xref: /openbmc/linux/net/core/skbuff.c (revision 47330f9bdf240f5a582f756cf93354281b36453a)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __ro_after_init;
81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
160 /**
161  *	__alloc_skb	-	allocate a network buffer
162  *	@size: size to allocate
163  *	@gfp_mask: allocation mask
164  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165  *		instead of head cache and allocate a cloned (child) skb.
166  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167  *		allocations in case the data is required for writeback
168  *	@node: numa node to allocate memory on
169  *
170  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
171  *	tail room of at least size bytes. The object has a reference count
172  *	of one. The return is the buffer. On a failure the return is %NULL.
173  *
174  *	Buffers may only be allocated from interrupts using a @gfp_mask of
175  *	%GFP_ATOMIC.
176  */
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 			    int flags, int node)
179 {
180 	struct kmem_cache *cache;
181 	struct skb_shared_info *shinfo;
182 	struct sk_buff *skb;
183 	u8 *data;
184 	bool pfmemalloc;
185 
186 	cache = (flags & SKB_ALLOC_FCLONE)
187 		? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 		gfp_mask |= __GFP_MEMALLOC;
191 
192 	/* Get the HEAD */
193 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 	if (!skb)
195 		goto out;
196 	prefetchw(skb);
197 
198 	/* We do our best to align skb_shared_info on a separate cache
199 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 	 * Both skb->head and skb_shared_info are cache line aligned.
202 	 */
203 	size = SKB_DATA_ALIGN(size);
204 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 	if (!data)
207 		goto nodata;
208 	/* kmalloc(size) might give us more room than requested.
209 	 * Put skb_shared_info exactly at the end of allocated zone,
210 	 * to allow max possible filling before reallocation.
211 	 */
212 	size = SKB_WITH_OVERHEAD(ksize(data));
213 	prefetchw(data + size);
214 
215 	/*
216 	 * Only clear those fields we need to clear, not those that we will
217 	 * actually initialise below. Hence, don't put any more fields after
218 	 * the tail pointer in struct sk_buff!
219 	 */
220 	memset(skb, 0, offsetof(struct sk_buff, tail));
221 	/* Account for allocated memory : skb + skb->head */
222 	skb->truesize = SKB_TRUESIZE(size);
223 	skb->pfmemalloc = pfmemalloc;
224 	refcount_set(&skb->users, 1);
225 	skb->head = data;
226 	skb->data = data;
227 	skb_reset_tail_pointer(skb);
228 	skb->end = skb->tail + size;
229 	skb->mac_header = (typeof(skb->mac_header))~0U;
230 	skb->transport_header = (typeof(skb->transport_header))~0U;
231 
232 	/* make sure we initialize shinfo sequentially */
233 	shinfo = skb_shinfo(skb);
234 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 	atomic_set(&shinfo->dataref, 1);
236 
237 	if (flags & SKB_ALLOC_FCLONE) {
238 		struct sk_buff_fclones *fclones;
239 
240 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
241 
242 		skb->fclone = SKB_FCLONE_ORIG;
243 		refcount_set(&fclones->fclone_ref, 1);
244 
245 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 	}
247 out:
248 	return skb;
249 nodata:
250 	kmem_cache_free(cache, skb);
251 	skb = NULL;
252 	goto out;
253 }
254 EXPORT_SYMBOL(__alloc_skb);
255 
256 /**
257  * __build_skb - build a network buffer
258  * @data: data buffer provided by caller
259  * @frag_size: size of data, or 0 if head was kmalloced
260  *
261  * Allocate a new &sk_buff. Caller provides space holding head and
262  * skb_shared_info. @data must have been allocated by kmalloc() only if
263  * @frag_size is 0, otherwise data should come from the page allocator
264  *  or vmalloc()
265  * The return is the new skb buffer.
266  * On a failure the return is %NULL, and @data is not freed.
267  * Notes :
268  *  Before IO, driver allocates only data buffer where NIC put incoming frame
269  *  Driver should add room at head (NET_SKB_PAD) and
270  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
272  *  before giving packet to stack.
273  *  RX rings only contains data buffers, not full skbs.
274  */
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276 {
277 	struct skb_shared_info *shinfo;
278 	struct sk_buff *skb;
279 	unsigned int size = frag_size ? : ksize(data);
280 
281 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 	if (!skb)
283 		return NULL;
284 
285 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286 
287 	memset(skb, 0, offsetof(struct sk_buff, tail));
288 	skb->truesize = SKB_TRUESIZE(size);
289 	refcount_set(&skb->users, 1);
290 	skb->head = data;
291 	skb->data = data;
292 	skb_reset_tail_pointer(skb);
293 	skb->end = skb->tail + size;
294 	skb->mac_header = (typeof(skb->mac_header))~0U;
295 	skb->transport_header = (typeof(skb->transport_header))~0U;
296 
297 	/* make sure we initialize shinfo sequentially */
298 	shinfo = skb_shinfo(skb);
299 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 	atomic_set(&shinfo->dataref, 1);
301 
302 	return skb;
303 }
304 
305 /* build_skb() is wrapper over __build_skb(), that specifically
306  * takes care of skb->head and skb->pfmemalloc
307  * This means that if @frag_size is not zero, then @data must be backed
308  * by a page fragment, not kmalloc() or vmalloc()
309  */
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
311 {
312 	struct sk_buff *skb = __build_skb(data, frag_size);
313 
314 	if (skb && frag_size) {
315 		skb->head_frag = 1;
316 		if (page_is_pfmemalloc(virt_to_head_page(data)))
317 			skb->pfmemalloc = 1;
318 	}
319 	return skb;
320 }
321 EXPORT_SYMBOL(build_skb);
322 
323 #define NAPI_SKB_CACHE_SIZE	64
324 
325 struct napi_alloc_cache {
326 	struct page_frag_cache page;
327 	unsigned int skb_count;
328 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
329 };
330 
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333 
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335 {
336 	struct page_frag_cache *nc;
337 	unsigned long flags;
338 	void *data;
339 
340 	local_irq_save(flags);
341 	nc = this_cpu_ptr(&netdev_alloc_cache);
342 	data = page_frag_alloc(nc, fragsz, gfp_mask);
343 	local_irq_restore(flags);
344 	return data;
345 }
346 
347 /**
348  * netdev_alloc_frag - allocate a page fragment
349  * @fragsz: fragment size
350  *
351  * Allocates a frag from a page for receive buffer.
352  * Uses GFP_ATOMIC allocations.
353  */
354 void *netdev_alloc_frag(unsigned int fragsz)
355 {
356 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
357 }
358 EXPORT_SYMBOL(netdev_alloc_frag);
359 
360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
361 {
362 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
363 
364 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
365 }
366 
367 void *napi_alloc_frag(unsigned int fragsz)
368 {
369 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
370 }
371 EXPORT_SYMBOL(napi_alloc_frag);
372 
373 /**
374  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
375  *	@dev: network device to receive on
376  *	@len: length to allocate
377  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
378  *
379  *	Allocate a new &sk_buff and assign it a usage count of one. The
380  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
381  *	the headroom they think they need without accounting for the
382  *	built in space. The built in space is used for optimisations.
383  *
384  *	%NULL is returned if there is no free memory.
385  */
386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 				   gfp_t gfp_mask)
388 {
389 	struct page_frag_cache *nc;
390 	unsigned long flags;
391 	struct sk_buff *skb;
392 	bool pfmemalloc;
393 	void *data;
394 
395 	len += NET_SKB_PAD;
396 
397 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 		if (!skb)
401 			goto skb_fail;
402 		goto skb_success;
403 	}
404 
405 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 	len = SKB_DATA_ALIGN(len);
407 
408 	if (sk_memalloc_socks())
409 		gfp_mask |= __GFP_MEMALLOC;
410 
411 	local_irq_save(flags);
412 
413 	nc = this_cpu_ptr(&netdev_alloc_cache);
414 	data = page_frag_alloc(nc, len, gfp_mask);
415 	pfmemalloc = nc->pfmemalloc;
416 
417 	local_irq_restore(flags);
418 
419 	if (unlikely(!data))
420 		return NULL;
421 
422 	skb = __build_skb(data, len);
423 	if (unlikely(!skb)) {
424 		skb_free_frag(data);
425 		return NULL;
426 	}
427 
428 	/* use OR instead of assignment to avoid clearing of bits in mask */
429 	if (pfmemalloc)
430 		skb->pfmemalloc = 1;
431 	skb->head_frag = 1;
432 
433 skb_success:
434 	skb_reserve(skb, NET_SKB_PAD);
435 	skb->dev = dev;
436 
437 skb_fail:
438 	return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441 
442 /**
443  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444  *	@napi: napi instance this buffer was allocated for
445  *	@len: length to allocate
446  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
447  *
448  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
449  *	attempt to allocate the head from a special reserved region used
450  *	only for NAPI Rx allocation.  By doing this we can save several
451  *	CPU cycles by avoiding having to disable and re-enable IRQs.
452  *
453  *	%NULL is returned if there is no free memory.
454  */
455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 				 gfp_t gfp_mask)
457 {
458 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 	struct sk_buff *skb;
460 	void *data;
461 
462 	len += NET_SKB_PAD + NET_IP_ALIGN;
463 
464 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 		if (!skb)
468 			goto skb_fail;
469 		goto skb_success;
470 	}
471 
472 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 	len = SKB_DATA_ALIGN(len);
474 
475 	if (sk_memalloc_socks())
476 		gfp_mask |= __GFP_MEMALLOC;
477 
478 	data = page_frag_alloc(&nc->page, len, gfp_mask);
479 	if (unlikely(!data))
480 		return NULL;
481 
482 	skb = __build_skb(data, len);
483 	if (unlikely(!skb)) {
484 		skb_free_frag(data);
485 		return NULL;
486 	}
487 
488 	/* use OR instead of assignment to avoid clearing of bits in mask */
489 	if (nc->page.pfmemalloc)
490 		skb->pfmemalloc = 1;
491 	skb->head_frag = 1;
492 
493 skb_success:
494 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 	skb->dev = napi->dev;
496 
497 skb_fail:
498 	return skb;
499 }
500 EXPORT_SYMBOL(__napi_alloc_skb);
501 
502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 		     int size, unsigned int truesize)
504 {
505 	skb_fill_page_desc(skb, i, page, off, size);
506 	skb->len += size;
507 	skb->data_len += size;
508 	skb->truesize += truesize;
509 }
510 EXPORT_SYMBOL(skb_add_rx_frag);
511 
512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 			  unsigned int truesize)
514 {
515 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
516 
517 	skb_frag_size_add(frag, size);
518 	skb->len += size;
519 	skb->data_len += size;
520 	skb->truesize += truesize;
521 }
522 EXPORT_SYMBOL(skb_coalesce_rx_frag);
523 
524 static void skb_drop_list(struct sk_buff **listp)
525 {
526 	kfree_skb_list(*listp);
527 	*listp = NULL;
528 }
529 
530 static inline void skb_drop_fraglist(struct sk_buff *skb)
531 {
532 	skb_drop_list(&skb_shinfo(skb)->frag_list);
533 }
534 
535 static void skb_clone_fraglist(struct sk_buff *skb)
536 {
537 	struct sk_buff *list;
538 
539 	skb_walk_frags(skb, list)
540 		skb_get(list);
541 }
542 
543 static void skb_free_head(struct sk_buff *skb)
544 {
545 	unsigned char *head = skb->head;
546 
547 	if (skb->head_frag)
548 		skb_free_frag(head);
549 	else
550 		kfree(head);
551 }
552 
553 static void skb_release_data(struct sk_buff *skb)
554 {
555 	struct skb_shared_info *shinfo = skb_shinfo(skb);
556 	int i;
557 
558 	if (skb->cloned &&
559 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 			      &shinfo->dataref))
561 		return;
562 
563 	for (i = 0; i < shinfo->nr_frags; i++)
564 		__skb_frag_unref(&shinfo->frags[i]);
565 
566 	if (shinfo->frag_list)
567 		kfree_skb_list(shinfo->frag_list);
568 
569 	skb_zcopy_clear(skb, true);
570 	skb_free_head(skb);
571 }
572 
573 /*
574  *	Free an skbuff by memory without cleaning the state.
575  */
576 static void kfree_skbmem(struct sk_buff *skb)
577 {
578 	struct sk_buff_fclones *fclones;
579 
580 	switch (skb->fclone) {
581 	case SKB_FCLONE_UNAVAILABLE:
582 		kmem_cache_free(skbuff_head_cache, skb);
583 		return;
584 
585 	case SKB_FCLONE_ORIG:
586 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
587 
588 		/* We usually free the clone (TX completion) before original skb
589 		 * This test would have no chance to be true for the clone,
590 		 * while here, branch prediction will be good.
591 		 */
592 		if (refcount_read(&fclones->fclone_ref) == 1)
593 			goto fastpath;
594 		break;
595 
596 	default: /* SKB_FCLONE_CLONE */
597 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 		break;
599 	}
600 	if (!refcount_dec_and_test(&fclones->fclone_ref))
601 		return;
602 fastpath:
603 	kmem_cache_free(skbuff_fclone_cache, fclones);
604 }
605 
606 void skb_release_head_state(struct sk_buff *skb)
607 {
608 	skb_dst_drop(skb);
609 	secpath_reset(skb);
610 	if (skb->destructor) {
611 		WARN_ON(in_irq());
612 		skb->destructor(skb);
613 	}
614 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 	nf_conntrack_put(skb_nfct(skb));
616 #endif
617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 	nf_bridge_put(skb->nf_bridge);
619 #endif
620 }
621 
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
624 {
625 	skb_release_head_state(skb);
626 	if (likely(skb->head))
627 		skb_release_data(skb);
628 }
629 
630 /**
631  *	__kfree_skb - private function
632  *	@skb: buffer
633  *
634  *	Free an sk_buff. Release anything attached to the buffer.
635  *	Clean the state. This is an internal helper function. Users should
636  *	always call kfree_skb
637  */
638 
639 void __kfree_skb(struct sk_buff *skb)
640 {
641 	skb_release_all(skb);
642 	kfree_skbmem(skb);
643 }
644 EXPORT_SYMBOL(__kfree_skb);
645 
646 /**
647  *	kfree_skb - free an sk_buff
648  *	@skb: buffer to free
649  *
650  *	Drop a reference to the buffer and free it if the usage count has
651  *	hit zero.
652  */
653 void kfree_skb(struct sk_buff *skb)
654 {
655 	if (!skb_unref(skb))
656 		return;
657 
658 	trace_kfree_skb(skb, __builtin_return_address(0));
659 	__kfree_skb(skb);
660 }
661 EXPORT_SYMBOL(kfree_skb);
662 
663 void kfree_skb_list(struct sk_buff *segs)
664 {
665 	while (segs) {
666 		struct sk_buff *next = segs->next;
667 
668 		kfree_skb(segs);
669 		segs = next;
670 	}
671 }
672 EXPORT_SYMBOL(kfree_skb_list);
673 
674 /**
675  *	skb_tx_error - report an sk_buff xmit error
676  *	@skb: buffer that triggered an error
677  *
678  *	Report xmit error if a device callback is tracking this skb.
679  *	skb must be freed afterwards.
680  */
681 void skb_tx_error(struct sk_buff *skb)
682 {
683 	skb_zcopy_clear(skb, true);
684 }
685 EXPORT_SYMBOL(skb_tx_error);
686 
687 /**
688  *	consume_skb - free an skbuff
689  *	@skb: buffer to free
690  *
691  *	Drop a ref to the buffer and free it if the usage count has hit zero
692  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
693  *	is being dropped after a failure and notes that
694  */
695 void consume_skb(struct sk_buff *skb)
696 {
697 	if (!skb_unref(skb))
698 		return;
699 
700 	trace_consume_skb(skb);
701 	__kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(consume_skb);
704 
705 /**
706  *	consume_stateless_skb - free an skbuff, assuming it is stateless
707  *	@skb: buffer to free
708  *
709  *	Alike consume_skb(), but this variant assumes that this is the last
710  *	skb reference and all the head states have been already dropped
711  */
712 void __consume_stateless_skb(struct sk_buff *skb)
713 {
714 	trace_consume_skb(skb);
715 	skb_release_data(skb);
716 	kfree_skbmem(skb);
717 }
718 
719 void __kfree_skb_flush(void)
720 {
721 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722 
723 	/* flush skb_cache if containing objects */
724 	if (nc->skb_count) {
725 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 				     nc->skb_cache);
727 		nc->skb_count = 0;
728 	}
729 }
730 
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
732 {
733 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734 
735 	/* drop skb->head and call any destructors for packet */
736 	skb_release_all(skb);
737 
738 	/* record skb to CPU local list */
739 	nc->skb_cache[nc->skb_count++] = skb;
740 
741 #ifdef CONFIG_SLUB
742 	/* SLUB writes into objects when freeing */
743 	prefetchw(skb);
744 #endif
745 
746 	/* flush skb_cache if it is filled */
747 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 				     nc->skb_cache);
750 		nc->skb_count = 0;
751 	}
752 }
753 void __kfree_skb_defer(struct sk_buff *skb)
754 {
755 	_kfree_skb_defer(skb);
756 }
757 
758 void napi_consume_skb(struct sk_buff *skb, int budget)
759 {
760 	if (unlikely(!skb))
761 		return;
762 
763 	/* Zero budget indicate non-NAPI context called us, like netpoll */
764 	if (unlikely(!budget)) {
765 		dev_consume_skb_any(skb);
766 		return;
767 	}
768 
769 	if (!skb_unref(skb))
770 		return;
771 
772 	/* if reaching here SKB is ready to free */
773 	trace_consume_skb(skb);
774 
775 	/* if SKB is a clone, don't handle this case */
776 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 		__kfree_skb(skb);
778 		return;
779 	}
780 
781 	_kfree_skb_defer(skb);
782 }
783 EXPORT_SYMBOL(napi_consume_skb);
784 
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
788 		     offsetof(struct sk_buff, headers_start));	\
789 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
790 		     offsetof(struct sk_buff, headers_end));	\
791 
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 	new->tstamp		= old->tstamp;
795 	/* We do not copy old->sk */
796 	new->dev		= old->dev;
797 	memcpy(new->cb, old->cb, sizeof(old->cb));
798 	skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 	new->sp			= secpath_get(old->sp);
801 #endif
802 	__nf_copy(new, old, false);
803 
804 	/* Note : this field could be in headers_start/headers_end section
805 	 * It is not yet because we do not want to have a 16 bit hole
806 	 */
807 	new->queue_mapping = old->queue_mapping;
808 
809 	memcpy(&new->headers_start, &old->headers_start,
810 	       offsetof(struct sk_buff, headers_end) -
811 	       offsetof(struct sk_buff, headers_start));
812 	CHECK_SKB_FIELD(protocol);
813 	CHECK_SKB_FIELD(csum);
814 	CHECK_SKB_FIELD(hash);
815 	CHECK_SKB_FIELD(priority);
816 	CHECK_SKB_FIELD(skb_iif);
817 	CHECK_SKB_FIELD(vlan_proto);
818 	CHECK_SKB_FIELD(vlan_tci);
819 	CHECK_SKB_FIELD(transport_header);
820 	CHECK_SKB_FIELD(network_header);
821 	CHECK_SKB_FIELD(mac_header);
822 	CHECK_SKB_FIELD(inner_protocol);
823 	CHECK_SKB_FIELD(inner_transport_header);
824 	CHECK_SKB_FIELD(inner_network_header);
825 	CHECK_SKB_FIELD(inner_mac_header);
826 	CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 	CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 	CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_XPS
834 	CHECK_SKB_FIELD(sender_cpu);
835 #endif
836 #ifdef CONFIG_NET_SCHED
837 	CHECK_SKB_FIELD(tc_index);
838 #endif
839 
840 }
841 
842 /*
843  * You should not add any new code to this function.  Add it to
844  * __copy_skb_header above instead.
845  */
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847 {
848 #define C(x) n->x = skb->x
849 
850 	n->next = n->prev = NULL;
851 	n->sk = NULL;
852 	__copy_skb_header(n, skb);
853 
854 	C(len);
855 	C(data_len);
856 	C(mac_len);
857 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 	n->cloned = 1;
859 	n->nohdr = 0;
860 	n->peeked = 0;
861 	C(pfmemalloc);
862 	n->destructor = NULL;
863 	C(tail);
864 	C(end);
865 	C(head);
866 	C(head_frag);
867 	C(data);
868 	C(truesize);
869 	refcount_set(&n->users, 1);
870 
871 	atomic_inc(&(skb_shinfo(skb)->dataref));
872 	skb->cloned = 1;
873 
874 	return n;
875 #undef C
876 }
877 
878 /**
879  *	skb_morph	-	morph one skb into another
880  *	@dst: the skb to receive the contents
881  *	@src: the skb to supply the contents
882  *
883  *	This is identical to skb_clone except that the target skb is
884  *	supplied by the user.
