1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/bitfield.h> 62 #include <linux/if_vlan.h> 63 #include <linux/mpls.h> 64 #include <linux/kcov.h> 65 66 #include <net/protocol.h> 67 #include <net/dst.h> 68 #include <net/sock.h> 69 #include <net/checksum.h> 70 #include <net/gso.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 #include <net/mpls.h> 74 #include <net/mptcp.h> 75 #include <net/mctp.h> 76 #include <net/page_pool/helpers.h> 77 #include <net/dropreason.h> 78 79 #include <linux/uaccess.h> 80 #include <trace/events/skb.h> 81 #include <linux/highmem.h> 82 #include <linux/capability.h> 83 #include <linux/user_namespace.h> 84 #include <linux/indirect_call_wrapper.h> 85 #include <linux/textsearch.h> 86 87 #include "dev.h" 88 #include "sock_destructor.h" 89 90 struct kmem_cache *skbuff_cache __ro_after_init; 91 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 92 #ifdef CONFIG_SKB_EXTENSIONS 93 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 94 #endif 95 96 97 static struct kmem_cache *skb_small_head_cache __ro_after_init; 98 99 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 100 101 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 102 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 103 * size, and we can differentiate heads from skb_small_head_cache 104 * vs system slabs by looking at their size (skb_end_offset()). 105 */ 106 #define SKB_SMALL_HEAD_CACHE_SIZE \ 107 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 108 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 109 SKB_SMALL_HEAD_SIZE) 110 111 #define SKB_SMALL_HEAD_HEADROOM \ 112 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 113 114 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 115 EXPORT_SYMBOL(sysctl_max_skb_frags); 116 117 #undef FN 118 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 119 static const char * const drop_reasons[] = { 120 [SKB_CONSUMED] = "CONSUMED", 121 DEFINE_DROP_REASON(FN, FN) 122 }; 123 124 static const struct drop_reason_list drop_reasons_core = { 125 .reasons = drop_reasons, 126 .n_reasons = ARRAY_SIZE(drop_reasons), 127 }; 128 129 const struct drop_reason_list __rcu * 130 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 131 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 132 }; 133 EXPORT_SYMBOL(drop_reasons_by_subsys); 134 135 /** 136 * drop_reasons_register_subsys - register another drop reason subsystem 137 * @subsys: the subsystem to register, must not be the core 138 * @list: the list of drop reasons within the subsystem, must point to 139 * a statically initialized list 140 */ 141 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 142 const struct drop_reason_list *list) 143 { 144 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 145 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 146 "invalid subsystem %d\n", subsys)) 147 return; 148 149 /* must point to statically allocated memory, so INIT is OK */ 150 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 151 } 152 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 153 154 /** 155 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 156 * @subsys: the subsystem to remove, must not be the core 157 * 158 * Note: This will synchronize_rcu() to ensure no users when it returns. 159 */ 160 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 161 { 162 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 163 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 164 "invalid subsystem %d\n", subsys)) 165 return; 166 167 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 168 169 synchronize_rcu(); 170 } 171 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 172 173 /** 174 * skb_panic - private function for out-of-line support 175 * @skb: buffer 176 * @sz: size 177 * @addr: address 178 * @msg: skb_over_panic or skb_under_panic 179 * 180 * Out-of-line support for skb_put() and skb_push(). 181 * Called via the wrapper skb_over_panic() or skb_under_panic(). 182 * Keep out of line to prevent kernel bloat. 183 * __builtin_return_address is not used because it is not always reliable. 184 */ 185 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 186 const char msg[]) 187 { 188 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 189 msg, addr, skb->len, sz, skb->head, skb->data, 190 (unsigned long)skb->tail, (unsigned long)skb->end, 191 skb->dev ? skb->dev->name : "<NULL>"); 192 BUG(); 193 } 194 195 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 196 { 197 skb_panic(skb, sz, addr, __func__); 198 } 199 200 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 201 { 202 skb_panic(skb, sz, addr, __func__); 203 } 204 205 #define NAPI_SKB_CACHE_SIZE 64 206 #define NAPI_SKB_CACHE_BULK 16 207 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 208 209 #if PAGE_SIZE == SZ_4K 210 211 #define NAPI_HAS_SMALL_PAGE_FRAG 1 212 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 213 214 /* specialized page frag allocator using a single order 0 page 215 * and slicing it into 1K sized fragment. Constrained to systems 216 * with a very limited amount of 1K fragments fitting a single 217 * page - to avoid excessive truesize underestimation 218 */ 219 220 struct page_frag_1k { 221 void *va; 222 u16 offset; 223 bool pfmemalloc; 224 }; 225 226 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 227 { 228 struct page *page; 229 int offset; 230 231 offset = nc->offset - SZ_1K; 232 if (likely(offset >= 0)) 233 goto use_frag; 234 235 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 236 if (!page) 237 return NULL; 238 239 nc->va = page_address(page); 240 nc->pfmemalloc = page_is_pfmemalloc(page); 241 offset = PAGE_SIZE - SZ_1K; 242 page_ref_add(page, offset / SZ_1K); 243 244 use_frag: 245 nc->offset = offset; 246 return nc->va + offset; 247 } 248 #else 249 250 /* the small page is actually unused in this build; add dummy helpers 251 * to please the compiler and avoid later preprocessor's conditionals 252 */ 253 #define NAPI_HAS_SMALL_PAGE_FRAG 0 254 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 255 256 struct page_frag_1k { 257 }; 258 259 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 260 { 261 return NULL; 262 } 263 264 #endif 265 266 struct napi_alloc_cache { 267 struct page_frag_cache page; 268 struct page_frag_1k page_small; 269 unsigned int skb_count; 270 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 271 }; 272 273 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 274 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 275 276 /* Double check that napi_get_frags() allocates skbs with 277 * skb->head being backed by slab, not a page fragment. 278 * This is to make sure bug fixed in 3226b158e67c 279 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 280 * does not accidentally come back. 281 */ 282 void napi_get_frags_check(struct napi_struct *napi) 283 { 284 struct sk_buff *skb; 285 286 local_bh_disable(); 287 skb = napi_get_frags(napi); 288 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 289 napi_free_frags(napi); 290 local_bh_enable(); 291 } 292 293 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 294 { 295 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 296 297 fragsz = SKB_DATA_ALIGN(fragsz); 298 299 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 300 } 301 EXPORT_SYMBOL(__napi_alloc_frag_align); 302 303 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 304 { 305 void *data; 306 307 fragsz = SKB_DATA_ALIGN(fragsz); 308 if (in_hardirq() || irqs_disabled()) { 309 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 310 311 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 312 } else { 313 struct napi_alloc_cache *nc; 314 315 local_bh_disable(); 316 nc = this_cpu_ptr(&napi_alloc_cache); 317 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 318 local_bh_enable(); 319 } 320 return data; 321 } 322 EXPORT_SYMBOL(__netdev_alloc_frag_align); 323 324 static struct sk_buff *napi_skb_cache_get(void) 325 { 326 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 327 struct sk_buff *skb; 328 329 if (unlikely(!nc->skb_count)) { 330 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache, 331 GFP_ATOMIC, 332 NAPI_SKB_CACHE_BULK, 333 nc->skb_cache); 334 if (unlikely(!nc->skb_count)) 335 return NULL; 336 } 337 338 skb = nc->skb_cache[--nc->skb_count]; 339 kasan_unpoison_object_data(skbuff_cache, skb); 340 341 return skb; 342 } 343 344 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 345 unsigned int size) 346 { 347 struct skb_shared_info *shinfo; 348 349 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 350 351 /* Assumes caller memset cleared SKB */ 352 skb->truesize = SKB_TRUESIZE(size); 353 refcount_set(&skb->users, 1); 354 skb->head = data; 355 skb->data = data; 356 skb_reset_tail_pointer(skb); 357 skb_set_end_offset(skb, size); 358 skb->mac_header = (typeof(skb->mac_header))~0U; 359 skb->transport_header = (typeof(skb->transport_header))~0U; 360 skb->alloc_cpu = raw_smp_processor_id(); 361 /* make sure we initialize shinfo sequentially */ 362 shinfo = skb_shinfo(skb); 363 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 364 atomic_set(&shinfo->dataref, 1); 365 366 skb_set_kcov_handle(skb, kcov_common_handle()); 367 } 368 369 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 370 unsigned int *size) 371 { 372 void *resized; 373 374 /* Must find the allocation size (and grow it to match). */ 375 *size = ksize(data); 376 /* krealloc() will immediately return "data" when 377 * "ksize(data)" is requested: it is the existing upper 378 * bounds. As a result, GFP_ATOMIC will be ignored. Note 379 * that this "new" pointer needs to be passed back to the 380 * caller for use so the __alloc_size hinting will be 381 * tracked correctly. 382 */ 383 resized = krealloc(data, *size, GFP_ATOMIC); 384 WARN_ON_ONCE(resized != data); 385 return resized; 386 } 387 388 /* build_skb() variant which can operate on slab buffers. 389 * Note that this should be used sparingly as slab buffers 390 * cannot be combined efficiently by GRO! 391 */ 392 struct sk_buff *slab_build_skb(void *data) 393 { 394 struct sk_buff *skb; 395 unsigned int size; 396 397 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 398 if (unlikely(!skb)) 399 return NULL; 400 401 memset(skb, 0, offsetof(struct sk_buff, tail)); 402 data = __slab_build_skb(skb, data, &size); 403 __finalize_skb_around(skb, data, size); 404 405 return skb; 406 } 407 EXPORT_SYMBOL(slab_build_skb); 408 409 /* Caller must provide SKB that is memset cleared */ 410 static void __build_skb_around(struct sk_buff *skb, void *data, 411 unsigned int frag_size) 412 { 413 unsigned int size = frag_size; 414 415 /* frag_size == 0 is considered deprecated now. Callers 416 * using slab buffer should use slab_build_skb() instead. 417 */ 418 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 419 data = __slab_build_skb(skb, data, &size); 420 421 __finalize_skb_around(skb, data, size); 422 } 423 424 /** 425 * __build_skb - build a network buffer 426 * @data: data buffer provided by caller 427 * @frag_size: size of data (must not be 0) 428 * 429 * Allocate a new &sk_buff. Caller provides space holding head and 430 * skb_shared_info. @data must have been allocated from the page 431 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 432 * allocation is deprecated, and callers should use slab_build_skb() 433 * instead.) 434 * The return is the new skb buffer. 435 * On a failure the return is %NULL, and @data is not freed. 436 * Notes : 437 * Before IO, driver allocates only data buffer where NIC put incoming frame 438 * Driver should add room at head (NET_SKB_PAD) and 439 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 440 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 441 * before giving packet to stack. 442 * RX rings only contains data buffers, not full skbs. 443 */ 444 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 445 { 446 struct sk_buff *skb; 447 448 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 449 if (unlikely(!skb)) 450 return NULL; 451 452 memset(skb, 0, offsetof(struct sk_buff, tail)); 453 __build_skb_around(skb, data, frag_size); 454 455 return skb; 456 } 457 458 /* build_skb() is wrapper over __build_skb(), that specifically 459 * takes care of skb->head and skb->pfmemalloc 460 */ 461 struct sk_buff *build_skb(void *data, unsigned int frag_size) 462 { 463 struct sk_buff *skb = __build_skb(data, frag_size); 464 465 if (likely(skb && frag_size)) { 466 skb->head_frag = 1; 467 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 468 } 469 return skb; 470 } 471 EXPORT_SYMBOL(build_skb); 472 473 /** 474 * build_skb_around - build a network buffer around provided skb 475 * @skb: sk_buff provide by caller, must be memset cleared 476 * @data: data buffer provided by caller 477 * @frag_size: size of data 478 */ 479 struct sk_buff *build_skb_around(struct sk_buff *skb, 480 void *data, unsigned int frag_size) 481 { 482 if (unlikely(!skb)) 483 return NULL; 484 485 __build_skb_around(skb, data, frag_size); 486 487 if (frag_size) { 488 skb->head_frag = 1; 489 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 490 } 491 return skb; 492 } 493 EXPORT_SYMBOL(build_skb_around); 494 495 /** 496 * __napi_build_skb - build a network buffer 497 * @data: data buffer provided by caller 498 * @frag_size: size of data 499 * 500 * Version of __build_skb() that uses NAPI percpu caches to obtain 501 * skbuff_head instead of inplace allocation. 502 * 503 * Returns a new &sk_buff on success, %NULL on allocation failure. 504 */ 505 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 506 { 507 struct sk_buff *skb; 508 509 skb = napi_skb_cache_get(); 510 if (unlikely(!skb)) 511 return NULL; 512 513 memset(skb, 0, offsetof(struct sk_buff, tail)); 514 __build_skb_around(skb, data, frag_size); 515 516 return skb; 517 } 518 519 /** 520 * napi_build_skb - build a network buffer 521 * @data: data buffer provided by caller 522 * @frag_size: size of data 523 * 524 * Version of __napi_build_skb() that takes care of skb->head_frag 525 * and skb->pfmemalloc when the data is a page or page fragment. 526 * 527 * Returns a new &sk_buff on success, %NULL on allocation failure. 528 */ 529 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 530 { 531 struct sk_buff *skb = __napi_build_skb(data, frag_size); 532 533 if (likely(skb) && frag_size) { 534 skb->head_frag = 1; 535 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 536 } 537 538 return skb; 539 } 540 EXPORT_SYMBOL(napi_build_skb); 541 542 /* 543 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 544 * the caller if emergency pfmemalloc reserves are being used. If it is and 545 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 546 * may be used. Otherwise, the packet data may be discarded until enough 547 * memory is free 548 */ 549 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 550 bool *pfmemalloc) 551 { 552 bool ret_pfmemalloc = false; 553 size_t obj_size; 554 void *obj; 555 556 obj_size = SKB_HEAD_ALIGN(*size); 557 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 558 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 559 obj = kmem_cache_alloc_node(skb_small_head_cache, 560 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 561 node); 562 *size = SKB_SMALL_HEAD_CACHE_SIZE; 563 if (obj || !(gfp_pfmemalloc_allowed(flags))) 564 goto out; 565 /* Try again but now we are using pfmemalloc reserves */ 566 ret_pfmemalloc = true; 567 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node); 568 goto out; 569 } 570 571 obj_size = kmalloc_size_roundup(obj_size); 572 /* The following cast might truncate high-order bits of obj_size, this 573 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 574 */ 575 *size = (unsigned int)obj_size; 576 577 /* 578 * Try a regular allocation, when that fails and we're not entitled 579 * to the reserves, fail. 580 */ 581 obj = kmalloc_node_track_caller(obj_size, 582 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 583 node); 584 if (obj || !(gfp_pfmemalloc_allowed(flags))) 585 goto out; 586 587 /* Try again but now we are using pfmemalloc reserves */ 588 ret_pfmemalloc = true; 589 obj = kmalloc_node_track_caller(obj_size, flags, node); 590 591 out: 592 if (pfmemalloc) 593 *pfmemalloc = ret_pfmemalloc; 594 595 return obj; 596 } 597 598 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 599 * 'private' fields and also do memory statistics to find all the 600 * [BEEP] leaks. 601 * 602 */ 603 604 /** 605 * __alloc_skb - allocate a network buffer 606 * @size: size to allocate 607 * @gfp_mask: allocation mask 608 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 609 * instead of head cache and allocate a cloned (child) skb. 610 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 611 * allocations in case the data is required for writeback 612 * @node: numa node to allocate memory on 613 * 614 * Allocate a new &sk_buff. The returned buffer has no headroom and a 615 * tail room of at least size bytes. The object has a reference count 616 * of one. The return is the buffer. On a failure the return is %NULL. 617 * 618 * Buffers may only be allocated from interrupts using a @gfp_mask of 619 * %GFP_ATOMIC. 620 */ 621 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 622 int flags, int node) 623 { 624 struct kmem_cache *cache; 625 struct sk_buff *skb; 626 bool pfmemalloc; 627 u8 *data; 628 629 cache = (flags & SKB_ALLOC_FCLONE) 630 ? skbuff_fclone_cache : skbuff_cache; 631 632 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 633 gfp_mask |= __GFP_MEMALLOC; 634 635 /* Get the HEAD */ 636 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 637 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 638 skb = napi_skb_cache_get(); 639 else 640 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 641 if (unlikely(!skb)) 642 return NULL; 643 prefetchw(skb); 644 645 /* We do our best to align skb_shared_info on a separate cache 646 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 647 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 648 * Both skb->head and skb_shared_info are cache line aligned. 649 */ 650 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 651 if (unlikely(!data)) 652 goto nodata; 653 /* kmalloc_size_roundup() might give us more room than requested. 654 * Put skb_shared_info exactly at the end of allocated zone, 655 * to allow max possible filling before reallocation. 656 */ 657 prefetchw(data + SKB_WITH_OVERHEAD(size)); 658 659 /* 660 * Only clear those fields we need to clear, not those that we will 661 * actually initialise below. Hence, don't put any more fields after 662 * the tail pointer in struct sk_buff! 663 */ 664 memset(skb, 0, offsetof(struct sk_buff, tail)); 665 __build_skb_around(skb, data, size); 666 skb->pfmemalloc = pfmemalloc; 667 668 if (flags & SKB_ALLOC_FCLONE) { 669 struct sk_buff_fclones *fclones; 670 671 fclones = container_of(skb, struct sk_buff_fclones, skb1); 672 673 skb->fclone = SKB_FCLONE_ORIG; 674 refcount_set(&fclones->fclone_ref, 1); 675 } 676 677 return skb; 678 679 nodata: 680 kmem_cache_free(cache, skb); 681 return NULL; 682 } 683 EXPORT_SYMBOL(__alloc_skb); 684 685 /** 686 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 687 * @dev: network device to receive on 688 * @len: length to allocate 689 * @gfp_mask: get_free_pages mask, passed to alloc_skb 690 * 691 * Allocate a new &sk_buff and assign it a usage count of one. The 692 * buffer has NET_SKB_PAD headroom built in. Users should allocate 693 * the headroom they think they need without accounting for the 694 * built in space. The built in space is used for optimisations. 695 * 696 * %NULL is returned if there is no free memory. 697 */ 698 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 699 gfp_t gfp_mask) 700 { 701 struct page_frag_cache *nc; 702 struct sk_buff *skb; 703 bool pfmemalloc; 704 void *data; 705 706 len += NET_SKB_PAD; 707 708 /* If requested length is either too small or too big, 709 * we use kmalloc() for skb->head allocation. 710 */ 711 if (len <= SKB_WITH_OVERHEAD(1024) || 712 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 713 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 714 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 715 if (!skb) 716 goto skb_fail; 717 goto skb_success; 718 } 719 720 len = SKB_HEAD_ALIGN(len); 721 722 if (sk_memalloc_socks()) 723 gfp_mask |= __GFP_MEMALLOC; 724 725 if (in_hardirq() || irqs_disabled()) { 726 nc = this_cpu_ptr(&netdev_alloc_cache); 727 data = page_frag_alloc(nc, len, gfp_mask); 728 pfmemalloc = nc->pfmemalloc; 729 } else { 730 local_bh_disable(); 731 nc = this_cpu_ptr(&napi_alloc_cache.page); 732 data = page_frag_alloc(nc, len, gfp_mask); 733 pfmemalloc = nc->pfmemalloc; 734 local_bh_enable(); 735 } 736 737 if (unlikely(!data)) 738 return NULL; 739 740 skb = __build_skb(data, len); 741 if (unlikely(!skb)) { 742 skb_free_frag(data); 743 return NULL; 744 } 745 746 if (pfmemalloc) 747 skb->pfmemalloc = 1; 748 skb->head_frag = 1; 749 750 skb_success: 751 skb_reserve(skb, NET_SKB_PAD); 752 skb->dev = dev; 753 754 skb_fail: 755 return skb; 756 } 757 EXPORT_SYMBOL(__netdev_alloc_skb); 758 759 /** 760 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 761 * @napi: napi instance this buffer was allocated for 762 * @len: length to allocate 763 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 764 * 765 * Allocate a new sk_buff for use in NAPI receive. This buffer will 766 * attempt to allocate the head from a special reserved region used 767 * only for NAPI Rx allocation. By doing this we can save several 768 * CPU cycles by avoiding having to disable and re-enable IRQs. 769 * 770 * %NULL is returned if there is no free memory. 771 */ 772 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 773 gfp_t gfp_mask) 774 { 775 struct napi_alloc_cache *nc; 776 struct sk_buff *skb; 777 bool pfmemalloc; 778 void *data; 779 780 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 781 len += NET_SKB_PAD + NET_IP_ALIGN; 782 783 /* If requested length is either too small or too big, 784 * we use kmalloc() for skb->head allocation. 785 * When the small frag allocator is available, prefer it over kmalloc 786 * for small fragments 787 */ 788 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 789 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 790 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 791 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 792 NUMA_NO_NODE); 793 if (!skb) 794 goto skb_fail; 795 goto skb_success; 796 } 797 798 nc = this_cpu_ptr(&napi_alloc_cache); 799 800 if (sk_memalloc_socks()) 801 gfp_mask |= __GFP_MEMALLOC; 802 803 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 804 /* we are artificially inflating the allocation size, but 805 * that is not as bad as it may look like, as: 806 * - 'len' less than GRO_MAX_HEAD makes little sense 807 * - On most systems, larger 'len' values lead to fragment 808 * size above 512 bytes 809 * - kmalloc would use the kmalloc-1k slab for such values 810 * - Builds with smaller GRO_MAX_HEAD will very likely do 811 * little networking, as that implies no WiFi and no 812 * tunnels support, and 32 bits arches. 