1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/mctp.h> 74 #include <net/page_pool.h> 75 76 #include <linux/uaccess.h> 77 #include <trace/events/skb.h> 78 #include <linux/highmem.h> 79 #include <linux/capability.h> 80 #include <linux/user_namespace.h> 81 #include <linux/indirect_call_wrapper.h> 82 83 #include "dev.h" 84 #include "sock_destructor.h" 85 86 struct kmem_cache *skbuff_head_cache __ro_after_init; 87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 88 #ifdef CONFIG_SKB_EXTENSIONS 89 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 90 #endif 91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 92 EXPORT_SYMBOL(sysctl_max_skb_frags); 93 94 #undef FN 95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 96 const char * const drop_reasons[] = { 97 DEFINE_DROP_REASON(FN, FN) 98 }; 99 EXPORT_SYMBOL(drop_reasons); 100 101 /** 102 * skb_panic - private function for out-of-line support 103 * @skb: buffer 104 * @sz: size 105 * @addr: address 106 * @msg: skb_over_panic or skb_under_panic 107 * 108 * Out-of-line support for skb_put() and skb_push(). 109 * Called via the wrapper skb_over_panic() or skb_under_panic(). 110 * Keep out of line to prevent kernel bloat. 111 * __builtin_return_address is not used because it is not always reliable. 112 */ 113 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 114 const char msg[]) 115 { 116 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 117 msg, addr, skb->len, sz, skb->head, skb->data, 118 (unsigned long)skb->tail, (unsigned long)skb->end, 119 skb->dev ? skb->dev->name : "<NULL>"); 120 BUG(); 121 } 122 123 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 124 { 125 skb_panic(skb, sz, addr, __func__); 126 } 127 128 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 129 { 130 skb_panic(skb, sz, addr, __func__); 131 } 132 133 #define NAPI_SKB_CACHE_SIZE 64 134 #define NAPI_SKB_CACHE_BULK 16 135 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 136 137 struct napi_alloc_cache { 138 struct page_frag_cache page; 139 unsigned int skb_count; 140 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 141 }; 142 143 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 144 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 145 146 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 147 { 148 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 149 150 fragsz = SKB_DATA_ALIGN(fragsz); 151 152 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 153 } 154 EXPORT_SYMBOL(__napi_alloc_frag_align); 155 156 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 157 { 158 void *data; 159 160 fragsz = SKB_DATA_ALIGN(fragsz); 161 if (in_hardirq() || irqs_disabled()) { 162 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 163 164 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 165 } else { 166 struct napi_alloc_cache *nc; 167 168 local_bh_disable(); 169 nc = this_cpu_ptr(&napi_alloc_cache); 170 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 171 local_bh_enable(); 172 } 173 return data; 174 } 175 EXPORT_SYMBOL(__netdev_alloc_frag_align); 176 177 static struct sk_buff *napi_skb_cache_get(void) 178 { 179 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 180 struct sk_buff *skb; 181 182 if (unlikely(!nc->skb_count)) { 183 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 184 GFP_ATOMIC, 185 NAPI_SKB_CACHE_BULK, 186 nc->skb_cache); 187 if (unlikely(!nc->skb_count)) 188 return NULL; 189 } 190 191 skb = nc->skb_cache[--nc->skb_count]; 192 kasan_unpoison_object_data(skbuff_head_cache, skb); 193 194 return skb; 195 } 196 197 /* Caller must provide SKB that is memset cleared */ 198 static void __build_skb_around(struct sk_buff *skb, void *data, 199 unsigned int frag_size) 200 { 201 struct skb_shared_info *shinfo; 202 unsigned int size = frag_size ? : ksize(data); 203 204 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 205 206 /* Assumes caller memset cleared SKB */ 207 skb->truesize = SKB_TRUESIZE(size); 208 refcount_set(&skb->users, 1); 209 skb->head = data; 210 skb->data = data; 211 skb_reset_tail_pointer(skb); 212 skb_set_end_offset(skb, size); 213 skb->mac_header = (typeof(skb->mac_header))~0U; 214 skb->transport_header = (typeof(skb->transport_header))~0U; 215 skb->alloc_cpu = raw_smp_processor_id(); 216 /* make sure we initialize shinfo sequentially */ 217 shinfo = skb_shinfo(skb); 218 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 219 atomic_set(&shinfo->dataref, 1); 220 221 skb_set_kcov_handle(skb, kcov_common_handle()); 222 } 223 224 /** 225 * __build_skb - build a network buffer 226 * @data: data buffer provided by caller 227 * @frag_size: size of data, or 0 if head was kmalloced 228 * 229 * Allocate a new &sk_buff. Caller provides space holding head and 230 * skb_shared_info. @data must have been allocated by kmalloc() only if 231 * @frag_size is 0, otherwise data should come from the page allocator 232 * or vmalloc() 233 * The return is the new skb buffer. 234 * On a failure the return is %NULL, and @data is not freed. 235 * Notes : 236 * Before IO, driver allocates only data buffer where NIC put incoming frame 237 * Driver should add room at head (NET_SKB_PAD) and 238 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 239 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 240 * before giving packet to stack. 241 * RX rings only contains data buffers, not full skbs. 242 */ 243 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 244 { 245 struct sk_buff *skb; 246 247 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 248 if (unlikely(!skb)) 249 return NULL; 250 251 memset(skb, 0, offsetof(struct sk_buff, tail)); 252 __build_skb_around(skb, data, frag_size); 253 254 return skb; 255 } 256 257 /* build_skb() is wrapper over __build_skb(), that specifically 258 * takes care of skb->head and skb->pfmemalloc 259 * This means that if @frag_size is not zero, then @data must be backed 260 * by a page fragment, not kmalloc() or vmalloc() 261 */ 262 struct sk_buff *build_skb(void *data, unsigned int frag_size) 263 { 264 struct sk_buff *skb = __build_skb(data, frag_size); 265 266 if (skb && frag_size) { 267 skb->head_frag = 1; 268 if (page_is_pfmemalloc(virt_to_head_page(data))) 269 skb->pfmemalloc = 1; 270 } 271 return skb; 272 } 273 EXPORT_SYMBOL(build_skb); 274 275 /** 276 * build_skb_around - build a network buffer around provided skb 277 * @skb: sk_buff provide by caller, must be memset cleared 278 * @data: data buffer provided by caller 279 * @frag_size: size of data, or 0 if head was kmalloced 280 */ 281 struct sk_buff *build_skb_around(struct sk_buff *skb, 282 void *data, unsigned int frag_size) 283 { 284 if (unlikely(!skb)) 285 return NULL; 286 287 __build_skb_around(skb, data, frag_size); 288 289 if (frag_size) { 290 skb->head_frag = 1; 291 if (page_is_pfmemalloc(virt_to_head_page(data))) 292 skb->pfmemalloc = 1; 293 } 294 return skb; 295 } 296 EXPORT_SYMBOL(build_skb_around); 297 298 /** 299 * __napi_build_skb - build a network buffer 300 * @data: data buffer provided by caller 301 * @frag_size: size of data, or 0 if head was kmalloced 302 * 303 * Version of __build_skb() that uses NAPI percpu caches to obtain 304 * skbuff_head instead of inplace allocation. 305 * 306 * Returns a new &sk_buff on success, %NULL on allocation failure. 307 */ 308 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 309 { 310 struct sk_buff *skb; 311 312 skb = napi_skb_cache_get(); 313 if (unlikely(!skb)) 314 return NULL; 315 316 memset(skb, 0, offsetof(struct sk_buff, tail)); 317 __build_skb_around(skb, data, frag_size); 318 319 return skb; 320 } 321 322 /** 323 * napi_build_skb - build a network buffer 324 * @data: data buffer provided by caller 325 * @frag_size: size of data, or 0 if head was kmalloced 326 * 327 * Version of __napi_build_skb() that takes care of skb->head_frag 328 * and skb->pfmemalloc when the data is a page or page fragment. 329 * 330 * Returns a new &sk_buff on success, %NULL on allocation failure. 331 */ 332 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 333 { 334 struct sk_buff *skb = __napi_build_skb(data, frag_size); 335 336 if (likely(skb) && frag_size) { 337 skb->head_frag = 1; 338 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 339 } 340 341 return skb; 342 } 343 EXPORT_SYMBOL(napi_build_skb); 344 345 /* 346 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 347 * the caller if emergency pfmemalloc reserves are being used. If it is and 348 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 349 * may be used. Otherwise, the packet data may be discarded until enough 350 * memory is free 351 */ 352 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 353 bool *pfmemalloc) 354 { 355 void *obj; 356 bool ret_pfmemalloc = false; 357 358 /* 359 * Try a regular allocation, when that fails and we're not entitled 360 * to the reserves, fail. 361 */ 362 obj = kmalloc_node_track_caller(size, 363 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 364 node); 365 if (obj || !(gfp_pfmemalloc_allowed(flags))) 366 goto out; 367 368 /* Try again but now we are using pfmemalloc reserves */ 369 ret_pfmemalloc = true; 370 obj = kmalloc_node_track_caller(size, flags, node); 371 372 out: 373 if (pfmemalloc) 374 *pfmemalloc = ret_pfmemalloc; 375 376 return obj; 377 } 378 379 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 380 * 'private' fields and also do memory statistics to find all the 381 * [BEEP] leaks. 382 * 383 */ 384 385 /** 386 * __alloc_skb - allocate a network buffer 387 * @size: size to allocate 388 * @gfp_mask: allocation mask 389 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 390 * instead of head cache and allocate a cloned (child) skb. 391 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 392 * allocations in case the data is required for writeback 393 * @node: numa node to allocate memory on 394 * 395 * Allocate a new &sk_buff. The returned buffer has no headroom and a 396 * tail room of at least size bytes. The object has a reference count 397 * of one. The return is the buffer. On a failure the return is %NULL. 398 * 399 * Buffers may only be allocated from interrupts using a @gfp_mask of 400 * %GFP_ATOMIC. 401 */ 402 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 403 int flags, int node) 404 { 405 struct kmem_cache *cache; 406 struct sk_buff *skb; 407 unsigned int osize; 408 bool pfmemalloc; 409 u8 *data; 410 411 cache = (flags & SKB_ALLOC_FCLONE) 412 ? skbuff_fclone_cache : skbuff_head_cache; 413 414 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 415 gfp_mask |= __GFP_MEMALLOC; 416 417 /* Get the HEAD */ 418 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 419 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 420 skb = napi_skb_cache_get(); 421 else 422 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 423 if (unlikely(!skb)) 424 return NULL; 425 prefetchw(skb); 426 427 /* We do our best to align skb_shared_info on a separate cache 428 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 429 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 430 * Both skb->head and skb_shared_info are cache line aligned. 431 */ 432 size = SKB_DATA_ALIGN(size); 433 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 434 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 435 if (unlikely(!data)) 436 goto nodata; 437 /* kmalloc(size) might give us more room than requested. 438 * Put skb_shared_info exactly at the end of allocated zone, 439 * to allow max possible filling before reallocation. 440 */ 441 osize = ksize(data); 442 size = SKB_WITH_OVERHEAD(osize); 443 prefetchw(data + size); 444 445 /* 446 * Only clear those fields we need to clear, not those that we will 447 * actually initialise below. Hence, don't put any more fields after 448 * the tail pointer in struct sk_buff! 449 */ 450 memset(skb, 0, offsetof(struct sk_buff, tail)); 451 __build_skb_around(skb, data, osize); 452 skb->pfmemalloc = pfmemalloc; 453 454 if (flags & SKB_ALLOC_FCLONE) { 455 struct sk_buff_fclones *fclones; 456 457 fclones = container_of(skb, struct sk_buff_fclones, skb1); 458 459 skb->fclone = SKB_FCLONE_ORIG; 460 refcount_set(&fclones->fclone_ref, 1); 461 } 462 463 return skb; 464 465 nodata: 466 kmem_cache_free(cache, skb); 467 return NULL; 468 } 469 EXPORT_SYMBOL(__alloc_skb); 470 471 /** 472 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 473 * @dev: network device to receive on 474 * @len: length to allocate 475 * @gfp_mask: get_free_pages mask, passed to alloc_skb 476 * 477 * Allocate a new &sk_buff and assign it a usage count of one. The 478 * buffer has NET_SKB_PAD headroom built in. Users should allocate 479 * the headroom they think they need without accounting for the 480 * built in space. The built in space is used for optimisations. 481 * 482 * %NULL is returned if there is no free memory. 483 */ 484 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 485 gfp_t gfp_mask) 486 { 487 struct page_frag_cache *nc; 488 struct sk_buff *skb; 489 bool pfmemalloc; 490 void *data; 491 492 len += NET_SKB_PAD; 493 494 /* If requested length is either too small or too big, 495 * we use kmalloc() for skb->head allocation. 496 */ 497 if (len <= SKB_WITH_OVERHEAD(1024) || 498 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 499 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 500 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 501 if (!skb) 502 goto skb_fail; 503 goto skb_success; 504 } 505 506 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 507 len = SKB_DATA_ALIGN(len); 508 509 if (sk_memalloc_socks()) 510 gfp_mask |= __GFP_MEMALLOC; 511 512 if (in_hardirq() || irqs_disabled()) { 513 nc = this_cpu_ptr(&netdev_alloc_cache); 514 data = page_frag_alloc(nc, len, gfp_mask); 515 pfmemalloc = nc->pfmemalloc; 516 } else { 517 local_bh_disable(); 518 nc = this_cpu_ptr(&napi_alloc_cache.page); 519 data = page_frag_alloc(nc, len, gfp_mask); 520 pfmemalloc = nc->pfmemalloc; 521 local_bh_enable(); 522 } 523 524 if (unlikely(!data)) 525 return NULL; 526 527 skb = __build_skb(data, len); 528 if (unlikely(!skb)) { 529 skb_free_frag(data); 530 return NULL; 531 } 532 533 if (pfmemalloc) 534 skb->pfmemalloc = 1; 535 skb->head_frag = 1; 536 537 skb_success: 538 skb_reserve(skb, NET_SKB_PAD); 539 skb->dev = dev; 540 541 skb_fail: 542 return skb; 543 } 544 EXPORT_SYMBOL(__netdev_alloc_skb); 545 546 /** 547 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 548 * @napi: napi instance this buffer was allocated for 549 * @len: length to allocate 550 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 551 * 552 * Allocate a new sk_buff for use in NAPI receive. This buffer will 553 * attempt to allocate the head from a special reserved region used 554 * only for NAPI Rx allocation. By doing this we can save several 555 * CPU cycles by avoiding having to disable and re-enable IRQs. 556 * 557 * %NULL is returned if there is no free memory. 558 */ 559 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 560 gfp_t gfp_mask) 561 { 562 struct napi_alloc_cache *nc; 563 struct sk_buff *skb; 564 void *data; 565 566 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 567 len += NET_SKB_PAD + NET_IP_ALIGN; 568 569 /* If requested length is either too small or too big, 570 * we use kmalloc() for skb->head allocation. 571 */ 572 if (len <= SKB_WITH_OVERHEAD(1024) || 573 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 574 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 575 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 576 NUMA_NO_NODE); 577 if (!skb) 578 goto skb_fail; 579 goto skb_success; 580 } 581 582 nc = this_cpu_ptr(&napi_alloc_cache); 583 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 584 len = SKB_DATA_ALIGN(len); 585 586 if (sk_memalloc_socks()) 587 gfp_mask |= __GFP_MEMALLOC; 588 589 data = page_frag_alloc(&nc->page, len, gfp_mask); 590 if (unlikely(!data)) 591 return NULL; 592 593 skb = __napi_build_skb(data, len); 594 if (unlikely(!skb)) { 595 skb_free_frag(data); 596 return NULL; 597 } 598 599 if (nc->page.pfmemalloc) 600 skb->pfmemalloc = 1; 601 skb->head_frag = 1; 602 603 skb_success: 604 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 605 skb->dev = napi->dev; 606 607 skb_fail: 608 return skb; 609 } 610 EXPORT_SYMBOL(__napi_alloc_skb); 611 612 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 613 int size, unsigned int truesize) 614 { 615 skb_fill_page_desc(skb, i, page, off, size); 616 skb->len += size; 617 skb->data_len += size; 618 skb->truesize += truesize; 619 } 620 EXPORT_SYMBOL(skb_add_rx_frag); 621 622 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 623 unsigned int truesize) 624 { 625 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 626 627 skb_frag_size_add(frag, size); 628 skb->len += size; 629 skb->data_len += size; 630 skb->truesize += truesize; 631 } 632 EXPORT_SYMBOL(skb_coalesce_rx_frag); 633 634 static void skb_drop_list(struct sk_buff **listp) 635 { 636 kfree_skb_list(*listp); 637 *listp = NULL; 638 } 639 640 static inline void skb_drop_fraglist(struct sk_buff *skb) 641 { 642 skb_drop_list(&skb_shinfo(skb)->frag_list); 643 } 644 645 static void skb_clone_fraglist(struct sk_buff *skb) 646 { 647 struct sk_buff *list; 648 649 skb_walk_frags(skb, list) 650 skb_get(list); 651 } 652 653 static void skb_free_head(struct sk_buff *skb) 654 { 655 unsigned char *head = skb->head; 656 657 if (skb->head_frag) { 658 if (skb_pp_recycle(skb, head)) 659 return; 660 skb_free_frag(head); 661 } else { 662 kfree(head); 663 } 664 } 665 666 static void skb_release_data(struct sk_buff *skb) 667 { 668 struct skb_shared_info *shinfo = skb_shinfo(skb); 669 int i; 670 671 if (skb->cloned && 672 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 673 &shinfo->dataref)) 674 goto exit; 675 676 if (skb_zcopy(skb)) { 677 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 678 679 skb_zcopy_clear(skb, true); 680 if (skip_unref) 681 goto free_head; 682 } 683 684 for (i = 0; i < shinfo->nr_frags; i++) 685 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 686 687 free_head: 688 if (shinfo->frag_list) 689 kfree_skb_list(shinfo->frag_list); 690 691 skb_free_head(skb); 692 exit: 693 /* When we clone an SKB we copy the reycling bit. The pp_recycle 694 * bit is only set on the head though, so in order to avoid races 695 * while trying to recycle fragments on __skb_frag_unref() we need 696 * to make one SKB responsible for triggering the recycle path. 697 * So disable the recycling bit if an SKB is cloned and we have 698 * additional references to the fragmented part of the SKB. 699 * Eventually the last SKB will have the recycling bit set and it's 700 * dataref set to 0, which will trigger the recycling 701 */ 702 skb->pp_recycle = 0; 703 } 704 705 /* 706 * Free an skbuff by memory without cleaning the state. 707 */ 708 static void kfree_skbmem(struct sk_buff *skb) 709 { 710 struct sk_buff_fclones *fclones; 711 712 switch (skb->fclone) { 713 case SKB_FCLONE_UNAVAILABLE: 714 kmem_cache_free(skbuff_head_cache, skb); 715 return; 716 717 case SKB_FCLONE_ORIG: 718 fclones = container_of(skb, struct sk_buff_fclones, skb1); 719 720 /* We usually free the clone (TX completion) before original skb 721 * This test would have no chance to be true for the clone, 722 * while here, branch prediction will be good. 723 */ 724 if (refcount_read(&fclones->fclone_ref) == 1) 725 goto fastpath; 726 break; 727 728 default: /* SKB_FCLONE_CLONE */ 729 fclones = container_of(skb, struct sk_buff_fclones, skb2); 730 break; 731 } 732 if (!refcount_dec_and_test(&fclones->fclone_ref)) 733 return; 734 fastpath: 735 kmem_cache_free(skbuff_fclone_cache, fclones); 736 } 737 738 void skb_release_head_state(struct sk_buff *skb) 739 { 740 skb_dst_drop(skb); 741 if (skb->destructor) { 742 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 743 skb->destructor(skb); 744 } 745 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 746 nf_conntrack_put(skb_nfct(skb)); 747 #endif 748 skb_ext_put(skb); 749 } 750 751 /* Free everything but the sk_buff shell. */ 752 static void skb_release_all(struct sk_buff *skb) 753 { 754 skb_release_head_state(skb); 755 if (likely(skb->head)) 756 skb_release_data(skb); 757 } 758 759 /** 760 * __kfree_skb - private function 761 * @skb: buffer 762 * 763 * Free an sk_buff. Release anything attached to the buffer. 764 * Clean the state. This is an internal helper function. Users should 765 * always call kfree_skb 766 */ 767 768 void __kfree_skb(struct sk_buff *skb) 769 { 770 skb_release_all(skb); 771 kfree_skbmem(skb); 772 } 773 EXPORT_SYMBOL(__kfree_skb); 774 775 /** 776 * kfree_skb_reason - free an sk_buff with special reason 777 * @skb: buffer to free 778 * @reason: reason why this skb is dropped 779 * 780 * Drop a reference to the buffer and free it if the usage count has 781 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 782 * tracepoint. 783 */ 784 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 785 { 786 if (!skb_unref(skb)) 787 return; 788 789 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX); 790 791 trace_kfree_skb(skb, __builtin_return_address(0), reason); 792 __kfree_skb(skb); 793 } 794 EXPORT_SYMBOL(kfree_skb_reason); 795 796 void kfree_skb_list_reason(struct sk_buff *segs, 797 enum skb_drop_reason reason) 798 { 799 while (segs) { 800 struct sk_buff *next = segs->next; 801 802 kfree_skb_reason(segs, reason); 803 segs = next; 804 } 805 } 806 EXPORT_SYMBOL(kfree_skb_list_reason); 807 808 /* Dump skb information and contents. 809 * 810 * Must only be called from net_ratelimit()-ed paths. 811 * 812 * Dumps whole packets if full_pkt, only headers otherwise. 