885  *
886  *	The target skb is returned upon exit.
887  */
888 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
889 {
890 	skb_release_all(dst);
891 	return __skb_clone(dst, src);
892 }
893 EXPORT_SYMBOL_GPL(skb_morph);
894 
895 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
896 {
897 	unsigned long max_pg, num_pg, new_pg, old_pg;
898 	struct user_struct *user;
899 
900 	if (capable(CAP_IPC_LOCK) || !size)
901 		return 0;
902 
903 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
904 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
905 	user = mmp->user ? : current_user();
906 
907 	do {
908 		old_pg = atomic_long_read(&user->locked_vm);
909 		new_pg = old_pg + num_pg;
910 		if (new_pg > max_pg)
911 			return -ENOBUFS;
912 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
913 		 old_pg);
914 
915 	if (!mmp->user) {
916 		mmp->user = get_uid(user);
917 		mmp->num_pg = num_pg;
918 	} else {
919 		mmp->num_pg += num_pg;
920 	}
921 
922 	return 0;
923 }
924 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
925 
926 void mm_unaccount_pinned_pages(struct mmpin *mmp)
927 {
928 	if (mmp->user) {
929 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
930 		free_uid(mmp->user);
931 	}
932 }
933 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
934 
935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
936 {
937 	struct ubuf_info *uarg;
938 	struct sk_buff *skb;
939 
940 	WARN_ON_ONCE(!in_task());
941 
942 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
943 	if (!skb)
944 		return NULL;
945 
946 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
947 	uarg = (void *)skb->cb;
948 	uarg->mmp.user = NULL;
949 
950 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
951 		kfree_skb(skb);
952 		return NULL;
953 	}
954 
955 	uarg->callback = sock_zerocopy_callback;
956 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
957 	uarg->len = 1;
958 	uarg->bytelen = size;
959 	uarg->zerocopy = 1;
960 	refcount_set(&uarg->refcnt, 1);
961 	sock_hold(sk);
962 
963 	return uarg;
964 }
965 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
966 
967 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
968 {
969 	return container_of((void *)uarg, struct sk_buff, cb);
970 }
971 
972 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
973 					struct ubuf_info *uarg)
974 {
975 	if (uarg) {
976 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
977 		u32 bytelen, next;
978 
979 		/* realloc only when socket is locked (TCP, UDP cork),
980 		 * so uarg->len and sk_zckey access is serialized
981 		 */
982 		if (!sock_owned_by_user(sk)) {
983 			WARN_ON_ONCE(1);
984 			return NULL;
985 		}
986 
987 		bytelen = uarg->bytelen + size;
988 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
989 			/* TCP can create new skb to attach new uarg */
990 			if (sk->sk_type == SOCK_STREAM)
991 				goto new_alloc;
992 			return NULL;
993 		}
994 
995 		next = (u32)atomic_read(&sk->sk_zckey);
996 		if ((u32)(uarg->id + uarg->len) == next) {
997 			if (mm_account_pinned_pages(&uarg->mmp, size))
998 				return NULL;
999 			uarg->len++;
1000 			uarg->bytelen = bytelen;
1001 			atomic_set(&sk->sk_zckey, ++next);
1002 			sock_zerocopy_get(uarg);
1003 			return uarg;
1004 		}
1005 	}
1006 
1007 new_alloc:
1008 	return sock_zerocopy_alloc(sk, size);
1009 }
1010 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1011 
1012 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1013 {
1014 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1015 	u32 old_lo, old_hi;
1016 	u64 sum_len;
1017 
1018 	old_lo = serr->ee.ee_info;
1019 	old_hi = serr->ee.ee_data;
1020 	sum_len = old_hi - old_lo + 1ULL + len;
1021 
1022 	if (sum_len >= (1ULL << 32))
1023 		return false;
1024 
1025 	if (lo != old_hi + 1)
1026 		return false;
1027 
1028 	serr->ee.ee_data += len;
1029 	return true;
1030 }
1031 
1032 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1033 {
1034 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1035 	struct sock_exterr_skb *serr;
1036 	struct sock *sk = skb->sk;
1037 	struct sk_buff_head *q;
1038 	unsigned long flags;
1039 	u32 lo, hi;
1040 	u16 len;
1041 
1042 	mm_unaccount_pinned_pages(&uarg->mmp);
1043 
1044 	/* if !len, there was only 1 call, and it was aborted
1045 	 * so do not queue a completion notification
1046 	 */
1047 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1048 		goto release;
1049 
1050 	len = uarg->len;
1051 	lo = uarg->id;
1052 	hi = uarg->id + len - 1;
1053 
1054 	serr = SKB_EXT_ERR(skb);
1055 	memset(serr, 0, sizeof(*serr));
1056 	serr->ee.ee_errno = 0;
1057 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1058 	serr->ee.ee_data = hi;
1059 	serr->ee.ee_info = lo;
1060 	if (!success)
1061 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1062 
1063 	q = &sk->sk_error_queue;
1064 	spin_lock_irqsave(&q->lock, flags);
1065 	tail = skb_peek_tail(q);
1066 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1067 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1068 		__skb_queue_tail(q, skb);
1069 		skb = NULL;
1070 	}
1071 	spin_unlock_irqrestore(&q->lock, flags);
1072 
1073 	sk->sk_error_report(sk);
1074 
1075 release:
1076 	consume_skb(skb);
1077 	sock_put(sk);
1078 }
1079 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1080 
1081 void sock_zerocopy_put(struct ubuf_info *uarg)
1082 {
1083 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1084 		if (uarg->callback)
1085 			uarg->callback(uarg, uarg->zerocopy);
1086 		else
1087 			consume_skb(skb_from_uarg(uarg));
1088 	}
1089 }
1090 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1091 
1092 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1093 {
1094 	if (uarg) {
1095 		struct sock *sk = skb_from_uarg(uarg)->sk;
1096 
1097 		atomic_dec(&sk->sk_zckey);
1098 		uarg->len--;
1099 
1100 		sock_zerocopy_put(uarg);
1101 	}
1102 }
1103 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1104 
1105 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1106 				   struct iov_iter *from, size_t length);
1107 
1108 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1109 			     struct msghdr *msg, int len,
1110 			     struct ubuf_info *uarg)
1111 {
1112 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1113 	struct iov_iter orig_iter = msg->msg_iter;
1114 	int err, orig_len = skb->len;
1115 
1116 	/* An skb can only point to one uarg. This edge case happens when
1117 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1118 	 */
1119 	if (orig_uarg && uarg != orig_uarg)
1120 		return -EEXIST;
1121 
1122 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1123 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1124 		struct sock *save_sk = skb->sk;
1125 
1126 		/* Streams do not free skb on error. Reset to prev state. */
1127 		msg->msg_iter = orig_iter;
1128 		skb->sk = sk;
1129 		___pskb_trim(skb, orig_len);
1130 		skb->sk = save_sk;
1131 		return err;
1132 	}
1133 
1134 	skb_zcopy_set(skb, uarg);
1135 	return skb->len - orig_len;
1136 }
1137 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1138 
1139 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1140 			      gfp_t gfp_mask)
1141 {
1142 	if (skb_zcopy(orig)) {
1143 		if (skb_zcopy(nskb)) {
1144 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1145 			if (!gfp_mask) {
1146 				WARN_ON_ONCE(1);
1147 				return -ENOMEM;
1148 			}
1149 			if (skb_uarg(nskb) == skb_uarg(orig))
1150 				return 0;
1151 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1152 				return -EIO;
1153 		}
1154 		skb_zcopy_set(nskb, skb_uarg(orig));
1155 	}
1156 	return 0;
1157 }
1158 
1159 /**
1160  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1161  *	@skb: the skb to modify
1162  *	@gfp_mask: allocation priority
1163  *
1164  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1165  *	It will copy all frags into kernel and drop the reference
1166  *	to userspace pages.
1167  *
1168  *	If this function is called from an interrupt gfp_mask() must be
1169  *	%GFP_ATOMIC.
1170  *
1171  *	Returns 0 on success or a negative error code on failure
1172  *	to allocate kernel memory to copy to.
1173  */
1174 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1175 {
1176 	int num_frags = skb_shinfo(skb)->nr_frags;
1177 	struct page *page, *head = NULL;
1178 	int i, new_frags;
1179 	u32 d_off;
1180 
1181 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1182 		return -EINVAL;
1183 
1184 	if (!num_frags)
1185 		goto release;
1186 
1187 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1188 	for (i = 0; i < new_frags; i++) {
1189 		page = alloc_page(gfp_mask);
1190 		if (!page) {
1191 			while (head) {
1192 				struct page *next = (struct page *)page_private(head);
1193 				put_page(head);
1194 				head = next;
1195 			}
1196 			return -ENOMEM;
1197 		}
1198 		set_page_private(page, (unsigned long)head);
1199 		head = page;
1200 	}
1201 
1202 	page = head;
1203 	d_off = 0;
1204 	for (i = 0; i < num_frags; i++) {
1205 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1206 		u32 p_off, p_len, copied;
1207 		struct page *p;
1208 		u8 *vaddr;
1209 
1210 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1211 				      p, p_off, p_len, copied) {
1212 			u32 copy, done = 0;
1213 			vaddr = kmap_atomic(p);
1214 
1215 			while (done < p_len) {
1216 				if (d_off == PAGE_SIZE) {
1217 					d_off = 0;
1218 					page = (struct page *)page_private(page);
1219 				}
1220 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1221 				memcpy(page_address(page) + d_off,
1222 				       vaddr + p_off + done, copy);
1223 				done += copy;
1224 				d_off += copy;
1225 			}
1226 			kunmap_atomic(vaddr);
1227 		}
1228 	}
1229 
1230 	/* skb frags release userspace buffers */
1231 	for (i = 0; i < num_frags; i++)
1232 		skb_frag_unref(skb, i);
1233 
1234 	/* skb frags point to kernel buffers */
1235 	for (i = 0; i < new_frags - 1; i++) {
1236 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1237 		head = (struct page *)page_private(head);
1238 	}
1239 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1240 	skb_shinfo(skb)->nr_frags = new_frags;
1241 
1242 release:
1243 	skb_zcopy_clear(skb, false);
1244 	return 0;
1245 }
1246 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1247 
1248 /**
1249  *	skb_clone	-	duplicate an sk_buff
1250  *	@skb: buffer to clone
1251  *	@gfp_mask: allocation priority
1252  *
1253  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1254  *	copies share the same packet data but not structure. The new
1255  *	buffer has a reference count of 1. If the allocation fails the
1256  *	function returns %NULL otherwise the new buffer is returned.
1257  *
1258  *	If this function is called from an interrupt gfp_mask() must be
1259  *	%GFP_ATOMIC.
1260  */
1261 
1262 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1263 {
1264 	struct sk_buff_fclones *fclones = container_of(skb,
1265 						       struct sk_buff_fclones,
1266 						       skb1);
1267 	struct sk_buff *n;
1268 
1269 	if (skb_orphan_frags(skb, gfp_mask))
1270 		return NULL;
1271 
1272 	if (skb->fclone == SKB_FCLONE_ORIG &&
1273 	    refcount_read(&fclones->fclone_ref) == 1) {
1274 		n = &fclones->skb2;
1275 		refcount_set(&fclones->fclone_ref, 2);
1276 	} else {
1277 		if (skb_pfmemalloc(skb))
1278 			gfp_mask |= __GFP_MEMALLOC;
1279 
1280 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1281 		if (!n)
1282 			return NULL;
1283 
1284 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1285 	}
1286 
1287 	return __skb_clone(n, skb);
1288 }
1289 EXPORT_SYMBOL(skb_clone);
1290 
1291 void skb_headers_offset_update(struct sk_buff *skb, int off)
1292 {
1293 	/* Only adjust this if it actually is csum_start rather than csum */
1294 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1295 		skb->csum_start += off;
1296 	/* {transport,network,mac}_header and tail are relative to skb->head */
1297 	skb->transport_header += off;
1298 	skb->network_header   += off;
1299 	if (skb_mac_header_was_set(skb))
1300 		skb->mac_header += off;
1301 	skb->inner_transport_header += off;
1302 	skb->inner_network_header += off;
1303 	skb->inner_mac_header += off;
1304 }
1305 EXPORT_SYMBOL(skb_headers_offset_update);
1306 
1307 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1308 {
1309 	__copy_skb_header(new, old);
1310 
1311 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1312 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1313 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1314 }
1315 EXPORT_SYMBOL(skb_copy_header);
1316 
1317 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1318 {
1319 	if (skb_pfmemalloc(skb))
1320 		return SKB_ALLOC_RX;
1321 	return 0;
1322 }
1323 
1324 /**
1325  *	skb_copy	-	create private copy of an sk_buff
1326  *	@skb: buffer to copy
1327  *	@gfp_mask: allocation priority
1328  *
1329  *	Make a copy of both an &sk_buff and its data. This is used when the
1330  *	caller wishes to modify the data and needs a private copy of the
1331  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1332  *	on success. The returned buffer has a reference count of 1.
1333  *
1334  *	As by-product this function converts non-linear &sk_buff to linear
1335  *	one, so that &sk_buff becomes completely private and caller is allowed
1336  *	to modify all the data of returned buffer. This means that this
1337  *	function is not recommended for use in circumstances when only
1338  *	header is going to be modified. Use pskb_copy() instead.
1339  */
1340 
1341 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1342 {
1343 	int headerlen = skb_headroom(skb);
1344 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1345 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1346 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1347 
1348 	if (!n)
1349 		return NULL;
1350 
1351 	/* Set the data pointer */
1352 	skb_reserve(n, headerlen);
1353 	/* Set the tail pointer and length */
1354 	skb_put(n, skb->len);
1355 
1356 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1357 
1358 	skb_copy_header(n, skb);
1359 	return n;
1360 }
1361 EXPORT_SYMBOL(skb_copy);
1362 
1363 /**
1364  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1365  *	@skb: buffer to copy
1366  *	@headroom: headroom of new skb
1367  *	@gfp_mask: allocation priority
1368  *	@fclone: if true allocate the copy of the skb from the fclone
1369  *	cache instead of the head cache; it is recommended to set this
1370  *	to true for the cases where the copy will likely be cloned
1371  *
1372  *	Make a copy of both an &sk_buff and part of its data, located
1373  *	in header. Fragmented data remain shared. This is used when
1374  *	the caller wishes to modify only header of &sk_buff and needs
1375  *	private copy of the header to alter. Returns %NULL on failure
1376  *	or the pointer to the buffer on success.
1377  *	The returned buffer has a reference count of 1.
1378  */
1379 
1380 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1381 				   gfp_t gfp_mask, bool fclone)
1382 {
1383 	unsigned int size = skb_headlen(skb) + headroom;
1384 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1385 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1386 
1387 	if (!n)
1388 		goto out;
1389 
1390 	/* Set the data pointer */
1391 	skb_reserve(n, headroom);
1392 	/* Set the tail pointer and length */
1393 	skb_put(n, skb_headlen(skb));
1394 	/* Copy the bytes */
1395 	skb_copy_from_linear_data(skb, n->data, n->len);
1396 
1397 	n->truesize += skb->data_len;
1398 	n->data_len  = skb->data_len;
1399 	n->len	     = skb->len;
1400 
1401 	if (skb_shinfo(skb)->nr_frags) {
1402 		int i;
1403 
1404 		if (skb_orphan_frags(skb, gfp_mask) ||
1405 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1406 			kfree_skb(n);
1407 			n = NULL;
1408 			goto out;
1409 		}
1410 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1411 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1412 			skb_frag_ref(skb, i);
1413 		}
1414 		skb_shinfo(n)->nr_frags = i;
1415 	}
1416 
1417 	if (skb_has_frag_list(skb)) {
1418 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1419 		skb_clone_fraglist(n);
1420 	}
1421 
1422 	skb_copy_header(n, skb);
1423 out:
1424 	return n;
1425 }
1426 EXPORT_SYMBOL(__pskb_copy_fclone);
1427 
1428 /**
1429  *	pskb_expand_head - reallocate header of &sk_buff
1430  *	@skb: buffer to reallocate
1431  *	@nhead: room to add at head
1432  *	@ntail: room to add at tail
1433  *	@gfp_mask: allocation priority
1434  *
1435  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1436  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1437  *	reference count of 1. Returns zero in the case of success or error,
1438  *	if expansion failed. In the last case, &sk_buff is not changed.
1439  *
1440  *	All the pointers pointing into skb header may change and must be
1441  *	reloaded after call to this function.
1442  */
1443 
1444 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1445 		     gfp_t gfp_mask)
1446 {
1447 	int i, osize = skb_end_offset(skb);
1448 	int size = osize + nhead + ntail;
1449 	long off;
1450 	u8 *data;
1451 
1452 	BUG_ON(nhead < 0);
1453 
1454 	BUG_ON(skb_shared(skb));
1455 
1456 	size = SKB_DATA_ALIGN(size);
1457 
1458 	if (skb_pfmemalloc(skb))
1459 		gfp_mask |= __GFP_MEMALLOC;
1460 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1461 			       gfp_mask, NUMA_NO_NODE, NULL);
1462 	if (!data)
1463 		goto nodata;
1464 	size = SKB_WITH_OVERHEAD(ksize(data));
1465 
1466 	/* Copy only real data... and, alas, header. This should be
1467 	 * optimized for the cases when header is void.
1468 	 */
1469 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1470 
1471 	memcpy((struct skb_shared_info *)(data + size),
1472 	       skb_shinfo(skb),
1473 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1474 
1475 	/*
1476 	 * if shinfo is shared we must drop the old head gracefully, but if it
1477 	 * is not we can just drop the old head and let the existing refcount
1478 	 * be since all we did is relocate the values
1479 	 */
1480 	if (skb_cloned(skb)) {
1481 		if (skb_orphan_frags(skb, gfp_mask))
1482 			goto nofrags;
1483 		if (skb_zcopy(skb))
1484 			refcount_inc(&skb_uarg(skb)->refcnt);
1485 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1486 			skb_frag_ref(skb, i);
1487 
1488 		if (skb_has_frag_list(skb))
1489 			skb_clone_fraglist(skb);
1490 
1491 		skb_release_data(skb);
1492 	} else {
1493 		skb_free_head(skb);
1494 	}
1495 	off = (data + nhead) - skb->head;
1496 
1497 	skb->head     = data;
1498 	skb->head_frag = 0;
1499 	skb->data    += off;
1500 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1501 	skb->end      = size;
1502 	off           = nhead;
1503 #else
1504 	skb->end      = skb->head + size;
1505 #endif
1506 	skb->tail	      += off;
1507 	skb_headers_offset_update(skb, nhead);
1508 	skb->cloned   = 0;
1509 	skb->hdr_len  = 0;
1510 	skb->nohdr    = 0;
1511 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1512 
1513 	skb_metadata_clear(skb);
1514 
1515 	/* It is not generally safe to change skb->truesize.
1516 	 * For the moment, we really care of rx path, or
1517 	 * when skb is orphaned (not attached to a socket).
1518 	 */
1519 	if (!skb->sk || skb->destructor == sock_edemux)
1520 		skb->truesize += size - osize;
1521 
1522 	return 0;
1523 
1524 nofrags:
1525 	kfree(data);
1526 nodata:
1527 	return -ENOMEM;
1528 }
1529 EXPORT_SYMBOL(pskb_expand_head);
1530 
1531 /* Make private copy of skb with writable head and some headroom */
1532 
1533 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1534 {
1535 	struct sk_buff *skb2;
1536 	int delta = headroom - skb_headroom(skb);
1537 
1538 	if (delta <= 0)
1539 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1540 	else {
1541 		skb2 = skb_clone(skb, GFP_ATOMIC);
1542 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1543 					     GFP_ATOMIC)) {
1544 			kfree_skb(skb2);
1545 			skb2 = NULL;
1546 		}
1547 	}
1548 	return skb2;
1549 }
1550 EXPORT_SYMBOL(skb_realloc_headroom);
1551 
1552 /**
1553  *	skb_copy_expand	-	copy and expand sk_buff
1554  *	@skb: buffer to copy
1555  *	@newheadroom: new free bytes at head
1556  *	@newtailroom: new free bytes at tail
1557  *	@gfp_mask: allocation priority
1558  *
1559  *	Make a copy of both an &sk_buff and its data and while doing so
1560  *	allocate additional space.
