xref: /openbmc/linux/net/core/skbuff.c (revision 4800cd83)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
66 
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 #include <trace/events/skb.h>
70 
71 #include "kmap_skb.h"
72 
73 static struct kmem_cache *skbuff_head_cache __read_mostly;
74 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
75 
76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
77 				  struct pipe_buffer *buf)
78 {
79 	put_page(buf->page);
80 }
81 
82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
83 				struct pipe_buffer *buf)
84 {
85 	get_page(buf->page);
86 }
87 
88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
89 			       struct pipe_buffer *buf)
90 {
91 	return 1;
92 }
93 
94 
95 /* Pipe buffer operations for a socket. */
96 static const struct pipe_buf_operations sock_pipe_buf_ops = {
97 	.can_merge = 0,
98 	.map = generic_pipe_buf_map,
99 	.unmap = generic_pipe_buf_unmap,
100 	.confirm = generic_pipe_buf_confirm,
101 	.release = sock_pipe_buf_release,
102 	.steal = sock_pipe_buf_steal,
103 	.get = sock_pipe_buf_get,
104 };
105 
106 /*
107  *	Keep out-of-line to prevent kernel bloat.
108  *	__builtin_return_address is not used because it is not always
109  *	reliable.
110  */
111 
112 /**
113  *	skb_over_panic	- 	private function
114  *	@skb: buffer
115  *	@sz: size
116  *	@here: address
117  *
118  *	Out of line support code for skb_put(). Not user callable.
119  */
120 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
121 {
122 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
123 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
124 	       here, skb->len, sz, skb->head, skb->data,
125 	       (unsigned long)skb->tail, (unsigned long)skb->end,
126 	       skb->dev ? skb->dev->name : "<NULL>");
127 	BUG();
128 }
129 
130 /**
131  *	skb_under_panic	- 	private function
132  *	@skb: buffer
133  *	@sz: size
134  *	@here: address
135  *
136  *	Out of line support code for skb_push(). Not user callable.
137  */
138 
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
142 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
143 	       here, skb->len, sz, skb->head, skb->data,
144 	       (unsigned long)skb->tail, (unsigned long)skb->end,
145 	       skb->dev ? skb->dev->name : "<NULL>");
146 	BUG();
147 }
148 
149 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
150  *	'private' fields and also do memory statistics to find all the
151  *	[BEEP] leaks.
152  *
153  */
154 
155 /**
156  *	__alloc_skb	-	allocate a network buffer
157  *	@size: size to allocate
158  *	@gfp_mask: allocation mask
159  *	@fclone: allocate from fclone cache instead of head cache
160  *		and allocate a cloned (child) skb
161  *	@node: numa node to allocate memory on
162  *
163  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
164  *	tail room of size bytes. The object has a reference count of one.
165  *	The return is the buffer. On a failure the return is %NULL.
166  *
167  *	Buffers may only be allocated from interrupts using a @gfp_mask of
168  *	%GFP_ATOMIC.
169  */
170 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
171 			    int fclone, int node)
172 {
173 	struct kmem_cache *cache;
174 	struct skb_shared_info *shinfo;
175 	struct sk_buff *skb;
176 	u8 *data;
177 
178 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
179 
180 	/* Get the HEAD */
181 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
182 	if (!skb)
183 		goto out;
184 	prefetchw(skb);
185 
186 	size = SKB_DATA_ALIGN(size);
187 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
188 			gfp_mask, node);
189 	if (!data)
190 		goto nodata;
191 	prefetchw(data + size);
192 
193 	/*
194 	 * Only clear those fields we need to clear, not those that we will
195 	 * actually initialise below. Hence, don't put any more fields after
196 	 * the tail pointer in struct sk_buff!
197 	 */
198 	memset(skb, 0, offsetof(struct sk_buff, tail));
199 	skb->truesize = size + sizeof(struct sk_buff);
200 	atomic_set(&skb->users, 1);
201 	skb->head = data;
202 	skb->data = data;
203 	skb_reset_tail_pointer(skb);
204 	skb->end = skb->tail + size;
205 #ifdef NET_SKBUFF_DATA_USES_OFFSET
206 	skb->mac_header = ~0U;
207 #endif
208 
209 	/* make sure we initialize shinfo sequentially */
210 	shinfo = skb_shinfo(skb);
211 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
212 	atomic_set(&shinfo->dataref, 1);
213 	kmemcheck_annotate_variable(shinfo->destructor_arg);
214 
215 	if (fclone) {
216 		struct sk_buff *child = skb + 1;
217 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
218 
219 		kmemcheck_annotate_bitfield(child, flags1);
220 		kmemcheck_annotate_bitfield(child, flags2);
221 		skb->fclone = SKB_FCLONE_ORIG;
222 		atomic_set(fclone_ref, 1);
223 
224 		child->fclone = SKB_FCLONE_UNAVAILABLE;
225 	}
226 out:
227 	return skb;
228 nodata:
229 	kmem_cache_free(cache, skb);
230 	skb = NULL;
231 	goto out;
232 }
233 EXPORT_SYMBOL(__alloc_skb);
234 
235 /**
236  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
237  *	@dev: network device to receive on
238  *	@length: length to allocate
239  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
240  *
241  *	Allocate a new &sk_buff and assign it a usage count of one. The
242  *	buffer has unspecified headroom built in. Users should allocate
243  *	the headroom they think they need without accounting for the
244  *	built in space. The built in space is used for optimisations.
245  *
246  *	%NULL is returned if there is no free memory.
247  */
248 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
249 		unsigned int length, gfp_t gfp_mask)
250 {
251 	struct sk_buff *skb;
252 
253 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
254 	if (likely(skb)) {
255 		skb_reserve(skb, NET_SKB_PAD);
256 		skb->dev = dev;
257 	}
258 	return skb;
259 }
260 EXPORT_SYMBOL(__netdev_alloc_skb);
261 
262 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
263 		int size)
264 {
265 	skb_fill_page_desc(skb, i, page, off, size);
266 	skb->len += size;
267 	skb->data_len += size;
268 	skb->truesize += size;
269 }
270 EXPORT_SYMBOL(skb_add_rx_frag);
271 
272 /**
273  *	dev_alloc_skb - allocate an skbuff for receiving
274  *	@length: length to allocate
275  *
276  *	Allocate a new &sk_buff and assign it a usage count of one. The
277  *	buffer has unspecified headroom built in. Users should allocate
278  *	the headroom they think they need without accounting for the
279  *	built in space. The built in space is used for optimisations.
280  *
281  *	%NULL is returned if there is no free memory. Although this function
282  *	allocates memory it can be called from an interrupt.
283  */
284 struct sk_buff *dev_alloc_skb(unsigned int length)
285 {
286 	/*
287 	 * There is more code here than it seems:
288 	 * __dev_alloc_skb is an inline
289 	 */
290 	return __dev_alloc_skb(length, GFP_ATOMIC);
291 }
292 EXPORT_SYMBOL(dev_alloc_skb);
293 
294 static void skb_drop_list(struct sk_buff **listp)
295 {
296 	struct sk_buff *list = *listp;
297 
298 	*listp = NULL;
299 
300 	do {
301 		struct sk_buff *this = list;
302 		list = list->next;
303 		kfree_skb(this);
304 	} while (list);
305 }
306 
307 static inline void skb_drop_fraglist(struct sk_buff *skb)
308 {
309 	skb_drop_list(&skb_shinfo(skb)->frag_list);
310 }
311 
312 static void skb_clone_fraglist(struct sk_buff *skb)
313 {
314 	struct sk_buff *list;
315 
316 	skb_walk_frags(skb, list)
317 		skb_get(list);
318 }
319 
320 static void skb_release_data(struct sk_buff *skb)
321 {
322 	if (!skb->cloned ||
323 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
324 			       &skb_shinfo(skb)->dataref)) {
325 		if (skb_shinfo(skb)->nr_frags) {
326 			int i;
327 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
328 				put_page(skb_shinfo(skb)->frags[i].page);
329 		}
330 
331 		if (skb_has_frag_list(skb))
332 			skb_drop_fraglist(skb);
333 
334 		kfree(skb->head);
335 	}
336 }
337 
338 /*
339  *	Free an skbuff by memory without cleaning the state.
340  */
341 static void kfree_skbmem(struct sk_buff *skb)
342 {
343 	struct sk_buff *other;
344 	atomic_t *fclone_ref;
345 
346 	switch (skb->fclone) {
347 	case SKB_FCLONE_UNAVAILABLE:
348 		kmem_cache_free(skbuff_head_cache, skb);
349 		break;
350 
351 	case SKB_FCLONE_ORIG:
352 		fclone_ref = (atomic_t *) (skb + 2);
353 		if (atomic_dec_and_test(fclone_ref))
354 			kmem_cache_free(skbuff_fclone_cache, skb);
355 		break;
356 
357 	case SKB_FCLONE_CLONE:
358 		fclone_ref = (atomic_t *) (skb + 1);
359 		other = skb - 1;
360 
361 		/* The clone portion is available for
362 		 * fast-cloning again.
363 		 */
364 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
365 
366 		if (atomic_dec_and_test(fclone_ref))
367 			kmem_cache_free(skbuff_fclone_cache, other);
368 		break;
369 	}
370 }
371 
372 static void skb_release_head_state(struct sk_buff *skb)
373 {
374 	skb_dst_drop(skb);
375 #ifdef CONFIG_XFRM
376 	secpath_put(skb->sp);
377 #endif
378 	if (skb->destructor) {
379 		WARN_ON(in_irq());
380 		skb->destructor(skb);
381 	}
382 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
383 	nf_conntrack_put(skb->nfct);
384 #endif
385 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
386 	nf_conntrack_put_reasm(skb->nfct_reasm);
387 #endif
388 #ifdef CONFIG_BRIDGE_NETFILTER
389 	nf_bridge_put(skb->nf_bridge);
390 #endif
391 /* XXX: IS this still necessary? - JHS */
392 #ifdef CONFIG_NET_SCHED
393 	skb->tc_index = 0;
394 #ifdef CONFIG_NET_CLS_ACT
395 	skb->tc_verd = 0;
396 #endif
397 #endif
398 }
399 
400 /* Free everything but the sk_buff shell. */
401 static void skb_release_all(struct sk_buff *skb)
402 {
403 	skb_release_head_state(skb);
404 	skb_release_data(skb);
405 }
406 
407 /**
408  *	__kfree_skb - private function
409  *	@skb: buffer
410  *
411  *	Free an sk_buff. Release anything attached to the buffer.
412  *	Clean the state. This is an internal helper function. Users should
413  *	always call kfree_skb
414  */
415 
416 void __kfree_skb(struct sk_buff *skb)
417 {
418 	skb_release_all(skb);
419 	kfree_skbmem(skb);
420 }
421 EXPORT_SYMBOL(__kfree_skb);
422 
423 /**
424  *	kfree_skb - free an sk_buff
425  *	@skb: buffer to free
426  *
427  *	Drop a reference to the buffer and free it if the usage count has
428  *	hit zero.
429  */
430 void kfree_skb(struct sk_buff *skb)
431 {
432 	if (unlikely(!skb))
433 		return;
434 	if (likely(atomic_read(&skb->users) == 1))
435 		smp_rmb();
436 	else if (likely(!atomic_dec_and_test(&skb->users)))
437 		return;
438 	trace_kfree_skb(skb, __builtin_return_address(0));
439 	__kfree_skb(skb);
440 }
441 EXPORT_SYMBOL(kfree_skb);
442 
443 /**
444  *	consume_skb - free an skbuff
445  *	@skb: buffer to free
446  *
447  *	Drop a ref to the buffer and free it if the usage count has hit zero
448  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
449  *	is being dropped after a failure and notes that
450  */
451 void consume_skb(struct sk_buff *skb)
452 {
453 	if (unlikely(!skb))
454 		return;
455 	if (likely(atomic_read(&skb->users) == 1))
456 		smp_rmb();
457 	else if (likely(!atomic_dec_and_test(&skb->users)))
458 		return;
459 	trace_consume_skb(skb);
460 	__kfree_skb(skb);
461 }
462 EXPORT_SYMBOL(consume_skb);
463 
464 /**
465  *	skb_recycle_check - check if skb can be reused for receive
466  *	@skb: buffer
467  *	@skb_size: minimum receive buffer size
468  *
469  *	Checks that the skb passed in is not shared or cloned, and
470  *	that it is linear and its head portion at least as large as
471  *	skb_size so that it can be recycled as a receive buffer.