813 */ 814 len = SZ_1K; 815 816 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 817 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 818 } else { 819 len = SKB_HEAD_ALIGN(len); 820 821 data = page_frag_alloc(&nc->page, len, gfp_mask); 822 pfmemalloc = nc->page.pfmemalloc; 823 } 824 825 if (unlikely(!data)) 826 return NULL; 827 828 skb = __napi_build_skb(data, len); 829 if (unlikely(!skb)) { 830 skb_free_frag(data); 831 return NULL; 832 } 833 834 if (pfmemalloc) 835 skb->pfmemalloc = 1; 836 skb->head_frag = 1; 837 838 skb_success: 839 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 840 skb->dev = napi->dev; 841 842 skb_fail: 843 return skb; 844 } 845 EXPORT_SYMBOL(__napi_alloc_skb); 846 847 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 848 int size, unsigned int truesize) 849 { 850 skb_fill_page_desc(skb, i, page, off, size); 851 skb->len += size; 852 skb->data_len += size; 853 skb->truesize += truesize; 854 } 855 EXPORT_SYMBOL(skb_add_rx_frag); 856 857 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 858 unsigned int truesize) 859 { 860 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 861 862 skb_frag_size_add(frag, size); 863 skb->len += size; 864 skb->data_len += size; 865 skb->truesize += truesize; 866 } 867 EXPORT_SYMBOL(skb_coalesce_rx_frag); 868 869 static void skb_drop_list(struct sk_buff **listp) 870 { 871 kfree_skb_list(*listp); 872 *listp = NULL; 873 } 874 875 static inline void skb_drop_fraglist(struct sk_buff *skb) 876 { 877 skb_drop_list(&skb_shinfo(skb)->frag_list); 878 } 879 880 static void skb_clone_fraglist(struct sk_buff *skb) 881 { 882 struct sk_buff *list; 883 884 skb_walk_frags(skb, list) 885 skb_get(list); 886 } 887 888 #if IS_ENABLED(CONFIG_PAGE_POOL) 889 bool napi_pp_put_page(struct page *page, bool napi_safe) 890 { 891 bool allow_direct = false; 892 struct page_pool *pp; 893 894 page = compound_head(page); 895 896 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 897 * in order to preserve any existing bits, such as bit 0 for the 898 * head page of compound page and bit 1 for pfmemalloc page, so 899 * mask those bits for freeing side when doing below checking, 900 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 901 * to avoid recycling the pfmemalloc page. 902 */ 903 if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE)) 904 return false; 905 906 pp = page->pp; 907 908 /* Allow direct recycle if we have reasons to believe that we are 909 * in the same context as the consumer would run, so there's 910 * no possible race. 911 * __page_pool_put_page() makes sure we're not in hardirq context 912 * and interrupts are enabled prior to accessing the cache. 913 */ 914 if (napi_safe || in_softirq()) { 915 const struct napi_struct *napi = READ_ONCE(pp->p.napi); 916 917 allow_direct = napi && 918 READ_ONCE(napi->list_owner) == smp_processor_id(); 919 } 920 921 /* Driver set this to memory recycling info. Reset it on recycle. 922 * This will *not* work for NIC using a split-page memory model. 923 * The page will be returned to the pool here regardless of the 924 * 'flipped' fragment being in use or not. 925 */ 926 page_pool_put_full_page(pp, page, allow_direct); 927 928 return true; 929 } 930 EXPORT_SYMBOL(napi_pp_put_page); 931 #endif 932 933 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe) 934 { 935 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 936 return false; 937 return napi_pp_put_page(virt_to_page(data), napi_safe); 938 } 939 940 static void skb_kfree_head(void *head, unsigned int end_offset) 941 { 942 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 943 kmem_cache_free(skb_small_head_cache, head); 944 else 945 kfree(head); 946 } 947 948 static void skb_free_head(struct sk_buff *skb, bool napi_safe) 949 { 950 unsigned char *head = skb->head; 951 952 if (skb->head_frag) { 953 if (skb_pp_recycle(skb, head, napi_safe)) 954 return; 955 skb_free_frag(head); 956 } else { 957 skb_kfree_head(head, skb_end_offset(skb)); 958 } 959 } 960 961 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason, 962 bool napi_safe) 963 { 964 struct skb_shared_info *shinfo = skb_shinfo(skb); 965 int i; 966 967 if (skb->cloned && 968 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 969 &shinfo->dataref)) 970 goto exit; 971 972 if (skb_zcopy(skb)) { 973 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 974 975 skb_zcopy_clear(skb, true); 976 if (skip_unref) 977 goto free_head; 978 } 979 980 for (i = 0; i < shinfo->nr_frags; i++) 981 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe); 982 983 free_head: 984 if (shinfo->frag_list) 985 kfree_skb_list_reason(shinfo->frag_list, reason); 986 987 skb_free_head(skb, napi_safe); 988 exit: 989 /* When we clone an SKB we copy the reycling bit. The pp_recycle 990 * bit is only set on the head though, so in order to avoid races 991 * while trying to recycle fragments on __skb_frag_unref() we need 992 * to make one SKB responsible for triggering the recycle path. 993 * So disable the recycling bit if an SKB is cloned and we have 994 * additional references to the fragmented part of the SKB. 995 * Eventually the last SKB will have the recycling bit set and it's 996 * dataref set to 0, which will trigger the recycling 997 */ 998 skb->pp_recycle = 0; 999 } 1000 1001 /* 1002 * Free an skbuff by memory without cleaning the state. 1003 */ 1004 static void kfree_skbmem(struct sk_buff *skb) 1005 { 1006 struct sk_buff_fclones *fclones; 1007 1008 switch (skb->fclone) { 1009 case SKB_FCLONE_UNAVAILABLE: 1010 kmem_cache_free(skbuff_cache, skb); 1011 return; 1012 1013 case SKB_FCLONE_ORIG: 1014 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1015 1016 /* We usually free the clone (TX completion) before original skb 1017 * This test would have no chance to be true for the clone, 1018 * while here, branch prediction will be good. 1019 */ 1020 if (refcount_read(&fclones->fclone_ref) == 1) 1021 goto fastpath; 1022 break; 1023 1024 default: /* SKB_FCLONE_CLONE */ 1025 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1026 break; 1027 } 1028 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1029 return; 1030 fastpath: 1031 kmem_cache_free(skbuff_fclone_cache, fclones); 1032 } 1033 1034 void skb_release_head_state(struct sk_buff *skb) 1035 { 1036 skb_dst_drop(skb); 1037 if (skb->destructor) { 1038 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1039 skb->destructor(skb); 1040 } 1041 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1042 nf_conntrack_put(skb_nfct(skb)); 1043 #endif 1044 skb_ext_put(skb); 1045 } 1046 1047 /* Free everything but the sk_buff shell. */ 1048 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason, 1049 bool napi_safe) 1050 { 1051 skb_release_head_state(skb); 1052 if (likely(skb->head)) 1053 skb_release_data(skb, reason, napi_safe); 1054 } 1055 1056 /** 1057 * __kfree_skb - private function 1058 * @skb: buffer 1059 * 1060 * Free an sk_buff. Release anything attached to the buffer. 1061 * Clean the state. This is an internal helper function. Users should 1062 * always call kfree_skb 1063 */ 1064 1065 void __kfree_skb(struct sk_buff *skb) 1066 { 1067 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false); 1068 kfree_skbmem(skb); 1069 } 1070 EXPORT_SYMBOL(__kfree_skb); 1071 1072 static __always_inline 1073 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1074 { 1075 if (unlikely(!skb_unref(skb))) 1076 return false; 1077 1078 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1079 u32_get_bits(reason, 1080 SKB_DROP_REASON_SUBSYS_MASK) >= 1081 SKB_DROP_REASON_SUBSYS_NUM); 1082 1083 if (reason == SKB_CONSUMED) 1084 trace_consume_skb(skb, __builtin_return_address(0)); 1085 else 1086 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1087 return true; 1088 } 1089 1090 /** 1091 * kfree_skb_reason - free an sk_buff with special reason 1092 * @skb: buffer to free 1093 * @reason: reason why this skb is dropped 1094 * 1095 * Drop a reference to the buffer and free it if the usage count has 1096 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1097 * tracepoint. 1098 */ 1099 void __fix_address 1100 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1101 { 1102 if (__kfree_skb_reason(skb, reason)) 1103 __kfree_skb(skb); 1104 } 1105 EXPORT_SYMBOL(kfree_skb_reason); 1106 1107 #define KFREE_SKB_BULK_SIZE 16 1108 1109 struct skb_free_array { 1110 unsigned int skb_count; 1111 void *skb_array[KFREE_SKB_BULK_SIZE]; 1112 }; 1113 1114 static void kfree_skb_add_bulk(struct sk_buff *skb, 1115 struct skb_free_array *sa, 1116 enum skb_drop_reason reason) 1117 { 1118 /* if SKB is a clone, don't handle this case */ 1119 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1120 __kfree_skb(skb); 1121 return; 1122 } 1123 1124 skb_release_all(skb, reason, false); 1125 sa->skb_array[sa->skb_count++] = skb; 1126 1127 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1128 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE, 1129 sa->skb_array); 1130 sa->skb_count = 0; 1131 } 1132 } 1133 1134 void __fix_address 1135 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1136 { 1137 struct skb_free_array sa; 1138 1139 sa.skb_count = 0; 1140 1141 while (segs) { 1142 struct sk_buff *next = segs->next; 1143 1144 if (__kfree_skb_reason(segs, reason)) { 1145 skb_poison_list(segs); 1146 kfree_skb_add_bulk(segs, &sa, reason); 1147 } 1148 1149 segs = next; 1150 } 1151 1152 if (sa.skb_count) 1153 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array); 1154 } 1155 EXPORT_SYMBOL(kfree_skb_list_reason); 1156 1157 /* Dump skb information and contents. 1158 * 1159 * Must only be called from net_ratelimit()-ed paths. 1160 * 1161 * Dumps whole packets if full_pkt, only headers otherwise. 1162 */ 1163 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1164 { 1165 struct skb_shared_info *sh = skb_shinfo(skb); 1166 struct net_device *dev = skb->dev; 1167 struct sock *sk = skb->sk; 1168 struct sk_buff *list_skb; 1169 bool has_mac, has_trans; 1170 int headroom, tailroom; 1171 int i, len, seg_len; 1172 1173 if (full_pkt) 1174 len = skb->len; 1175 else 1176 len = min_t(int, skb->len, MAX_HEADER + 128); 1177 1178 headroom = skb_headroom(skb); 1179 tailroom = skb_tailroom(skb); 1180 1181 has_mac = skb_mac_header_was_set(skb); 1182 has_trans = skb_transport_header_was_set(skb); 1183 1184 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1185 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1186 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1187 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1188 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1189 level, skb->len, headroom, skb_headlen(skb), tailroom, 1190 has_mac ? skb->mac_header : -1, 1191 has_mac ? skb_mac_header_len(skb) : -1, 1192 skb->network_header, 1193 has_trans ? skb_network_header_len(skb) : -1, 1194 has_trans ? skb->transport_header : -1, 1195 sh->tx_flags, sh->nr_frags, 1196 sh->gso_size, sh->gso_type, sh->gso_segs, 1197 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1198 skb->csum_valid, skb->csum_level, 1199 skb->hash, skb->sw_hash, skb->l4_hash, 1200 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1201 1202 if (dev) 1203 printk("%sdev name=%s feat=%pNF\n", 1204 level, dev->name, &dev->features); 1205 if (sk) 1206 printk("%ssk family=%hu type=%u proto=%u\n", 1207 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1208 1209 if (full_pkt && headroom) 1210 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1211 16, 1, skb->head, headroom, false); 1212 1213 seg_len = min_t(int, skb_headlen(skb), len); 1214 if (seg_len) 1215 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1216 16, 1, skb->data, seg_len, false); 1217 len -= seg_len; 1218 1219 if (full_pkt && tailroom) 1220 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1221 16, 1, skb_tail_pointer(skb), tailroom, false); 1222 1223 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1224 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1225 u32 p_off, p_len, copied; 1226 struct page *p; 1227 u8 *vaddr; 1228 1229 skb_frag_foreach_page(frag, skb_frag_off(frag), 1230 skb_frag_size(frag), p, p_off, p_len, 1231 copied) { 1232 seg_len = min_t(int, p_len, len); 1233 vaddr = kmap_atomic(p); 1234 print_hex_dump(level, "skb frag: ", 1235 DUMP_PREFIX_OFFSET, 1236 16, 1, vaddr + p_off, seg_len, false); 1237 kunmap_atomic(vaddr); 1238 len -= seg_len; 1239 if (!len) 1240 break; 1241 } 1242 } 1243 1244 if (full_pkt && skb_has_frag_list(skb)) { 1245 printk("skb fraglist:\n"); 1246 skb_walk_frags(skb, list_skb) 1247 skb_dump(level, list_skb, true); 1248 } 1249 } 1250 EXPORT_SYMBOL(skb_dump); 1251 1252 /** 1253 * skb_tx_error - report an sk_buff xmit error 1254 * @skb: buffer that triggered an error 1255 * 1256 * Report xmit error if a device callback is tracking this skb. 1257 * skb must be freed afterwards. 1258 */ 1259 void skb_tx_error(struct sk_buff *skb) 1260 { 1261 if (skb) { 1262 skb_zcopy_downgrade_managed(skb); 1263 skb_zcopy_clear(skb, true); 1264 } 1265 } 1266 EXPORT_SYMBOL(skb_tx_error); 1267 1268 #ifdef CONFIG_TRACEPOINTS 1269 /** 1270 * consume_skb - free an skbuff 1271 * @skb: buffer to free 1272 * 1273 * Drop a ref to the buffer and free it if the usage count has hit zero 1274 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1275 * is being dropped after a failure and notes that 1276 */ 1277 void consume_skb(struct sk_buff *skb) 1278 { 1279 if (!skb_unref(skb)) 1280 return; 1281 1282 trace_consume_skb(skb, __builtin_return_address(0)); 1283 __kfree_skb(skb); 1284 } 1285 EXPORT_SYMBOL(consume_skb); 1286 #endif 1287 1288 /** 1289 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1290 * @skb: buffer to free 1291 * 1292 * Alike consume_skb(), but this variant assumes that this is the last 1293 * skb reference and all the head states have been already dropped 1294 */ 1295 void __consume_stateless_skb(struct sk_buff *skb) 1296 { 1297 trace_consume_skb(skb, __builtin_return_address(0)); 1298 skb_release_data(skb, SKB_CONSUMED, false); 1299 kfree_skbmem(skb); 1300 } 1301 1302 static void napi_skb_cache_put(struct sk_buff *skb) 1303 { 1304 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1305 u32 i; 1306 1307 kasan_poison_object_data(skbuff_cache, skb); 1308 nc->skb_cache[nc->skb_count++] = skb; 1309 1310 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1311 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1312 kasan_unpoison_object_data(skbuff_cache, 1313 nc->skb_cache[i]); 1314 1315 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF, 1316 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1317 nc->skb_count = NAPI_SKB_CACHE_HALF; 1318 } 1319 } 1320 1321 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1322 { 1323 skb_release_all(skb, reason, true); 1324 napi_skb_cache_put(skb); 1325 } 1326 1327 void napi_skb_free_stolen_head(struct sk_buff *skb) 1328 { 1329 if (unlikely(skb->slow_gro)) { 1330 nf_reset_ct(skb); 1331 skb_dst_drop(skb); 1332 skb_ext_put(skb); 1333 skb_orphan(skb); 1334 skb->slow_gro = 0; 1335 } 1336 napi_skb_cache_put(skb); 1337 } 1338 1339 void napi_consume_skb(struct sk_buff *skb, int budget) 1340 { 1341 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1342 if (unlikely(!budget)) { 1343 dev_consume_skb_any(skb); 1344 return; 1345 } 1346 1347 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1348 1349 if (!skb_unref(skb)) 1350 return; 1351 1352 /* if reaching here SKB is ready to free */ 1353 trace_consume_skb(skb, __builtin_return_address(0)); 1354 1355 /* if SKB is a clone, don't handle this case */ 1356 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1357 __kfree_skb(skb); 1358 return; 1359 } 1360 1361 skb_release_all(skb, SKB_CONSUMED, !!budget); 1362 napi_skb_cache_put(skb); 1363 } 1364 EXPORT_SYMBOL(napi_consume_skb); 1365 1366 /* Make sure a field is contained by headers group */ 1367 #define CHECK_SKB_FIELD(field) \ 1368 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1369 offsetof(struct sk_buff, headers.field)); \ 1370 1371 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1372 { 1373 new->tstamp = old->tstamp; 1374 /* We do not copy old->sk */ 1375 new->dev = old->dev; 1376 memcpy(new->cb, old->cb, sizeof(old->cb)); 1377 skb_dst_copy(new, old); 1378 __skb_ext_copy(new, old); 1379 __nf_copy(new, old, false); 1380 1381 /* Note : this field could be in the headers group. 1382 * It is not yet because we do not want to have a 16 bit hole 1383 */ 1384 new->queue_mapping = old->queue_mapping; 1385 1386 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1387 CHECK_SKB_FIELD(protocol); 1388 CHECK_SKB_FIELD(csum); 1389 CHECK_SKB_FIELD(hash); 1390 CHECK_SKB_FIELD(priority); 1391 CHECK_SKB_FIELD(skb_iif); 1392 CHECK_SKB_FIELD(vlan_proto); 1393 CHECK_SKB_FIELD(vlan_tci); 1394 CHECK_SKB_FIELD(transport_header); 1395 CHECK_SKB_FIELD(network_header); 1396 CHECK_SKB_FIELD(mac_header); 1397 CHECK_SKB_FIELD(inner_protocol); 1398 CHECK_SKB_FIELD(inner_transport_header); 1399 CHECK_SKB_FIELD(inner_network_header); 1400 CHECK_SKB_FIELD(inner_mac_header); 1401 CHECK_SKB_FIELD(mark); 1402 #ifdef CONFIG_NETWORK_SECMARK 1403 CHECK_SKB_FIELD(secmark); 1404 #endif 1405 #ifdef CONFIG_NET_RX_BUSY_POLL 1406 CHECK_SKB_FIELD(napi_id); 1407 #endif 1408 CHECK_SKB_FIELD(alloc_cpu); 1409 #ifdef CONFIG_XPS 1410 CHECK_SKB_FIELD(sender_cpu); 1411 #endif 1412 #ifdef CONFIG_NET_SCHED 1413 CHECK_SKB_FIELD(tc_index); 1414 #endif 1415 1416 } 1417 1418 /* 1419 * You should not add any new code to this function. Add it to 1420 * __copy_skb_header above instead. 1421 */ 1422 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1423 { 1424 #define C(x) n->x = skb->x 1425 1426 n->next = n->prev = NULL; 1427 n->sk = NULL; 1428 __copy_skb_header(n, skb); 1429 1430 C(len); 1431 C(data_len); 1432 C(mac_len); 1433 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1434 n->cloned = 1; 1435 n->nohdr = 0; 1436 n->peeked = 0; 1437 C(pfmemalloc); 1438 C(pp_recycle); 1439 n->destructor = NULL; 1440 C(tail); 1441 C(end); 1442 C(head); 1443 C(head_frag); 1444 C(data); 1445 C(truesize); 1446 refcount_set(&n->users, 1); 1447 1448 atomic_inc(&(skb_shinfo(skb)->dataref)); 1449 skb->cloned = 1; 1450 1451 return n; 1452 #undef C 1453 } 1454 1455 /** 1456 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1457 * @first: first sk_buff of the msg 1458 */ 1459 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1460 { 1461 struct sk_buff *n; 1462 1463 n = alloc_skb(0, GFP_ATOMIC); 1464 if (!n) 1465 return NULL; 1466 1467 n->len = first->len; 1468 n->data_len = first->len; 1469 n->truesize = first->truesize; 1470 1471 skb_shinfo(n)->frag_list = first; 1472 1473 __copy_skb_header(n, first); 1474 n->destructor = NULL; 1475 1476 return n; 1477 } 1478 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1479 1480 /** 1481 * skb_morph - morph one skb into another 1482 * @dst: the skb to receive the contents 1483 * @src: the skb to supply the contents 1484 * 1485 * This is identical to skb_clone except that the target skb is 1486 * supplied by the user. 1487 * 1488 * The target skb is returned upon exit. 1489 */ 1490 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1491 { 1492 skb_release_all(dst, SKB_CONSUMED, false); 1493 return __skb_clone(dst, src); 1494 } 1495 EXPORT_SYMBOL_GPL(skb_morph); 1496 1497 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1498 { 1499 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1500 struct user_struct *user; 1501 1502 if (capable(CAP_IPC_LOCK) || !size) 1503 return 0; 1504 1505 rlim = rlimit(RLIMIT_MEMLOCK); 1506 if (rlim == RLIM_INFINITY) 1507 return 0; 1508 1509 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1510 max_pg = rlim >> PAGE_SHIFT; 1511 user = mmp->user ? : current_user(); 1512 1513 old_pg = atomic_long_read(&user->locked_vm); 1514 do { 1515 new_pg = old_pg + num_pg; 1516 if (new_pg > max_pg) 1517 return -ENOBUFS; 1518 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1519 1520 if (!mmp->user) { 1521 mmp->user = get_uid(user); 1522 mmp->num_pg = num_pg; 1523 } else { 1524 mmp->num_pg += num_pg; 1525 } 1526 1527 return 0; 1528 } 1529 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1530 1531 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1532 { 1533 if (mmp->user) { 1534 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1535 free_uid(mmp->user); 1536 } 1537 } 1538 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1539 1540 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1541 { 1542 struct ubuf_info_msgzc *uarg; 1543 struct sk_buff *skb; 1544 1545 WARN_ON_ONCE(!in_task()); 1546 1547 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1548 if (!skb) 1549 return NULL; 1550 1551 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1552 uarg = (void *)skb->cb; 1553 uarg->mmp.user = NULL; 1554 1555 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1556 kfree_skb(skb); 1557 return NULL; 1558 } 1559 1560 uarg->ubuf.callback = msg_zerocopy_callback; 1561 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1562 uarg->len = 1; 1563 uarg->bytelen = size; 1564 uarg->zerocopy = 1; 1565 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1566 refcount_set(&uarg->ubuf.refcnt, 1); 1567 sock_hold(sk); 1568 1569 return &uarg->ubuf; 1570 } 1571 1572 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1573 { 1574 return container_of((void *)uarg, struct sk_buff, cb); 1575 } 1576 1577 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1578 struct ubuf_info *uarg) 1579 { 1580 if (uarg) { 1581 struct ubuf_info_msgzc *uarg_zc; 1582 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1583 u32 bytelen, next; 1584 1585 /* there might be non MSG_ZEROCOPY users */ 1586 if (uarg->callback != msg_zerocopy_callback) 1587 return NULL; 1588 1589 /* realloc only when socket is locked (TCP, UDP cork), 1590 * so uarg->len and sk_zckey access is serialized 1591 */ 1592 if (!sock_owned_by_user(sk)) { 1593 WARN_ON_ONCE(1); 1594 return NULL; 1595 } 1596 1597 uarg_zc = uarg_to_msgzc(uarg); 1598 bytelen = uarg_zc->bytelen + size; 1599 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1600 /* TCP can create new skb to attach new uarg */ 1601 if (sk->sk_type == SOCK_STREAM) 1602 goto new_alloc; 1603 return NULL; 1604 } 1605 1606 next = (u32)atomic_read(&sk->sk_zckey); 1607 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1608 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1609 return NULL; 1610 uarg_zc->len++; 1611 uarg_zc->bytelen = bytelen; 1612 atomic_set(&sk->sk_zckey, ++next); 1613 1614 /* no extra ref when appending to datagram (MSG_MORE) */ 1615 if (sk->sk_type == SOCK_STREAM) 1616 net_zcopy_get(uarg); 1617 1618 return uarg; 1619 } 1620 } 1621 1622 new_alloc: 1623 return msg_zerocopy_alloc(sk, size); 1624 } 1625 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1626 1627 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1628 { 1629 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1630 u32 old_lo, old_hi; 1631 u64 sum_len; 1632 1633 old_lo = serr->ee.ee_info; 1634 old_hi = serr->ee.ee_data; 1635 sum_len = old_hi - old_lo + 1ULL + len; 1636 1637 if (sum_len >= (1ULL << 32)) 1638 return false; 1639 1640 if (lo != old_hi + 1) 1641 return false; 1642 1643 serr->ee.ee_data += len; 1644 return true; 1645 } 1646 1647 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1648 { 1649 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1650 struct sock_exterr_skb *serr; 1651 struct sock *sk = skb->sk; 1652 struct sk_buff_head *q; 1653 unsigned long flags; 1654 bool is_zerocopy; 1655 u32 lo, hi; 1656 u16 len; 1657 1658 mm_unaccount_pinned_pages(&uarg->mmp); 1659 1660 /* if !len, there was only 1 call, and it was aborted 1661 * so do not queue a completion notification 1662 */ 1663 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1664 goto release; 1665 1666 len = uarg->len; 1667 lo = uarg->id; 1668 hi = uarg->id + len - 1; 1669 is_zerocopy = uarg->zerocopy; 1670 1671 serr = SKB_EXT_ERR(skb); 1672 memset(serr, 0, sizeof(*serr)); 1673 serr->ee.ee_errno = 0; 1674 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1675 serr->ee.ee_data = hi; 1676 serr->ee.ee_info = lo; 1677 if (!is_zerocopy) 1678 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1679 1680 q = &sk->sk_error_queue; 1681 spin_lock_irqsave(&q->lock, flags); 1682 tail = skb_peek_tail(q); 1683 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1684 !skb_zerocopy_notify_extend(tail, lo, len)) { 1685 __skb_queue_tail(q, skb); 1686 skb = NULL; 1687 } 1688 spin_unlock_irqrestore(&q->lock, flags); 1689 1690 sk_error_report(sk); 1691 1692 release: 1693 consume_skb(skb); 1694 sock_put(sk); 1695 } 1696 1697 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1698 bool success) 1699 { 1700 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1701 1702 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1703 1704 if (refcount_dec_and_test(&uarg->refcnt)) 1705 __msg_zerocopy_callback(uarg_zc); 1706 } 1707 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1708 1709 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1710 { 1711 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1712 1713 atomic_dec(&sk->sk_zckey); 1714 uarg_to_msgzc(uarg)->len--; 1715 1716 if (have_uref) 1717 msg_zerocopy_callback(NULL, uarg, true); 1718 } 1719 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1720 1721 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1722 struct msghdr *msg, int len, 1723 struct ubuf_info *uarg) 1724 { 1725 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1726 int err, orig_len = skb->len; 1727 1728 /* An skb can only point to one uarg. This edge case happens when 1729 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1730 */ 1731 if (orig_uarg && uarg != orig_uarg) 1732 return -EEXIST; 1733 1734 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1735 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1736 struct sock *save_sk = skb->sk; 1737 1738 /* Streams do not free skb on error. Reset to prev state. */ 1739 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1740 skb->sk = sk; 1741 ___pskb_trim(skb, orig_len); 1742 skb->sk = save_sk; 1743 return err; 1744 } 1745 1746 skb_zcopy_set(skb, uarg, NULL); 1747 return skb->len - orig_len; 1748 } 1749 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1750 1751 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1752 { 1753 int i; 1754 1755 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1756 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1757 skb_frag_ref(skb, i); 1758 } 1759 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1760 1761 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1762 gfp_t gfp_mask) 1763 { 1764 if (skb_zcopy(orig)) { 1765 if (skb_zcopy(nskb)) { 1766 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1767 if (!gfp_mask) { 1768 WARN_ON_ONCE(1); 1769 return -ENOMEM; 1770 } 1771 if (skb_uarg(nskb) == skb_uarg(orig)) 1772 return 0; 1773 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1774 return -EIO; 1775 } 1776 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1777 } 1778 return 0; 1779 } 1780 1781 /** 1782 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1783 * @skb: the skb to modify 1784 * @gfp_mask: allocation priority 1785 * 1786 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1787 * It will copy all frags into kernel and drop the reference 1788 * to userspace pages. 