1561  *
1562  *	This is used when the caller wishes to modify the data and needs a
1563  *	private copy of the data to alter as well as more space for new fields.
1564  *	Returns %NULL on failure or the pointer to the buffer
1565  *	on success. The returned buffer has a reference count of 1.
1566  *
1567  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1568  *	is called from an interrupt.
1569  */
1570 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1571 				int newheadroom, int newtailroom,
1572 				gfp_t gfp_mask)
1573 {
1574 	/*
1575 	 *	Allocate the copy buffer
1576 	 */
1577 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1578 					gfp_mask, skb_alloc_rx_flag(skb),
1579 					NUMA_NO_NODE);
1580 	int oldheadroom = skb_headroom(skb);
1581 	int head_copy_len, head_copy_off;
1582 
1583 	if (!n)
1584 		return NULL;
1585 
1586 	skb_reserve(n, newheadroom);
1587 
1588 	/* Set the tail pointer and length */
1589 	skb_put(n, skb->len);
1590 
1591 	head_copy_len = oldheadroom;
1592 	head_copy_off = 0;
1593 	if (newheadroom <= head_copy_len)
1594 		head_copy_len = newheadroom;
1595 	else
1596 		head_copy_off = newheadroom - head_copy_len;
1597 
1598 	/* Copy the linear header and data. */
1599 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1600 			     skb->len + head_copy_len));
1601 
1602 	skb_copy_header(n, skb);
1603 
1604 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1605 
1606 	return n;
1607 }
1608 EXPORT_SYMBOL(skb_copy_expand);
1609 
1610 /**
1611  *	__skb_pad		-	zero pad the tail of an skb
1612  *	@skb: buffer to pad
1613  *	@pad: space to pad
1614  *	@free_on_error: free buffer on error
1615  *
1616  *	Ensure that a buffer is followed by a padding area that is zero
1617  *	filled. Used by network drivers which may DMA or transfer data
1618  *	beyond the buffer end onto the wire.
1619  *
1620  *	May return error in out of memory cases. The skb is freed on error
1621  *	if @free_on_error is true.
1622  */
1623 
1624 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1625 {
1626 	int err;
1627 	int ntail;
1628 
1629 	/* If the skbuff is non linear tailroom is always zero.. */
1630 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1631 		memset(skb->data+skb->len, 0, pad);
1632 		return 0;
1633 	}
1634 
1635 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1636 	if (likely(skb_cloned(skb) || ntail > 0)) {
1637 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1638 		if (unlikely(err))
1639 			goto free_skb;
1640 	}
1641 
1642 	/* FIXME: The use of this function with non-linear skb's really needs
1643 	 * to be audited.
1644 	 */
1645 	err = skb_linearize(skb);
1646 	if (unlikely(err))
1647 		goto free_skb;
1648 
1649 	memset(skb->data + skb->len, 0, pad);
1650 	return 0;
1651 
1652 free_skb:
1653 	if (free_on_error)
1654 		kfree_skb(skb);
1655 	return err;
1656 }
1657 EXPORT_SYMBOL(__skb_pad);
1658 
1659 /**
1660  *	pskb_put - add data to the tail of a potentially fragmented buffer
1661  *	@skb: start of the buffer to use
1662  *	@tail: tail fragment of the buffer to use
1663  *	@len: amount of data to add
1664  *
1665  *	This function extends the used data area of the potentially
1666  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1667  *	@skb itself. If this would exceed the total buffer size the kernel
1668  *	will panic. A pointer to the first byte of the extra data is
1669  *	returned.
1670  */
1671 
1672 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1673 {
1674 	if (tail != skb) {
1675 		skb->data_len += len;
1676 		skb->len += len;
1677 	}
1678 	return skb_put(tail, len);
1679 }
1680 EXPORT_SYMBOL_GPL(pskb_put);
1681 
1682 /**
1683  *	skb_put - add data to a buffer
1684  *	@skb: buffer to use
1685  *	@len: amount of data to add
1686  *
1687  *	This function extends the used data area of the buffer. If this would
1688  *	exceed the total buffer size the kernel will panic. A pointer to the
1689  *	first byte of the extra data is returned.
1690  */
1691 void *skb_put(struct sk_buff *skb, unsigned int len)
1692 {
1693 	void *tmp = skb_tail_pointer(skb);
1694 	SKB_LINEAR_ASSERT(skb);
1695 	skb->tail += len;
1696 	skb->len  += len;
1697 	if (unlikely(skb->tail > skb->end))
1698 		skb_over_panic(skb, len, __builtin_return_address(0));
1699 	return tmp;
1700 }
1701 EXPORT_SYMBOL(skb_put);
1702 
1703 /**
1704  *	skb_push - add data to the start of a buffer
1705  *	@skb: buffer to use
1706  *	@len: amount of data to add
1707  *
1708  *	This function extends the used data area of the buffer at the buffer
1709  *	start. If this would exceed the total buffer headroom the kernel will
1710  *	panic. A pointer to the first byte of the extra data is returned.
1711  */
1712 void *skb_push(struct sk_buff *skb, unsigned int len)
1713 {
1714 	skb->data -= len;
1715 	skb->len  += len;
1716 	if (unlikely(skb->data < skb->head))
1717 		skb_under_panic(skb, len, __builtin_return_address(0));
1718 	return skb->data;
1719 }
1720 EXPORT_SYMBOL(skb_push);
1721 
1722 /**
1723  *	skb_pull - remove data from the start of a buffer
1724  *	@skb: buffer to use
1725  *	@len: amount of data to remove
1726  *
1727  *	This function removes data from the start of a buffer, returning
1728  *	the memory to the headroom. A pointer to the next data in the buffer
1729  *	is returned. Once the data has been pulled future pushes will overwrite
1730  *	the old data.
1731  */
1732 void *skb_pull(struct sk_buff *skb, unsigned int len)
1733 {
1734 	return skb_pull_inline(skb, len);
1735 }
1736 EXPORT_SYMBOL(skb_pull);
1737 
1738 /**
1739  *	skb_trim - remove end from a buffer
1740  *	@skb: buffer to alter
1741  *	@len: new length
1742  *
1743  *	Cut the length of a buffer down by removing data from the tail. If
1744  *	the buffer is already under the length specified it is not modified.
1745  *	The skb must be linear.
1746  */
1747 void skb_trim(struct sk_buff *skb, unsigned int len)
1748 {
1749 	if (skb->len > len)
1750 		__skb_trim(skb, len);
1751 }
1752 EXPORT_SYMBOL(skb_trim);
1753 
1754 /* Trims skb to length len. It can change skb pointers.
1755  */
1756 
1757 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1758 {
1759 	struct sk_buff **fragp;
1760 	struct sk_buff *frag;
1761 	int offset = skb_headlen(skb);
1762 	int nfrags = skb_shinfo(skb)->nr_frags;
1763 	int i;
1764 	int err;
1765 
1766 	if (skb_cloned(skb) &&
1767 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1768 		return err;
1769 
1770 	i = 0;
1771 	if (offset >= len)
1772 		goto drop_pages;
1773 
1774 	for (; i < nfrags; i++) {
1775 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1776 
1777 		if (end < len) {
1778 			offset = end;
1779 			continue;
1780 		}
1781 
1782 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1783 
1784 drop_pages:
1785 		skb_shinfo(skb)->nr_frags = i;
1786 
1787 		for (; i < nfrags; i++)
1788 			skb_frag_unref(skb, i);
1789 
1790 		if (skb_has_frag_list(skb))
1791 			skb_drop_fraglist(skb);
1792 		goto done;
1793 	}
1794 
1795 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1796 	     fragp = &frag->next) {
1797 		int end = offset + frag->len;
1798 
1799 		if (skb_shared(frag)) {
1800 			struct sk_buff *nfrag;
1801 
1802 			nfrag = skb_clone(frag, GFP_ATOMIC);
1803 			if (unlikely(!nfrag))
1804 				return -ENOMEM;
1805 
1806 			nfrag->next = frag->next;
1807 			consume_skb(frag);
1808 			frag = nfrag;
1809 			*fragp = frag;
1810 		}
1811 
1812 		if (end < len) {
1813 			offset = end;
1814 			continue;
1815 		}
1816 
1817 		if (end > len &&
1818 		    unlikely((err = pskb_trim(frag, len - offset))))
1819 			return err;
1820 
1821 		if (frag->next)
1822 			skb_drop_list(&frag->next);
1823 		break;
1824 	}
1825 
1826 done:
1827 	if (len > skb_headlen(skb)) {
1828 		skb->data_len -= skb->len - len;
1829 		skb->len       = len;
1830 	} else {
1831 		skb->len       = len;
1832 		skb->data_len  = 0;
1833 		skb_set_tail_pointer(skb, len);
1834 	}
1835 
1836 	if (!skb->sk || skb->destructor == sock_edemux)
1837 		skb_condense(skb);
1838 	return 0;
1839 }
1840 EXPORT_SYMBOL(___pskb_trim);
1841 
1842 /* Note : use pskb_trim_rcsum() instead of calling this directly
1843  */
1844 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1845 {
1846 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1847 		int delta = skb->len - len;
1848 
1849 		skb->csum = csum_block_sub(skb->csum,
1850 					   skb_checksum(skb, len, delta, 0),
1851 					   len);
1852 	}
1853 	return __pskb_trim(skb, len);
1854 }
1855 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1856 
1857 /**
1858  *	__pskb_pull_tail - advance tail of skb header
1859  *	@skb: buffer to reallocate
1860  *	@delta: number of bytes to advance tail
1861  *
1862  *	The function makes a sense only on a fragmented &sk_buff,
1863  *	it expands header moving its tail forward and copying necessary
1864  *	data from fragmented part.
1865  *
1866  *	&sk_buff MUST have reference count of 1.
1867  *
1868  *	Returns %NULL (and &sk_buff does not change) if pull failed
1869  *	or value of new tail of skb in the case of success.
1870  *
1871  *	All the pointers pointing into skb header may change and must be
1872  *	reloaded after call to this function.
1873  */
1874 
1875 /* Moves tail of skb head forward, copying data from fragmented part,
1876  * when it is necessary.
1877  * 1. It may fail due to malloc failure.
1878  * 2. It may change skb pointers.
1879  *
1880  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1881  */
1882 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1883 {
1884 	/* If skb has not enough free space at tail, get new one
1885 	 * plus 128 bytes for future expansions. If we have enough
1886 	 * room at tail, reallocate without expansion only if skb is cloned.
1887 	 */
1888 	int i, k, eat = (skb->tail + delta) - skb->end;
1889 
1890 	if (eat > 0 || skb_cloned(skb)) {
1891 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1892 				     GFP_ATOMIC))
1893 			return NULL;
1894 	}
1895 
1896 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1897 			     skb_tail_pointer(skb), delta));
1898 
1899 	/* Optimization: no fragments, no reasons to preestimate
1900 	 * size of pulled pages. Superb.
1901 	 */
1902 	if (!skb_has_frag_list(skb))
1903 		goto pull_pages;
1904 
1905 	/* Estimate size of pulled pages. */
1906 	eat = delta;
1907 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1908 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1909 
1910 		if (size >= eat)
1911 			goto pull_pages;
1912 		eat -= size;
1913 	}
1914 
1915 	/* If we need update frag list, we are in troubles.
1916 	 * Certainly, it is possible to add an offset to skb data,
1917 	 * but taking into account that pulling is expected to
1918 	 * be very rare operation, it is worth to fight against
1919 	 * further bloating skb head and crucify ourselves here instead.
1920 	 * Pure masohism, indeed. 8)8)
1921 	 */
1922 	if (eat) {
1923 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1924 		struct sk_buff *clone = NULL;
1925 		struct sk_buff *insp = NULL;
1926 
1927 		do {
1928 			BUG_ON(!list);
1929 
1930 			if (list->len <= eat) {
1931 				/* Eaten as whole. */
1932 				eat -= list->len;
1933 				list = list->next;
1934 				insp = list;
1935 			} else {
1936 				/* Eaten partially. */
1937 
1938 				if (skb_shared(list)) {
1939 					/* Sucks! We need to fork list. :-( */
1940 					clone = skb_clone(list, GFP_ATOMIC);
1941 					if (!clone)
1942 						return NULL;
1943 					insp = list->next;
1944 					list = clone;
1945 				} else {
1946 					/* This may be pulled without
1947 					 * problems. */
1948 					insp = list;
1949 				}
1950 				if (!pskb_pull(list, eat)) {
1951 					kfree_skb(clone);
1952 					return NULL;
1953 				}
1954 				break;
1955 			}
1956 		} while (eat);
1957 
1958 		/* Free pulled out fragments. */
1959 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1960 			skb_shinfo(skb)->frag_list = list->next;
1961 			kfree_skb(list);
1962 		}
1963 		/* And insert new clone at head. */
1964 		if (clone) {
1965 			clone->next = list;
1966 			skb_shinfo(skb)->frag_list = clone;
1967 		}
1968 	}
1969 	/* Success! Now we may commit changes to skb data. */
1970 
1971 pull_pages:
1972 	eat = delta;
1973 	k = 0;
1974 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1975 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1976 
1977 		if (size <= eat) {
1978 			skb_frag_unref(skb, i);
1979 			eat -= size;
1980 		} else {
1981 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1982 			if (eat) {
1983 				skb_shinfo(skb)->frags[k].page_offset += eat;
1984 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1985 				if (!i)
1986 					goto end;
1987 				eat = 0;
1988 			}
1989 			k++;
1990 		}
1991 	}
1992 	skb_shinfo(skb)->nr_frags = k;
1993 
1994 end:
1995 	skb->tail     += delta;
1996 	skb->data_len -= delta;
1997 
1998 	if (!skb->data_len)
1999 		skb_zcopy_clear(skb, false);
2000 
2001 	return skb_tail_pointer(skb);
2002 }
2003 EXPORT_SYMBOL(__pskb_pull_tail);
2004 
2005 /**
2006  *	skb_copy_bits - copy bits from skb to kernel buffer
2007  *	@skb: source skb
2008  *	@offset: offset in source
2009  *	@to: destination buffer
2010  *	@len: number of bytes to copy
2011  *
2012  *	Copy the specified number of bytes from the source skb to the
2013  *	destination buffer.
2014  *
2015  *	CAUTION ! :
2016  *		If its prototype is ever changed,
2017  *		check arch/{*}/net/{*}.S files,
2018  *		since it is called from BPF assembly code.
2019  */
2020 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2021 {
2022 	int start = skb_headlen(skb);
2023 	struct sk_buff *frag_iter;
2024 	int i, copy;
2025 
2026 	if (offset > (int)skb->len - len)
2027 		goto fault;
2028 
2029 	/* Copy header. */
2030 	if ((copy = start - offset) > 0) {
2031 		if (copy > len)
2032 			copy = len;
2033 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2034 		if ((len -= copy) == 0)
2035 			return 0;
2036 		offset += copy;
2037 		to     += copy;
2038 	}
2039 
2040 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2041 		int end;
2042 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2043 
2044 		WARN_ON(start > offset + len);
2045 
2046 		end = start + skb_frag_size(f);
2047 		if ((copy = end - offset) > 0) {
2048 			u32 p_off, p_len, copied;
2049 			struct page *p;
2050 			u8 *vaddr;
2051 
2052 			if (copy > len)
2053 				copy = len;
2054 
2055 			skb_frag_foreach_page(f,
2056 					      f->page_offset + offset - start,
2057 					      copy, p, p_off, p_len, copied) {
2058 				vaddr = kmap_atomic(p);
2059 				memcpy(to + copied, vaddr + p_off, p_len);
2060 				kunmap_atomic(vaddr);
2061 			}
2062 
2063 			if ((len -= copy) == 0)
2064 				return 0;
2065 			offset += copy;
2066 			to     += copy;
2067 		}
2068 		start = end;
2069 	}
2070 
2071 	skb_walk_frags(skb, frag_iter) {
2072 		int end;
2073 
2074 		WARN_ON(start > offset + len);
2075 
2076 		end = start + frag_iter->len;
2077 		if ((copy = end - offset) > 0) {
2078 			if (copy > len)
2079 				copy = len;
2080 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2081 				goto fault;
2082 			if ((len -= copy) == 0)
2083 				return 0;
2084 			offset += copy;
2085 			to     += copy;
2086 		}
2087 		start = end;
2088 	}
2089 
2090 	if (!len)
2091 		return 0;
2092 
2093 fault:
2094 	return -EFAULT;
2095 }
2096 EXPORT_SYMBOL(skb_copy_bits);
2097 
2098 /*
2099  * Callback from splice_to_pipe(), if we need to release some pages
2100  * at the end of the spd in case we error'ed out in filling the pipe.
2101  */
2102 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2103 {
2104 	put_page(spd->pages[i]);
2105 }
2106 
2107 static struct page *linear_to_page(struct page *page, unsigned int *len,
2108 				   unsigned int *offset,
2109 				   struct sock *sk)
2110 {
2111 	struct page_frag *pfrag = sk_page_frag(sk);
2112 
2113 	if (!sk_page_frag_refill(sk, pfrag))
2114 		return NULL;
2115 
2116 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2117 
2118 	memcpy(page_address(pfrag->page) + pfrag->offset,
2119 	       page_address(page) + *offset, *len);
2120 	*offset = pfrag->offset;
2121 	pfrag->offset += *len;
2122 
2123 	return pfrag->page;
2124 }
2125 
2126 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2127 			     struct page *page,
2128 			     unsigned int offset)
2129 {
2130 	return	spd->nr_pages &&
2131 		spd->pages[spd->nr_pages - 1] == page &&
2132 		(spd->partial[spd->nr_pages - 1].offset +
2133 		 spd->partial[spd->nr_pages - 1].len == offset);
2134 }
2135 
2136 /*
2137  * Fill page/offset/length into spd, if it can hold more pages.
2138  */
2139 static bool spd_fill_page(struct splice_pipe_desc *spd,
2140 			  struct pipe_inode_info *pipe, struct page *page,
2141 			  unsigned int *len, unsigned int offset,
2142 			  bool linear,
2143 			  struct sock *sk)
2144 {
2145 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2146 		return true;
2147 
2148 	if (linear) {
2149 		page = linear_to_page(page, len, &offset, sk);
2150 		if (!page)
2151 			return true;
2152 	}
2153 	if (spd_can_coalesce(spd, page, offset)) {
2154 		spd->partial[spd->nr_pages - 1].len += *len;
2155 		return false;
2156 	}
2157 	get_page(page);
2158 	spd->pages[spd->nr_pages] = page;
2159 	spd->partial[spd->nr_pages].len = *len;
2160 	spd->partial[spd->nr_pages].offset = offset;
2161 	spd->nr_pages++;
2162 
2163 	return false;
2164 }
2165 
2166 static bool __splice_segment(struct page *page, unsigned int poff,
2167 			     unsigned int plen, unsigned int *off,
2168 			     unsigned int *len,
2169 			     struct splice_pipe_desc *spd, bool linear,
2170 			     struct sock *sk,
2171 			     struct pipe_inode_info *pipe)
2172 {
2173 	if (!*len)
2174 		return true;
2175 
2176 	/* skip this segment if already processed */
2177 	if (*off >= plen) {
2178 		*off -= plen;
2179 		return false;
2180 	}
2181 
2182 	/* ignore any bits we already processed */
2183 	poff += *off;
2184 	plen -= *off;
2185 	*off = 0;
2186 
2187 	do {
2188 		unsigned int flen = min(*len, plen);
2189 
2190 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2191 				  linear, sk))
2192 			return true;
2193 		poff += flen;
2194 		plen -= flen;
2195 		*len -= flen;
2196 	} while (*len && plen);
2197 
2198 	return false;
2199 }
2200 
2201 /*
2202  * Map linear and fragment data from the skb to spd. It reports true if the
2203  * pipe is full or if we already spliced the requested length.
2204  */
2205 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2206 			      unsigned int *offset, unsigned int *len,
2207 			      struct splice_pipe_desc *spd, struct sock *sk)
2208 {
2209 	int seg;
2210 	struct sk_buff *iter;
2211 
2212 	/* map the linear part :
2213 	 * If skb->head_frag is set, this 'linear' part is backed by a
2214 	 * fragment, and if the head is not shared with any clones then
2215 	 * we can avoid a copy since we own the head portion of this page.