813 */ 814 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 815 { 816 struct skb_shared_info *sh = skb_shinfo(skb); 817 struct net_device *dev = skb->dev; 818 struct sock *sk = skb->sk; 819 struct sk_buff *list_skb; 820 bool has_mac, has_trans; 821 int headroom, tailroom; 822 int i, len, seg_len; 823 824 if (full_pkt) 825 len = skb->len; 826 else 827 len = min_t(int, skb->len, MAX_HEADER + 128); 828 829 headroom = skb_headroom(skb); 830 tailroom = skb_tailroom(skb); 831 832 has_mac = skb_mac_header_was_set(skb); 833 has_trans = skb_transport_header_was_set(skb); 834 835 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 836 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 837 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 838 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 839 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 840 level, skb->len, headroom, skb_headlen(skb), tailroom, 841 has_mac ? skb->mac_header : -1, 842 has_mac ? skb_mac_header_len(skb) : -1, 843 skb->network_header, 844 has_trans ? skb_network_header_len(skb) : -1, 845 has_trans ? skb->transport_header : -1, 846 sh->tx_flags, sh->nr_frags, 847 sh->gso_size, sh->gso_type, sh->gso_segs, 848 skb->csum, skb->ip_summed, skb->csum_complete_sw, 849 skb->csum_valid, skb->csum_level, 850 skb->hash, skb->sw_hash, skb->l4_hash, 851 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 852 853 if (dev) 854 printk("%sdev name=%s feat=%pNF\n", 855 level, dev->name, &dev->features); 856 if (sk) 857 printk("%ssk family=%hu type=%u proto=%u\n", 858 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 859 860 if (full_pkt && headroom) 861 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 862 16, 1, skb->head, headroom, false); 863 864 seg_len = min_t(int, skb_headlen(skb), len); 865 if (seg_len) 866 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 867 16, 1, skb->data, seg_len, false); 868 len -= seg_len; 869 870 if (full_pkt && tailroom) 871 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 872 16, 1, skb_tail_pointer(skb), tailroom, false); 873 874 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 875 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 876 u32 p_off, p_len, copied; 877 struct page *p; 878 u8 *vaddr; 879 880 skb_frag_foreach_page(frag, skb_frag_off(frag), 881 skb_frag_size(frag), p, p_off, p_len, 882 copied) { 883 seg_len = min_t(int, p_len, len); 884 vaddr = kmap_atomic(p); 885 print_hex_dump(level, "skb frag: ", 886 DUMP_PREFIX_OFFSET, 887 16, 1, vaddr + p_off, seg_len, false); 888 kunmap_atomic(vaddr); 889 len -= seg_len; 890 if (!len) 891 break; 892 } 893 } 894 895 if (full_pkt && skb_has_frag_list(skb)) { 896 printk("skb fraglist:\n"); 897 skb_walk_frags(skb, list_skb) 898 skb_dump(level, list_skb, true); 899 } 900 } 901 EXPORT_SYMBOL(skb_dump); 902 903 /** 904 * skb_tx_error - report an sk_buff xmit error 905 * @skb: buffer that triggered an error 906 * 907 * Report xmit error if a device callback is tracking this skb. 908 * skb must be freed afterwards. 909 */ 910 void skb_tx_error(struct sk_buff *skb) 911 { 912 if (skb) { 913 skb_zcopy_downgrade_managed(skb); 914 skb_zcopy_clear(skb, true); 915 } 916 } 917 EXPORT_SYMBOL(skb_tx_error); 918 919 #ifdef CONFIG_TRACEPOINTS 920 /** 921 * consume_skb - free an skbuff 922 * @skb: buffer to free 923 * 924 * Drop a ref to the buffer and free it if the usage count has hit zero 925 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 926 * is being dropped after a failure and notes that 927 */ 928 void consume_skb(struct sk_buff *skb) 929 { 930 if (!skb_unref(skb)) 931 return; 932 933 trace_consume_skb(skb); 934 __kfree_skb(skb); 935 } 936 EXPORT_SYMBOL(consume_skb); 937 #endif 938 939 /** 940 * __consume_stateless_skb - free an skbuff, assuming it is stateless 941 * @skb: buffer to free 942 * 943 * Alike consume_skb(), but this variant assumes that this is the last 944 * skb reference and all the head states have been already dropped 945 */ 946 void __consume_stateless_skb(struct sk_buff *skb) 947 { 948 trace_consume_skb(skb); 949 skb_release_data(skb); 950 kfree_skbmem(skb); 951 } 952 953 static void napi_skb_cache_put(struct sk_buff *skb) 954 { 955 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 956 u32 i; 957 958 kasan_poison_object_data(skbuff_head_cache, skb); 959 nc->skb_cache[nc->skb_count++] = skb; 960 961 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 962 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 963 kasan_unpoison_object_data(skbuff_head_cache, 964 nc->skb_cache[i]); 965 966 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 967 nc->skb_cache + NAPI_SKB_CACHE_HALF); 968 nc->skb_count = NAPI_SKB_CACHE_HALF; 969 } 970 } 971 972 void __kfree_skb_defer(struct sk_buff *skb) 973 { 974 skb_release_all(skb); 975 napi_skb_cache_put(skb); 976 } 977 978 void napi_skb_free_stolen_head(struct sk_buff *skb) 979 { 980 if (unlikely(skb->slow_gro)) { 981 nf_reset_ct(skb); 982 skb_dst_drop(skb); 983 skb_ext_put(skb); 984 skb_orphan(skb); 985 skb->slow_gro = 0; 986 } 987 napi_skb_cache_put(skb); 988 } 989 990 void napi_consume_skb(struct sk_buff *skb, int budget) 991 { 992 /* Zero budget indicate non-NAPI context called us, like netpoll */ 993 if (unlikely(!budget)) { 994 dev_consume_skb_any(skb); 995 return; 996 } 997 998 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 999 1000 if (!skb_unref(skb)) 1001 return; 1002 1003 /* if reaching here SKB is ready to free */ 1004 trace_consume_skb(skb); 1005 1006 /* if SKB is a clone, don't handle this case */ 1007 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1008 __kfree_skb(skb); 1009 return; 1010 } 1011 1012 skb_release_all(skb); 1013 napi_skb_cache_put(skb); 1014 } 1015 EXPORT_SYMBOL(napi_consume_skb); 1016 1017 /* Make sure a field is contained by headers group */ 1018 #define CHECK_SKB_FIELD(field) \ 1019 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1020 offsetof(struct sk_buff, headers.field)); \ 1021 1022 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1023 { 1024 new->tstamp = old->tstamp; 1025 /* We do not copy old->sk */ 1026 new->dev = old->dev; 1027 memcpy(new->cb, old->cb, sizeof(old->cb)); 1028 skb_dst_copy(new, old); 1029 __skb_ext_copy(new, old); 1030 __nf_copy(new, old, false); 1031 1032 /* Note : this field could be in the headers group. 1033 * It is not yet because we do not want to have a 16 bit hole 1034 */ 1035 new->queue_mapping = old->queue_mapping; 1036 1037 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1038 CHECK_SKB_FIELD(protocol); 1039 CHECK_SKB_FIELD(csum); 1040 CHECK_SKB_FIELD(hash); 1041 CHECK_SKB_FIELD(priority); 1042 CHECK_SKB_FIELD(skb_iif); 1043 CHECK_SKB_FIELD(vlan_proto); 1044 CHECK_SKB_FIELD(vlan_tci); 1045 CHECK_SKB_FIELD(transport_header); 1046 CHECK_SKB_FIELD(network_header); 1047 CHECK_SKB_FIELD(mac_header); 1048 CHECK_SKB_FIELD(inner_protocol); 1049 CHECK_SKB_FIELD(inner_transport_header); 1050 CHECK_SKB_FIELD(inner_network_header); 1051 CHECK_SKB_FIELD(inner_mac_header); 1052 CHECK_SKB_FIELD(mark); 1053 #ifdef CONFIG_NETWORK_SECMARK 1054 CHECK_SKB_FIELD(secmark); 1055 #endif 1056 #ifdef CONFIG_NET_RX_BUSY_POLL 1057 CHECK_SKB_FIELD(napi_id); 1058 #endif 1059 CHECK_SKB_FIELD(alloc_cpu); 1060 #ifdef CONFIG_XPS 1061 CHECK_SKB_FIELD(sender_cpu); 1062 #endif 1063 #ifdef CONFIG_NET_SCHED 1064 CHECK_SKB_FIELD(tc_index); 1065 #endif 1066 1067 } 1068 1069 /* 1070 * You should not add any new code to this function. Add it to 1071 * __copy_skb_header above instead. 1072 */ 1073 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1074 { 1075 #define C(x) n->x = skb->x 1076 1077 n->next = n->prev = NULL; 1078 n->sk = NULL; 1079 __copy_skb_header(n, skb); 1080 1081 C(len); 1082 C(data_len); 1083 C(mac_len); 1084 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1085 n->cloned = 1; 1086 n->nohdr = 0; 1087 n->peeked = 0; 1088 C(pfmemalloc); 1089 C(pp_recycle); 1090 n->destructor = NULL; 1091 C(tail); 1092 C(end); 1093 C(head); 1094 C(head_frag); 1095 C(data); 1096 C(truesize); 1097 refcount_set(&n->users, 1); 1098 1099 atomic_inc(&(skb_shinfo(skb)->dataref)); 1100 skb->cloned = 1; 1101 1102 return n; 1103 #undef C 1104 } 1105 1106 /** 1107 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1108 * @first: first sk_buff of the msg 1109 */ 1110 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1111 { 1112 struct sk_buff *n; 1113 1114 n = alloc_skb(0, GFP_ATOMIC); 1115 if (!n) 1116 return NULL; 1117 1118 n->len = first->len; 1119 n->data_len = first->len; 1120 n->truesize = first->truesize; 1121 1122 skb_shinfo(n)->frag_list = first; 1123 1124 __copy_skb_header(n, first); 1125 n->destructor = NULL; 1126 1127 return n; 1128 } 1129 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1130 1131 /** 1132 * skb_morph - morph one skb into another 1133 * @dst: the skb to receive the contents 1134 * @src: the skb to supply the contents 1135 * 1136 * This is identical to skb_clone except that the target skb is 1137 * supplied by the user. 1138 * 1139 * The target skb is returned upon exit. 1140 */ 1141 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1142 { 1143 skb_release_all(dst); 1144 return __skb_clone(dst, src); 1145 } 1146 EXPORT_SYMBOL_GPL(skb_morph); 1147 1148 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1149 { 1150 unsigned long max_pg, num_pg, new_pg, old_pg; 1151 struct user_struct *user; 1152 1153 if (capable(CAP_IPC_LOCK) || !size) 1154 return 0; 1155 1156 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1157 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1158 user = mmp->user ? : current_user(); 1159 1160 do { 1161 old_pg = atomic_long_read(&user->locked_vm); 1162 new_pg = old_pg + num_pg; 1163 if (new_pg > max_pg) 1164 return -ENOBUFS; 1165 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1166 old_pg); 1167 1168 if (!mmp->user) { 1169 mmp->user = get_uid(user); 1170 mmp->num_pg = num_pg; 1171 } else { 1172 mmp->num_pg += num_pg; 1173 } 1174 1175 return 0; 1176 } 1177 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1178 1179 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1180 { 1181 if (mmp->user) { 1182 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1183 free_uid(mmp->user); 1184 } 1185 } 1186 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1187 1188 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1189 { 1190 struct ubuf_info *uarg; 1191 struct sk_buff *skb; 1192 1193 WARN_ON_ONCE(!in_task()); 1194 1195 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1196 if (!skb) 1197 return NULL; 1198 1199 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1200 uarg = (void *)skb->cb; 1201 uarg->mmp.user = NULL; 1202 1203 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1204 kfree_skb(skb); 1205 return NULL; 1206 } 1207 1208 uarg->callback = msg_zerocopy_callback; 1209 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1210 uarg->len = 1; 1211 uarg->bytelen = size; 1212 uarg->zerocopy = 1; 1213 uarg->flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1214 refcount_set(&uarg->refcnt, 1); 1215 sock_hold(sk); 1216 1217 return uarg; 1218 } 1219 1220 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1221 { 1222 return container_of((void *)uarg, struct sk_buff, cb); 1223 } 1224 1225 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1226 struct ubuf_info *uarg) 1227 { 1228 if (uarg) { 1229 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1230 u32 bytelen, next; 1231 1232 /* there might be non MSG_ZEROCOPY users */ 1233 if (uarg->callback != msg_zerocopy_callback) 1234 return NULL; 1235 1236 /* realloc only when socket is locked (TCP, UDP cork), 1237 * so uarg->len and sk_zckey access is serialized 1238 */ 1239 if (!sock_owned_by_user(sk)) { 1240 WARN_ON_ONCE(1); 1241 return NULL; 1242 } 1243 1244 bytelen = uarg->bytelen + size; 1245 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1246 /* TCP can create new skb to attach new uarg */ 1247 if (sk->sk_type == SOCK_STREAM) 1248 goto new_alloc; 1249 return NULL; 1250 } 1251 1252 next = (u32)atomic_read(&sk->sk_zckey); 1253 if ((u32)(uarg->id + uarg->len) == next) { 1254 if (mm_account_pinned_pages(&uarg->mmp, size)) 1255 return NULL; 1256 uarg->len++; 1257 uarg->bytelen = bytelen; 1258 atomic_set(&sk->sk_zckey, ++next); 1259 1260 /* no extra ref when appending to datagram (MSG_MORE) */ 1261 if (sk->sk_type == SOCK_STREAM) 1262 net_zcopy_get(uarg); 1263 1264 return uarg; 1265 } 1266 } 1267 1268 new_alloc: 1269 return msg_zerocopy_alloc(sk, size); 1270 } 1271 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1272 1273 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1274 { 1275 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1276 u32 old_lo, old_hi; 1277 u64 sum_len; 1278 1279 old_lo = serr->ee.ee_info; 1280 old_hi = serr->ee.ee_data; 1281 sum_len = old_hi - old_lo + 1ULL + len; 1282 1283 if (sum_len >= (1ULL << 32)) 1284 return false; 1285 1286 if (lo != old_hi + 1) 1287 return false; 1288 1289 serr->ee.ee_data += len; 1290 return true; 1291 } 1292 1293 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1294 { 1295 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1296 struct sock_exterr_skb *serr; 1297 struct sock *sk = skb->sk; 1298 struct sk_buff_head *q; 1299 unsigned long flags; 1300 bool is_zerocopy; 1301 u32 lo, hi; 1302 u16 len; 1303 1304 mm_unaccount_pinned_pages(&uarg->mmp); 1305 1306 /* if !len, there was only 1 call, and it was aborted 1307 * so do not queue a completion notification 1308 */ 1309 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1310 goto release; 1311 1312 len = uarg->len; 1313 lo = uarg->id; 1314 hi = uarg->id + len - 1; 1315 is_zerocopy = uarg->zerocopy; 1316 1317 serr = SKB_EXT_ERR(skb); 1318 memset(serr, 0, sizeof(*serr)); 1319 serr->ee.ee_errno = 0; 1320 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1321 serr->ee.ee_data = hi; 1322 serr->ee.ee_info = lo; 1323 if (!is_zerocopy) 1324 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1325 1326 q = &sk->sk_error_queue; 1327 spin_lock_irqsave(&q->lock, flags); 1328 tail = skb_peek_tail(q); 1329 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1330 !skb_zerocopy_notify_extend(tail, lo, len)) { 1331 __skb_queue_tail(q, skb); 1332 skb = NULL; 1333 } 1334 spin_unlock_irqrestore(&q->lock, flags); 1335 1336 sk_error_report(sk); 1337 1338 release: 1339 consume_skb(skb); 1340 sock_put(sk); 1341 } 1342 1343 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1344 bool success) 1345 { 1346 uarg->zerocopy = uarg->zerocopy & success; 1347 1348 if (refcount_dec_and_test(&uarg->refcnt)) 1349 __msg_zerocopy_callback(uarg); 1350 } 1351 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1352 1353 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1354 { 1355 struct sock *sk = skb_from_uarg(uarg)->sk; 1356 1357 atomic_dec(&sk->sk_zckey); 1358 uarg->len--; 1359 1360 if (have_uref) 1361 msg_zerocopy_callback(NULL, uarg, true); 1362 } 1363 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1364 1365 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1366 struct msghdr *msg, int len, 1367 struct ubuf_info *uarg) 1368 { 1369 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1370 int err, orig_len = skb->len; 1371 1372 /* An skb can only point to one uarg. This edge case happens when 1373 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1374 */ 1375 if (orig_uarg && uarg != orig_uarg) 1376 return -EEXIST; 1377 1378 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1379 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1380 struct sock *save_sk = skb->sk; 1381 1382 /* Streams do not free skb on error. Reset to prev state. */ 1383 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1384 skb->sk = sk; 1385 ___pskb_trim(skb, orig_len); 1386 skb->sk = save_sk; 1387 return err; 1388 } 1389 1390 skb_zcopy_set(skb, uarg, NULL); 1391 return skb->len - orig_len; 1392 } 1393 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1394 1395 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1396 { 1397 int i; 1398 1399 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1400 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1401 skb_frag_ref(skb, i); 1402 } 1403 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1404 1405 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1406 gfp_t gfp_mask) 1407 { 1408 if (skb_zcopy(orig)) { 1409 if (skb_zcopy(nskb)) { 1410 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1411 if (!gfp_mask) { 1412 WARN_ON_ONCE(1); 1413 return -ENOMEM; 1414 } 1415 if (skb_uarg(nskb) == skb_uarg(orig)) 1416 return 0; 1417 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1418 return -EIO; 1419 } 1420 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1421 } 1422 return 0; 1423 } 1424 1425 /** 1426 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1427 * @skb: the skb to modify 1428 * @gfp_mask: allocation priority 1429 * 1430 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1431 * It will copy all frags into kernel and drop the reference 1432 * to userspace pages. 1433 * 1434 * If this function is called from an interrupt gfp_mask() must be 1435 * %GFP_ATOMIC. 1436 * 1437 * Returns 0 on success or a negative error code on failure 1438 * to allocate kernel memory to copy to. 1439 */ 1440 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1441 { 1442 int num_frags = skb_shinfo(skb)->nr_frags; 1443 struct page *page, *head = NULL; 1444 int i, new_frags; 1445 u32 d_off; 1446 1447 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1448 return -EINVAL; 1449 1450 if (!num_frags) 1451 goto release; 1452 1453 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1454 for (i = 0; i < new_frags; i++) { 1455 page = alloc_page(gfp_mask); 1456 if (!page) { 1457 while (head) { 1458 struct page *next = (struct page *)page_private(head); 1459 put_page(head); 1460 head = next; 1461 } 1462 return -ENOMEM; 1463 } 1464 set_page_private(page, (unsigned long)head); 1465 head = page; 1466 } 1467 1468 page = head; 1469 d_off = 0; 1470 for (i = 0; i < num_frags; i++) { 1471 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1472 u32 p_off, p_len, copied; 1473 struct page *p; 1474 u8 *vaddr; 1475 1476 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1477 p, p_off, p_len, copied) { 1478 u32 copy, done = 0; 1479 vaddr = kmap_atomic(p); 1480 1481 while (done < p_len) { 1482 if (d_off == PAGE_SIZE) { 1483 d_off = 0; 1484 page = (struct page *)page_private(page); 1485 } 1486 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1487 memcpy(page_address(page) + d_off, 1488 vaddr + p_off + done, copy); 1489 done += copy; 1490 d_off += copy; 1491 } 1492 kunmap_atomic(vaddr); 1493 } 1494 } 1495 1496 /* skb frags release userspace buffers */ 1497 for (i = 0; i < num_frags; i++) 1498 skb_frag_unref(skb, i); 1499 1500 /* skb frags point to kernel buffers */ 1501 for (i = 0; i < new_frags - 1; i++) { 1502 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1503 head = (struct page *)page_private(head); 1504 } 1505 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1506 skb_shinfo(skb)->nr_frags = new_frags; 1507 1508 release: 1509 skb_zcopy_clear(skb, false); 1510 return 0; 1511 } 1512 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1513 1514 /** 1515 * skb_clone - duplicate an sk_buff 1516 * @skb: buffer to clone 1517 * @gfp_mask: allocation priority 1518 * 1519 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1520 * copies share the same packet data but not structure. The new 1521 * buffer has a reference count of 1. If the allocation fails the 1522 * function returns %NULL otherwise the new buffer is returned. 1523 * 1524 * If this function is called from an interrupt gfp_mask() must be 1525 * %GFP_ATOMIC. 1526 */ 1527 1528 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1529 { 1530 struct sk_buff_fclones *fclones = container_of(skb, 1531 struct sk_buff_fclones, 1532 skb1); 1533 struct sk_buff *n; 1534 1535 if (skb_orphan_frags(skb, gfp_mask)) 1536 return NULL; 1537 1538 if (skb->fclone == SKB_FCLONE_ORIG && 1539 refcount_read(&fclones->fclone_ref) == 1) { 1540 n = &fclones->skb2; 1541 refcount_set(&fclones->fclone_ref, 2); 1542 n->fclone = SKB_FCLONE_CLONE; 1543 } else { 1544 if (skb_pfmemalloc(skb)) 1545 gfp_mask |= __GFP_MEMALLOC; 1546 1547 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1548 if (!n) 1549 return NULL; 1550 1551 n->fclone = SKB_FCLONE_UNAVAILABLE; 1552 } 1553 1554 return __skb_clone(n, skb); 1555 } 1556 EXPORT_SYMBOL(skb_clone); 1557 1558 void skb_headers_offset_update(struct sk_buff *skb, int off) 1559 { 1560 /* Only adjust this if it actually is csum_start rather than csum */ 1561 if (skb->ip_summed == CHECKSUM_PARTIAL) 1562 skb->csum_start += off; 1563 /* {transport,network,mac}_header and tail are relative to skb->head */ 1564 skb->transport_header += off; 1565 skb->network_header += off; 1566 if (skb_mac_header_was_set(skb)) 1567 skb->mac_header += off; 1568 skb->inner_transport_header += off; 1569 skb->inner_network_header += off; 1570 skb->inner_mac_header += off; 1571 } 1572 EXPORT_SYMBOL(skb_headers_offset_update); 1573 1574 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1575 { 1576 __copy_skb_header(new, old); 1577 1578 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1579 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1580 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1581 } 1582 EXPORT_SYMBOL(skb_copy_header); 1583 1584 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1585 { 1586 if (skb_pfmemalloc(skb)) 1587 return SKB_ALLOC_RX; 1588 return 0; 1589 } 1590 1591 /** 1592 * skb_copy - create private copy of an sk_buff 1593 * @skb: buffer to copy 1594 * @gfp_mask: allocation priority 1595 * 1596 * Make a copy of both an &sk_buff and its data. This is used when the 1597 * caller wishes to modify the data and needs a private copy of the 1598 * data to alter. Returns %NULL on failure or the pointer to the buffer 1599 * on success. The returned buffer has a reference count of 1. 1600 * 1601 * As by-product this function converts non-linear &sk_buff to linear 1602 * one, so that &sk_buff becomes completely private and caller is allowed 1603 * to modify all the data of returned buffer. This means that this 1604 * function is not recommended for use in circumstances when only 1605 * header is going to be modified. Use pskb_copy() instead. 1606 */ 1607 1608 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1609 { 1610 int headerlen = skb_headroom(skb); 1611 unsigned int size = skb_end_offset(skb) + skb->data_len; 1612 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1613 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1614 1615 if (!n) 1616 return NULL; 1617 1618 /* Set the data pointer */ 1619 skb_reserve(n, headerlen); 1620 /* Set the tail pointer and length */ 1621 skb_put(n, skb->len); 1622 1623 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1624 1625 skb_copy_header(n, skb); 1626 return n; 1627 } 1628 EXPORT_SYMBOL(skb_copy); 1629 1630 /** 1631 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1632 * @skb: buffer to copy 1633 * @headroom: headroom of new skb 1634 * @gfp_mask: allocation priority 1635 * @fclone: if true allocate the copy of the skb from the fclone 1636 * cache instead of the head cache; it is recommended to set this 1637 * to true for the cases where the copy will likely be cloned 1638 * 1639 * Make a copy of both an &sk_buff and part of its data, located 1640 * in header. Fragmented data remain shared. This is used when 1641 * the caller wishes to modify only header of &sk_buff and needs 1642 * private copy of the header to alter. Returns %NULL on failure 1643 * or the pointer to the buffer on success. 1644 * The returned buffer has a reference count of 1. 