472  *	If these conditions are met, this function does any necessary
473  *	reference count dropping and cleans up the skbuff as if it
474  *	just came from __alloc_skb().
475  */
476 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
477 {
478 	struct skb_shared_info *shinfo;
479 
480 	if (irqs_disabled())
481 		return false;
482 
483 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
484 		return false;
485 
486 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
487 	if (skb_end_pointer(skb) - skb->head < skb_size)
488 		return false;
489 
490 	if (skb_shared(skb) || skb_cloned(skb))
491 		return false;
492 
493 	skb_release_head_state(skb);
494 
495 	shinfo = skb_shinfo(skb);
496 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
497 	atomic_set(&shinfo->dataref, 1);
498 
499 	memset(skb, 0, offsetof(struct sk_buff, tail));
500 	skb->data = skb->head + NET_SKB_PAD;
501 	skb_reset_tail_pointer(skb);
502 
503 	return true;
504 }
505 EXPORT_SYMBOL(skb_recycle_check);
506 
507 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
508 {
509 	new->tstamp		= old->tstamp;
510 	new->dev		= old->dev;
511 	new->transport_header	= old->transport_header;
512 	new->network_header	= old->network_header;
513 	new->mac_header		= old->mac_header;
514 	skb_dst_copy(new, old);
515 	new->rxhash		= old->rxhash;
516 #ifdef CONFIG_XFRM
517 	new->sp			= secpath_get(old->sp);
518 #endif
519 	memcpy(new->cb, old->cb, sizeof(old->cb));
520 	new->csum		= old->csum;
521 	new->local_df		= old->local_df;
522 	new->pkt_type		= old->pkt_type;
523 	new->ip_summed		= old->ip_summed;
524 	skb_copy_queue_mapping(new, old);
525 	new->priority		= old->priority;
526 	new->deliver_no_wcard	= old->deliver_no_wcard;
527 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
528 	new->ipvs_property	= old->ipvs_property;
529 #endif
530 	new->protocol		= old->protocol;
531 	new->mark		= old->mark;
532 	new->skb_iif		= old->skb_iif;
533 	__nf_copy(new, old);
534 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
535     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
536 	new->nf_trace		= old->nf_trace;
537 #endif
538 #ifdef CONFIG_NET_SCHED
539 	new->tc_index		= old->tc_index;
540 #ifdef CONFIG_NET_CLS_ACT
541 	new->tc_verd		= old->tc_verd;
542 #endif
543 #endif
544 	new->vlan_tci		= old->vlan_tci;
545 
546 	skb_copy_secmark(new, old);
547 }
548 
549 /*
550  * You should not add any new code to this function.  Add it to
551  * __copy_skb_header above instead.
552  */
553 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
554 {
555 #define C(x) n->x = skb->x
556 
557 	n->next = n->prev = NULL;
558 	n->sk = NULL;
559 	__copy_skb_header(n, skb);
560 
561 	C(len);
562 	C(data_len);
563 	C(mac_len);
564 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
565 	n->cloned = 1;
566 	n->nohdr = 0;
567 	n->destructor = NULL;
568 	C(tail);
569 	C(end);
570 	C(head);
571 	C(data);
572 	C(truesize);
573 	atomic_set(&n->users, 1);
574 
575 	atomic_inc(&(skb_shinfo(skb)->dataref));
576 	skb->cloned = 1;
577 
578 	return n;
579 #undef C
580 }
581 
582 /**
583  *	skb_morph	-	morph one skb into another
584  *	@dst: the skb to receive the contents
585  *	@src: the skb to supply the contents
586  *
587  *	This is identical to skb_clone except that the target skb is
588  *	supplied by the user.
589  *
590  *	The target skb is returned upon exit.
591  */
592 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
593 {
594 	skb_release_all(dst);
595 	return __skb_clone(dst, src);
596 }
597 EXPORT_SYMBOL_GPL(skb_morph);
598 
599 /**
600  *	skb_clone	-	duplicate an sk_buff
601  *	@skb: buffer to clone
602  *	@gfp_mask: allocation priority
603  *
604  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
605  *	copies share the same packet data but not structure. The new
606  *	buffer has a reference count of 1. If the allocation fails the
607  *	function returns %NULL otherwise the new buffer is returned.
608  *
609  *	If this function is called from an interrupt gfp_mask() must be
610  *	%GFP_ATOMIC.
611  */
612 
613 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
614 {
615 	struct sk_buff *n;
616 
617 	n = skb + 1;
618 	if (skb->fclone == SKB_FCLONE_ORIG &&
619 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
620 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
621 		n->fclone = SKB_FCLONE_CLONE;
622 		atomic_inc(fclone_ref);
623 	} else {
624 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
625 		if (!n)
626 			return NULL;
627 
628 		kmemcheck_annotate_bitfield(n, flags1);
629 		kmemcheck_annotate_bitfield(n, flags2);
630 		n->fclone = SKB_FCLONE_UNAVAILABLE;
631 	}
632 
633 	return __skb_clone(n, skb);
634 }
635 EXPORT_SYMBOL(skb_clone);
636 
637 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
638 {
639 #ifndef NET_SKBUFF_DATA_USES_OFFSET
640 	/*
641 	 *	Shift between the two data areas in bytes
642 	 */
643 	unsigned long offset = new->data - old->data;
644 #endif
645 
646 	__copy_skb_header(new, old);
647 
648 #ifndef NET_SKBUFF_DATA_USES_OFFSET
649 	/* {transport,network,mac}_header are relative to skb->head */
650 	new->transport_header += offset;
651 	new->network_header   += offset;
652 	if (skb_mac_header_was_set(new))
653 		new->mac_header	      += offset;
654 #endif
655 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
656 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
657 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
658 }
659 
660 /**
661  *	skb_copy	-	create private copy of an sk_buff
662  *	@skb: buffer to copy
663  *	@gfp_mask: allocation priority
664  *
665  *	Make a copy of both an &sk_buff and its data. This is used when the
666  *	caller wishes to modify the data and needs a private copy of the
667  *	data to alter. Returns %NULL on failure or the pointer to the buffer
668  *	on success. The returned buffer has a reference count of 1.
669  *
670  *	As by-product this function converts non-linear &sk_buff to linear
671  *	one, so that &sk_buff becomes completely private and caller is allowed
672  *	to modify all the data of returned buffer. This means that this
673  *	function is not recommended for use in circumstances when only
674  *	header is going to be modified. Use pskb_copy() instead.
675  */
676 
677 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
678 {
679 	int headerlen = skb_headroom(skb);
680 	unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
681 	struct sk_buff *n = alloc_skb(size, gfp_mask);
682 
683 	if (!n)
684 		return NULL;
685 
686 	/* Set the data pointer */
687 	skb_reserve(n, headerlen);
688 	/* Set the tail pointer and length */
689 	skb_put(n, skb->len);
690 
691 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
692 		BUG();
693 
694 	copy_skb_header(n, skb);
695 	return n;
696 }
697 EXPORT_SYMBOL(skb_copy);
698 
699 /**
700  *	pskb_copy	-	create copy of an sk_buff with private head.
701  *	@skb: buffer to copy
702  *	@gfp_mask: allocation priority
703  *
704  *	Make a copy of both an &sk_buff and part of its data, located
705  *	in header. Fragmented data remain shared. This is used when
706  *	the caller wishes to modify only header of &sk_buff and needs
707  *	private copy of the header to alter. Returns %NULL on failure
708  *	or the pointer to the buffer on success.
709  *	The returned buffer has a reference count of 1.
710  */
711 
712 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
713 {
714 	unsigned int size = skb_end_pointer(skb) - skb->head;
715 	struct sk_buff *n = alloc_skb(size, gfp_mask);
716 
717 	if (!n)
718 		goto out;
719 
720 	/* Set the data pointer */
721 	skb_reserve(n, skb_headroom(skb));
722 	/* Set the tail pointer and length */
723 	skb_put(n, skb_headlen(skb));
724 	/* Copy the bytes */
725 	skb_copy_from_linear_data(skb, n->data, n->len);
726 
727 	n->truesize += skb->data_len;
728 	n->data_len  = skb->data_len;
729 	n->len	     = skb->len;
730 
731 	if (skb_shinfo(skb)->nr_frags) {
732 		int i;
733 
734 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
735 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
736 			get_page(skb_shinfo(n)->frags[i].page);
737 		}
738 		skb_shinfo(n)->nr_frags = i;
739 	}
740 
741 	if (skb_has_frag_list(skb)) {
742 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
743 		skb_clone_fraglist(n);
744 	}
745 
746 	copy_skb_header(n, skb);
747 out:
748 	return n;
749 }
750 EXPORT_SYMBOL(pskb_copy);
751 
752 /**
753  *	pskb_expand_head - reallocate header of &sk_buff
754  *	@skb: buffer to reallocate
755  *	@nhead: room to add at head
756  *	@ntail: room to add at tail
757  *	@gfp_mask: allocation priority
758  *
759  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
760  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
761  *	reference count of 1. Returns zero in the case of success or error,
762  *	if expansion failed. In the last case, &sk_buff is not changed.
763  *
764  *	All the pointers pointing into skb header may change and must be
765  *	reloaded after call to this function.
766  */
767 
768 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
769 		     gfp_t gfp_mask)
770 {
771 	int i;
772 	u8 *data;
773 	int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
774 	long off;
775 	bool fastpath;
776 
777 	BUG_ON(nhead < 0);
778 
779 	if (skb_shared(skb))
780 		BUG();
781 
782 	size = SKB_DATA_ALIGN(size);
783 
784 	/* Check if we can avoid taking references on fragments if we own
785 	 * the last reference on skb->head. (see skb_release_data())
786 	 */
787 	if (!skb->cloned)
788 		fastpath = true;
789 	else {
790 		int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
791 
792 		fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
793 	}
794 
795 	if (fastpath &&
796 	    size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
797 		memmove(skb->head + size, skb_shinfo(skb),
798 			offsetof(struct skb_shared_info,
799 				 frags[skb_shinfo(skb)->nr_frags]));
800 		memmove(skb->head + nhead, skb->head,
801 			skb_tail_pointer(skb) - skb->head);
802 		off = nhead;
803 		goto adjust_others;
804 	}
805 
806 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
807 	if (!data)
808 		goto nodata;
809 
810 	/* Copy only real data... and, alas, header. This should be
811 	 * optimized for the cases when header is void.
