * then map the fragments
1352 	 */
1353 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1354 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1355 
1356 		if (__splice_segment(f->page, f->page_offset, f->size,
1357 				     offset, len, skb, spd))
1358 			return 1;
1359 	}
1360 
1361 	return 0;
1362 }
1363 
1364 /*
1365  * Map data from the skb to a pipe. Should handle both the linear part,
1366  * the fragments, and the frag list. It does NOT handle frag lists within
1367  * the frag list, if such a thing exists. We'd probably need to recurse to
1368  * handle that cleanly.
1369  */
1370 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset,
1371 		    struct pipe_inode_info *pipe, unsigned int tlen,
1372 		    unsigned int flags)
1373 {
1374 	struct partial_page partial[PIPE_BUFFERS];
1375 	struct page *pages[PIPE_BUFFERS];
1376 	struct splice_pipe_desc spd = {
1377 		.pages = pages,
1378 		.partial = partial,
1379 		.flags = flags,
1380 		.ops = &sock_pipe_buf_ops,
1381 		.spd_release = sock_spd_release,
1382 	};
1383 	struct sk_buff *skb;
1384 
1385 	/*
1386 	 * I'd love to avoid the clone here, but tcp_read_sock()
1387 	 * ignores reference counts and unconditonally kills the sk_buff
1388 	 * on return from the actor.
1389 	 */
1390 	skb = skb_clone(__skb, GFP_KERNEL);
1391 	if (unlikely(!skb))
1392 		return -ENOMEM;
1393 
1394 	/*
1395 	 * __skb_splice_bits() only fails if the output has no room left,
1396 	 * so no point in going over the frag_list for the error case.
1397 	 */
1398 	if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1399 		goto done;
1400 	else if (!tlen)
1401 		goto done;
1402 
1403 	/*
1404 	 * now see if we have a frag_list to map
1405 	 */
1406 	if (skb_shinfo(skb)->frag_list) {
1407 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1408 
1409 		for (; list && tlen; list = list->next) {
1410 			if (__skb_splice_bits(list, &offset, &tlen, &spd))
1411 				break;
1412 		}
1413 	}
1414 
1415 done:
1416 	/*
1417 	 * drop our reference to the clone, the pipe consumption will
1418 	 * drop the rest.
1419 	 */
1420 	kfree_skb(skb);
1421 
1422 	if (spd.nr_pages) {
1423 		int ret;
1424 		struct sock *sk = __skb->sk;
1425 
1426 		/*
1427 		 * Drop the socket lock, otherwise we have reverse
1428 		 * locking dependencies between sk_lock and i_mutex
1429 		 * here as compared to sendfile(). We enter here
1430 		 * with the socket lock held, and splice_to_pipe() will
1431 		 * grab the pipe inode lock. For sendfile() emulation,
1432 		 * we call into ->sendpage() with the i_mutex lock held
1433 		 * and networking will grab the socket lock.
1434 		 */
1435 		release_sock(sk);
1436 		ret = splice_to_pipe(pipe, &spd);
1437 		lock_sock(sk);
1438 		return ret;
1439 	}
1440 
1441 	return 0;
1442 }
1443 
1444 /**
1445  *	skb_store_bits - store bits from kernel buffer to skb
1446  *	@skb: destination buffer
1447  *	@offset: offset in destination
1448  *	@from: source buffer
1449  *	@len: number of bytes to copy
1450  *
1451  *	Copy the specified number of bytes from the source buffer to the
1452  *	destination skb.  This function handles all the messy bits of
1453  *	traversing fragment lists and such.
1454  */
1455 
1456 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1457 {
1458 	int i, copy;
1459 	int start = skb_headlen(skb);
1460 
1461 	if (offset > (int)skb->len - len)
1462 		goto fault;
1463 
1464 	if ((copy = start - offset) > 0) {
1465 		if (copy > len)
1466 			copy = len;
1467 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1468 		if ((len -= copy) == 0)
1469 			return 0;
1470 		offset += copy;
1471 		from += copy;
1472 	}
1473 
1474 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1475 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1476 		int end;
1477 
1478 		BUG_TRAP(start <= offset + len);
1479 
1480 		end = start + frag->size;
1481 		if ((copy = end - offset) > 0) {
1482 			u8 *vaddr;
1483 
1484 			if (copy > len)
1485 				copy = len;
1486 
1487 			vaddr = kmap_skb_frag(frag);
1488 			memcpy(vaddr + frag->page_offset + offset - start,
1489 			       from, copy);
1490 			kunmap_skb_frag(vaddr);
1491 
1492 			if ((len -= copy) == 0)
1493 				return 0;
1494 			offset += copy;
1495 			from += copy;
1496 		}
1497 		start = end;
1498 	}
1499 
1500 	if (skb_shinfo(skb)->frag_list) {
1501 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1502 
1503 		for (; list; list = list->next) {
1504 			int end;
1505 
1506 			BUG_TRAP(start <= offset + len);
1507 
1508 			end = start + list->len;
1509 			if ((copy = end - offset) > 0) {
1510 				if (copy > len)
1511 					copy = len;
1512 				if (skb_store_bits(list, offset - start,
1513 						   from, copy))
1514 					goto fault;
1515 				if ((len -= copy) == 0)
1516 					return 0;
1517 				offset += copy;
1518 				from += copy;
1519 			}
1520 			start = end;
1521 		}
1522 	}
1523 	if (!len)
1524 		return 0;
1525 
1526 fault:
1527 	return -EFAULT;
1528 }
1529 
1530 EXPORT_SYMBOL(skb_store_bits);
1531 
1532 /* Checksum skb data. */