1645 */ 1646 1647 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1648 gfp_t gfp_mask, bool fclone) 1649 { 1650 unsigned int size = skb_headlen(skb) + headroom; 1651 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1652 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1653 1654 if (!n) 1655 goto out; 1656 1657 /* Set the data pointer */ 1658 skb_reserve(n, headroom); 1659 /* Set the tail pointer and length */ 1660 skb_put(n, skb_headlen(skb)); 1661 /* Copy the bytes */ 1662 skb_copy_from_linear_data(skb, n->data, n->len); 1663 1664 n->truesize += skb->data_len; 1665 n->data_len = skb->data_len; 1666 n->len = skb->len; 1667 1668 if (skb_shinfo(skb)->nr_frags) { 1669 int i; 1670 1671 if (skb_orphan_frags(skb, gfp_mask) || 1672 skb_zerocopy_clone(n, skb, gfp_mask)) { 1673 kfree_skb(n); 1674 n = NULL; 1675 goto out; 1676 } 1677 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1678 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1679 skb_frag_ref(skb, i); 1680 } 1681 skb_shinfo(n)->nr_frags = i; 1682 } 1683 1684 if (skb_has_frag_list(skb)) { 1685 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1686 skb_clone_fraglist(n); 1687 } 1688 1689 skb_copy_header(n, skb); 1690 out: 1691 return n; 1692 } 1693 EXPORT_SYMBOL(__pskb_copy_fclone); 1694 1695 /** 1696 * pskb_expand_head - reallocate header of &sk_buff 1697 * @skb: buffer to reallocate 1698 * @nhead: room to add at head 1699 * @ntail: room to add at tail 1700 * @gfp_mask: allocation priority 1701 * 1702 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1703 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1704 * reference count of 1. Returns zero in the case of success or error, 1705 * if expansion failed. In the last case, &sk_buff is not changed. 1706 * 1707 * All the pointers pointing into skb header may change and must be 1708 * reloaded after call to this function. 1709 */ 1710 1711 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1712 gfp_t gfp_mask) 1713 { 1714 int i, osize = skb_end_offset(skb); 1715 int size = osize + nhead + ntail; 1716 long off; 1717 u8 *data; 1718 1719 BUG_ON(nhead < 0); 1720 1721 BUG_ON(skb_shared(skb)); 1722 1723 skb_zcopy_downgrade_managed(skb); 1724 1725 size = SKB_DATA_ALIGN(size); 1726 1727 if (skb_pfmemalloc(skb)) 1728 gfp_mask |= __GFP_MEMALLOC; 1729 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1730 gfp_mask, NUMA_NO_NODE, NULL); 1731 if (!data) 1732 goto nodata; 1733 size = SKB_WITH_OVERHEAD(ksize(data)); 1734 1735 /* Copy only real data... and, alas, header. This should be 1736 * optimized for the cases when header is void. 1737 */ 1738 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1739 1740 memcpy((struct skb_shared_info *)(data + size), 1741 skb_shinfo(skb), 1742 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1743 1744 /* 1745 * if shinfo is shared we must drop the old head gracefully, but if it 1746 * is not we can just drop the old head and let the existing refcount 1747 * be since all we did is relocate the values 1748 */ 1749 if (skb_cloned(skb)) { 1750 if (skb_orphan_frags(skb, gfp_mask)) 1751 goto nofrags; 1752 if (skb_zcopy(skb)) 1753 refcount_inc(&skb_uarg(skb)->refcnt); 1754 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1755 skb_frag_ref(skb, i); 1756 1757 if (skb_has_frag_list(skb)) 1758 skb_clone_fraglist(skb); 1759 1760 skb_release_data(skb); 1761 } else { 1762 skb_free_head(skb); 1763 } 1764 off = (data + nhead) - skb->head; 1765 1766 skb->head = data; 1767 skb->head_frag = 0; 1768 skb->data += off; 1769 1770 skb_set_end_offset(skb, size); 1771 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1772 off = nhead; 1773 #endif 1774 skb->tail += off; 1775 skb_headers_offset_update(skb, nhead); 1776 skb->cloned = 0; 1777 skb->hdr_len = 0; 1778 skb->nohdr = 0; 1779 atomic_set(&skb_shinfo(skb)->dataref, 1); 1780 1781 skb_metadata_clear(skb); 1782 1783 /* It is not generally safe to change skb->truesize. 1784 * For the moment, we really care of rx path, or 1785 * when skb is orphaned (not attached to a socket). 1786 */ 1787 if (!skb->sk || skb->destructor == sock_edemux) 1788 skb->truesize += size - osize; 1789 1790 return 0; 1791 1792 nofrags: 1793 kfree(data); 1794 nodata: 1795 return -ENOMEM; 1796 } 1797 EXPORT_SYMBOL(pskb_expand_head); 1798 1799 /* Make private copy of skb with writable head and some headroom */ 1800 1801 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1802 { 1803 struct sk_buff *skb2; 1804 int delta = headroom - skb_headroom(skb); 1805 1806 if (delta <= 0) 1807 skb2 = pskb_copy(skb, GFP_ATOMIC); 1808 else { 1809 skb2 = skb_clone(skb, GFP_ATOMIC); 1810 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1811 GFP_ATOMIC)) { 1812 kfree_skb(skb2); 1813 skb2 = NULL; 1814 } 1815 } 1816 return skb2; 1817 } 1818 EXPORT_SYMBOL(skb_realloc_headroom); 1819 1820 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1821 { 1822 unsigned int saved_end_offset, saved_truesize; 1823 struct skb_shared_info *shinfo; 1824 int res; 1825 1826 saved_end_offset = skb_end_offset(skb); 1827 saved_truesize = skb->truesize; 1828 1829 res = pskb_expand_head(skb, 0, 0, pri); 1830 if (res) 1831 return res; 1832 1833 skb->truesize = saved_truesize; 1834 1835 if (likely(skb_end_offset(skb) == saved_end_offset)) 1836 return 0; 1837 1838 shinfo = skb_shinfo(skb); 1839 1840 /* We are about to change back skb->end, 1841 * we need to move skb_shinfo() to its new location. 1842 */ 1843 memmove(skb->head + saved_end_offset, 1844 shinfo, 1845 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 1846 1847 skb_set_end_offset(skb, saved_end_offset); 1848 1849 return 0; 1850 } 1851 1852 /** 1853 * skb_expand_head - reallocate header of &sk_buff 1854 * @skb: buffer to reallocate 1855 * @headroom: needed headroom 1856 * 1857 * Unlike skb_realloc_headroom, this one does not allocate a new skb 1858 * if possible; copies skb->sk to new skb as needed 1859 * and frees original skb in case of failures. 1860 * 1861 * It expect increased headroom and generates warning otherwise. 1862 */ 1863 1864 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 1865 { 1866 int delta = headroom - skb_headroom(skb); 1867 int osize = skb_end_offset(skb); 1868 struct sock *sk = skb->sk; 1869 1870 if (WARN_ONCE(delta <= 0, 1871 "%s is expecting an increase in the headroom", __func__)) 1872 return skb; 1873 1874 delta = SKB_DATA_ALIGN(delta); 1875 /* pskb_expand_head() might crash, if skb is shared. */ 1876 if (skb_shared(skb) || !is_skb_wmem(skb)) { 1877 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1878 1879 if (unlikely(!nskb)) 1880 goto fail; 1881 1882 if (sk) 1883 skb_set_owner_w(nskb, sk); 1884 consume_skb(skb); 1885 skb = nskb; 1886 } 1887 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 1888 goto fail; 1889 1890 if (sk && is_skb_wmem(skb)) { 1891 delta = skb_end_offset(skb) - osize; 1892 refcount_add(delta, &sk->sk_wmem_alloc); 1893 skb->truesize += delta; 1894 } 1895 return skb; 1896 1897 fail: 1898 kfree_skb(skb); 1899 return NULL; 1900 } 1901 EXPORT_SYMBOL(skb_expand_head); 1902 1903 /** 1904 * skb_copy_expand - copy and expand sk_buff 1905 * @skb: buffer to copy 1906 * @newheadroom: new free bytes at head 1907 * @newtailroom: new free bytes at tail 1908 * @gfp_mask: allocation priority 1909 * 1910 * Make a copy of both an &sk_buff and its data and while doing so 1911 * allocate additional space. 1912 * 1913 * This is used when the caller wishes to modify the data and needs a 1914 * private copy of the data to alter as well as more space for new fields. 1915 * Returns %NULL on failure or the pointer to the buffer 1916 * on success. The returned buffer has a reference count of 1. 1917 * 1918 * You must pass %GFP_ATOMIC as the allocation priority if this function 1919 * is called from an interrupt. 1920 */ 1921 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1922 int newheadroom, int newtailroom, 1923 gfp_t gfp_mask) 1924 { 1925 /* 1926 * Allocate the copy buffer 1927 */ 1928 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1929 gfp_mask, skb_alloc_rx_flag(skb), 1930 NUMA_NO_NODE); 1931 int oldheadroom = skb_headroom(skb); 1932 int head_copy_len, head_copy_off; 1933 1934 if (!n) 1935 return NULL; 1936 1937 skb_reserve(n, newheadroom); 1938 1939 /* Set the tail pointer and length */ 1940 skb_put(n, skb->len); 1941 1942 head_copy_len = oldheadroom; 1943 head_copy_off = 0; 1944 if (newheadroom <= head_copy_len) 1945 head_copy_len = newheadroom; 1946 else 1947 head_copy_off = newheadroom - head_copy_len; 1948 1949 /* Copy the linear header and data. */ 1950 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1951 skb->len + head_copy_len)); 1952 1953 skb_copy_header(n, skb); 1954 1955 skb_headers_offset_update(n, newheadroom - oldheadroom); 1956 1957 return n; 1958 } 1959 EXPORT_SYMBOL(skb_copy_expand); 1960 1961 /** 1962 * __skb_pad - zero pad the tail of an skb 1963 * @skb: buffer to pad 1964 * @pad: space to pad 1965 * @free_on_error: free buffer on error 1966 * 1967 * Ensure that a buffer is followed by a padding area that is zero 1968 * filled. Used by network drivers which may DMA or transfer data 1969 * beyond the buffer end onto the wire. 1970 * 1971 * May return error in out of memory cases. The skb is freed on error 1972 * if @free_on_error is true. 1973 */ 1974 1975 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1976 { 1977 int err; 1978 int ntail; 1979 1980 /* If the skbuff is non linear tailroom is always zero.. */ 1981 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1982 memset(skb->data+skb->len, 0, pad); 1983 return 0; 1984 } 1985 1986 ntail = skb->data_len + pad - (skb->end - skb->tail); 1987 if (likely(skb_cloned(skb) || ntail > 0)) { 1988 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1989 if (unlikely(err)) 1990 goto free_skb; 1991 } 1992 1993 /* FIXME: The use of this function with non-linear skb's really needs 1994 * to be audited. 1995 */ 1996 err = skb_linearize(skb); 1997 if (unlikely(err)) 1998 goto free_skb; 1999 2000 memset(skb->data + skb->len, 0, pad); 2001 return 0; 2002 2003 free_skb: 2004 if (free_on_error) 2005 kfree_skb(skb); 2006 return err; 2007 } 2008 EXPORT_SYMBOL(__skb_pad); 2009 2010 /** 2011 * pskb_put - add data to the tail of a potentially fragmented buffer 2012 * @skb: start of the buffer to use 2013 * @tail: tail fragment of the buffer to use 2014 * @len: amount of data to add 2015 * 2016 * This function extends the used data area of the potentially 2017 * fragmented buffer. @tail must be the last fragment of @skb -- or 2018 * @skb itself. If this would exceed the total buffer size the kernel 2019 * will panic. A pointer to the first byte of the extra data is 2020 * returned. 2021 */ 2022 2023 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2024 { 2025 if (tail != skb) { 2026 skb->data_len += len; 2027 skb->len += len; 2028 } 2029 return skb_put(tail, len); 2030 } 2031 EXPORT_SYMBOL_GPL(pskb_put); 2032 2033 /** 2034 * skb_put - add data to a buffer 2035 * @skb: buffer to use 2036 * @len: amount of data to add 2037 * 2038 * This function extends the used data area of the buffer. If this would 2039 * exceed the total buffer size the kernel will panic. A pointer to the 2040 * first byte of the extra data is returned. 2041 */ 2042 void *skb_put(struct sk_buff *skb, unsigned int len) 2043 { 2044 void *tmp = skb_tail_pointer(skb); 2045 SKB_LINEAR_ASSERT(skb); 2046 skb->tail += len; 2047 skb->len += len; 2048 if (unlikely(skb->tail > skb->end)) 2049 skb_over_panic(skb, len, __builtin_return_address(0)); 2050 return tmp; 2051 } 2052 EXPORT_SYMBOL(skb_put); 2053 2054 /** 2055 * skb_push - add data to the start of a buffer 2056 * @skb: buffer to use 2057 * @len: amount of data to add 2058 * 2059 * This function extends the used data area of the buffer at the buffer 2060 * start. If this would exceed the total buffer headroom the kernel will 2061 * panic. A pointer to the first byte of the extra data is returned. 2062 */ 2063 void *skb_push(struct sk_buff *skb, unsigned int len) 2064 { 2065 skb->data -= len; 2066 skb->len += len; 2067 if (unlikely(skb->data < skb->head)) 2068 skb_under_panic(skb, len, __builtin_return_address(0)); 2069 return skb->data; 2070 } 2071 EXPORT_SYMBOL(skb_push); 2072 2073 /** 2074 * skb_pull - remove data from the start of a buffer 2075 * @skb: buffer to use 2076 * @len: amount of data to remove 2077 * 2078 * This function removes data from the start of a buffer, returning 2079 * the memory to the headroom. A pointer to the next data in the buffer 2080 * is returned. Once the data has been pulled future pushes will overwrite 2081 * the old data. 2082 */ 2083 void *skb_pull(struct sk_buff *skb, unsigned int len) 2084 { 2085 return skb_pull_inline(skb, len); 2086 } 2087 EXPORT_SYMBOL(skb_pull); 2088 2089 /** 2090 * skb_pull_data - remove data from the start of a buffer returning its 2091 * original position. 2092 * @skb: buffer to use 2093 * @len: amount of data to remove 2094 * 2095 * This function removes data from the start of a buffer, returning 2096 * the memory to the headroom. A pointer to the original data in the buffer 2097 * is returned after checking if there is enough data to pull. Once the 2098 * data has been pulled future pushes will overwrite the old data. 2099 */ 2100 void *skb_pull_data(struct sk_buff *skb, size_t len) 2101 { 2102 void *data = skb->data; 2103 2104 if (skb->len < len) 2105 return NULL; 2106 2107 skb_pull(skb, len); 2108 2109 return data; 2110 } 2111 EXPORT_SYMBOL(skb_pull_data); 2112 2113 /** 2114 * skb_trim - remove end from a buffer 2115 * @skb: buffer to alter 2116 * @len: new length 2117 * 2118 * Cut the length of a buffer down by removing data from the tail. If 2119 * the buffer is already under the length specified it is not modified. 2120 * The skb must be linear. 2121 */ 2122 void skb_trim(struct sk_buff *skb, unsigned int len) 2123 { 2124 if (skb->len > len) 2125 __skb_trim(skb, len); 2126 } 2127 EXPORT_SYMBOL(skb_trim); 2128 2129 /* Trims skb to length len. It can change skb pointers. 2130 */ 2131 2132 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2133 { 2134 struct sk_buff **fragp; 2135 struct sk_buff *frag; 2136 int offset = skb_headlen(skb); 2137 int nfrags = skb_shinfo(skb)->nr_frags; 2138 int i; 2139 int err; 2140 2141 if (skb_cloned(skb) && 2142 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2143 return err; 2144 2145 i = 0; 2146 if (offset >= len) 2147 goto drop_pages; 2148 2149 for (; i < nfrags; i++) { 2150 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2151 2152 if (end < len) { 2153 offset = end; 2154 continue; 2155 } 2156 2157 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2158 2159 drop_pages: 2160 skb_shinfo(skb)->nr_frags = i; 2161 2162 for (; i < nfrags; i++) 2163 skb_frag_unref(skb, i); 2164 2165 if (skb_has_frag_list(skb)) 2166 skb_drop_fraglist(skb); 2167 goto done; 2168 } 2169 2170 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2171 fragp = &frag->next) { 2172 int end = offset + frag->len; 2173 2174 if (skb_shared(frag)) { 2175 struct sk_buff *nfrag; 2176 2177 nfrag = skb_clone(frag, GFP_ATOMIC); 2178 if (unlikely(!nfrag)) 2179 return -ENOMEM; 2180 2181 nfrag->next = frag->next; 2182 consume_skb(frag); 2183 frag = nfrag; 2184 *fragp = frag; 2185 } 2186 2187 if (end < len) { 2188 offset = end; 2189 continue; 2190 } 2191 2192 if (end > len && 2193 unlikely((err = pskb_trim(frag, len - offset)))) 2194 return err; 2195 2196 if (frag->next) 2197 skb_drop_list(&frag->next); 2198 break; 2199 } 2200 2201 done: 2202 if (len > skb_headlen(skb)) { 2203 skb->data_len -= skb->len - len; 2204 skb->len = len; 2205 } else { 2206 skb->len = len; 2207 skb->data_len = 0; 2208 skb_set_tail_pointer(skb, len); 2209 } 2210 2211 if (!skb->sk || skb->destructor == sock_edemux) 2212 skb_condense(skb); 2213 return 0; 2214 } 2215 EXPORT_SYMBOL(___pskb_trim); 2216 2217 /* Note : use pskb_trim_rcsum() instead of calling this directly 2218 */ 2219 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2220 { 2221 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2222 int delta = skb->len - len; 2223 2224 skb->csum = csum_block_sub(skb->csum, 2225 skb_checksum(skb, len, delta, 0), 2226 len); 2227 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2228 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2229 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2230 2231 if (offset + sizeof(__sum16) > hdlen) 2232 return -EINVAL; 2233 } 2234 return __pskb_trim(skb, len); 2235 } 2236 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2237 2238 /** 2239 * __pskb_pull_tail - advance tail of skb header 2240 * @skb: buffer to reallocate 2241 * @delta: number of bytes to advance tail 2242 * 2243 * The function makes a sense only on a fragmented &sk_buff, 2244 * it expands header moving its tail forward and copying necessary 2245 * data from fragmented part. 2246 * 2247 * &sk_buff MUST have reference count of 1. 2248 * 2249 * Returns %NULL (and &sk_buff does not change) if pull failed 2250 * or value of new tail of skb in the case of success. 2251 * 2252 * All the pointers pointing into skb header may change and must be 2253 * reloaded after call to this function. 2254 */ 2255 2256 /* Moves tail of skb head forward, copying data from fragmented part, 2257 * when it is necessary. 2258 * 1. It may fail due to malloc failure. 2259 * 2. It may change skb pointers. 2260 * 2261 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2262 */ 2263 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2264 { 2265 /* If skb has not enough free space at tail, get new one 2266 * plus 128 bytes for future expansions. If we have enough 2267 * room at tail, reallocate without expansion only if skb is cloned. 2268 */ 2269 int i, k, eat = (skb->tail + delta) - skb->end; 2270 2271 if (eat > 0 || skb_cloned(skb)) { 2272 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2273 GFP_ATOMIC)) 2274 return NULL; 2275 } 2276 2277 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2278 skb_tail_pointer(skb), delta)); 2279 2280 /* Optimization: no fragments, no reasons to preestimate 2281 * size of pulled pages. Superb. 2282 */ 2283 if (!skb_has_frag_list(skb)) 2284 goto pull_pages; 2285 2286 /* Estimate size of pulled pages. */ 2287 eat = delta; 2288 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2289 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2290 2291 if (size >= eat) 2292 goto pull_pages; 2293 eat -= size; 2294 } 2295 2296 /* If we need update frag list, we are in troubles. 2297 * Certainly, it is possible to add an offset to skb data, 2298 * but taking into account that pulling is expected to 2299 * be very rare operation, it is worth to fight against 2300 * further bloating skb head and crucify ourselves here instead. 2301 * Pure masohism, indeed. 8)8) 2302 */ 2303 if (eat) { 2304 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2305 struct sk_buff *clone = NULL; 2306 struct sk_buff *insp = NULL; 2307 2308 do { 2309 if (list->len <= eat) { 2310 /* Eaten as whole. */ 2311 eat -= list->len; 2312 list = list->next; 2313 insp = list; 2314 } else { 2315 /* Eaten partially. */ 2316 2317 if (skb_shared(list)) { 2318 /* Sucks! We need to fork list. :-( */ 2319 clone = skb_clone(list, GFP_ATOMIC); 2320 if (!clone) 2321 return NULL; 2322 insp = list->next; 2323 list = clone; 2324 } else { 2325 /* This may be pulled without 2326 * problems. */ 2327 insp = list; 2328 } 2329 if (!pskb_pull(list, eat)) { 2330 kfree_skb(clone); 2331 return NULL; 2332 } 2333 break; 2334 } 2335 } while (eat); 2336 2337 /* Free pulled out fragments. */ 2338 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2339 skb_shinfo(skb)->frag_list = list->next; 2340 consume_skb(list); 2341 } 2342 /* And insert new clone at head. */ 2343 if (clone) { 2344 clone->next = list; 2345 skb_shinfo(skb)->frag_list = clone; 2346 } 2347 } 2348 /* Success! Now we may commit changes to skb data. */ 2349 2350 pull_pages: 2351 eat = delta; 2352 k = 0; 2353 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2354 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2355 2356 if (size <= eat) { 2357 skb_frag_unref(skb, i); 2358 eat -= size; 2359 } else { 2360 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2361 2362 *frag = skb_shinfo(skb)->frags[i]; 2363 if (eat) { 2364 skb_frag_off_add(frag, eat); 2365 skb_frag_size_sub(frag, eat); 2366 if (!i) 2367 goto end; 2368 eat = 0; 2369 } 2370 k++; 2371 } 2372 } 2373 skb_shinfo(skb)->nr_frags = k; 2374 2375 end: 2376 skb->tail += delta; 2377 skb->data_len -= delta; 2378 2379 if (!skb->data_len) 2380 skb_zcopy_clear(skb, false); 2381 2382 return skb_tail_pointer(skb); 2383 } 2384 EXPORT_SYMBOL(__pskb_pull_tail); 2385 2386 /** 2387 * skb_copy_bits - copy bits from skb to kernel buffer 2388 * @skb: source skb 2389 * @offset: offset in source 2390 * @to: destination buffer 2391 * @len: number of bytes to copy 2392 * 2393 * Copy the specified number of bytes from the source skb to the 2394 * destination buffer. 2395 * 2396 * CAUTION ! : 2397 * If its prototype is ever changed, 2398 * check arch/{*}/net/{*}.S files, 2399 * since it is called from BPF assembly code. 2400 */ 2401 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2402 { 2403 int start = skb_headlen(skb); 2404 struct sk_buff *frag_iter; 2405 int i, copy; 2406 2407 if (offset > (int)skb->len - len) 2408 goto fault; 2409 2410 /* Copy header. */ 2411 if ((copy = start - offset) > 0) { 2412 if (copy > len) 2413 copy = len; 2414 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2415 if ((len -= copy) == 0) 2416 return 0; 2417 offset += copy; 2418 to += copy; 2419 } 2420 2421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2422 int end; 2423 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2424 2425 WARN_ON(start > offset + len); 2426 2427 end = start + skb_frag_size(f); 2428 if ((copy = end - offset) > 0) { 2429 u32 p_off, p_len, copied; 2430 struct page *p; 2431 u8 *vaddr; 2432 2433 if (copy > len) 2434 copy = len; 2435 2436 skb_frag_foreach_page(f, 2437 skb_frag_off(f) + offset - start, 2438 copy, p, p_off, p_len, copied) { 2439 vaddr = kmap_atomic(p); 2440 memcpy(to + copied, vaddr + p_off, p_len); 2441 kunmap_atomic(vaddr); 2442 } 2443 2444 if ((len -= copy) == 0) 2445 return 0; 2446 offset += copy; 2447 to += copy; 2448 } 2449 start = end; 2450 } 2451 2452 skb_walk_frags(skb, frag_iter) { 2453 int end; 2454 2455 WARN_ON(start > offset + len); 2456 2457 end = start + frag_iter->len; 2458 if ((copy = end - offset) > 0) { 2459 if (copy > len) 2460 copy = len; 2461 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2462 goto fault; 2463 if ((len -= copy) == 0) 2464 return 0; 2465 offset += copy; 2466 to += copy; 2467 } 2468 start = end; 2469 } 2470 2471 if (!len) 2472 return 0; 2473 2474 fault: 2475 return -EFAULT; 2476 } 2477 EXPORT_SYMBOL(skb_copy_bits); 2478 2479 /* 2480 * Callback from splice_to_pipe(), if we need to release some pages 2481 * at the end of the spd in case we error'ed out in filling the pipe. 2482 */ 2483 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2484 { 2485 put_page(spd->pages[i]); 2486 } 2487 2488 static struct page *linear_to_page(struct page *page, unsigned int *len, 2489 unsigned int *offset, 2490 struct sock *sk) 2491 { 2492 struct page_frag *pfrag = sk_page_frag(sk); 2493 2494 if (!sk_page_frag_refill(sk, pfrag)) 2495 return NULL; 2496 2497 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2498 2499 memcpy(page_address(pfrag->page) + pfrag->offset, 2500 page_address(page) + *offset, *len); 2501 *offset = pfrag->offset; 2502 pfrag->offset += *len; 2503 2504 return pfrag->page; 2505 } 2506 2507 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2508 struct page *page, 2509 unsigned int offset) 2510 { 2511 return spd->nr_pages && 2512 spd->pages[spd->nr_pages - 1] == page && 2513 (spd->partial[spd->nr_pages - 1].offset + 2514 spd->partial[spd->nr_pages - 1].len == offset); 2515 } 2516 2517 /* 2518 * Fill page/offset/length into spd, if it can hold more pages. 