1789 * 1790 * If this function is called from an interrupt gfp_mask() must be 1791 * %GFP_ATOMIC. 1792 * 1793 * Returns 0 on success or a negative error code on failure 1794 * to allocate kernel memory to copy to. 1795 */ 1796 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1797 { 1798 int num_frags = skb_shinfo(skb)->nr_frags; 1799 struct page *page, *head = NULL; 1800 int i, order, psize, new_frags; 1801 u32 d_off; 1802 1803 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1804 return -EINVAL; 1805 1806 if (!num_frags) 1807 goto release; 1808 1809 /* We might have to allocate high order pages, so compute what minimum 1810 * page order is needed. 1811 */ 1812 order = 0; 1813 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1814 order++; 1815 psize = (PAGE_SIZE << order); 1816 1817 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1818 for (i = 0; i < new_frags; i++) { 1819 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1820 if (!page) { 1821 while (head) { 1822 struct page *next = (struct page *)page_private(head); 1823 put_page(head); 1824 head = next; 1825 } 1826 return -ENOMEM; 1827 } 1828 set_page_private(page, (unsigned long)head); 1829 head = page; 1830 } 1831 1832 page = head; 1833 d_off = 0; 1834 for (i = 0; i < num_frags; i++) { 1835 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1836 u32 p_off, p_len, copied; 1837 struct page *p; 1838 u8 *vaddr; 1839 1840 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1841 p, p_off, p_len, copied) { 1842 u32 copy, done = 0; 1843 vaddr = kmap_atomic(p); 1844 1845 while (done < p_len) { 1846 if (d_off == psize) { 1847 d_off = 0; 1848 page = (struct page *)page_private(page); 1849 } 1850 copy = min_t(u32, psize - d_off, p_len - done); 1851 memcpy(page_address(page) + d_off, 1852 vaddr + p_off + done, copy); 1853 done += copy; 1854 d_off += copy; 1855 } 1856 kunmap_atomic(vaddr); 1857 } 1858 } 1859 1860 /* skb frags release userspace buffers */ 1861 for (i = 0; i < num_frags; i++) 1862 skb_frag_unref(skb, i); 1863 1864 /* skb frags point to kernel buffers */ 1865 for (i = 0; i < new_frags - 1; i++) { 1866 __skb_fill_page_desc(skb, i, head, 0, psize); 1867 head = (struct page *)page_private(head); 1868 } 1869 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1870 skb_shinfo(skb)->nr_frags = new_frags; 1871 1872 release: 1873 skb_zcopy_clear(skb, false); 1874 return 0; 1875 } 1876 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1877 1878 /** 1879 * skb_clone - duplicate an sk_buff 1880 * @skb: buffer to clone 1881 * @gfp_mask: allocation priority 1882 * 1883 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1884 * copies share the same packet data but not structure. The new 1885 * buffer has a reference count of 1. If the allocation fails the 1886 * function returns %NULL otherwise the new buffer is returned. 1887 * 1888 * If this function is called from an interrupt gfp_mask() must be 1889 * %GFP_ATOMIC. 1890 */ 1891 1892 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1893 { 1894 struct sk_buff_fclones *fclones = container_of(skb, 1895 struct sk_buff_fclones, 1896 skb1); 1897 struct sk_buff *n; 1898 1899 if (skb_orphan_frags(skb, gfp_mask)) 1900 return NULL; 1901 1902 if (skb->fclone == SKB_FCLONE_ORIG && 1903 refcount_read(&fclones->fclone_ref) == 1) { 1904 n = &fclones->skb2; 1905 refcount_set(&fclones->fclone_ref, 2); 1906 n->fclone = SKB_FCLONE_CLONE; 1907 } else { 1908 if (skb_pfmemalloc(skb)) 1909 gfp_mask |= __GFP_MEMALLOC; 1910 1911 n = kmem_cache_alloc(skbuff_cache, gfp_mask); 1912 if (!n) 1913 return NULL; 1914 1915 n->fclone = SKB_FCLONE_UNAVAILABLE; 1916 } 1917 1918 return __skb_clone(n, skb); 1919 } 1920 EXPORT_SYMBOL(skb_clone); 1921 1922 void skb_headers_offset_update(struct sk_buff *skb, int off) 1923 { 1924 /* Only adjust this if it actually is csum_start rather than csum */ 1925 if (skb->ip_summed == CHECKSUM_PARTIAL) 1926 skb->csum_start += off; 1927 /* {transport,network,mac}_header and tail are relative to skb->head */ 1928 skb->transport_header += off; 1929 skb->network_header += off; 1930 if (skb_mac_header_was_set(skb)) 1931 skb->mac_header += off; 1932 skb->inner_transport_header += off; 1933 skb->inner_network_header += off; 1934 skb->inner_mac_header += off; 1935 } 1936 EXPORT_SYMBOL(skb_headers_offset_update); 1937 1938 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1939 { 1940 __copy_skb_header(new, old); 1941 1942 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1943 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1944 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1945 } 1946 EXPORT_SYMBOL(skb_copy_header); 1947 1948 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1949 { 1950 if (skb_pfmemalloc(skb)) 1951 return SKB_ALLOC_RX; 1952 return 0; 1953 } 1954 1955 /** 1956 * skb_copy - create private copy of an sk_buff 1957 * @skb: buffer to copy 1958 * @gfp_mask: allocation priority 1959 * 1960 * Make a copy of both an &sk_buff and its data. This is used when the 1961 * caller wishes to modify the data and needs a private copy of the 1962 * data to alter. Returns %NULL on failure or the pointer to the buffer 1963 * on success. The returned buffer has a reference count of 1. 1964 * 1965 * As by-product this function converts non-linear &sk_buff to linear 1966 * one, so that &sk_buff becomes completely private and caller is allowed 1967 * to modify all the data of returned buffer. This means that this 1968 * function is not recommended for use in circumstances when only 1969 * header is going to be modified. Use pskb_copy() instead. 1970 */ 1971 1972 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1973 { 1974 struct sk_buff *n; 1975 unsigned int size; 1976 int headerlen; 1977 1978 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 1979 return NULL; 1980 1981 headerlen = skb_headroom(skb); 1982 size = skb_end_offset(skb) + skb->data_len; 1983 n = __alloc_skb(size, gfp_mask, 1984 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1985 if (!n) 1986 return NULL; 1987 1988 /* Set the data pointer */ 1989 skb_reserve(n, headerlen); 1990 /* Set the tail pointer and length */ 1991 skb_put(n, skb->len); 1992 1993 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1994 1995 skb_copy_header(n, skb); 1996 return n; 1997 } 1998 EXPORT_SYMBOL(skb_copy); 1999 2000 /** 2001 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2002 * @skb: buffer to copy 2003 * @headroom: headroom of new skb 2004 * @gfp_mask: allocation priority 2005 * @fclone: if true allocate the copy of the skb from the fclone 2006 * cache instead of the head cache; it is recommended to set this 2007 * to true for the cases where the copy will likely be cloned 2008 * 2009 * Make a copy of both an &sk_buff and part of its data, located 2010 * in header. Fragmented data remain shared. This is used when 2011 * the caller wishes to modify only header of &sk_buff and needs 2012 * private copy of the header to alter. Returns %NULL on failure 2013 * or the pointer to the buffer on success. 2014 * The returned buffer has a reference count of 1. 2015 */ 2016 2017 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2018 gfp_t gfp_mask, bool fclone) 2019 { 2020 unsigned int size = skb_headlen(skb) + headroom; 2021 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2022 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2023 2024 if (!n) 2025 goto out; 2026 2027 /* Set the data pointer */ 2028 skb_reserve(n, headroom); 2029 /* Set the tail pointer and length */ 2030 skb_put(n, skb_headlen(skb)); 2031 /* Copy the bytes */ 2032 skb_copy_from_linear_data(skb, n->data, n->len); 2033 2034 n->truesize += skb->data_len; 2035 n->data_len = skb->data_len; 2036 n->len = skb->len; 2037 2038 if (skb_shinfo(skb)->nr_frags) { 2039 int i; 2040 2041 if (skb_orphan_frags(skb, gfp_mask) || 2042 skb_zerocopy_clone(n, skb, gfp_mask)) { 2043 kfree_skb(n); 2044 n = NULL; 2045 goto out; 2046 } 2047 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2048 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2049 skb_frag_ref(skb, i); 2050 } 2051 skb_shinfo(n)->nr_frags = i; 2052 } 2053 2054 if (skb_has_frag_list(skb)) { 2055 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2056 skb_clone_fraglist(n); 2057 } 2058 2059 skb_copy_header(n, skb); 2060 out: 2061 return n; 2062 } 2063 EXPORT_SYMBOL(__pskb_copy_fclone); 2064 2065 /** 2066 * pskb_expand_head - reallocate header of &sk_buff 2067 * @skb: buffer to reallocate 2068 * @nhead: room to add at head 2069 * @ntail: room to add at tail 2070 * @gfp_mask: allocation priority 2071 * 2072 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2073 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2074 * reference count of 1. Returns zero in the case of success or error, 2075 * if expansion failed. In the last case, &sk_buff is not changed. 2076 * 2077 * All the pointers pointing into skb header may change and must be 2078 * reloaded after call to this function. 2079 */ 2080 2081 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2082 gfp_t gfp_mask) 2083 { 2084 unsigned int osize = skb_end_offset(skb); 2085 unsigned int size = osize + nhead + ntail; 2086 long off; 2087 u8 *data; 2088 int i; 2089 2090 BUG_ON(nhead < 0); 2091 2092 BUG_ON(skb_shared(skb)); 2093 2094 skb_zcopy_downgrade_managed(skb); 2095 2096 if (skb_pfmemalloc(skb)) 2097 gfp_mask |= __GFP_MEMALLOC; 2098 2099 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2100 if (!data) 2101 goto nodata; 2102 size = SKB_WITH_OVERHEAD(size); 2103 2104 /* Copy only real data... and, alas, header. This should be 2105 * optimized for the cases when header is void. 2106 */ 2107 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2108 2109 memcpy((struct skb_shared_info *)(data + size), 2110 skb_shinfo(skb), 2111 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2112 2113 /* 2114 * if shinfo is shared we must drop the old head gracefully, but if it 2115 * is not we can just drop the old head and let the existing refcount 2116 * be since all we did is relocate the values 2117 */ 2118 if (skb_cloned(skb)) { 2119 if (skb_orphan_frags(skb, gfp_mask)) 2120 goto nofrags; 2121 if (skb_zcopy(skb)) 2122 refcount_inc(&skb_uarg(skb)->refcnt); 2123 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2124 skb_frag_ref(skb, i); 2125 2126 if (skb_has_frag_list(skb)) 2127 skb_clone_fraglist(skb); 2128 2129 skb_release_data(skb, SKB_CONSUMED, false); 2130 } else { 2131 skb_free_head(skb, false); 2132 } 2133 off = (data + nhead) - skb->head; 2134 2135 skb->head = data; 2136 skb->head_frag = 0; 2137 skb->data += off; 2138 2139 skb_set_end_offset(skb, size); 2140 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2141 off = nhead; 2142 #endif 2143 skb->tail += off; 2144 skb_headers_offset_update(skb, nhead); 2145 skb->cloned = 0; 2146 skb->hdr_len = 0; 2147 skb->nohdr = 0; 2148 atomic_set(&skb_shinfo(skb)->dataref, 1); 2149 2150 skb_metadata_clear(skb); 2151 2152 /* It is not generally safe to change skb->truesize. 2153 * For the moment, we really care of rx path, or 2154 * when skb is orphaned (not attached to a socket). 2155 */ 2156 if (!skb->sk || skb->destructor == sock_edemux) 2157 skb->truesize += size - osize; 2158 2159 return 0; 2160 2161 nofrags: 2162 skb_kfree_head(data, size); 2163 nodata: 2164 return -ENOMEM; 2165 } 2166 EXPORT_SYMBOL(pskb_expand_head); 2167 2168 /* Make private copy of skb with writable head and some headroom */ 2169 2170 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2171 { 2172 struct sk_buff *skb2; 2173 int delta = headroom - skb_headroom(skb); 2174 2175 if (delta <= 0) 2176 skb2 = pskb_copy(skb, GFP_ATOMIC); 2177 else { 2178 skb2 = skb_clone(skb, GFP_ATOMIC); 2179 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2180 GFP_ATOMIC)) { 2181 kfree_skb(skb2); 2182 skb2 = NULL; 2183 } 2184 } 2185 return skb2; 2186 } 2187 EXPORT_SYMBOL(skb_realloc_headroom); 2188 2189 /* Note: We plan to rework this in linux-6.4 */ 2190 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2191 { 2192 unsigned int saved_end_offset, saved_truesize; 2193 struct skb_shared_info *shinfo; 2194 int res; 2195 2196 saved_end_offset = skb_end_offset(skb); 2197 saved_truesize = skb->truesize; 2198 2199 res = pskb_expand_head(skb, 0, 0, pri); 2200 if (res) 2201 return res; 2202 2203 skb->truesize = saved_truesize; 2204 2205 if (likely(skb_end_offset(skb) == saved_end_offset)) 2206 return 0; 2207 2208 /* We can not change skb->end if the original or new value 2209 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2210 */ 2211 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2212 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2213 /* We think this path should not be taken. 2214 * Add a temporary trace to warn us just in case. 2215 */ 2216 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2217 saved_end_offset, skb_end_offset(skb)); 2218 WARN_ON_ONCE(1); 2219 return 0; 2220 } 2221 2222 shinfo = skb_shinfo(skb); 2223 2224 /* We are about to change back skb->end, 2225 * we need to move skb_shinfo() to its new location. 2226 */ 2227 memmove(skb->head + saved_end_offset, 2228 shinfo, 2229 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2230 2231 skb_set_end_offset(skb, saved_end_offset); 2232 2233 return 0; 2234 } 2235 2236 /** 2237 * skb_expand_head - reallocate header of &sk_buff 2238 * @skb: buffer to reallocate 2239 * @headroom: needed headroom 2240 * 2241 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2242 * if possible; copies skb->sk to new skb as needed 2243 * and frees original skb in case of failures. 2244 * 2245 * It expect increased headroom and generates warning otherwise. 2246 */ 2247 2248 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2249 { 2250 int delta = headroom - skb_headroom(skb); 2251 int osize = skb_end_offset(skb); 2252 struct sock *sk = skb->sk; 2253 2254 if (WARN_ONCE(delta <= 0, 2255 "%s is expecting an increase in the headroom", __func__)) 2256 return skb; 2257 2258 delta = SKB_DATA_ALIGN(delta); 2259 /* pskb_expand_head() might crash, if skb is shared. */ 2260 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2261 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2262 2263 if (unlikely(!nskb)) 2264 goto fail; 2265 2266 if (sk) 2267 skb_set_owner_w(nskb, sk); 2268 consume_skb(skb); 2269 skb = nskb; 2270 } 2271 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2272 goto fail; 2273 2274 if (sk && is_skb_wmem(skb)) { 2275 delta = skb_end_offset(skb) - osize; 2276 refcount_add(delta, &sk->sk_wmem_alloc); 2277 skb->truesize += delta; 2278 } 2279 return skb; 2280 2281 fail: 2282 kfree_skb(skb); 2283 return NULL; 2284 } 2285 EXPORT_SYMBOL(skb_expand_head); 2286 2287 /** 2288 * skb_copy_expand - copy and expand sk_buff 2289 * @skb: buffer to copy 2290 * @newheadroom: new free bytes at head 2291 * @newtailroom: new free bytes at tail 2292 * @gfp_mask: allocation priority 2293 * 2294 * Make a copy of both an &sk_buff and its data and while doing so 2295 * allocate additional space. 2296 * 2297 * This is used when the caller wishes to modify the data and needs a 2298 * private copy of the data to alter as well as more space for new fields. 2299 * Returns %NULL on failure or the pointer to the buffer 2300 * on success. The returned buffer has a reference count of 1. 2301 * 2302 * You must pass %GFP_ATOMIC as the allocation priority if this function 2303 * is called from an interrupt. 2304 */ 2305 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2306 int newheadroom, int newtailroom, 2307 gfp_t gfp_mask) 2308 { 2309 /* 2310 * Allocate the copy buffer 2311 */ 2312 int head_copy_len, head_copy_off; 2313 struct sk_buff *n; 2314 int oldheadroom; 2315 2316 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2317 return NULL; 2318 2319 oldheadroom = skb_headroom(skb); 2320 n = __alloc_skb(newheadroom + skb->len + newtailroom, 2321 gfp_mask, skb_alloc_rx_flag(skb), 2322 NUMA_NO_NODE); 2323 if (!n) 2324 return NULL; 2325 2326 skb_reserve(n, newheadroom); 2327 2328 /* Set the tail pointer and length */ 2329 skb_put(n, skb->len); 2330 2331 head_copy_len = oldheadroom; 2332 head_copy_off = 0; 2333 if (newheadroom <= head_copy_len) 2334 head_copy_len = newheadroom; 2335 else 2336 head_copy_off = newheadroom - head_copy_len; 2337 2338 /* Copy the linear header and data. */ 2339 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2340 skb->len + head_copy_len)); 2341 2342 skb_copy_header(n, skb); 2343 2344 skb_headers_offset_update(n, newheadroom - oldheadroom); 2345 2346 return n; 2347 } 2348 EXPORT_SYMBOL(skb_copy_expand); 2349 2350 /** 2351 * __skb_pad - zero pad the tail of an skb 2352 * @skb: buffer to pad 2353 * @pad: space to pad 2354 * @free_on_error: free buffer on error 2355 * 2356 * Ensure that a buffer is followed by a padding area that is zero 2357 * filled. Used by network drivers which may DMA or transfer data 2358 * beyond the buffer end onto the wire. 2359 * 2360 * May return error in out of memory cases. The skb is freed on error 2361 * if @free_on_error is true. 2362 */ 2363 2364 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2365 { 2366 int err; 2367 int ntail; 2368 2369 /* If the skbuff is non linear tailroom is always zero.. */ 2370 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2371 memset(skb->data+skb->len, 0, pad); 2372 return 0; 2373 } 2374 2375 ntail = skb->data_len + pad - (skb->end - skb->tail); 2376 if (likely(skb_cloned(skb) || ntail > 0)) { 2377 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2378 if (unlikely(err)) 2379 goto free_skb; 2380 } 2381 2382 /* FIXME: The use of this function with non-linear skb's really needs 2383 * to be audited. 2384 */ 2385 err = skb_linearize(skb); 2386 if (unlikely(err)) 2387 goto free_skb; 2388 2389 memset(skb->data + skb->len, 0, pad); 2390 return 0; 2391 2392 free_skb: 2393 if (free_on_error) 2394 kfree_skb(skb); 2395 return err; 2396 } 2397 EXPORT_SYMBOL(__skb_pad); 2398 2399 /** 2400 * pskb_put - add data to the tail of a potentially fragmented buffer 2401 * @skb: start of the buffer to use 2402 * @tail: tail fragment of the buffer to use 2403 * @len: amount of data to add 2404 * 2405 * This function extends the used data area of the potentially 2406 * fragmented buffer. @tail must be the last fragment of @skb -- or 2407 * @skb itself. If this would exceed the total buffer size the kernel 2408 * will panic. A pointer to the first byte of the extra data is 2409 * returned. 2410 */ 2411 2412 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2413 { 2414 if (tail != skb) { 2415 skb->data_len += len; 2416 skb->len += len; 2417 } 2418 return skb_put(tail, len); 2419 } 2420 EXPORT_SYMBOL_GPL(pskb_put); 2421 2422 /** 2423 * skb_put - add data to a buffer 2424 * @skb: buffer to use 2425 * @len: amount of data to add 2426 * 2427 * This function extends the used data area of the buffer. If this would 2428 * exceed the total buffer size the kernel will panic. A pointer to the 2429 * first byte of the extra data is returned. 2430 */ 2431 void *skb_put(struct sk_buff *skb, unsigned int len) 2432 { 2433 void *tmp = skb_tail_pointer(skb); 2434 SKB_LINEAR_ASSERT(skb); 2435 skb->tail += len; 2436 skb->len += len; 2437 if (unlikely(skb->tail > skb->end)) 2438 skb_over_panic(skb, len, __builtin_return_address(0)); 2439 return tmp; 2440 } 2441 EXPORT_SYMBOL(skb_put); 2442 2443 /** 2444 * skb_push - add data to the start of a buffer 2445 * @skb: buffer to use 2446 * @len: amount of data to add 2447 * 2448 * This function extends the used data area of the buffer at the buffer 2449 * start. If this would exceed the total buffer headroom the kernel will 2450 * panic. A pointer to the first byte of the extra data is returned. 2451 */ 2452 void *skb_push(struct sk_buff *skb, unsigned int len) 2453 { 2454 skb->data -= len; 2455 skb->len += len; 2456 if (unlikely(skb->data < skb->head)) 2457 skb_under_panic(skb, len, __builtin_return_address(0)); 2458 return skb->data; 2459 } 2460 EXPORT_SYMBOL(skb_push); 2461 2462 /** 2463 * skb_pull - remove data from the start of a buffer 2464 * @skb: buffer to use 2465 * @len: amount of data to remove 2466 * 2467 * This function removes data from the start of a buffer, returning 2468 * the memory to the headroom. A pointer to the next data in the buffer 2469 * is returned. Once the data has been pulled future pushes will overwrite 2470 * the old data. 2471 */ 2472 void *skb_pull(struct sk_buff *skb, unsigned int len) 2473 { 2474 return skb_pull_inline(skb, len); 2475 } 2476 EXPORT_SYMBOL(skb_pull); 2477 2478 /** 2479 * skb_pull_data - remove data from the start of a buffer returning its 2480 * original position. 2481 * @skb: buffer to use 2482 * @len: amount of data to remove 2483 * 2484 * This function removes data from the start of a buffer, returning 2485 * the memory to the headroom. A pointer to the original data in the buffer 2486 * is returned after checking if there is enough data to pull. Once the 2487 * data has been pulled future pushes will overwrite the old data. 2488 */ 2489 void *skb_pull_data(struct sk_buff *skb, size_t len) 2490 { 2491 void *data = skb->data; 2492 2493 if (skb->len < len) 2494 return NULL; 2495 2496 skb_pull(skb, len); 2497 2498 return data; 2499 } 2500 EXPORT_SYMBOL(skb_pull_data); 2501 2502 /** 2503 * skb_trim - remove end from a buffer 2504 * @skb: buffer to alter 2505 * @len: new length 2506 * 2507 * Cut the length of a buffer down by removing data from the tail. If 2508 * the buffer is already under the length specified it is not modified. 2509 * The skb must be linear. 2510 */ 2511 void skb_trim(struct sk_buff *skb, unsigned int len) 2512 { 2513 if (skb->len > len) 2514 __skb_trim(skb, len); 2515 } 2516 EXPORT_SYMBOL(skb_trim); 2517 2518 /* Trims skb to length len. It can change skb pointers. 