1533 
1534 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1535 			  int len, __wsum csum)
1536 {
1537 	int start = skb_headlen(skb);
1538 	int i, copy = start - offset;
1539 	int pos = 0;
1540 
1541 	/* Checksum header. */
1542 	if (copy > 0) {
1543 		if (copy > len)
1544 			copy = len;
1545 		csum = csum_partial(skb->data + offset, copy, csum);
1546 		if ((len -= copy) == 0)
1547 			return csum;
1548 		offset += copy;
1549 		pos	= copy;
1550 	}
1551 
1552 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1553 		int end;
1554 
1555 		BUG_TRAP(start <= offset + len);
1556 
1557 		end = start + skb_shinfo(skb)->frags[i].size;
1558 		if ((copy = end - offset) > 0) {
1559 			__wsum csum2;
1560 			u8 *vaddr;
1561 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1562 
1563 			if (copy > len)
1564 				copy = len;
1565 			vaddr = kmap_skb_frag(frag);
1566 			csum2 = csum_partial(vaddr + frag->page_offset +
1567 					     offset - start, copy, 0);
1568 			kunmap_skb_frag(vaddr);
1569 			csum = csum_block_add(csum, csum2, pos);
1570 			if (!(len -= copy))
1571 				return csum;
1572 			offset += copy;
1573 			pos    += copy;
1574 		}
1575 		start = end;
1576 	}
1577 
1578 	if (skb_shinfo(skb)->frag_list) {
1579 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1580 
1581 		for (; list; list = list->next) {
1582 			int end;
1583 
1584 			BUG_TRAP(start <= offset + len);
1585 
1586 			end = start + list->len;
1587 			if ((copy = end - offset) > 0) {
1588 				__wsum csum2;
1589 				if (copy > len)
1590 					copy = len;
1591 				csum2 = skb_checksum(list, offset - start,
1592 						     copy, 0);
1593 				csum = csum_block_add(csum, csum2, pos);
1594 				if ((len -= copy) == 0)
1595 					return csum;
1596 				offset += copy;
1597 				pos    += copy;
1598 			}
1599 			start = end;
1600 		}
1601 	}
1602 	BUG_ON(len);
1603 
1604 	return csum;
1605 }
1606 
1607 /* Both of above in one bottle. */
1608 
1609 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1610 				    u8 *to, int len, __wsum csum)
1611 {
1612 	int start = skb_headlen(skb);
1613 	int i, copy = start - offset;
1614 	int pos = 0;
1615 
1616 	/* Copy header. */
1617 	if (copy > 0) {
1618 		if (copy > len)
1619 			copy = len;
1620 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1621 						 copy, csum);
1622 		if ((len -= copy) == 0)
1623 			return csum;
1624 		offset += copy;
1625 		to     += copy;
1626 		pos	= copy;
1627 	}
1628 
1629 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1630 		int end;
1631 
1632 		BUG_TRAP(start <= offset + len);
1633 
1634 		end = start + skb_shinfo(skb)->frags[i].size;
1635 		if ((copy = end - offset) > 0) {
1636 			__wsum csum2;
1637 			u8 *vaddr;
1638 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1639 
1640 			if (copy > len)
1641 				copy = len;
1642 			vaddr = kmap_skb_frag(frag);
1643 			csum2 = csum_partial_copy_nocheck(vaddr +
1644 							  frag->page_offset +
1645 							  offset - start, to,
1646 							  copy, 0);
1647 			kunmap_skb_frag(vaddr);
1648 			csum = csum_block_add(csum, csum2, pos);
1649 			if (!(len -= copy))
1650 				return csum;
1651 			offset += copy;
1652 			to     += copy;
1653 			pos    += copy;
1654 		}
1655 		start = end;
1656 	}
1657 
1658 	if (skb_shinfo(skb)->frag_list) {
1659 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1660 
1661 		for (; list; list = list->next) {
1662 			__wsum csum2;
1663 			int end;
1664 
1665 			BUG_TRAP(start <= offset + len);
1666 
1667 			end = start + list->len;
1668 			if ((copy = end - offset) > 0) {
1669 				if (copy > len)
1670 					copy = len;
1671 				csum2 = skb_copy_and_csum_bits(list,
1672 							       offset - start,
1673 							       to, copy, 0);
1674 				csum = csum_block_add(csum, csum2, pos);
1675 				if ((len -= copy) == 0)
1676 					return csum;
1677 				offset += copy;
1678 				to     += copy;
1679 				pos    += copy;
1680 			}
1681 			start = end;
1682 		}
1683 	}
1684 	BUG_ON(len);
1685 	return csum;
1686 }
1687 
1688 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1689 {
1690 	__wsum csum;
1691 	long csstart;
1692 
1693 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1694 		csstart = skb->csum_start - skb_headroom(skb);
1695 	else
1696 		csstart = skb_headlen(skb);
1697 
1698 	BUG_ON(csstart > skb_headlen(skb));
1699 
1700 	skb_copy_from_linear_data(skb, to, csstart);
1701 
1702 	csum = 0;
1703 	if (csstart != skb->len)
1704 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1705 					      skb->len - csstart, 0);
1706 
1707 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1708 		long csstuff = csstart + skb->csum_offset;
1709 
1710 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1711 	}
1712 }
1713 
1714 /**
1715  *	skb_dequeue - remove from the head of the queue
1716  *	@list: list to dequeue from
1717  *
1718  *	Remove the head of the list. The list lock is taken so the function
1719  *	may be used safely with other locking list functions. The head item is
1720  *	returned or %NULL if the list is empty.