2519 */ 2520 static bool spd_fill_page(struct splice_pipe_desc *spd, 2521 struct pipe_inode_info *pipe, struct page *page, 2522 unsigned int *len, unsigned int offset, 2523 bool linear, 2524 struct sock *sk) 2525 { 2526 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2527 return true; 2528 2529 if (linear) { 2530 page = linear_to_page(page, len, &offset, sk); 2531 if (!page) 2532 return true; 2533 } 2534 if (spd_can_coalesce(spd, page, offset)) { 2535 spd->partial[spd->nr_pages - 1].len += *len; 2536 return false; 2537 } 2538 get_page(page); 2539 spd->pages[spd->nr_pages] = page; 2540 spd->partial[spd->nr_pages].len = *len; 2541 spd->partial[spd->nr_pages].offset = offset; 2542 spd->nr_pages++; 2543 2544 return false; 2545 } 2546 2547 static bool __splice_segment(struct page *page, unsigned int poff, 2548 unsigned int plen, unsigned int *off, 2549 unsigned int *len, 2550 struct splice_pipe_desc *spd, bool linear, 2551 struct sock *sk, 2552 struct pipe_inode_info *pipe) 2553 { 2554 if (!*len) 2555 return true; 2556 2557 /* skip this segment if already processed */ 2558 if (*off >= plen) { 2559 *off -= plen; 2560 return false; 2561 } 2562 2563 /* ignore any bits we already processed */ 2564 poff += *off; 2565 plen -= *off; 2566 *off = 0; 2567 2568 do { 2569 unsigned int flen = min(*len, plen); 2570 2571 if (spd_fill_page(spd, pipe, page, &flen, poff, 2572 linear, sk)) 2573 return true; 2574 poff += flen; 2575 plen -= flen; 2576 *len -= flen; 2577 } while (*len && plen); 2578 2579 return false; 2580 } 2581 2582 /* 2583 * Map linear and fragment data from the skb to spd. It reports true if the 2584 * pipe is full or if we already spliced the requested length. 2585 */ 2586 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2587 unsigned int *offset, unsigned int *len, 2588 struct splice_pipe_desc *spd, struct sock *sk) 2589 { 2590 int seg; 2591 struct sk_buff *iter; 2592 2593 /* map the linear part : 2594 * If skb->head_frag is set, this 'linear' part is backed by a 2595 * fragment, and if the head is not shared with any clones then 2596 * we can avoid a copy since we own the head portion of this page. 2597 */ 2598 if (__splice_segment(virt_to_page(skb->data), 2599 (unsigned long) skb->data & (PAGE_SIZE - 1), 2600 skb_headlen(skb), 2601 offset, len, spd, 2602 skb_head_is_locked(skb), 2603 sk, pipe)) 2604 return true; 2605 2606 /* 2607 * then map the fragments 2608 */ 2609 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2610 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2611 2612 if (__splice_segment(skb_frag_page(f), 2613 skb_frag_off(f), skb_frag_size(f), 2614 offset, len, spd, false, sk, pipe)) 2615 return true; 2616 } 2617 2618 skb_walk_frags(skb, iter) { 2619 if (*offset >= iter->len) { 2620 *offset -= iter->len; 2621 continue; 2622 } 2623 /* __skb_splice_bits() only fails if the output has no room 2624 * left, so no point in going over the frag_list for the error 2625 * case. 2626 */ 2627 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2628 return true; 2629 } 2630 2631 return false; 2632 } 2633 2634 /* 2635 * Map data from the skb to a pipe. Should handle both the linear part, 2636 * the fragments, and the frag list. 2637 */ 2638 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2639 struct pipe_inode_info *pipe, unsigned int tlen, 2640 unsigned int flags) 2641 { 2642 struct partial_page partial[MAX_SKB_FRAGS]; 2643 struct page *pages[MAX_SKB_FRAGS]; 2644 struct splice_pipe_desc spd = { 2645 .pages = pages, 2646 .partial = partial, 2647 .nr_pages_max = MAX_SKB_FRAGS, 2648 .ops = &nosteal_pipe_buf_ops, 2649 .spd_release = sock_spd_release, 2650 }; 2651 int ret = 0; 2652 2653 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2654 2655 if (spd.nr_pages) 2656 ret = splice_to_pipe(pipe, &spd); 2657 2658 return ret; 2659 } 2660 EXPORT_SYMBOL_GPL(skb_splice_bits); 2661 2662 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2663 struct kvec *vec, size_t num, size_t size) 2664 { 2665 struct socket *sock = sk->sk_socket; 2666 2667 if (!sock) 2668 return -EINVAL; 2669 return kernel_sendmsg(sock, msg, vec, num, size); 2670 } 2671 2672 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2673 size_t size, int flags) 2674 { 2675 struct socket *sock = sk->sk_socket; 2676 2677 if (!sock) 2678 return -EINVAL; 2679 return kernel_sendpage(sock, page, offset, size, flags); 2680 } 2681 2682 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2683 struct kvec *vec, size_t num, size_t size); 2684 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2685 size_t size, int flags); 2686 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2687 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2688 { 2689 unsigned int orig_len = len; 2690 struct sk_buff *head = skb; 2691 unsigned short fragidx; 2692 int slen, ret; 2693 2694 do_frag_list: 2695 2696 /* Deal with head data */ 2697 while (offset < skb_headlen(skb) && len) { 2698 struct kvec kv; 2699 struct msghdr msg; 2700 2701 slen = min_t(int, len, skb_headlen(skb) - offset); 2702 kv.iov_base = skb->data + offset; 2703 kv.iov_len = slen; 2704 memset(&msg, 0, sizeof(msg)); 2705 msg.msg_flags = MSG_DONTWAIT; 2706 2707 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2708 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2709 if (ret <= 0) 2710 goto error; 2711 2712 offset += ret; 2713 len -= ret; 2714 } 2715 2716 /* All the data was skb head? */ 2717 if (!len) 2718 goto out; 2719 2720 /* Make offset relative to start of frags */ 2721 offset -= skb_headlen(skb); 2722 2723 /* Find where we are in frag list */ 2724 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2725 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2726 2727 if (offset < skb_frag_size(frag)) 2728 break; 2729 2730 offset -= skb_frag_size(frag); 2731 } 2732 2733 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2734 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2735 2736 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2737 2738 while (slen) { 2739 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2740 sendpage_unlocked, sk, 2741 skb_frag_page(frag), 2742 skb_frag_off(frag) + offset, 2743 slen, MSG_DONTWAIT); 2744 if (ret <= 0) 2745 goto error; 2746 2747 len -= ret; 2748 offset += ret; 2749 slen -= ret; 2750 } 2751 2752 offset = 0; 2753 } 2754 2755 if (len) { 2756 /* Process any frag lists */ 2757 2758 if (skb == head) { 2759 if (skb_has_frag_list(skb)) { 2760 skb = skb_shinfo(skb)->frag_list; 2761 goto do_frag_list; 2762 } 2763 } else if (skb->next) { 2764 skb = skb->next; 2765 goto do_frag_list; 2766 } 2767 } 2768 2769 out: 2770 return orig_len - len; 2771 2772 error: 2773 return orig_len == len ? ret : orig_len - len; 2774 } 2775 2776 /* Send skb data on a socket. Socket must be locked. */ 2777 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2778 int len) 2779 { 2780 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2781 kernel_sendpage_locked); 2782 } 2783 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2784 2785 /* Send skb data on a socket. Socket must be unlocked. */ 2786 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2787 { 2788 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2789 sendpage_unlocked); 2790 } 2791 2792 /** 2793 * skb_store_bits - store bits from kernel buffer to skb 2794 * @skb: destination buffer 2795 * @offset: offset in destination 2796 * @from: source buffer 2797 * @len: number of bytes to copy 2798 * 2799 * Copy the specified number of bytes from the source buffer to the 2800 * destination skb. This function handles all the messy bits of 2801 * traversing fragment lists and such. 2802 */ 2803 2804 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2805 { 2806 int start = skb_headlen(skb); 2807 struct sk_buff *frag_iter; 2808 int i, copy; 2809 2810 if (offset > (int)skb->len - len) 2811 goto fault; 2812 2813 if ((copy = start - offset) > 0) { 2814 if (copy > len) 2815 copy = len; 2816 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2817 if ((len -= copy) == 0) 2818 return 0; 2819 offset += copy; 2820 from += copy; 2821 } 2822 2823 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2824 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2825 int end; 2826 2827 WARN_ON(start > offset + len); 2828 2829 end = start + skb_frag_size(frag); 2830 if ((copy = end - offset) > 0) { 2831 u32 p_off, p_len, copied; 2832 struct page *p; 2833 u8 *vaddr; 2834 2835 if (copy > len) 2836 copy = len; 2837 2838 skb_frag_foreach_page(frag, 2839 skb_frag_off(frag) + offset - start, 2840 copy, p, p_off, p_len, copied) { 2841 vaddr = kmap_atomic(p); 2842 memcpy(vaddr + p_off, from + copied, p_len); 2843 kunmap_atomic(vaddr); 2844 } 2845 2846 if ((len -= copy) == 0) 2847 return 0; 2848 offset += copy; 2849 from += copy; 2850 } 2851 start = end; 2852 } 2853 2854 skb_walk_frags(skb, frag_iter) { 2855 int end; 2856 2857 WARN_ON(start > offset + len); 2858 2859 end = start + frag_iter->len; 2860 if ((copy = end - offset) > 0) { 2861 if (copy > len) 2862 copy = len; 2863 if (skb_store_bits(frag_iter, offset - start, 2864 from, copy)) 2865 goto fault; 2866 if ((len -= copy) == 0) 2867 return 0; 2868 offset += copy; 2869 from += copy; 2870 } 2871 start = end; 2872 } 2873 if (!len) 2874 return 0; 2875 2876 fault: 2877 return -EFAULT; 2878 } 2879 EXPORT_SYMBOL(skb_store_bits); 2880 2881 /* Checksum skb data. */ 2882 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2883 __wsum csum, const struct skb_checksum_ops *ops) 2884 { 2885 int start = skb_headlen(skb); 2886 int i, copy = start - offset; 2887 struct sk_buff *frag_iter; 2888 int pos = 0; 2889 2890 /* Checksum header. */ 2891 if (copy > 0) { 2892 if (copy > len) 2893 copy = len; 2894 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2895 skb->data + offset, copy, csum); 2896 if ((len -= copy) == 0) 2897 return csum; 2898 offset += copy; 2899 pos = copy; 2900 } 2901 2902 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2903 int end; 2904 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2905 2906 WARN_ON(start > offset + len); 2907 2908 end = start + skb_frag_size(frag); 2909 if ((copy = end - offset) > 0) { 2910 u32 p_off, p_len, copied; 2911 struct page *p; 2912 __wsum csum2; 2913 u8 *vaddr; 2914 2915 if (copy > len) 2916 copy = len; 2917 2918 skb_frag_foreach_page(frag, 2919 skb_frag_off(frag) + offset - start, 2920 copy, p, p_off, p_len, copied) { 2921 vaddr = kmap_atomic(p); 2922 csum2 = INDIRECT_CALL_1(ops->update, 2923 csum_partial_ext, 2924 vaddr + p_off, p_len, 0); 2925 kunmap_atomic(vaddr); 2926 csum = INDIRECT_CALL_1(ops->combine, 2927 csum_block_add_ext, csum, 2928 csum2, pos, p_len); 2929 pos += p_len; 2930 } 2931 2932 if (!(len -= copy)) 2933 return csum; 2934 offset += copy; 2935 } 2936 start = end; 2937 } 2938 2939 skb_walk_frags(skb, frag_iter) { 2940 int end; 2941 2942 WARN_ON(start > offset + len); 2943 2944 end = start + frag_iter->len; 2945 if ((copy = end - offset) > 0) { 2946 __wsum csum2; 2947 if (copy > len) 2948 copy = len; 2949 csum2 = __skb_checksum(frag_iter, offset - start, 2950 copy, 0, ops); 2951 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2952 csum, csum2, pos, copy); 2953 if ((len -= copy) == 0) 2954 return csum; 2955 offset += copy; 2956 pos += copy; 2957 } 2958 start = end; 2959 } 2960 BUG_ON(len); 2961 2962 return csum; 2963 } 2964 EXPORT_SYMBOL(__skb_checksum); 2965 2966 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2967 int len, __wsum csum) 2968 { 2969 const struct skb_checksum_ops ops = { 2970 .update = csum_partial_ext, 2971 .combine = csum_block_add_ext, 2972 }; 2973 2974 return __skb_checksum(skb, offset, len, csum, &ops); 2975 } 2976 EXPORT_SYMBOL(skb_checksum); 2977 2978 /* Both of above in one bottle. */ 2979 2980 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2981 u8 *to, int len) 2982 { 2983 int start = skb_headlen(skb); 2984 int i, copy = start - offset; 2985 struct sk_buff *frag_iter; 2986 int pos = 0; 2987 __wsum csum = 0; 2988 2989 /* Copy header. */ 2990 if (copy > 0) { 2991 if (copy > len) 2992 copy = len; 2993 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2994 copy); 2995 if ((len -= copy) == 0) 2996 return csum; 2997 offset += copy; 2998 to += copy; 2999 pos = copy; 3000 } 3001 3002 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3003 int end; 3004 3005 WARN_ON(start > offset + len); 3006 3007 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3008 if ((copy = end - offset) > 0) { 3009 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3010 u32 p_off, p_len, copied; 3011 struct page *p; 3012 __wsum csum2; 3013 u8 *vaddr; 3014 3015 if (copy > len) 3016 copy = len; 3017 3018 skb_frag_foreach_page(frag, 3019 skb_frag_off(frag) + offset - start, 3020 copy, p, p_off, p_len, copied) { 3021 vaddr = kmap_atomic(p); 3022 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3023 to + copied, 3024 p_len); 3025 kunmap_atomic(vaddr); 3026 csum = csum_block_add(csum, csum2, pos); 3027 pos += p_len; 3028 } 3029 3030 if (!(len -= copy)) 3031 return csum; 3032 offset += copy; 3033 to += copy; 3034 } 3035 start = end; 3036 } 3037 3038 skb_walk_frags(skb, frag_iter) { 3039 __wsum csum2; 3040 int end; 3041 3042 WARN_ON(start > offset + len); 3043 3044 end = start + frag_iter->len; 3045 if ((copy = end - offset) > 0) { 3046 if (copy > len) 3047 copy = len; 3048 csum2 = skb_copy_and_csum_bits(frag_iter, 3049 offset - start, 3050 to, copy); 3051 csum = csum_block_add(csum, csum2, pos); 3052 if ((len -= copy) == 0) 3053 return csum; 3054 offset += copy; 3055 to += copy; 3056 pos += copy; 3057 } 3058 start = end; 3059 } 3060 BUG_ON(len); 3061 return csum; 3062 } 3063 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3064 3065 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3066 { 3067 __sum16 sum; 3068 3069 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3070 /* See comments in __skb_checksum_complete(). */ 3071 if (likely(!sum)) { 3072 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3073 !skb->csum_complete_sw) 3074 netdev_rx_csum_fault(skb->dev, skb); 3075 } 3076 if (!skb_shared(skb)) 3077 skb->csum_valid = !sum; 3078 return sum; 3079 } 3080 EXPORT_SYMBOL(__skb_checksum_complete_head); 3081 3082 /* This function assumes skb->csum already holds pseudo header's checksum, 3083 * which has been changed from the hardware checksum, for example, by 3084 * __skb_checksum_validate_complete(). And, the original skb->csum must 3085 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3086 * 3087 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3088 * zero. The new checksum is stored back into skb->csum unless the skb is 3089 * shared. 3090 */ 3091 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3092 { 3093 __wsum csum; 3094 __sum16 sum; 3095 3096 csum = skb_checksum(skb, 0, skb->len, 0); 3097 3098 sum = csum_fold(csum_add(skb->csum, csum)); 3099 /* This check is inverted, because we already knew the hardware 3100 * checksum is invalid before calling this function. So, if the 3101 * re-computed checksum is valid instead, then we have a mismatch 3102 * between the original skb->csum and skb_checksum(). This means either 3103 * the original hardware checksum is incorrect or we screw up skb->csum 3104 * when moving skb->data around. 3105 */ 3106 if (likely(!sum)) { 3107 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3108 !skb->csum_complete_sw) 3109 netdev_rx_csum_fault(skb->dev, skb); 3110 } 3111 3112 if (!skb_shared(skb)) { 3113 /* Save full packet checksum */ 3114 skb->csum = csum; 3115 skb->ip_summed = CHECKSUM_COMPLETE; 3116 skb->csum_complete_sw = 1; 3117 skb->csum_valid = !sum; 3118 } 3119 3120 return sum; 3121 } 3122 EXPORT_SYMBOL(__skb_checksum_complete); 3123 3124 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3125 { 3126 net_warn_ratelimited( 3127 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3128 __func__); 3129 return 0; 3130 } 3131 3132 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3133 int offset, int len) 3134 { 3135 net_warn_ratelimited( 3136 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3137 __func__); 3138 return 0; 3139 } 3140 3141 static const struct skb_checksum_ops default_crc32c_ops = { 3142 .update = warn_crc32c_csum_update, 3143 .combine = warn_crc32c_csum_combine, 3144 }; 3145 3146 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3147 &default_crc32c_ops; 3148 EXPORT_SYMBOL(crc32c_csum_stub); 3149 3150 /** 3151 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3152 * @from: source buffer 3153 * 3154 * Calculates the amount of linear headroom needed in the 'to' skb passed 3155 * into skb_zerocopy(). 3156 */ 3157 unsigned int 3158 skb_zerocopy_headlen(const struct sk_buff *from) 3159 { 3160 unsigned int hlen = 0; 3161 3162 if (!from->head_frag || 3163 skb_headlen(from) < L1_CACHE_BYTES || 3164 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3165 hlen = skb_headlen(from); 3166 if (!hlen) 3167 hlen = from->len; 3168 } 3169 3170 if (skb_has_frag_list(from)) 3171 hlen = from->len; 3172 3173 return hlen; 3174 } 3175 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3176 3177 /** 3178 * skb_zerocopy - Zero copy skb to skb 3179 * @to: destination buffer 3180 * @from: source buffer 3181 * @len: number of bytes to copy from source buffer 3182 * @hlen: size of linear headroom in destination buffer 3183 * 3184 * Copies up to `len` bytes from `from` to `to` by creating references 3185 * to the frags in the source buffer. 3186 * 3187 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3188 * headroom in the `to` buffer. 3189 * 3190 * Return value: 3191 * 0: everything is OK 3192 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3193 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3194 */ 3195 int 3196 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3197 { 3198 int i, j = 0; 3199 int plen = 0; /* length of skb->head fragment */ 3200 int ret; 3201 struct page *page; 3202 unsigned int offset; 3203 3204 BUG_ON(!from->head_frag && !hlen); 3205 3206 /* dont bother with small payloads */ 3207 if (len <= skb_tailroom(to)) 3208 return skb_copy_bits(from, 0, skb_put(to, len), len); 3209 3210 if (hlen) { 3211 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3212 if (unlikely(ret)) 3213 return ret; 3214 len -= hlen; 3215 } else { 3216 plen = min_t(int, skb_headlen(from), len); 3217 if (plen) { 3218 page = virt_to_head_page(from->head); 3219 offset = from->data - (unsigned char *)page_address(page); 3220 __skb_fill_page_desc(to, 0, page, offset, plen); 3221 get_page(page); 3222 j = 1; 3223 len -= plen; 3224 } 3225 } 3226 3227 skb_len_add(to, len + plen); 3228 3229 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3230 skb_tx_error(from); 3231 return -ENOMEM; 3232 } 3233 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3234 3235 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3236 int size; 3237 3238 if (!len) 3239 break; 3240 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3241 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3242 len); 3243 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3244 len -= size; 3245 skb_frag_ref(to, j); 3246 j++; 3247 } 3248 skb_shinfo(to)->nr_frags = j; 3249 3250 return 0; 3251 } 3252 EXPORT_SYMBOL_GPL(skb_zerocopy); 3253 3254 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3255 { 3256 __wsum csum; 3257 long csstart; 3258 3259 if (skb->ip_summed == CHECKSUM_PARTIAL) 3260 csstart = skb_checksum_start_offset(skb); 3261 else 3262 csstart = skb_headlen(skb); 3263 3264 BUG_ON(csstart > skb_headlen(skb)); 3265 3266 skb_copy_from_linear_data(skb, to, csstart); 3267 3268 csum = 0; 3269 if (csstart != skb->len) 3270 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3271 skb->len - csstart); 3272 3273 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3274 long csstuff = csstart + skb->csum_offset; 3275 3276 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3277 } 3278 } 3279 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3280 3281 /** 3282 * skb_dequeue - remove from the head of the queue 3283 * @list: list to dequeue from 3284 * 3285 * Remove the head of the list. The list lock is taken so the function 3286 * may be used safely with other locking list functions. The head item is 3287 * returned or %NULL if the list is empty. 3288 */ 3289 3290 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3291 { 3292 unsigned long flags; 3293 struct sk_buff *result; 3294 3295 spin_lock_irqsave(&list->lock, flags); 3296 result = __skb_dequeue(list); 3297 spin_unlock_irqrestore(&list->lock, flags); 3298 return result; 3299 } 3300 EXPORT_SYMBOL(skb_dequeue); 3301 3302 /** 3303 * skb_dequeue_tail - remove from the tail of the queue 3304 * @list: list to dequeue from 3305 * 3306 * Remove the tail of the list. The list lock is taken so the function 3307 * may be used safely with other locking list functions. The tail item is 3308 * returned or %NULL if the list is empty. 3309 */ 3310 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3311 { 3312 unsigned long flags; 3313 struct sk_buff *result; 3314 3315 spin_lock_irqsave(&list->lock, flags); 3316 result = __skb_dequeue_tail(list); 3317 spin_unlock_irqrestore(&list->lock, flags); 3318 return result; 3319 } 3320 EXPORT_SYMBOL(skb_dequeue_tail); 3321 3322 /** 3323 * skb_queue_purge - empty a list 3324 * @list: list to empty 3325 * 3326 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3327 * the list and one reference dropped. This function takes the list 3328 * lock and is atomic with respect to other list locking functions. 