812 	 */
813 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
814 
815 	memcpy((struct skb_shared_info *)(data + size),
816 	       skb_shinfo(skb),
817 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
818 
819 	if (fastpath) {
820 		kfree(skb->head);
821 	} else {
822 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
823 			get_page(skb_shinfo(skb)->frags[i].page);
824 
825 		if (skb_has_frag_list(skb))
826 			skb_clone_fraglist(skb);
827 
828 		skb_release_data(skb);
829 	}
830 	off = (data + nhead) - skb->head;
831 
832 	skb->head     = data;
833 adjust_others:
834 	skb->data    += off;
835 #ifdef NET_SKBUFF_DATA_USES_OFFSET
836 	skb->end      = size;
837 	off           = nhead;
838 #else
839 	skb->end      = skb->head + size;
840 #endif
841 	/* {transport,network,mac}_header and tail are relative to skb->head */
842 	skb->tail	      += off;
843 	skb->transport_header += off;
844 	skb->network_header   += off;
845 	if (skb_mac_header_was_set(skb))
846 		skb->mac_header += off;
847 	/* Only adjust this if it actually is csum_start rather than csum */
848 	if (skb->ip_summed == CHECKSUM_PARTIAL)
849 		skb->csum_start += nhead;
850 	skb->cloned   = 0;
851 	skb->hdr_len  = 0;
852 	skb->nohdr    = 0;
853 	atomic_set(&skb_shinfo(skb)->dataref, 1);
854 	return 0;
855 
856 nodata:
857 	return -ENOMEM;
858 }
859 EXPORT_SYMBOL(pskb_expand_head);
860 
861 /* Make private copy of skb with writable head and some headroom */
862 
863 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
864 {
865 	struct sk_buff *skb2;
866 	int delta = headroom - skb_headroom(skb);
867 
868 	if (delta <= 0)
869 		skb2 = pskb_copy(skb, GFP_ATOMIC);
870 	else {
871 		skb2 = skb_clone(skb, GFP_ATOMIC);
872 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
873 					     GFP_ATOMIC)) {
874 			kfree_skb(skb2);
875 			skb2 = NULL;
876 		}
877 	}
878 	return skb2;
879 }
880 EXPORT_SYMBOL(skb_realloc_headroom);
881 
882 /**
883  *	skb_copy_expand	-	copy and expand sk_buff
884  *	@skb: buffer to copy
885  *	@newheadroom: new free bytes at head
886  *	@newtailroom: new free bytes at tail
887  *	@gfp_mask: allocation priority
888  *
889  *	Make a copy of both an &sk_buff and its data and while doing so
890  *	allocate additional space.
891  *
892  *	This is used when the caller wishes to modify the data and needs a
893  *	private copy of the data to alter as well as more space for new fields.
894  *	Returns %NULL on failure or the pointer to the buffer
895  *	on success. The returned buffer has a reference count of 1.
896  *
897  *	You must pass %GFP_ATOMIC as the allocation priority if this function
898  *	is called from an interrupt.
899  */
900 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
901 				int newheadroom, int newtailroom,
902 				gfp_t gfp_mask)
903 {
904 	/*
905 	 *	Allocate the copy buffer
906 	 */
907 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
908 				      gfp_mask);
909 	int oldheadroom = skb_headroom(skb);
910 	int head_copy_len, head_copy_off;
911 	int off;
912 
913 	if (!n)
914 		return NULL;
915 
916 	skb_reserve(n, newheadroom);
917 
918 	/* Set the tail pointer and length */
919 	skb_put(n, skb->len);
920 
921 	head_copy_len = oldheadroom;
922 	head_copy_off = 0;
923 	if (newheadroom <= head_copy_len)
924 		head_copy_len = newheadroom;
925 	else
926 		head_copy_off = newheadroom - head_copy_len;
927 
928 	/* Copy the linear header and data. */
929 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
930 			  skb->len + head_copy_len))
931 		BUG();
932 
933 	copy_skb_header(n, skb);
934 
935 	off                  = newheadroom - oldheadroom;
936 	if (n->ip_summed == CHECKSUM_PARTIAL)
937 		n->csum_start += off;
938 #ifdef NET_SKBUFF_DATA_USES_OFFSET
939 	n->transport_header += off;
940 	n->network_header   += off;
941 	if (skb_mac_header_was_set(skb))
942 		n->mac_header += off;
943 #endif
944 
945 	return n;
946 }
947 EXPORT_SYMBOL(skb_copy_expand);
948 
949 /**
950  *	skb_pad			-	zero pad the tail of an skb
951  *	@skb: buffer to pad
952  *	@pad: space to pad
953  *
954  *	Ensure that a buffer is followed by a padding area that is zero
955  *	filled. Used by network drivers which may DMA or transfer data
956  *	beyond the buffer end onto the wire.
957  *
958  *	May return error in out of memory cases. The skb is freed on error.
959  */
960 
961 int skb_pad(struct sk_buff *skb, int pad)
962 {
963 	int err;
964 	int ntail;
965 
966 	/* If the skbuff is non linear tailroom is always zero.. */
967 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
968 		memset(skb->data+skb->len, 0, pad);
969 		return 0;
970 	}
971 
972 	ntail = skb->data_len + pad - (skb->end - skb->tail);
973 	if (likely(skb_cloned(skb) || ntail > 0)) {
974 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
975 		if (unlikely(err))
976 			goto free_skb;
977 	}
978 
979 	/* FIXME: The use of this function with non-linear skb's really needs
980 	 * to be audited.
981 	 */
982 	err = skb_linearize(skb);
983 	if (unlikely(err))
984 		goto free_skb;
985 
986 	memset(skb->data + skb->len, 0, pad);
987 	return 0;
988 
989 free_skb:
990 	kfree_skb(skb);
991 	return err;
992 }
993 EXPORT_SYMBOL(skb_pad);
994 
995 /**
996  *	skb_put - add data to a buffer
997  *	@skb: buffer to use
998  *	@len: amount of data to add
999  *
1000  *	This function extends the used data area of the buffer. If this would
1001  *	exceed the total buffer size the kernel will panic. A pointer to the
1002  *	first byte of the extra data is returned.
1003  */
1004 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1005 {
1006 	unsigned char *tmp = skb_tail_pointer(skb);
1007 	SKB_LINEAR_ASSERT(skb);
1008 	skb->tail += len;
1009 	skb->len  += len;
1010 	if (unlikely(skb->tail > skb->end))
1011 		skb_over_panic(skb, len, __builtin_return_address(0));
1012 	return tmp;
1013 }
1014 EXPORT_SYMBOL(skb_put);
1015 
1016 /**
1017  *	skb_push - add data to the start of a buffer
1018  *	@skb: buffer to use
1019  *	@len: amount of data to add
1020  *
1021  *	This function extends the used data area of the buffer at the buffer
1022  *	start. If this would exceed the total buffer headroom the kernel will
1023  *	panic. A pointer to the first byte of the extra data is returned.
1024  */
1025 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1026 {
1027 	skb->data -= len;
1028 	skb->len  += len;
1029 	if (unlikely(skb->data<skb->head))
1030 		skb_under_panic(skb, len, __builtin_return_address(0));
1031 	return skb->data;
1032 }
1033 EXPORT_SYMBOL(skb_push);
1034 
1035 /**
1036  *	skb_pull - remove data from the start of a buffer
1037  *	@skb: buffer to use
1038  *	@len: amount of data to remove
1039  *
1040  *	This function removes data from the start of a buffer, returning
1041  *	the memory to the headroom. A pointer to the next data in the buffer
1042  *	is returned. Once the data has been pulled future pushes will overwrite
1043  *	the old data.
1044  */
1045 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1046 {
1047 	return skb_pull_inline(skb, len);
1048 }
1049 EXPORT_SYMBOL(skb_pull);
1050 
1051 /**
1052  *	skb_trim - remove end from a buffer
1053  *	@skb: buffer to alter
1054  *	@len: new length
1055  *
1056  *	Cut the length of a buffer down by removing data from the tail. If
1057  *	the buffer is already under the length specified it is not modified.
1058  *	The skb must be linear.
1059  */
1060 void skb_trim(struct sk_buff *skb, unsigned int len)
1061 {
1062 	if (skb->len > len)
1063 		__skb_trim(skb, len);
1064 }
1065 EXPORT_SYMBOL(skb_trim);
1066 
1067 /* Trims skb to length len. It can change skb pointers.
1068  */
1069 
1070 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1071 {
1072 	struct sk_buff **fragp;
1073 	struct sk_buff *frag;
1074 	int offset = skb_headlen(skb);
1075 	int nfrags = skb_shinfo(skb)->nr_frags;
1076 	int i;
1077 	int err;
1078 
1079 	if (skb_cloned(skb) &&
1080 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1081 		return err;
1082 
1083 	i = 0;
1084 	if (offset >= len)
1085 		goto drop_pages;
1086 
1087 	for (; i < nfrags; i++) {
1088 		int end = offset + skb_shinfo(skb)->frags[i].size;
1089 
1090 		if (end < len) {
1091 			offset = end;
1092 			continue;
1093 		}
1094 
1095 		skb_shinfo(skb)->frags[i++].size = len - offset;
1096 
1097 drop_pages:
1098 		skb_shinfo(skb)->nr_frags = i;
1099 
1100 		for (; i < nfrags; i++)
1101 			put_page(skb_shinfo(skb)->frags[i].page);
1102 
1103 		if (skb_has_frag_list(skb))
1104 			skb_drop_fraglist(skb);
1105 		goto done;
1106 	}
1107 
1108 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1109 	     fragp = &frag->next) {
1110 		int end = offset + frag->len;
1111 
1112 		if (skb_shared(frag)) {
1113 			struct sk_buff *nfrag;
1114 
1115 			nfrag = skb_clone(frag, GFP_ATOMIC);
1116 			if (unlikely(!nfrag))
1117 				return -ENOMEM;
1118 
1119 			nfrag->next = frag->next;
1120 			kfree_skb(frag);
1121 			frag = nfrag;
1122 			*fragp = frag;
1123 		}
1124 
1125 		if (end < len) {
1126 			offset = end;
1127 			continue;
1128 		}
1129 
1130 		if (end > len &&
1131 		    unlikely((err = pskb_trim(frag, len - offset))))
1132 			return err;
1133 
1134 		if (frag->next)
1135 			skb_drop_list(&frag->next);
1136 		break;
1137 	}
1138 
1139 done:
1140 	if (len > skb_headlen(skb)) {
1141 		skb->data_len -= skb->len - len;
1142 		skb->len       = len;
1143 	} else {
1144 		skb->len       = len;
1145 		skb->data_len  = 0;
1146 		skb_set_tail_pointer(skb, len);
1147 	}
1148 
1149 	return 0;
1150 }
1151 EXPORT_SYMBOL(___pskb_trim);
1152 
1153 /**
1154  *	__pskb_pull_tail - advance tail of skb header
1155  *	@skb: buffer to reallocate
1156  *	@delta: number of bytes to advance tail
1157  *
1158  *	The function makes a sense only on a fragmented &sk_buff,
1159  *	it expands header moving its tail forward and copying necessary
1160  *	data from fragmented part.
1161  *
1162  *	&sk_buff MUST have reference count of 1.
1163  *
1164  *	Returns %NULL (and &sk_buff does not change) if pull failed
1165  *	or value of new tail of skb in the case of success.
1166  *
1167  *	All the pointers pointing into skb header may change and must be
1168  *	reloaded after call to this function.
1169  */
1170 
1171 /* Moves tail of skb head forward, copying data from fragmented part,
1172  * when it is necessary.
1173  * 1. It may fail due to malloc failure.
1174  * 2. It may change skb pointers.
1175  *
1176  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1177  */
1178 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1179 {
1180 	/* If skb has not enough free space at tail, get new one
1181 	 * plus 128 bytes for future expansions. If we have enough
1182 	 * room at tail, reallocate without expansion only if skb is cloned.
1183 	 */
1184 	int i, k, eat = (skb->tail + delta) - skb->end;
1185 
1186 	if (eat > 0 || skb_cloned(skb)) {
1187 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1188 				     GFP_ATOMIC))
1189 			return NULL;
1190 	}
1191 
1192 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1193 		BUG();
1194 
1195 	/* Optimization: no fragments, no reasons to preestimate
1196 	 * size of pulled pages. Superb.
1197 	 */
1198 	if (!skb_has_frag_list(skb))
1199 		goto pull_pages;
1200 
1201 	/* Estimate size of pulled pages. */
1202 	eat = delta;
1203 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1204 		if (skb_shinfo(skb)->frags[i].size >= eat)
1205 			goto pull_pages;
1206 		eat -= skb_shinfo(skb)->frags[i].size;
1207 	}
1208 
1209 	/* If we need update frag list, we are in troubles.
1210 	 * Certainly, it possible to add an offset to skb data,
1211 	 * but taking into account that pulling is expected to
1212 	 * be very rare operation, it is worth to fight against
1213 	 * further bloating skb head and crucify ourselves here instead.