1721  */
1722 
1723 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1724 {
1725 	unsigned long flags;
1726 	struct sk_buff *result;
1727 
1728 	spin_lock_irqsave(&list->lock, flags);
1729 	result = __skb_dequeue(list);
1730 	spin_unlock_irqrestore(&list->lock, flags);
1731 	return result;
1732 }
1733 
1734 /**
1735  *	skb_dequeue_tail - remove from the tail of the queue
1736  *	@list: list to dequeue from
1737  *
1738  *	Remove the tail of the list. The list lock is taken so the function
1739  *	may be used safely with other locking list functions. The tail item is
1740  *	returned or %NULL if the list is empty.
1741  */
1742 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1743 {
1744 	unsigned long flags;
1745 	struct sk_buff *result;
1746 
1747 	spin_lock_irqsave(&list->lock, flags);
1748 	result = __skb_dequeue_tail(list);
1749 	spin_unlock_irqrestore(&list->lock, flags);
1750 	return result;
1751 }
1752 
1753 /**
1754  *	skb_queue_purge - empty a list
1755  *	@list: list to empty
1756  *
1757  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1758  *	the list and one reference dropped. This function takes the list
1759  *	lock and is atomic with respect to other list locking functions.
1760  */
1761 void skb_queue_purge(struct sk_buff_head *list)
1762 {
1763 	struct sk_buff *skb;
1764 	while ((skb = skb_dequeue(list)) != NULL)
1765 		kfree_skb(skb);
1766 }
1767 
1768 /**
1769  *	skb_queue_head - queue a buffer at the list head
1770  *	@list: list to use
1771  *	@newsk: buffer to queue
1772  *
1773  *	Queue a buffer at the start of the list. This function takes the
1774  *	list lock and can be used safely with other locking &sk_buff functions
1775  *	safely.
1776  *
1777  *	A buffer cannot be placed on two lists at the same time.
1778  */
1779 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1780 {
1781 	unsigned long flags;
1782 
1783 	spin_lock_irqsave(&list->lock, flags);
1784 	__skb_queue_head(list, newsk);
1785 	spin_unlock_irqrestore(&list->lock, flags);
1786 }
1787 
1788 /**
1789  *	skb_queue_tail - queue a buffer at the list tail
1790  *	@list: list to use
1791  *	@newsk: buffer to queue
1792  *
1793  *	Queue a buffer at the tail of the list. This function takes the
1794  *	list lock and can be used safely with other locking &sk_buff functions
1795  *	safely.
1796  *
1797  *	A buffer cannot be placed on two lists at the same time.
1798  */
1799 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1800 {
1801 	unsigned long flags;
1802 
1803 	spin_lock_irqsave(&list->lock, flags);
1804 	__skb_queue_tail(list, newsk);
1805 	spin_unlock_irqrestore(&list->lock, flags);
1806 }
1807 
1808 /**
1809  *	skb_unlink	-	remove a buffer from a list
1810  *	@skb: buffer to remove
1811  *	@list: list to use
1812  *
1813  *	Remove a packet from a list. The list locks are taken and this
1814  *	function is atomic with respect to other list locked calls
1815  *
1816  *	You must know what list the SKB is on.
1817  */
1818 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1819 {
1820 	unsigned long flags;
1821 
1822 	spin_lock_irqsave(&list->lock, flags);
1823 	__skb_unlink(skb, list);
1824 	spin_unlock_irqrestore(&list->lock, flags);
1825 }
1826 
1827 /**
1828  *	skb_append	-	append a buffer
1829  *	@old: buffer to insert after
1830  *	@newsk: buffer to insert
1831  *	@list: list to use
1832  *
1833  *	Place a packet after a given packet in a list. The list locks are taken
1834  *	and this function is atomic with respect to other list locked calls.
1835  *	A buffer cannot be placed on two lists at the same time.
1836  */
1837 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1838 {
1839 	unsigned long flags;
1840 
1841 	spin_lock_irqsave(&list->lock, flags);
1842 	__skb_queue_after(list, old, newsk);
1843 	spin_unlock_irqrestore(&list->lock, flags);
1844 }
1845 
1846 
1847 /**
1848  *	skb_insert	-	insert a buffer
1849  *	@old: buffer to insert before
1850  *	@newsk: buffer to insert
1851  *	@list: list to use
1852  *
1853  *	Place a packet before a given packet in a list. The list locks are
1854  * 	taken and this function is atomic with respect to other list locked
1855  *	calls.