2216 	 */
2217 	if (__splice_segment(virt_to_page(skb->data),
2218 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2219 			     skb_headlen(skb),
2220 			     offset, len, spd,
2221 			     skb_head_is_locked(skb),
2222 			     sk, pipe))
2223 		return true;
2224 
2225 	/*
2226 	 * then map the fragments
2227 	 */
2228 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2229 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2230 
2231 		if (__splice_segment(skb_frag_page(f),
2232 				     f->page_offset, skb_frag_size(f),
2233 				     offset, len, spd, false, sk, pipe))
2234 			return true;
2235 	}
2236 
2237 	skb_walk_frags(skb, iter) {
2238 		if (*offset >= iter->len) {
2239 			*offset -= iter->len;
2240 			continue;
2241 		}
2242 		/* __skb_splice_bits() only fails if the output has no room
2243 		 * left, so no point in going over the frag_list for the error
2244 		 * case.
2245 		 */
2246 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2247 			return true;
2248 	}
2249 
2250 	return false;
2251 }
2252 
2253 /*
2254  * Map data from the skb to a pipe. Should handle both the linear part,
2255  * the fragments, and the frag list.
2256  */
2257 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2258 		    struct pipe_inode_info *pipe, unsigned int tlen,
2259 		    unsigned int flags)
2260 {
2261 	struct partial_page partial[MAX_SKB_FRAGS];
2262 	struct page *pages[MAX_SKB_FRAGS];
2263 	struct splice_pipe_desc spd = {
2264 		.pages = pages,
2265 		.partial = partial,
2266 		.nr_pages_max = MAX_SKB_FRAGS,
2267 		.ops = &nosteal_pipe_buf_ops,
2268 		.spd_release = sock_spd_release,
2269 	};
2270 	int ret = 0;
2271 
2272 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2273 
2274 	if (spd.nr_pages)
2275 		ret = splice_to_pipe(pipe, &spd);
2276 
2277 	return ret;
2278 }
2279 EXPORT_SYMBOL_GPL(skb_splice_bits);
2280 
2281 /* Send skb data on a socket. Socket must be locked. */
2282 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2283 			 int len)
2284 {
2285 	unsigned int orig_len = len;
2286 	struct sk_buff *head = skb;
2287 	unsigned short fragidx;
2288 	int slen, ret;
2289 
2290 do_frag_list:
2291 
2292 	/* Deal with head data */
2293 	while (offset < skb_headlen(skb) && len) {
2294 		struct kvec kv;
2295 		struct msghdr msg;
2296 
2297 		slen = min_t(int, len, skb_headlen(skb) - offset);
2298 		kv.iov_base = skb->data + offset;
2299 		kv.iov_len = slen;
2300 		memset(&msg, 0, sizeof(msg));
2301 
2302 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2303 		if (ret <= 0)
2304 			goto error;
2305 
2306 		offset += ret;
2307 		len -= ret;
2308 	}
2309 
2310 	/* All the data was skb head? */
2311 	if (!len)
2312 		goto out;
2313 
2314 	/* Make offset relative to start of frags */
2315 	offset -= skb_headlen(skb);
2316 
2317 	/* Find where we are in frag list */
2318 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2319 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2320 
2321 		if (offset < frag->size)
2322 			break;
2323 
2324 		offset -= frag->size;
2325 	}
2326 
2327 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2328 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2329 
2330 		slen = min_t(size_t, len, frag->size - offset);
2331 
2332 		while (slen) {
2333 			ret = kernel_sendpage_locked(sk, frag->page.p,
2334 						     frag->page_offset + offset,
2335 						     slen, MSG_DONTWAIT);
2336 			if (ret <= 0)
2337 				goto error;
2338 
2339 			len -= ret;
2340 			offset += ret;
2341 			slen -= ret;
2342 		}
2343 
2344 		offset = 0;
2345 	}
2346 
2347 	if (len) {
2348 		/* Process any frag lists */
2349 
2350 		if (skb == head) {
2351 			if (skb_has_frag_list(skb)) {
2352 				skb = skb_shinfo(skb)->frag_list;
2353 				goto do_frag_list;
2354 			}
2355 		} else if (skb->next) {
2356 			skb = skb->next;
2357 			goto do_frag_list;
2358 		}
2359 	}
2360 
2361 out:
2362 	return orig_len - len;
2363 
2364 error:
2365 	return orig_len == len ? ret : orig_len - len;
2366 }
2367 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2368 
2369 /* Send skb data on a socket. */
2370 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2371 {
2372 	int ret = 0;
2373 
2374 	lock_sock(sk);
2375 	ret = skb_send_sock_locked(sk, skb, offset, len);
2376 	release_sock(sk);
2377 
2378 	return ret;
2379 }
2380 EXPORT_SYMBOL_GPL(skb_send_sock);
2381 
2382 /**
2383  *	skb_store_bits - store bits from kernel buffer to skb
2384  *	@skb: destination buffer
2385  *	@offset: offset in destination
2386  *	@from: source buffer
2387  *	@len: number of bytes to copy
2388  *
2389  *	Copy the specified number of bytes from the source buffer to the
2390  *	destination skb.  This function handles all the messy bits of
2391  *	traversing fragment lists and such.
2392  */
2393 
2394 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2395 {
2396 	int start = skb_headlen(skb);
2397 	struct sk_buff *frag_iter;
2398 	int i, copy;
2399 
2400 	if (offset > (int)skb->len - len)
2401 		goto fault;
2402 
2403 	if ((copy = start - offset) > 0) {
2404 		if (copy > len)
2405 			copy = len;
2406 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2407 		if ((len -= copy) == 0)
2408 			return 0;
2409 		offset += copy;
2410 		from += copy;
2411 	}
2412 
2413 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2414 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2415 		int end;
2416 
2417 		WARN_ON(start > offset + len);
2418 
2419 		end = start + skb_frag_size(frag);
2420 		if ((copy = end - offset) > 0) {
2421 			u32 p_off, p_len, copied;
2422 			struct page *p;
2423 			u8 *vaddr;
2424 
2425 			if (copy > len)
2426 				copy = len;
2427 
2428 			skb_frag_foreach_page(frag,
2429 					      frag->page_offset + offset - start,
2430 					      copy, p, p_off, p_len, copied) {
2431 				vaddr = kmap_atomic(p);
2432 				memcpy(vaddr + p_off, from + copied, p_len);
2433 				kunmap_atomic(vaddr);
2434 			}
2435 
2436 			if ((len -= copy) == 0)
2437 				return 0;
2438 			offset += copy;
2439 			from += copy;
2440 		}
2441 		start = end;
2442 	}
2443 
2444 	skb_walk_frags(skb, frag_iter) {
2445 		int end;
2446 
2447 		WARN_ON(start > offset + len);
2448 
2449 		end = start + frag_iter->len;
2450 		if ((copy = end - offset) > 0) {
2451 			if (copy > len)
2452 				copy = len;
2453 			if (skb_store_bits(frag_iter, offset - start,
2454 					   from, copy))
2455 				goto fault;
2456 			if ((len -= copy) == 0)
2457 				return 0;
2458 			offset += copy;
2459 			from += copy;
2460 		}
2461 		start = end;
2462 	}
2463 	if (!len)
2464 		return 0;
2465 
2466 fault:
2467 	return -EFAULT;
2468 }
2469 EXPORT_SYMBOL(skb_store_bits);
2470 
2471 /* Checksum skb data. */
2472 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2473 		      __wsum csum, const struct skb_checksum_ops *ops)
2474 {
2475 	int start = skb_headlen(skb);
2476 	int i, copy = start - offset;
2477 	struct sk_buff *frag_iter;
2478 	int pos = 0;
2479 
2480 	/* Checksum header. */
2481 	if (copy > 0) {
2482 		if (copy > len)
2483 			copy = len;
2484 		csum = ops->update(skb->data + offset, copy, csum);
2485 		if ((len -= copy) == 0)
2486 			return csum;
2487 		offset += copy;
2488 		pos	= copy;
2489 	}
2490 
2491 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2492 		int end;
2493 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2494 
2495 		WARN_ON(start > offset + len);
2496 
2497 		end = start + skb_frag_size(frag);
2498 		if ((copy = end - offset) > 0) {
2499 			u32 p_off, p_len, copied;
2500 			struct page *p;
2501 			__wsum csum2;
2502 			u8 *vaddr;
2503 
2504 			if (copy > len)
2505 				copy = len;
2506 
2507 			skb_frag_foreach_page(frag,
2508 					      frag->page_offset + offset - start,
2509 					      copy, p, p_off, p_len, copied) {
2510 				vaddr = kmap_atomic(p);
2511 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2512 				kunmap_atomic(vaddr);
2513 				csum = ops->combine(csum, csum2, pos, p_len);
2514 				pos += p_len;
2515 			}
2516 
2517 			if (!(len -= copy))
2518 				return csum;
2519 			offset += copy;
2520 		}
2521 		start = end;
2522 	}
2523 
2524 	skb_walk_frags(skb, frag_iter) {
2525 		int end;
2526 
2527 		WARN_ON(start > offset + len);
2528 
2529 		end = start + frag_iter->len;
2530 		if ((copy = end - offset) > 0) {
2531 			__wsum csum2;
2532 			if (copy > len)
2533 				copy = len;
2534 			csum2 = __skb_checksum(frag_iter, offset - start,
2535 					       copy, 0, ops);
2536 			csum = ops->combine(csum, csum2, pos, copy);
2537 			if ((len -= copy) == 0)
2538 				return csum;
2539 			offset += copy;
2540 			pos    += copy;
2541 		}
2542 		start = end;
2543 	}
2544 	BUG_ON(len);
2545 
2546 	return csum;
2547 }
2548 EXPORT_SYMBOL(__skb_checksum);
2549 
2550 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2551 		    int len, __wsum csum)
2552 {
2553 	const struct skb_checksum_ops ops = {
2554 		.update  = csum_partial_ext,
2555 		.combine = csum_block_add_ext,
2556 	};
2557 
2558 	return __skb_checksum(skb, offset, len, csum, &ops);
2559 }
2560 EXPORT_SYMBOL(skb_checksum);
2561 
2562 /* Both of above in one bottle. */
2563 
2564 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2565 				    u8 *to, int len, __wsum csum)
2566 {
2567 	int start = skb_headlen(skb);
2568 	int i, copy = start - offset;
2569 	struct sk_buff *frag_iter;
2570 	int pos = 0;
2571 
2572 	/* Copy header. */
2573 	if (copy > 0) {
2574 		if (copy > len)
2575 			copy = len;
2576 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2577 						 copy, csum);
2578 		if ((len -= copy) == 0)
2579 			return csum;
2580 		offset += copy;
2581 		to     += copy;
2582 		pos	= copy;
2583 	}
2584 
2585 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2586 		int end;
2587 
2588 		WARN_ON(start > offset + len);
2589 
2590 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2591 		if ((copy = end - offset) > 0) {
2592 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2593 			u32 p_off, p_len, copied;
2594 			struct page *p;
2595 			__wsum csum2;
2596 			u8 *vaddr;
2597 
2598 			if (copy > len)
2599 				copy = len;
2600 
2601 			skb_frag_foreach_page(frag,
2602 					      frag->page_offset + offset - start,
2603 					      copy, p, p_off, p_len, copied) {
2604 				vaddr = kmap_atomic(p);
2605 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2606 								  to + copied,
2607 								  p_len, 0);
2608 				kunmap_atomic(vaddr);
2609 				csum = csum_block_add(csum, csum2, pos);
2610 				pos += p_len;
2611 			}
2612 
2613 			if (!(len -= copy))
2614 				return csum;
2615 			offset += copy;
2616 			to     += copy;
2617 		}
2618 		start = end;
2619 	}
2620 
2621 	skb_walk_frags(skb, frag_iter) {
2622 		__wsum csum2;
2623 		int end;
2624 
2625 		WARN_ON(start > offset + len);
2626 
2627 		end = start + frag_iter->len;
2628 		if ((copy = end - offset) > 0) {
2629 			if (copy > len)
2630 				copy = len;
2631 			csum2 = skb_copy_and_csum_bits(frag_iter,
2632 						       offset - start,
2633 						       to, copy, 0);
2634 			csum = csum_block_add(csum, csum2, pos);
2635 			if ((len -= copy) == 0)
2636 				return csum;
2637 			offset += copy;
2638 			to     += copy;
2639 			pos    += copy;
2640 		}
2641 		start = end;
2642 	}
2643 	BUG_ON(len);
2644 	return csum;
2645 }
2646 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2647 
2648 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2649 {
2650 	__sum16 sum;
2651 
2652 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2653 	if (likely(!sum)) {
2654 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2655 		    !skb->csum_complete_sw)
2656 			netdev_rx_csum_fault(skb->dev);
2657 	}
2658 	if (!skb_shared(skb))
2659 		skb->csum_valid = !sum;
2660 	return sum;
2661 }
2662 EXPORT_SYMBOL(__skb_checksum_complete_head);
2663 
2664 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2665 {
2666 	__wsum csum;
2667 	__sum16 sum;
2668 
2669 	csum = skb_checksum(skb, 0, skb->len, 0);
2670 
2671 	/* skb->csum holds pseudo checksum */
2672 	sum = csum_fold(csum_add(skb->csum, csum));
2673 	if (likely(!sum)) {
2674 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2675 		    !skb->csum_complete_sw)
2676 			netdev_rx_csum_fault(skb->dev);
2677 	}
2678 
2679 	if (!skb_shared(skb)) {
2680 		/* Save full packet checksum */
2681 		skb->csum = csum;
2682 		skb->ip_summed = CHECKSUM_COMPLETE;
2683 		skb->csum_complete_sw = 1;
2684 		skb->csum_valid = !sum;
2685 	}
2686 
2687 	return sum;
2688 }
2689 EXPORT_SYMBOL(__skb_checksum_complete);
2690 
2691 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2692 {
2693 	net_warn_ratelimited(
2694 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2695 		__func__);
2696 	return 0;
2697 }
2698 
2699 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2700 				       int offset, int len)
2701 {
2702 	net_warn_ratelimited(
2703 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2704 		__func__);
2705 	return 0;
2706 }
2707 
2708 static const struct skb_checksum_ops default_crc32c_ops = {
2709 	.update  = warn_crc32c_csum_update,
2710 	.combine = warn_crc32c_csum_combine,
2711 };
2712 
2713 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2714 	&default_crc32c_ops;
2715 EXPORT_SYMBOL(crc32c_csum_stub);
2716 
2717  /**
2718  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2719  *	@from: source buffer
2720  *
2721  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2722  *	into skb_zerocopy().
2723  */
2724 unsigned int
2725 skb_zerocopy_headlen(const struct sk_buff *from)
2726 {
2727 	unsigned int hlen = 0;
2728 
2729 	if (!from->head_frag ||
2730 	    skb_headlen(from) < L1_CACHE_BYTES ||
2731 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2732 		hlen = skb_headlen(from);
2733 
2734 	if (skb_has_frag_list(from))
2735 		hlen = from->len;
2736 
2737 	return hlen;
2738 }
2739 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2740 
2741 /**
2742  *	skb_zerocopy - Zero copy skb to skb
2743  *	@to: destination buffer
2744  *	@from: source buffer
2745  *	@len: number of bytes to copy from source buffer
2746  *	@hlen: size of linear headroom in destination buffer
2747  *
2748  *	Copies up to `len` bytes from `from` to `to` by creating references
2749  *	to the frags in the source buffer.
2750  *
2751  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2752  *	headroom in the `to` buffer.
2753  *
2754  *	Return value:
2755  *	0: everything is OK
2756  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2757  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2758  */
2759 int
2760 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2761 {
2762 	int i, j = 0;
2763 	int plen = 0; /* length of skb->head fragment */
2764 	int ret;
2765 	struct page *page;
2766 	unsigned int offset;
2767 
2768 	BUG_ON(!from->head_frag && !hlen);
2769 
2770 	/* dont bother with small payloads */
2771 	if (len <= skb_tailroom(to))
2772 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2773 
2774 	if (hlen) {
2775 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2776 		if (unlikely(ret))
2777 			return ret;
2778 		len -= hlen;
2779 	} else {
2780 		plen = min_t(int, skb_headlen(from), len);
2781 		if (plen) {
2782 			page = virt_to_head_page(from->head);
2783 			offset = from->data - (unsigned char *)page_address(page);
2784 			__skb_fill_page_desc(to, 0, page, offset, plen);
2785 			get_page(page);
2786 			j = 1;
2787 			len -= plen;
2788 		}
2789 	}
2790 
2791 	to->truesize += len + plen;
2792 	to->len += len + plen;
2793 	to->data_len += len + plen;
2794 
2795 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2796 		skb_tx_error(from);
2797 		return -ENOMEM;
2798 	}
2799 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2800 
2801 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2802 		if (!len)
2803 			break;
2804 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2805 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2806 		len -= skb_shinfo(to)->frags[j].size;
2807 		skb_frag_ref(to, j);
2808 		j++;
2809 	}
2810 	skb_shinfo(to)->nr_frags = j;
2811 
2812 	return 0;
2813 }
2814 EXPORT_SYMBOL_GPL(skb_zerocopy);
2815 
2816 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2817 {
2818 	__wsum csum;
2819 	long csstart;
2820 
2821 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2822 		csstart = skb_checksum_start_offset(skb);
2823 	else
2824 		csstart = skb_headlen(skb);
2825 
2826 	BUG_ON(csstart > skb_headlen(skb));
2827 
2828 	skb_copy_from_linear_data(skb, to, csstart);
2829 
2830 	csum = 0;
2831 	if (csstart != skb->len)
2832 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2833 					      skb->len - csstart, 0);
2834 
2835 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2836 		long csstuff = csstart + skb->csum_offset;
2837 
2838 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2839 	}
2840 }
2841 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2842 
2843 /**
2844  *	skb_dequeue - remove from the head of the queue
2845  *	@list: list to dequeue from
2846  *
2847  *	Remove the head of the list. The list lock is taken so the function
2848  *	may be used safely with other locking list functions. The head item is
2849  *	returned or %NULL if the list is empty.
2850  */
2851 
2852 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2853 {
2854 	unsigned long flags;
2855 	struct sk_buff *result;
2856 
2857 	spin_lock_irqsave(&list->lock, flags);
2858 	result = __skb_dequeue(list);
2859 	spin_unlock_irqrestore(&list->lock, flags);
2860 	return result;
2861 }
2862 EXPORT_SYMBOL(skb_dequeue);
2863 
2864 /**
2865  *	skb_dequeue_tail - remove from the tail of the queue
2866  *	@list: list to dequeue from
2867  *
2868  *	Remove the tail of the list. The list lock is taken so the function
2869  *	may be used safely with other locking list functions. The tail item is
2870  *	returned or %NULL if the list is empty.
2871  */
2872 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2873 {
2874 	unsigned long flags;
2875 	struct sk_buff *result;
2876 
2877 	spin_lock_irqsave(&list->lock, flags);
2878 	result = __skb_dequeue_tail(list);
2879 	spin_unlock_irqrestore(&list->lock, flags);
2880 	return result;
2881 }
2882 EXPORT_SYMBOL(skb_dequeue_tail);
2883 
2884 /**
2885  *	skb_queue_purge - empty a list
2886  *	@list: list to empty
2887  *
2888  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2889  *	the list and one reference dropped. This function takes the list
2890  *	lock and is atomic with respect to other list locking functions.
2891  */
2892 void skb_queue_purge(struct sk_buff_head *list)
2893 {
2894 	struct sk_buff *skb;
2895 	while ((skb = skb_dequeue(list)) != NULL)
2896 		kfree_skb(skb);
2897 }
2898 EXPORT_SYMBOL(skb_queue_purge);
2899 
2900 /**
2901  *	skb_rbtree_purge - empty a skb rbtree
2902  *	@root: root of the rbtree to empty
2903  *	Return value: the sum of truesizes of all purged skbs.
2904  *
2905  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2906  *	the list and one reference dropped. This function does not take
2907  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2908  *	out-of-order queue is protected by the socket lock).