2519 */ 2520 2521 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2522 { 2523 struct sk_buff **fragp; 2524 struct sk_buff *frag; 2525 int offset = skb_headlen(skb); 2526 int nfrags = skb_shinfo(skb)->nr_frags; 2527 int i; 2528 int err; 2529 2530 if (skb_cloned(skb) && 2531 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2532 return err; 2533 2534 i = 0; 2535 if (offset >= len) 2536 goto drop_pages; 2537 2538 for (; i < nfrags; i++) { 2539 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2540 2541 if (end < len) { 2542 offset = end; 2543 continue; 2544 } 2545 2546 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2547 2548 drop_pages: 2549 skb_shinfo(skb)->nr_frags = i; 2550 2551 for (; i < nfrags; i++) 2552 skb_frag_unref(skb, i); 2553 2554 if (skb_has_frag_list(skb)) 2555 skb_drop_fraglist(skb); 2556 goto done; 2557 } 2558 2559 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2560 fragp = &frag->next) { 2561 int end = offset + frag->len; 2562 2563 if (skb_shared(frag)) { 2564 struct sk_buff *nfrag; 2565 2566 nfrag = skb_clone(frag, GFP_ATOMIC); 2567 if (unlikely(!nfrag)) 2568 return -ENOMEM; 2569 2570 nfrag->next = frag->next; 2571 consume_skb(frag); 2572 frag = nfrag; 2573 *fragp = frag; 2574 } 2575 2576 if (end < len) { 2577 offset = end; 2578 continue; 2579 } 2580 2581 if (end > len && 2582 unlikely((err = pskb_trim(frag, len - offset)))) 2583 return err; 2584 2585 if (frag->next) 2586 skb_drop_list(&frag->next); 2587 break; 2588 } 2589 2590 done: 2591 if (len > skb_headlen(skb)) { 2592 skb->data_len -= skb->len - len; 2593 skb->len = len; 2594 } else { 2595 skb->len = len; 2596 skb->data_len = 0; 2597 skb_set_tail_pointer(skb, len); 2598 } 2599 2600 if (!skb->sk || skb->destructor == sock_edemux) 2601 skb_condense(skb); 2602 return 0; 2603 } 2604 EXPORT_SYMBOL(___pskb_trim); 2605 2606 /* Note : use pskb_trim_rcsum() instead of calling this directly 2607 */ 2608 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2609 { 2610 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2611 int delta = skb->len - len; 2612 2613 skb->csum = csum_block_sub(skb->csum, 2614 skb_checksum(skb, len, delta, 0), 2615 len); 2616 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2617 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2618 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2619 2620 if (offset + sizeof(__sum16) > hdlen) 2621 return -EINVAL; 2622 } 2623 return __pskb_trim(skb, len); 2624 } 2625 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2626 2627 /** 2628 * __pskb_pull_tail - advance tail of skb header 2629 * @skb: buffer to reallocate 2630 * @delta: number of bytes to advance tail 2631 * 2632 * The function makes a sense only on a fragmented &sk_buff, 2633 * it expands header moving its tail forward and copying necessary 2634 * data from fragmented part. 2635 * 2636 * &sk_buff MUST have reference count of 1. 2637 * 2638 * Returns %NULL (and &sk_buff does not change) if pull failed 2639 * or value of new tail of skb in the case of success. 2640 * 2641 * All the pointers pointing into skb header may change and must be 2642 * reloaded after call to this function. 2643 */ 2644 2645 /* Moves tail of skb head forward, copying data from fragmented part, 2646 * when it is necessary. 2647 * 1. It may fail due to malloc failure. 2648 * 2. It may change skb pointers. 2649 * 2650 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2651 */ 2652 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2653 { 2654 /* If skb has not enough free space at tail, get new one 2655 * plus 128 bytes for future expansions. If we have enough 2656 * room at tail, reallocate without expansion only if skb is cloned. 2657 */ 2658 int i, k, eat = (skb->tail + delta) - skb->end; 2659 2660 if (eat > 0 || skb_cloned(skb)) { 2661 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2662 GFP_ATOMIC)) 2663 return NULL; 2664 } 2665 2666 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2667 skb_tail_pointer(skb), delta)); 2668 2669 /* Optimization: no fragments, no reasons to preestimate 2670 * size of pulled pages. Superb. 2671 */ 2672 if (!skb_has_frag_list(skb)) 2673 goto pull_pages; 2674 2675 /* Estimate size of pulled pages. */ 2676 eat = delta; 2677 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2678 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2679 2680 if (size >= eat) 2681 goto pull_pages; 2682 eat -= size; 2683 } 2684 2685 /* If we need update frag list, we are in troubles. 2686 * Certainly, it is possible to add an offset to skb data, 2687 * but taking into account that pulling is expected to 2688 * be very rare operation, it is worth to fight against 2689 * further bloating skb head and crucify ourselves here instead. 2690 * Pure masohism, indeed. 8)8) 2691 */ 2692 if (eat) { 2693 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2694 struct sk_buff *clone = NULL; 2695 struct sk_buff *insp = NULL; 2696 2697 do { 2698 if (list->len <= eat) { 2699 /* Eaten as whole. */ 2700 eat -= list->len; 2701 list = list->next; 2702 insp = list; 2703 } else { 2704 /* Eaten partially. */ 2705 if (skb_is_gso(skb) && !list->head_frag && 2706 skb_headlen(list)) 2707 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2708 2709 if (skb_shared(list)) { 2710 /* Sucks! We need to fork list. :-( */ 2711 clone = skb_clone(list, GFP_ATOMIC); 2712 if (!clone) 2713 return NULL; 2714 insp = list->next; 2715 list = clone; 2716 } else { 2717 /* This may be pulled without 2718 * problems. */ 2719 insp = list; 2720 } 2721 if (!pskb_pull(list, eat)) { 2722 kfree_skb(clone); 2723 return NULL; 2724 } 2725 break; 2726 } 2727 } while (eat); 2728 2729 /* Free pulled out fragments. */ 2730 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2731 skb_shinfo(skb)->frag_list = list->next; 2732 consume_skb(list); 2733 } 2734 /* And insert new clone at head. */ 2735 if (clone) { 2736 clone->next = list; 2737 skb_shinfo(skb)->frag_list = clone; 2738 } 2739 } 2740 /* Success! Now we may commit changes to skb data. */ 2741 2742 pull_pages: 2743 eat = delta; 2744 k = 0; 2745 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2746 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2747 2748 if (size <= eat) { 2749 skb_frag_unref(skb, i); 2750 eat -= size; 2751 } else { 2752 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2753 2754 *frag = skb_shinfo(skb)->frags[i]; 2755 if (eat) { 2756 skb_frag_off_add(frag, eat); 2757 skb_frag_size_sub(frag, eat); 2758 if (!i) 2759 goto end; 2760 eat = 0; 2761 } 2762 k++; 2763 } 2764 } 2765 skb_shinfo(skb)->nr_frags = k; 2766 2767 end: 2768 skb->tail += delta; 2769 skb->data_len -= delta; 2770 2771 if (!skb->data_len) 2772 skb_zcopy_clear(skb, false); 2773 2774 return skb_tail_pointer(skb); 2775 } 2776 EXPORT_SYMBOL(__pskb_pull_tail); 2777 2778 /** 2779 * skb_copy_bits - copy bits from skb to kernel buffer 2780 * @skb: source skb 2781 * @offset: offset in source 2782 * @to: destination buffer 2783 * @len: number of bytes to copy 2784 * 2785 * Copy the specified number of bytes from the source skb to the 2786 * destination buffer. 2787 * 2788 * CAUTION ! : 2789 * If its prototype is ever changed, 2790 * check arch/{*}/net/{*}.S files, 2791 * since it is called from BPF assembly code. 2792 */ 2793 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2794 { 2795 int start = skb_headlen(skb); 2796 struct sk_buff *frag_iter; 2797 int i, copy; 2798 2799 if (offset > (int)skb->len - len) 2800 goto fault; 2801 2802 /* Copy header. */ 2803 if ((copy = start - offset) > 0) { 2804 if (copy > len) 2805 copy = len; 2806 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2807 if ((len -= copy) == 0) 2808 return 0; 2809 offset += copy; 2810 to += copy; 2811 } 2812 2813 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2814 int end; 2815 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2816 2817 WARN_ON(start > offset + len); 2818 2819 end = start + skb_frag_size(f); 2820 if ((copy = end - offset) > 0) { 2821 u32 p_off, p_len, copied; 2822 struct page *p; 2823 u8 *vaddr; 2824 2825 if (copy > len) 2826 copy = len; 2827 2828 skb_frag_foreach_page(f, 2829 skb_frag_off(f) + offset - start, 2830 copy, p, p_off, p_len, copied) { 2831 vaddr = kmap_atomic(p); 2832 memcpy(to + copied, vaddr + p_off, p_len); 2833 kunmap_atomic(vaddr); 2834 } 2835 2836 if ((len -= copy) == 0) 2837 return 0; 2838 offset += copy; 2839 to += copy; 2840 } 2841 start = end; 2842 } 2843 2844 skb_walk_frags(skb, frag_iter) { 2845 int end; 2846 2847 WARN_ON(start > offset + len); 2848 2849 end = start + frag_iter->len; 2850 if ((copy = end - offset) > 0) { 2851 if (copy > len) 2852 copy = len; 2853 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2854 goto fault; 2855 if ((len -= copy) == 0) 2856 return 0; 2857 offset += copy; 2858 to += copy; 2859 } 2860 start = end; 2861 } 2862 2863 if (!len) 2864 return 0; 2865 2866 fault: 2867 return -EFAULT; 2868 } 2869 EXPORT_SYMBOL(skb_copy_bits); 2870 2871 /* 2872 * Callback from splice_to_pipe(), if we need to release some pages 2873 * at the end of the spd in case we error'ed out in filling the pipe. 2874 */ 2875 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2876 { 2877 put_page(spd->pages[i]); 2878 } 2879 2880 static struct page *linear_to_page(struct page *page, unsigned int *len, 2881 unsigned int *offset, 2882 struct sock *sk) 2883 { 2884 struct page_frag *pfrag = sk_page_frag(sk); 2885 2886 if (!sk_page_frag_refill(sk, pfrag)) 2887 return NULL; 2888 2889 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2890 2891 memcpy(page_address(pfrag->page) + pfrag->offset, 2892 page_address(page) + *offset, *len); 2893 *offset = pfrag->offset; 2894 pfrag->offset += *len; 2895 2896 return pfrag->page; 2897 } 2898 2899 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2900 struct page *page, 2901 unsigned int offset) 2902 { 2903 return spd->nr_pages && 2904 spd->pages[spd->nr_pages - 1] == page && 2905 (spd->partial[spd->nr_pages - 1].offset + 2906 spd->partial[spd->nr_pages - 1].len == offset); 2907 } 2908 2909 /* 2910 * Fill page/offset/length into spd, if it can hold more pages. 2911 */ 2912 static bool spd_fill_page(struct splice_pipe_desc *spd, 2913 struct pipe_inode_info *pipe, struct page *page, 2914 unsigned int *len, unsigned int offset, 2915 bool linear, 2916 struct sock *sk) 2917 { 2918 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2919 return true; 2920 2921 if (linear) { 2922 page = linear_to_page(page, len, &offset, sk); 2923 if (!page) 2924 return true; 2925 } 2926 if (spd_can_coalesce(spd, page, offset)) { 2927 spd->partial[spd->nr_pages - 1].len += *len; 2928 return false; 2929 } 2930 get_page(page); 2931 spd->pages[spd->nr_pages] = page; 2932 spd->partial[spd->nr_pages].len = *len; 2933 spd->partial[spd->nr_pages].offset = offset; 2934 spd->nr_pages++; 2935 2936 return false; 2937 } 2938 2939 static bool __splice_segment(struct page *page, unsigned int poff, 2940 unsigned int plen, unsigned int *off, 2941 unsigned int *len, 2942 struct splice_pipe_desc *spd, bool linear, 2943 struct sock *sk, 2944 struct pipe_inode_info *pipe) 2945 { 2946 if (!*len) 2947 return true; 2948 2949 /* skip this segment if already processed */ 2950 if (*off >= plen) { 2951 *off -= plen; 2952 return false; 2953 } 2954 2955 /* ignore any bits we already processed */ 2956 poff += *off; 2957 plen -= *off; 2958 *off = 0; 2959 2960 do { 2961 unsigned int flen = min(*len, plen); 2962 2963 if (spd_fill_page(spd, pipe, page, &flen, poff, 2964 linear, sk)) 2965 return true; 2966 poff += flen; 2967 plen -= flen; 2968 *len -= flen; 2969 } while (*len && plen); 2970 2971 return false; 2972 } 2973 2974 /* 2975 * Map linear and fragment data from the skb to spd. It reports true if the 2976 * pipe is full or if we already spliced the requested length. 2977 */ 2978 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2979 unsigned int *offset, unsigned int *len, 2980 struct splice_pipe_desc *spd, struct sock *sk) 2981 { 2982 int seg; 2983 struct sk_buff *iter; 2984 2985 /* map the linear part : 2986 * If skb->head_frag is set, this 'linear' part is backed by a 2987 * fragment, and if the head is not shared with any clones then 2988 * we can avoid a copy since we own the head portion of this page. 2989 */ 2990 if (__splice_segment(virt_to_page(skb->data), 2991 (unsigned long) skb->data & (PAGE_SIZE - 1), 2992 skb_headlen(skb), 2993 offset, len, spd, 2994 skb_head_is_locked(skb), 2995 sk, pipe)) 2996 return true; 2997 2998 /* 2999 * then map the fragments 3000 */ 3001 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3002 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3003 3004 if (__splice_segment(skb_frag_page(f), 3005 skb_frag_off(f), skb_frag_size(f), 3006 offset, len, spd, false, sk, pipe)) 3007 return true; 3008 } 3009 3010 skb_walk_frags(skb, iter) { 3011 if (*offset >= iter->len) { 3012 *offset -= iter->len; 3013 continue; 3014 } 3015 /* __skb_splice_bits() only fails if the output has no room 3016 * left, so no point in going over the frag_list for the error 3017 * case. 3018 */ 3019 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3020 return true; 3021 } 3022 3023 return false; 3024 } 3025 3026 /* 3027 * Map data from the skb to a pipe. Should handle both the linear part, 3028 * the fragments, and the frag list. 3029 */ 3030 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3031 struct pipe_inode_info *pipe, unsigned int tlen, 3032 unsigned int flags) 3033 { 3034 struct partial_page partial[MAX_SKB_FRAGS]; 3035 struct page *pages[MAX_SKB_FRAGS]; 3036 struct splice_pipe_desc spd = { 3037 .pages = pages, 3038 .partial = partial, 3039 .nr_pages_max = MAX_SKB_FRAGS, 3040 .ops = &nosteal_pipe_buf_ops, 3041 .spd_release = sock_spd_release, 3042 }; 3043 int ret = 0; 3044 3045 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3046 3047 if (spd.nr_pages) 3048 ret = splice_to_pipe(pipe, &spd); 3049 3050 return ret; 3051 } 3052 EXPORT_SYMBOL_GPL(skb_splice_bits); 3053 3054 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3055 { 3056 struct socket *sock = sk->sk_socket; 3057 size_t size = msg_data_left(msg); 3058 3059 if (!sock) 3060 return -EINVAL; 3061 3062 if (!sock->ops->sendmsg_locked) 3063 return sock_no_sendmsg_locked(sk, msg, size); 3064 3065 return sock->ops->sendmsg_locked(sk, msg, size); 3066 } 3067 3068 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3069 { 3070 struct socket *sock = sk->sk_socket; 3071 3072 if (!sock) 3073 return -EINVAL; 3074 return sock_sendmsg(sock, msg); 3075 } 3076 3077 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3078 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3079 int len, sendmsg_func sendmsg) 3080 { 3081 unsigned int orig_len = len; 3082 struct sk_buff *head = skb; 3083 unsigned short fragidx; 3084 int slen, ret; 3085 3086 do_frag_list: 3087 3088 /* Deal with head data */ 3089 while (offset < skb_headlen(skb) && len) { 3090 struct kvec kv; 3091 struct msghdr msg; 3092 3093 slen = min_t(int, len, skb_headlen(skb) - offset); 3094 kv.iov_base = skb->data + offset; 3095 kv.iov_len = slen; 3096 memset(&msg, 0, sizeof(msg)); 3097 msg.msg_flags = MSG_DONTWAIT; 3098 3099 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3100 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3101 sendmsg_unlocked, sk, &msg); 3102 if (ret <= 0) 3103 goto error; 3104 3105 offset += ret; 3106 len -= ret; 3107 } 3108 3109 /* All the data was skb head? */ 3110 if (!len) 3111 goto out; 3112 3113 /* Make offset relative to start of frags */ 3114 offset -= skb_headlen(skb); 3115 3116 /* Find where we are in frag list */ 3117 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3118 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3119 3120 if (offset < skb_frag_size(frag)) 3121 break; 3122 3123 offset -= skb_frag_size(frag); 3124 } 3125 3126 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3127 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3128 3129 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3130 3131 while (slen) { 3132 struct bio_vec bvec; 3133 struct msghdr msg = { 3134 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3135 }; 3136 3137 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3138 skb_frag_off(frag) + offset); 3139 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3140 slen); 3141 3142 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3143 sendmsg_unlocked, sk, &msg); 3144 if (ret <= 0) 3145 goto error; 3146 3147 len -= ret; 3148 offset += ret; 3149 slen -= ret; 3150 } 3151 3152 offset = 0; 3153 } 3154 3155 if (len) { 3156 /* Process any frag lists */ 3157 3158 if (skb == head) { 3159 if (skb_has_frag_list(skb)) { 3160 skb = skb_shinfo(skb)->frag_list; 3161 goto do_frag_list; 3162 } 3163 } else if (skb->next) { 3164 skb = skb->next; 3165 goto do_frag_list; 3166 } 3167 } 3168 3169 out: 3170 return orig_len - len; 3171 3172 error: 3173 return orig_len == len ? ret : orig_len - len; 3174 } 3175 3176 /* Send skb data on a socket. Socket must be locked. */ 3177 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3178 int len) 3179 { 3180 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3181 } 3182 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3183 3184 /* Send skb data on a socket. Socket must be unlocked. */ 3185 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3186 { 3187 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3188 } 3189 3190 /** 3191 * skb_store_bits - store bits from kernel buffer to skb 3192 * @skb: destination buffer 3193 * @offset: offset in destination 3194 * @from: source buffer 3195 * @len: number of bytes to copy 3196 * 3197 * Copy the specified number of bytes from the source buffer to the 3198 * destination skb. This function handles all the messy bits of 3199 * traversing fragment lists and such. 3200 */ 3201 3202 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3203 { 3204 int start = skb_headlen(skb); 3205 struct sk_buff *frag_iter; 3206 int i, copy; 3207 3208 if (offset > (int)skb->len - len) 3209 goto fault; 3210 3211 if ((copy = start - offset) > 0) { 3212 if (copy > len) 3213 copy = len; 3214 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3215 if ((len -= copy) == 0) 3216 return 0; 3217 offset += copy; 3218 from += copy; 3219 } 3220 3221 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3222 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3223 int end; 3224 3225 WARN_ON(start > offset + len); 3226 3227 end = start + skb_frag_size(frag); 3228 if ((copy = end - offset) > 0) { 3229 u32 p_off, p_len, copied; 3230 struct page *p; 3231 u8 *vaddr; 3232 3233 if (copy > len) 3234 copy = len; 3235 3236 skb_frag_foreach_page(frag, 3237 skb_frag_off(frag) + offset - start, 3238 copy, p, p_off, p_len, copied) { 3239 vaddr = kmap_atomic(p); 3240 memcpy(vaddr + p_off, from + copied, p_len); 3241 kunmap_atomic(vaddr); 3242 } 3243 3244 if ((len -= copy) == 0) 3245 return 0; 3246 offset += copy; 3247 from += copy; 3248 } 3249 start = end; 3250 } 3251 3252 skb_walk_frags(skb, frag_iter) { 3253 int end; 3254 3255 WARN_ON(start > offset + len); 3256 3257 end = start + frag_iter->len; 3258 if ((copy = end - offset) > 0) { 3259 if (copy > len) 3260 copy = len; 3261 if (skb_store_bits(frag_iter, offset - start, 3262 from, copy)) 3263 goto fault; 3264 if ((len -= copy) == 0) 3265 return 0; 3266 offset += copy; 3267 from += copy; 3268 } 3269 start = end; 3270 } 3271 if (!len) 3272 return 0; 3273 3274 fault: 3275 return -EFAULT; 3276 } 3277 EXPORT_SYMBOL(skb_store_bits); 3278 3279 /* Checksum skb data. */ 3280 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3281 __wsum csum, const struct skb_checksum_ops *ops) 3282 { 3283 int start = skb_headlen(skb); 3284 int i, copy = start - offset; 3285 struct sk_buff *frag_iter; 3286 int pos = 0; 3287 3288 /* Checksum header. */ 3289 if (copy > 0) { 3290 if (copy > len) 3291 copy = len; 3292 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3293 skb->data + offset, copy, csum); 3294 if ((len -= copy) == 0) 3295 return csum; 3296 offset += copy; 3297 pos = copy; 3298 } 3299 3300 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3301 int end; 3302 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3303 3304 WARN_ON(start > offset + len); 3305 3306 end = start + skb_frag_size(frag); 3307 if ((copy = end - offset) > 0) { 3308 u32 p_off, p_len, copied; 3309 struct page *p; 3310 __wsum csum2; 3311 u8 *vaddr; 3312 3313 if (copy > len) 3314 copy = len; 3315 3316 skb_frag_foreach_page(frag, 3317 skb_frag_off(frag) + offset - start, 3318 copy, p, p_off, p_len, copied) { 3319 vaddr = kmap_atomic(p); 3320 csum2 = INDIRECT_CALL_1(ops->update, 3321 csum_partial_ext, 3322 vaddr + p_off, p_len, 0); 3323 kunmap_atomic(vaddr); 3324 csum = INDIRECT_CALL_1(ops->combine, 3325 csum_block_add_ext, csum, 3326 csum2, pos, p_len); 3327 pos += p_len; 3328 } 3329 3330 if (!(len -= copy)) 3331 return csum; 3332 offset += copy; 3333 } 3334 start = end; 3335 } 3336 3337 skb_walk_frags(skb, frag_iter) { 3338 int end; 3339 3340 WARN_ON(start > offset + len); 3341 3342 end = start + frag_iter->len; 3343 if ((copy = end - offset) > 0) { 3344 __wsum csum2; 3345 if (copy > len) 3346 copy = len; 3347 csum2 = __skb_checksum(frag_iter, offset - start, 3348 copy, 0, ops); 3349 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3350 csum, csum2, pos, copy); 3351 if ((len -= copy) == 0) 3352 return csum; 3353 offset += copy; 3354 pos += copy; 3355 } 3356 start = end; 3357 } 3358 BUG_ON(len); 3359 3360 return csum; 3361 } 3362 EXPORT_SYMBOL(__skb_checksum); 3363 3364 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3365 int len, __wsum csum) 3366 { 3367 const struct skb_checksum_ops ops = { 3368 .update = csum_partial_ext, 3369 .combine = csum_block_add_ext, 3370 }; 3371 3372 return __skb_checksum(skb, offset, len, csum, &ops); 3373 } 3374 EXPORT_SYMBOL(skb_checksum); 3375 3376 /* Both of above in one bottle. */ 3377 3378 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3379 u8 *to, int len) 3380 { 3381 int start = skb_headlen(skb); 3382 int i, copy = start - offset; 3383 struct sk_buff *frag_iter; 3384 int pos = 0; 3385 __wsum csum = 0; 3386 3387 /* Copy header. */ 3388 if (copy > 0) { 3389 if (copy > len) 3390 copy = len; 3391 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3392 copy); 3393 if ((len -= copy) == 0) 3394 return csum; 3395 offset += copy; 3396 to += copy; 3397 pos = copy; 3398 } 3399 3400 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3401 int end; 3402 3403 WARN_ON(start > offset + len); 3404 3405 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3406 if ((copy = end - offset) > 0) { 3407 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3408 u32 p_off, p_len, copied; 3409 struct page *p; 3410 __wsum csum2; 3411 u8 *vaddr; 3412 3413 if (copy > len) 3414 copy = len; 3415 3416 skb_frag_foreach_page(frag, 3417 skb_frag_off(frag) + offset - start, 3418 copy, p, p_off, p_len, copied) { 3419 vaddr = kmap_atomic(p); 3420 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3421 to + copied, 3422 p_len); 3423 kunmap_atomic(vaddr); 3424 csum = csum_block_add(csum, csum2, pos); 3425 pos += p_len; 3426 } 3427 3428 if (!(len -= copy)) 3429 return csum; 3430 offset += copy; 3431 to += copy; 3432 } 3433 start = end; 3434 } 3435 3436 skb_walk_frags(skb, frag_iter) { 3437 __wsum csum2; 3438 int end; 3439 3440 WARN_ON(start > offset + len); 3441 3442 end = start + frag_iter->len; 3443 if ((copy = end - offset) > 0) { 3444 if (copy > len) 3445 copy = len; 3446 csum2 = skb_copy_and_csum_bits(frag_iter, 3447 offset - start, 3448 to, copy); 3449 csum = csum_block_add(csum, csum2, pos); 3450 if ((len -= copy) == 0) 3451 return csum; 3452 offset += copy; 3453 to += copy; 3454 pos += copy; 3455 } 3456 start = end; 3457 } 3458 BUG_ON(len); 3459 return csum; 3460 } 3461 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3462 3463 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3464 { 3465 __sum16 sum; 3466 3467 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3468 /* See comments in __skb_checksum_complete(). */ 3469 if (likely(!sum)) { 3470 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3471 !skb->csum_complete_sw) 3472 netdev_rx_csum_fault(skb->dev, skb); 3473 } 3474 if (!skb_shared(skb)) 3475 skb->csum_valid = !sum; 3476 return sum; 3477 } 3478 EXPORT_SYMBOL(__skb_checksum_complete_head); 3479 3480 /* This function assumes skb->csum already holds pseudo header's checksum, 3481 * which has been changed from the hardware checksum, for example, by 3482 * __skb_checksum_validate_complete(). And, the original skb->csum must 3483 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3484 * 3485 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3486 * zero. The new checksum is stored back into skb->csum unless the skb is 3487 * shared. 3488 */ 3489 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3490 { 3491 __wsum csum; 3492 __sum16 sum; 3493 3494 csum = skb_checksum(skb, 0, skb->len, 0); 3495 3496 sum = csum_fold(csum_add(skb->csum, csum)); 3497 /* This check is inverted, because we already knew the hardware 3498 * checksum is invalid before calling this function. So, if the 3499 * re-computed checksum is valid instead, then we have a mismatch 3500 * between the original skb->csum and skb_checksum(). This means either 3501 * the original hardware checksum is incorrect or we screw up skb->csum 3502 * when moving skb->data around. 