1856  *
1857  *	A buffer cannot be placed on two lists at the same time.
1858  */
1859 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1860 {
1861 	unsigned long flags;
1862 
1863 	spin_lock_irqsave(&list->lock, flags);
1864 	__skb_insert(newsk, old->prev, old, list);
1865 	spin_unlock_irqrestore(&list->lock, flags);
1866 }
1867 
1868 static inline void skb_split_inside_header(struct sk_buff *skb,
1869 					   struct sk_buff* skb1,
1870 					   const u32 len, const int pos)
1871 {
1872 	int i;
1873 
1874 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1875 					 pos - len);
1876 	/* And move data appendix as is. */
1877 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1878 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1879 
1880 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1881 	skb_shinfo(skb)->nr_frags  = 0;
1882 	skb1->data_len		   = skb->data_len;
1883 	skb1->len		   += skb1->data_len;
1884 	skb->data_len		   = 0;
1885 	skb->len		   = len;
1886 	skb_set_tail_pointer(skb, len);
1887 }
1888 
1889 static inline void skb_split_no_header(struct sk_buff *skb,
1890 				       struct sk_buff* skb1,
1891 				       const u32 len, int pos)
1892 {
1893 	int i, k = 0;
1894 	const int nfrags = skb_shinfo(skb)->nr_frags;
1895 
1896 	skb_shinfo(skb)->nr_frags = 0;
1897 	skb1->len		  = skb1->data_len = skb->len - len;
1898 	skb->len		  = len;
1899 	skb->data_len		  = len - pos;
1900 
1901 	for (i = 0; i < nfrags; i++) {
1902 		int size = skb_shinfo(skb)->frags[i].size;
1903 
1904 		if (pos + size > len) {
1905 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1906 
1907 			if (pos < len) {
1908 				/* Split frag.
1909 				 * We have two variants in this case:
1910 				 * 1. Move all the frag to the second
1911 				 *    part, if it is possible. F.e.
1912 				 *    this approach is mandatory for TUX,
1913 				 *    where splitting is expensive.
1914 				 * 2. Split is accurately. We make this.
1915 				 */
1916 				get_page(skb_shinfo(skb)->frags[i].page);
1917 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1918 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1919 				skb_shinfo(skb)->frags[i].size	= len - pos;
1920 				skb_shinfo(skb)->nr_frags++;
1921 			}
1922 			k++;
1923 		} else
1924 			skb_shinfo(skb)->nr_frags++;
1925 		pos += size;
1926 	}
1927 	skb_shinfo(skb1)->nr_frags = k;
1928 }
1929 
1930 /**
1931  * skb_split - Split fragmented skb to two parts at length len.
1932  * @skb: the buffer to split
1933  * @skb1: the buffer to receive the second part
1934  * @len: new length for skb
1935  */
1936 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1937 {
1938 	int pos = skb_headlen(skb);
1939 
1940 	if (len < pos)	/* Split line is inside header. */
1941 		skb_split_inside_header(skb, skb1, len, pos);
1942 	else		/* Second chunk has no header, nothing to copy. */
1943 		skb_split_no_header(skb, skb1, len, pos);
1944 }
1945 
1946 /**
1947  * skb_prepare_seq_read - Prepare a sequential read of skb data
1948  * @skb: the buffer to read
1949  * @from: lower offset of data to be read
1950  * @to: upper offset of data to be read
1951  * @st: state variable
1952  *
1953  * Initializes the specified state variable. Must be called before
1954  * invoking skb_seq_read() for the first time.
1955  */
1956 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1957 			  unsigned int to, struct skb_seq_state *st)
1958 {
1959 	st->lower_offset = from;
1960 	st->upper_offset = to;
1961 	st->root_skb = st->cur_skb = skb;
1962 	st->frag_idx = st->stepped_offset = 0;
1963 	st->frag_data = NULL;
1964 }
1965 
1966 /**
1967  * skb_seq_read - Sequentially read skb data
1968  * @consumed: number of bytes consumed by the caller so far
1969  * @data: destination pointer for data to be returned
1970  * @st: state variable
1971  *
1972  * Reads a block of skb data at &consumed relative to the
1973  * lower offset specified to skb_prepare_seq_read(). Assigns
1974  * the head of the data block to &data and returns the length
1975  * of the block or 0 if the end of the skb data or the upper
1976  * offset has been reached.
1977  *
1978  * The caller is not required to consume all of the data
1979  * returned, i.e. &consumed is typically set to the number
1980  * of bytes already consumed and the next call to
1981  * skb_seq_read() will return the remaining part of the block.
1982  *
1983  * Note 1: The size of each block of data returned can be arbitary,
1984  *       this limitation is the cost for zerocopy seqeuental
1985  *       reads of potentially non linear data.
1986  *
1987  * Note 2: Fragment lists within fragments are not implemented
1988  *       at the moment, state->root_skb could be replaced with
1989  *       a stack for this purpose.