2909  */
2910 unsigned int skb_rbtree_purge(struct rb_root *root)
2911 {
2912 	struct rb_node *p = rb_first(root);
2913 	unsigned int sum = 0;
2914 
2915 	while (p) {
2916 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2917 
2918 		p = rb_next(p);
2919 		rb_erase(&skb->rbnode, root);
2920 		sum += skb->truesize;
2921 		kfree_skb(skb);
2922 	}
2923 	return sum;
2924 }
2925 
2926 /**
2927  *	skb_queue_head - queue a buffer at the list head
2928  *	@list: list to use
2929  *	@newsk: buffer to queue
2930  *
2931  *	Queue a buffer at the start of the list. This function takes the
2932  *	list lock and can be used safely with other locking &sk_buff functions
2933  *	safely.
2934  *
2935  *	A buffer cannot be placed on two lists at the same time.
2936  */
2937 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2938 {
2939 	unsigned long flags;
2940 
2941 	spin_lock_irqsave(&list->lock, flags);
2942 	__skb_queue_head(list, newsk);
2943 	spin_unlock_irqrestore(&list->lock, flags);
2944 }
2945 EXPORT_SYMBOL(skb_queue_head);
2946 
2947 /**
2948  *	skb_queue_tail - queue a buffer at the list tail
2949  *	@list: list to use
2950  *	@newsk: buffer to queue
2951  *
2952  *	Queue a buffer at the tail of the list. This function takes the
2953  *	list lock and can be used safely with other locking &sk_buff functions
2954  *	safely.
2955  *
2956  *	A buffer cannot be placed on two lists at the same time.
2957  */
2958 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2959 {
2960 	unsigned long flags;
2961 
2962 	spin_lock_irqsave(&list->lock, flags);
2963 	__skb_queue_tail(list, newsk);
2964 	spin_unlock_irqrestore(&list->lock, flags);
2965 }
2966 EXPORT_SYMBOL(skb_queue_tail);
2967 
2968 /**
2969  *	skb_unlink	-	remove a buffer from a list
2970  *	@skb: buffer to remove
2971  *	@list: list to use
2972  *
2973  *	Remove a packet from a list. The list locks are taken and this
2974  *	function is atomic with respect to other list locked calls
2975  *
2976  *	You must know what list the SKB is on.
2977  */
2978 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2979 {
2980 	unsigned long flags;
2981 
2982 	spin_lock_irqsave(&list->lock, flags);
2983 	__skb_unlink(skb, list);
2984 	spin_unlock_irqrestore(&list->lock, flags);
2985 }
2986 EXPORT_SYMBOL(skb_unlink);
2987 
2988 /**
2989  *	skb_append	-	append a buffer
2990  *	@old: buffer to insert after
2991  *	@newsk: buffer to insert
2992  *	@list: list to use
2993  *
2994  *	Place a packet after a given packet in a list. The list locks are taken
2995  *	and this function is atomic with respect to other list locked calls.
2996  *	A buffer cannot be placed on two lists at the same time.
2997  */
2998 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2999 {
3000 	unsigned long flags;
3001 
3002 	spin_lock_irqsave(&list->lock, flags);
3003 	__skb_queue_after(list, old, newsk);
3004 	spin_unlock_irqrestore(&list->lock, flags);
3005 }
3006 EXPORT_SYMBOL(skb_append);
3007 
3008 /**
3009  *	skb_insert	-	insert a buffer
3010  *	@old: buffer to insert before
3011  *	@newsk: buffer to insert
3012  *	@list: list to use
3013  *
3014  *	Place a packet before a given packet in a list. The list locks are
3015  * 	taken and this function is atomic with respect to other list locked
3016  *	calls.
3017  *
3018  *	A buffer cannot be placed on two lists at the same time.
3019  */
3020 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3021 {
3022 	unsigned long flags;
3023 
3024 	spin_lock_irqsave(&list->lock, flags);
3025 	__skb_insert(newsk, old->prev, old, list);
3026 	spin_unlock_irqrestore(&list->lock, flags);
3027 }
3028 EXPORT_SYMBOL(skb_insert);
3029 
3030 static inline void skb_split_inside_header(struct sk_buff *skb,
3031 					   struct sk_buff* skb1,
3032 					   const u32 len, const int pos)
3033 {
3034 	int i;
3035 
3036 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3037 					 pos - len);
3038 	/* And move data appendix as is. */
3039 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3040 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3041 
3042 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3043 	skb_shinfo(skb)->nr_frags  = 0;
3044 	skb1->data_len		   = skb->data_len;
3045 	skb1->len		   += skb1->data_len;
3046 	skb->data_len		   = 0;
3047 	skb->len		   = len;
3048 	skb_set_tail_pointer(skb, len);
3049 }
3050 
3051 static inline void skb_split_no_header(struct sk_buff *skb,
3052 				       struct sk_buff* skb1,
3053 				       const u32 len, int pos)
3054 {
3055 	int i, k = 0;
3056 	const int nfrags = skb_shinfo(skb)->nr_frags;
3057 
3058 	skb_shinfo(skb)->nr_frags = 0;
3059 	skb1->len		  = skb1->data_len = skb->len - len;
3060 	skb->len		  = len;
3061 	skb->data_len		  = len - pos;
3062 
3063 	for (i = 0; i < nfrags; i++) {
3064 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3065 
3066 		if (pos + size > len) {
3067 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3068 
3069 			if (pos < len) {
3070 				/* Split frag.
3071 				 * We have two variants in this case:
3072 				 * 1. Move all the frag to the second
3073 				 *    part, if it is possible. F.e.
3074 				 *    this approach is mandatory for TUX,
3075 				 *    where splitting is expensive.
3076 				 * 2. Split is accurately. We make this.
3077 				 */
3078 				skb_frag_ref(skb, i);
3079 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3080 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3081 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3082 				skb_shinfo(skb)->nr_frags++;
3083 			}
3084 			k++;
3085 		} else
3086 			skb_shinfo(skb)->nr_frags++;
3087 		pos += size;
3088 	}
3089 	skb_shinfo(skb1)->nr_frags = k;
3090 }
3091 
3092 /**
3093  * skb_split - Split fragmented skb to two parts at length len.
3094  * @skb: the buffer to split
3095  * @skb1: the buffer to receive the second part
3096  * @len: new length for skb
3097  */
3098 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3099 {
3100 	int pos = skb_headlen(skb);
3101 
3102 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3103 				      SKBTX_SHARED_FRAG;
3104 	skb_zerocopy_clone(skb1, skb, 0);
3105 	if (len < pos)	/* Split line is inside header. */
3106 		skb_split_inside_header(skb, skb1, len, pos);
3107 	else		/* Second chunk has no header, nothing to copy. */
3108 		skb_split_no_header(skb, skb1, len, pos);
3109 }
3110 EXPORT_SYMBOL(skb_split);
3111 
3112 /* Shifting from/to a cloned skb is a no-go.
3113  *
3114  * Caller cannot keep skb_shinfo related pointers past calling here!
3115  */
3116 static int skb_prepare_for_shift(struct sk_buff *skb)
3117 {
3118 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3119 }
3120 
3121 /**
3122  * skb_shift - Shifts paged data partially from skb to another
3123  * @tgt: buffer into which tail data gets added
3124  * @skb: buffer from which the paged data comes from
3125  * @shiftlen: shift up to this many bytes
3126  *
3127  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3128  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3129  * It's up to caller to free skb if everything was shifted.
3130  *
3131  * If @tgt runs out of frags, the whole operation is aborted.
3132  *
3133  * Skb cannot include anything else but paged data while tgt is allowed
3134  * to have non-paged data as well.
3135  *
3136  * TODO: full sized shift could be optimized but that would need
3137  * specialized skb free'er to handle frags without up-to-date nr_frags.
3138  */
3139 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3140 {
3141 	int from, to, merge, todo;
3142 	struct skb_frag_struct *fragfrom, *fragto;
3143 
3144 	BUG_ON(shiftlen > skb->len);
3145 
3146 	if (skb_headlen(skb))
3147 		return 0;
3148 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3149 		return 0;
3150 
3151 	todo = shiftlen;
3152 	from = 0;
3153 	to = skb_shinfo(tgt)->nr_frags;
3154 	fragfrom = &skb_shinfo(skb)->frags[from];
3155 
3156 	/* Actual merge is delayed until the point when we know we can
3157 	 * commit all, so that we don't have to undo partial changes
3158 	 */
3159 	if (!to ||
3160 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3161 			      fragfrom->page_offset)) {
3162 		merge = -1;
3163 	} else {
3164 		merge = to - 1;
3165 
3166 		todo -= skb_frag_size(fragfrom);
3167 		if (todo < 0) {
3168 			if (skb_prepare_for_shift(skb) ||
3169 			    skb_prepare_for_shift(tgt))
3170 				return 0;
3171 
3172 			/* All previous frag pointers might be stale! */
3173 			fragfrom = &skb_shinfo(skb)->frags[from];
3174 			fragto = &skb_shinfo(tgt)->frags[merge];
3175 
3176 			skb_frag_size_add(fragto, shiftlen);
3177 			skb_frag_size_sub(fragfrom, shiftlen);
3178 			fragfrom->page_offset += shiftlen;
3179 
3180 			goto onlymerged;
3181 		}
3182 
3183 		from++;
3184 	}
3185 
3186 	/* Skip full, not-fitting skb to avoid expensive operations */
3187 	if ((shiftlen == skb->len) &&
3188 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3189 		return 0;
3190 
3191 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3192 		return 0;
3193 
3194 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3195 		if (to == MAX_SKB_FRAGS)
3196 			return 0;
3197 
3198 		fragfrom = &skb_shinfo(skb)->frags[from];
3199 		fragto = &skb_shinfo(tgt)->frags[to];
3200 
3201 		if (todo >= skb_frag_size(fragfrom)) {
3202 			*fragto = *fragfrom;
3203 			todo -= skb_frag_size(fragfrom);
3204 			from++;
3205 			to++;
3206 
3207 		} else {
3208 			__skb_frag_ref(fragfrom);
3209 			fragto->page = fragfrom->page;
3210 			fragto->page_offset = fragfrom->page_offset;
3211 			skb_frag_size_set(fragto, todo);
3212 
3213 			fragfrom->page_offset += todo;
3214 			skb_frag_size_sub(fragfrom, todo);
3215 			todo = 0;
3216 
3217 			to++;
3218 			break;
3219 		}
3220 	}
3221 
3222 	/* Ready to "commit" this state change to tgt */
3223 	skb_shinfo(tgt)->nr_frags = to;
3224 
3225 	if (merge >= 0) {
3226 		fragfrom = &skb_shinfo(skb)->frags[0];
3227 		fragto = &skb_shinfo(tgt)->frags[merge];
3228 
3229 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3230 		__skb_frag_unref(fragfrom);
3231 	}
3232 
3233 	/* Reposition in the original skb */
3234 	to = 0;
3235 	while (from < skb_shinfo(skb)->nr_frags)
3236 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3237 	skb_shinfo(skb)->nr_frags = to;
3238 
3239 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3240 
3241 onlymerged:
3242 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3243 	 * the other hand might need it if it needs to be resent
3244 	 */
3245 	tgt->ip_summed = CHECKSUM_PARTIAL;
3246 	skb->ip_summed = CHECKSUM_PARTIAL;
3247 
3248 	/* Yak, is it really working this way? Some helper please? */
3249 	skb->len -= shiftlen;
3250 	skb->data_len -= shiftlen;
3251 	skb->truesize -= shiftlen;
3252 	tgt->len += shiftlen;
3253 	tgt->data_len += shiftlen;
3254 	tgt->truesize += shiftlen;
3255 
3256 	return shiftlen;
3257 }
3258 
3259 /**
3260  * skb_prepare_seq_read - Prepare a sequential read of skb data
3261  * @skb: the buffer to read
3262  * @from: lower offset of data to be read
3263  * @to: upper offset of data to be read
3264  * @st: state variable
3265  *
3266  * Initializes the specified state variable. Must be called before
3267  * invoking skb_seq_read() for the first time.
3268  */
3269 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3270 			  unsigned int to, struct skb_seq_state *st)
3271 {
3272 	st->lower_offset = from;
3273 	st->upper_offset = to;
3274 	st->root_skb = st->cur_skb = skb;
3275 	st->frag_idx = st->stepped_offset = 0;
3276 	st->frag_data = NULL;
3277 }
3278 EXPORT_SYMBOL(skb_prepare_seq_read);
3279 
3280 /**
3281  * skb_seq_read - Sequentially read skb data
3282  * @consumed: number of bytes consumed by the caller so far
3283  * @data: destination pointer for data to be returned
3284  * @st: state variable
3285  *
3286  * Reads a block of skb data at @consumed relative to the
3287  * lower offset specified to skb_prepare_seq_read(). Assigns
3288  * the head of the data block to @data and returns the length
3289  * of the block or 0 if the end of the skb data or the upper
3290  * offset has been reached.
3291  *
3292  * The caller is not required to consume all of the data
3293  * returned, i.e. @consumed is typically set to the number
3294  * of bytes already consumed and the next call to
3295  * skb_seq_read() will return the remaining part of the block.
3296  *
3297  * Note 1: The size of each block of data returned can be arbitrary,
3298  *       this limitation is the cost for zerocopy sequential
3299  *       reads of potentially non linear data.
3300  *
3301  * Note 2: Fragment lists within fragments are not implemented
3302  *       at the moment, state->root_skb could be replaced with
3303  *       a stack for this purpose.
3304  */
3305 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3306 			  struct skb_seq_state *st)
3307 {
3308 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3309 	skb_frag_t *frag;
3310 
3311 	if (unlikely(abs_offset >= st->upper_offset)) {
3312 		if (st->frag_data) {
3313 			kunmap_atomic(st->frag_data);
3314 			st->frag_data = NULL;
3315 		}
3316 		return 0;
3317 	}
3318 
3319 next_skb:
3320 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3321 
3322 	if (abs_offset < block_limit && !st->frag_data) {
3323 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3324 		return block_limit - abs_offset;
3325 	}
3326 
3327 	if (st->frag_idx == 0 && !st->frag_data)
3328 		st->stepped_offset += skb_headlen(st->cur_skb);
3329 
3330 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3331 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3332 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3333 
3334 		if (abs_offset < block_limit) {
3335 			if (!st->frag_data)
3336 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3337 
3338 			*data = (u8 *) st->frag_data + frag->page_offset +
3339 				(abs_offset - st->stepped_offset);
3340 
3341 			return block_limit - abs_offset;
3342 		}
3343 
3344 		if (st->frag_data) {
3345 			kunmap_atomic(st->frag_data);
3346 			st->frag_data = NULL;
3347 		}
3348 
3349 		st->frag_idx++;
3350 		st->stepped_offset += skb_frag_size(frag);
3351 	}
3352 
3353 	if (st->frag_data) {
3354 		kunmap_atomic(st->frag_data);
3355 		st->frag_data = NULL;
3356 	}
3357 
3358 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3359 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3360 		st->frag_idx = 0;
3361 		goto next_skb;
3362 	} else if (st->cur_skb->next) {
3363 		st->cur_skb = st->cur_skb->next;
3364 		st->frag_idx = 0;
3365 		goto next_skb;
3366 	}
3367 
3368 	return 0;
3369 }
3370 EXPORT_SYMBOL(skb_seq_read);
3371 
3372 /**
3373  * skb_abort_seq_read - Abort a sequential read of skb data
3374  * @st: state variable
3375  *
3376  * Must be called if skb_seq_read() was not called until it
3377  * returned 0.
3378  */
3379 void skb_abort_seq_read(struct skb_seq_state *st)
3380 {
3381 	if (st->frag_data)
3382 		kunmap_atomic(st->frag_data);
3383 }
3384 EXPORT_SYMBOL(skb_abort_seq_read);
3385 
3386 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3387 
3388 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3389 					  struct ts_config *conf,
3390 					  struct ts_state *state)
3391 {
3392 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3393 }
3394 
3395 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3396 {
3397 	skb_abort_seq_read(TS_SKB_CB(state));
3398 }
3399 
3400 /**
3401  * skb_find_text - Find a text pattern in skb data
3402  * @skb: the buffer to look in
3403  * @from: search offset
3404  * @to: search limit
3405  * @config: textsearch configuration
3406  *
3407  * Finds a pattern in the skb data according to the specified
3408  * textsearch configuration. Use textsearch_next() to retrieve
3409  * subsequent occurrences of the pattern. Returns the offset
3410  * to the first occurrence or UINT_MAX if no match was found.
3411  */
3412 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3413 			   unsigned int to, struct ts_config *config)
3414 {
3415 	struct ts_state state;
3416 	unsigned int ret;
3417 
3418 	config->get_next_block = skb_ts_get_next_block;
3419 	config->finish = skb_ts_finish;
3420 
3421 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3422 
3423 	ret = textsearch_find(config, &state);
3424 	return (ret <= to - from ? ret : UINT_MAX);
3425 }
3426 EXPORT_SYMBOL(skb_find_text);
3427 
3428 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3429 			 int offset, size_t size)
3430 {
3431 	int i = skb_shinfo(skb)->nr_frags;
3432 
3433 	if (skb_can_coalesce(skb, i, page, offset)) {
3434 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3435 	} else if (i < MAX_SKB_FRAGS) {
3436 		get_page(page);
3437 		skb_fill_page_desc(skb, i, page, offset, size);
3438 	} else {
3439 		return -EMSGSIZE;
3440 	}
3441 
3442 	return 0;
3443 }
3444 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3445 
3446 /**
3447  *	skb_pull_rcsum - pull skb and update receive checksum
3448  *	@skb: buffer to update
3449  *	@len: length of data pulled
3450  *
3451  *	This function performs an skb_pull on the packet and updates
3452  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3453  *	receive path processing instead of skb_pull unless you know
3454  *	that the checksum difference is zero (e.g., a valid IP header)
3455  *	or you are setting ip_summed to CHECKSUM_NONE.
3456  */
3457 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3458 {
3459 	unsigned char *data = skb->data;
3460 
3461 	BUG_ON(len > skb->len);
3462 	__skb_pull(skb, len);
3463 	skb_postpull_rcsum(skb, data, len);
3464 	return skb->data;
3465 }
3466 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3467 
3468 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3469 {
3470 	skb_frag_t head_frag;
3471 	struct page *page;
3472 
3473 	page = virt_to_head_page(frag_skb->head);
3474 	head_frag.page.p = page;
3475 	head_frag.page_offset = frag_skb->data -
3476 		(unsigned char *)page_address(page);
3477 	head_frag.size = skb_headlen(frag_skb);
3478 	return head_frag;
3479 }
3480 
3481 /**
3482  *	skb_segment - Perform protocol segmentation on skb.
3483  *	@head_skb: buffer to segment
3484  *	@features: features for the output path (see dev->features)
3485  *
3486  *	This function performs segmentation on the given skb.  It returns
3487  *	a pointer to the first in a list of new skbs for the segments.
3488  *	In case of error it returns ERR_PTR(err).
3489  */
3490 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3491 			    netdev_features_t features)
3492 {
3493 	struct sk_buff *segs = NULL;
3494 	struct sk_buff *tail = NULL;
3495 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3496 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3497 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3498 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3499 	struct sk_buff *frag_skb = head_skb;
3500 	unsigned int offset = doffset;
3501 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3502 	unsigned int partial_segs = 0;
3503 	unsigned int headroom;
3504 	unsigned int len = head_skb->len;
3505 	__be16 proto;
3506 	bool csum, sg;
3507 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3508 	int err = -ENOMEM;
3509 	int i = 0;
3510 	int pos;
3511 	int dummy;
3512 
3513 	__skb_push(head_skb, doffset);
3514 	proto = skb_network_protocol(head_skb, &dummy);
3515 	if (unlikely(!proto))
3516 		return ERR_PTR(-EINVAL);
3517 
3518 	sg = !!(features & NETIF_F_SG);
3519 	csum = !!can_checksum_protocol(features, proto);
3520 
3521 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3522 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3523 			struct sk_buff *iter;
3524 			unsigned int frag_len;
3525 
3526 			if (!list_skb ||
3527 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3528 				goto normal;
3529 
3530 			/* If we get here then all the required
3531 			 * GSO features except frag_list are supported.
3532 			 * Try to split the SKB to multiple GSO SKBs
3533 			 * with no frag_list.
3534 			 * Currently we can do that only when the buffers don't
3535 			 * have a linear part and all the buffers except
3536 			 * the last are of the same length.