3329 */ 3330 void skb_queue_purge(struct sk_buff_head *list) 3331 { 3332 struct sk_buff *skb; 3333 while ((skb = skb_dequeue(list)) != NULL) 3334 kfree_skb(skb); 3335 } 3336 EXPORT_SYMBOL(skb_queue_purge); 3337 3338 /** 3339 * skb_rbtree_purge - empty a skb rbtree 3340 * @root: root of the rbtree to empty 3341 * Return value: the sum of truesizes of all purged skbs. 3342 * 3343 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3344 * the list and one reference dropped. This function does not take 3345 * any lock. Synchronization should be handled by the caller (e.g., TCP 3346 * out-of-order queue is protected by the socket lock). 3347 */ 3348 unsigned int skb_rbtree_purge(struct rb_root *root) 3349 { 3350 struct rb_node *p = rb_first(root); 3351 unsigned int sum = 0; 3352 3353 while (p) { 3354 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3355 3356 p = rb_next(p); 3357 rb_erase(&skb->rbnode, root); 3358 sum += skb->truesize; 3359 kfree_skb(skb); 3360 } 3361 return sum; 3362 } 3363 3364 /** 3365 * skb_queue_head - queue a buffer at the list head 3366 * @list: list to use 3367 * @newsk: buffer to queue 3368 * 3369 * Queue a buffer at the start of the list. This function takes the 3370 * list lock and can be used safely with other locking &sk_buff functions 3371 * safely. 3372 * 3373 * A buffer cannot be placed on two lists at the same time. 3374 */ 3375 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3376 { 3377 unsigned long flags; 3378 3379 spin_lock_irqsave(&list->lock, flags); 3380 __skb_queue_head(list, newsk); 3381 spin_unlock_irqrestore(&list->lock, flags); 3382 } 3383 EXPORT_SYMBOL(skb_queue_head); 3384 3385 /** 3386 * skb_queue_tail - queue a buffer at the list tail 3387 * @list: list to use 3388 * @newsk: buffer to queue 3389 * 3390 * Queue a buffer at the tail of the list. This function takes the 3391 * list lock and can be used safely with other locking &sk_buff functions 3392 * safely. 3393 * 3394 * A buffer cannot be placed on two lists at the same time. 3395 */ 3396 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3397 { 3398 unsigned long flags; 3399 3400 spin_lock_irqsave(&list->lock, flags); 3401 __skb_queue_tail(list, newsk); 3402 spin_unlock_irqrestore(&list->lock, flags); 3403 } 3404 EXPORT_SYMBOL(skb_queue_tail); 3405 3406 /** 3407 * skb_unlink - remove a buffer from a list 3408 * @skb: buffer to remove 3409 * @list: list to use 3410 * 3411 * Remove a packet from a list. The list locks are taken and this 3412 * function is atomic with respect to other list locked calls 3413 * 3414 * You must know what list the SKB is on. 3415 */ 3416 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3417 { 3418 unsigned long flags; 3419 3420 spin_lock_irqsave(&list->lock, flags); 3421 __skb_unlink(skb, list); 3422 spin_unlock_irqrestore(&list->lock, flags); 3423 } 3424 EXPORT_SYMBOL(skb_unlink); 3425 3426 /** 3427 * skb_append - append a buffer 3428 * @old: buffer to insert after 3429 * @newsk: buffer to insert 3430 * @list: list to use 3431 * 3432 * Place a packet after a given packet in a list. The list locks are taken 3433 * and this function is atomic with respect to other list locked calls. 3434 * A buffer cannot be placed on two lists at the same time. 3435 */ 3436 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3437 { 3438 unsigned long flags; 3439 3440 spin_lock_irqsave(&list->lock, flags); 3441 __skb_queue_after(list, old, newsk); 3442 spin_unlock_irqrestore(&list->lock, flags); 3443 } 3444 EXPORT_SYMBOL(skb_append); 3445 3446 static inline void skb_split_inside_header(struct sk_buff *skb, 3447 struct sk_buff* skb1, 3448 const u32 len, const int pos) 3449 { 3450 int i; 3451 3452 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3453 pos - len); 3454 /* And move data appendix as is. */ 3455 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3456 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3457 3458 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3459 skb_shinfo(skb)->nr_frags = 0; 3460 skb1->data_len = skb->data_len; 3461 skb1->len += skb1->data_len; 3462 skb->data_len = 0; 3463 skb->len = len; 3464 skb_set_tail_pointer(skb, len); 3465 } 3466 3467 static inline void skb_split_no_header(struct sk_buff *skb, 3468 struct sk_buff* skb1, 3469 const u32 len, int pos) 3470 { 3471 int i, k = 0; 3472 const int nfrags = skb_shinfo(skb)->nr_frags; 3473 3474 skb_shinfo(skb)->nr_frags = 0; 3475 skb1->len = skb1->data_len = skb->len - len; 3476 skb->len = len; 3477 skb->data_len = len - pos; 3478 3479 for (i = 0; i < nfrags; i++) { 3480 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3481 3482 if (pos + size > len) { 3483 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3484 3485 if (pos < len) { 3486 /* Split frag. 3487 * We have two variants in this case: 3488 * 1. Move all the frag to the second 3489 * part, if it is possible. F.e. 3490 * this approach is mandatory for TUX, 3491 * where splitting is expensive. 3492 * 2. Split is accurately. We make this. 3493 */ 3494 skb_frag_ref(skb, i); 3495 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3496 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3497 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3498 skb_shinfo(skb)->nr_frags++; 3499 } 3500 k++; 3501 } else 3502 skb_shinfo(skb)->nr_frags++; 3503 pos += size; 3504 } 3505 skb_shinfo(skb1)->nr_frags = k; 3506 } 3507 3508 /** 3509 * skb_split - Split fragmented skb to two parts at length len. 3510 * @skb: the buffer to split 3511 * @skb1: the buffer to receive the second part 3512 * @len: new length for skb 3513 */ 3514 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3515 { 3516 int pos = skb_headlen(skb); 3517 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3518 3519 skb_zcopy_downgrade_managed(skb); 3520 3521 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3522 skb_zerocopy_clone(skb1, skb, 0); 3523 if (len < pos) /* Split line is inside header. */ 3524 skb_split_inside_header(skb, skb1, len, pos); 3525 else /* Second chunk has no header, nothing to copy. */ 3526 skb_split_no_header(skb, skb1, len, pos); 3527 } 3528 EXPORT_SYMBOL(skb_split); 3529 3530 /* Shifting from/to a cloned skb is a no-go. 3531 * 3532 * Caller cannot keep skb_shinfo related pointers past calling here! 3533 */ 3534 static int skb_prepare_for_shift(struct sk_buff *skb) 3535 { 3536 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3537 } 3538 3539 /** 3540 * skb_shift - Shifts paged data partially from skb to another 3541 * @tgt: buffer into which tail data gets added 3542 * @skb: buffer from which the paged data comes from 3543 * @shiftlen: shift up to this many bytes 3544 * 3545 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3546 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3547 * It's up to caller to free skb if everything was shifted. 3548 * 3549 * If @tgt runs out of frags, the whole operation is aborted. 3550 * 3551 * Skb cannot include anything else but paged data while tgt is allowed 3552 * to have non-paged data as well. 3553 * 3554 * TODO: full sized shift could be optimized but that would need 3555 * specialized skb free'er to handle frags without up-to-date nr_frags. 3556 */ 3557 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3558 { 3559 int from, to, merge, todo; 3560 skb_frag_t *fragfrom, *fragto; 3561 3562 BUG_ON(shiftlen > skb->len); 3563 3564 if (skb_headlen(skb)) 3565 return 0; 3566 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3567 return 0; 3568 3569 todo = shiftlen; 3570 from = 0; 3571 to = skb_shinfo(tgt)->nr_frags; 3572 fragfrom = &skb_shinfo(skb)->frags[from]; 3573 3574 /* Actual merge is delayed until the point when we know we can 3575 * commit all, so that we don't have to undo partial changes 3576 */ 3577 if (!to || 3578 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3579 skb_frag_off(fragfrom))) { 3580 merge = -1; 3581 } else { 3582 merge = to - 1; 3583 3584 todo -= skb_frag_size(fragfrom); 3585 if (todo < 0) { 3586 if (skb_prepare_for_shift(skb) || 3587 skb_prepare_for_shift(tgt)) 3588 return 0; 3589 3590 /* All previous frag pointers might be stale! */ 3591 fragfrom = &skb_shinfo(skb)->frags[from]; 3592 fragto = &skb_shinfo(tgt)->frags[merge]; 3593 3594 skb_frag_size_add(fragto, shiftlen); 3595 skb_frag_size_sub(fragfrom, shiftlen); 3596 skb_frag_off_add(fragfrom, shiftlen); 3597 3598 goto onlymerged; 3599 } 3600 3601 from++; 3602 } 3603 3604 /* Skip full, not-fitting skb to avoid expensive operations */ 3605 if ((shiftlen == skb->len) && 3606 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3607 return 0; 3608 3609 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3610 return 0; 3611 3612 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3613 if (to == MAX_SKB_FRAGS) 3614 return 0; 3615 3616 fragfrom = &skb_shinfo(skb)->frags[from]; 3617 fragto = &skb_shinfo(tgt)->frags[to]; 3618 3619 if (todo >= skb_frag_size(fragfrom)) { 3620 *fragto = *fragfrom; 3621 todo -= skb_frag_size(fragfrom); 3622 from++; 3623 to++; 3624 3625 } else { 3626 __skb_frag_ref(fragfrom); 3627 skb_frag_page_copy(fragto, fragfrom); 3628 skb_frag_off_copy(fragto, fragfrom); 3629 skb_frag_size_set(fragto, todo); 3630 3631 skb_frag_off_add(fragfrom, todo); 3632 skb_frag_size_sub(fragfrom, todo); 3633 todo = 0; 3634 3635 to++; 3636 break; 3637 } 3638 } 3639 3640 /* Ready to "commit" this state change to tgt */ 3641 skb_shinfo(tgt)->nr_frags = to; 3642 3643 if (merge >= 0) { 3644 fragfrom = &skb_shinfo(skb)->frags[0]; 3645 fragto = &skb_shinfo(tgt)->frags[merge]; 3646 3647 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3648 __skb_frag_unref(fragfrom, skb->pp_recycle); 3649 } 3650 3651 /* Reposition in the original skb */ 3652 to = 0; 3653 while (from < skb_shinfo(skb)->nr_frags) 3654 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3655 skb_shinfo(skb)->nr_frags = to; 3656 3657 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3658 3659 onlymerged: 3660 /* Most likely the tgt won't ever need its checksum anymore, skb on 3661 * the other hand might need it if it needs to be resent 3662 */ 3663 tgt->ip_summed = CHECKSUM_PARTIAL; 3664 skb->ip_summed = CHECKSUM_PARTIAL; 3665 3666 skb_len_add(skb, -shiftlen); 3667 skb_len_add(tgt, shiftlen); 3668 3669 return shiftlen; 3670 } 3671 3672 /** 3673 * skb_prepare_seq_read - Prepare a sequential read of skb data 3674 * @skb: the buffer to read 3675 * @from: lower offset of data to be read 3676 * @to: upper offset of data to be read 3677 * @st: state variable 3678 * 3679 * Initializes the specified state variable. Must be called before 3680 * invoking skb_seq_read() for the first time. 3681 */ 3682 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3683 unsigned int to, struct skb_seq_state *st) 3684 { 3685 st->lower_offset = from; 3686 st->upper_offset = to; 3687 st->root_skb = st->cur_skb = skb; 3688 st->frag_idx = st->stepped_offset = 0; 3689 st->frag_data = NULL; 3690 st->frag_off = 0; 3691 } 3692 EXPORT_SYMBOL(skb_prepare_seq_read); 3693 3694 /** 3695 * skb_seq_read - Sequentially read skb data 3696 * @consumed: number of bytes consumed by the caller so far 3697 * @data: destination pointer for data to be returned 3698 * @st: state variable 3699 * 3700 * Reads a block of skb data at @consumed relative to the 3701 * lower offset specified to skb_prepare_seq_read(). Assigns 3702 * the head of the data block to @data and returns the length 3703 * of the block or 0 if the end of the skb data or the upper 3704 * offset has been reached. 3705 * 3706 * The caller is not required to consume all of the data 3707 * returned, i.e. @consumed is typically set to the number 3708 * of bytes already consumed and the next call to 3709 * skb_seq_read() will return the remaining part of the block. 3710 * 3711 * Note 1: The size of each block of data returned can be arbitrary, 3712 * this limitation is the cost for zerocopy sequential 3713 * reads of potentially non linear data. 3714 * 3715 * Note 2: Fragment lists within fragments are not implemented 3716 * at the moment, state->root_skb could be replaced with 3717 * a stack for this purpose. 3718 */ 3719 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3720 struct skb_seq_state *st) 3721 { 3722 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3723 skb_frag_t *frag; 3724 3725 if (unlikely(abs_offset >= st->upper_offset)) { 3726 if (st->frag_data) { 3727 kunmap_atomic(st->frag_data); 3728 st->frag_data = NULL; 3729 } 3730 return 0; 3731 } 3732 3733 next_skb: 3734 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3735 3736 if (abs_offset < block_limit && !st->frag_data) { 3737 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3738 return block_limit - abs_offset; 3739 } 3740 3741 if (st->frag_idx == 0 && !st->frag_data) 3742 st->stepped_offset += skb_headlen(st->cur_skb); 3743 3744 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3745 unsigned int pg_idx, pg_off, pg_sz; 3746 3747 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3748 3749 pg_idx = 0; 3750 pg_off = skb_frag_off(frag); 3751 pg_sz = skb_frag_size(frag); 3752 3753 if (skb_frag_must_loop(skb_frag_page(frag))) { 3754 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3755 pg_off = offset_in_page(pg_off + st->frag_off); 3756 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3757 PAGE_SIZE - pg_off); 3758 } 3759 3760 block_limit = pg_sz + st->stepped_offset; 3761 if (abs_offset < block_limit) { 3762 if (!st->frag_data) 3763 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3764 3765 *data = (u8 *)st->frag_data + pg_off + 3766 (abs_offset - st->stepped_offset); 3767 3768 return block_limit - abs_offset; 3769 } 3770 3771 if (st->frag_data) { 3772 kunmap_atomic(st->frag_data); 3773 st->frag_data = NULL; 3774 } 3775 3776 st->stepped_offset += pg_sz; 3777 st->frag_off += pg_sz; 3778 if (st->frag_off == skb_frag_size(frag)) { 3779 st->frag_off = 0; 3780 st->frag_idx++; 3781 } 3782 } 3783 3784 if (st->frag_data) { 3785 kunmap_atomic(st->frag_data); 3786 st->frag_data = NULL; 3787 } 3788 3789 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3790 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3791 st->frag_idx = 0; 3792 goto next_skb; 3793 } else if (st->cur_skb->next) { 3794 st->cur_skb = st->cur_skb->next; 3795 st->frag_idx = 0; 3796 goto next_skb; 3797 } 3798 3799 return 0; 3800 } 3801 EXPORT_SYMBOL(skb_seq_read); 3802 3803 /** 3804 * skb_abort_seq_read - Abort a sequential read of skb data 3805 * @st: state variable 3806 * 3807 * Must be called if skb_seq_read() was not called until it 3808 * returned 0. 3809 */ 3810 void skb_abort_seq_read(struct skb_seq_state *st) 3811 { 3812 if (st->frag_data) 3813 kunmap_atomic(st->frag_data); 3814 } 3815 EXPORT_SYMBOL(skb_abort_seq_read); 3816 3817 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3818 3819 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3820 struct ts_config *conf, 3821 struct ts_state *state) 3822 { 3823 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3824 } 3825 3826 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3827 { 3828 skb_abort_seq_read(TS_SKB_CB(state)); 3829 } 3830 3831 /** 3832 * skb_find_text - Find a text pattern in skb data 3833 * @skb: the buffer to look in 3834 * @from: search offset 3835 * @to: search limit 3836 * @config: textsearch configuration 3837 * 3838 * Finds a pattern in the skb data according to the specified 3839 * textsearch configuration. Use textsearch_next() to retrieve 3840 * subsequent occurrences of the pattern. Returns the offset 3841 * to the first occurrence or UINT_MAX if no match was found. 3842 */ 3843 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3844 unsigned int to, struct ts_config *config) 3845 { 3846 struct ts_state state; 3847 unsigned int ret; 3848 3849 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3850 3851 config->get_next_block = skb_ts_get_next_block; 3852 config->finish = skb_ts_finish; 3853 3854 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3855 3856 ret = textsearch_find(config, &state); 3857 return (ret <= to - from ? ret : UINT_MAX); 3858 } 3859 EXPORT_SYMBOL(skb_find_text); 3860 3861 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3862 int offset, size_t size) 3863 { 3864 int i = skb_shinfo(skb)->nr_frags; 3865 3866 if (skb_can_coalesce(skb, i, page, offset)) { 3867 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3868 } else if (i < MAX_SKB_FRAGS) { 3869 skb_zcopy_downgrade_managed(skb); 3870 get_page(page); 3871 skb_fill_page_desc(skb, i, page, offset, size); 3872 } else { 3873 return -EMSGSIZE; 3874 } 3875 3876 return 0; 3877 } 3878 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3879 3880 /** 3881 * skb_pull_rcsum - pull skb and update receive checksum 3882 * @skb: buffer to update 3883 * @len: length of data pulled 3884 * 3885 * This function performs an skb_pull on the packet and updates 3886 * the CHECKSUM_COMPLETE checksum. It should be used on 3887 * receive path processing instead of skb_pull unless you know 3888 * that the checksum difference is zero (e.g., a valid IP header) 3889 * or you are setting ip_summed to CHECKSUM_NONE. 3890 */ 3891 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3892 { 3893 unsigned char *data = skb->data; 3894 3895 BUG_ON(len > skb->len); 3896 __skb_pull(skb, len); 3897 skb_postpull_rcsum(skb, data, len); 3898 return skb->data; 3899 } 3900 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3901 3902 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3903 { 3904 skb_frag_t head_frag; 3905 struct page *page; 3906 3907 page = virt_to_head_page(frag_skb->head); 3908 __skb_frag_set_page(&head_frag, page); 3909 skb_frag_off_set(&head_frag, frag_skb->data - 3910 (unsigned char *)page_address(page)); 3911 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3912 return head_frag; 3913 } 3914 3915 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3916 netdev_features_t features, 3917 unsigned int offset) 3918 { 3919 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3920 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3921 unsigned int delta_truesize = 0; 3922 unsigned int delta_len = 0; 3923 struct sk_buff *tail = NULL; 3924 struct sk_buff *nskb, *tmp; 3925 int len_diff, err; 3926 3927 skb_push(skb, -skb_network_offset(skb) + offset); 3928 3929 skb_shinfo(skb)->frag_list = NULL; 3930 3931 do { 3932 nskb = list_skb; 3933 list_skb = list_skb->next; 3934 3935 err = 0; 3936 delta_truesize += nskb->truesize; 3937 if (skb_shared(nskb)) { 3938 tmp = skb_clone(nskb, GFP_ATOMIC); 3939 if (tmp) { 3940 consume_skb(nskb); 3941 nskb = tmp; 3942 err = skb_unclone(nskb, GFP_ATOMIC); 3943 } else { 3944 err = -ENOMEM; 3945 } 3946 } 3947 3948 if (!tail) 3949 skb->next = nskb; 3950 else 3951 tail->next = nskb; 3952 3953 if (unlikely(err)) { 3954 nskb->next = list_skb; 3955 goto err_linearize; 3956 } 3957 3958 tail = nskb; 3959 3960 delta_len += nskb->len; 3961 3962 skb_push(nskb, -skb_network_offset(nskb) + offset); 3963 3964 skb_release_head_state(nskb); 3965 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 3966 __copy_skb_header(nskb, skb); 3967 3968 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3969 nskb->transport_header += len_diff; 3970 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3971 nskb->data - tnl_hlen, 3972 offset + tnl_hlen); 3973 3974 if (skb_needs_linearize(nskb, features) && 3975 __skb_linearize(nskb)) 3976 goto err_linearize; 3977 3978 } while (list_skb); 3979 3980 skb->truesize = skb->truesize - delta_truesize; 3981 skb->data_len = skb->data_len - delta_len; 3982 skb->len = skb->len - delta_len; 3983 3984 skb_gso_reset(skb); 3985 3986 skb->prev = tail; 3987 3988 if (skb_needs_linearize(skb, features) && 3989 __skb_linearize(skb)) 3990 goto err_linearize; 3991 3992 skb_get(skb); 3993 3994 return skb; 3995 3996 err_linearize: 3997 kfree_skb_list(skb->next); 3998 skb->next = NULL; 3999 return ERR_PTR(-ENOMEM); 4000 } 4001 EXPORT_SYMBOL_GPL(skb_segment_list); 4002 4003 /** 4004 * skb_segment - Perform protocol segmentation on skb. 4005 * @head_skb: buffer to segment 4006 * @features: features for the output path (see dev->features) 4007 * 4008 * This function performs segmentation on the given skb. It returns 4009 * a pointer to the first in a list of new skbs for the segments. 4010 * In case of error it returns ERR_PTR(err). 4011 */ 4012 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4013 netdev_features_t features) 4014 { 4015 struct sk_buff *segs = NULL; 4016 struct sk_buff *tail = NULL; 4017 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4018 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 4019 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4020 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4021 struct sk_buff *frag_skb = head_skb; 4022 unsigned int offset = doffset; 4023 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4024 unsigned int partial_segs = 0; 4025 unsigned int headroom; 4026 unsigned int len = head_skb->len; 4027 __be16 proto; 4028 bool csum, sg; 4029 int nfrags = skb_shinfo(head_skb)->nr_frags; 4030 int err = -ENOMEM; 4031 int i = 0; 4032 int pos; 4033 4034 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 4035 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 4036 /* gso_size is untrusted, and we have a frag_list with a linear 4037 * non head_frag head. 4038 * 4039 * (we assume checking the first list_skb member suffices; 4040 * i.e if either of the list_skb members have non head_frag 4041 * head, then the first one has too). 4042 * 4043 * If head_skb's headlen does not fit requested gso_size, it 4044 * means that the frag_list members do NOT terminate on exact 4045 * gso_size boundaries. Hence we cannot perform skb_frag_t page 4046 * sharing. Therefore we must fallback to copying the frag_list 4047 * skbs; we do so by disabling SG. 4048 */ 4049 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 4050 features &= ~NETIF_F_SG; 4051 } 4052 4053 __skb_push(head_skb, doffset); 4054 proto = skb_network_protocol(head_skb, NULL); 4055 if (unlikely(!proto)) 4056 return ERR_PTR(-EINVAL); 4057 4058 sg = !!(features & NETIF_F_SG); 4059 csum = !!can_checksum_protocol(features, proto); 4060 4061 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4062 if (!(features & NETIF_F_GSO_PARTIAL)) { 4063 struct sk_buff *iter; 4064 unsigned int frag_len; 4065 4066 if (!list_skb || 4067 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4068 goto normal; 4069 4070 /* If we get here then all the required 4071 * GSO features except frag_list are supported. 4072 * Try to split the SKB to multiple GSO SKBs 4073 * with no frag_list. 4074 * Currently we can do that only when the buffers don't 4075 * have a linear part and all the buffers except 4076 * the last are of the same length. 