1990  */
1991 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1992 			  struct skb_seq_state *st)
1993 {
1994 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1995 	skb_frag_t *frag;
1996 
1997 	if (unlikely(abs_offset >= st->upper_offset))
1998 		return 0;
1999 
2000 next_skb:
2001 	block_limit = skb_headlen(st->cur_skb);
2002 
2003 	if (abs_offset < block_limit) {
2004 		*data = st->cur_skb->data + abs_offset;
2005 		return block_limit - abs_offset;
2006 	}
2007 
2008 	if (st->frag_idx == 0 && !st->frag_data)
2009 		st->stepped_offset += skb_headlen(st->cur_skb);
2010 
2011 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2012 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2013 		block_limit = frag->size + st->stepped_offset;
2014 
2015 		if (abs_offset < block_limit) {
2016 			if (!st->frag_data)
2017 				st->frag_data = kmap_skb_frag(frag);
2018 
2019 			*data = (u8 *) st->frag_data + frag->page_offset +
2020 				(abs_offset - st->stepped_offset);
2021 
2022 			return block_limit - abs_offset;
2023 		}
2024 
2025 		if (st->frag_data) {
2026 			kunmap_skb_frag(st->frag_data);
2027 			st->frag_data = NULL;
2028 		}
2029 
2030 		st->frag_idx++;
2031 		st->stepped_offset += frag->size;
2032 	}
2033 
2034 	if (st->frag_data) {
2035 		kunmap_skb_frag(st->frag_data);
2036 		st->frag_data = NULL;
2037 	}
2038 
2039 	if (st->cur_skb->next) {
2040 		st->cur_skb = st->cur_skb->next;
2041 		st->frag_idx = 0;
2042 		goto next_skb;
2043 	} else if (st->root_skb == st->cur_skb &&
2044 		   skb_shinfo(st->root_skb)->frag_list) {
2045 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2046 		goto next_skb;
2047 	}
2048 
2049 	return 0;
2050 }
2051 
2052 /**
2053  * skb_abort_seq_read - Abort a sequential read of skb data
2054  * @st: state variable
2055  *
2056  * Must be called if skb_seq_read() was not called until it
2057  * returned 0.
2058  */
2059 void skb_abort_seq_read(struct skb_seq_state *st)
2060 {
2061 	if (st->frag_data)
2062 		kunmap_skb_frag(st->frag_data);
2063 }
2064 
2065 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2066 
2067 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2068 					  struct ts_config *conf,
2069 					  struct ts_state *state)
2070 {
2071 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2072 }
2073 
2074 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2075 {
2076 	skb_abort_seq_read(TS_SKB_CB(state));
2077 }
2078 
2079 /**
2080  * skb_find_text - Find a text pattern in skb data
2081  * @skb: the buffer to look in
2082  * @from: search offset
2083  * @to: search limit
2084  * @config: textsearch configuration
2085  * @state: uninitialized textsearch state variable
2086  *
2087  * Finds a pattern in the skb data according to the specified
2088  * textsearch configuration. Use textsearch_next() to retrieve
2089  * subsequent occurrences of the pattern. Returns the offset
2090  * to the first occurrence or UINT_MAX if no match was found.
2091  */
2092 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2093 			   unsigned int to, struct ts_config *config,
2094 			   struct ts_state *state)
2095 {
2096 	unsigned int ret;
2097 
2098 	config->get_next_block = skb_ts_get_next_block;
2099 	config->finish = skb_ts_finish;
2100 
2101 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2102 
2103 	ret = textsearch_find(config, state);
2104 	return (ret <= to - from ? ret : UINT_MAX);
2105 }
2106 
2107 /**
2108  * skb_append_datato_frags: - append the user data to a skb
2109  * @sk: sock  structure
2110  * @skb: skb structure to be appened with user data.
2111  * @getfrag: call back function to be used for getting the user data
2112  * @from: pointer to user message iov
2113  * @length: length of the iov message
2114  *
2115  * Description: This procedure append the user data in the fragment part
2116  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2117  */
2118 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2119 			int (*getfrag)(void *from, char *to, int offset,
2120 					int len, int odd, struct sk_buff *skb),
2121 			void *from, int length)
2122 {
2123 	int frg_cnt = 0;
2124 	skb_frag_t *frag = NULL;
2125 	struct page *page = NULL;
2126 	int copy, left;
2127 	int offset = 0;
2128 	int ret;
2129 
2130 	do {
2131 		/* Return error if we don't have space for new frag */
2132 		frg_cnt = skb_shinfo(skb)->nr_frags;
2133 		if (frg_cnt >= MAX_SKB_FRAGS)
2134 			return -EFAULT;
2135 
2136 		/* allocate a new page for next frag */
2137 		page = alloc_pages(sk->sk_allocation, 0);
2138 
2139 		/* If alloc_page fails just return failure and caller will
2140 		 * free previous allocated pages by doing kfree_skb()
2141 		 */
2142 		if (page == NULL)
2143 			return -ENOMEM;
2144 
2145 		/* initialize the next frag */
2146 		sk->sk_sndmsg_page = page;
2147 		sk->sk_sndmsg_off = 0;
2148 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2149 		skb->truesize += PAGE_SIZE;
2150 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2151 
2152 		/* get the new initialized frag */
2153 		frg_cnt = skb_shinfo(skb)->nr_frags;
2154 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2155 
2156 		/* copy the user data to page */
2157 		left = PAGE_SIZE - frag->page_offset;
2158 		copy = (length > left)? left : length;
2159 
2160 		ret = getfrag(from, (page_address(frag->page) +
2161 			    frag->page_offset + frag->size),
2162 			    offset, copy, 0, skb);
2163 		if (ret < 0)
2164 			return -EFAULT;
2165 
2166 		/* copy was successful so update the size parameters */
2167 		sk->sk_sndmsg_off += copy;
2168 		frag->size += copy;
2169 		skb->len += copy;
2170 		skb->data_len += copy;
2171 		offset += copy;
2172 		length -= copy;
2173 
2174 	} while (length > 0);
2175 
2176 	return 0;
2177 }
2178 
2179 /**
2180  *	skb_pull_rcsum - pull skb and update receive checksum
2181  *	@skb: buffer to update
2182  *	@len: length of data pulled
2183  *
2184  *	This function performs an skb_pull on the packet and updates
2185  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2186  *	receive path processing instead of skb_pull unless you know
2187  *	that the checksum difference is zero (e.g., a valid IP header)
2188  *	or you are setting ip_summed to CHECKSUM_NONE.