3537 			 */
3538 			frag_len = list_skb->len;
3539 			skb_walk_frags(head_skb, iter) {
3540 				if (frag_len != iter->len && iter->next)
3541 					goto normal;
3542 				if (skb_headlen(iter) && !iter->head_frag)
3543 					goto normal;
3544 
3545 				len -= iter->len;
3546 			}
3547 
3548 			if (len != frag_len)
3549 				goto normal;
3550 		}
3551 
3552 		/* GSO partial only requires that we trim off any excess that
3553 		 * doesn't fit into an MSS sized block, so take care of that
3554 		 * now.
3555 		 */
3556 		partial_segs = len / mss;
3557 		if (partial_segs > 1)
3558 			mss *= partial_segs;
3559 		else
3560 			partial_segs = 0;
3561 	}
3562 
3563 normal:
3564 	headroom = skb_headroom(head_skb);
3565 	pos = skb_headlen(head_skb);
3566 
3567 	do {
3568 		struct sk_buff *nskb;
3569 		skb_frag_t *nskb_frag;
3570 		int hsize;
3571 		int size;
3572 
3573 		if (unlikely(mss == GSO_BY_FRAGS)) {
3574 			len = list_skb->len;
3575 		} else {
3576 			len = head_skb->len - offset;
3577 			if (len > mss)
3578 				len = mss;
3579 		}
3580 
3581 		hsize = skb_headlen(head_skb) - offset;
3582 		if (hsize < 0)
3583 			hsize = 0;
3584 		if (hsize > len || !sg)
3585 			hsize = len;
3586 
3587 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3588 		    (skb_headlen(list_skb) == len || sg)) {
3589 			BUG_ON(skb_headlen(list_skb) > len);
3590 
3591 			i = 0;
3592 			nfrags = skb_shinfo(list_skb)->nr_frags;
3593 			frag = skb_shinfo(list_skb)->frags;
3594 			frag_skb = list_skb;
3595 			pos += skb_headlen(list_skb);
3596 
3597 			while (pos < offset + len) {
3598 				BUG_ON(i >= nfrags);
3599 
3600 				size = skb_frag_size(frag);
3601 				if (pos + size > offset + len)
3602 					break;
3603 
3604 				i++;
3605 				pos += size;
3606 				frag++;
3607 			}
3608 
3609 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3610 			list_skb = list_skb->next;
3611 
3612 			if (unlikely(!nskb))
3613 				goto err;
3614 
3615 			if (unlikely(pskb_trim(nskb, len))) {
3616 				kfree_skb(nskb);
3617 				goto err;
3618 			}
3619 
3620 			hsize = skb_end_offset(nskb);
3621 			if (skb_cow_head(nskb, doffset + headroom)) {
3622 				kfree_skb(nskb);
3623 				goto err;
3624 			}
3625 
3626 			nskb->truesize += skb_end_offset(nskb) - hsize;
3627 			skb_release_head_state(nskb);
3628 			__skb_push(nskb, doffset);
3629 		} else {
3630 			nskb = __alloc_skb(hsize + doffset + headroom,
3631 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3632 					   NUMA_NO_NODE);
3633 
3634 			if (unlikely(!nskb))
3635 				goto err;
3636 
3637 			skb_reserve(nskb, headroom);
3638 			__skb_put(nskb, doffset);
3639 		}
3640 
3641 		if (segs)
3642 			tail->next = nskb;
3643 		else
3644 			segs = nskb;
3645 		tail = nskb;
3646 
3647 		__copy_skb_header(nskb, head_skb);
3648 
3649 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3650 		skb_reset_mac_len(nskb);
3651 
3652 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3653 						 nskb->data - tnl_hlen,
3654 						 doffset + tnl_hlen);
3655 
3656 		if (nskb->len == len + doffset)
3657 			goto perform_csum_check;
3658 
3659 		if (!sg) {
3660 			if (!nskb->remcsum_offload)
3661 				nskb->ip_summed = CHECKSUM_NONE;
3662 			SKB_GSO_CB(nskb)->csum =
3663 				skb_copy_and_csum_bits(head_skb, offset,
3664 						       skb_put(nskb, len),
3665 						       len, 0);
3666 			SKB_GSO_CB(nskb)->csum_start =
3667 				skb_headroom(nskb) + doffset;
3668 			continue;
3669 		}
3670 
3671 		nskb_frag = skb_shinfo(nskb)->frags;
3672 
3673 		skb_copy_from_linear_data_offset(head_skb, offset,
3674 						 skb_put(nskb, hsize), hsize);
3675 
3676 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3677 					      SKBTX_SHARED_FRAG;
3678 
3679 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3680 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3681 			goto err;
3682 
3683 		while (pos < offset + len) {
3684 			if (i >= nfrags) {
3685 				i = 0;
3686 				nfrags = skb_shinfo(list_skb)->nr_frags;
3687 				frag = skb_shinfo(list_skb)->frags;
3688 				frag_skb = list_skb;
3689 				if (!skb_headlen(list_skb)) {
3690 					BUG_ON(!nfrags);
3691 				} else {
3692 					BUG_ON(!list_skb->head_frag);
3693 
3694 					/* to make room for head_frag. */
3695 					i--;
3696 					frag--;
3697 				}
3698 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3699 				    skb_zerocopy_clone(nskb, frag_skb,
3700 						       GFP_ATOMIC))
3701 					goto err;
3702 
3703 				list_skb = list_skb->next;
3704 			}
3705 
3706 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3707 				     MAX_SKB_FRAGS)) {
3708 				net_warn_ratelimited(
3709 					"skb_segment: too many frags: %u %u\n",
3710 					pos, mss);
3711 				err = -EINVAL;
3712 				goto err;
3713 			}
3714 
3715 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3716 			__skb_frag_ref(nskb_frag);
3717 			size = skb_frag_size(nskb_frag);
3718 
3719 			if (pos < offset) {
3720 				nskb_frag->page_offset += offset - pos;
3721 				skb_frag_size_sub(nskb_frag, offset - pos);
3722 			}
3723 
3724 			skb_shinfo(nskb)->nr_frags++;
3725 
3726 			if (pos + size <= offset + len) {
3727 				i++;
3728 				frag++;
3729 				pos += size;
3730 			} else {
3731 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3732 				goto skip_fraglist;
3733 			}
3734 
3735 			nskb_frag++;
3736 		}
3737 
3738 skip_fraglist:
3739 		nskb->data_len = len - hsize;
3740 		nskb->len += nskb->data_len;
3741 		nskb->truesize += nskb->data_len;
3742 
3743 perform_csum_check:
3744 		if (!csum) {
3745 			if (skb_has_shared_frag(nskb) &&
3746 			    __skb_linearize(nskb))
3747 				goto err;
3748 
3749 			if (!nskb->remcsum_offload)
3750 				nskb->ip_summed = CHECKSUM_NONE;
3751 			SKB_GSO_CB(nskb)->csum =
3752 				skb_checksum(nskb, doffset,
3753 					     nskb->len - doffset, 0);
3754 			SKB_GSO_CB(nskb)->csum_start =
3755 				skb_headroom(nskb) + doffset;
3756 		}
3757 	} while ((offset += len) < head_skb->len);
3758 
3759 	/* Some callers want to get the end of the list.
3760 	 * Put it in segs->prev to avoid walking the list.
3761 	 * (see validate_xmit_skb_list() for example)
3762 	 */
3763 	segs->prev = tail;
3764 
3765 	if (partial_segs) {
3766 		struct sk_buff *iter;
3767 		int type = skb_shinfo(head_skb)->gso_type;
3768 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3769 
3770 		/* Update type to add partial and then remove dodgy if set */
3771 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3772 		type &= ~SKB_GSO_DODGY;
3773 
3774 		/* Update GSO info and prepare to start updating headers on
3775 		 * our way back down the stack of protocols.
3776 		 */
3777 		for (iter = segs; iter; iter = iter->next) {
3778 			skb_shinfo(iter)->gso_size = gso_size;
3779 			skb_shinfo(iter)->gso_segs = partial_segs;
3780 			skb_shinfo(iter)->gso_type = type;
3781 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3782 		}
3783 
3784 		if (tail->len - doffset <= gso_size)
3785 			skb_shinfo(tail)->gso_size = 0;
3786 		else if (tail != segs)
3787 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3788 	}
3789 
3790 	/* Following permits correct backpressure, for protocols
3791 	 * using skb_set_owner_w().
3792 	 * Idea is to tranfert ownership from head_skb to last segment.
3793 	 */
3794 	if (head_skb->destructor == sock_wfree) {
3795 		swap(tail->truesize, head_skb->truesize);
3796 		swap(tail->destructor, head_skb->destructor);
3797 		swap(tail->sk, head_skb->sk);
3798 	}
3799 	return segs;
3800 
3801 err:
3802 	kfree_skb_list(segs);
3803 	return ERR_PTR(err);
3804 }
3805 EXPORT_SYMBOL_GPL(skb_segment);
3806 
3807 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3808 {
3809 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3810 	unsigned int offset = skb_gro_offset(skb);
3811 	unsigned int headlen = skb_headlen(skb);
3812 	unsigned int len = skb_gro_len(skb);
3813 	unsigned int delta_truesize;
3814 	struct sk_buff *lp;
3815 
3816 	if (unlikely(p->len + len >= 65536))
3817 		return -E2BIG;
3818 
3819 	lp = NAPI_GRO_CB(p)->last;
3820 	pinfo = skb_shinfo(lp);
3821 
3822 	if (headlen <= offset) {
3823 		skb_frag_t *frag;
3824 		skb_frag_t *frag2;
3825 		int i = skbinfo->nr_frags;
3826 		int nr_frags = pinfo->nr_frags + i;
3827 
3828 		if (nr_frags > MAX_SKB_FRAGS)
3829 			goto merge;
3830 
3831 		offset -= headlen;
3832 		pinfo->nr_frags = nr_frags;
3833 		skbinfo->nr_frags = 0;
3834 
3835 		frag = pinfo->frags + nr_frags;
3836 		frag2 = skbinfo->frags + i;
3837 		do {
3838 			*--frag = *--frag2;
3839 		} while (--i);
3840 
3841 		frag->page_offset += offset;
3842 		skb_frag_size_sub(frag, offset);
3843 
3844 		/* all fragments truesize : remove (head size + sk_buff) */
3845 		delta_truesize = skb->truesize -
3846 				 SKB_TRUESIZE(skb_end_offset(skb));
3847 
3848 		skb->truesize -= skb->data_len;
3849 		skb->len -= skb->data_len;
3850 		skb->data_len = 0;
3851 
3852 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3853 		goto done;
3854 	} else if (skb->head_frag) {
3855 		int nr_frags = pinfo->nr_frags;
3856 		skb_frag_t *frag = pinfo->frags + nr_frags;
3857 		struct page *page = virt_to_head_page(skb->head);
3858 		unsigned int first_size = headlen - offset;
3859 		unsigned int first_offset;
3860 
3861 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3862 			goto merge;
3863 
3864 		first_offset = skb->data -
3865 			       (unsigned char *)page_address(page) +
3866 			       offset;
3867 
3868 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3869 
3870 		frag->page.p	  = page;
3871 		frag->page_offset = first_offset;
3872 		skb_frag_size_set(frag, first_size);
3873 
3874 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3875 		/* We dont need to clear skbinfo->nr_frags here */
3876 
3877 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3878 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3879 		goto done;
3880 	}
3881 
3882 merge:
3883 	delta_truesize = skb->truesize;
3884 	if (offset > headlen) {
3885 		unsigned int eat = offset - headlen;
3886 
3887 		skbinfo->frags[0].page_offset += eat;
3888 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3889 		skb->data_len -= eat;
3890 		skb->len -= eat;
3891 		offset = headlen;
3892 	}
3893 
3894 	__skb_pull(skb, offset);
3895 
3896 	if (NAPI_GRO_CB(p)->last == p)
3897 		skb_shinfo(p)->frag_list = skb;
3898 	else
3899 		NAPI_GRO_CB(p)->last->next = skb;
3900 	NAPI_GRO_CB(p)->last = skb;
3901 	__skb_header_release(skb);
3902 	lp = p;
3903 
3904 done:
3905 	NAPI_GRO_CB(p)->count++;
3906 	p->data_len += len;
3907 	p->truesize += delta_truesize;
3908 	p->len += len;
3909 	if (lp != p) {
3910 		lp->data_len += len;
3911 		lp->truesize += delta_truesize;
3912 		lp->len += len;
3913 	}
3914 	NAPI_GRO_CB(skb)->same_flow = 1;
3915 	return 0;
3916 }
3917 EXPORT_SYMBOL_GPL(skb_gro_receive);
3918 
3919 void __init skb_init(void)
3920 {
3921 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3922 					      sizeof(struct sk_buff),
3923 					      0,
3924 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3925 					      offsetof(struct sk_buff, cb),
3926 					      sizeof_field(struct sk_buff, cb),
3927 					      NULL);
3928 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3929 						sizeof(struct sk_buff_fclones),
3930 						0,
3931 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3932 						NULL);
3933 }
3934 
3935 static int
3936 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3937 	       unsigned int recursion_level)
3938 {
3939 	int start = skb_headlen(skb);
3940 	int i, copy = start - offset;
3941 	struct sk_buff *frag_iter;
3942 	int elt = 0;
3943 
3944 	if (unlikely(recursion_level >= 24))
3945 		return -EMSGSIZE;
3946 
3947 	if (copy > 0) {
3948 		if (copy > len)
3949 			copy = len;
3950 		sg_set_buf(sg, skb->data + offset, copy);
3951 		elt++;
3952 		if ((len -= copy) == 0)
3953 			return elt;
3954 		offset += copy;
3955 	}
3956 
3957 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3958 		int end;
3959 
3960 		WARN_ON(start > offset + len);
3961 
3962 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3963 		if ((copy = end - offset) > 0) {
3964 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3965 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3966 				return -EMSGSIZE;
3967 
3968 			if (copy > len)
3969 				copy = len;
3970 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3971 					frag->page_offset+offset-start);
3972 			elt++;
3973 			if (!(len -= copy))
3974 				return elt;
3975 			offset += copy;
3976 		}
3977 		start = end;
3978 	}
3979 
3980 	skb_walk_frags(skb, frag_iter) {
3981 		int end, ret;
3982 
3983 		WARN_ON(start > offset + len);
3984 
3985 		end = start + frag_iter->len;
3986 		if ((copy = end - offset) > 0) {
3987 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3988 				return -EMSGSIZE;
3989 
3990 			if (copy > len)
3991 				copy = len;
3992 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3993 					      copy, recursion_level + 1);
3994 			if (unlikely(ret < 0))
3995 				return ret;
3996 			elt += ret;
3997 			if ((len -= copy) == 0)
3998 				return elt;
3999 			offset += copy;
4000 		}
4001 		start = end;
4002 	}
4003 	BUG_ON(len);
4004 	return elt;
4005 }
4006 
4007 /**
4008  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4009  *	@skb: Socket buffer containing the buffers to be mapped
4010  *	@sg: The scatter-gather list to map into
4011  *	@offset: The offset into the buffer's contents to start mapping
4012  *	@len: Length of buffer space to be mapped
4013  *
4014  *	Fill the specified scatter-gather list with mappings/pointers into a
4015  *	region of the buffer space attached to a socket buffer. Returns either
4016  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4017  *	could not fit.
4018  */
4019 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4020 {
4021 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4022 
4023 	if (nsg <= 0)
4024 		return nsg;
4025 
4026 	sg_mark_end(&sg[nsg - 1]);
4027 
4028 	return nsg;
4029 }
4030 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4031 
4032 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4033  * sglist without mark the sg which contain last skb data as the end.
4034  * So the caller can mannipulate sg list as will when padding new data after
4035  * the first call without calling sg_unmark_end to expend sg list.
4036  *
4037  * Scenario to use skb_to_sgvec_nomark:
4038  * 1. sg_init_table
4039  * 2. skb_to_sgvec_nomark(payload1)
4040  * 3. skb_to_sgvec_nomark(payload2)
4041  *
4042  * This is equivalent to:
4043  * 1. sg_init_table
4044  * 2. skb_to_sgvec(payload1)
4045  * 3. sg_unmark_end
4046  * 4. skb_to_sgvec(payload2)
4047  *
4048  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4049  * is more preferable.
4050  */
4051 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4052 			int offset, int len)
4053 {
4054 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4055 }
4056 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4057 
4058 
4059 
4060 /**
4061  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4062  *	@skb: The socket buffer to check.
4063  *	@tailbits: Amount of trailing space to be added
4064  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4065  *
4066  *	Make sure that the data buffers attached to a socket buffer are
4067  *	writable. If they are not, private copies are made of the data buffers
4068  *	and the socket buffer is set to use these instead.
4069  *
4070  *	If @tailbits is given, make sure that there is space to write @tailbits
4071  *	bytes of data beyond current end of socket buffer.  @trailer will be
4072  *	set to point to the skb in which this space begins.
4073  *
4074  *	The number of scatterlist elements required to completely map the
4075  *	COW'd and extended socket buffer will be returned.
4076  */
4077 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4078 {
4079 	int copyflag;
4080 	int elt;
4081 	struct sk_buff *skb1, **skb_p;
4082 
4083 	/* If skb is cloned or its head is paged, reallocate
4084 	 * head pulling out all the pages (pages are considered not writable
4085 	 * at the moment even if they are anonymous).
4086 	 */
4087 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4088 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4089 		return -ENOMEM;
4090 
4091 	/* Easy case. Most of packets will go this way. */
4092 	if (!skb_has_frag_list(skb)) {
4093 		/* A little of trouble, not enough of space for trailer.
4094 		 * This should not happen, when stack is tuned to generate
4095 		 * good frames. OK, on miss we reallocate and reserve even more
4096 		 * space, 128 bytes is fair. */
4097 
4098 		if (skb_tailroom(skb) < tailbits &&
4099 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4100 			return -ENOMEM;
4101 
4102 		/* Voila! */
4103 		*trailer = skb;
4104 		return 1;
4105 	}
4106 
4107 	/* Misery. We are in troubles, going to mincer fragments... */
4108 
4109 	elt = 1;
4110 	skb_p = &skb_shinfo(skb)->frag_list;
4111 	copyflag = 0;
4112 
4113 	while ((skb1 = *skb_p) != NULL) {
4114 		int ntail = 0;
4115 
4116 		/* The fragment is partially pulled by someone,
4117 		 * this can happen on input. Copy it and everything
4118 		 * after it. */
4119 
4120 		if (skb_shared(skb1))
4121 			copyflag = 1;
4122 
4123 		/* If the skb is the last, worry about trailer. */
4124 
4125 		if (skb1->next == NULL && tailbits) {
4126 			if (skb_shinfo(skb1)->nr_frags ||
4127 			    skb_has_frag_list(skb1) ||
4128 			    skb_tailroom(skb1) < tailbits)
4129 				ntail = tailbits + 128;
4130 		}
4131 
4132 		if (copyflag ||
4133 		    skb_cloned(skb1) ||
4134 		    ntail ||
4135 		    skb_shinfo(skb1)->nr_frags ||
4136 		    skb_has_frag_list(skb1)) {
4137 			struct sk_buff *skb2;
4138 
4139 			/* Fuck, we are miserable poor guys... */
4140 			if (ntail == 0)
4141 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4142 			else
4143 				skb2 = skb_copy_expand(skb1,
4144 						       skb_headroom(skb1),
4145 						       ntail,
4146 						       GFP_ATOMIC);
4147 			if (unlikely(skb2 == NULL))
4148 				return -ENOMEM;
4149 
4150 			if (skb1->sk)
4151 				skb_set_owner_w(skb2, skb1->sk);
4152 
4153 			/* Looking around. Are we still alive?