1214 	 * Pure masohism, indeed. 8)8)
1215 	 */
1216 	if (eat) {
1217 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1218 		struct sk_buff *clone = NULL;
1219 		struct sk_buff *insp = NULL;
1220 
1221 		do {
1222 			BUG_ON(!list);
1223 
1224 			if (list->len <= eat) {
1225 				/* Eaten as whole. */
1226 				eat -= list->len;
1227 				list = list->next;
1228 				insp = list;
1229 			} else {
1230 				/* Eaten partially. */
1231 
1232 				if (skb_shared(list)) {
1233 					/* Sucks! We need to fork list. :-( */
1234 					clone = skb_clone(list, GFP_ATOMIC);
1235 					if (!clone)
1236 						return NULL;
1237 					insp = list->next;
1238 					list = clone;
1239 				} else {
1240 					/* This may be pulled without
1241 					 * problems. */
1242 					insp = list;
1243 				}
1244 				if (!pskb_pull(list, eat)) {
1245 					kfree_skb(clone);
1246 					return NULL;
1247 				}
1248 				break;
1249 			}
1250 		} while (eat);
1251 
1252 		/* Free pulled out fragments. */
1253 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1254 			skb_shinfo(skb)->frag_list = list->next;
1255 			kfree_skb(list);
1256 		}
1257 		/* And insert new clone at head. */
1258 		if (clone) {
1259 			clone->next = list;
1260 			skb_shinfo(skb)->frag_list = clone;
1261 		}
1262 	}
1263 	/* Success! Now we may commit changes to skb data. */
1264 
1265 pull_pages:
1266 	eat = delta;
1267 	k = 0;
1268 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1269 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1270 			put_page(skb_shinfo(skb)->frags[i].page);
1271 			eat -= skb_shinfo(skb)->frags[i].size;
1272 		} else {
1273 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1274 			if (eat) {
1275 				skb_shinfo(skb)->frags[k].page_offset += eat;
1276 				skb_shinfo(skb)->frags[k].size -= eat;
1277 				eat = 0;
1278 			}
1279 			k++;
1280 		}
1281 	}
1282 	skb_shinfo(skb)->nr_frags = k;
1283 
1284 	skb->tail     += delta;
1285 	skb->data_len -= delta;
1286 
1287 	return skb_tail_pointer(skb);
1288 }
1289 EXPORT_SYMBOL(__pskb_pull_tail);
1290 
1291 /* Copy some data bits from skb to kernel buffer. */
1292 
1293 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1294 {
1295 	int start = skb_headlen(skb);
1296 	struct sk_buff *frag_iter;
1297 	int i, copy;
1298 
1299 	if (offset > (int)skb->len - len)
1300 		goto fault;
1301 
1302 	/* Copy header. */
1303 	if ((copy = start - offset) > 0) {
1304 		if (copy > len)
1305 			copy = len;
1306 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1307 		if ((len -= copy) == 0)
1308 			return 0;
1309 		offset += copy;
1310 		to     += copy;
1311 	}
1312 
1313 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1314 		int end;
1315 
1316 		WARN_ON(start > offset + len);
1317 
1318 		end = start + skb_shinfo(skb)->frags[i].size;
1319 		if ((copy = end - offset) > 0) {
1320 			u8 *vaddr;
1321 
1322 			if (copy > len)
1323 				copy = len;
1324 
1325 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1326 			memcpy(to,
1327 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1328 			       offset - start, copy);
1329 			kunmap_skb_frag(vaddr);
1330 
1331 			if ((len -= copy) == 0)
1332 				return 0;
1333 			offset += copy;
1334 			to     += copy;
1335 		}
1336 		start = end;
1337 	}
1338 
1339 	skb_walk_frags(skb, frag_iter) {
1340 		int end;
1341 
1342 		WARN_ON(start > offset + len);
1343 
1344 		end = start + frag_iter->len;
1345 		if ((copy = end - offset) > 0) {
1346 			if (copy > len)
1347 				copy = len;
1348 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1349 				goto fault;
1350 			if ((len -= copy) == 0)
1351 				return 0;
1352 			offset += copy;
1353 			to     += copy;
1354 		}
1355 		start = end;
1356 	}
1357 	if (!len)
1358 		return 0;
1359 
1360 fault:
1361 	return -EFAULT;
1362 }
1363 EXPORT_SYMBOL(skb_copy_bits);
1364 
1365 /*
1366  * Callback from splice_to_pipe(), if we need to release some pages
1367  * at the end of the spd in case we error'ed out in filling the pipe.
1368  */
1369 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1370 {
1371 	put_page(spd->pages[i]);
1372 }
1373 
1374 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1375 					  unsigned int *offset,
1376 					  struct sk_buff *skb, struct sock *sk)
1377 {
1378 	struct page *p = sk->sk_sndmsg_page;
1379 	unsigned int off;
1380 
1381 	if (!p) {
1382 new_page:
1383 		p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1384 		if (!p)
1385 			return NULL;
1386 
1387 		off = sk->sk_sndmsg_off = 0;
1388 		/* hold one ref to this page until it's full */
1389 	} else {
1390 		unsigned int mlen;
1391 
1392 		off = sk->sk_sndmsg_off;
1393 		mlen = PAGE_SIZE - off;
1394 		if (mlen < 64 && mlen < *len) {
1395 			put_page(p);
1396 			goto new_page;
1397 		}
1398 
1399 		*len = min_t(unsigned int, *len, mlen);
1400 	}
1401 
1402 	memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1403 	sk->sk_sndmsg_off += *len;
1404 	*offset = off;
1405 	get_page(p);
1406 
1407 	return p;
1408 }
1409 
1410 /*
1411  * Fill page/offset/length into spd, if it can hold more pages.
1412  */
1413 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1414 				struct pipe_inode_info *pipe, struct page *page,
1415 				unsigned int *len, unsigned int offset,
1416 				struct sk_buff *skb, int linear,
1417 				struct sock *sk)
1418 {
1419 	if (unlikely(spd->nr_pages == pipe->buffers))
1420 		return 1;
1421 
1422 	if (linear) {
1423 		page = linear_to_page(page, len, &offset, skb, sk);
1424 		if (!page)
1425 			return 1;
1426 	} else
1427 		get_page(page);
1428 
1429 	spd->pages[spd->nr_pages] = page;
1430 	spd->partial[spd->nr_pages].len = *len;
1431 	spd->partial[spd->nr_pages].offset = offset;
1432 	spd->nr_pages++;
1433 
1434 	return 0;
1435 }
1436 
1437 static inline void __segment_seek(struct page **page, unsigned int *poff,
1438 				  unsigned int *plen, unsigned int off)
1439 {
1440 	unsigned long n;
1441 
1442 	*poff += off;
1443 	n = *poff / PAGE_SIZE;
1444 	if (n)
1445 		*page = nth_page(*page, n);
1446 
1447 	*poff = *poff % PAGE_SIZE;
1448 	*plen -= off;
1449 }
1450 
1451 static inline int __splice_segment(struct page *page, unsigned int poff,
1452 				   unsigned int plen, unsigned int *off,
1453 				   unsigned int *len, struct sk_buff *skb,
1454 				   struct splice_pipe_desc *spd, int linear,
1455 				   struct sock *sk,
1456 				   struct pipe_inode_info *pipe)
1457 {
1458 	if (!*len)
1459 		return 1;
1460 
1461 	/* skip this segment if already processed */
1462 	if (*off >= plen) {
1463 		*off -= plen;
1464 		return 0;
1465 	}
1466 
1467 	/* ignore any bits we already processed */
1468 	if (*off) {
1469 		__segment_seek(&page, &poff, &plen, *off);
1470 		*off = 0;
1471 	}
1472 
1473 	do {
1474 		unsigned int flen = min(*len, plen);
1475 
1476 		/* the linear region may spread across several pages  */
1477 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1478 
1479 		if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1480 			return 1;
1481 
1482 		__segment_seek(&page, &poff, &plen, flen);
1483 		*len -= flen;
1484 
1485 	} while (*len && plen);
1486 
1487 	return 0;
1488 }
1489 
1490 /*
1491  * Map linear and fragment data from the skb to spd. It reports failure if the
1492  * pipe is full or if we already spliced the requested length.
1493  */
1494 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1495 			     unsigned int *offset, unsigned int *len,
1496 			     struct splice_pipe_desc *spd, struct sock *sk)
1497 {
1498 	int seg;
1499 
1500 	/*
1501 	 * map the linear part
1502 	 */
1503 	if (__splice_segment(virt_to_page(skb->data),
1504 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1505 			     skb_headlen(skb),
1506 			     offset, len, skb, spd, 1, sk, pipe))
1507 		return 1;
1508 
1509 	/*
1510 	 * then map the fragments
1511 	 */
1512 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1513 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1514 
1515 		if (__splice_segment(f->page, f->page_offset, f->size,
1516 				     offset, len, skb, spd, 0, sk, pipe))
1517 			return 1;
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 /*
1524  * Map data from the skb to a pipe. Should handle both the linear part,
1525  * the fragments, and the frag list. It does NOT handle frag lists within
1526  * the frag list, if such a thing exists. We'd probably need to recurse to
1527  * handle that cleanly.
1528  */
1529 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1530 		    struct pipe_inode_info *pipe, unsigned int tlen,
1531 		    unsigned int flags)
1532 {
1533 	struct partial_page partial[PIPE_DEF_BUFFERS];
1534 	struct page *pages[PIPE_DEF_BUFFERS];
1535 	struct splice_pipe_desc spd = {
1536 		.pages = pages,
1537 		.partial = partial,
1538 		.flags = flags,
1539 		.ops = &sock_pipe_buf_ops,
1540 		.spd_release = sock_spd_release,
1541 	};
1542 	struct sk_buff *frag_iter;
1543 	struct sock *sk = skb->sk;
1544 	int ret = 0;
1545 
1546 	if (splice_grow_spd(pipe, &spd))
1547 		return -ENOMEM;
1548 
1549 	/*
1550 	 * __skb_splice_bits() only fails if the output has no room left,
1551 	 * so no point in going over the frag_list for the error case.
1552 	 */
1553 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1554 		goto done;
1555 	else if (!tlen)
1556 		goto done;
1557 
1558 	/*
1559 	 * now see if we have a frag_list to map
1560 	 */
1561 	skb_walk_frags(skb, frag_iter) {
1562 		if (!tlen)
1563 			break;
1564 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1565 			break;
1566 	}
1567 
1568 done:
1569 	if (spd.nr_pages) {
1570 		/*
1571 		 * Drop the socket lock, otherwise we have reverse
1572 		 * locking dependencies between sk_lock and i_mutex
1573 		 * here as compared to sendfile(). We enter here
1574 		 * with the socket lock held, and splice_to_pipe() will
1575 		 * grab the pipe inode lock. For sendfile() emulation,
1576 		 * we call into ->sendpage() with the i_mutex lock held
1577 		 * and networking will grab the socket lock.
1578 		 */
1579 		release_sock(sk);
1580 		ret = splice_to_pipe(pipe, &spd);
1581 		lock_sock(sk);
1582 	}
1583 
1584 	splice_shrink_spd(pipe, &spd);
1585 	return ret;
1586 }
1587 
1588 /**
1589  *	skb_store_bits - store bits from kernel buffer to skb
1590  *	@skb: destination buffer
1591  *	@offset: offset in destination
1592  *	@from: source buffer
1593  *	@len: number of bytes to copy
1594  *
1595  *	Copy the specified number of bytes from the source buffer to the
1596  *	destination skb.  This function handles all the messy bits of
1597  *	traversing fragment lists and such.