2189  */
2190 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2191 {
2192 	BUG_ON(len > skb->len);
2193 	skb->len -= len;
2194 	BUG_ON(skb->len < skb->data_len);
2195 	skb_postpull_rcsum(skb, skb->data, len);
2196 	return skb->data += len;
2197 }
2198 
2199 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2200 
2201 /**
2202  *	skb_segment - Perform protocol segmentation on skb.
2203  *	@skb: buffer to segment
2204  *	@features: features for the output path (see dev->features)
2205  *
2206  *	This function performs segmentation on the given skb.  It returns
2207  *	a pointer to the first in a list of new skbs for the segments.
2208  *	In case of error it returns ERR_PTR(err).
2209  */
2210 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2211 {
2212 	struct sk_buff *segs = NULL;
2213 	struct sk_buff *tail = NULL;
2214 	unsigned int mss = skb_shinfo(skb)->gso_size;
2215 	unsigned int doffset = skb->data - skb_mac_header(skb);
2216 	unsigned int offset = doffset;
2217 	unsigned int headroom;
2218 	unsigned int len;
2219 	int sg = features & NETIF_F_SG;
2220 	int nfrags = skb_shinfo(skb)->nr_frags;
2221 	int err = -ENOMEM;
2222 	int i = 0;
2223 	int pos;
2224 
2225 	__skb_push(skb, doffset);
2226 	headroom = skb_headroom(skb);
2227 	pos = skb_headlen(skb);
2228 
2229 	do {
2230 		struct sk_buff *nskb;
2231 		skb_frag_t *frag;
2232 		int hsize;
2233 		int k;
2234 		int size;
2235 
2236 		len = skb->len - offset;
2237 		if (len > mss)
2238 			len = mss;
2239 
2240 		hsize = skb_headlen(skb) - offset;
2241 		if (hsize < 0)
2242 			hsize = 0;
2243 		if (hsize > len || !sg)
2244 			hsize = len;
2245 
2246 		nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
2247 		if (unlikely(!nskb))
2248 			goto err;
2249 
2250 		if (segs)
2251 			tail->next = nskb;
2252 		else
2253 			segs = nskb;
2254 		tail = nskb;
2255 
2256 		nskb->dev = skb->dev;
2257 		skb_copy_queue_mapping(nskb, skb);
2258 		nskb->priority = skb->priority;
2259 		nskb->protocol = skb->protocol;
2260 		nskb->vlan_tci = skb->vlan_tci;
2261 		nskb->dst = dst_clone(skb->dst);
2262 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
2263 		nskb->pkt_type = skb->pkt_type;
2264 		nskb->mac_len = skb->mac_len;
2265 
2266 		skb_reserve(nskb, headroom);
2267 		skb_reset_mac_header(nskb);
2268 		skb_set_network_header(nskb, skb->mac_len);
2269 		nskb->transport_header = (nskb->network_header +
2270 					  skb_network_header_len(skb));
2271 		skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
2272 					  doffset);
2273 		if (!sg) {
2274 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2275 							    skb_put(nskb, len),
2276 							    len, 0);
2277 			continue;
2278 		}
2279 
2280 		frag = skb_shinfo(nskb)->frags;
2281 		k = 0;
2282 
2283 		nskb->ip_summed = CHECKSUM_PARTIAL;
2284 		nskb->csum = skb->csum;
2285 		skb_copy_from_linear_data_offset(skb, offset,
2286 						 skb_put(nskb, hsize), hsize);
2287 
2288 		while (pos < offset + len) {
2289 			BUG_ON(i >= nfrags);
2290 
2291 			*frag = skb_shinfo(skb)->frags[i];
2292 			get_page(frag->page);
2293 			size = frag->size;
2294 
2295 			if (pos < offset) {
2296 				frag->page_offset += offset - pos;
2297 				frag->size -= offset - pos;
2298 			}
2299 
2300 			k++;
2301 
2302 			if (pos + size <= offset + len) {
2303 				i++;
2304 				pos += size;
2305 			} else {
2306 				frag->size -= pos + size - (offset + len);
2307 				break;
2308 			}
2309 
2310 			frag++;
2311 		}
2312 
2313 		skb_shinfo(nskb)->nr_frags = k;
2314 		nskb->data_len = len - hsize;
2315 		nskb->len += nskb->data_len;
2316 		nskb->truesize += nskb->data_len;
2317 	} while ((offset += len) < skb->len);
2318 
2319 	return segs;
2320 
2321 err:
2322 	while ((skb = segs)) {
2323 		segs = skb->next;
2324 		kfree_skb(skb);
2325 	}
2326 	return ERR_PTR(err);
2327 }
2328 
2329 EXPORT_SYMBOL_GPL(skb_segment);
2330 
2331 void __init skb_init(void)
2332 {
2333 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2334 					      sizeof(struct sk_buff),
2335 					      0,
2336 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2337 					      NULL);
2338 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2339 						(2*sizeof(struct sk_buff)) +
2340 						sizeof(atomic_t),
2341 						0,
2342 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2343 						NULL);
2344 }
2345 
2346 /**
2347  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2348  *	@skb: Socket buffer containing the buffers to be mapped
2349  *	@sg: The scatter-gather list to map into
2350  *	@offset: The offset into the buffer's contents to start mapping
2351  *	@len: Length of buffer space to be mapped
2352  *
2353  *	Fill the specified scatter-gather list with mappings/pointers into a
2354  *	region of the buffer space attached to a socket buffer.