4077 */ 4078 frag_len = list_skb->len; 4079 skb_walk_frags(head_skb, iter) { 4080 if (frag_len != iter->len && iter->next) 4081 goto normal; 4082 if (skb_headlen(iter) && !iter->head_frag) 4083 goto normal; 4084 4085 len -= iter->len; 4086 } 4087 4088 if (len != frag_len) 4089 goto normal; 4090 } 4091 4092 /* GSO partial only requires that we trim off any excess that 4093 * doesn't fit into an MSS sized block, so take care of that 4094 * now. 4095 */ 4096 partial_segs = len / mss; 4097 if (partial_segs > 1) 4098 mss *= partial_segs; 4099 else 4100 partial_segs = 0; 4101 } 4102 4103 normal: 4104 headroom = skb_headroom(head_skb); 4105 pos = skb_headlen(head_skb); 4106 4107 do { 4108 struct sk_buff *nskb; 4109 skb_frag_t *nskb_frag; 4110 int hsize; 4111 int size; 4112 4113 if (unlikely(mss == GSO_BY_FRAGS)) { 4114 len = list_skb->len; 4115 } else { 4116 len = head_skb->len - offset; 4117 if (len > mss) 4118 len = mss; 4119 } 4120 4121 hsize = skb_headlen(head_skb) - offset; 4122 4123 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4124 (skb_headlen(list_skb) == len || sg)) { 4125 BUG_ON(skb_headlen(list_skb) > len); 4126 4127 i = 0; 4128 nfrags = skb_shinfo(list_skb)->nr_frags; 4129 frag = skb_shinfo(list_skb)->frags; 4130 frag_skb = list_skb; 4131 pos += skb_headlen(list_skb); 4132 4133 while (pos < offset + len) { 4134 BUG_ON(i >= nfrags); 4135 4136 size = skb_frag_size(frag); 4137 if (pos + size > offset + len) 4138 break; 4139 4140 i++; 4141 pos += size; 4142 frag++; 4143 } 4144 4145 nskb = skb_clone(list_skb, GFP_ATOMIC); 4146 list_skb = list_skb->next; 4147 4148 if (unlikely(!nskb)) 4149 goto err; 4150 4151 if (unlikely(pskb_trim(nskb, len))) { 4152 kfree_skb(nskb); 4153 goto err; 4154 } 4155 4156 hsize = skb_end_offset(nskb); 4157 if (skb_cow_head(nskb, doffset + headroom)) { 4158 kfree_skb(nskb); 4159 goto err; 4160 } 4161 4162 nskb->truesize += skb_end_offset(nskb) - hsize; 4163 skb_release_head_state(nskb); 4164 __skb_push(nskb, doffset); 4165 } else { 4166 if (hsize < 0) 4167 hsize = 0; 4168 if (hsize > len || !sg) 4169 hsize = len; 4170 4171 nskb = __alloc_skb(hsize + doffset + headroom, 4172 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4173 NUMA_NO_NODE); 4174 4175 if (unlikely(!nskb)) 4176 goto err; 4177 4178 skb_reserve(nskb, headroom); 4179 __skb_put(nskb, doffset); 4180 } 4181 4182 if (segs) 4183 tail->next = nskb; 4184 else 4185 segs = nskb; 4186 tail = nskb; 4187 4188 __copy_skb_header(nskb, head_skb); 4189 4190 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4191 skb_reset_mac_len(nskb); 4192 4193 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4194 nskb->data - tnl_hlen, 4195 doffset + tnl_hlen); 4196 4197 if (nskb->len == len + doffset) 4198 goto perform_csum_check; 4199 4200 if (!sg) { 4201 if (!csum) { 4202 if (!nskb->remcsum_offload) 4203 nskb->ip_summed = CHECKSUM_NONE; 4204 SKB_GSO_CB(nskb)->csum = 4205 skb_copy_and_csum_bits(head_skb, offset, 4206 skb_put(nskb, 4207 len), 4208 len); 4209 SKB_GSO_CB(nskb)->csum_start = 4210 skb_headroom(nskb) + doffset; 4211 } else { 4212 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4213 goto err; 4214 } 4215 continue; 4216 } 4217 4218 nskb_frag = skb_shinfo(nskb)->frags; 4219 4220 skb_copy_from_linear_data_offset(head_skb, offset, 4221 skb_put(nskb, hsize), hsize); 4222 4223 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4224 SKBFL_SHARED_FRAG; 4225 4226 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4227 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4228 goto err; 4229 4230 while (pos < offset + len) { 4231 if (i >= nfrags) { 4232 i = 0; 4233 nfrags = skb_shinfo(list_skb)->nr_frags; 4234 frag = skb_shinfo(list_skb)->frags; 4235 frag_skb = list_skb; 4236 if (!skb_headlen(list_skb)) { 4237 BUG_ON(!nfrags); 4238 } else { 4239 BUG_ON(!list_skb->head_frag); 4240 4241 /* to make room for head_frag. */ 4242 i--; 4243 frag--; 4244 } 4245 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4246 skb_zerocopy_clone(nskb, frag_skb, 4247 GFP_ATOMIC)) 4248 goto err; 4249 4250 list_skb = list_skb->next; 4251 } 4252 4253 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4254 MAX_SKB_FRAGS)) { 4255 net_warn_ratelimited( 4256 "skb_segment: too many frags: %u %u\n", 4257 pos, mss); 4258 err = -EINVAL; 4259 goto err; 4260 } 4261 4262 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4263 __skb_frag_ref(nskb_frag); 4264 size = skb_frag_size(nskb_frag); 4265 4266 if (pos < offset) { 4267 skb_frag_off_add(nskb_frag, offset - pos); 4268 skb_frag_size_sub(nskb_frag, offset - pos); 4269 } 4270 4271 skb_shinfo(nskb)->nr_frags++; 4272 4273 if (pos + size <= offset + len) { 4274 i++; 4275 frag++; 4276 pos += size; 4277 } else { 4278 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4279 goto skip_fraglist; 4280 } 4281 4282 nskb_frag++; 4283 } 4284 4285 skip_fraglist: 4286 nskb->data_len = len - hsize; 4287 nskb->len += nskb->data_len; 4288 nskb->truesize += nskb->data_len; 4289 4290 perform_csum_check: 4291 if (!csum) { 4292 if (skb_has_shared_frag(nskb) && 4293 __skb_linearize(nskb)) 4294 goto err; 4295 4296 if (!nskb->remcsum_offload) 4297 nskb->ip_summed = CHECKSUM_NONE; 4298 SKB_GSO_CB(nskb)->csum = 4299 skb_checksum(nskb, doffset, 4300 nskb->len - doffset, 0); 4301 SKB_GSO_CB(nskb)->csum_start = 4302 skb_headroom(nskb) + doffset; 4303 } 4304 } while ((offset += len) < head_skb->len); 4305 4306 /* Some callers want to get the end of the list. 4307 * Put it in segs->prev to avoid walking the list. 4308 * (see validate_xmit_skb_list() for example) 4309 */ 4310 segs->prev = tail; 4311 4312 if (partial_segs) { 4313 struct sk_buff *iter; 4314 int type = skb_shinfo(head_skb)->gso_type; 4315 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4316 4317 /* Update type to add partial and then remove dodgy if set */ 4318 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4319 type &= ~SKB_GSO_DODGY; 4320 4321 /* Update GSO info and prepare to start updating headers on 4322 * our way back down the stack of protocols. 4323 */ 4324 for (iter = segs; iter; iter = iter->next) { 4325 skb_shinfo(iter)->gso_size = gso_size; 4326 skb_shinfo(iter)->gso_segs = partial_segs; 4327 skb_shinfo(iter)->gso_type = type; 4328 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4329 } 4330 4331 if (tail->len - doffset <= gso_size) 4332 skb_shinfo(tail)->gso_size = 0; 4333 else if (tail != segs) 4334 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4335 } 4336 4337 /* Following permits correct backpressure, for protocols 4338 * using skb_set_owner_w(). 4339 * Idea is to tranfert ownership from head_skb to last segment. 4340 */ 4341 if (head_skb->destructor == sock_wfree) { 4342 swap(tail->truesize, head_skb->truesize); 4343 swap(tail->destructor, head_skb->destructor); 4344 swap(tail->sk, head_skb->sk); 4345 } 4346 return segs; 4347 4348 err: 4349 kfree_skb_list(segs); 4350 return ERR_PTR(err); 4351 } 4352 EXPORT_SYMBOL_GPL(skb_segment); 4353 4354 #ifdef CONFIG_SKB_EXTENSIONS 4355 #define SKB_EXT_ALIGN_VALUE 8 4356 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4357 4358 static const u8 skb_ext_type_len[] = { 4359 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4360 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4361 #endif 4362 #ifdef CONFIG_XFRM 4363 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4364 #endif 4365 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4366 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4367 #endif 4368 #if IS_ENABLED(CONFIG_MPTCP) 4369 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4370 #endif 4371 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4372 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4373 #endif 4374 }; 4375 4376 static __always_inline unsigned int skb_ext_total_length(void) 4377 { 4378 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4379 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4380 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4381 #endif 4382 #ifdef CONFIG_XFRM 4383 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4384 #endif 4385 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4386 skb_ext_type_len[TC_SKB_EXT] + 4387 #endif 4388 #if IS_ENABLED(CONFIG_MPTCP) 4389 skb_ext_type_len[SKB_EXT_MPTCP] + 4390 #endif 4391 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4392 skb_ext_type_len[SKB_EXT_MCTP] + 4393 #endif 4394 0; 4395 } 4396 4397 static void skb_extensions_init(void) 4398 { 4399 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4400 BUILD_BUG_ON(skb_ext_total_length() > 255); 4401 4402 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4403 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4404 0, 4405 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4406 NULL); 4407 } 4408 #else 4409 static void skb_extensions_init(void) {} 4410 #endif 4411 4412 void __init skb_init(void) 4413 { 4414 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4415 sizeof(struct sk_buff), 4416 0, 4417 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4418 offsetof(struct sk_buff, cb), 4419 sizeof_field(struct sk_buff, cb), 4420 NULL); 4421 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4422 sizeof(struct sk_buff_fclones), 4423 0, 4424 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4425 NULL); 4426 skb_extensions_init(); 4427 } 4428 4429 static int 4430 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4431 unsigned int recursion_level) 4432 { 4433 int start = skb_headlen(skb); 4434 int i, copy = start - offset; 4435 struct sk_buff *frag_iter; 4436 int elt = 0; 4437 4438 if (unlikely(recursion_level >= 24)) 4439 return -EMSGSIZE; 4440 4441 if (copy > 0) { 4442 if (copy > len) 4443 copy = len; 4444 sg_set_buf(sg, skb->data + offset, copy); 4445 elt++; 4446 if ((len -= copy) == 0) 4447 return elt; 4448 offset += copy; 4449 } 4450 4451 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4452 int end; 4453 4454 WARN_ON(start > offset + len); 4455 4456 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4457 if ((copy = end - offset) > 0) { 4458 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4459 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4460 return -EMSGSIZE; 4461 4462 if (copy > len) 4463 copy = len; 4464 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4465 skb_frag_off(frag) + offset - start); 4466 elt++; 4467 if (!(len -= copy)) 4468 return elt; 4469 offset += copy; 4470 } 4471 start = end; 4472 } 4473 4474 skb_walk_frags(skb, frag_iter) { 4475 int end, ret; 4476 4477 WARN_ON(start > offset + len); 4478 4479 end = start + frag_iter->len; 4480 if ((copy = end - offset) > 0) { 4481 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4482 return -EMSGSIZE; 4483 4484 if (copy > len) 4485 copy = len; 4486 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4487 copy, recursion_level + 1); 4488 if (unlikely(ret < 0)) 4489 return ret; 4490 elt += ret; 4491 if ((len -= copy) == 0) 4492 return elt; 4493 offset += copy; 4494 } 4495 start = end; 4496 } 4497 BUG_ON(len); 4498 return elt; 4499 } 4500 4501 /** 4502 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4503 * @skb: Socket buffer containing the buffers to be mapped 4504 * @sg: The scatter-gather list to map into 4505 * @offset: The offset into the buffer's contents to start mapping 4506 * @len: Length of buffer space to be mapped 4507 * 4508 * Fill the specified scatter-gather list with mappings/pointers into a 4509 * region of the buffer space attached to a socket buffer. Returns either 4510 * the number of scatterlist items used, or -EMSGSIZE if the contents 4511 * could not fit. 4512 */ 4513 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4514 { 4515 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4516 4517 if (nsg <= 0) 4518 return nsg; 4519 4520 sg_mark_end(&sg[nsg - 1]); 4521 4522 return nsg; 4523 } 4524 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4525 4526 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4527 * sglist without mark the sg which contain last skb data as the end. 4528 * So the caller can mannipulate sg list as will when padding new data after 4529 * the first call without calling sg_unmark_end to expend sg list. 4530 * 4531 * Scenario to use skb_to_sgvec_nomark: 4532 * 1. sg_init_table 4533 * 2. skb_to_sgvec_nomark(payload1) 4534 * 3. skb_to_sgvec_nomark(payload2) 4535 * 4536 * This is equivalent to: 4537 * 1. sg_init_table 4538 * 2. skb_to_sgvec(payload1) 4539 * 3. sg_unmark_end 4540 * 4. skb_to_sgvec(payload2) 4541 * 4542 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4543 * is more preferable. 4544 */ 4545 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4546 int offset, int len) 4547 { 4548 return __skb_to_sgvec(skb, sg, offset, len, 0); 4549 } 4550 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4551 4552 4553 4554 /** 4555 * skb_cow_data - Check that a socket buffer's data buffers are writable 4556 * @skb: The socket buffer to check. 4557 * @tailbits: Amount of trailing space to be added 4558 * @trailer: Returned pointer to the skb where the @tailbits space begins 4559 * 4560 * Make sure that the data buffers attached to a socket buffer are 4561 * writable. If they are not, private copies are made of the data buffers 4562 * and the socket buffer is set to use these instead. 4563 * 4564 * If @tailbits is given, make sure that there is space to write @tailbits 4565 * bytes of data beyond current end of socket buffer. @trailer will be 4566 * set to point to the skb in which this space begins. 4567 * 4568 * The number of scatterlist elements required to completely map the 4569 * COW'd and extended socket buffer will be returned. 4570 */ 4571 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4572 { 4573 int copyflag; 4574 int elt; 4575 struct sk_buff *skb1, **skb_p; 4576 4577 /* If skb is cloned or its head is paged, reallocate 4578 * head pulling out all the pages (pages are considered not writable 4579 * at the moment even if they are anonymous). 4580 */ 4581 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4582 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4583 return -ENOMEM; 4584 4585 /* Easy case. Most of packets will go this way. */ 4586 if (!skb_has_frag_list(skb)) { 4587 /* A little of trouble, not enough of space for trailer. 4588 * This should not happen, when stack is tuned to generate 4589 * good frames. OK, on miss we reallocate and reserve even more 4590 * space, 128 bytes is fair. */ 4591 4592 if (skb_tailroom(skb) < tailbits && 4593 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4594 return -ENOMEM; 4595 4596 /* Voila! */ 4597 *trailer = skb; 4598 return 1; 4599 } 4600 4601 /* Misery. We are in troubles, going to mincer fragments... */ 4602 4603 elt = 1; 4604 skb_p = &skb_shinfo(skb)->frag_list; 4605 copyflag = 0; 4606 4607 while ((skb1 = *skb_p) != NULL) { 4608 int ntail = 0; 4609 4610 /* The fragment is partially pulled by someone, 4611 * this can happen on input. Copy it and everything 4612 * after it. */ 4613 4614 if (skb_shared(skb1)) 4615 copyflag = 1; 4616 4617 /* If the skb is the last, worry about trailer. */ 4618 4619 if (skb1->next == NULL && tailbits) { 4620 if (skb_shinfo(skb1)->nr_frags || 4621 skb_has_frag_list(skb1) || 4622 skb_tailroom(skb1) < tailbits) 4623 ntail = tailbits + 128; 4624 } 4625 4626 if (copyflag || 4627 skb_cloned(skb1) || 4628 ntail || 4629 skb_shinfo(skb1)->nr_frags || 4630 skb_has_frag_list(skb1)) { 4631 struct sk_buff *skb2; 4632 4633 /* Fuck, we are miserable poor guys... */ 4634 if (ntail == 0) 4635 skb2 = skb_copy(skb1, GFP_ATOMIC); 4636 else 4637 skb2 = skb_copy_expand(skb1, 4638 skb_headroom(skb1), 4639 ntail, 4640 GFP_ATOMIC); 4641 if (unlikely(skb2 == NULL)) 4642 return -ENOMEM; 4643 4644 if (skb1->sk) 4645 skb_set_owner_w(skb2, skb1->sk); 4646 4647 /* Looking around. Are we still alive? 4648 * OK, link new skb, drop old one */ 4649 4650 skb2->next = skb1->next; 4651 *skb_p = skb2; 4652 kfree_skb(skb1); 4653 skb1 = skb2; 4654 } 4655 elt++; 4656 *trailer = skb1; 4657 skb_p = &skb1->next; 4658 } 4659 4660 return elt; 4661 } 4662 EXPORT_SYMBOL_GPL(skb_cow_data); 4663 4664 static void sock_rmem_free(struct sk_buff *skb) 4665 { 4666 struct sock *sk = skb->sk; 4667 4668 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4669 } 4670 4671 static void skb_set_err_queue(struct sk_buff *skb) 4672 { 4673 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4674 * So, it is safe to (mis)use it to mark skbs on the error queue. 4675 */ 4676 skb->pkt_type = PACKET_OUTGOING; 4677 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4678 } 4679 4680 /* 4681 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4682 */ 4683 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4684 { 4685 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4686 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4687 return -ENOMEM; 4688 4689 skb_orphan(skb); 4690 skb->sk = sk; 4691 skb->destructor = sock_rmem_free; 4692 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4693 skb_set_err_queue(skb); 4694 4695 /* before exiting rcu section, make sure dst is refcounted */ 4696 skb_dst_force(skb); 4697 4698 skb_queue_tail(&sk->sk_error_queue, skb); 4699 if (!sock_flag(sk, SOCK_DEAD)) 4700 sk_error_report(sk); 4701 return 0; 4702 } 4703 EXPORT_SYMBOL(sock_queue_err_skb); 4704 4705 static bool is_icmp_err_skb(const struct sk_buff *skb) 4706 { 4707 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4708 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4709 } 4710 4711 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4712 { 4713 struct sk_buff_head *q = &sk->sk_error_queue; 4714 struct sk_buff *skb, *skb_next = NULL; 4715 bool icmp_next = false; 4716 unsigned long flags; 4717 4718 spin_lock_irqsave(&q->lock, flags); 4719 skb = __skb_dequeue(q); 4720 if (skb && (skb_next = skb_peek(q))) { 4721 icmp_next = is_icmp_err_skb(skb_next); 4722 if (icmp_next) 4723 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4724 } 4725 spin_unlock_irqrestore(&q->lock, flags); 4726 4727 if (is_icmp_err_skb(skb) && !icmp_next) 4728 sk->sk_err = 0; 4729 4730 if (skb_next) 4731 sk_error_report(sk); 4732 4733 return skb; 4734 } 4735 EXPORT_SYMBOL(sock_dequeue_err_skb); 4736 4737 /** 4738 * skb_clone_sk - create clone of skb, and take reference to socket 4739 * @skb: the skb to clone 4740 * 4741 * This function creates a clone of a buffer that holds a reference on 4742 * sk_refcnt. Buffers created via this function are meant to be 4743 * returned using sock_queue_err_skb, or free via kfree_skb. 4744 * 4745 * When passing buffers allocated with this function to sock_queue_err_skb 4746 * it is necessary to wrap the call with sock_hold/sock_put in order to 4747 * prevent the socket from being released prior to being enqueued on 4748 * the sk_error_queue. 4749 */ 4750 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4751 { 4752 struct sock *sk = skb->sk; 4753 struct sk_buff *clone; 4754 4755 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4756 return NULL; 4757 4758 clone = skb_clone(skb, GFP_ATOMIC); 4759 if (!clone) { 4760 sock_put(sk); 4761 return NULL; 4762 } 4763 4764 clone->sk = sk; 4765 clone->destructor = sock_efree; 4766 4767 return clone; 4768 } 4769 EXPORT_SYMBOL(skb_clone_sk); 4770 4771 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4772 struct sock *sk, 4773 int tstype, 4774 bool opt_stats) 4775 { 4776 struct sock_exterr_skb *serr; 4777 int err; 4778 4779 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4780 4781 serr = SKB_EXT_ERR(skb); 4782 memset(serr, 0, sizeof(*serr)); 4783 serr->ee.ee_errno = ENOMSG; 4784 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4785 serr->ee.ee_info = tstype; 4786 serr->opt_stats = opt_stats; 4787 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4788 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4789 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4790 if (sk_is_tcp(sk)) 4791 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 4792 } 4793 4794 err = sock_queue_err_skb(sk, skb); 4795 4796 if (err) 4797 kfree_skb(skb); 4798 } 4799 4800 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4801 { 4802 bool ret; 4803 4804 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 4805 return true; 4806 4807 read_lock_bh(&sk->sk_callback_lock); 4808 ret = sk->sk_socket && sk->sk_socket->file && 4809 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4810 read_unlock_bh(&sk->sk_callback_lock); 4811 return ret; 4812 } 4813 4814 void skb_complete_tx_timestamp(struct sk_buff *skb, 4815 struct skb_shared_hwtstamps *hwtstamps) 4816 { 4817 struct sock *sk = skb->sk; 4818 4819 if (!skb_may_tx_timestamp(sk, false)) 4820 goto err; 4821 4822 /* Take a reference to prevent skb_orphan() from freeing the socket, 4823 * but only if the socket refcount is not zero. 4824 */ 4825 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4826 *skb_hwtstamps(skb) = *hwtstamps; 4827 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4828 sock_put(sk); 4829 return; 4830 } 4831 4832 err: 4833 kfree_skb(skb); 4834 } 4835 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4836 4837 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4838 const struct sk_buff *ack_skb, 4839 struct skb_shared_hwtstamps *hwtstamps, 4840 struct sock *sk, int tstype) 4841 { 4842 struct sk_buff *skb; 4843 bool tsonly, opt_stats = false; 4844 4845 if (!sk) 4846 return; 4847 4848 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4849 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4850 return; 4851 4852 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4853 if (!skb_may_tx_timestamp(sk, tsonly)) 4854 return; 4855 4856 if (tsonly) { 4857 #ifdef CONFIG_INET 4858 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4859 sk_is_tcp(sk)) { 4860 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4861 ack_skb); 4862 opt_stats = true; 4863 } else 4864 #endif 4865 skb = alloc_skb(0, GFP_ATOMIC); 4866 } else { 4867 skb = skb_clone(orig_skb, GFP_ATOMIC); 4868 } 4869 if (!skb) 4870 return; 4871 4872 if (tsonly) { 4873 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4874 SKBTX_ANY_TSTAMP; 4875 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4876 } 4877 4878 if (hwtstamps) 4879 *skb_hwtstamps(skb) = *hwtstamps; 4880 else 4881 __net_timestamp(skb); 4882 4883 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4884 } 4885 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4886 4887 void skb_tstamp_tx(struct sk_buff *orig_skb, 4888 struct skb_shared_hwtstamps *hwtstamps) 4889 { 4890 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4891 SCM_TSTAMP_SND); 4892 } 4893 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4894 4895 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4896 { 4897 struct sock *sk = skb->sk; 4898 struct sock_exterr_skb *serr; 4899 int err = 1; 4900 4901 skb->wifi_acked_valid = 1; 4902 skb->wifi_acked = acked; 4903 4904 serr = SKB_EXT_ERR(skb); 4905 memset(serr, 0, sizeof(*serr)); 4906 serr->ee.ee_errno = ENOMSG; 4907 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4908 4909 /* Take a reference to prevent skb_orphan() from freeing the socket, 4910 * but only if the socket refcount is not zero. 4911 */ 4912 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4913 err = sock_queue_err_skb(sk, skb); 4914 sock_put(sk); 4915 } 4916 if (err) 4917 kfree_skb(skb); 4918 } 4919 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4920 4921 /** 4922 * skb_partial_csum_set - set up and verify partial csum values for packet 4923 * @skb: the skb to set 4924 * @start: the number of bytes after skb->data to start checksumming. 