1598  */
1599 
1600 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1601 {
1602 	int start = skb_headlen(skb);
1603 	struct sk_buff *frag_iter;
1604 	int i, copy;
1605 
1606 	if (offset > (int)skb->len - len)
1607 		goto fault;
1608 
1609 	if ((copy = start - offset) > 0) {
1610 		if (copy > len)
1611 			copy = len;
1612 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1613 		if ((len -= copy) == 0)
1614 			return 0;
1615 		offset += copy;
1616 		from += copy;
1617 	}
1618 
1619 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1620 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1621 		int end;
1622 
1623 		WARN_ON(start > offset + len);
1624 
1625 		end = start + frag->size;
1626 		if ((copy = end - offset) > 0) {
1627 			u8 *vaddr;
1628 
1629 			if (copy > len)
1630 				copy = len;
1631 
1632 			vaddr = kmap_skb_frag(frag);
1633 			memcpy(vaddr + frag->page_offset + offset - start,
1634 			       from, copy);
1635 			kunmap_skb_frag(vaddr);
1636 
1637 			if ((len -= copy) == 0)
1638 				return 0;
1639 			offset += copy;
1640 			from += copy;
1641 		}
1642 		start = end;
1643 	}
1644 
1645 	skb_walk_frags(skb, frag_iter) {
1646 		int end;
1647 
1648 		WARN_ON(start > offset + len);
1649 
1650 		end = start + frag_iter->len;
1651 		if ((copy = end - offset) > 0) {
1652 			if (copy > len)
1653 				copy = len;
1654 			if (skb_store_bits(frag_iter, offset - start,
1655 					   from, copy))
1656 				goto fault;
1657 			if ((len -= copy) == 0)
1658 				return 0;
1659 			offset += copy;
1660 			from += copy;
1661 		}
1662 		start = end;
1663 	}
1664 	if (!len)
1665 		return 0;
1666 
1667 fault:
1668 	return -EFAULT;
1669 }
1670 EXPORT_SYMBOL(skb_store_bits);
1671 
1672 /* Checksum skb data. */
1673 
1674 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1675 			  int len, __wsum csum)
1676 {
1677 	int start = skb_headlen(skb);
1678 	int i, copy = start - offset;
1679 	struct sk_buff *frag_iter;
1680 	int pos = 0;
1681 
1682 	/* Checksum header. */
1683 	if (copy > 0) {
1684 		if (copy > len)
1685 			copy = len;
1686 		csum = csum_partial(skb->data + offset, copy, csum);
1687 		if ((len -= copy) == 0)
1688 			return csum;
1689 		offset += copy;
1690 		pos	= copy;
1691 	}
1692 
1693 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1694 		int end;
1695 
1696 		WARN_ON(start > offset + len);
1697 
1698 		end = start + skb_shinfo(skb)->frags[i].size;
1699 		if ((copy = end - offset) > 0) {
1700 			__wsum csum2;
1701 			u8 *vaddr;
1702 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1703 
1704 			if (copy > len)
1705 				copy = len;
1706 			vaddr = kmap_skb_frag(frag);
1707 			csum2 = csum_partial(vaddr + frag->page_offset +
1708 					     offset - start, copy, 0);
1709 			kunmap_skb_frag(vaddr);
1710 			csum = csum_block_add(csum, csum2, pos);
1711 			if (!(len -= copy))
1712 				return csum;
1713 			offset += copy;
1714 			pos    += copy;
1715 		}
1716 		start = end;
1717 	}
1718 
1719 	skb_walk_frags(skb, frag_iter) {
1720 		int end;
1721 
1722 		WARN_ON(start > offset + len);
1723 
1724 		end = start + frag_iter->len;
1725 		if ((copy = end - offset) > 0) {
1726 			__wsum csum2;
1727 			if (copy > len)
1728 				copy = len;
1729 			csum2 = skb_checksum(frag_iter, offset - start,
1730 					     copy, 0);
1731 			csum = csum_block_add(csum, csum2, pos);
1732 			if ((len -= copy) == 0)
1733 				return csum;
1734 			offset += copy;
1735 			pos    += copy;
1736 		}
1737 		start = end;
1738 	}
1739 	BUG_ON(len);
1740 
1741 	return csum;
1742 }
1743 EXPORT_SYMBOL(skb_checksum);
1744 
1745 /* Both of above in one bottle. */
1746 
1747 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1748 				    u8 *to, int len, __wsum csum)
1749 {
1750 	int start = skb_headlen(skb);
1751 	int i, copy = start - offset;
1752 	struct sk_buff *frag_iter;
1753 	int pos = 0;
1754 
1755 	/* Copy header. */
1756 	if (copy > 0) {
1757 		if (copy > len)
1758 			copy = len;
1759 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1760 						 copy, csum);
1761 		if ((len -= copy) == 0)
1762 			return csum;
1763 		offset += copy;
1764 		to     += copy;
1765 		pos	= copy;
1766 	}
1767 
1768 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1769 		int end;
1770 
1771 		WARN_ON(start > offset + len);
1772 
1773 		end = start + skb_shinfo(skb)->frags[i].size;
1774 		if ((copy = end - offset) > 0) {
1775 			__wsum csum2;
1776 			u8 *vaddr;
1777 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1778 
1779 			if (copy > len)
1780 				copy = len;
1781 			vaddr = kmap_skb_frag(frag);
1782 			csum2 = csum_partial_copy_nocheck(vaddr +
1783 							  frag->page_offset +
1784 							  offset - start, to,
1785 							  copy, 0);
1786 			kunmap_skb_frag(vaddr);
1787 			csum = csum_block_add(csum, csum2, pos);
1788 			if (!(len -= copy))
1789 				return csum;
1790 			offset += copy;
1791 			to     += copy;
1792 			pos    += copy;
1793 		}
1794 		start = end;
1795 	}
1796 
1797 	skb_walk_frags(skb, frag_iter) {
1798 		__wsum csum2;
1799 		int end;
1800 
1801 		WARN_ON(start > offset + len);
1802 
1803 		end = start + frag_iter->len;
1804 		if ((copy = end - offset) > 0) {
1805 			if (copy > len)
1806 				copy = len;
1807 			csum2 = skb_copy_and_csum_bits(frag_iter,
1808 						       offset - start,
1809 						       to, copy, 0);
1810 			csum = csum_block_add(csum, csum2, pos);
1811 			if ((len -= copy) == 0)
1812 				return csum;
1813 			offset += copy;
1814 			to     += copy;
1815 			pos    += copy;
1816 		}
1817 		start = end;
1818 	}
1819 	BUG_ON(len);
1820 	return csum;
1821 }
1822 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1823 
1824 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1825 {
1826 	__wsum csum;
1827 	long csstart;
1828 
1829 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1830 		csstart = skb_checksum_start_offset(skb);
1831 	else
1832 		csstart = skb_headlen(skb);
1833 
1834 	BUG_ON(csstart > skb_headlen(skb));
1835 
1836 	skb_copy_from_linear_data(skb, to, csstart);
1837 
1838 	csum = 0;
1839 	if (csstart != skb->len)
1840 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1841 					      skb->len - csstart, 0);
1842 
1843 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1844 		long csstuff = csstart + skb->csum_offset;
1845 
1846 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1847 	}
1848 }
1849 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1850 
1851 /**
1852  *	skb_dequeue - remove from the head of the queue
1853  *	@list: list to dequeue from
1854  *
1855  *	Remove the head of the list. The list lock is taken so the function
1856  *	may be used safely with other locking list functions. The head item is
1857  *	returned or %NULL if the list is empty.
1858  */
1859 
1860 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1861 {
1862 	unsigned long flags;
1863 	struct sk_buff *result;
1864 
1865 	spin_lock_irqsave(&list->lock, flags);
1866 	result = __skb_dequeue(list);
1867 	spin_unlock_irqrestore(&list->lock, flags);
1868 	return result;
1869 }
1870 EXPORT_SYMBOL(skb_dequeue);
1871 
1872 /**
1873  *	skb_dequeue_tail - remove from the tail of the queue
1874  *	@list: list to dequeue from
1875  *
1876  *	Remove the tail of the list. The list lock is taken so the function
1877  *	may be used safely with other locking list functions. The tail item is
1878  *	returned or %NULL if the list is empty.
1879  */
1880 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1881 {
1882 	unsigned long flags;
1883 	struct sk_buff *result;
1884 
1885 	spin_lock_irqsave(&list->lock, flags);
1886 	result = __skb_dequeue_tail(list);
1887 	spin_unlock_irqrestore(&list->lock, flags);
1888 	return result;
1889 }
1890 EXPORT_SYMBOL(skb_dequeue_tail);
1891 
1892 /**
1893  *	skb_queue_purge - empty a list
1894  *	@list: list to empty
1895  *
1896  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1897  *	the list and one reference dropped. This function takes the list
1898  *	lock and is atomic with respect to other list locking functions.
1899  */
1900 void skb_queue_purge(struct sk_buff_head *list)
1901 {
1902 	struct sk_buff *skb;
1903 	while ((skb = skb_dequeue(list)) != NULL)
1904 		kfree_skb(skb);
1905 }
1906 EXPORT_SYMBOL(skb_queue_purge);
1907 
1908 /**
1909  *	skb_queue_head - queue a buffer at the list head
1910  *	@list: list to use
1911  *	@newsk: buffer to queue
1912  *
1913  *	Queue a buffer at the start of the list. This function takes the
1914  *	list lock and can be used safely with other locking &sk_buff functions
1915  *	safely.
1916  *
1917  *	A buffer cannot be placed on two lists at the same time.
1918  */
1919 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1920 {
1921 	unsigned long flags;
1922 
1923 	spin_lock_irqsave(&list->lock, flags);
1924 	__skb_queue_head(list, newsk);
1925 	spin_unlock_irqrestore(&list->lock, flags);
1926 }
1927 EXPORT_SYMBOL(skb_queue_head);
1928 
1929 /**
1930  *	skb_queue_tail - queue a buffer at the list tail
1931  *	@list: list to use
1932  *	@newsk: buffer to queue
1933  *
1934  *	Queue a buffer at the tail of the list. This function takes the
1935  *	list lock and can be used safely with other locking &sk_buff functions
1936  *	safely.
1937  *
1938  *	A buffer cannot be placed on two lists at the same time.
1939  */
1940 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1941 {
1942 	unsigned long flags;
1943 
1944 	spin_lock_irqsave(&list->lock, flags);
1945 	__skb_queue_tail(list, newsk);
1946 	spin_unlock_irqrestore(&list->lock, flags);
1947 }
1948 EXPORT_SYMBOL(skb_queue_tail);
1949 
1950 /**
1951  *	skb_unlink	-	remove a buffer from a list
1952  *	@skb: buffer to remove
1953  *	@list: list to use
1954  *
1955  *	Remove a packet from a list. The list locks are taken and this
1956  *	function is atomic with respect to other list locked calls
1957  *
1958  *	You must know what list the SKB is on.
1959  */
1960 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1961 {
1962 	unsigned long flags;
1963 
1964 	spin_lock_irqsave(&list->lock, flags);
1965 	__skb_unlink(skb, list);
1966 	spin_unlock_irqrestore(&list->lock, flags);
1967 }
1968 EXPORT_SYMBOL(skb_unlink);
1969 
1970 /**
1971  *	skb_append	-	append a buffer
1972  *	@old: buffer to insert after
1973  *	@newsk: buffer to insert
1974  *	@list: list to use
1975  *
1976  *	Place a packet after a given packet in a list. The list locks are taken
1977  *	and this function is atomic with respect to other list locked calls.
1978  *	A buffer cannot be placed on two lists at the same time.
1979  */
1980 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1981 {
1982 	unsigned long flags;
1983 
1984 	spin_lock_irqsave(&list->lock, flags);
1985 	__skb_queue_after(list, old, newsk);
1986 	spin_unlock_irqrestore(&list->lock, flags);
1987 }
1988 EXPORT_SYMBOL(skb_append);
1989 
1990 /**
1991  *	skb_insert	-	insert a buffer
1992  *	@old: buffer to insert before
1993  *	@newsk: buffer to insert
1994  *	@list: list to use
1995  *
1996  *	Place a packet before a given packet in a list. The list locks are
1997  * 	taken and this function is atomic with respect to other list locked
1998  *	calls.