3503 */ 3504 if (likely(!sum)) { 3505 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3506 !skb->csum_complete_sw) 3507 netdev_rx_csum_fault(skb->dev, skb); 3508 } 3509 3510 if (!skb_shared(skb)) { 3511 /* Save full packet checksum */ 3512 skb->csum = csum; 3513 skb->ip_summed = CHECKSUM_COMPLETE; 3514 skb->csum_complete_sw = 1; 3515 skb->csum_valid = !sum; 3516 } 3517 3518 return sum; 3519 } 3520 EXPORT_SYMBOL(__skb_checksum_complete); 3521 3522 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3523 { 3524 net_warn_ratelimited( 3525 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3526 __func__); 3527 return 0; 3528 } 3529 3530 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3531 int offset, int len) 3532 { 3533 net_warn_ratelimited( 3534 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3535 __func__); 3536 return 0; 3537 } 3538 3539 static const struct skb_checksum_ops default_crc32c_ops = { 3540 .update = warn_crc32c_csum_update, 3541 .combine = warn_crc32c_csum_combine, 3542 }; 3543 3544 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3545 &default_crc32c_ops; 3546 EXPORT_SYMBOL(crc32c_csum_stub); 3547 3548 /** 3549 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3550 * @from: source buffer 3551 * 3552 * Calculates the amount of linear headroom needed in the 'to' skb passed 3553 * into skb_zerocopy(). 3554 */ 3555 unsigned int 3556 skb_zerocopy_headlen(const struct sk_buff *from) 3557 { 3558 unsigned int hlen = 0; 3559 3560 if (!from->head_frag || 3561 skb_headlen(from) < L1_CACHE_BYTES || 3562 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3563 hlen = skb_headlen(from); 3564 if (!hlen) 3565 hlen = from->len; 3566 } 3567 3568 if (skb_has_frag_list(from)) 3569 hlen = from->len; 3570 3571 return hlen; 3572 } 3573 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3574 3575 /** 3576 * skb_zerocopy - Zero copy skb to skb 3577 * @to: destination buffer 3578 * @from: source buffer 3579 * @len: number of bytes to copy from source buffer 3580 * @hlen: size of linear headroom in destination buffer 3581 * 3582 * Copies up to `len` bytes from `from` to `to` by creating references 3583 * to the frags in the source buffer. 3584 * 3585 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3586 * headroom in the `to` buffer. 3587 * 3588 * Return value: 3589 * 0: everything is OK 3590 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3591 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3592 */ 3593 int 3594 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3595 { 3596 int i, j = 0; 3597 int plen = 0; /* length of skb->head fragment */ 3598 int ret; 3599 struct page *page; 3600 unsigned int offset; 3601 3602 BUG_ON(!from->head_frag && !hlen); 3603 3604 /* dont bother with small payloads */ 3605 if (len <= skb_tailroom(to)) 3606 return skb_copy_bits(from, 0, skb_put(to, len), len); 3607 3608 if (hlen) { 3609 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3610 if (unlikely(ret)) 3611 return ret; 3612 len -= hlen; 3613 } else { 3614 plen = min_t(int, skb_headlen(from), len); 3615 if (plen) { 3616 page = virt_to_head_page(from->head); 3617 offset = from->data - (unsigned char *)page_address(page); 3618 __skb_fill_page_desc(to, 0, page, offset, plen); 3619 get_page(page); 3620 j = 1; 3621 len -= plen; 3622 } 3623 } 3624 3625 skb_len_add(to, len + plen); 3626 3627 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3628 skb_tx_error(from); 3629 return -ENOMEM; 3630 } 3631 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3632 3633 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3634 int size; 3635 3636 if (!len) 3637 break; 3638 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3639 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3640 len); 3641 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3642 len -= size; 3643 skb_frag_ref(to, j); 3644 j++; 3645 } 3646 skb_shinfo(to)->nr_frags = j; 3647 3648 return 0; 3649 } 3650 EXPORT_SYMBOL_GPL(skb_zerocopy); 3651 3652 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3653 { 3654 __wsum csum; 3655 long csstart; 3656 3657 if (skb->ip_summed == CHECKSUM_PARTIAL) 3658 csstart = skb_checksum_start_offset(skb); 3659 else 3660 csstart = skb_headlen(skb); 3661 3662 BUG_ON(csstart > skb_headlen(skb)); 3663 3664 skb_copy_from_linear_data(skb, to, csstart); 3665 3666 csum = 0; 3667 if (csstart != skb->len) 3668 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3669 skb->len - csstart); 3670 3671 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3672 long csstuff = csstart + skb->csum_offset; 3673 3674 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3675 } 3676 } 3677 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3678 3679 /** 3680 * skb_dequeue - remove from the head of the queue 3681 * @list: list to dequeue from 3682 * 3683 * Remove the head of the list. The list lock is taken so the function 3684 * may be used safely with other locking list functions. The head item is 3685 * returned or %NULL if the list is empty. 3686 */ 3687 3688 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3689 { 3690 unsigned long flags; 3691 struct sk_buff *result; 3692 3693 spin_lock_irqsave(&list->lock, flags); 3694 result = __skb_dequeue(list); 3695 spin_unlock_irqrestore(&list->lock, flags); 3696 return result; 3697 } 3698 EXPORT_SYMBOL(skb_dequeue); 3699 3700 /** 3701 * skb_dequeue_tail - remove from the tail of the queue 3702 * @list: list to dequeue from 3703 * 3704 * Remove the tail of the list. The list lock is taken so the function 3705 * may be used safely with other locking list functions. The tail item is 3706 * returned or %NULL if the list is empty. 3707 */ 3708 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3709 { 3710 unsigned long flags; 3711 struct sk_buff *result; 3712 3713 spin_lock_irqsave(&list->lock, flags); 3714 result = __skb_dequeue_tail(list); 3715 spin_unlock_irqrestore(&list->lock, flags); 3716 return result; 3717 } 3718 EXPORT_SYMBOL(skb_dequeue_tail); 3719 3720 /** 3721 * skb_queue_purge_reason - empty a list 3722 * @list: list to empty 3723 * @reason: drop reason 3724 * 3725 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3726 * the list and one reference dropped. This function takes the list 3727 * lock and is atomic with respect to other list locking functions. 3728 */ 3729 void skb_queue_purge_reason(struct sk_buff_head *list, 3730 enum skb_drop_reason reason) 3731 { 3732 struct sk_buff *skb; 3733 3734 while ((skb = skb_dequeue(list)) != NULL) 3735 kfree_skb_reason(skb, reason); 3736 } 3737 EXPORT_SYMBOL(skb_queue_purge_reason); 3738 3739 /** 3740 * skb_rbtree_purge - empty a skb rbtree 3741 * @root: root of the rbtree to empty 3742 * Return value: the sum of truesizes of all purged skbs. 3743 * 3744 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3745 * the list and one reference dropped. This function does not take 3746 * any lock. Synchronization should be handled by the caller (e.g., TCP 3747 * out-of-order queue is protected by the socket lock). 3748 */ 3749 unsigned int skb_rbtree_purge(struct rb_root *root) 3750 { 3751 struct rb_node *p = rb_first(root); 3752 unsigned int sum = 0; 3753 3754 while (p) { 3755 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3756 3757 p = rb_next(p); 3758 rb_erase(&skb->rbnode, root); 3759 sum += skb->truesize; 3760 kfree_skb(skb); 3761 } 3762 return sum; 3763 } 3764 3765 void skb_errqueue_purge(struct sk_buff_head *list) 3766 { 3767 struct sk_buff *skb, *next; 3768 struct sk_buff_head kill; 3769 unsigned long flags; 3770 3771 __skb_queue_head_init(&kill); 3772 3773 spin_lock_irqsave(&list->lock, flags); 3774 skb_queue_walk_safe(list, skb, next) { 3775 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3776 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3777 continue; 3778 __skb_unlink(skb, list); 3779 __skb_queue_tail(&kill, skb); 3780 } 3781 spin_unlock_irqrestore(&list->lock, flags); 3782 __skb_queue_purge(&kill); 3783 } 3784 EXPORT_SYMBOL(skb_errqueue_purge); 3785 3786 /** 3787 * skb_queue_head - queue a buffer at the list head 3788 * @list: list to use 3789 * @newsk: buffer to queue 3790 * 3791 * Queue a buffer at the start of the list. This function takes the 3792 * list lock and can be used safely with other locking &sk_buff functions 3793 * safely. 3794 * 3795 * A buffer cannot be placed on two lists at the same time. 3796 */ 3797 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3798 { 3799 unsigned long flags; 3800 3801 spin_lock_irqsave(&list->lock, flags); 3802 __skb_queue_head(list, newsk); 3803 spin_unlock_irqrestore(&list->lock, flags); 3804 } 3805 EXPORT_SYMBOL(skb_queue_head); 3806 3807 /** 3808 * skb_queue_tail - queue a buffer at the list tail 3809 * @list: list to use 3810 * @newsk: buffer to queue 3811 * 3812 * Queue a buffer at the tail of the list. This function takes the 3813 * list lock and can be used safely with other locking &sk_buff functions 3814 * safely. 3815 * 3816 * A buffer cannot be placed on two lists at the same time. 3817 */ 3818 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3819 { 3820 unsigned long flags; 3821 3822 spin_lock_irqsave(&list->lock, flags); 3823 __skb_queue_tail(list, newsk); 3824 spin_unlock_irqrestore(&list->lock, flags); 3825 } 3826 EXPORT_SYMBOL(skb_queue_tail); 3827 3828 /** 3829 * skb_unlink - remove a buffer from a list 3830 * @skb: buffer to remove 3831 * @list: list to use 3832 * 3833 * Remove a packet from a list. The list locks are taken and this 3834 * function is atomic with respect to other list locked calls 3835 * 3836 * You must know what list the SKB is on. 3837 */ 3838 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3839 { 3840 unsigned long flags; 3841 3842 spin_lock_irqsave(&list->lock, flags); 3843 __skb_unlink(skb, list); 3844 spin_unlock_irqrestore(&list->lock, flags); 3845 } 3846 EXPORT_SYMBOL(skb_unlink); 3847 3848 /** 3849 * skb_append - append a buffer 3850 * @old: buffer to insert after 3851 * @newsk: buffer to insert 3852 * @list: list to use 3853 * 3854 * Place a packet after a given packet in a list. The list locks are taken 3855 * and this function is atomic with respect to other list locked calls. 3856 * A buffer cannot be placed on two lists at the same time. 3857 */ 3858 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3859 { 3860 unsigned long flags; 3861 3862 spin_lock_irqsave(&list->lock, flags); 3863 __skb_queue_after(list, old, newsk); 3864 spin_unlock_irqrestore(&list->lock, flags); 3865 } 3866 EXPORT_SYMBOL(skb_append); 3867 3868 static inline void skb_split_inside_header(struct sk_buff *skb, 3869 struct sk_buff* skb1, 3870 const u32 len, const int pos) 3871 { 3872 int i; 3873 3874 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3875 pos - len); 3876 /* And move data appendix as is. */ 3877 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3878 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3879 3880 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3881 skb_shinfo(skb)->nr_frags = 0; 3882 skb1->data_len = skb->data_len; 3883 skb1->len += skb1->data_len; 3884 skb->data_len = 0; 3885 skb->len = len; 3886 skb_set_tail_pointer(skb, len); 3887 } 3888 3889 static inline void skb_split_no_header(struct sk_buff *skb, 3890 struct sk_buff* skb1, 3891 const u32 len, int pos) 3892 { 3893 int i, k = 0; 3894 const int nfrags = skb_shinfo(skb)->nr_frags; 3895 3896 skb_shinfo(skb)->nr_frags = 0; 3897 skb1->len = skb1->data_len = skb->len - len; 3898 skb->len = len; 3899 skb->data_len = len - pos; 3900 3901 for (i = 0; i < nfrags; i++) { 3902 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3903 3904 if (pos + size > len) { 3905 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3906 3907 if (pos < len) { 3908 /* Split frag. 3909 * We have two variants in this case: 3910 * 1. Move all the frag to the second 3911 * part, if it is possible. F.e. 3912 * this approach is mandatory for TUX, 3913 * where splitting is expensive. 3914 * 2. Split is accurately. We make this. 3915 */ 3916 skb_frag_ref(skb, i); 3917 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3918 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3919 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3920 skb_shinfo(skb)->nr_frags++; 3921 } 3922 k++; 3923 } else 3924 skb_shinfo(skb)->nr_frags++; 3925 pos += size; 3926 } 3927 skb_shinfo(skb1)->nr_frags = k; 3928 } 3929 3930 /** 3931 * skb_split - Split fragmented skb to two parts at length len. 3932 * @skb: the buffer to split 3933 * @skb1: the buffer to receive the second part 3934 * @len: new length for skb 3935 */ 3936 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3937 { 3938 int pos = skb_headlen(skb); 3939 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3940 3941 skb_zcopy_downgrade_managed(skb); 3942 3943 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3944 skb_zerocopy_clone(skb1, skb, 0); 3945 if (len < pos) /* Split line is inside header. */ 3946 skb_split_inside_header(skb, skb1, len, pos); 3947 else /* Second chunk has no header, nothing to copy. */ 3948 skb_split_no_header(skb, skb1, len, pos); 3949 } 3950 EXPORT_SYMBOL(skb_split); 3951 3952 /* Shifting from/to a cloned skb is a no-go. 3953 * 3954 * Caller cannot keep skb_shinfo related pointers past calling here! 3955 */ 3956 static int skb_prepare_for_shift(struct sk_buff *skb) 3957 { 3958 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3959 } 3960 3961 /** 3962 * skb_shift - Shifts paged data partially from skb to another 3963 * @tgt: buffer into which tail data gets added 3964 * @skb: buffer from which the paged data comes from 3965 * @shiftlen: shift up to this many bytes 3966 * 3967 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3968 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3969 * It's up to caller to free skb if everything was shifted. 3970 * 3971 * If @tgt runs out of frags, the whole operation is aborted. 3972 * 3973 * Skb cannot include anything else but paged data while tgt is allowed 3974 * to have non-paged data as well. 3975 * 3976 * TODO: full sized shift could be optimized but that would need 3977 * specialized skb free'er to handle frags without up-to-date nr_frags. 3978 */ 3979 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3980 { 3981 int from, to, merge, todo; 3982 skb_frag_t *fragfrom, *fragto; 3983 3984 BUG_ON(shiftlen > skb->len); 3985 3986 if (skb_headlen(skb)) 3987 return 0; 3988 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3989 return 0; 3990 3991 todo = shiftlen; 3992 from = 0; 3993 to = skb_shinfo(tgt)->nr_frags; 3994 fragfrom = &skb_shinfo(skb)->frags[from]; 3995 3996 /* Actual merge is delayed until the point when we know we can 3997 * commit all, so that we don't have to undo partial changes 3998 */ 3999 if (!to || 4000 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4001 skb_frag_off(fragfrom))) { 4002 merge = -1; 4003 } else { 4004 merge = to - 1; 4005 4006 todo -= skb_frag_size(fragfrom); 4007 if (todo < 0) { 4008 if (skb_prepare_for_shift(skb) || 4009 skb_prepare_for_shift(tgt)) 4010 return 0; 4011 4012 /* All previous frag pointers might be stale! */ 4013 fragfrom = &skb_shinfo(skb)->frags[from]; 4014 fragto = &skb_shinfo(tgt)->frags[merge]; 4015 4016 skb_frag_size_add(fragto, shiftlen); 4017 skb_frag_size_sub(fragfrom, shiftlen); 4018 skb_frag_off_add(fragfrom, shiftlen); 4019 4020 goto onlymerged; 4021 } 4022 4023 from++; 4024 } 4025 4026 /* Skip full, not-fitting skb to avoid expensive operations */ 4027 if ((shiftlen == skb->len) && 4028 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4029 return 0; 4030 4031 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4032 return 0; 4033 4034 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4035 if (to == MAX_SKB_FRAGS) 4036 return 0; 4037 4038 fragfrom = &skb_shinfo(skb)->frags[from]; 4039 fragto = &skb_shinfo(tgt)->frags[to]; 4040 4041 if (todo >= skb_frag_size(fragfrom)) { 4042 *fragto = *fragfrom; 4043 todo -= skb_frag_size(fragfrom); 4044 from++; 4045 to++; 4046 4047 } else { 4048 __skb_frag_ref(fragfrom); 4049 skb_frag_page_copy(fragto, fragfrom); 4050 skb_frag_off_copy(fragto, fragfrom); 4051 skb_frag_size_set(fragto, todo); 4052 4053 skb_frag_off_add(fragfrom, todo); 4054 skb_frag_size_sub(fragfrom, todo); 4055 todo = 0; 4056 4057 to++; 4058 break; 4059 } 4060 } 4061 4062 /* Ready to "commit" this state change to tgt */ 4063 skb_shinfo(tgt)->nr_frags = to; 4064 4065 if (merge >= 0) { 4066 fragfrom = &skb_shinfo(skb)->frags[0]; 4067 fragto = &skb_shinfo(tgt)->frags[merge]; 4068 4069 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4070 __skb_frag_unref(fragfrom, skb->pp_recycle); 4071 } 4072 4073 /* Reposition in the original skb */ 4074 to = 0; 4075 while (from < skb_shinfo(skb)->nr_frags) 4076 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4077 skb_shinfo(skb)->nr_frags = to; 4078 4079 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4080 4081 onlymerged: 4082 /* Most likely the tgt won't ever need its checksum anymore, skb on 4083 * the other hand might need it if it needs to be resent 4084 */ 4085 tgt->ip_summed = CHECKSUM_PARTIAL; 4086 skb->ip_summed = CHECKSUM_PARTIAL; 4087 4088 skb_len_add(skb, -shiftlen); 4089 skb_len_add(tgt, shiftlen); 4090 4091 return shiftlen; 4092 } 4093 4094 /** 4095 * skb_prepare_seq_read - Prepare a sequential read of skb data 4096 * @skb: the buffer to read 4097 * @from: lower offset of data to be read 4098 * @to: upper offset of data to be read 4099 * @st: state variable 4100 * 4101 * Initializes the specified state variable. Must be called before 4102 * invoking skb_seq_read() for the first time. 4103 */ 4104 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4105 unsigned int to, struct skb_seq_state *st) 4106 { 4107 st->lower_offset = from; 4108 st->upper_offset = to; 4109 st->root_skb = st->cur_skb = skb; 4110 st->frag_idx = st->stepped_offset = 0; 4111 st->frag_data = NULL; 4112 st->frag_off = 0; 4113 } 4114 EXPORT_SYMBOL(skb_prepare_seq_read); 4115 4116 /** 4117 * skb_seq_read - Sequentially read skb data 4118 * @consumed: number of bytes consumed by the caller so far 4119 * @data: destination pointer for data to be returned 4120 * @st: state variable 4121 * 4122 * Reads a block of skb data at @consumed relative to the 4123 * lower offset specified to skb_prepare_seq_read(). Assigns 4124 * the head of the data block to @data and returns the length 4125 * of the block or 0 if the end of the skb data or the upper 4126 * offset has been reached. 4127 * 4128 * The caller is not required to consume all of the data 4129 * returned, i.e. @consumed is typically set to the number 4130 * of bytes already consumed and the next call to 4131 * skb_seq_read() will return the remaining part of the block. 4132 * 4133 * Note 1: The size of each block of data returned can be arbitrary, 4134 * this limitation is the cost for zerocopy sequential 4135 * reads of potentially non linear data. 4136 * 4137 * Note 2: Fragment lists within fragments are not implemented 4138 * at the moment, state->root_skb could be replaced with 4139 * a stack for this purpose. 4140 */ 4141 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4142 struct skb_seq_state *st) 4143 { 4144 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4145 skb_frag_t *frag; 4146 4147 if (unlikely(abs_offset >= st->upper_offset)) { 4148 if (st->frag_data) { 4149 kunmap_atomic(st->frag_data); 4150 st->frag_data = NULL; 4151 } 4152 return 0; 4153 } 4154 4155 next_skb: 4156 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4157 4158 if (abs_offset < block_limit && !st->frag_data) { 4159 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4160 return block_limit - abs_offset; 4161 } 4162 4163 if (st->frag_idx == 0 && !st->frag_data) 4164 st->stepped_offset += skb_headlen(st->cur_skb); 4165 4166 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4167 unsigned int pg_idx, pg_off, pg_sz; 4168 4169 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4170 4171 pg_idx = 0; 4172 pg_off = skb_frag_off(frag); 4173 pg_sz = skb_frag_size(frag); 4174 4175 if (skb_frag_must_loop(skb_frag_page(frag))) { 4176 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4177 pg_off = offset_in_page(pg_off + st->frag_off); 4178 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4179 PAGE_SIZE - pg_off); 4180 } 4181 4182 block_limit = pg_sz + st->stepped_offset; 4183 if (abs_offset < block_limit) { 4184 if (!st->frag_data) 4185 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4186 4187 *data = (u8 *)st->frag_data + pg_off + 4188 (abs_offset - st->stepped_offset); 4189 4190 return block_limit - abs_offset; 4191 } 4192 4193 if (st->frag_data) { 4194 kunmap_atomic(st->frag_data); 4195 st->frag_data = NULL; 4196 } 4197 4198 st->stepped_offset += pg_sz; 4199 st->frag_off += pg_sz; 4200 if (st->frag_off == skb_frag_size(frag)) { 4201 st->frag_off = 0; 4202 st->frag_idx++; 4203 } 4204 } 4205 4206 if (st->frag_data) { 4207 kunmap_atomic(st->frag_data); 4208 st->frag_data = NULL; 4209 } 4210 4211 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4212 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4213 st->frag_idx = 0; 4214 goto next_skb; 4215 } else if (st->cur_skb->next) { 4216 st->cur_skb = st->cur_skb->next; 4217 st->frag_idx = 0; 4218 goto next_skb; 4219 } 4220 4221 return 0; 4222 } 4223 EXPORT_SYMBOL(skb_seq_read); 4224 4225 /** 4226 * skb_abort_seq_read - Abort a sequential read of skb data 4227 * @st: state variable 4228 * 4229 * Must be called if skb_seq_read() was not called until it 4230 * returned 0. 4231 */ 4232 void skb_abort_seq_read(struct skb_seq_state *st) 4233 { 4234 if (st->frag_data) 4235 kunmap_atomic(st->frag_data); 4236 } 4237 EXPORT_SYMBOL(skb_abort_seq_read); 4238 4239 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4240 4241 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4242 struct ts_config *conf, 4243 struct ts_state *state) 4244 { 4245 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4246 } 4247 4248 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4249 { 4250 skb_abort_seq_read(TS_SKB_CB(state)); 4251 } 4252 4253 /** 4254 * skb_find_text - Find a text pattern in skb data 4255 * @skb: the buffer to look in 4256 * @from: search offset 4257 * @to: search limit 4258 * @config: textsearch configuration 4259 * 4260 * Finds a pattern in the skb data according to the specified 4261 * textsearch configuration. Use textsearch_next() to retrieve 4262 * subsequent occurrences of the pattern. Returns the offset 4263 * to the first occurrence or UINT_MAX if no match was found. 