4925 * @off: the offset from start to place the checksum. 4926 * 4927 * For untrusted partially-checksummed packets, we need to make sure the values 4928 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4929 * 4930 * This function checks and sets those values and skb->ip_summed: if this 4931 * returns false you should drop the packet. 4932 */ 4933 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4934 { 4935 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4936 u32 csum_start = skb_headroom(skb) + (u32)start; 4937 4938 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4939 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4940 start, off, skb_headroom(skb), skb_headlen(skb)); 4941 return false; 4942 } 4943 skb->ip_summed = CHECKSUM_PARTIAL; 4944 skb->csum_start = csum_start; 4945 skb->csum_offset = off; 4946 skb_set_transport_header(skb, start); 4947 return true; 4948 } 4949 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4950 4951 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4952 unsigned int max) 4953 { 4954 if (skb_headlen(skb) >= len) 4955 return 0; 4956 4957 /* If we need to pullup then pullup to the max, so we 4958 * won't need to do it again. 4959 */ 4960 if (max > skb->len) 4961 max = skb->len; 4962 4963 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4964 return -ENOMEM; 4965 4966 if (skb_headlen(skb) < len) 4967 return -EPROTO; 4968 4969 return 0; 4970 } 4971 4972 #define MAX_TCP_HDR_LEN (15 * 4) 4973 4974 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4975 typeof(IPPROTO_IP) proto, 4976 unsigned int off) 4977 { 4978 int err; 4979 4980 switch (proto) { 4981 case IPPROTO_TCP: 4982 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4983 off + MAX_TCP_HDR_LEN); 4984 if (!err && !skb_partial_csum_set(skb, off, 4985 offsetof(struct tcphdr, 4986 check))) 4987 err = -EPROTO; 4988 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4989 4990 case IPPROTO_UDP: 4991 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4992 off + sizeof(struct udphdr)); 4993 if (!err && !skb_partial_csum_set(skb, off, 4994 offsetof(struct udphdr, 4995 check))) 4996 err = -EPROTO; 4997 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4998 } 4999 5000 return ERR_PTR(-EPROTO); 5001 } 5002 5003 /* This value should be large enough to cover a tagged ethernet header plus 5004 * maximally sized IP and TCP or UDP headers. 5005 */ 5006 #define MAX_IP_HDR_LEN 128 5007 5008 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5009 { 5010 unsigned int off; 5011 bool fragment; 5012 __sum16 *csum; 5013 int err; 5014 5015 fragment = false; 5016 5017 err = skb_maybe_pull_tail(skb, 5018 sizeof(struct iphdr), 5019 MAX_IP_HDR_LEN); 5020 if (err < 0) 5021 goto out; 5022 5023 if (ip_is_fragment(ip_hdr(skb))) 5024 fragment = true; 5025 5026 off = ip_hdrlen(skb); 5027 5028 err = -EPROTO; 5029 5030 if (fragment) 5031 goto out; 5032 5033 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5034 if (IS_ERR(csum)) 5035 return PTR_ERR(csum); 5036 5037 if (recalculate) 5038 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5039 ip_hdr(skb)->daddr, 5040 skb->len - off, 5041 ip_hdr(skb)->protocol, 0); 5042 err = 0; 5043 5044 out: 5045 return err; 5046 } 5047 5048 /* This value should be large enough to cover a tagged ethernet header plus 5049 * an IPv6 header, all options, and a maximal TCP or UDP header. 5050 */ 5051 #define MAX_IPV6_HDR_LEN 256 5052 5053 #define OPT_HDR(type, skb, off) \ 5054 (type *)(skb_network_header(skb) + (off)) 5055 5056 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5057 { 5058 int err; 5059 u8 nexthdr; 5060 unsigned int off; 5061 unsigned int len; 5062 bool fragment; 5063 bool done; 5064 __sum16 *csum; 5065 5066 fragment = false; 5067 done = false; 5068 5069 off = sizeof(struct ipv6hdr); 5070 5071 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5072 if (err < 0) 5073 goto out; 5074 5075 nexthdr = ipv6_hdr(skb)->nexthdr; 5076 5077 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5078 while (off <= len && !done) { 5079 switch (nexthdr) { 5080 case IPPROTO_DSTOPTS: 5081 case IPPROTO_HOPOPTS: 5082 case IPPROTO_ROUTING: { 5083 struct ipv6_opt_hdr *hp; 5084 5085 err = skb_maybe_pull_tail(skb, 5086 off + 5087 sizeof(struct ipv6_opt_hdr), 5088 MAX_IPV6_HDR_LEN); 5089 if (err < 0) 5090 goto out; 5091 5092 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5093 nexthdr = hp->nexthdr; 5094 off += ipv6_optlen(hp); 5095 break; 5096 } 5097 case IPPROTO_AH: { 5098 struct ip_auth_hdr *hp; 5099 5100 err = skb_maybe_pull_tail(skb, 5101 off + 5102 sizeof(struct ip_auth_hdr), 5103 MAX_IPV6_HDR_LEN); 5104 if (err < 0) 5105 goto out; 5106 5107 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5108 nexthdr = hp->nexthdr; 5109 off += ipv6_authlen(hp); 5110 break; 5111 } 5112 case IPPROTO_FRAGMENT: { 5113 struct frag_hdr *hp; 5114 5115 err = skb_maybe_pull_tail(skb, 5116 off + 5117 sizeof(struct frag_hdr), 5118 MAX_IPV6_HDR_LEN); 5119 if (err < 0) 5120 goto out; 5121 5122 hp = OPT_HDR(struct frag_hdr, skb, off); 5123 5124 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5125 fragment = true; 5126 5127 nexthdr = hp->nexthdr; 5128 off += sizeof(struct frag_hdr); 5129 break; 5130 } 5131 default: 5132 done = true; 5133 break; 5134 } 5135 } 5136 5137 err = -EPROTO; 5138 5139 if (!done || fragment) 5140 goto out; 5141 5142 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5143 if (IS_ERR(csum)) 5144 return PTR_ERR(csum); 5145 5146 if (recalculate) 5147 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5148 &ipv6_hdr(skb)->daddr, 5149 skb->len - off, nexthdr, 0); 5150 err = 0; 5151 5152 out: 5153 return err; 5154 } 5155 5156 /** 5157 * skb_checksum_setup - set up partial checksum offset 5158 * @skb: the skb to set up 5159 * @recalculate: if true the pseudo-header checksum will be recalculated 5160 */ 5161 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5162 { 5163 int err; 5164 5165 switch (skb->protocol) { 5166 case htons(ETH_P_IP): 5167 err = skb_checksum_setup_ipv4(skb, recalculate); 5168 break; 5169 5170 case htons(ETH_P_IPV6): 5171 err = skb_checksum_setup_ipv6(skb, recalculate); 5172 break; 5173 5174 default: 5175 err = -EPROTO; 5176 break; 5177 } 5178 5179 return err; 5180 } 5181 EXPORT_SYMBOL(skb_checksum_setup); 5182 5183 /** 5184 * skb_checksum_maybe_trim - maybe trims the given skb 5185 * @skb: the skb to check 5186 * @transport_len: the data length beyond the network header 5187 * 5188 * Checks whether the given skb has data beyond the given transport length. 5189 * If so, returns a cloned skb trimmed to this transport length. 5190 * Otherwise returns the provided skb. Returns NULL in error cases 5191 * (e.g. transport_len exceeds skb length or out-of-memory). 5192 * 5193 * Caller needs to set the skb transport header and free any returned skb if it 5194 * differs from the provided skb. 5195 */ 5196 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5197 unsigned int transport_len) 5198 { 5199 struct sk_buff *skb_chk; 5200 unsigned int len = skb_transport_offset(skb) + transport_len; 5201 int ret; 5202 5203 if (skb->len < len) 5204 return NULL; 5205 else if (skb->len == len) 5206 return skb; 5207 5208 skb_chk = skb_clone(skb, GFP_ATOMIC); 5209 if (!skb_chk) 5210 return NULL; 5211 5212 ret = pskb_trim_rcsum(skb_chk, len); 5213 if (ret) { 5214 kfree_skb(skb_chk); 5215 return NULL; 5216 } 5217 5218 return skb_chk; 5219 } 5220 5221 /** 5222 * skb_checksum_trimmed - validate checksum of an skb 5223 * @skb: the skb to check 5224 * @transport_len: the data length beyond the network header 5225 * @skb_chkf: checksum function to use 5226 * 5227 * Applies the given checksum function skb_chkf to the provided skb. 5228 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5229 * 5230 * If the skb has data beyond the given transport length, then a 5231 * trimmed & cloned skb is checked and returned. 5232 * 5233 * Caller needs to set the skb transport header and free any returned skb if it 5234 * differs from the provided skb. 5235 */ 5236 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5237 unsigned int transport_len, 5238 __sum16(*skb_chkf)(struct sk_buff *skb)) 5239 { 5240 struct sk_buff *skb_chk; 5241 unsigned int offset = skb_transport_offset(skb); 5242 __sum16 ret; 5243 5244 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5245 if (!skb_chk) 5246 goto err; 5247 5248 if (!pskb_may_pull(skb_chk, offset)) 5249 goto err; 5250 5251 skb_pull_rcsum(skb_chk, offset); 5252 ret = skb_chkf(skb_chk); 5253 skb_push_rcsum(skb_chk, offset); 5254 5255 if (ret) 5256 goto err; 5257 5258 return skb_chk; 5259 5260 err: 5261 if (skb_chk && skb_chk != skb) 5262 kfree_skb(skb_chk); 5263 5264 return NULL; 5265 5266 } 5267 EXPORT_SYMBOL(skb_checksum_trimmed); 5268 5269 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5270 { 5271 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5272 skb->dev->name); 5273 } 5274 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5275 5276 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5277 { 5278 if (head_stolen) { 5279 skb_release_head_state(skb); 5280 kmem_cache_free(skbuff_head_cache, skb); 5281 } else { 5282 __kfree_skb(skb); 5283 } 5284 } 5285 EXPORT_SYMBOL(kfree_skb_partial); 5286 5287 /** 5288 * skb_try_coalesce - try to merge skb to prior one 5289 * @to: prior buffer 5290 * @from: buffer to add 5291 * @fragstolen: pointer to boolean 5292 * @delta_truesize: how much more was allocated than was requested 5293 */ 5294 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5295 bool *fragstolen, int *delta_truesize) 5296 { 5297 struct skb_shared_info *to_shinfo, *from_shinfo; 5298 int i, delta, len = from->len; 5299 5300 *fragstolen = false; 5301 5302 if (skb_cloned(to)) 5303 return false; 5304 5305 /* In general, avoid mixing slab allocated and page_pool allocated 5306 * pages within the same SKB. However when @to is not pp_recycle and 5307 * @from is cloned, we can transition frag pages from page_pool to 5308 * reference counted. 5309 * 5310 * On the other hand, don't allow coalescing two pp_recycle SKBs if 5311 * @from is cloned, in case the SKB is using page_pool fragment 5312 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5313 * references for cloned SKBs at the moment that would result in 5314 * inconsistent reference counts. 5315 */ 5316 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from))) 5317 return false; 5318 5319 if (len <= skb_tailroom(to)) { 5320 if (len) 5321 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5322 *delta_truesize = 0; 5323 return true; 5324 } 5325 5326 to_shinfo = skb_shinfo(to); 5327 from_shinfo = skb_shinfo(from); 5328 if (to_shinfo->frag_list || from_shinfo->frag_list) 5329 return false; 5330 if (skb_zcopy(to) || skb_zcopy(from)) 5331 return false; 5332 5333 if (skb_headlen(from) != 0) { 5334 struct page *page; 5335 unsigned int offset; 5336 5337 if (to_shinfo->nr_frags + 5338 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5339 return false; 5340 5341 if (skb_head_is_locked(from)) 5342 return false; 5343 5344 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5345 5346 page = virt_to_head_page(from->head); 5347 offset = from->data - (unsigned char *)page_address(page); 5348 5349 skb_fill_page_desc(to, to_shinfo->nr_frags, 5350 page, offset, skb_headlen(from)); 5351 *fragstolen = true; 5352 } else { 5353 if (to_shinfo->nr_frags + 5354 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5355 return false; 5356 5357 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5358 } 5359 5360 WARN_ON_ONCE(delta < len); 5361 5362 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5363 from_shinfo->frags, 5364 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5365 to_shinfo->nr_frags += from_shinfo->nr_frags; 5366 5367 if (!skb_cloned(from)) 5368 from_shinfo->nr_frags = 0; 5369 5370 /* if the skb is not cloned this does nothing 5371 * since we set nr_frags to 0. 5372 */ 5373 for (i = 0; i < from_shinfo->nr_frags; i++) 5374 __skb_frag_ref(&from_shinfo->frags[i]); 5375 5376 to->truesize += delta; 5377 to->len += len; 5378 to->data_len += len; 5379 5380 *delta_truesize = delta; 5381 return true; 5382 } 5383 EXPORT_SYMBOL(skb_try_coalesce); 5384 5385 /** 5386 * skb_scrub_packet - scrub an skb 5387 * 5388 * @skb: buffer to clean 5389 * @xnet: packet is crossing netns 5390 * 5391 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5392 * into/from a tunnel. Some information have to be cleared during these 5393 * operations. 5394 * skb_scrub_packet can also be used to clean a skb before injecting it in 5395 * another namespace (@xnet == true). We have to clear all information in the 5396 * skb that could impact namespace isolation. 5397 */ 5398 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5399 { 5400 skb->pkt_type = PACKET_HOST; 5401 skb->skb_iif = 0; 5402 skb->ignore_df = 0; 5403 skb_dst_drop(skb); 5404 skb_ext_reset(skb); 5405 nf_reset_ct(skb); 5406 nf_reset_trace(skb); 5407 5408 #ifdef CONFIG_NET_SWITCHDEV 5409 skb->offload_fwd_mark = 0; 5410 skb->offload_l3_fwd_mark = 0; 5411 #endif 5412 5413 if (!xnet) 5414 return; 5415 5416 ipvs_reset(skb); 5417 skb->mark = 0; 5418 skb_clear_tstamp(skb); 5419 } 5420 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5421 5422 /** 5423 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5424 * 5425 * @skb: GSO skb 5426 * 5427 * skb_gso_transport_seglen is used to determine the real size of the 5428 * individual segments, including Layer4 headers (TCP/UDP). 5429 * 5430 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5431 */ 5432 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5433 { 5434 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5435 unsigned int thlen = 0; 5436 5437 if (skb->encapsulation) { 5438 thlen = skb_inner_transport_header(skb) - 5439 skb_transport_header(skb); 5440 5441 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5442 thlen += inner_tcp_hdrlen(skb); 5443 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5444 thlen = tcp_hdrlen(skb); 5445 } else if (unlikely(skb_is_gso_sctp(skb))) { 5446 thlen = sizeof(struct sctphdr); 5447 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5448 thlen = sizeof(struct udphdr); 5449 } 5450 /* UFO sets gso_size to the size of the fragmentation 5451 * payload, i.e. the size of the L4 (UDP) header is already 5452 * accounted for. 5453 */ 5454 return thlen + shinfo->gso_size; 5455 } 5456 5457 /** 5458 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5459 * 5460 * @skb: GSO skb 5461 * 5462 * skb_gso_network_seglen is used to determine the real size of the 5463 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5464 * 5465 * The MAC/L2 header is not accounted for. 5466 */ 5467 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5468 { 5469 unsigned int hdr_len = skb_transport_header(skb) - 5470 skb_network_header(skb); 5471 5472 return hdr_len + skb_gso_transport_seglen(skb); 5473 } 5474 5475 /** 5476 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5477 * 5478 * @skb: GSO skb 5479 * 5480 * skb_gso_mac_seglen is used to determine the real size of the 5481 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5482 * headers (TCP/UDP). 5483 */ 5484 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5485 { 5486 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5487 5488 return hdr_len + skb_gso_transport_seglen(skb); 5489 } 5490 5491 /** 5492 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5493 * 5494 * There are a couple of instances where we have a GSO skb, and we 5495 * want to determine what size it would be after it is segmented. 5496 * 5497 * We might want to check: 5498 * - L3+L4+payload size (e.g. IP forwarding) 5499 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5500 * 5501 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5502 * 5503 * @skb: GSO skb 5504 * 5505 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5506 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5507 * 5508 * @max_len: The maximum permissible length. 5509 * 5510 * Returns true if the segmented length <= max length. 5511 */ 5512 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5513 unsigned int seg_len, 5514 unsigned int max_len) { 5515 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5516 const struct sk_buff *iter; 5517 5518 if (shinfo->gso_size != GSO_BY_FRAGS) 5519 return seg_len <= max_len; 5520 5521 /* Undo this so we can re-use header sizes */ 5522 seg_len -= GSO_BY_FRAGS; 5523 5524 skb_walk_frags(skb, iter) { 5525 if (seg_len + skb_headlen(iter) > max_len) 5526 return false; 5527 } 5528 5529 return true; 5530 } 5531 5532 /** 5533 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5534 * 5535 * @skb: GSO skb 5536 * @mtu: MTU to validate against 5537 * 5538 * skb_gso_validate_network_len validates if a given skb will fit a 5539 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5540 * payload. 5541 */ 5542 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5543 { 5544 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5545 } 5546 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5547 5548 /** 5549 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5550 * 5551 * @skb: GSO skb 5552 * @len: length to validate against 5553 * 5554 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5555 * length once split, including L2, L3 and L4 headers and the payload. 5556 */ 5557 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5558 { 5559 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5560 } 5561 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5562 5563 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5564 { 5565 int mac_len, meta_len; 5566 void *meta; 5567 5568 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5569 kfree_skb(skb); 5570 return NULL; 5571 } 5572 5573 mac_len = skb->data - skb_mac_header(skb); 5574 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5575 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5576 mac_len - VLAN_HLEN - ETH_TLEN); 5577 } 5578 5579 meta_len = skb_metadata_len(skb); 5580 if (meta_len) { 5581 meta = skb_metadata_end(skb) - meta_len; 5582 memmove(meta + VLAN_HLEN, meta, meta_len); 5583 } 5584 5585 skb->mac_header += VLAN_HLEN; 5586 return skb; 5587 } 5588 5589 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5590 { 5591 struct vlan_hdr *vhdr; 5592 u16 vlan_tci; 5593 5594 if (unlikely(skb_vlan_tag_present(skb))) { 5595 /* vlan_tci is already set-up so leave this for another time */ 5596 return skb; 5597 } 5598 5599 skb = skb_share_check(skb, GFP_ATOMIC); 5600 if (unlikely(!skb)) 5601 goto err_free; 5602 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5603 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5604 goto err_free; 5605 5606 vhdr = (struct vlan_hdr *)skb->data; 5607 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5608 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5609 5610 skb_pull_rcsum(skb, VLAN_HLEN); 5611 vlan_set_encap_proto(skb, vhdr); 5612 5613 skb = skb_reorder_vlan_header(skb); 5614 if (unlikely(!skb)) 5615 goto err_free; 5616 5617 skb_reset_network_header(skb); 5618 if (!skb_transport_header_was_set(skb)) 5619 skb_reset_transport_header(skb); 5620 skb_reset_mac_len(skb); 5621 5622 return skb; 5623 5624 err_free: 5625 kfree_skb(skb); 5626 return NULL; 5627 } 5628 EXPORT_SYMBOL(skb_vlan_untag); 5629 5630 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5631 { 5632 if (!pskb_may_pull(skb, write_len)) 5633 return -ENOMEM; 5634 5635 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5636 return 0; 5637 5638 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5639 } 5640 EXPORT_SYMBOL(skb_ensure_writable); 5641 5642 /* remove VLAN header from packet and update csum accordingly. 5643 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5644 */ 5645 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5646 { 5647 struct vlan_hdr *vhdr; 5648 int offset = skb->data - skb_mac_header(skb); 5649 int err; 5650 5651 if (WARN_ONCE(offset, 5652 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5653 offset)) { 5654 return -EINVAL; 5655 } 5656 5657 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5658 if (unlikely(err)) 5659 return err; 5660 5661 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5662 5663 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5664 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5665 5666 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5667 __skb_pull(skb, VLAN_HLEN); 5668 5669 vlan_set_encap_proto(skb, vhdr); 5670 skb->mac_header += VLAN_HLEN; 5671 5672 if (skb_network_offset(skb) < ETH_HLEN) 5673 skb_set_network_header(skb, ETH_HLEN); 5674 5675 skb_reset_mac_len(skb); 5676 5677 return err; 5678 } 5679 EXPORT_SYMBOL(__skb_vlan_pop); 5680 5681 /* Pop a vlan tag either from hwaccel or from payload. 5682 * Expects skb->data at mac header. 5683 */ 5684 int skb_vlan_pop(struct sk_buff *skb) 5685 { 5686 u16 vlan_tci; 5687 __be16 vlan_proto; 5688 int err; 5689 5690 if (likely(skb_vlan_tag_present(skb))) { 5691 __vlan_hwaccel_clear_tag(skb); 5692 } else { 5693 if (unlikely(!eth_type_vlan(skb->protocol))) 5694 return 0; 5695 5696 err = __skb_vlan_pop(skb, &vlan_tci); 5697 if (err) 5698 return err; 5699 } 5700 /* move next vlan tag to hw accel tag */ 5701 if (likely(!eth_type_vlan(skb->protocol))) 5702 return 0; 5703 5704 vlan_proto = skb->protocol; 5705 err = __skb_vlan_pop(skb, &vlan_tci); 5706 if (unlikely(err)) 5707 return err; 5708 5709 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5710 return 0; 5711 } 5712 EXPORT_SYMBOL(skb_vlan_pop); 5713 5714 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5715 * Expects skb->data at mac header. 5716 */ 5717 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5718 { 5719 if (skb_vlan_tag_present(skb)) { 5720 int offset = skb->data - skb_mac_header(skb); 5721 int err; 5722 5723 if (WARN_ONCE(offset, 5724 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5725 offset)) { 5726 return -EINVAL; 5727 } 5728 5729 err = __vlan_insert_tag(skb, skb->vlan_proto, 5730 skb_vlan_tag_get(skb)); 5731 if (err) 5732 return err; 5733 5734 skb->protocol = skb->vlan_proto; 5735 skb->mac_len += VLAN_HLEN; 5736 5737 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5738 } 5739 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5740 return 0; 5741 } 5742 EXPORT_SYMBOL(skb_vlan_push); 5743 5744 /** 5745 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5746 * 5747 * @skb: Socket buffer to modify 5748 * 5749 * Drop the Ethernet header of @skb. 5750 * 5751 * Expects that skb->data points to the mac header and that no VLAN tags are 5752 * present. 