1999  *
2000  *	A buffer cannot be placed on two lists at the same time.
2001  */
2002 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2003 {
2004 	unsigned long flags;
2005 
2006 	spin_lock_irqsave(&list->lock, flags);
2007 	__skb_insert(newsk, old->prev, old, list);
2008 	spin_unlock_irqrestore(&list->lock, flags);
2009 }
2010 EXPORT_SYMBOL(skb_insert);
2011 
2012 static inline void skb_split_inside_header(struct sk_buff *skb,
2013 					   struct sk_buff* skb1,
2014 					   const u32 len, const int pos)
2015 {
2016 	int i;
2017 
2018 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2019 					 pos - len);
2020 	/* And move data appendix as is. */
2021 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2022 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2023 
2024 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2025 	skb_shinfo(skb)->nr_frags  = 0;
2026 	skb1->data_len		   = skb->data_len;
2027 	skb1->len		   += skb1->data_len;
2028 	skb->data_len		   = 0;
2029 	skb->len		   = len;
2030 	skb_set_tail_pointer(skb, len);
2031 }
2032 
2033 static inline void skb_split_no_header(struct sk_buff *skb,
2034 				       struct sk_buff* skb1,
2035 				       const u32 len, int pos)
2036 {
2037 	int i, k = 0;
2038 	const int nfrags = skb_shinfo(skb)->nr_frags;
2039 
2040 	skb_shinfo(skb)->nr_frags = 0;
2041 	skb1->len		  = skb1->data_len = skb->len - len;
2042 	skb->len		  = len;
2043 	skb->data_len		  = len - pos;
2044 
2045 	for (i = 0; i < nfrags; i++) {
2046 		int size = skb_shinfo(skb)->frags[i].size;
2047 
2048 		if (pos + size > len) {
2049 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2050 
2051 			if (pos < len) {
2052 				/* Split frag.
2053 				 * We have two variants in this case:
2054 				 * 1. Move all the frag to the second
2055 				 *    part, if it is possible. F.e.
2056 				 *    this approach is mandatory for TUX,
2057 				 *    where splitting is expensive.
2058 				 * 2. Split is accurately. We make this.
2059 				 */
2060 				get_page(skb_shinfo(skb)->frags[i].page);
2061 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2062 				skb_shinfo(skb1)->frags[0].size -= len - pos;
2063 				skb_shinfo(skb)->frags[i].size	= len - pos;
2064 				skb_shinfo(skb)->nr_frags++;
2065 			}
2066 			k++;
2067 		} else
2068 			skb_shinfo(skb)->nr_frags++;
2069 		pos += size;
2070 	}
2071 	skb_shinfo(skb1)->nr_frags = k;
2072 }
2073 
2074 /**
2075  * skb_split - Split fragmented skb to two parts at length len.
2076  * @skb: the buffer to split
2077  * @skb1: the buffer to receive the second part
2078  * @len: new length for skb
2079  */
2080 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2081 {
2082 	int pos = skb_headlen(skb);
2083 
2084 	if (len < pos)	/* Split line is inside header. */
2085 		skb_split_inside_header(skb, skb1, len, pos);
2086 	else		/* Second chunk has no header, nothing to copy. */
2087 		skb_split_no_header(skb, skb1, len, pos);
2088 }
2089 EXPORT_SYMBOL(skb_split);
2090 
2091 /* Shifting from/to a cloned skb is a no-go.
2092  *
2093  * Caller cannot keep skb_shinfo related pointers past calling here!
2094  */
2095 static int skb_prepare_for_shift(struct sk_buff *skb)
2096 {
2097 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2098 }
2099 
2100 /**
2101  * skb_shift - Shifts paged data partially from skb to another
2102  * @tgt: buffer into which tail data gets added
2103  * @skb: buffer from which the paged data comes from
2104  * @shiftlen: shift up to this many bytes
2105  *
2106  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2107  * the length of the skb, from tgt to skb. Returns number bytes shifted.
2108  * It's up to caller to free skb if everything was shifted.
2109  *
2110  * If @tgt runs out of frags, the whole operation is aborted.
2111  *
2112  * Skb cannot include anything else but paged data while tgt is allowed
2113  * to have non-paged data as well.
2114  *
2115  * TODO: full sized shift could be optimized but that would need
2116  * specialized skb free'er to handle frags without up-to-date nr_frags.
2117  */
2118 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2119 {
2120 	int from, to, merge, todo;
2121 	struct skb_frag_struct *fragfrom, *fragto;
2122 
2123 	BUG_ON(shiftlen > skb->len);
2124 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2125 
2126 	todo = shiftlen;
2127 	from = 0;
2128 	to = skb_shinfo(tgt)->nr_frags;
2129 	fragfrom = &skb_shinfo(skb)->frags[from];
2130 
2131 	/* Actual merge is delayed until the point when we know we can
2132 	 * commit all, so that we don't have to undo partial changes
2133 	 */
2134 	if (!to ||
2135 	    !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2136 		merge = -1;
2137 	} else {
2138 		merge = to - 1;
2139 
2140 		todo -= fragfrom->size;
2141 		if (todo < 0) {
2142 			if (skb_prepare_for_shift(skb) ||
2143 			    skb_prepare_for_shift(tgt))
2144 				return 0;
2145 
2146 			/* All previous frag pointers might be stale! */
2147 			fragfrom = &skb_shinfo(skb)->frags[from];
2148 			fragto = &skb_shinfo(tgt)->frags[merge];
2149 
2150 			fragto->size += shiftlen;
2151 			fragfrom->size -= shiftlen;
2152 			fragfrom->page_offset += shiftlen;
2153 
2154 			goto onlymerged;
2155 		}
2156 
2157 		from++;
2158 	}
2159 
2160 	/* Skip full, not-fitting skb to avoid expensive operations */
2161 	if ((shiftlen == skb->len) &&
2162 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2163 		return 0;
2164 
2165 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2166 		return 0;
2167 
2168 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2169 		if (to == MAX_SKB_FRAGS)
2170 			return 0;
2171 
2172 		fragfrom = &skb_shinfo(skb)->frags[from];
2173 		fragto = &skb_shinfo(tgt)->frags[to];
2174 
2175 		if (todo >= fragfrom->size) {
2176 			*fragto = *fragfrom;
2177 			todo -= fragfrom->size;
2178 			from++;
2179 			to++;
2180 
2181 		} else {
2182 			get_page(fragfrom->page);
2183 			fragto->page = fragfrom->page;
2184 			fragto->page_offset = fragfrom->page_offset;
2185 			fragto->size = todo;
2186 
2187 			fragfrom->page_offset += todo;
2188 			fragfrom->size -= todo;
2189 			todo = 0;
2190 
2191 			to++;
2192 			break;
2193 		}
2194 	}
2195 
2196 	/* Ready to "commit" this state change to tgt */
2197 	skb_shinfo(tgt)->nr_frags = to;
2198 
2199 	if (merge >= 0) {
2200 		fragfrom = &skb_shinfo(skb)->frags[0];
2201 		fragto = &skb_shinfo(tgt)->frags[merge];
2202 
2203 		fragto->size += fragfrom->size;
2204 		put_page(fragfrom->page);
2205 	}
2206 
2207 	/* Reposition in the original skb */
2208 	to = 0;
2209 	while (from < skb_shinfo(skb)->nr_frags)
2210 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2211 	skb_shinfo(skb)->nr_frags = to;
2212 
2213 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2214 
2215 onlymerged:
2216 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2217 	 * the other hand might need it if it needs to be resent
2218 	 */
2219 	tgt->ip_summed = CHECKSUM_PARTIAL;
2220 	skb->ip_summed = CHECKSUM_PARTIAL;
2221 
2222 	/* Yak, is it really working this way? Some helper please? */
2223 	skb->len -= shiftlen;
2224 	skb->data_len -= shiftlen;
2225 	skb->truesize -= shiftlen;
2226 	tgt->len += shiftlen;
2227 	tgt->data_len += shiftlen;
2228 	tgt->truesize += shiftlen;
2229 
2230 	return shiftlen;
2231 }
2232 
2233 /**
2234  * skb_prepare_seq_read - Prepare a sequential read of skb data
2235  * @skb: the buffer to read
2236  * @from: lower offset of data to be read
2237  * @to: upper offset of data to be read
2238  * @st: state variable
2239  *
2240  * Initializes the specified state variable. Must be called before
2241  * invoking skb_seq_read() for the first time.
2242  */
2243 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2244 			  unsigned int to, struct skb_seq_state *st)
2245 {
2246 	st->lower_offset = from;
2247 	st->upper_offset = to;
2248 	st->root_skb = st->cur_skb = skb;
2249 	st->frag_idx = st->stepped_offset = 0;
2250 	st->frag_data = NULL;
2251 }
2252 EXPORT_SYMBOL(skb_prepare_seq_read);
2253 
2254 /**
2255  * skb_seq_read - Sequentially read skb data
2256  * @consumed: number of bytes consumed by the caller so far
2257  * @data: destination pointer for data to be returned
2258  * @st: state variable
2259  *
2260  * Reads a block of skb data at &consumed relative to the
2261  * lower offset specified to skb_prepare_seq_read(). Assigns
2262  * the head of the data block to &data and returns the length
2263  * of the block or 0 if the end of the skb data or the upper
2264  * offset has been reached.
2265  *
2266  * The caller is not required to consume all of the data
2267  * returned, i.e. &consumed is typically set to the number
2268  * of bytes already consumed and the next call to
2269  * skb_seq_read() will return the remaining part of the block.
2270  *
2271  * Note 1: The size of each block of data returned can be arbitary,
2272  *       this limitation is the cost for zerocopy seqeuental
2273  *       reads of potentially non linear data.
2274  *
2275  * Note 2: Fragment lists within fragments are not implemented
2276  *       at the moment, state->root_skb could be replaced with
2277  *       a stack for this purpose.
2278  */
2279 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2280 			  struct skb_seq_state *st)
2281 {
2282 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2283 	skb_frag_t *frag;
2284 
2285 	if (unlikely(abs_offset >= st->upper_offset))
2286 		return 0;
2287 
2288 next_skb:
2289 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2290 
2291 	if (abs_offset < block_limit && !st->frag_data) {
2292 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2293 		return block_limit - abs_offset;
2294 	}
2295 
2296 	if (st->frag_idx == 0 && !st->frag_data)
2297 		st->stepped_offset += skb_headlen(st->cur_skb);
2298 
2299 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2300 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2301 		block_limit = frag->size + st->stepped_offset;
2302 
2303 		if (abs_offset < block_limit) {
2304 			if (!st->frag_data)
2305 				st->frag_data = kmap_skb_frag(frag);
2306 
2307 			*data = (u8 *) st->frag_data + frag->page_offset +
2308 				(abs_offset - st->stepped_offset);
2309 
2310 			return block_limit - abs_offset;
2311 		}
2312 
2313 		if (st->frag_data) {
2314 			kunmap_skb_frag(st->frag_data);
2315 			st->frag_data = NULL;
2316 		}
2317 
2318 		st->frag_idx++;
2319 		st->stepped_offset += frag->size;
2320 	}
2321 
2322 	if (st->frag_data) {
2323 		kunmap_skb_frag(st->frag_data);
2324 		st->frag_data = NULL;
2325 	}
2326 
2327 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2328 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2329 		st->frag_idx = 0;
2330 		goto next_skb;
2331 	} else if (st->cur_skb->next) {
2332 		st->cur_skb = st->cur_skb->next;
2333 		st->frag_idx = 0;
2334 		goto next_skb;
2335 	}
2336 
2337 	return 0;
2338 }
2339 EXPORT_SYMBOL(skb_seq_read);
2340 
2341 /**
2342  * skb_abort_seq_read - Abort a sequential read of skb data
2343  * @st: state variable
2344  *
2345  * Must be called if skb_seq_read() was not called until it
2346  * returned 0.