4264 */ 4265 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4266 unsigned int to, struct ts_config *config) 4267 { 4268 unsigned int patlen = config->ops->get_pattern_len(config); 4269 struct ts_state state; 4270 unsigned int ret; 4271 4272 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4273 4274 config->get_next_block = skb_ts_get_next_block; 4275 config->finish = skb_ts_finish; 4276 4277 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4278 4279 ret = textsearch_find(config, &state); 4280 return (ret + patlen <= to - from ? ret : UINT_MAX); 4281 } 4282 EXPORT_SYMBOL(skb_find_text); 4283 4284 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4285 int offset, size_t size, size_t max_frags) 4286 { 4287 int i = skb_shinfo(skb)->nr_frags; 4288 4289 if (skb_can_coalesce(skb, i, page, offset)) { 4290 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4291 } else if (i < max_frags) { 4292 skb_zcopy_downgrade_managed(skb); 4293 get_page(page); 4294 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4295 } else { 4296 return -EMSGSIZE; 4297 } 4298 4299 return 0; 4300 } 4301 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4302 4303 /** 4304 * skb_pull_rcsum - pull skb and update receive checksum 4305 * @skb: buffer to update 4306 * @len: length of data pulled 4307 * 4308 * This function performs an skb_pull on the packet and updates 4309 * the CHECKSUM_COMPLETE checksum. It should be used on 4310 * receive path processing instead of skb_pull unless you know 4311 * that the checksum difference is zero (e.g., a valid IP header) 4312 * or you are setting ip_summed to CHECKSUM_NONE. 4313 */ 4314 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4315 { 4316 unsigned char *data = skb->data; 4317 4318 BUG_ON(len > skb->len); 4319 __skb_pull(skb, len); 4320 skb_postpull_rcsum(skb, data, len); 4321 return skb->data; 4322 } 4323 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4324 4325 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4326 { 4327 skb_frag_t head_frag; 4328 struct page *page; 4329 4330 page = virt_to_head_page(frag_skb->head); 4331 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4332 (unsigned char *)page_address(page), 4333 skb_headlen(frag_skb)); 4334 return head_frag; 4335 } 4336 4337 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4338 netdev_features_t features, 4339 unsigned int offset) 4340 { 4341 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4342 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4343 unsigned int delta_truesize = 0; 4344 unsigned int delta_len = 0; 4345 struct sk_buff *tail = NULL; 4346 struct sk_buff *nskb, *tmp; 4347 int len_diff, err; 4348 4349 skb_push(skb, -skb_network_offset(skb) + offset); 4350 4351 /* Ensure the head is writeable before touching the shared info */ 4352 err = skb_unclone(skb, GFP_ATOMIC); 4353 if (err) 4354 goto err_linearize; 4355 4356 skb_shinfo(skb)->frag_list = NULL; 4357 4358 while (list_skb) { 4359 nskb = list_skb; 4360 list_skb = list_skb->next; 4361 4362 err = 0; 4363 delta_truesize += nskb->truesize; 4364 if (skb_shared(nskb)) { 4365 tmp = skb_clone(nskb, GFP_ATOMIC); 4366 if (tmp) { 4367 consume_skb(nskb); 4368 nskb = tmp; 4369 err = skb_unclone(nskb, GFP_ATOMIC); 4370 } else { 4371 err = -ENOMEM; 4372 } 4373 } 4374 4375 if (!tail) 4376 skb->next = nskb; 4377 else 4378 tail->next = nskb; 4379 4380 if (unlikely(err)) { 4381 nskb->next = list_skb; 4382 goto err_linearize; 4383 } 4384 4385 tail = nskb; 4386 4387 delta_len += nskb->len; 4388 4389 skb_push(nskb, -skb_network_offset(nskb) + offset); 4390 4391 skb_release_head_state(nskb); 4392 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4393 __copy_skb_header(nskb, skb); 4394 4395 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4396 nskb->transport_header += len_diff; 4397 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4398 nskb->data - tnl_hlen, 4399 offset + tnl_hlen); 4400 4401 if (skb_needs_linearize(nskb, features) && 4402 __skb_linearize(nskb)) 4403 goto err_linearize; 4404 } 4405 4406 skb->truesize = skb->truesize - delta_truesize; 4407 skb->data_len = skb->data_len - delta_len; 4408 skb->len = skb->len - delta_len; 4409 4410 skb_gso_reset(skb); 4411 4412 skb->prev = tail; 4413 4414 if (skb_needs_linearize(skb, features) && 4415 __skb_linearize(skb)) 4416 goto err_linearize; 4417 4418 skb_get(skb); 4419 4420 return skb; 4421 4422 err_linearize: 4423 kfree_skb_list(skb->next); 4424 skb->next = NULL; 4425 return ERR_PTR(-ENOMEM); 4426 } 4427 EXPORT_SYMBOL_GPL(skb_segment_list); 4428 4429 /** 4430 * skb_segment - Perform protocol segmentation on skb. 4431 * @head_skb: buffer to segment 4432 * @features: features for the output path (see dev->features) 4433 * 4434 * This function performs segmentation on the given skb. It returns 4435 * a pointer to the first in a list of new skbs for the segments. 4436 * In case of error it returns ERR_PTR(err). 4437 */ 4438 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4439 netdev_features_t features) 4440 { 4441 struct sk_buff *segs = NULL; 4442 struct sk_buff *tail = NULL; 4443 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4444 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4445 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4446 unsigned int offset = doffset; 4447 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4448 unsigned int partial_segs = 0; 4449 unsigned int headroom; 4450 unsigned int len = head_skb->len; 4451 struct sk_buff *frag_skb; 4452 skb_frag_t *frag; 4453 __be16 proto; 4454 bool csum, sg; 4455 int err = -ENOMEM; 4456 int i = 0; 4457 int nfrags, pos; 4458 4459 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4460 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4461 struct sk_buff *check_skb; 4462 4463 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4464 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4465 /* gso_size is untrusted, and we have a frag_list with 4466 * a linear non head_frag item. 4467 * 4468 * If head_skb's headlen does not fit requested gso_size, 4469 * it means that the frag_list members do NOT terminate 4470 * on exact gso_size boundaries. Hence we cannot perform 4471 * skb_frag_t page sharing. Therefore we must fallback to 4472 * copying the frag_list skbs; we do so by disabling SG. 4473 */ 4474 features &= ~NETIF_F_SG; 4475 break; 4476 } 4477 } 4478 } 4479 4480 __skb_push(head_skb, doffset); 4481 proto = skb_network_protocol(head_skb, NULL); 4482 if (unlikely(!proto)) 4483 return ERR_PTR(-EINVAL); 4484 4485 sg = !!(features & NETIF_F_SG); 4486 csum = !!can_checksum_protocol(features, proto); 4487 4488 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4489 if (!(features & NETIF_F_GSO_PARTIAL)) { 4490 struct sk_buff *iter; 4491 unsigned int frag_len; 4492 4493 if (!list_skb || 4494 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4495 goto normal; 4496 4497 /* If we get here then all the required 4498 * GSO features except frag_list are supported. 4499 * Try to split the SKB to multiple GSO SKBs 4500 * with no frag_list. 4501 * Currently we can do that only when the buffers don't 4502 * have a linear part and all the buffers except 4503 * the last are of the same length. 4504 */ 4505 frag_len = list_skb->len; 4506 skb_walk_frags(head_skb, iter) { 4507 if (frag_len != iter->len && iter->next) 4508 goto normal; 4509 if (skb_headlen(iter) && !iter->head_frag) 4510 goto normal; 4511 4512 len -= iter->len; 4513 } 4514 4515 if (len != frag_len) 4516 goto normal; 4517 } 4518 4519 /* GSO partial only requires that we trim off any excess that 4520 * doesn't fit into an MSS sized block, so take care of that 4521 * now. 4522 * Cap len to not accidentally hit GSO_BY_FRAGS. 4523 */ 4524 partial_segs = min(len, GSO_BY_FRAGS - 1U) / mss; 4525 if (partial_segs > 1) 4526 mss *= partial_segs; 4527 else 4528 partial_segs = 0; 4529 } 4530 4531 normal: 4532 headroom = skb_headroom(head_skb); 4533 pos = skb_headlen(head_skb); 4534 4535 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4536 return ERR_PTR(-ENOMEM); 4537 4538 nfrags = skb_shinfo(head_skb)->nr_frags; 4539 frag = skb_shinfo(head_skb)->frags; 4540 frag_skb = head_skb; 4541 4542 do { 4543 struct sk_buff *nskb; 4544 skb_frag_t *nskb_frag; 4545 int hsize; 4546 int size; 4547 4548 if (unlikely(mss == GSO_BY_FRAGS)) { 4549 len = list_skb->len; 4550 } else { 4551 len = head_skb->len - offset; 4552 if (len > mss) 4553 len = mss; 4554 } 4555 4556 hsize = skb_headlen(head_skb) - offset; 4557 4558 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4559 (skb_headlen(list_skb) == len || sg)) { 4560 BUG_ON(skb_headlen(list_skb) > len); 4561 4562 nskb = skb_clone(list_skb, GFP_ATOMIC); 4563 if (unlikely(!nskb)) 4564 goto err; 4565 4566 i = 0; 4567 nfrags = skb_shinfo(list_skb)->nr_frags; 4568 frag = skb_shinfo(list_skb)->frags; 4569 frag_skb = list_skb; 4570 pos += skb_headlen(list_skb); 4571 4572 while (pos < offset + len) { 4573 BUG_ON(i >= nfrags); 4574 4575 size = skb_frag_size(frag); 4576 if (pos + size > offset + len) 4577 break; 4578 4579 i++; 4580 pos += size; 4581 frag++; 4582 } 4583 4584 list_skb = list_skb->next; 4585 4586 if (unlikely(pskb_trim(nskb, len))) { 4587 kfree_skb(nskb); 4588 goto err; 4589 } 4590 4591 hsize = skb_end_offset(nskb); 4592 if (skb_cow_head(nskb, doffset + headroom)) { 4593 kfree_skb(nskb); 4594 goto err; 4595 } 4596 4597 nskb->truesize += skb_end_offset(nskb) - hsize; 4598 skb_release_head_state(nskb); 4599 __skb_push(nskb, doffset); 4600 } else { 4601 if (hsize < 0) 4602 hsize = 0; 4603 if (hsize > len || !sg) 4604 hsize = len; 4605 4606 nskb = __alloc_skb(hsize + doffset + headroom, 4607 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4608 NUMA_NO_NODE); 4609 4610 if (unlikely(!nskb)) 4611 goto err; 4612 4613 skb_reserve(nskb, headroom); 4614 __skb_put(nskb, doffset); 4615 } 4616 4617 if (segs) 4618 tail->next = nskb; 4619 else 4620 segs = nskb; 4621 tail = nskb; 4622 4623 __copy_skb_header(nskb, head_skb); 4624 4625 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4626 skb_reset_mac_len(nskb); 4627 4628 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4629 nskb->data - tnl_hlen, 4630 doffset + tnl_hlen); 4631 4632 if (nskb->len == len + doffset) 4633 goto perform_csum_check; 4634 4635 if (!sg) { 4636 if (!csum) { 4637 if (!nskb->remcsum_offload) 4638 nskb->ip_summed = CHECKSUM_NONE; 4639 SKB_GSO_CB(nskb)->csum = 4640 skb_copy_and_csum_bits(head_skb, offset, 4641 skb_put(nskb, 4642 len), 4643 len); 4644 SKB_GSO_CB(nskb)->csum_start = 4645 skb_headroom(nskb) + doffset; 4646 } else { 4647 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4648 goto err; 4649 } 4650 continue; 4651 } 4652 4653 nskb_frag = skb_shinfo(nskb)->frags; 4654 4655 skb_copy_from_linear_data_offset(head_skb, offset, 4656 skb_put(nskb, hsize), hsize); 4657 4658 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4659 SKBFL_SHARED_FRAG; 4660 4661 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4662 goto err; 4663 4664 while (pos < offset + len) { 4665 if (i >= nfrags) { 4666 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4667 skb_zerocopy_clone(nskb, list_skb, 4668 GFP_ATOMIC)) 4669 goto err; 4670 4671 i = 0; 4672 nfrags = skb_shinfo(list_skb)->nr_frags; 4673 frag = skb_shinfo(list_skb)->frags; 4674 frag_skb = list_skb; 4675 if (!skb_headlen(list_skb)) { 4676 BUG_ON(!nfrags); 4677 } else { 4678 BUG_ON(!list_skb->head_frag); 4679 4680 /* to make room for head_frag. */ 4681 i--; 4682 frag--; 4683 } 4684 4685 list_skb = list_skb->next; 4686 } 4687 4688 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4689 MAX_SKB_FRAGS)) { 4690 net_warn_ratelimited( 4691 "skb_segment: too many frags: %u %u\n", 4692 pos, mss); 4693 err = -EINVAL; 4694 goto err; 4695 } 4696 4697 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4698 __skb_frag_ref(nskb_frag); 4699 size = skb_frag_size(nskb_frag); 4700 4701 if (pos < offset) { 4702 skb_frag_off_add(nskb_frag, offset - pos); 4703 skb_frag_size_sub(nskb_frag, offset - pos); 4704 } 4705 4706 skb_shinfo(nskb)->nr_frags++; 4707 4708 if (pos + size <= offset + len) { 4709 i++; 4710 frag++; 4711 pos += size; 4712 } else { 4713 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4714 goto skip_fraglist; 4715 } 4716 4717 nskb_frag++; 4718 } 4719 4720 skip_fraglist: 4721 nskb->data_len = len - hsize; 4722 nskb->len += nskb->data_len; 4723 nskb->truesize += nskb->data_len; 4724 4725 perform_csum_check: 4726 if (!csum) { 4727 if (skb_has_shared_frag(nskb) && 4728 __skb_linearize(nskb)) 4729 goto err; 4730 4731 if (!nskb->remcsum_offload) 4732 nskb->ip_summed = CHECKSUM_NONE; 4733 SKB_GSO_CB(nskb)->csum = 4734 skb_checksum(nskb, doffset, 4735 nskb->len - doffset, 0); 4736 SKB_GSO_CB(nskb)->csum_start = 4737 skb_headroom(nskb) + doffset; 4738 } 4739 } while ((offset += len) < head_skb->len); 4740 4741 /* Some callers want to get the end of the list. 4742 * Put it in segs->prev to avoid walking the list. 4743 * (see validate_xmit_skb_list() for example) 4744 */ 4745 segs->prev = tail; 4746 4747 if (partial_segs) { 4748 struct sk_buff *iter; 4749 int type = skb_shinfo(head_skb)->gso_type; 4750 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4751 4752 /* Update type to add partial and then remove dodgy if set */ 4753 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4754 type &= ~SKB_GSO_DODGY; 4755 4756 /* Update GSO info and prepare to start updating headers on 4757 * our way back down the stack of protocols. 4758 */ 4759 for (iter = segs; iter; iter = iter->next) { 4760 skb_shinfo(iter)->gso_size = gso_size; 4761 skb_shinfo(iter)->gso_segs = partial_segs; 4762 skb_shinfo(iter)->gso_type = type; 4763 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4764 } 4765 4766 if (tail->len - doffset <= gso_size) 4767 skb_shinfo(tail)->gso_size = 0; 4768 else if (tail != segs) 4769 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4770 } 4771 4772 /* Following permits correct backpressure, for protocols 4773 * using skb_set_owner_w(). 4774 * Idea is to tranfert ownership from head_skb to last segment. 4775 */ 4776 if (head_skb->destructor == sock_wfree) { 4777 swap(tail->truesize, head_skb->truesize); 4778 swap(tail->destructor, head_skb->destructor); 4779 swap(tail->sk, head_skb->sk); 4780 } 4781 return segs; 4782 4783 err: 4784 kfree_skb_list(segs); 4785 return ERR_PTR(err); 4786 } 4787 EXPORT_SYMBOL_GPL(skb_segment); 4788 4789 #ifdef CONFIG_SKB_EXTENSIONS 4790 #define SKB_EXT_ALIGN_VALUE 8 4791 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4792 4793 static const u8 skb_ext_type_len[] = { 4794 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4795 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4796 #endif 4797 #ifdef CONFIG_XFRM 4798 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4799 #endif 4800 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4801 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4802 #endif 4803 #if IS_ENABLED(CONFIG_MPTCP) 4804 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4805 #endif 4806 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4807 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4808 #endif 4809 }; 4810 4811 static __always_inline unsigned int skb_ext_total_length(void) 4812 { 4813 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 4814 int i; 4815 4816 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 4817 l += skb_ext_type_len[i]; 4818 4819 return l; 4820 } 4821 4822 static void skb_extensions_init(void) 4823 { 4824 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4825 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 4826 BUILD_BUG_ON(skb_ext_total_length() > 255); 4827 #endif 4828 4829 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4830 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4831 0, 4832 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4833 NULL); 4834 } 4835 #else 4836 static void skb_extensions_init(void) {} 4837 #endif 4838 4839 /* The SKB kmem_cache slab is critical for network performance. Never 4840 * merge/alias the slab with similar sized objects. This avoids fragmentation 4841 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 4842 */ 4843 #ifndef CONFIG_SLUB_TINY 4844 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 4845 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 4846 #define FLAG_SKB_NO_MERGE 0 4847 #endif 4848 4849 void __init skb_init(void) 4850 { 4851 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4852 sizeof(struct sk_buff), 4853 0, 4854 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 4855 FLAG_SKB_NO_MERGE, 4856 offsetof(struct sk_buff, cb), 4857 sizeof_field(struct sk_buff, cb), 4858 NULL); 4859 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4860 sizeof(struct sk_buff_fclones), 4861 0, 4862 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4863 NULL); 4864 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 4865 * struct skb_shared_info is located at the end of skb->head, 4866 * and should not be copied to/from user. 4867 */ 4868 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 4869 SKB_SMALL_HEAD_CACHE_SIZE, 4870 0, 4871 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 4872 0, 4873 SKB_SMALL_HEAD_HEADROOM, 4874 NULL); 4875 skb_extensions_init(); 4876 } 4877 4878 static int 4879 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4880 unsigned int recursion_level) 4881 { 4882 int start = skb_headlen(skb); 4883 int i, copy = start - offset; 4884 struct sk_buff *frag_iter; 4885 int elt = 0; 4886 4887 if (unlikely(recursion_level >= 24)) 4888 return -EMSGSIZE; 4889 4890 if (copy > 0) { 4891 if (copy > len) 4892 copy = len; 4893 sg_set_buf(sg, skb->data + offset, copy); 4894 elt++; 4895 if ((len -= copy) == 0) 4896 return elt; 4897 offset += copy; 4898 } 4899 4900 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4901 int end; 4902 4903 WARN_ON(start > offset + len); 4904 4905 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4906 if ((copy = end - offset) > 0) { 4907 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4908 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4909 return -EMSGSIZE; 4910 4911 if (copy > len) 4912 copy = len; 4913 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4914 skb_frag_off(frag) + offset - start); 4915 elt++; 4916 if (!(len -= copy)) 4917 return elt; 4918 offset += copy; 4919 } 4920 start = end; 4921 } 4922 4923 skb_walk_frags(skb, frag_iter) { 4924 int end, ret; 4925 4926 WARN_ON(start > offset + len); 4927 4928 end = start + frag_iter->len; 4929 if ((copy = end - offset) > 0) { 4930 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4931 return -EMSGSIZE; 4932 4933 if (copy > len) 4934 copy = len; 4935 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4936 copy, recursion_level + 1); 4937 if (unlikely(ret < 0)) 4938 return ret; 4939 elt += ret; 4940 if ((len -= copy) == 0) 4941 return elt; 4942 offset += copy; 4943 } 4944 start = end; 4945 } 4946 BUG_ON(len); 4947 return elt; 4948 } 4949 4950 /** 4951 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4952 * @skb: Socket buffer containing the buffers to be mapped 4953 * @sg: The scatter-gather list to map into 4954 * @offset: The offset into the buffer's contents to start mapping 4955 * @len: Length of buffer space to be mapped 4956 * 4957 * Fill the specified scatter-gather list with mappings/pointers into a 4958 * region of the buffer space attached to a socket buffer. Returns either 4959 * the number of scatterlist items used, or -EMSGSIZE if the contents 4960 * could not fit. 4961 */ 4962 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4963 { 4964 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4965 4966 if (nsg <= 0) 4967 return nsg; 4968 4969 sg_mark_end(&sg[nsg - 1]); 4970 4971 return nsg; 4972 } 4973 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4974 4975 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4976 * sglist without mark the sg which contain last skb data as the end. 4977 * So the caller can mannipulate sg list as will when padding new data after 4978 * the first call without calling sg_unmark_end to expend sg list. 4979 * 4980 * Scenario to use skb_to_sgvec_nomark: 4981 * 1. sg_init_table 4982 * 2. skb_to_sgvec_nomark(payload1) 4983 * 3. skb_to_sgvec_nomark(payload2) 4984 * 4985 * This is equivalent to: 4986 * 1. sg_init_table 4987 * 2. skb_to_sgvec(payload1) 4988 * 3. sg_unmark_end 4989 * 4. skb_to_sgvec(payload2) 4990 * 4991 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4992 * is more preferable. 4993 */ 4994 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4995 int offset, int len) 4996 { 4997 return __skb_to_sgvec(skb, sg, offset, len, 0); 4998 } 4999 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5000 5001 5002 5003 /** 5004 * skb_cow_data - Check that a socket buffer's data buffers are writable 5005 * @skb: The socket buffer to check. 5006 * @tailbits: Amount of trailing space to be added 5007 * @trailer: Returned pointer to the skb where the @tailbits space begins 5008 * 5009 * Make sure that the data buffers attached to a socket buffer are 5010 * writable. If they are not, private copies are made of the data buffers 5011 * and the socket buffer is set to use these instead. 5012 * 5013 * If @tailbits is given, make sure that there is space to write @tailbits 5014 * bytes of data beyond current end of socket buffer. @trailer will be 5015 * set to point to the skb in which this space begins. 5016 * 5017 * The number of scatterlist elements required to completely map the 5018 * COW'd and extended socket buffer will be returned. 5019 */ 5020 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5021 { 5022 int copyflag; 5023 int elt; 5024 struct sk_buff *skb1, **skb_p; 5025 5026 /* If skb is cloned or its head is paged, reallocate 5027 * head pulling out all the pages (pages are considered not writable 5028 * at the moment even if they are anonymous). 5029 */ 5030 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5031 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5032 return -ENOMEM; 5033 5034 /* Easy case. Most of packets will go this way. */ 5035 if (!skb_has_frag_list(skb)) { 5036 /* A little of trouble, not enough of space for trailer. 5037 * This should not happen, when stack is tuned to generate 5038 * good frames. OK, on miss we reallocate and reserve even more 5039 * space, 128 bytes is fair. */ 5040 5041 if (skb_tailroom(skb) < tailbits && 5042 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5043 return -ENOMEM; 5044 5045 /* Voila! */ 5046 *trailer = skb; 5047 return 1; 5048 } 5049 5050 /* Misery. We are in troubles, going to mincer fragments... */ 5051 5052 elt = 1; 5053 skb_p = &skb_shinfo(skb)->frag_list; 5054 copyflag = 0; 5055 5056 while ((skb1 = *skb_p) != NULL) { 5057 int ntail = 0; 5058 5059 /* The fragment is partially pulled by someone, 5060 * this can happen on input. Copy it and everything 5061 * after it. */ 5062 5063 if (skb_shared(skb1)) 5064 copyflag = 1; 5065 5066 /* If the skb is the last, worry about trailer. */ 5067 5068 if (skb1->next == NULL && tailbits) { 5069 if (skb_shinfo(skb1)->nr_frags || 5070 skb_has_frag_list(skb1) || 5071 skb_tailroom(skb1) < tailbits) 5072 ntail = tailbits + 128; 5073 } 5074 5075 if (copyflag || 5076 skb_cloned(skb1) || 5077 ntail || 5078 skb_shinfo(skb1)->nr_frags || 5079 skb_has_frag_list(skb1)) { 5080 struct sk_buff *skb2; 5081 5082 /* Fuck, we are miserable poor guys... */ 5083 if (ntail == 0) 5084 skb2 = skb_copy(skb1, GFP_ATOMIC); 5085 else 5086 skb2 = skb_copy_expand(skb1, 5087 skb_headroom(skb1), 5088 ntail, 5089 GFP_ATOMIC); 5090 if (unlikely(skb2 == NULL)) 5091 return -ENOMEM; 5092 5093 if (skb1->sk) 5094 skb_set_owner_w(skb2, skb1->sk); 5095 5096 /* Looking around. Are we still alive? 5097 * OK, link new skb, drop old one */ 5098 5099 skb2->next = skb1->next; 5100 *skb_p = skb2; 5101 kfree_skb(skb1); 5102 skb1 = skb2; 5103 } 5104 elt++; 5105 *trailer = skb1; 5106 skb_p = &skb1->next; 5107 } 5108 5109 return elt; 5110 } 5111 EXPORT_SYMBOL_GPL(skb_cow_data); 5112 5113 static void sock_rmem_free(struct sk_buff *skb) 5114 { 5115 struct sock *sk = skb->sk; 5116 5117 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5118 } 5119 5120 static void skb_set_err_queue(struct sk_buff *skb) 5121 { 5122 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5123 * So, it is safe to (mis)use it to mark skbs on the error queue. 5124 */ 5125 skb->pkt_type = PACKET_OUTGOING; 5126 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5127 } 5128 5129 /* 5130 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5131 */ 5132 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5133 { 5134 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5135 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5136 return -ENOMEM; 5137 5138 skb_orphan(skb); 5139 skb->sk = sk; 5140 skb->destructor = sock_rmem_free; 5141 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5142 skb_set_err_queue(skb); 5143 5144 /* before exiting rcu section, make sure dst is refcounted */ 5145 skb_dst_force(skb); 5146 5147 skb_queue_tail(&sk->sk_error_queue, skb); 5148 if (!sock_flag(sk, SOCK_DEAD)) 5149 sk_error_report(sk); 5150 return 0; 5151 } 5152 EXPORT_SYMBOL(sock_queue_err_skb); 5153 5154 static bool is_icmp_err_skb(const struct sk_buff *skb) 5155 { 5156 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5157 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5158 } 5159 5160 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5161 { 5162 struct sk_buff_head *q = &sk->sk_error_queue; 5163 struct sk_buff *skb, *skb_next = NULL; 5164 bool icmp_next = false; 5165 unsigned long flags; 5166 5167 spin_lock_irqsave(&q->lock, flags); 5168 skb = __skb_dequeue(q); 5169 if (skb && (skb_next = skb_peek(q))) { 5170 icmp_next = is_icmp_err_skb(skb_next); 5171 if (icmp_next) 5172 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5173 } 5174 spin_unlock_irqrestore(&q->lock, flags); 5175 5176 if (is_icmp_err_skb(skb) && !icmp_next) 5177 sk->sk_err = 0; 5178 5179 if (skb_next) 5180 sk_error_report(sk); 5181 5182 return skb; 5183 } 5184 EXPORT_SYMBOL(sock_dequeue_err_skb); 5185 5186 /** 5187 * skb_clone_sk - create clone of skb, and take reference to socket 5188 * @skb: the skb to clone 5189 * 5190 * This function creates a clone of a buffer that holds a reference on 5191 * sk_refcnt. Buffers created via this function are meant to be 5192 * returned using sock_queue_err_skb, or free via kfree_skb. 5193 * 5194 * When passing buffers allocated with this function to sock_queue_err_skb 5195 * it is necessary to wrap the call with sock_hold/sock_put in order to 5196 * prevent the socket from being released prior to being enqueued on 5197 * the sk_error_queue. 