4154 			 * OK, link new skb, drop old one */
4155 
4156 			skb2->next = skb1->next;
4157 			*skb_p = skb2;
4158 			kfree_skb(skb1);
4159 			skb1 = skb2;
4160 		}
4161 		elt++;
4162 		*trailer = skb1;
4163 		skb_p = &skb1->next;
4164 	}
4165 
4166 	return elt;
4167 }
4168 EXPORT_SYMBOL_GPL(skb_cow_data);
4169 
4170 static void sock_rmem_free(struct sk_buff *skb)
4171 {
4172 	struct sock *sk = skb->sk;
4173 
4174 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4175 }
4176 
4177 static void skb_set_err_queue(struct sk_buff *skb)
4178 {
4179 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4180 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4181 	 */
4182 	skb->pkt_type = PACKET_OUTGOING;
4183 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4184 }
4185 
4186 /*
4187  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4188  */
4189 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4190 {
4191 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4192 	    (unsigned int)sk->sk_rcvbuf)
4193 		return -ENOMEM;
4194 
4195 	skb_orphan(skb);
4196 	skb->sk = sk;
4197 	skb->destructor = sock_rmem_free;
4198 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4199 	skb_set_err_queue(skb);
4200 
4201 	/* before exiting rcu section, make sure dst is refcounted */
4202 	skb_dst_force(skb);
4203 
4204 	skb_queue_tail(&sk->sk_error_queue, skb);
4205 	if (!sock_flag(sk, SOCK_DEAD))
4206 		sk->sk_error_report(sk);
4207 	return 0;
4208 }
4209 EXPORT_SYMBOL(sock_queue_err_skb);
4210 
4211 static bool is_icmp_err_skb(const struct sk_buff *skb)
4212 {
4213 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4214 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4215 }
4216 
4217 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4218 {
4219 	struct sk_buff_head *q = &sk->sk_error_queue;
4220 	struct sk_buff *skb, *skb_next = NULL;
4221 	bool icmp_next = false;
4222 	unsigned long flags;
4223 
4224 	spin_lock_irqsave(&q->lock, flags);
4225 	skb = __skb_dequeue(q);
4226 	if (skb && (skb_next = skb_peek(q))) {
4227 		icmp_next = is_icmp_err_skb(skb_next);
4228 		if (icmp_next)
4229 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4230 	}
4231 	spin_unlock_irqrestore(&q->lock, flags);
4232 
4233 	if (is_icmp_err_skb(skb) && !icmp_next)
4234 		sk->sk_err = 0;
4235 
4236 	if (skb_next)
4237 		sk->sk_error_report(sk);
4238 
4239 	return skb;
4240 }
4241 EXPORT_SYMBOL(sock_dequeue_err_skb);
4242 
4243 /**
4244  * skb_clone_sk - create clone of skb, and take reference to socket
4245  * @skb: the skb to clone
4246  *
4247  * This function creates a clone of a buffer that holds a reference on
4248  * sk_refcnt.  Buffers created via this function are meant to be
4249  * returned using sock_queue_err_skb, or free via kfree_skb.
4250  *
4251  * When passing buffers allocated with this function to sock_queue_err_skb
4252  * it is necessary to wrap the call with sock_hold/sock_put in order to
4253  * prevent the socket from being released prior to being enqueued on
4254  * the sk_error_queue.
4255  */
4256 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4257 {
4258 	struct sock *sk = skb->sk;
4259 	struct sk_buff *clone;
4260 
4261 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4262 		return NULL;
4263 
4264 	clone = skb_clone(skb, GFP_ATOMIC);
4265 	if (!clone) {
4266 		sock_put(sk);
4267 		return NULL;
4268 	}
4269 
4270 	clone->sk = sk;
4271 	clone->destructor = sock_efree;
4272 
4273 	return clone;
4274 }
4275 EXPORT_SYMBOL(skb_clone_sk);
4276 
4277 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4278 					struct sock *sk,
4279 					int tstype,
4280 					bool opt_stats)
4281 {
4282 	struct sock_exterr_skb *serr;
4283 	int err;
4284 
4285 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4286 
4287 	serr = SKB_EXT_ERR(skb);
4288 	memset(serr, 0, sizeof(*serr));
4289 	serr->ee.ee_errno = ENOMSG;
4290 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4291 	serr->ee.ee_info = tstype;
4292 	serr->opt_stats = opt_stats;
4293 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4294 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4295 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4296 		if (sk->sk_protocol == IPPROTO_TCP &&
4297 		    sk->sk_type == SOCK_STREAM)
4298 			serr->ee.ee_data -= sk->sk_tskey;
4299 	}
4300 
4301 	err = sock_queue_err_skb(sk, skb);
4302 
4303 	if (err)
4304 		kfree_skb(skb);
4305 }
4306 
4307 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4308 {
4309 	bool ret;
4310 
4311 	if (likely(sysctl_tstamp_allow_data || tsonly))
4312 		return true;
4313 
4314 	read_lock_bh(&sk->sk_callback_lock);
4315 	ret = sk->sk_socket && sk->sk_socket->file &&
4316 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4317 	read_unlock_bh(&sk->sk_callback_lock);
4318 	return ret;
4319 }
4320 
4321 void skb_complete_tx_timestamp(struct sk_buff *skb,
4322 			       struct skb_shared_hwtstamps *hwtstamps)
4323 {
4324 	struct sock *sk = skb->sk;
4325 
4326 	if (!skb_may_tx_timestamp(sk, false))
4327 		goto err;
4328 
4329 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4330 	 * but only if the socket refcount is not zero.
4331 	 */
4332 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4333 		*skb_hwtstamps(skb) = *hwtstamps;
4334 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4335 		sock_put(sk);
4336 		return;
4337 	}
4338 
4339 err:
4340 	kfree_skb(skb);
4341 }
4342 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4343 
4344 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4345 		     struct skb_shared_hwtstamps *hwtstamps,
4346 		     struct sock *sk, int tstype)
4347 {
4348 	struct sk_buff *skb;
4349 	bool tsonly, opt_stats = false;
4350 
4351 	if (!sk)
4352 		return;
4353 
4354 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4355 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4356 		return;
4357 
4358 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4359 	if (!skb_may_tx_timestamp(sk, tsonly))
4360 		return;
4361 
4362 	if (tsonly) {
4363 #ifdef CONFIG_INET
4364 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4365 		    sk->sk_protocol == IPPROTO_TCP &&
4366 		    sk->sk_type == SOCK_STREAM) {
4367 			skb = tcp_get_timestamping_opt_stats(sk);
4368 			opt_stats = true;
4369 		} else
4370 #endif
4371 			skb = alloc_skb(0, GFP_ATOMIC);
4372 	} else {
4373 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4374 	}
4375 	if (!skb)
4376 		return;
4377 
4378 	if (tsonly) {
4379 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4380 					     SKBTX_ANY_TSTAMP;
4381 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4382 	}
4383 
4384 	if (hwtstamps)
4385 		*skb_hwtstamps(skb) = *hwtstamps;
4386 	else
4387 		skb->tstamp = ktime_get_real();
4388 
4389 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4390 }
4391 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4392 
4393 void skb_tstamp_tx(struct sk_buff *orig_skb,
4394 		   struct skb_shared_hwtstamps *hwtstamps)
4395 {
4396 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4397 			       SCM_TSTAMP_SND);
4398 }
4399 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4400 
4401 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4402 {
4403 	struct sock *sk = skb->sk;
4404 	struct sock_exterr_skb *serr;
4405 	int err = 1;
4406 
4407 	skb->wifi_acked_valid = 1;
4408 	skb->wifi_acked = acked;
4409 
4410 	serr = SKB_EXT_ERR(skb);
4411 	memset(serr, 0, sizeof(*serr));
4412 	serr->ee.ee_errno = ENOMSG;
4413 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4414 
4415 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4416 	 * but only if the socket refcount is not zero.
4417 	 */
4418 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4419 		err = sock_queue_err_skb(sk, skb);
4420 		sock_put(sk);
4421 	}
4422 	if (err)
4423 		kfree_skb(skb);
4424 }
4425 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4426 
4427 /**
4428  * skb_partial_csum_set - set up and verify partial csum values for packet
4429  * @skb: the skb to set
4430  * @start: the number of bytes after skb->data to start checksumming.
4431  * @off: the offset from start to place the checksum.
4432  *
4433  * For untrusted partially-checksummed packets, we need to make sure the values
4434  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4435  *
4436  * This function checks and sets those values and skb->ip_summed: if this
4437  * returns false you should drop the packet.
4438  */
4439 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4440 {
4441 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4442 	u32 csum_start = skb_headroom(skb) + (u32)start;
4443 
4444 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4445 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4446 				     start, off, skb_headroom(skb), skb_headlen(skb));
4447 		return false;
4448 	}
4449 	skb->ip_summed = CHECKSUM_PARTIAL;
4450 	skb->csum_start = csum_start;
4451 	skb->csum_offset = off;
4452 	skb_set_transport_header(skb, start);
4453 	return true;
4454 }
4455 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4456 
4457 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4458 			       unsigned int max)
4459 {
4460 	if (skb_headlen(skb) >= len)
4461 		return 0;
4462 
4463 	/* If we need to pullup then pullup to the max, so we
4464 	 * won't need to do it again.
4465 	 */
4466 	if (max > skb->len)
4467 		max = skb->len;
4468 
4469 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4470 		return -ENOMEM;
4471 
4472 	if (skb_headlen(skb) < len)
4473 		return -EPROTO;
4474 
4475 	return 0;
4476 }
4477 
4478 #define MAX_TCP_HDR_LEN (15 * 4)
4479 
4480 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4481 				      typeof(IPPROTO_IP) proto,
4482 				      unsigned int off)
4483 {
4484 	switch (proto) {
4485 		int err;
4486 
4487 	case IPPROTO_TCP:
4488 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4489 					  off + MAX_TCP_HDR_LEN);
4490 		if (!err && !skb_partial_csum_set(skb, off,
4491 						  offsetof(struct tcphdr,
4492 							   check)))
4493 			err = -EPROTO;
4494 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4495 
4496 	case IPPROTO_UDP:
4497 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4498 					  off + sizeof(struct udphdr));
4499 		if (!err && !skb_partial_csum_set(skb, off,
4500 						  offsetof(struct udphdr,
4501 							   check)))
4502 			err = -EPROTO;
4503 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4504 	}
4505 
4506 	return ERR_PTR(-EPROTO);
4507 }
4508 
4509 /* This value should be large enough to cover a tagged ethernet header plus
4510  * maximally sized IP and TCP or UDP headers.
4511  */
4512 #define MAX_IP_HDR_LEN 128
4513 
4514 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4515 {
4516 	unsigned int off;
4517 	bool fragment;
4518 	__sum16 *csum;
4519 	int err;
4520 
4521 	fragment = false;
4522 
4523 	err = skb_maybe_pull_tail(skb,
4524 				  sizeof(struct iphdr),
4525 				  MAX_IP_HDR_LEN);
4526 	if (err < 0)
4527 		goto out;
4528 
4529 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4530 		fragment = true;
4531 
4532 	off = ip_hdrlen(skb);
4533 
4534 	err = -EPROTO;
4535 
4536 	if (fragment)
4537 		goto out;
4538 
4539 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4540 	if (IS_ERR(csum))
4541 		return PTR_ERR(csum);
4542 
4543 	if (recalculate)
4544 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4545 					   ip_hdr(skb)->daddr,
4546 					   skb->len - off,
4547 					   ip_hdr(skb)->protocol, 0);
4548 	err = 0;
4549 
4550 out:
4551 	return err;
4552 }
4553 
4554 /* This value should be large enough to cover a tagged ethernet header plus
4555  * an IPv6 header, all options, and a maximal TCP or UDP header.
4556  */
4557 #define MAX_IPV6_HDR_LEN 256
4558 
4559 #define OPT_HDR(type, skb, off) \
4560 	(type *)(skb_network_header(skb) + (off))
4561 
4562 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4563 {
4564 	int err;
4565 	u8 nexthdr;
4566 	unsigned int off;
4567 	unsigned int len;
4568 	bool fragment;
4569 	bool done;
4570 	__sum16 *csum;
4571 
4572 	fragment = false;
4573 	done = false;
4574 
4575 	off = sizeof(struct ipv6hdr);
4576 
4577 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4578 	if (err < 0)
4579 		goto out;
4580 
4581 	nexthdr = ipv6_hdr(skb)->nexthdr;
4582 
4583 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4584 	while (off <= len && !done) {
4585 		switch (nexthdr) {
4586 		case IPPROTO_DSTOPTS:
4587 		case IPPROTO_HOPOPTS:
4588 		case IPPROTO_ROUTING: {
4589 			struct ipv6_opt_hdr *hp;
4590 
4591 			err = skb_maybe_pull_tail(skb,
4592 						  off +
4593 						  sizeof(struct ipv6_opt_hdr),
4594 						  MAX_IPV6_HDR_LEN);
4595 			if (err < 0)
4596 				goto out;
4597 
4598 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4599 			nexthdr = hp->nexthdr;
4600 			off += ipv6_optlen(hp);
4601 			break;
4602 		}
4603 		case IPPROTO_AH: {
4604 			struct ip_auth_hdr *hp;
4605 
4606 			err = skb_maybe_pull_tail(skb,
4607 						  off +
4608 						  sizeof(struct ip_auth_hdr),
4609 						  MAX_IPV6_HDR_LEN);
4610 			if (err < 0)
4611 				goto out;
4612 
4613 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4614 			nexthdr = hp->nexthdr;
4615 			off += ipv6_authlen(hp);
4616 			break;
4617 		}
4618 		case IPPROTO_FRAGMENT: {
4619 			struct frag_hdr *hp;
4620 
4621 			err = skb_maybe_pull_tail(skb,
4622 						  off +
4623 						  sizeof(struct frag_hdr),
4624 						  MAX_IPV6_HDR_LEN);
4625 			if (err < 0)
4626 				goto out;
4627 
4628 			hp = OPT_HDR(struct frag_hdr, skb, off);
4629 
4630 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4631 				fragment = true;
4632 
4633 			nexthdr = hp->nexthdr;
4634 			off += sizeof(struct frag_hdr);
4635 			break;
4636 		}
4637 		default:
4638 			done = true;
4639 			break;
4640 		}
4641 	}
4642 
4643 	err = -EPROTO;
4644 
4645 	if (!done || fragment)
4646 		goto out;
4647 
4648 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4649 	if (IS_ERR(csum))
4650 		return PTR_ERR(csum);
4651 
4652 	if (recalculate)
4653 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4654 					 &ipv6_hdr(skb)->daddr,
4655 					 skb->len - off, nexthdr, 0);
4656 	err = 0;
4657 
4658 out:
4659 	return err;
4660 }
4661 
4662 /**
4663  * skb_checksum_setup - set up partial checksum offset
4664  * @skb: the skb to set up
4665  * @recalculate: if true the pseudo-header checksum will be recalculated
4666  */
4667 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4668 {
4669 	int err;
4670 
4671 	switch (skb->protocol) {
4672 	case htons(ETH_P_IP):
4673 		err = skb_checksum_setup_ipv4(skb, recalculate);
4674 		break;
4675 
4676 	case htons(ETH_P_IPV6):
4677 		err = skb_checksum_setup_ipv6(skb, recalculate);
4678 		break;
4679 
4680 	default:
4681 		err = -EPROTO;
4682 		break;
4683 	}
4684 
4685 	return err;
4686 }
4687 EXPORT_SYMBOL(skb_checksum_setup);
4688 
4689 /**
4690  * skb_checksum_maybe_trim - maybe trims the given skb
4691  * @skb: the skb to check
4692  * @transport_len: the data length beyond the network header
4693  *
4694  * Checks whether the given skb has data beyond the given transport length.
4695  * If so, returns a cloned skb trimmed to this transport length.
4696  * Otherwise returns the provided skb. Returns NULL in error cases
4697  * (e.g. transport_len exceeds skb length or out-of-memory).
4698  *
4699  * Caller needs to set the skb transport header and free any returned skb if it
4700  * differs from the provided skb.
4701  */
4702 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4703 					       unsigned int transport_len)
4704 {
4705 	struct sk_buff *skb_chk;
4706 	unsigned int len = skb_transport_offset(skb) + transport_len;
4707 	int ret;
4708 
4709 	if (skb->len < len)
4710 		return NULL;
4711 	else if (skb->len == len)
4712 		return skb;
4713 
4714 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4715 	if (!skb_chk)
4716 		return NULL;
4717 
4718 	ret = pskb_trim_rcsum(skb_chk, len);
4719 	if (ret) {
4720 		kfree_skb(skb_chk);
4721 		return NULL;
4722 	}
4723 
4724 	return skb_chk;
4725 }
4726 
4727 /**
4728  * skb_checksum_trimmed - validate checksum of an skb
4729  * @skb: the skb to check
4730  * @transport_len: the data length beyond the network header
4731  * @skb_chkf: checksum function to use
4732  *
4733  * Applies the given checksum function skb_chkf to the provided skb.
4734  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4735  *
4736  * If the skb has data beyond the given transport length, then a
4737  * trimmed & cloned skb is checked and returned.
4738  *
4739  * Caller needs to set the skb transport header and free any returned skb if it
4740  * differs from the provided skb.
4741  */
4742 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4743 				     unsigned int transport_len,
4744 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4745 {
4746 	struct sk_buff *skb_chk;
4747 	unsigned int offset = skb_transport_offset(skb);
4748 	__sum16 ret;
4749 
4750 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4751 	if (!skb_chk)
4752 		goto err;
4753 
4754 	if (!pskb_may_pull(skb_chk, offset))
4755 		goto err;
4756 
4757 	skb_pull_rcsum(skb_chk, offset);
4758 	ret = skb_chkf(skb_chk);
4759 	skb_push_rcsum(skb_chk, offset);
4760 
4761 	if (ret)
4762 		goto err;
4763 
4764 	return skb_chk;
4765 
4766 err:
4767 	if (skb_chk && skb_chk != skb)
4768 		kfree_skb(skb_chk);
4769 
4770 	return NULL;
4771 
4772 }
4773 EXPORT_SYMBOL(skb_checksum_trimmed);
4774 
4775 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4776 {
4777 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4778 			     skb->dev->name);
4779 }
4780 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4781 
4782 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4783 {
4784 	if (head_stolen) {
4785 		skb_release_head_state(skb);
4786 		kmem_cache_free(skbuff_head_cache, skb);
4787 	} else {
4788 		__kfree_skb(skb);
4789 	}
4790 }
4791 EXPORT_SYMBOL(kfree_skb_partial);
4792 
4793 /**
4794  * skb_try_coalesce - try to merge skb to prior one
4795  * @to: prior buffer
4796  * @from: buffer to add
4797  * @fragstolen: pointer to boolean
4798  * @delta_truesize: how much more was allocated than was requested
4799  */
4800 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4801 		      bool *fragstolen, int *delta_truesize)
4802 {
4803 	struct skb_shared_info *to_shinfo, *from_shinfo;
4804 	int i, delta, len = from->len;
4805 
4806 	*fragstolen = false;
4807 
4808 	if (skb_cloned(to))
4809 		return false;
4810 
4811 	if (len <= skb_tailroom(to)) {
4812 		if (len)
4813 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4814 		*delta_truesize = 0;
4815 		return true;
4816 	}
4817 
4818 	to_shinfo = skb_shinfo(to);
4819 	from_shinfo = skb_shinfo(from);
4820 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4821 		return false;
4822 	if (skb_zcopy(to) || skb_zcopy(from))
4823 		return false;
4824 
4825 	if (skb_headlen(from) != 0) {
4826 		struct page *page;
4827 		unsigned int offset;
4828 
4829 		if (to_shinfo->nr_frags +
4830 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4831 			return false;
4832 
4833 		if (skb_head_is_locked(from))
4834 			return false;
4835 
4836 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4837 
4838 		page = virt_to_head_page(from->head);
4839 		offset = from->data - (unsigned char *)page_address(page);
4840 
4841 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4842 				   page, offset, skb_headlen(from));
4843 		*fragstolen = true;
4844 	} else {
4845 		if (to_shinfo->nr_frags +
4846 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4847 			return false;
4848 
4849 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4850 	}
4851 
4852 	WARN_ON_ONCE(delta < len);
4853 
4854 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4855 	       from_shinfo->frags,
4856 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4857 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4858 
4859 	if (!skb_cloned(from))
4860 		from_shinfo->nr_frags = 0;
4861 
4862 	/* if the skb is not cloned this does nothing
4863 	 * since we set nr_frags to 0.
4864 	 */
4865 	for (i = 0; i < from_shinfo->nr_frags; i++)
4866 		__skb_frag_ref(&from_shinfo->frags[i]);
4867 
4868 	to->truesize += delta;
4869 	to->len += len;
4870 	to->data_len += len;
4871 
4872 	*delta_truesize = delta;
4873 	return true;
4874 }
4875 EXPORT_SYMBOL(skb_try_coalesce);
4876 
4877 /**
4878  * skb_scrub_packet - scrub an skb
4879  *
4880  * @skb: buffer to clean
4881  * @xnet: packet is crossing netns
4882  *
4883  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4884  * into/from a tunnel. Some information have to be cleared during these
4885  * operations.