2347  */
2348 void skb_abort_seq_read(struct skb_seq_state *st)
2349 {
2350 	if (st->frag_data)
2351 		kunmap_skb_frag(st->frag_data);
2352 }
2353 EXPORT_SYMBOL(skb_abort_seq_read);
2354 
2355 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2356 
2357 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2358 					  struct ts_config *conf,
2359 					  struct ts_state *state)
2360 {
2361 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2362 }
2363 
2364 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2365 {
2366 	skb_abort_seq_read(TS_SKB_CB(state));
2367 }
2368 
2369 /**
2370  * skb_find_text - Find a text pattern in skb data
2371  * @skb: the buffer to look in
2372  * @from: search offset
2373  * @to: search limit
2374  * @config: textsearch configuration
2375  * @state: uninitialized textsearch state variable
2376  *
2377  * Finds a pattern in the skb data according to the specified
2378  * textsearch configuration. Use textsearch_next() to retrieve
2379  * subsequent occurrences of the pattern. Returns the offset
2380  * to the first occurrence or UINT_MAX if no match was found.
2381  */
2382 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2383 			   unsigned int to, struct ts_config *config,
2384 			   struct ts_state *state)
2385 {
2386 	unsigned int ret;
2387 
2388 	config->get_next_block = skb_ts_get_next_block;
2389 	config->finish = skb_ts_finish;
2390 
2391 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2392 
2393 	ret = textsearch_find(config, state);
2394 	return (ret <= to - from ? ret : UINT_MAX);
2395 }
2396 EXPORT_SYMBOL(skb_find_text);
2397 
2398 /**
2399  * skb_append_datato_frags: - append the user data to a skb
2400  * @sk: sock  structure
2401  * @skb: skb structure to be appened with user data.
2402  * @getfrag: call back function to be used for getting the user data
2403  * @from: pointer to user message iov
2404  * @length: length of the iov message
2405  *
2406  * Description: This procedure append the user data in the fragment part
2407  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2408  */
2409 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2410 			int (*getfrag)(void *from, char *to, int offset,
2411 					int len, int odd, struct sk_buff *skb),
2412 			void *from, int length)
2413 {
2414 	int frg_cnt = 0;
2415 	skb_frag_t *frag = NULL;
2416 	struct page *page = NULL;
2417 	int copy, left;
2418 	int offset = 0;
2419 	int ret;
2420 
2421 	do {
2422 		/* Return error if we don't have space for new frag */
2423 		frg_cnt = skb_shinfo(skb)->nr_frags;
2424 		if (frg_cnt >= MAX_SKB_FRAGS)
2425 			return -EFAULT;
2426 
2427 		/* allocate a new page for next frag */
2428 		page = alloc_pages(sk->sk_allocation, 0);
2429 
2430 		/* If alloc_page fails just return failure and caller will
2431 		 * free previous allocated pages by doing kfree_skb()
2432 		 */
2433 		if (page == NULL)
2434 			return -ENOMEM;
2435 
2436 		/* initialize the next frag */
2437 		sk->sk_sndmsg_page = page;
2438 		sk->sk_sndmsg_off = 0;
2439 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2440 		skb->truesize += PAGE_SIZE;
2441 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2442 
2443 		/* get the new initialized frag */
2444 		frg_cnt = skb_shinfo(skb)->nr_frags;
2445 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2446 
2447 		/* copy the user data to page */
2448 		left = PAGE_SIZE - frag->page_offset;
2449 		copy = (length > left)? left : length;
2450 
2451 		ret = getfrag(from, (page_address(frag->page) +
2452 			    frag->page_offset + frag->size),
2453 			    offset, copy, 0, skb);
2454 		if (ret < 0)
2455 			return -EFAULT;
2456 
2457 		/* copy was successful so update the size parameters */
2458 		sk->sk_sndmsg_off += copy;
2459 		frag->size += copy;
2460 		skb->len += copy;
2461 		skb->data_len += copy;
2462 		offset += copy;
2463 		length -= copy;
2464 
2465 	} while (length > 0);
2466 
2467 	return 0;
2468 }
2469 EXPORT_SYMBOL(skb_append_datato_frags);
2470 
2471 /**
2472  *	skb_pull_rcsum - pull skb and update receive checksum
2473  *	@skb: buffer to update
2474  *	@len: length of data pulled
2475  *
2476  *	This function performs an skb_pull on the packet and updates
2477  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2478  *	receive path processing instead of skb_pull unless you know
2479  *	that the checksum difference is zero (e.g., a valid IP header)
2480  *	or you are setting ip_summed to CHECKSUM_NONE.
2481  */
2482 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2483 {
2484 	BUG_ON(len > skb->len);
2485 	skb->len -= len;
2486 	BUG_ON(skb->len < skb->data_len);
2487 	skb_postpull_rcsum(skb, skb->data, len);
2488 	return skb->data += len;
2489 }
2490 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2491 
2492 /**
2493  *	skb_segment - Perform protocol segmentation on skb.
2494  *	@skb: buffer to segment
2495  *	@features: features for the output path (see dev->features)
2496  *
2497  *	This function performs segmentation on the given skb.  It returns
2498  *	a pointer to the first in a list of new skbs for the segments.
2499  *	In case of error it returns ERR_PTR(err).
2500  */
2501 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2502 {
2503 	struct sk_buff *segs = NULL;
2504 	struct sk_buff *tail = NULL;
2505 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2506 	unsigned int mss = skb_shinfo(skb)->gso_size;
2507 	unsigned int doffset = skb->data - skb_mac_header(skb);
2508 	unsigned int offset = doffset;
2509 	unsigned int headroom;
2510 	unsigned int len;
2511 	int sg = features & NETIF_F_SG;
2512 	int nfrags = skb_shinfo(skb)->nr_frags;
2513 	int err = -ENOMEM;
2514 	int i = 0;
2515 	int pos;
2516 
2517 	__skb_push(skb, doffset);
2518 	headroom = skb_headroom(skb);
2519 	pos = skb_headlen(skb);
2520 
2521 	do {
2522 		struct sk_buff *nskb;
2523 		skb_frag_t *frag;
2524 		int hsize;
2525 		int size;
2526 
2527 		len = skb->len - offset;
2528 		if (len > mss)
2529 			len = mss;
2530 
2531 		hsize = skb_headlen(skb) - offset;
2532 		if (hsize < 0)
2533 			hsize = 0;
2534 		if (hsize > len || !sg)
2535 			hsize = len;
2536 
2537 		if (!hsize && i >= nfrags) {
2538 			BUG_ON(fskb->len != len);
2539 
2540 			pos += len;
2541 			nskb = skb_clone(fskb, GFP_ATOMIC);
2542 			fskb = fskb->next;
2543 
2544 			if (unlikely(!nskb))
2545 				goto err;
2546 
2547 			hsize = skb_end_pointer(nskb) - nskb->head;
2548 			if (skb_cow_head(nskb, doffset + headroom)) {
2549 				kfree_skb(nskb);
2550 				goto err;
2551 			}
2552 
2553 			nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2554 					  hsize;
2555 			skb_release_head_state(nskb);
2556 			__skb_push(nskb, doffset);
2557 		} else {
2558 			nskb = alloc_skb(hsize + doffset + headroom,
2559 					 GFP_ATOMIC);
2560 
2561 			if (unlikely(!nskb))
2562 				goto err;
2563 
2564 			skb_reserve(nskb, headroom);
2565 			__skb_put(nskb, doffset);
2566 		}
2567 
2568 		if (segs)
2569 			tail->next = nskb;
2570 		else
2571 			segs = nskb;
2572 		tail = nskb;
2573 
2574 		__copy_skb_header(nskb, skb);
2575 		nskb->mac_len = skb->mac_len;
2576 
2577 		/* nskb and skb might have different headroom */
2578 		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2579 			nskb->csum_start += skb_headroom(nskb) - headroom;
2580 
2581 		skb_reset_mac_header(nskb);
2582 		skb_set_network_header(nskb, skb->mac_len);
2583 		nskb->transport_header = (nskb->network_header +
2584 					  skb_network_header_len(skb));
2585 		skb_copy_from_linear_data(skb, nskb->data, doffset);
2586 
2587 		if (fskb != skb_shinfo(skb)->frag_list)
2588 			continue;
2589 
2590 		if (!sg) {
2591 			nskb->ip_summed = CHECKSUM_NONE;
2592 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2593 							    skb_put(nskb, len),
2594 							    len, 0);
2595 			continue;
2596 		}
2597 
2598 		frag = skb_shinfo(nskb)->frags;
2599 
2600 		skb_copy_from_linear_data_offset(skb, offset,
2601 						 skb_put(nskb, hsize), hsize);
2602 
2603 		while (pos < offset + len && i < nfrags) {
2604 			*frag = skb_shinfo(skb)->frags[i];
2605 			get_page(frag->page);
2606 			size = frag->size;
2607 
2608 			if (pos < offset) {
2609 				frag->page_offset += offset - pos;
2610 				frag->size -= offset - pos;
2611 			}
2612 
2613 			skb_shinfo(nskb)->nr_frags++;
2614 
2615 			if (pos + size <= offset + len) {
2616 				i++;
2617 				pos += size;
2618 			} else {
2619 				frag->size -= pos + size - (offset + len);
2620 				goto skip_fraglist;
2621 			}
2622 
2623 			frag++;
2624 		}
2625 
2626 		if (pos < offset + len) {
2627 			struct sk_buff *fskb2 = fskb;
2628 
2629 			BUG_ON(pos + fskb->len != offset + len);
2630 
2631 			pos += fskb->len;
2632 			fskb = fskb->next;
2633 
2634 			if (fskb2->next) {
2635 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2636 				if (!fskb2)
2637 					goto err;
2638 			} else
2639 				skb_get(fskb2);
2640 
2641 			SKB_FRAG_ASSERT(nskb);
2642 			skb_shinfo(nskb)->frag_list = fskb2;
2643 		}
2644 
2645 skip_fraglist:
2646 		nskb->data_len = len - hsize;
2647 		nskb->len += nskb->data_len;
2648 		nskb->truesize += nskb->data_len;
2649 	} while ((offset += len) < skb->len);
2650 
2651 	return segs;
2652 
2653 err:
2654 	while ((skb = segs)) {
2655 		segs = skb->next;
2656 		kfree_skb(skb);
2657 	}
2658 	return ERR_PTR(err);
2659 }
2660 EXPORT_SYMBOL_GPL(skb_segment);
2661 
2662 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2663 {
2664 	struct sk_buff *p = *head;
2665 	struct sk_buff *nskb;
2666 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2667 	struct skb_shared_info *pinfo = skb_shinfo(p);
2668 	unsigned int headroom;
2669 	unsigned int len = skb_gro_len(skb);
2670 	unsigned int offset = skb_gro_offset(skb);
2671 	unsigned int headlen = skb_headlen(skb);
2672 
2673 	if (p->len + len >= 65536)
2674 		return -E2BIG;
2675 
2676 	if (pinfo->frag_list)
2677 		goto merge;
2678 	else if (headlen <= offset) {
2679 		skb_frag_t *frag;
2680 		skb_frag_t *frag2;
2681 		int i = skbinfo->nr_frags;
2682 		int nr_frags = pinfo->nr_frags + i;
2683 
2684 		offset -= headlen;
2685 
2686 		if (nr_frags > MAX_SKB_FRAGS)
2687 			return -E2BIG;
2688 
2689 		pinfo->nr_frags = nr_frags;
2690 		skbinfo->nr_frags = 0;
2691 
2692 		frag = pinfo->frags + nr_frags;
2693 		frag2 = skbinfo->frags + i;
2694 		do {
2695 			*--frag = *--frag2;
2696 		} while (--i);
2697 
2698 		frag->page_offset += offset;
2699 		frag->size -= offset;
2700 
2701 		skb->truesize -= skb->data_len;
2702 		skb->len -= skb->data_len;
2703 		skb->data_len = 0;
2704 
2705 		NAPI_GRO_CB(skb)->free = 1;
2706 		goto done;
2707 	} else if (skb_gro_len(p) != pinfo->gso_size)
2708 		return -E2BIG;
2709 
2710 	headroom = skb_headroom(p);
2711 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2712 	if (unlikely(!nskb))
2713 		return -ENOMEM;
2714 
2715 	__copy_skb_header(nskb, p);
2716 	nskb->mac_len = p->mac_len;
2717 
2718 	skb_reserve(nskb, headroom);
2719 	__skb_put(nskb, skb_gro_offset(p));
2720 
2721 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2722 	skb_set_network_header(nskb, skb_network_offset(p));
2723 	skb_set_transport_header(nskb, skb_transport_offset(p));
2724 
2725 	__skb_pull(p, skb_gro_offset(p));
2726 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
2727 	       p->data - skb_mac_header(p));
2728 
2729 	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2730 	skb_shinfo(nskb)->frag_list = p;
2731 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2732 	pinfo->gso_size = 0;
2733 	skb_header_release(p);
2734 	nskb->prev = p;
2735 
2736 	nskb->data_len += p->len;
2737 	nskb->truesize += p->len;
2738 	nskb->len += p->len;
2739 
2740 	*head = nskb;
2741 	nskb->next = p->next;
2742 	p->next = NULL;
2743 
2744 	p = nskb;
2745 
2746 merge:
2747 	if (offset > headlen) {
2748 		unsigned int eat = offset - headlen;
2749 
2750 		skbinfo->frags[0].page_offset += eat;
2751 		skbinfo->frags[0].size -= eat;
2752 		skb->data_len -= eat;
2753 		skb->len -= eat;
2754 		offset = headlen;
2755 	}
2756 
2757 	__skb_pull(skb, offset);
2758 
2759 	p->prev->next = skb;
2760 	p->prev = skb;
2761 	skb_header_release(skb);
2762 
2763 done:
2764 	NAPI_GRO_CB(p)->count++;
2765 	p->data_len += len;
2766 	p->truesize += len;
2767 	p->len += len;
2768 
2769 	NAPI_GRO_CB(skb)->same_flow = 1;
2770 	return 0;
2771 }
2772 EXPORT_SYMBOL_GPL(skb_gro_receive);
2773 
2774 void __init skb_init(void)
2775 {
2776 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2777 					      sizeof(struct sk_buff),
2778 					      0,
2779 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2780 					      NULL);
2781 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2782 						(2*sizeof(struct sk_buff)) +
2783 						sizeof(atomic_t),
2784 						0,
2785 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2786 						NULL);
2787 }
2788 
2789 /**
2790  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2791  *	@skb: Socket buffer containing the buffers to be mapped
2792  *	@sg: The scatter-gather list to map into
2793  *	@offset: The offset into the buffer's contents to start mapping
2794  *	@len: Length of buffer space to be mapped
2795  *
2796  *	Fill the specified scatter-gather list with mappings/pointers into a
2797  *	region of the buffer space attached to a socket buffer.