5198 */ 5199 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5200 { 5201 struct sock *sk = skb->sk; 5202 struct sk_buff *clone; 5203 5204 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5205 return NULL; 5206 5207 clone = skb_clone(skb, GFP_ATOMIC); 5208 if (!clone) { 5209 sock_put(sk); 5210 return NULL; 5211 } 5212 5213 clone->sk = sk; 5214 clone->destructor = sock_efree; 5215 5216 return clone; 5217 } 5218 EXPORT_SYMBOL(skb_clone_sk); 5219 5220 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5221 struct sock *sk, 5222 int tstype, 5223 bool opt_stats) 5224 { 5225 struct sock_exterr_skb *serr; 5226 int err; 5227 5228 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5229 5230 serr = SKB_EXT_ERR(skb); 5231 memset(serr, 0, sizeof(*serr)); 5232 serr->ee.ee_errno = ENOMSG; 5233 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5234 serr->ee.ee_info = tstype; 5235 serr->opt_stats = opt_stats; 5236 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5237 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5238 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5239 if (sk_is_tcp(sk)) 5240 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5241 } 5242 5243 err = sock_queue_err_skb(sk, skb); 5244 5245 if (err) 5246 kfree_skb(skb); 5247 } 5248 5249 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5250 { 5251 bool ret; 5252 5253 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5254 return true; 5255 5256 read_lock_bh(&sk->sk_callback_lock); 5257 ret = sk->sk_socket && sk->sk_socket->file && 5258 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5259 read_unlock_bh(&sk->sk_callback_lock); 5260 return ret; 5261 } 5262 5263 void skb_complete_tx_timestamp(struct sk_buff *skb, 5264 struct skb_shared_hwtstamps *hwtstamps) 5265 { 5266 struct sock *sk = skb->sk; 5267 5268 if (!skb_may_tx_timestamp(sk, false)) 5269 goto err; 5270 5271 /* Take a reference to prevent skb_orphan() from freeing the socket, 5272 * but only if the socket refcount is not zero. 5273 */ 5274 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5275 *skb_hwtstamps(skb) = *hwtstamps; 5276 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5277 sock_put(sk); 5278 return; 5279 } 5280 5281 err: 5282 kfree_skb(skb); 5283 } 5284 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5285 5286 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5287 const struct sk_buff *ack_skb, 5288 struct skb_shared_hwtstamps *hwtstamps, 5289 struct sock *sk, int tstype) 5290 { 5291 struct sk_buff *skb; 5292 bool tsonly, opt_stats = false; 5293 u32 tsflags; 5294 5295 if (!sk) 5296 return; 5297 5298 tsflags = READ_ONCE(sk->sk_tsflags); 5299 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5300 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5301 return; 5302 5303 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5304 if (!skb_may_tx_timestamp(sk, tsonly)) 5305 return; 5306 5307 if (tsonly) { 5308 #ifdef CONFIG_INET 5309 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5310 sk_is_tcp(sk)) { 5311 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5312 ack_skb); 5313 opt_stats = true; 5314 } else 5315 #endif 5316 skb = alloc_skb(0, GFP_ATOMIC); 5317 } else { 5318 skb = skb_clone(orig_skb, GFP_ATOMIC); 5319 5320 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5321 kfree_skb(skb); 5322 return; 5323 } 5324 } 5325 if (!skb) 5326 return; 5327 5328 if (tsonly) { 5329 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5330 SKBTX_ANY_TSTAMP; 5331 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5332 } 5333 5334 if (hwtstamps) 5335 *skb_hwtstamps(skb) = *hwtstamps; 5336 else 5337 __net_timestamp(skb); 5338 5339 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5340 } 5341 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5342 5343 void skb_tstamp_tx(struct sk_buff *orig_skb, 5344 struct skb_shared_hwtstamps *hwtstamps) 5345 { 5346 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5347 SCM_TSTAMP_SND); 5348 } 5349 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5350 5351 #ifdef CONFIG_WIRELESS 5352 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5353 { 5354 struct sock *sk = skb->sk; 5355 struct sock_exterr_skb *serr; 5356 int err = 1; 5357 5358 skb->wifi_acked_valid = 1; 5359 skb->wifi_acked = acked; 5360 5361 serr = SKB_EXT_ERR(skb); 5362 memset(serr, 0, sizeof(*serr)); 5363 serr->ee.ee_errno = ENOMSG; 5364 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5365 5366 /* Take a reference to prevent skb_orphan() from freeing the socket, 5367 * but only if the socket refcount is not zero. 5368 */ 5369 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5370 err = sock_queue_err_skb(sk, skb); 5371 sock_put(sk); 5372 } 5373 if (err) 5374 kfree_skb(skb); 5375 } 5376 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5377 #endif /* CONFIG_WIRELESS */ 5378 5379 /** 5380 * skb_partial_csum_set - set up and verify partial csum values for packet 5381 * @skb: the skb to set 5382 * @start: the number of bytes after skb->data to start checksumming. 5383 * @off: the offset from start to place the checksum. 5384 * 5385 * For untrusted partially-checksummed packets, we need to make sure the values 5386 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5387 * 5388 * This function checks and sets those values and skb->ip_summed: if this 5389 * returns false you should drop the packet. 5390 */ 5391 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5392 { 5393 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5394 u32 csum_start = skb_headroom(skb) + (u32)start; 5395 5396 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5397 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5398 start, off, skb_headroom(skb), skb_headlen(skb)); 5399 return false; 5400 } 5401 skb->ip_summed = CHECKSUM_PARTIAL; 5402 skb->csum_start = csum_start; 5403 skb->csum_offset = off; 5404 skb->transport_header = csum_start; 5405 return true; 5406 } 5407 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5408 5409 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5410 unsigned int max) 5411 { 5412 if (skb_headlen(skb) >= len) 5413 return 0; 5414 5415 /* If we need to pullup then pullup to the max, so we 5416 * won't need to do it again. 5417 */ 5418 if (max > skb->len) 5419 max = skb->len; 5420 5421 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5422 return -ENOMEM; 5423 5424 if (skb_headlen(skb) < len) 5425 return -EPROTO; 5426 5427 return 0; 5428 } 5429 5430 #define MAX_TCP_HDR_LEN (15 * 4) 5431 5432 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5433 typeof(IPPROTO_IP) proto, 5434 unsigned int off) 5435 { 5436 int err; 5437 5438 switch (proto) { 5439 case IPPROTO_TCP: 5440 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5441 off + MAX_TCP_HDR_LEN); 5442 if (!err && !skb_partial_csum_set(skb, off, 5443 offsetof(struct tcphdr, 5444 check))) 5445 err = -EPROTO; 5446 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5447 5448 case IPPROTO_UDP: 5449 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5450 off + sizeof(struct udphdr)); 5451 if (!err && !skb_partial_csum_set(skb, off, 5452 offsetof(struct udphdr, 5453 check))) 5454 err = -EPROTO; 5455 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5456 } 5457 5458 return ERR_PTR(-EPROTO); 5459 } 5460 5461 /* This value should be large enough to cover a tagged ethernet header plus 5462 * maximally sized IP and TCP or UDP headers. 5463 */ 5464 #define MAX_IP_HDR_LEN 128 5465 5466 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5467 { 5468 unsigned int off; 5469 bool fragment; 5470 __sum16 *csum; 5471 int err; 5472 5473 fragment = false; 5474 5475 err = skb_maybe_pull_tail(skb, 5476 sizeof(struct iphdr), 5477 MAX_IP_HDR_LEN); 5478 if (err < 0) 5479 goto out; 5480 5481 if (ip_is_fragment(ip_hdr(skb))) 5482 fragment = true; 5483 5484 off = ip_hdrlen(skb); 5485 5486 err = -EPROTO; 5487 5488 if (fragment) 5489 goto out; 5490 5491 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5492 if (IS_ERR(csum)) 5493 return PTR_ERR(csum); 5494 5495 if (recalculate) 5496 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5497 ip_hdr(skb)->daddr, 5498 skb->len - off, 5499 ip_hdr(skb)->protocol, 0); 5500 err = 0; 5501 5502 out: 5503 return err; 5504 } 5505 5506 /* This value should be large enough to cover a tagged ethernet header plus 5507 * an IPv6 header, all options, and a maximal TCP or UDP header. 5508 */ 5509 #define MAX_IPV6_HDR_LEN 256 5510 5511 #define OPT_HDR(type, skb, off) \ 5512 (type *)(skb_network_header(skb) + (off)) 5513 5514 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5515 { 5516 int err; 5517 u8 nexthdr; 5518 unsigned int off; 5519 unsigned int len; 5520 bool fragment; 5521 bool done; 5522 __sum16 *csum; 5523 5524 fragment = false; 5525 done = false; 5526 5527 off = sizeof(struct ipv6hdr); 5528 5529 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5530 if (err < 0) 5531 goto out; 5532 5533 nexthdr = ipv6_hdr(skb)->nexthdr; 5534 5535 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5536 while (off <= len && !done) { 5537 switch (nexthdr) { 5538 case IPPROTO_DSTOPTS: 5539 case IPPROTO_HOPOPTS: 5540 case IPPROTO_ROUTING: { 5541 struct ipv6_opt_hdr *hp; 5542 5543 err = skb_maybe_pull_tail(skb, 5544 off + 5545 sizeof(struct ipv6_opt_hdr), 5546 MAX_IPV6_HDR_LEN); 5547 if (err < 0) 5548 goto out; 5549 5550 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5551 nexthdr = hp->nexthdr; 5552 off += ipv6_optlen(hp); 5553 break; 5554 } 5555 case IPPROTO_AH: { 5556 struct ip_auth_hdr *hp; 5557 5558 err = skb_maybe_pull_tail(skb, 5559 off + 5560 sizeof(struct ip_auth_hdr), 5561 MAX_IPV6_HDR_LEN); 5562 if (err < 0) 5563 goto out; 5564 5565 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5566 nexthdr = hp->nexthdr; 5567 off += ipv6_authlen(hp); 5568 break; 5569 } 5570 case IPPROTO_FRAGMENT: { 5571 struct frag_hdr *hp; 5572 5573 err = skb_maybe_pull_tail(skb, 5574 off + 5575 sizeof(struct frag_hdr), 5576 MAX_IPV6_HDR_LEN); 5577 if (err < 0) 5578 goto out; 5579 5580 hp = OPT_HDR(struct frag_hdr, skb, off); 5581 5582 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5583 fragment = true; 5584 5585 nexthdr = hp->nexthdr; 5586 off += sizeof(struct frag_hdr); 5587 break; 5588 } 5589 default: 5590 done = true; 5591 break; 5592 } 5593 } 5594 5595 err = -EPROTO; 5596 5597 if (!done || fragment) 5598 goto out; 5599 5600 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5601 if (IS_ERR(csum)) 5602 return PTR_ERR(csum); 5603 5604 if (recalculate) 5605 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5606 &ipv6_hdr(skb)->daddr, 5607 skb->len - off, nexthdr, 0); 5608 err = 0; 5609 5610 out: 5611 return err; 5612 } 5613 5614 /** 5615 * skb_checksum_setup - set up partial checksum offset 5616 * @skb: the skb to set up 5617 * @recalculate: if true the pseudo-header checksum will be recalculated 5618 */ 5619 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5620 { 5621 int err; 5622 5623 switch (skb->protocol) { 5624 case htons(ETH_P_IP): 5625 err = skb_checksum_setup_ipv4(skb, recalculate); 5626 break; 5627 5628 case htons(ETH_P_IPV6): 5629 err = skb_checksum_setup_ipv6(skb, recalculate); 5630 break; 5631 5632 default: 5633 err = -EPROTO; 5634 break; 5635 } 5636 5637 return err; 5638 } 5639 EXPORT_SYMBOL(skb_checksum_setup); 5640 5641 /** 5642 * skb_checksum_maybe_trim - maybe trims the given skb 5643 * @skb: the skb to check 5644 * @transport_len: the data length beyond the network header 5645 * 5646 * Checks whether the given skb has data beyond the given transport length. 5647 * If so, returns a cloned skb trimmed to this transport length. 5648 * Otherwise returns the provided skb. Returns NULL in error cases 5649 * (e.g. transport_len exceeds skb length or out-of-memory). 5650 * 5651 * Caller needs to set the skb transport header and free any returned skb if it 5652 * differs from the provided skb. 5653 */ 5654 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5655 unsigned int transport_len) 5656 { 5657 struct sk_buff *skb_chk; 5658 unsigned int len = skb_transport_offset(skb) + transport_len; 5659 int ret; 5660 5661 if (skb->len < len) 5662 return NULL; 5663 else if (skb->len == len) 5664 return skb; 5665 5666 skb_chk = skb_clone(skb, GFP_ATOMIC); 5667 if (!skb_chk) 5668 return NULL; 5669 5670 ret = pskb_trim_rcsum(skb_chk, len); 5671 if (ret) { 5672 kfree_skb(skb_chk); 5673 return NULL; 5674 } 5675 5676 return skb_chk; 5677 } 5678 5679 /** 5680 * skb_checksum_trimmed - validate checksum of an skb 5681 * @skb: the skb to check 5682 * @transport_len: the data length beyond the network header 5683 * @skb_chkf: checksum function to use 5684 * 5685 * Applies the given checksum function skb_chkf to the provided skb. 5686 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5687 * 5688 * If the skb has data beyond the given transport length, then a 5689 * trimmed & cloned skb is checked and returned. 5690 * 5691 * Caller needs to set the skb transport header and free any returned skb if it 5692 * differs from the provided skb. 5693 */ 5694 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5695 unsigned int transport_len, 5696 __sum16(*skb_chkf)(struct sk_buff *skb)) 5697 { 5698 struct sk_buff *skb_chk; 5699 unsigned int offset = skb_transport_offset(skb); 5700 __sum16 ret; 5701 5702 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5703 if (!skb_chk) 5704 goto err; 5705 5706 if (!pskb_may_pull(skb_chk, offset)) 5707 goto err; 5708 5709 skb_pull_rcsum(skb_chk, offset); 5710 ret = skb_chkf(skb_chk); 5711 skb_push_rcsum(skb_chk, offset); 5712 5713 if (ret) 5714 goto err; 5715 5716 return skb_chk; 5717 5718 err: 5719 if (skb_chk && skb_chk != skb) 5720 kfree_skb(skb_chk); 5721 5722 return NULL; 5723 5724 } 5725 EXPORT_SYMBOL(skb_checksum_trimmed); 5726 5727 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5728 { 5729 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5730 skb->dev->name); 5731 } 5732 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5733 5734 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5735 { 5736 if (head_stolen) { 5737 skb_release_head_state(skb); 5738 kmem_cache_free(skbuff_cache, skb); 5739 } else { 5740 __kfree_skb(skb); 5741 } 5742 } 5743 EXPORT_SYMBOL(kfree_skb_partial); 5744 5745 /** 5746 * skb_try_coalesce - try to merge skb to prior one 5747 * @to: prior buffer 5748 * @from: buffer to add 5749 * @fragstolen: pointer to boolean 5750 * @delta_truesize: how much more was allocated than was requested 5751 */ 5752 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5753 bool *fragstolen, int *delta_truesize) 5754 { 5755 struct skb_shared_info *to_shinfo, *from_shinfo; 5756 int i, delta, len = from->len; 5757 5758 *fragstolen = false; 5759 5760 if (skb_cloned(to)) 5761 return false; 5762 5763 /* In general, avoid mixing page_pool and non-page_pool allocated 5764 * pages within the same SKB. Additionally avoid dealing with clones 5765 * with page_pool pages, in case the SKB is using page_pool fragment 5766 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5767 * references for cloned SKBs at the moment that would result in 5768 * inconsistent reference counts. 5769 * In theory we could take full references if @from is cloned and 5770 * !@to->pp_recycle but its tricky (due to potential race with 5771 * the clone disappearing) and rare, so not worth dealing with. 5772 */ 5773 if (to->pp_recycle != from->pp_recycle || 5774 (from->pp_recycle && skb_cloned(from))) 5775 return false; 5776 5777 if (len <= skb_tailroom(to)) { 5778 if (len) 5779 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5780 *delta_truesize = 0; 5781 return true; 5782 } 5783 5784 to_shinfo = skb_shinfo(to); 5785 from_shinfo = skb_shinfo(from); 5786 if (to_shinfo->frag_list || from_shinfo->frag_list) 5787 return false; 5788 if (skb_zcopy(to) || skb_zcopy(from)) 5789 return false; 5790 5791 if (skb_headlen(from) != 0) { 5792 struct page *page; 5793 unsigned int offset; 5794 5795 if (to_shinfo->nr_frags + 5796 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5797 return false; 5798 5799 if (skb_head_is_locked(from)) 5800 return false; 5801 5802 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5803 5804 page = virt_to_head_page(from->head); 5805 offset = from->data - (unsigned char *)page_address(page); 5806 5807 skb_fill_page_desc(to, to_shinfo->nr_frags, 5808 page, offset, skb_headlen(from)); 5809 *fragstolen = true; 5810 } else { 5811 if (to_shinfo->nr_frags + 5812 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5813 return false; 5814 5815 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5816 } 5817 5818 WARN_ON_ONCE(delta < len); 5819 5820 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5821 from_shinfo->frags, 5822 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5823 to_shinfo->nr_frags += from_shinfo->nr_frags; 5824 5825 if (!skb_cloned(from)) 5826 from_shinfo->nr_frags = 0; 5827 5828 /* if the skb is not cloned this does nothing 5829 * since we set nr_frags to 0. 5830 */ 5831 for (i = 0; i < from_shinfo->nr_frags; i++) 5832 __skb_frag_ref(&from_shinfo->frags[i]); 5833 5834 to->truesize += delta; 5835 to->len += len; 5836 to->data_len += len; 5837 5838 *delta_truesize = delta; 5839 return true; 5840 } 5841 EXPORT_SYMBOL(skb_try_coalesce); 5842 5843 /** 5844 * skb_scrub_packet - scrub an skb 5845 * 5846 * @skb: buffer to clean 5847 * @xnet: packet is crossing netns 5848 * 5849 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5850 * into/from a tunnel. Some information have to be cleared during these 5851 * operations. 5852 * skb_scrub_packet can also be used to clean a skb before injecting it in 5853 * another namespace (@xnet == true). We have to clear all information in the 5854 * skb that could impact namespace isolation. 5855 */ 5856 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5857 { 5858 skb->pkt_type = PACKET_HOST; 5859 skb->skb_iif = 0; 5860 skb->ignore_df = 0; 5861 skb_dst_drop(skb); 5862 skb_ext_reset(skb); 5863 nf_reset_ct(skb); 5864 nf_reset_trace(skb); 5865 5866 #ifdef CONFIG_NET_SWITCHDEV 5867 skb->offload_fwd_mark = 0; 5868 skb->offload_l3_fwd_mark = 0; 5869 #endif 5870 5871 if (!xnet) 5872 return; 5873 5874 ipvs_reset(skb); 5875 skb->mark = 0; 5876 skb_clear_tstamp(skb); 5877 } 5878 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5879 5880 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5881 { 5882 int mac_len, meta_len; 5883 void *meta; 5884 5885 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5886 kfree_skb(skb); 5887 return NULL; 5888 } 5889 5890 mac_len = skb->data - skb_mac_header(skb); 5891 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5892 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5893 mac_len - VLAN_HLEN - ETH_TLEN); 5894 } 5895 5896 meta_len = skb_metadata_len(skb); 5897 if (meta_len) { 5898 meta = skb_metadata_end(skb) - meta_len; 5899 memmove(meta + VLAN_HLEN, meta, meta_len); 5900 } 5901 5902 skb->mac_header += VLAN_HLEN; 5903 return skb; 5904 } 5905 5906 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5907 { 5908 struct vlan_hdr *vhdr; 5909 u16 vlan_tci; 5910 5911 if (unlikely(skb_vlan_tag_present(skb))) { 5912 /* vlan_tci is already set-up so leave this for another time */ 5913 return skb; 5914 } 5915 5916 skb = skb_share_check(skb, GFP_ATOMIC); 5917 if (unlikely(!skb)) 5918 goto err_free; 5919 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5920 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5921 goto err_free; 5922 5923 vhdr = (struct vlan_hdr *)skb->data; 5924 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5925 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5926 5927 skb_pull_rcsum(skb, VLAN_HLEN); 5928 vlan_set_encap_proto(skb, vhdr); 5929 5930 skb = skb_reorder_vlan_header(skb); 5931 if (unlikely(!skb)) 5932 goto err_free; 5933 5934 skb_reset_network_header(skb); 5935 if (!skb_transport_header_was_set(skb)) 5936 skb_reset_transport_header(skb); 5937 skb_reset_mac_len(skb); 5938 5939 return skb; 5940 5941 err_free: 5942 kfree_skb(skb); 5943 return NULL; 5944 } 5945 EXPORT_SYMBOL(skb_vlan_untag); 5946 5947 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5948 { 5949 if (!pskb_may_pull(skb, write_len)) 5950 return -ENOMEM; 5951 5952 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5953 return 0; 5954 5955 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5956 } 5957 EXPORT_SYMBOL(skb_ensure_writable); 5958 5959 /* remove VLAN header from packet and update csum accordingly. 5960 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5961 */ 5962 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5963 { 5964 int offset = skb->data - skb_mac_header(skb); 5965 int err; 5966 5967 if (WARN_ONCE(offset, 5968 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5969 offset)) { 5970 return -EINVAL; 5971 } 5972 5973 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5974 if (unlikely(err)) 5975 return err; 5976 5977 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5978 5979 vlan_remove_tag(skb, vlan_tci); 5980 5981 skb->mac_header += VLAN_HLEN; 5982 5983 if (skb_network_offset(skb) < ETH_HLEN) 5984 skb_set_network_header(skb, ETH_HLEN); 5985 5986 skb_reset_mac_len(skb); 5987 5988 return err; 5989 } 5990 EXPORT_SYMBOL(__skb_vlan_pop); 5991 5992 /* Pop a vlan tag either from hwaccel or from payload. 5993 * Expects skb->data at mac header. 5994 */ 5995 int skb_vlan_pop(struct sk_buff *skb) 5996 { 5997 u16 vlan_tci; 5998 __be16 vlan_proto; 5999 int err; 6000 6001 if (likely(skb_vlan_tag_present(skb))) { 6002 __vlan_hwaccel_clear_tag(skb); 6003 } else { 6004 if (unlikely(!eth_type_vlan(skb->protocol))) 6005 return 0; 6006 6007 err = __skb_vlan_pop(skb, &vlan_tci); 6008 if (err) 6009 return err; 6010 } 6011 /* move next vlan tag to hw accel tag */ 6012 if (likely(!eth_type_vlan(skb->protocol))) 6013 return 0; 6014 6015 vlan_proto = skb->protocol; 6016 err = __skb_vlan_pop(skb, &vlan_tci); 6017 if (unlikely(err)) 6018 return err; 6019 6020 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6021 return 0; 6022 } 6023 EXPORT_SYMBOL(skb_vlan_pop); 6024 6025 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6026 * Expects skb->data at mac header. 6027 */ 6028 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6029 { 6030 if (skb_vlan_tag_present(skb)) { 6031 int offset = skb->data - skb_mac_header(skb); 6032 int err; 6033 6034 if (WARN_ONCE(offset, 6035 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6036 offset)) { 6037 return -EINVAL; 6038 } 6039 6040 err = __vlan_insert_tag(skb, skb->vlan_proto, 6041 skb_vlan_tag_get(skb)); 6042 if (err) 6043 return err; 6044 6045 skb->protocol = skb->vlan_proto; 6046 skb->mac_len += VLAN_HLEN; 6047 6048 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6049 } 6050 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6051 return 0; 6052 } 6053 EXPORT_SYMBOL(skb_vlan_push); 6054 6055 /** 6056 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6057 * 6058 * @skb: Socket buffer to modify 6059 * 6060 * Drop the Ethernet header of @skb. 6061 * 6062 * Expects that skb->data points to the mac header and that no VLAN tags are 6063 * present. 6064 * 6065 * Returns 0 on success, -errno otherwise. 6066 */ 6067 int skb_eth_pop(struct sk_buff *skb) 6068 { 6069 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6070 skb_network_offset(skb) < ETH_HLEN) 6071 return -EPROTO; 6072 6073 skb_pull_rcsum(skb, ETH_HLEN); 6074 skb_reset_mac_header(skb); 6075 skb_reset_mac_len(skb); 6076 6077 return 0; 6078 } 6079 EXPORT_SYMBOL(skb_eth_pop); 6080 6081 /** 6082 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6083 * 6084 * @skb: Socket buffer to modify 6085 * @dst: Destination MAC address of the new header 6086 * @src: Source MAC address of the new header 6087 * 6088 * Prepend @skb with a new Ethernet header. 