4886  * skb_scrub_packet can also be used to clean a skb before injecting it in
4887  * another namespace (@xnet == true). We have to clear all information in the
4888  * skb that could impact namespace isolation.
4889  */
4890 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4891 {
4892 	skb->pkt_type = PACKET_HOST;
4893 	skb->skb_iif = 0;
4894 	skb->ignore_df = 0;
4895 	skb_dst_drop(skb);
4896 	secpath_reset(skb);
4897 	nf_reset(skb);
4898 	nf_reset_trace(skb);
4899 
4900 	if (!xnet)
4901 		return;
4902 
4903 	ipvs_reset(skb);
4904 	skb->mark = 0;
4905 	skb->tstamp = 0;
4906 }
4907 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4908 
4909 /**
4910  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4911  *
4912  * @skb: GSO skb
4913  *
4914  * skb_gso_transport_seglen is used to determine the real size of the
4915  * individual segments, including Layer4 headers (TCP/UDP).
4916  *
4917  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4918  */
4919 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4920 {
4921 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4922 	unsigned int thlen = 0;
4923 
4924 	if (skb->encapsulation) {
4925 		thlen = skb_inner_transport_header(skb) -
4926 			skb_transport_header(skb);
4927 
4928 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4929 			thlen += inner_tcp_hdrlen(skb);
4930 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4931 		thlen = tcp_hdrlen(skb);
4932 	} else if (unlikely(skb_is_gso_sctp(skb))) {
4933 		thlen = sizeof(struct sctphdr);
4934 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4935 		thlen = sizeof(struct udphdr);
4936 	}
4937 	/* UFO sets gso_size to the size of the fragmentation
4938 	 * payload, i.e. the size of the L4 (UDP) header is already
4939 	 * accounted for.
4940 	 */
4941 	return thlen + shinfo->gso_size;
4942 }
4943 
4944 /**
4945  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4946  *
4947  * @skb: GSO skb
4948  *
4949  * skb_gso_network_seglen is used to determine the real size of the
4950  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4951  *
4952  * The MAC/L2 header is not accounted for.
4953  */
4954 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4955 {
4956 	unsigned int hdr_len = skb_transport_header(skb) -
4957 			       skb_network_header(skb);
4958 
4959 	return hdr_len + skb_gso_transport_seglen(skb);
4960 }
4961 
4962 /**
4963  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4964  *
4965  * @skb: GSO skb
4966  *
4967  * skb_gso_mac_seglen is used to determine the real size of the
4968  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4969  * headers (TCP/UDP).
4970  */
4971 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4972 {
4973 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4974 
4975 	return hdr_len + skb_gso_transport_seglen(skb);
4976 }
4977 
4978 /**
4979  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4980  *
4981  * There are a couple of instances where we have a GSO skb, and we
4982  * want to determine what size it would be after it is segmented.
4983  *
4984  * We might want to check:
4985  * -    L3+L4+payload size (e.g. IP forwarding)
4986  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4987  *
4988  * This is a helper to do that correctly considering GSO_BY_FRAGS.
4989  *
4990  * @skb: GSO skb
4991  *
4992  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
4993  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
4994  *
4995  * @max_len: The maximum permissible length.
4996  *
4997  * Returns true if the segmented length <= max length.
4998  */
4999 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5000 				      unsigned int seg_len,
5001 				      unsigned int max_len) {
5002 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5003 	const struct sk_buff *iter;
5004 
5005 	if (shinfo->gso_size != GSO_BY_FRAGS)
5006 		return seg_len <= max_len;
5007 
5008 	/* Undo this so we can re-use header sizes */
5009 	seg_len -= GSO_BY_FRAGS;
5010 
5011 	skb_walk_frags(skb, iter) {
5012 		if (seg_len + skb_headlen(iter) > max_len)
5013 			return false;
5014 	}
5015 
5016 	return true;
5017 }
5018 
5019 /**
5020  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5021  *
5022  * @skb: GSO skb
5023  * @mtu: MTU to validate against
5024  *
5025  * skb_gso_validate_network_len validates if a given skb will fit a
5026  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5027  * payload.
5028  */
5029 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5030 {
5031 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5032 }
5033 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5034 
5035 /**
5036  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5037  *
5038  * @skb: GSO skb
5039  * @len: length to validate against
5040  *
5041  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5042  * length once split, including L2, L3 and L4 headers and the payload.
5043  */
5044 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5045 {
5046 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5047 }
5048 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5049 
5050 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5051 {
5052 	int mac_len;
5053 
5054 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5055 		kfree_skb(skb);
5056 		return NULL;
5057 	}
5058 
5059 	mac_len = skb->data - skb_mac_header(skb);
5060 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5061 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5062 			mac_len - VLAN_HLEN - ETH_TLEN);
5063 	}
5064 	skb->mac_header += VLAN_HLEN;
5065 	return skb;
5066 }
5067 
5068 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5069 {
5070 	struct vlan_hdr *vhdr;
5071 	u16 vlan_tci;
5072 
5073 	if (unlikely(skb_vlan_tag_present(skb))) {
5074 		/* vlan_tci is already set-up so leave this for another time */
5075 		return skb;
5076 	}
5077 
5078 	skb = skb_share_check(skb, GFP_ATOMIC);
5079 	if (unlikely(!skb))
5080 		goto err_free;
5081 
5082 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5083 		goto err_free;
5084 
5085 	vhdr = (struct vlan_hdr *)skb->data;
5086 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5087 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5088 
5089 	skb_pull_rcsum(skb, VLAN_HLEN);
5090 	vlan_set_encap_proto(skb, vhdr);
5091 
5092 	skb = skb_reorder_vlan_header(skb);
5093 	if (unlikely(!skb))
5094 		goto err_free;
5095 
5096 	skb_reset_network_header(skb);
5097 	skb_reset_transport_header(skb);
5098 	skb_reset_mac_len(skb);
5099 
5100 	return skb;
5101 
5102 err_free:
5103 	kfree_skb(skb);
5104 	return NULL;
5105 }
5106 EXPORT_SYMBOL(skb_vlan_untag);
5107 
5108 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5109 {
5110 	if (!pskb_may_pull(skb, write_len))
5111 		return -ENOMEM;
5112 
5113 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5114 		return 0;
5115 
5116 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5117 }
5118 EXPORT_SYMBOL(skb_ensure_writable);
5119 
5120 /* remove VLAN header from packet and update csum accordingly.
5121  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5122  */
5123 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5124 {
5125 	struct vlan_hdr *vhdr;
5126 	int offset = skb->data - skb_mac_header(skb);
5127 	int err;
5128 
5129 	if (WARN_ONCE(offset,
5130 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5131 		      offset)) {
5132 		return -EINVAL;
5133 	}
5134 
5135 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5136 	if (unlikely(err))
5137 		return err;
5138 
5139 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5140 
5141 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5142 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5143 
5144 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5145 	__skb_pull(skb, VLAN_HLEN);
5146 
5147 	vlan_set_encap_proto(skb, vhdr);
5148 	skb->mac_header += VLAN_HLEN;
5149 
5150 	if (skb_network_offset(skb) < ETH_HLEN)
5151 		skb_set_network_header(skb, ETH_HLEN);
5152 
5153 	skb_reset_mac_len(skb);
5154 
5155 	return err;
5156 }
5157 EXPORT_SYMBOL(__skb_vlan_pop);
5158 
5159 /* Pop a vlan tag either from hwaccel or from payload.
5160  * Expects skb->data at mac header.
5161  */
5162 int skb_vlan_pop(struct sk_buff *skb)
5163 {
5164 	u16 vlan_tci;
5165 	__be16 vlan_proto;
5166 	int err;
5167 
5168 	if (likely(skb_vlan_tag_present(skb))) {
5169 		__vlan_hwaccel_clear_tag(skb);
5170 	} else {
5171 		if (unlikely(!eth_type_vlan(skb->protocol)))
5172 			return 0;
5173 
5174 		err = __skb_vlan_pop(skb, &vlan_tci);
5175 		if (err)
5176 			return err;
5177 	}
5178 	/* move next vlan tag to hw accel tag */
5179 	if (likely(!eth_type_vlan(skb->protocol)))
5180 		return 0;
5181 
5182 	vlan_proto = skb->protocol;
5183 	err = __skb_vlan_pop(skb, &vlan_tci);
5184 	if (unlikely(err))
5185 		return err;
5186 
5187 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5188 	return 0;
5189 }
5190 EXPORT_SYMBOL(skb_vlan_pop);
5191 
5192 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5193  * Expects skb->data at mac header.
5194  */
5195 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5196 {
5197 	if (skb_vlan_tag_present(skb)) {
5198 		int offset = skb->data - skb_mac_header(skb);
5199 		int err;
5200 
5201 		if (WARN_ONCE(offset,
5202 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5203 			      offset)) {
5204 			return -EINVAL;
5205 		}
5206 
5207 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5208 					skb_vlan_tag_get(skb));
5209 		if (err)
5210 			return err;
5211 
5212 		skb->protocol = skb->vlan_proto;
5213 		skb->mac_len += VLAN_HLEN;
5214 
5215 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5216 	}
5217 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5218 	return 0;
5219 }
5220 EXPORT_SYMBOL(skb_vlan_push);
5221 
5222 /**
5223  * alloc_skb_with_frags - allocate skb with page frags
5224  *
5225  * @header_len: size of linear part
5226  * @data_len: needed length in frags
5227  * @max_page_order: max page order desired.
5228  * @errcode: pointer to error code if any
5229  * @gfp_mask: allocation mask
5230  *
5231  * This can be used to allocate a paged skb, given a maximal order for frags.
5232  */
5233 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5234 				     unsigned long data_len,
5235 				     int max_page_order,
5236 				     int *errcode,
5237 				     gfp_t gfp_mask)
5238 {
5239 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5240 	unsigned long chunk;
5241 	struct sk_buff *skb;
5242 	struct page *page;
5243 	gfp_t gfp_head;
5244 	int i;
5245 
5246 	*errcode = -EMSGSIZE;
5247 	/* Note this test could be relaxed, if we succeed to allocate
5248 	 * high order pages...
5249 	 */
5250 	if (npages > MAX_SKB_FRAGS)
5251 		return NULL;
5252 
5253 	gfp_head = gfp_mask;
5254 	if (gfp_head & __GFP_DIRECT_RECLAIM)
5255 		gfp_head |= __GFP_RETRY_MAYFAIL;
5256 
5257 	*errcode = -ENOBUFS;
5258 	skb = alloc_skb(header_len, gfp_head);
5259 	if (!skb)
5260 		return NULL;
5261 
5262 	skb->truesize += npages << PAGE_SHIFT;
5263 
5264 	for (i = 0; npages > 0; i++) {
5265 		int order = max_page_order;
5266 
5267 		while (order) {
5268 			if (npages >= 1 << order) {
5269 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5270 						   __GFP_COMP |
5271 						   __GFP_NOWARN,
5272 						   order);
5273 				if (page)
5274 					goto fill_page;
5275 				/* Do not retry other high order allocations */
5276 				order = 1;
5277 				max_page_order = 0;
5278 			}
5279 			order--;
5280 		}
5281 		page = alloc_page(gfp_mask);
5282 		if (!page)
5283 			goto failure;
5284 fill_page:
5285 		chunk = min_t(unsigned long, data_len,
5286 			      PAGE_SIZE << order);
5287 		skb_fill_page_desc(skb, i, page, 0, chunk);
5288 		data_len -= chunk;
5289 		npages -= 1 << order;
5290 	}
5291 	return skb;
5292 
5293 failure:
5294 	kfree_skb(skb);
5295 	return NULL;
5296 }
5297 EXPORT_SYMBOL(alloc_skb_with_frags);
5298 
5299 /* carve out the first off bytes from skb when off < headlen */
5300 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5301 				    const int headlen, gfp_t gfp_mask)
5302 {
5303 	int i;
5304 	int size = skb_end_offset(skb);
5305 	int new_hlen = headlen - off;
5306 	u8 *data;
5307 
5308 	size = SKB_DATA_ALIGN(size);
5309 
5310 	if (skb_pfmemalloc(skb))
5311 		gfp_mask |= __GFP_MEMALLOC;
5312 	data = kmalloc_reserve(size +
5313 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5314 			       gfp_mask, NUMA_NO_NODE, NULL);
5315 	if (!data)
5316 		return -ENOMEM;
5317 
5318 	size = SKB_WITH_OVERHEAD(ksize(data));
5319 
5320 	/* Copy real data, and all frags */
5321 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5322 	skb->len -= off;
5323 
5324 	memcpy((struct skb_shared_info *)(data + size),
5325 	       skb_shinfo(skb),
5326 	       offsetof(struct skb_shared_info,
5327 			frags[skb_shinfo(skb)->nr_frags]));
5328 	if (skb_cloned(skb)) {
5329 		/* drop the old head gracefully */
5330 		if (skb_orphan_frags(skb, gfp_mask)) {
5331 			kfree(data);
5332 			return -ENOMEM;
5333 		}
5334 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5335 			skb_frag_ref(skb, i);
5336 		if (skb_has_frag_list(skb))
5337 			skb_clone_fraglist(skb);
5338 		skb_release_data(skb);
5339 	} else {
5340 		/* we can reuse existing recount- all we did was
5341 		 * relocate values
5342 		 */
5343 		skb_free_head(skb);
5344 	}
5345 
5346 	skb->head = data;
5347 	skb->data = data;
5348 	skb->head_frag = 0;
5349 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5350 	skb->end = size;
5351 #else
5352 	skb->end = skb->head + size;
5353 #endif
5354 	skb_set_tail_pointer(skb, skb_headlen(skb));
5355 	skb_headers_offset_update(skb, 0);
5356 	skb->cloned = 0;
5357 	skb->hdr_len = 0;
5358 	skb->nohdr = 0;
5359 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5360 
5361 	return 0;
5362 }
5363 
5364 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5365 
5366 /* carve out the first eat bytes from skb's frag_list. May recurse into
5367  * pskb_carve()
5368  */
5369 static int pskb_carve_frag_list(struct sk_buff *skb,
5370 				struct skb_shared_info *shinfo, int eat,
5371 				gfp_t gfp_mask)
5372 {
5373 	struct sk_buff *list = shinfo->frag_list;
5374 	struct sk_buff *clone = NULL;
5375 	struct sk_buff *insp = NULL;
5376 
5377 	do {
5378 		if (!list) {
5379 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5380 			return -EFAULT;
5381 		}
5382 		if (list->len <= eat) {
5383 			/* Eaten as whole. */
5384 			eat -= list->len;
5385 			list = list->next;
5386 			insp = list;
5387 		} else {
5388 			/* Eaten partially. */
5389 			if (skb_shared(list)) {
5390 				clone = skb_clone(list, gfp_mask);
5391 				if (!clone)
5392 					return -ENOMEM;
5393 				insp = list->next;
5394 				list = clone;
5395 			} else {
5396 				/* This may be pulled without problems. */
5397 				insp = list;
5398 			}
5399 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5400 				kfree_skb(clone);
5401 				return -ENOMEM;
5402 			}
5403 			break;
5404 		}
5405 	} while (eat);
5406 
5407 	/* Free pulled out fragments. */
5408 	while ((list = shinfo->frag_list) != insp) {
5409 		shinfo->frag_list = list->next;
5410 		kfree_skb(list);
5411 	}
5412 	/* And insert new clone at head. */
5413 	if (clone) {
5414 		clone->next = list;
5415 		shinfo->frag_list = clone;
5416 	}
5417 	return 0;
5418 }
5419 
5420 /* carve off first len bytes from skb. Split line (off) is in the
5421  * non-linear part of skb
5422  */
5423 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5424 				       int pos, gfp_t gfp_mask)
5425 {
5426 	int i, k = 0;
5427 	int size = skb_end_offset(skb);
5428 	u8 *data;
5429 	const int nfrags = skb_shinfo(skb)->nr_frags;
5430 	struct skb_shared_info *shinfo;
5431 
5432 	size = SKB_DATA_ALIGN(size);
5433 
5434 	if (skb_pfmemalloc(skb))
5435 		gfp_mask |= __GFP_MEMALLOC;
5436 	data = kmalloc_reserve(size +
5437 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5438 			       gfp_mask, NUMA_NO_NODE, NULL);
5439 	if (!data)
5440 		return -ENOMEM;
5441 
5442 	size = SKB_WITH_OVERHEAD(ksize(data));
5443 
5444 	memcpy((struct skb_shared_info *)(data + size),
5445 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5446 					 frags[skb_shinfo(skb)->nr_frags]));
5447 	if (skb_orphan_frags(skb, gfp_mask)) {
5448 		kfree(data);
5449 		return -ENOMEM;
5450 	}
5451 	shinfo = (struct skb_shared_info *)(data + size);
5452 	for (i = 0; i < nfrags; i++) {
5453 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5454 
5455 		if (pos + fsize > off) {
5456 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5457 
5458 			if (pos < off) {
5459 				/* Split frag.
5460 				 * We have two variants in this case:
5461 				 * 1. Move all the frag to the second
5462 				 *    part, if it is possible. F.e.
5463 				 *    this approach is mandatory for TUX,
5464 				 *    where splitting is expensive.
5465 				 * 2. Split is accurately. We make this.
5466 				 */
5467 				shinfo->frags[0].page_offset += off - pos;
5468 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5469 			}
5470 			skb_frag_ref(skb, i);
5471 			k++;
5472 		}
5473 		pos += fsize;
5474 	}
5475 	shinfo->nr_frags = k;
5476 	if (skb_has_frag_list(skb))
5477 		skb_clone_fraglist(skb);
5478 
5479 	if (k == 0) {
5480 		/* split line is in frag list */
5481 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5482 	}
5483 	skb_release_data(skb);
5484 
5485 	skb->head = data;
5486 	skb->head_frag = 0;
5487 	skb->data = data;
5488 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5489 	skb->end = size;
5490 #else
5491 	skb->end = skb->head + size;
5492 #endif
5493 	skb_reset_tail_pointer(skb);
5494 	skb_headers_offset_update(skb, 0);
5495 	skb->cloned   = 0;
5496 	skb->hdr_len  = 0;
5497 	skb->nohdr    = 0;
5498 	skb->len -= off;
5499 	skb->data_len = skb->len;
5500 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5501 	return 0;
5502 }
5503 
5504 /* remove len bytes from the beginning of the skb */
5505 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5506 {
5507 	int headlen = skb_headlen(skb);
5508 
5509 	if (len < headlen)
5510 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5511 	else
5512 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5513 }
5514 
5515 /* Extract to_copy bytes starting at off from skb, and return this in
5516  * a new skb
5517  */
5518 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5519 			     int to_copy, gfp_t gfp)
5520 {
5521 	struct sk_buff  *clone = skb_clone(skb, gfp);
5522 
5523 	if (!clone)
5524 		return NULL;
5525 
5526 	if (pskb_carve(clone, off, gfp) < 0 ||
5527 	    pskb_trim(clone, to_copy)) {
5528 		kfree_skb(clone);
5529 		return NULL;
5530 	}
5531 	return clone;
5532 }
5533 EXPORT_SYMBOL(pskb_extract);
5534 
5535 /**
5536  * skb_condense - try to get rid of fragments/frag_list if possible
5537  * @skb: buffer
5538  *
5539  * Can be used to save memory before skb is added to a busy queue.
5540  * If packet has bytes in frags and enough tail room in skb->head,
5541  * pull all of them, so that we can free the frags right now and adjust
5542  * truesize.
5543  * Notes:
5544  *	We do not reallocate skb->head thus can not fail.
5545  *	Caller must re-evaluate skb->truesize if needed.
5546  */
5547 void skb_condense(struct sk_buff *skb)
5548 {
5549 	if (skb->data_len) {
5550 		if (skb->data_len > skb->end - skb->tail ||
5551 		    skb_cloned(skb))
5552 			return;
5553 
5554 		/* Nice, we can free page frag(s) right now */
5555 		__pskb_pull_tail(skb, skb->data_len);
5556 	}
5557 	/* At this point, skb->truesize might be over estimated,
5558 	 * because skb had a fragment, and fragments do not tell
5559 	 * their truesize.
5560 	 * When we pulled its content into skb->head, fragment
5561 	 * was freed, but __pskb_pull_tail() could not possibly
5562 	 * adjust skb->truesize, not knowing the frag truesize.
5563 	 */
5564 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5565 }
5566