5753 * 5754 * Returns 0 on success, -errno otherwise. 5755 */ 5756 int skb_eth_pop(struct sk_buff *skb) 5757 { 5758 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5759 skb_network_offset(skb) < ETH_HLEN) 5760 return -EPROTO; 5761 5762 skb_pull_rcsum(skb, ETH_HLEN); 5763 skb_reset_mac_header(skb); 5764 skb_reset_mac_len(skb); 5765 5766 return 0; 5767 } 5768 EXPORT_SYMBOL(skb_eth_pop); 5769 5770 /** 5771 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5772 * 5773 * @skb: Socket buffer to modify 5774 * @dst: Destination MAC address of the new header 5775 * @src: Source MAC address of the new header 5776 * 5777 * Prepend @skb with a new Ethernet header. 5778 * 5779 * Expects that skb->data points to the mac header, which must be empty. 5780 * 5781 * Returns 0 on success, -errno otherwise. 5782 */ 5783 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5784 const unsigned char *src) 5785 { 5786 struct ethhdr *eth; 5787 int err; 5788 5789 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5790 return -EPROTO; 5791 5792 err = skb_cow_head(skb, sizeof(*eth)); 5793 if (err < 0) 5794 return err; 5795 5796 skb_push(skb, sizeof(*eth)); 5797 skb_reset_mac_header(skb); 5798 skb_reset_mac_len(skb); 5799 5800 eth = eth_hdr(skb); 5801 ether_addr_copy(eth->h_dest, dst); 5802 ether_addr_copy(eth->h_source, src); 5803 eth->h_proto = skb->protocol; 5804 5805 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5806 5807 return 0; 5808 } 5809 EXPORT_SYMBOL(skb_eth_push); 5810 5811 /* Update the ethertype of hdr and the skb csum value if required. */ 5812 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5813 __be16 ethertype) 5814 { 5815 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5816 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5817 5818 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5819 } 5820 5821 hdr->h_proto = ethertype; 5822 } 5823 5824 /** 5825 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5826 * the packet 5827 * 5828 * @skb: buffer 5829 * @mpls_lse: MPLS label stack entry to push 5830 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5831 * @mac_len: length of the MAC header 5832 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5833 * ethernet 5834 * 5835 * Expects skb->data at mac header. 5836 * 5837 * Returns 0 on success, -errno otherwise. 5838 */ 5839 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5840 int mac_len, bool ethernet) 5841 { 5842 struct mpls_shim_hdr *lse; 5843 int err; 5844 5845 if (unlikely(!eth_p_mpls(mpls_proto))) 5846 return -EINVAL; 5847 5848 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5849 if (skb->encapsulation) 5850 return -EINVAL; 5851 5852 err = skb_cow_head(skb, MPLS_HLEN); 5853 if (unlikely(err)) 5854 return err; 5855 5856 if (!skb->inner_protocol) { 5857 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5858 skb_set_inner_protocol(skb, skb->protocol); 5859 } 5860 5861 skb_push(skb, MPLS_HLEN); 5862 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5863 mac_len); 5864 skb_reset_mac_header(skb); 5865 skb_set_network_header(skb, mac_len); 5866 skb_reset_mac_len(skb); 5867 5868 lse = mpls_hdr(skb); 5869 lse->label_stack_entry = mpls_lse; 5870 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5871 5872 if (ethernet && mac_len >= ETH_HLEN) 5873 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5874 skb->protocol = mpls_proto; 5875 5876 return 0; 5877 } 5878 EXPORT_SYMBOL_GPL(skb_mpls_push); 5879 5880 /** 5881 * skb_mpls_pop() - pop the outermost MPLS header 5882 * 5883 * @skb: buffer 5884 * @next_proto: ethertype of header after popped MPLS header 5885 * @mac_len: length of the MAC header 5886 * @ethernet: flag to indicate if the packet is ethernet 5887 * 5888 * Expects skb->data at mac header. 5889 * 5890 * Returns 0 on success, -errno otherwise. 5891 */ 5892 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5893 bool ethernet) 5894 { 5895 int err; 5896 5897 if (unlikely(!eth_p_mpls(skb->protocol))) 5898 return 0; 5899 5900 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5901 if (unlikely(err)) 5902 return err; 5903 5904 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5905 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5906 mac_len); 5907 5908 __skb_pull(skb, MPLS_HLEN); 5909 skb_reset_mac_header(skb); 5910 skb_set_network_header(skb, mac_len); 5911 5912 if (ethernet && mac_len >= ETH_HLEN) { 5913 struct ethhdr *hdr; 5914 5915 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5916 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5917 skb_mod_eth_type(skb, hdr, next_proto); 5918 } 5919 skb->protocol = next_proto; 5920 5921 return 0; 5922 } 5923 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5924 5925 /** 5926 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5927 * 5928 * @skb: buffer 5929 * @mpls_lse: new MPLS label stack entry to update to 5930 * 5931 * Expects skb->data at mac header. 5932 * 5933 * Returns 0 on success, -errno otherwise. 5934 */ 5935 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5936 { 5937 int err; 5938 5939 if (unlikely(!eth_p_mpls(skb->protocol))) 5940 return -EINVAL; 5941 5942 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5943 if (unlikely(err)) 5944 return err; 5945 5946 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5947 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5948 5949 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5950 } 5951 5952 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5953 5954 return 0; 5955 } 5956 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5957 5958 /** 5959 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5960 * 5961 * @skb: buffer 5962 * 5963 * Expects skb->data at mac header. 5964 * 5965 * Returns 0 on success, -errno otherwise. 5966 */ 5967 int skb_mpls_dec_ttl(struct sk_buff *skb) 5968 { 5969 u32 lse; 5970 u8 ttl; 5971 5972 if (unlikely(!eth_p_mpls(skb->protocol))) 5973 return -EINVAL; 5974 5975 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5976 return -ENOMEM; 5977 5978 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5979 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5980 if (!--ttl) 5981 return -EINVAL; 5982 5983 lse &= ~MPLS_LS_TTL_MASK; 5984 lse |= ttl << MPLS_LS_TTL_SHIFT; 5985 5986 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5987 } 5988 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5989 5990 /** 5991 * alloc_skb_with_frags - allocate skb with page frags 5992 * 5993 * @header_len: size of linear part 5994 * @data_len: needed length in frags 5995 * @max_page_order: max page order desired. 5996 * @errcode: pointer to error code if any 5997 * @gfp_mask: allocation mask 5998 * 5999 * This can be used to allocate a paged skb, given a maximal order for frags. 6000 */ 6001 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6002 unsigned long data_len, 6003 int max_page_order, 6004 int *errcode, 6005 gfp_t gfp_mask) 6006 { 6007 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 6008 unsigned long chunk; 6009 struct sk_buff *skb; 6010 struct page *page; 6011 int i; 6012 6013 *errcode = -EMSGSIZE; 6014 /* Note this test could be relaxed, if we succeed to allocate 6015 * high order pages... 6016 */ 6017 if (npages > MAX_SKB_FRAGS) 6018 return NULL; 6019 6020 *errcode = -ENOBUFS; 6021 skb = alloc_skb(header_len, gfp_mask); 6022 if (!skb) 6023 return NULL; 6024 6025 skb->truesize += npages << PAGE_SHIFT; 6026 6027 for (i = 0; npages > 0; i++) { 6028 int order = max_page_order; 6029 6030 while (order) { 6031 if (npages >= 1 << order) { 6032 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6033 __GFP_COMP | 6034 __GFP_NOWARN, 6035 order); 6036 if (page) 6037 goto fill_page; 6038 /* Do not retry other high order allocations */ 6039 order = 1; 6040 max_page_order = 0; 6041 } 6042 order--; 6043 } 6044 page = alloc_page(gfp_mask); 6045 if (!page) 6046 goto failure; 6047 fill_page: 6048 chunk = min_t(unsigned long, data_len, 6049 PAGE_SIZE << order); 6050 skb_fill_page_desc(skb, i, page, 0, chunk); 6051 data_len -= chunk; 6052 npages -= 1 << order; 6053 } 6054 return skb; 6055 6056 failure: 6057 kfree_skb(skb); 6058 return NULL; 6059 } 6060 EXPORT_SYMBOL(alloc_skb_with_frags); 6061 6062 /* carve out the first off bytes from skb when off < headlen */ 6063 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6064 const int headlen, gfp_t gfp_mask) 6065 { 6066 int i; 6067 int size = skb_end_offset(skb); 6068 int new_hlen = headlen - off; 6069 u8 *data; 6070 6071 size = SKB_DATA_ALIGN(size); 6072 6073 if (skb_pfmemalloc(skb)) 6074 gfp_mask |= __GFP_MEMALLOC; 6075 data = kmalloc_reserve(size + 6076 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6077 gfp_mask, NUMA_NO_NODE, NULL); 6078 if (!data) 6079 return -ENOMEM; 6080 6081 size = SKB_WITH_OVERHEAD(ksize(data)); 6082 6083 /* Copy real data, and all frags */ 6084 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6085 skb->len -= off; 6086 6087 memcpy((struct skb_shared_info *)(data + size), 6088 skb_shinfo(skb), 6089 offsetof(struct skb_shared_info, 6090 frags[skb_shinfo(skb)->nr_frags])); 6091 if (skb_cloned(skb)) { 6092 /* drop the old head gracefully */ 6093 if (skb_orphan_frags(skb, gfp_mask)) { 6094 kfree(data); 6095 return -ENOMEM; 6096 } 6097 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6098 skb_frag_ref(skb, i); 6099 if (skb_has_frag_list(skb)) 6100 skb_clone_fraglist(skb); 6101 skb_release_data(skb); 6102 } else { 6103 /* we can reuse existing recount- all we did was 6104 * relocate values 6105 */ 6106 skb_free_head(skb); 6107 } 6108 6109 skb->head = data; 6110 skb->data = data; 6111 skb->head_frag = 0; 6112 skb_set_end_offset(skb, size); 6113 skb_set_tail_pointer(skb, skb_headlen(skb)); 6114 skb_headers_offset_update(skb, 0); 6115 skb->cloned = 0; 6116 skb->hdr_len = 0; 6117 skb->nohdr = 0; 6118 atomic_set(&skb_shinfo(skb)->dataref, 1); 6119 6120 return 0; 6121 } 6122 6123 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6124 6125 /* carve out the first eat bytes from skb's frag_list. May recurse into 6126 * pskb_carve() 6127 */ 6128 static int pskb_carve_frag_list(struct sk_buff *skb, 6129 struct skb_shared_info *shinfo, int eat, 6130 gfp_t gfp_mask) 6131 { 6132 struct sk_buff *list = shinfo->frag_list; 6133 struct sk_buff *clone = NULL; 6134 struct sk_buff *insp = NULL; 6135 6136 do { 6137 if (!list) { 6138 pr_err("Not enough bytes to eat. Want %d\n", eat); 6139 return -EFAULT; 6140 } 6141 if (list->len <= eat) { 6142 /* Eaten as whole. */ 6143 eat -= list->len; 6144 list = list->next; 6145 insp = list; 6146 } else { 6147 /* Eaten partially. */ 6148 if (skb_shared(list)) { 6149 clone = skb_clone(list, gfp_mask); 6150 if (!clone) 6151 return -ENOMEM; 6152 insp = list->next; 6153 list = clone; 6154 } else { 6155 /* This may be pulled without problems. */ 6156 insp = list; 6157 } 6158 if (pskb_carve(list, eat, gfp_mask) < 0) { 6159 kfree_skb(clone); 6160 return -ENOMEM; 6161 } 6162 break; 6163 } 6164 } while (eat); 6165 6166 /* Free pulled out fragments. */ 6167 while ((list = shinfo->frag_list) != insp) { 6168 shinfo->frag_list = list->next; 6169 consume_skb(list); 6170 } 6171 /* And insert new clone at head. */ 6172 if (clone) { 6173 clone->next = list; 6174 shinfo->frag_list = clone; 6175 } 6176 return 0; 6177 } 6178 6179 /* carve off first len bytes from skb. Split line (off) is in the 6180 * non-linear part of skb 6181 */ 6182 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6183 int pos, gfp_t gfp_mask) 6184 { 6185 int i, k = 0; 6186 int size = skb_end_offset(skb); 6187 u8 *data; 6188 const int nfrags = skb_shinfo(skb)->nr_frags; 6189 struct skb_shared_info *shinfo; 6190 6191 size = SKB_DATA_ALIGN(size); 6192 6193 if (skb_pfmemalloc(skb)) 6194 gfp_mask |= __GFP_MEMALLOC; 6195 data = kmalloc_reserve(size + 6196 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6197 gfp_mask, NUMA_NO_NODE, NULL); 6198 if (!data) 6199 return -ENOMEM; 6200 6201 size = SKB_WITH_OVERHEAD(ksize(data)); 6202 6203 memcpy((struct skb_shared_info *)(data + size), 6204 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6205 if (skb_orphan_frags(skb, gfp_mask)) { 6206 kfree(data); 6207 return -ENOMEM; 6208 } 6209 shinfo = (struct skb_shared_info *)(data + size); 6210 for (i = 0; i < nfrags; i++) { 6211 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6212 6213 if (pos + fsize > off) { 6214 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6215 6216 if (pos < off) { 6217 /* Split frag. 6218 * We have two variants in this case: 6219 * 1. Move all the frag to the second 6220 * part, if it is possible. F.e. 6221 * this approach is mandatory for TUX, 6222 * where splitting is expensive. 6223 * 2. Split is accurately. We make this. 6224 */ 6225 skb_frag_off_add(&shinfo->frags[0], off - pos); 6226 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6227 } 6228 skb_frag_ref(skb, i); 6229 k++; 6230 } 6231 pos += fsize; 6232 } 6233 shinfo->nr_frags = k; 6234 if (skb_has_frag_list(skb)) 6235 skb_clone_fraglist(skb); 6236 6237 /* split line is in frag list */ 6238 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6239 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6240 if (skb_has_frag_list(skb)) 6241 kfree_skb_list(skb_shinfo(skb)->frag_list); 6242 kfree(data); 6243 return -ENOMEM; 6244 } 6245 skb_release_data(skb); 6246 6247 skb->head = data; 6248 skb->head_frag = 0; 6249 skb->data = data; 6250 skb_set_end_offset(skb, size); 6251 skb_reset_tail_pointer(skb); 6252 skb_headers_offset_update(skb, 0); 6253 skb->cloned = 0; 6254 skb->hdr_len = 0; 6255 skb->nohdr = 0; 6256 skb->len -= off; 6257 skb->data_len = skb->len; 6258 atomic_set(&skb_shinfo(skb)->dataref, 1); 6259 return 0; 6260 } 6261 6262 /* remove len bytes from the beginning of the skb */ 6263 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6264 { 6265 int headlen = skb_headlen(skb); 6266 6267 if (len < headlen) 6268 return pskb_carve_inside_header(skb, len, headlen, gfp); 6269 else 6270 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6271 } 6272 6273 /* Extract to_copy bytes starting at off from skb, and return this in 6274 * a new skb 6275 */ 6276 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6277 int to_copy, gfp_t gfp) 6278 { 6279 struct sk_buff *clone = skb_clone(skb, gfp); 6280 6281 if (!clone) 6282 return NULL; 6283 6284 if (pskb_carve(clone, off, gfp) < 0 || 6285 pskb_trim(clone, to_copy)) { 6286 kfree_skb(clone); 6287 return NULL; 6288 } 6289 return clone; 6290 } 6291 EXPORT_SYMBOL(pskb_extract); 6292 6293 /** 6294 * skb_condense - try to get rid of fragments/frag_list if possible 6295 * @skb: buffer 6296 * 6297 * Can be used to save memory before skb is added to a busy queue. 6298 * If packet has bytes in frags and enough tail room in skb->head, 6299 * pull all of them, so that we can free the frags right now and adjust 6300 * truesize. 6301 * Notes: 6302 * We do not reallocate skb->head thus can not fail. 6303 * Caller must re-evaluate skb->truesize if needed. 6304 */ 6305 void skb_condense(struct sk_buff *skb) 6306 { 6307 if (skb->data_len) { 6308 if (skb->data_len > skb->end - skb->tail || 6309 skb_cloned(skb)) 6310 return; 6311 6312 /* Nice, we can free page frag(s) right now */ 6313 __pskb_pull_tail(skb, skb->data_len); 6314 } 6315 /* At this point, skb->truesize might be over estimated, 6316 * because skb had a fragment, and fragments do not tell 6317 * their truesize. 6318 * When we pulled its content into skb->head, fragment 6319 * was freed, but __pskb_pull_tail() could not possibly 6320 * adjust skb->truesize, not knowing the frag truesize. 6321 */ 6322 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6323 } 6324 6325 #ifdef CONFIG_SKB_EXTENSIONS 6326 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6327 { 6328 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6329 } 6330 6331 /** 6332 * __skb_ext_alloc - allocate a new skb extensions storage 6333 * 6334 * @flags: See kmalloc(). 6335 * 6336 * Returns the newly allocated pointer. The pointer can later attached to a 6337 * skb via __skb_ext_set(). 6338 * Note: caller must handle the skb_ext as an opaque data. 6339 */ 6340 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6341 { 6342 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6343 6344 if (new) { 6345 memset(new->offset, 0, sizeof(new->offset)); 6346 refcount_set(&new->refcnt, 1); 6347 } 6348 6349 return new; 6350 } 6351 6352 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6353 unsigned int old_active) 6354 { 6355 struct skb_ext *new; 6356 6357 if (refcount_read(&old->refcnt) == 1) 6358 return old; 6359 6360 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6361 if (!new) 6362 return NULL; 6363 6364 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6365 refcount_set(&new->refcnt, 1); 6366 6367 #ifdef CONFIG_XFRM 6368 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6369 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6370 unsigned int i; 6371 6372 for (i = 0; i < sp->len; i++) 6373 xfrm_state_hold(sp->xvec[i]); 6374 } 6375 #endif 6376 __skb_ext_put(old); 6377 return new; 6378 } 6379 6380 /** 6381 * __skb_ext_set - attach the specified extension storage to this skb 6382 * @skb: buffer 6383 * @id: extension id 6384 * @ext: extension storage previously allocated via __skb_ext_alloc() 6385 * 6386 * Existing extensions, if any, are cleared. 6387 * 6388 * Returns the pointer to the extension. 6389 */ 6390 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6391 struct skb_ext *ext) 6392 { 6393 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6394 6395 skb_ext_put(skb); 6396 newlen = newoff + skb_ext_type_len[id]; 6397 ext->chunks = newlen; 6398 ext->offset[id] = newoff; 6399 skb->extensions = ext; 6400 skb->active_extensions = 1 << id; 6401 return skb_ext_get_ptr(ext, id); 6402 } 6403 6404 /** 6405 * skb_ext_add - allocate space for given extension, COW if needed 6406 * @skb: buffer 6407 * @id: extension to allocate space for 6408 * 6409 * Allocates enough space for the given extension. 6410 * If the extension is already present, a pointer to that extension 6411 * is returned. 6412 * 6413 * If the skb was cloned, COW applies and the returned memory can be 6414 * modified without changing the extension space of clones buffers. 6415 * 6416 * Returns pointer to the extension or NULL on allocation failure. 6417 */ 6418 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6419 { 6420 struct skb_ext *new, *old = NULL; 6421 unsigned int newlen, newoff; 6422 6423 if (skb->active_extensions) { 6424 old = skb->extensions; 6425 6426 new = skb_ext_maybe_cow(old, skb->active_extensions); 6427 if (!new) 6428 return NULL; 6429 6430 if (__skb_ext_exist(new, id)) 6431 goto set_active; 6432 6433 newoff = new->chunks; 6434 } else { 6435 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6436 6437 new = __skb_ext_alloc(GFP_ATOMIC); 6438 if (!new) 6439 return NULL; 6440 } 6441 6442 newlen = newoff + skb_ext_type_len[id]; 6443 new->chunks = newlen; 6444 new->offset[id] = newoff; 6445 set_active: 6446 skb->slow_gro = 1; 6447 skb->extensions = new; 6448 skb->active_extensions |= 1 << id; 6449 return skb_ext_get_ptr(new, id); 6450 } 6451 EXPORT_SYMBOL(skb_ext_add); 6452 6453 #ifdef CONFIG_XFRM 6454 static void skb_ext_put_sp(struct sec_path *sp) 6455 { 6456 unsigned int i; 6457 6458 for (i = 0; i < sp->len; i++) 6459 xfrm_state_put(sp->xvec[i]); 6460 } 6461 #endif 6462 6463 #ifdef CONFIG_MCTP_FLOWS 6464 static void skb_ext_put_mctp(struct mctp_flow *flow) 6465 { 6466 if (flow->key) 6467 mctp_key_unref(flow->key); 6468 } 6469 #endif 6470 6471 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6472 { 6473 struct skb_ext *ext = skb->extensions; 6474 6475 skb->active_extensions &= ~(1 << id); 6476 if (skb->active_extensions == 0) { 6477 skb->extensions = NULL; 6478 __skb_ext_put(ext); 6479 #ifdef CONFIG_XFRM 6480 } else if (id == SKB_EXT_SEC_PATH && 6481 refcount_read(&ext->refcnt) == 1) { 6482 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6483 6484 skb_ext_put_sp(sp); 6485 sp->len = 0; 6486 #endif 6487 } 6488 } 6489 EXPORT_SYMBOL(__skb_ext_del); 6490 6491 void __skb_ext_put(struct skb_ext *ext) 6492 { 6493 /* If this is last clone, nothing can increment 6494 * it after check passes. Avoids one atomic op. 6495 */ 6496 if (refcount_read(&ext->refcnt) == 1) 6497 goto free_now; 6498 6499 if (!refcount_dec_and_test(&ext->refcnt)) 6500 return; 6501 free_now: 6502 #ifdef CONFIG_XFRM 6503 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6504 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6505 #endif 6506 #ifdef CONFIG_MCTP_FLOWS 6507 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6508 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6509 #endif 6510 6511 kmem_cache_free(skbuff_ext_cache, ext); 6512 } 6513 EXPORT_SYMBOL(__skb_ext_put); 6514 #endif /* CONFIG_SKB_EXTENSIONS */ 6515 6516 /** 6517 * skb_attempt_defer_free - queue skb for remote freeing 6518 * @skb: buffer 6519 * 6520 * Put @skb in a per-cpu list, using the cpu which 6521 * allocated the skb/pages to reduce false sharing 6522 * and memory zone spinlock contention. 6523 */ 6524 void skb_attempt_defer_free(struct sk_buff *skb) 6525 { 6526 int cpu = skb->alloc_cpu; 6527 struct softnet_data *sd; 6528 unsigned long flags; 6529 unsigned int defer_max; 6530 bool kick; 6531 6532 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6533 !cpu_online(cpu) || 6534 cpu == raw_smp_processor_id()) { 6535 nodefer: __kfree_skb(skb); 6536 return; 6537 } 6538 6539 sd = &per_cpu(softnet_data, cpu); 6540 defer_max = READ_ONCE(sysctl_skb_defer_max); 6541 if (READ_ONCE(sd->defer_count) >= defer_max) 6542 goto nodefer; 6543 6544 spin_lock_irqsave(&sd->defer_lock, flags); 6545 /* Send an IPI every time queue reaches half capacity. */ 6546 kick = sd->defer_count == (defer_max >> 1); 6547 /* Paired with the READ_ONCE() few lines above */ 6548 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6549 6550 skb->next = sd->defer_list; 6551 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6552 WRITE_ONCE(sd->defer_list, skb); 6553 spin_unlock_irqrestore(&sd->defer_lock, flags); 6554 6555 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6556 * if we are unlucky enough (this seems very unlikely). 6557 */ 6558 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6559 smp_call_function_single_async(cpu, &sd->defer_csd); 6560 } 6561