6089 * 6090 * Expects that skb->data points to the mac header, which must be empty. 6091 * 6092 * Returns 0 on success, -errno otherwise. 6093 */ 6094 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6095 const unsigned char *src) 6096 { 6097 struct ethhdr *eth; 6098 int err; 6099 6100 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6101 return -EPROTO; 6102 6103 err = skb_cow_head(skb, sizeof(*eth)); 6104 if (err < 0) 6105 return err; 6106 6107 skb_push(skb, sizeof(*eth)); 6108 skb_reset_mac_header(skb); 6109 skb_reset_mac_len(skb); 6110 6111 eth = eth_hdr(skb); 6112 ether_addr_copy(eth->h_dest, dst); 6113 ether_addr_copy(eth->h_source, src); 6114 eth->h_proto = skb->protocol; 6115 6116 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6117 6118 return 0; 6119 } 6120 EXPORT_SYMBOL(skb_eth_push); 6121 6122 /* Update the ethertype of hdr and the skb csum value if required. */ 6123 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6124 __be16 ethertype) 6125 { 6126 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6127 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6128 6129 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6130 } 6131 6132 hdr->h_proto = ethertype; 6133 } 6134 6135 /** 6136 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6137 * the packet 6138 * 6139 * @skb: buffer 6140 * @mpls_lse: MPLS label stack entry to push 6141 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6142 * @mac_len: length of the MAC header 6143 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6144 * ethernet 6145 * 6146 * Expects skb->data at mac header. 6147 * 6148 * Returns 0 on success, -errno otherwise. 6149 */ 6150 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6151 int mac_len, bool ethernet) 6152 { 6153 struct mpls_shim_hdr *lse; 6154 int err; 6155 6156 if (unlikely(!eth_p_mpls(mpls_proto))) 6157 return -EINVAL; 6158 6159 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6160 if (skb->encapsulation) 6161 return -EINVAL; 6162 6163 err = skb_cow_head(skb, MPLS_HLEN); 6164 if (unlikely(err)) 6165 return err; 6166 6167 if (!skb->inner_protocol) { 6168 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6169 skb_set_inner_protocol(skb, skb->protocol); 6170 } 6171 6172 skb_push(skb, MPLS_HLEN); 6173 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6174 mac_len); 6175 skb_reset_mac_header(skb); 6176 skb_set_network_header(skb, mac_len); 6177 skb_reset_mac_len(skb); 6178 6179 lse = mpls_hdr(skb); 6180 lse->label_stack_entry = mpls_lse; 6181 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6182 6183 if (ethernet && mac_len >= ETH_HLEN) 6184 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6185 skb->protocol = mpls_proto; 6186 6187 return 0; 6188 } 6189 EXPORT_SYMBOL_GPL(skb_mpls_push); 6190 6191 /** 6192 * skb_mpls_pop() - pop the outermost MPLS header 6193 * 6194 * @skb: buffer 6195 * @next_proto: ethertype of header after popped MPLS header 6196 * @mac_len: length of the MAC header 6197 * @ethernet: flag to indicate if the packet is ethernet 6198 * 6199 * Expects skb->data at mac header. 6200 * 6201 * Returns 0 on success, -errno otherwise. 6202 */ 6203 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6204 bool ethernet) 6205 { 6206 int err; 6207 6208 if (unlikely(!eth_p_mpls(skb->protocol))) 6209 return 0; 6210 6211 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6212 if (unlikely(err)) 6213 return err; 6214 6215 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6216 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6217 mac_len); 6218 6219 __skb_pull(skb, MPLS_HLEN); 6220 skb_reset_mac_header(skb); 6221 skb_set_network_header(skb, mac_len); 6222 6223 if (ethernet && mac_len >= ETH_HLEN) { 6224 struct ethhdr *hdr; 6225 6226 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6227 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6228 skb_mod_eth_type(skb, hdr, next_proto); 6229 } 6230 skb->protocol = next_proto; 6231 6232 return 0; 6233 } 6234 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6235 6236 /** 6237 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6238 * 6239 * @skb: buffer 6240 * @mpls_lse: new MPLS label stack entry to update to 6241 * 6242 * Expects skb->data at mac header. 6243 * 6244 * Returns 0 on success, -errno otherwise. 6245 */ 6246 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6247 { 6248 int err; 6249 6250 if (unlikely(!eth_p_mpls(skb->protocol))) 6251 return -EINVAL; 6252 6253 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6254 if (unlikely(err)) 6255 return err; 6256 6257 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6258 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6259 6260 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6261 } 6262 6263 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6264 6265 return 0; 6266 } 6267 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6268 6269 /** 6270 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6271 * 6272 * @skb: buffer 6273 * 6274 * Expects skb->data at mac header. 6275 * 6276 * Returns 0 on success, -errno otherwise. 6277 */ 6278 int skb_mpls_dec_ttl(struct sk_buff *skb) 6279 { 6280 u32 lse; 6281 u8 ttl; 6282 6283 if (unlikely(!eth_p_mpls(skb->protocol))) 6284 return -EINVAL; 6285 6286 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6287 return -ENOMEM; 6288 6289 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6290 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6291 if (!--ttl) 6292 return -EINVAL; 6293 6294 lse &= ~MPLS_LS_TTL_MASK; 6295 lse |= ttl << MPLS_LS_TTL_SHIFT; 6296 6297 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6298 } 6299 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6300 6301 /** 6302 * alloc_skb_with_frags - allocate skb with page frags 6303 * 6304 * @header_len: size of linear part 6305 * @data_len: needed length in frags 6306 * @order: max page order desired. 6307 * @errcode: pointer to error code if any 6308 * @gfp_mask: allocation mask 6309 * 6310 * This can be used to allocate a paged skb, given a maximal order for frags. 6311 */ 6312 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6313 unsigned long data_len, 6314 int order, 6315 int *errcode, 6316 gfp_t gfp_mask) 6317 { 6318 unsigned long chunk; 6319 struct sk_buff *skb; 6320 struct page *page; 6321 int nr_frags = 0; 6322 6323 *errcode = -EMSGSIZE; 6324 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6325 return NULL; 6326 6327 *errcode = -ENOBUFS; 6328 skb = alloc_skb(header_len, gfp_mask); 6329 if (!skb) 6330 return NULL; 6331 6332 while (data_len) { 6333 if (nr_frags == MAX_SKB_FRAGS - 1) 6334 goto failure; 6335 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6336 order--; 6337 6338 if (order) { 6339 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6340 __GFP_COMP | 6341 __GFP_NOWARN, 6342 order); 6343 if (!page) { 6344 order--; 6345 continue; 6346 } 6347 } else { 6348 page = alloc_page(gfp_mask); 6349 if (!page) 6350 goto failure; 6351 } 6352 chunk = min_t(unsigned long, data_len, 6353 PAGE_SIZE << order); 6354 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6355 nr_frags++; 6356 skb->truesize += (PAGE_SIZE << order); 6357 data_len -= chunk; 6358 } 6359 return skb; 6360 6361 failure: 6362 kfree_skb(skb); 6363 return NULL; 6364 } 6365 EXPORT_SYMBOL(alloc_skb_with_frags); 6366 6367 /* carve out the first off bytes from skb when off < headlen */ 6368 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6369 const int headlen, gfp_t gfp_mask) 6370 { 6371 int i; 6372 unsigned int size = skb_end_offset(skb); 6373 int new_hlen = headlen - off; 6374 u8 *data; 6375 6376 if (skb_pfmemalloc(skb)) 6377 gfp_mask |= __GFP_MEMALLOC; 6378 6379 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6380 if (!data) 6381 return -ENOMEM; 6382 size = SKB_WITH_OVERHEAD(size); 6383 6384 /* Copy real data, and all frags */ 6385 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6386 skb->len -= off; 6387 6388 memcpy((struct skb_shared_info *)(data + size), 6389 skb_shinfo(skb), 6390 offsetof(struct skb_shared_info, 6391 frags[skb_shinfo(skb)->nr_frags])); 6392 if (skb_cloned(skb)) { 6393 /* drop the old head gracefully */ 6394 if (skb_orphan_frags(skb, gfp_mask)) { 6395 skb_kfree_head(data, size); 6396 return -ENOMEM; 6397 } 6398 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6399 skb_frag_ref(skb, i); 6400 if (skb_has_frag_list(skb)) 6401 skb_clone_fraglist(skb); 6402 skb_release_data(skb, SKB_CONSUMED, false); 6403 } else { 6404 /* we can reuse existing recount- all we did was 6405 * relocate values 6406 */ 6407 skb_free_head(skb, false); 6408 } 6409 6410 skb->head = data; 6411 skb->data = data; 6412 skb->head_frag = 0; 6413 skb_set_end_offset(skb, size); 6414 skb_set_tail_pointer(skb, skb_headlen(skb)); 6415 skb_headers_offset_update(skb, 0); 6416 skb->cloned = 0; 6417 skb->hdr_len = 0; 6418 skb->nohdr = 0; 6419 atomic_set(&skb_shinfo(skb)->dataref, 1); 6420 6421 return 0; 6422 } 6423 6424 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6425 6426 /* carve out the first eat bytes from skb's frag_list. May recurse into 6427 * pskb_carve() 6428 */ 6429 static int pskb_carve_frag_list(struct sk_buff *skb, 6430 struct skb_shared_info *shinfo, int eat, 6431 gfp_t gfp_mask) 6432 { 6433 struct sk_buff *list = shinfo->frag_list; 6434 struct sk_buff *clone = NULL; 6435 struct sk_buff *insp = NULL; 6436 6437 do { 6438 if (!list) { 6439 pr_err("Not enough bytes to eat. Want %d\n", eat); 6440 return -EFAULT; 6441 } 6442 if (list->len <= eat) { 6443 /* Eaten as whole. */ 6444 eat -= list->len; 6445 list = list->next; 6446 insp = list; 6447 } else { 6448 /* Eaten partially. */ 6449 if (skb_shared(list)) { 6450 clone = skb_clone(list, gfp_mask); 6451 if (!clone) 6452 return -ENOMEM; 6453 insp = list->next; 6454 list = clone; 6455 } else { 6456 /* This may be pulled without problems. */ 6457 insp = list; 6458 } 6459 if (pskb_carve(list, eat, gfp_mask) < 0) { 6460 kfree_skb(clone); 6461 return -ENOMEM; 6462 } 6463 break; 6464 } 6465 } while (eat); 6466 6467 /* Free pulled out fragments. */ 6468 while ((list = shinfo->frag_list) != insp) { 6469 shinfo->frag_list = list->next; 6470 consume_skb(list); 6471 } 6472 /* And insert new clone at head. */ 6473 if (clone) { 6474 clone->next = list; 6475 shinfo->frag_list = clone; 6476 } 6477 return 0; 6478 } 6479 6480 /* carve off first len bytes from skb. Split line (off) is in the 6481 * non-linear part of skb 6482 */ 6483 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6484 int pos, gfp_t gfp_mask) 6485 { 6486 int i, k = 0; 6487 unsigned int size = skb_end_offset(skb); 6488 u8 *data; 6489 const int nfrags = skb_shinfo(skb)->nr_frags; 6490 struct skb_shared_info *shinfo; 6491 6492 if (skb_pfmemalloc(skb)) 6493 gfp_mask |= __GFP_MEMALLOC; 6494 6495 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6496 if (!data) 6497 return -ENOMEM; 6498 size = SKB_WITH_OVERHEAD(size); 6499 6500 memcpy((struct skb_shared_info *)(data + size), 6501 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6502 if (skb_orphan_frags(skb, gfp_mask)) { 6503 skb_kfree_head(data, size); 6504 return -ENOMEM; 6505 } 6506 shinfo = (struct skb_shared_info *)(data + size); 6507 for (i = 0; i < nfrags; i++) { 6508 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6509 6510 if (pos + fsize > off) { 6511 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6512 6513 if (pos < off) { 6514 /* Split frag. 6515 * We have two variants in this case: 6516 * 1. Move all the frag to the second 6517 * part, if it is possible. F.e. 6518 * this approach is mandatory for TUX, 6519 * where splitting is expensive. 6520 * 2. Split is accurately. We make this. 6521 */ 6522 skb_frag_off_add(&shinfo->frags[0], off - pos); 6523 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6524 } 6525 skb_frag_ref(skb, i); 6526 k++; 6527 } 6528 pos += fsize; 6529 } 6530 shinfo->nr_frags = k; 6531 if (skb_has_frag_list(skb)) 6532 skb_clone_fraglist(skb); 6533 6534 /* split line is in frag list */ 6535 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6536 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6537 if (skb_has_frag_list(skb)) 6538 kfree_skb_list(skb_shinfo(skb)->frag_list); 6539 skb_kfree_head(data, size); 6540 return -ENOMEM; 6541 } 6542 skb_release_data(skb, SKB_CONSUMED, false); 6543 6544 skb->head = data; 6545 skb->head_frag = 0; 6546 skb->data = data; 6547 skb_set_end_offset(skb, size); 6548 skb_reset_tail_pointer(skb); 6549 skb_headers_offset_update(skb, 0); 6550 skb->cloned = 0; 6551 skb->hdr_len = 0; 6552 skb->nohdr = 0; 6553 skb->len -= off; 6554 skb->data_len = skb->len; 6555 atomic_set(&skb_shinfo(skb)->dataref, 1); 6556 return 0; 6557 } 6558 6559 /* remove len bytes from the beginning of the skb */ 6560 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6561 { 6562 int headlen = skb_headlen(skb); 6563 6564 if (len < headlen) 6565 return pskb_carve_inside_header(skb, len, headlen, gfp); 6566 else 6567 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6568 } 6569 6570 /* Extract to_copy bytes starting at off from skb, and return this in 6571 * a new skb 6572 */ 6573 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6574 int to_copy, gfp_t gfp) 6575 { 6576 struct sk_buff *clone = skb_clone(skb, gfp); 6577 6578 if (!clone) 6579 return NULL; 6580 6581 if (pskb_carve(clone, off, gfp) < 0 || 6582 pskb_trim(clone, to_copy)) { 6583 kfree_skb(clone); 6584 return NULL; 6585 } 6586 return clone; 6587 } 6588 EXPORT_SYMBOL(pskb_extract); 6589 6590 /** 6591 * skb_condense - try to get rid of fragments/frag_list if possible 6592 * @skb: buffer 6593 * 6594 * Can be used to save memory before skb is added to a busy queue. 6595 * If packet has bytes in frags and enough tail room in skb->head, 6596 * pull all of them, so that we can free the frags right now and adjust 6597 * truesize. 6598 * Notes: 6599 * We do not reallocate skb->head thus can not fail. 6600 * Caller must re-evaluate skb->truesize if needed. 6601 */ 6602 void skb_condense(struct sk_buff *skb) 6603 { 6604 if (skb->data_len) { 6605 if (skb->data_len > skb->end - skb->tail || 6606 skb_cloned(skb)) 6607 return; 6608 6609 /* Nice, we can free page frag(s) right now */ 6610 __pskb_pull_tail(skb, skb->data_len); 6611 } 6612 /* At this point, skb->truesize might be over estimated, 6613 * because skb had a fragment, and fragments do not tell 6614 * their truesize. 6615 * When we pulled its content into skb->head, fragment 6616 * was freed, but __pskb_pull_tail() could not possibly 6617 * adjust skb->truesize, not knowing the frag truesize. 6618 */ 6619 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6620 } 6621 EXPORT_SYMBOL(skb_condense); 6622 6623 #ifdef CONFIG_SKB_EXTENSIONS 6624 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6625 { 6626 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6627 } 6628 6629 /** 6630 * __skb_ext_alloc - allocate a new skb extensions storage 6631 * 6632 * @flags: See kmalloc(). 6633 * 6634 * Returns the newly allocated pointer. The pointer can later attached to a 6635 * skb via __skb_ext_set(). 6636 * Note: caller must handle the skb_ext as an opaque data. 6637 */ 6638 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6639 { 6640 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6641 6642 if (new) { 6643 memset(new->offset, 0, sizeof(new->offset)); 6644 refcount_set(&new->refcnt, 1); 6645 } 6646 6647 return new; 6648 } 6649 6650 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6651 unsigned int old_active) 6652 { 6653 struct skb_ext *new; 6654 6655 if (refcount_read(&old->refcnt) == 1) 6656 return old; 6657 6658 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6659 if (!new) 6660 return NULL; 6661 6662 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6663 refcount_set(&new->refcnt, 1); 6664 6665 #ifdef CONFIG_XFRM 6666 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6667 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6668 unsigned int i; 6669 6670 for (i = 0; i < sp->len; i++) 6671 xfrm_state_hold(sp->xvec[i]); 6672 } 6673 #endif 6674 #ifdef CONFIG_MCTP_FLOWS 6675 if (old_active & (1 << SKB_EXT_MCTP)) { 6676 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 6677 6678 if (flow->key) 6679 refcount_inc(&flow->key->refs); 6680 } 6681 #endif 6682 __skb_ext_put(old); 6683 return new; 6684 } 6685 6686 /** 6687 * __skb_ext_set - attach the specified extension storage to this skb 6688 * @skb: buffer 6689 * @id: extension id 6690 * @ext: extension storage previously allocated via __skb_ext_alloc() 6691 * 6692 * Existing extensions, if any, are cleared. 6693 * 6694 * Returns the pointer to the extension. 6695 */ 6696 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6697 struct skb_ext *ext) 6698 { 6699 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6700 6701 skb_ext_put(skb); 6702 newlen = newoff + skb_ext_type_len[id]; 6703 ext->chunks = newlen; 6704 ext->offset[id] = newoff; 6705 skb->extensions = ext; 6706 skb->active_extensions = 1 << id; 6707 return skb_ext_get_ptr(ext, id); 6708 } 6709 6710 /** 6711 * skb_ext_add - allocate space for given extension, COW if needed 6712 * @skb: buffer 6713 * @id: extension to allocate space for 6714 * 6715 * Allocates enough space for the given extension. 6716 * If the extension is already present, a pointer to that extension 6717 * is returned. 6718 * 6719 * If the skb was cloned, COW applies and the returned memory can be 6720 * modified without changing the extension space of clones buffers. 6721 * 6722 * Returns pointer to the extension or NULL on allocation failure. 6723 */ 6724 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6725 { 6726 struct skb_ext *new, *old = NULL; 6727 unsigned int newlen, newoff; 6728 6729 if (skb->active_extensions) { 6730 old = skb->extensions; 6731 6732 new = skb_ext_maybe_cow(old, skb->active_extensions); 6733 if (!new) 6734 return NULL; 6735 6736 if (__skb_ext_exist(new, id)) 6737 goto set_active; 6738 6739 newoff = new->chunks; 6740 } else { 6741 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6742 6743 new = __skb_ext_alloc(GFP_ATOMIC); 6744 if (!new) 6745 return NULL; 6746 } 6747 6748 newlen = newoff + skb_ext_type_len[id]; 6749 new->chunks = newlen; 6750 new->offset[id] = newoff; 6751 set_active: 6752 skb->slow_gro = 1; 6753 skb->extensions = new; 6754 skb->active_extensions |= 1 << id; 6755 return skb_ext_get_ptr(new, id); 6756 } 6757 EXPORT_SYMBOL(skb_ext_add); 6758 6759 #ifdef CONFIG_XFRM 6760 static void skb_ext_put_sp(struct sec_path *sp) 6761 { 6762 unsigned int i; 6763 6764 for (i = 0; i < sp->len; i++) 6765 xfrm_state_put(sp->xvec[i]); 6766 } 6767 #endif 6768 6769 #ifdef CONFIG_MCTP_FLOWS 6770 static void skb_ext_put_mctp(struct mctp_flow *flow) 6771 { 6772 if (flow->key) 6773 mctp_key_unref(flow->key); 6774 } 6775 #endif 6776 6777 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6778 { 6779 struct skb_ext *ext = skb->extensions; 6780 6781 skb->active_extensions &= ~(1 << id); 6782 if (skb->active_extensions == 0) { 6783 skb->extensions = NULL; 6784 __skb_ext_put(ext); 6785 #ifdef CONFIG_XFRM 6786 } else if (id == SKB_EXT_SEC_PATH && 6787 refcount_read(&ext->refcnt) == 1) { 6788 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6789 6790 skb_ext_put_sp(sp); 6791 sp->len = 0; 6792 #endif 6793 } 6794 } 6795 EXPORT_SYMBOL(__skb_ext_del); 6796 6797 void __skb_ext_put(struct skb_ext *ext) 6798 { 6799 /* If this is last clone, nothing can increment 6800 * it after check passes. Avoids one atomic op. 6801 */ 6802 if (refcount_read(&ext->refcnt) == 1) 6803 goto free_now; 6804 6805 if (!refcount_dec_and_test(&ext->refcnt)) 6806 return; 6807 free_now: 6808 #ifdef CONFIG_XFRM 6809 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6810 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6811 #endif 6812 #ifdef CONFIG_MCTP_FLOWS 6813 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6814 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6815 #endif 6816 6817 kmem_cache_free(skbuff_ext_cache, ext); 6818 } 6819 EXPORT_SYMBOL(__skb_ext_put); 6820 #endif /* CONFIG_SKB_EXTENSIONS */ 6821 6822 /** 6823 * skb_attempt_defer_free - queue skb for remote freeing 6824 * @skb: buffer 6825 * 6826 * Put @skb in a per-cpu list, using the cpu which 6827 * allocated the skb/pages to reduce false sharing 6828 * and memory zone spinlock contention. 6829 */ 6830 void skb_attempt_defer_free(struct sk_buff *skb) 6831 { 6832 int cpu = skb->alloc_cpu; 6833 struct softnet_data *sd; 6834 unsigned int defer_max; 6835 bool kick; 6836 6837 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6838 !cpu_online(cpu) || 6839 cpu == raw_smp_processor_id()) { 6840 nodefer: __kfree_skb(skb); 6841 return; 6842 } 6843 6844 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 6845 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 6846 6847 sd = &per_cpu(softnet_data, cpu); 6848 defer_max = READ_ONCE(sysctl_skb_defer_max); 6849 if (READ_ONCE(sd->defer_count) >= defer_max) 6850 goto nodefer; 6851 6852 spin_lock_bh(&sd->defer_lock); 6853 /* Send an IPI every time queue reaches half capacity. */ 6854 kick = sd->defer_count == (defer_max >> 1); 6855 /* Paired with the READ_ONCE() few lines above */ 6856 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6857 6858 skb->next = sd->defer_list; 6859 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6860 WRITE_ONCE(sd->defer_list, skb); 6861 spin_unlock_bh(&sd->defer_lock); 6862 6863 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6864 * if we are unlucky enough (this seems very unlikely). 6865 */ 6866 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6867 smp_call_function_single_async(cpu, &sd->defer_csd); 6868 } 6869 6870 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 6871 size_t offset, size_t len) 6872 { 6873 const char *kaddr; 6874 __wsum csum; 6875 6876 kaddr = kmap_local_page(page); 6877 csum = csum_partial(kaddr + offset, len, 0); 6878 kunmap_local(kaddr); 6879 skb->csum = csum_block_add(skb->csum, csum, skb->len); 6880 } 6881 6882 /** 6883 * skb_splice_from_iter - Splice (or copy) pages to skbuff 6884 * @skb: The buffer to add pages to 6885 * @iter: Iterator representing the pages to be added 6886 * @maxsize: Maximum amount of pages to be added 6887 * @gfp: Allocation flags 6888 * 6889 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 6890 * extracts pages from an iterator and adds them to the socket buffer if 6891 * possible, copying them to fragments if not possible (such as if they're slab 6892 * pages). 6893 * 6894 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 6895 * insufficient space in the buffer to transfer anything. 6896 */ 6897 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 6898 ssize_t maxsize, gfp_t gfp) 6899 { 6900 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags); 6901 struct page *pages[8], **ppages = pages; 6902 ssize_t spliced = 0, ret = 0; 6903 unsigned int i; 6904 6905 while (iter->count > 0) { 6906 ssize_t space, nr, len; 6907 size_t off; 6908 6909 ret = -EMSGSIZE; 6910 space = frag_limit - skb_shinfo(skb)->nr_frags; 6911 if (space < 0) 6912 break; 6913 6914 /* We might be able to coalesce without increasing nr_frags */ 6915 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 6916 6917 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 6918 if (len <= 0) { 6919 ret = len ?: -EIO; 6920 break; 6921 } 6922 6923 i = 0; 6924 do { 6925 struct page *page = pages[i++]; 6926 size_t part = min_t(size_t, PAGE_SIZE - off, len); 6927 6928 ret = -EIO; 6929 if (WARN_ON_ONCE(!sendpage_ok(page))) 6930 goto out; 6931 6932 ret = skb_append_pagefrags(skb, page, off, part, 6933 frag_limit); 6934 if (ret < 0) { 6935 iov_iter_revert(iter, len); 6936 goto out; 6937 } 6938 6939 if (skb->ip_summed == CHECKSUM_NONE) 6940 skb_splice_csum_page(skb, page, off, part); 6941 6942 off = 0; 6943 spliced += part; 6944 maxsize -= part; 6945 len -= part; 6946 } while (len > 0); 6947 6948 if (maxsize <= 0) 6949 break; 6950 } 6951 6952 out: 6953 skb_len_add(skb, spliced); 6954 return spliced ?: ret; 6955 } 6956 EXPORT_SYMBOL(skb_splice_from_iter); 6957