2355  */
2356 static int
2357 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2358 {
2359 	int start = skb_headlen(skb);
2360 	int i, copy = start - offset;
2361 	int elt = 0;
2362 
2363 	if (copy > 0) {
2364 		if (copy > len)
2365 			copy = len;
2366 		sg_set_buf(sg, skb->data + offset, copy);
2367 		elt++;
2368 		if ((len -= copy) == 0)
2369 			return elt;
2370 		offset += copy;
2371 	}
2372 
2373 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2374 		int end;
2375 
2376 		BUG_TRAP(start <= offset + len);
2377 
2378 		end = start + skb_shinfo(skb)->frags[i].size;
2379 		if ((copy = end - offset) > 0) {
2380 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2381 
2382 			if (copy > len)
2383 				copy = len;
2384 			sg_set_page(&sg[elt], frag->page, copy,
2385 					frag->page_offset+offset-start);
2386 			elt++;
2387 			if (!(len -= copy))
2388 				return elt;
2389 			offset += copy;
2390 		}
2391 		start = end;
2392 	}
2393 
2394 	if (skb_shinfo(skb)->frag_list) {
2395 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2396 
2397 		for (; list; list = list->next) {
2398 			int end;
2399 
2400 			BUG_TRAP(start <= offset + len);
2401 
2402 			end = start + list->len;
2403 			if ((copy = end - offset) > 0) {
2404 				if (copy > len)
2405 					copy = len;
2406 				elt += __skb_to_sgvec(list, sg+elt, offset - start,
2407 						      copy);
2408 				if ((len -= copy) == 0)
2409 					return elt;
2410 				offset += copy;
2411 			}
2412 			start = end;
2413 		}
2414 	}
2415 	BUG_ON(len);
2416 	return elt;
2417 }
2418 
2419 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2420 {
2421 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
2422 
2423 	sg_mark_end(&sg[nsg - 1]);
2424 
2425 	return nsg;
2426 }
2427 
2428 /**
2429  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2430  *	@skb: The socket buffer to check.
2431  *	@tailbits: Amount of trailing space to be added
2432  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2433  *
2434  *	Make sure that the data buffers attached to a socket buffer are
2435  *	writable. If they are not, private copies are made of the data buffers
2436  *	and the socket buffer is set to use these instead.
2437  *
2438  *	If @tailbits is given, make sure that there is space to write @tailbits
2439  *	bytes of data beyond current end of socket buffer.  @trailer will be
2440  *	set to point to the skb in which this space begins.
2441  *
2442  *	The number of scatterlist elements required to completely map the
2443  *	COW'd and extended socket buffer will be returned.
2444  */
2445 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2446 {
2447 	int copyflag;
2448 	int elt;
2449 	struct sk_buff *skb1, **skb_p;
2450 
2451 	/* If skb is cloned or its head is paged, reallocate
2452 	 * head pulling out all the pages (pages are considered not writable
2453 	 * at the moment even if they are anonymous).
2454 	 */
2455 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2456 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2457 		return -ENOMEM;
2458 
2459 	/* Easy case. Most of packets will go this way. */
2460 	if (!skb_shinfo(skb)->frag_list) {
2461 		/* A little of trouble, not enough of space for trailer.