2798  */
2799 static int
2800 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2801 {
2802 	int start = skb_headlen(skb);
2803 	int i, copy = start - offset;
2804 	struct sk_buff *frag_iter;
2805 	int elt = 0;
2806 
2807 	if (copy > 0) {
2808 		if (copy > len)
2809 			copy = len;
2810 		sg_set_buf(sg, skb->data + offset, copy);
2811 		elt++;
2812 		if ((len -= copy) == 0)
2813 			return elt;
2814 		offset += copy;
2815 	}
2816 
2817 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2818 		int end;
2819 
2820 		WARN_ON(start > offset + len);
2821 
2822 		end = start + skb_shinfo(skb)->frags[i].size;
2823 		if ((copy = end - offset) > 0) {
2824 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2825 
2826 			if (copy > len)
2827 				copy = len;
2828 			sg_set_page(&sg[elt], frag->page, copy,
2829 					frag->page_offset+offset-start);
2830 			elt++;
2831 			if (!(len -= copy))
2832 				return elt;
2833 			offset += copy;
2834 		}
2835 		start = end;
2836 	}
2837 
2838 	skb_walk_frags(skb, frag_iter) {
2839 		int end;
2840 
2841 		WARN_ON(start > offset + len);
2842 
2843 		end = start + frag_iter->len;
2844 		if ((copy = end - offset) > 0) {
2845 			if (copy > len)
2846 				copy = len;
2847 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2848 					      copy);
2849 			if ((len -= copy) == 0)
2850 				return elt;
2851 			offset += copy;
2852 		}
2853 		start = end;
2854 	}
2855 	BUG_ON(len);
2856 	return elt;
2857 }
2858 
2859 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2860 {
2861 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
2862 
2863 	sg_mark_end(&sg[nsg - 1]);
2864 
2865 	return nsg;
2866 }
2867 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2868 
2869 /**
2870  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2871  *	@skb: The socket buffer to check.
2872  *	@tailbits: Amount of trailing space to be added
2873  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2874  *
2875  *	Make sure that the data buffers attached to a socket buffer are
2876  *	writable. If they are not, private copies are made of the data buffers
2877  *	and the socket buffer is set to use these instead.
2878  *
2879  *	If @tailbits is given, make sure that there is space to write @tailbits
2880  *	bytes of data beyond current end of socket buffer.  @trailer will be
2881  *	set to point to the skb in which this space begins.
2882  *
2883  *	The number of scatterlist elements required to completely map the
2884  *	COW'd and extended socket buffer will be returned.
2885  */
2886 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2887 {
2888 	int copyflag;
2889 	int elt;
2890 	struct sk_buff *skb1, **skb_p;
2891 
2892 	/* If skb is cloned or its head is paged, reallocate
2893 	 * head pulling out all the pages (pages are considered not writable
2894 	 * at the moment even if they are anonymous).
2895 	 */
2896 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2897 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2898 		return -ENOMEM;
2899 
2900 	/* Easy case. Most of packets will go this way. */
2901 	if (!skb_has_frag_list(skb)) {
2902 		/* A little of trouble, not enough of space for trailer.
2903 		 * This should not happen, when stack is tuned to generate
2904 		 * good frames. OK, on miss we reallocate and reserve even more
2905 		 * space, 128 bytes is fair. */
2906 
2907 		if (skb_tailroom(skb) < tailbits &&
2908 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2909 			return -ENOMEM;
2910 
2911 		/* Voila! */
2912 		*trailer = skb;
2913 		return 1;
2914 	}
2915 
2916 	/* Misery. We are in troubles, going to mincer fragments... */
2917 
2918 	elt = 1;
2919 	skb_p = &skb_shinfo(skb)->frag_list;
2920 	copyflag = 0;
2921 
2922 	while ((skb1 = *skb_p) != NULL) {
2923 		int ntail = 0;
2924 
2925 		/* The fragment is partially pulled by someone,
2926 		 * this can happen on input. Copy it and everything
2927 		 * after it. */
2928 
2929 		if (skb_shared(skb1))
2930 			copyflag = 1;
2931 
2932 		/* If the skb is the last, worry about trailer. */
2933 
2934 		if (skb1->next == NULL && tailbits) {
2935 			if (skb_shinfo(skb1)->nr_frags ||
2936 			    skb_has_frag_list(skb1) ||
2937 			    skb_tailroom(skb1) < tailbits)
2938 				ntail = tailbits + 128;
2939 		}
2940 
2941 		if (copyflag ||
2942 		    skb_cloned(skb1) ||
2943 		    ntail ||
2944 		    skb_shinfo(skb1)->nr_frags ||
2945 		    skb_has_frag_list(skb1)) {
2946 			struct sk_buff *skb2;
2947 
2948 			/* Fuck, we are miserable poor guys... */
2949 			if (ntail == 0)
2950 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2951 			else
2952 				skb2 = skb_copy_expand(skb1,
2953 						       skb_headroom(skb1),
2954 						       ntail,
2955 						       GFP_ATOMIC);
2956 			if (unlikely(skb2 == NULL))
2957 				return -ENOMEM;
2958 
2959 			if (skb1->sk)
2960 				skb_set_owner_w(skb2, skb1->sk);
2961 
2962 			/* Looking around. Are we still alive?
2963 			 * OK, link new skb, drop old one */
2964 
2965 			skb2->next = skb1->next;
2966 			*skb_p = skb2;
2967 			kfree_skb(skb1);
2968 			skb1 = skb2;
2969 		}
2970 		elt++;
2971 		*trailer = skb1;
2972 		skb_p = &skb1->next;
2973 	}
2974 
2975 	return elt;
2976 }
2977 EXPORT_SYMBOL_GPL(skb_cow_data);
2978 
2979 static void sock_rmem_free(struct sk_buff *skb)
2980 {
2981 	struct sock *sk = skb->sk;
2982 
2983 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2984 }
2985 
2986 /*
2987  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
2988  */
2989 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
2990 {
2991 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
2992 	    (unsigned)sk->sk_rcvbuf)
2993 		return -ENOMEM;
2994 
2995 	skb_orphan(skb);
2996 	skb->sk = sk;
2997 	skb->destructor = sock_rmem_free;
2998 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2999 
3000 	skb_queue_tail(&sk->sk_error_queue, skb);
3001 	if (!sock_flag(sk, SOCK_DEAD))
3002 		sk->sk_data_ready(sk, skb->len);
3003 	return 0;
3004 }
3005 EXPORT_SYMBOL(sock_queue_err_skb);
3006 
3007 void skb_tstamp_tx(struct sk_buff *orig_skb,
3008 		struct skb_shared_hwtstamps *hwtstamps)
3009 {
3010 	struct sock *sk = orig_skb->sk;
3011 	struct sock_exterr_skb *serr;
3012 	struct sk_buff *skb;
3013 	int err;
3014 
3015 	if (!sk)
3016 		return;
3017 
3018 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3019 	if (!skb)
3020 		return;
3021 
3022 	if (hwtstamps) {
3023 		*skb_hwtstamps(skb) =
3024 			*hwtstamps;
3025 	} else {
3026 		/*
3027 		 * no hardware time stamps available,
3028 		 * so keep the shared tx_flags and only
3029 		 * store software time stamp
3030 		 */
3031 		skb->tstamp = ktime_get_real();
3032 	}
3033 
3034 	serr = SKB_EXT_ERR(skb);
3035 	memset(serr, 0, sizeof(*serr));
3036 	serr->ee.ee_errno = ENOMSG;
3037 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3038 
3039 	err = sock_queue_err_skb(sk, skb);
3040 
3041 	if (err)
3042 		kfree_skb(skb);
3043 }
3044 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3045 
3046 
3047 /**
3048  * skb_partial_csum_set - set up and verify partial csum values for packet
3049  * @skb: the skb to set
3050  * @start: the number of bytes after skb->data to start checksumming.
3051  * @off: the offset from start to place the checksum.
3052  *
3053  * For untrusted partially-checksummed packets, we need to make sure the values
3054  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3055  *
3056  * This function checks and sets those values and skb->ip_summed: if this
3057  * returns false you should drop the packet.
3058  */
3059 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3060 {
3061 	if (unlikely(start > skb_headlen(skb)) ||
3062 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3063 		if (net_ratelimit())
3064 			printk(KERN_WARNING
3065 			       "bad partial csum: csum=%u/%u len=%u\n",
3066 			       start, off, skb_headlen(skb));
3067 		return false;
3068 	}
3069 	skb->ip_summed = CHECKSUM_PARTIAL;
3070 	skb->csum_start = skb_headroom(skb) + start;
3071 	skb->csum_offset = off;
3072 	return true;
3073 }
3074 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3075 
3076 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3077 {
3078 	if (net_ratelimit())
3079 		pr_warning("%s: received packets cannot be forwarded"
3080 			   " while LRO is enabled\n", skb->dev->name);
3081 }
3082 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3083