2462 		 * This should not happen, when stack is tuned to generate
2463 		 * good frames. OK, on miss we reallocate and reserve even more
2464 		 * space, 128 bytes is fair. */
2465 
2466 		if (skb_tailroom(skb) < tailbits &&
2467 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2468 			return -ENOMEM;
2469 
2470 		/* Voila! */
2471 		*trailer = skb;
2472 		return 1;
2473 	}
2474 
2475 	/* Misery. We are in troubles, going to mincer fragments... */
2476 
2477 	elt = 1;
2478 	skb_p = &skb_shinfo(skb)->frag_list;
2479 	copyflag = 0;
2480 
2481 	while ((skb1 = *skb_p) != NULL) {
2482 		int ntail = 0;
2483 
2484 		/* The fragment is partially pulled by someone,
2485 		 * this can happen on input. Copy it and everything
2486 		 * after it. */
2487 
2488 		if (skb_shared(skb1))
2489 			copyflag = 1;
2490 
2491 		/* If the skb is the last, worry about trailer. */
2492 
2493 		if (skb1->next == NULL && tailbits) {
2494 			if (skb_shinfo(skb1)->nr_frags ||
2495 			    skb_shinfo(skb1)->frag_list ||
2496 			    skb_tailroom(skb1) < tailbits)
2497 				ntail = tailbits + 128;
2498 		}
2499 
2500 		if (copyflag ||
2501 		    skb_cloned(skb1) ||
2502 		    ntail ||
2503 		    skb_shinfo(skb1)->nr_frags ||
2504 		    skb_shinfo(skb1)->frag_list) {
2505 			struct sk_buff *skb2;
2506 
2507 			/* Fuck, we are miserable poor guys... */
2508 			if (ntail == 0)
2509 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2510 			else
2511 				skb2 = skb_copy_expand(skb1,
2512 						       skb_headroom(skb1),
2513 						       ntail,
2514 						       GFP_ATOMIC);
2515 			if (unlikely(skb2 == NULL))
2516 				return -ENOMEM;
2517 
2518 			if (skb1->sk)
2519 				skb_set_owner_w(skb2, skb1->sk);
2520 
2521 			/* Looking around. Are we still alive?
2522 			 * OK, link new skb, drop old one */
2523 
2524 			skb2->next = skb1->next;
2525 			*skb_p = skb2;
2526 			kfree_skb(skb1);
2527 			skb1 = skb2;
2528 		}
2529 		elt++;
2530 		*trailer = skb1;
2531 		skb_p = &skb1->next;
2532 	}
2533 
2534 	return elt;
2535 }
2536 
2537 /**
2538  * skb_partial_csum_set - set up and verify partial csum values for packet
2539  * @skb: the skb to set
2540  * @start: the number of bytes after skb->data to start checksumming.
2541  * @off: the offset from start to place the checksum.
2542  *
2543  * For untrusted partially-checksummed packets, we need to make sure the values
2544  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2545  *
2546  * This function checks and sets those values and skb->ip_summed: if this
2547  * returns false you should drop the packet.
2548  */
2549 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
2550 {
2551 	if (unlikely(start > skb->len - 2) ||
2552 	    unlikely((int)start + off > skb->len - 2)) {
2553 		if (net_ratelimit())
2554 			printk(KERN_WARNING
2555 			       "bad partial csum: csum=%u/%u len=%u\n",
2556 			       start, off, skb->len);
2557 		return false;
2558 	}
2559 	skb->ip_summed = CHECKSUM_PARTIAL;
2560 	skb->csum_start = skb_headroom(skb) + start;
2561 	skb->csum_offset = off;
2562 	return true;
2563 }
2564 
2565 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
2566 {
2567 	if (net_ratelimit())
2568 		pr_warning("%s: received packets cannot be forwarded"
2569 			   " while LRO is enabled\n", skb->dev->name);
2570 }
2571 
2572 EXPORT_SYMBOL(___pskb_trim);
2573 EXPORT_SYMBOL(__kfree_skb);
2574 EXPORT_SYMBOL(kfree_skb);
2575 EXPORT_SYMBOL(__pskb_pull_tail);
2576 EXPORT_SYMBOL(__alloc_skb);
2577 EXPORT_SYMBOL(__netdev_alloc_skb);
2578 EXPORT_SYMBOL(pskb_copy);
2579 EXPORT_SYMBOL(pskb_expand_head);
2580 EXPORT_SYMBOL(skb_checksum);
2581 EXPORT_SYMBOL(skb_clone);
2582 EXPORT_SYMBOL(skb_copy);
2583 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2584 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2585 EXPORT_SYMBOL(skb_copy_bits);
2586 EXPORT_SYMBOL(skb_copy_expand);
2587 EXPORT_SYMBOL(skb_over_panic);
2588 EXPORT_SYMBOL(skb_pad);
2589 EXPORT_SYMBOL(skb_realloc_headroom);
2590 EXPORT_SYMBOL(skb_under_panic);
2591 EXPORT_SYMBOL(skb_dequeue);
2592 EXPORT_SYMBOL(skb_dequeue_tail);
2593 EXPORT_SYMBOL(skb_insert);
2594 EXPORT_SYMBOL(skb_queue_purge);
2595 EXPORT_SYMBOL(skb_queue_head);
2596 EXPORT_SYMBOL(skb_queue_tail);
2597 EXPORT_SYMBOL(skb_unlink);
2598 EXPORT_SYMBOL(skb_append);
2599 EXPORT_SYMBOL(skb_split);
2600 EXPORT_SYMBOL(skb_prepare_seq_read);
2601 EXPORT_SYMBOL(skb_seq_read);
2602 EXPORT_SYMBOL(skb_abort_seq_read);
2603 EXPORT_SYMBOL(skb_find_text);
2604 EXPORT_SYMBOL(skb_append_datato_frags);
2605 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
2606 
2607 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2608 EXPORT_SYMBOL_GPL(skb_cow_data);
2609 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
2610