1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/tcp.h> 50 #include <linux/udp.h> 51 #include <linux/sctp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 #include <linux/if_vlan.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 74 #include <linux/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 80 struct kmem_cache *skbuff_head_cache __ro_after_init; 81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 83 EXPORT_SYMBOL(sysctl_max_skb_frags); 84 85 /** 86 * skb_panic - private function for out-of-line support 87 * @skb: buffer 88 * @sz: size 89 * @addr: address 90 * @msg: skb_over_panic or skb_under_panic 91 * 92 * Out-of-line support for skb_put() and skb_push(). 93 * Called via the wrapper skb_over_panic() or skb_under_panic(). 94 * Keep out of line to prevent kernel bloat. 95 * __builtin_return_address is not used because it is not always reliable. 96 */ 97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 98 const char msg[]) 99 { 100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 101 msg, addr, skb->len, sz, skb->head, skb->data, 102 (unsigned long)skb->tail, (unsigned long)skb->end, 103 skb->dev ? skb->dev->name : "<NULL>"); 104 BUG(); 105 } 106 107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 108 { 109 skb_panic(skb, sz, addr, __func__); 110 } 111 112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 /* 118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 119 * the caller if emergency pfmemalloc reserves are being used. If it is and 120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 121 * may be used. Otherwise, the packet data may be discarded until enough 122 * memory is free 123 */ 124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 126 127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 128 unsigned long ip, bool *pfmemalloc) 129 { 130 void *obj; 131 bool ret_pfmemalloc = false; 132 133 /* 134 * Try a regular allocation, when that fails and we're not entitled 135 * to the reserves, fail. 136 */ 137 obj = kmalloc_node_track_caller(size, 138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 139 node); 140 if (obj || !(gfp_pfmemalloc_allowed(flags))) 141 goto out; 142 143 /* Try again but now we are using pfmemalloc reserves */ 144 ret_pfmemalloc = true; 145 obj = kmalloc_node_track_caller(size, flags, node); 146 147 out: 148 if (pfmemalloc) 149 *pfmemalloc = ret_pfmemalloc; 150 151 return obj; 152 } 153 154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 155 * 'private' fields and also do memory statistics to find all the 156 * [BEEP] leaks. 157 * 158 */ 159 160 /** 161 * __alloc_skb - allocate a network buffer 162 * @size: size to allocate 163 * @gfp_mask: allocation mask 164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 165 * instead of head cache and allocate a cloned (child) skb. 166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 167 * allocations in case the data is required for writeback 168 * @node: numa node to allocate memory on 169 * 170 * Allocate a new &sk_buff. The returned buffer has no headroom and a 171 * tail room of at least size bytes. The object has a reference count 172 * of one. The return is the buffer. On a failure the return is %NULL. 173 * 174 * Buffers may only be allocated from interrupts using a @gfp_mask of 175 * %GFP_ATOMIC. 176 */ 177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 178 int flags, int node) 179 { 180 struct kmem_cache *cache; 181 struct skb_shared_info *shinfo; 182 struct sk_buff *skb; 183 u8 *data; 184 bool pfmemalloc; 185 186 cache = (flags & SKB_ALLOC_FCLONE) 187 ? skbuff_fclone_cache : skbuff_head_cache; 188 189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 190 gfp_mask |= __GFP_MEMALLOC; 191 192 /* Get the HEAD */ 193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 194 if (!skb) 195 goto out; 196 prefetchw(skb); 197 198 /* We do our best to align skb_shared_info on a separate cache 199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 200 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 201 * Both skb->head and skb_shared_info are cache line aligned. 202 */ 203 size = SKB_DATA_ALIGN(size); 204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 206 if (!data) 207 goto nodata; 208 /* kmalloc(size) might give us more room than requested. 209 * Put skb_shared_info exactly at the end of allocated zone, 210 * to allow max possible filling before reallocation. 211 */ 212 size = SKB_WITH_OVERHEAD(ksize(data)); 213 prefetchw(data + size); 214 215 /* 216 * Only clear those fields we need to clear, not those that we will 217 * actually initialise below. Hence, don't put any more fields after 218 * the tail pointer in struct sk_buff! 219 */ 220 memset(skb, 0, offsetof(struct sk_buff, tail)); 221 /* Account for allocated memory : skb + skb->head */ 222 skb->truesize = SKB_TRUESIZE(size); 223 skb->pfmemalloc = pfmemalloc; 224 refcount_set(&skb->users, 1); 225 skb->head = data; 226 skb->data = data; 227 skb_reset_tail_pointer(skb); 228 skb->end = skb->tail + size; 229 skb->mac_header = (typeof(skb->mac_header))~0U; 230 skb->transport_header = (typeof(skb->transport_header))~0U; 231 232 /* make sure we initialize shinfo sequentially */ 233 shinfo = skb_shinfo(skb); 234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 235 atomic_set(&shinfo->dataref, 1); 236 237 if (flags & SKB_ALLOC_FCLONE) { 238 struct sk_buff_fclones *fclones; 239 240 fclones = container_of(skb, struct sk_buff_fclones, skb1); 241 242 skb->fclone = SKB_FCLONE_ORIG; 243 refcount_set(&fclones->fclone_ref, 1); 244 245 fclones->skb2.fclone = SKB_FCLONE_CLONE; 246 } 247 out: 248 return skb; 249 nodata: 250 kmem_cache_free(cache, skb); 251 skb = NULL; 252 goto out; 253 } 254 EXPORT_SYMBOL(__alloc_skb); 255 256 /** 257 * __build_skb - build a network buffer 258 * @data: data buffer provided by caller 259 * @frag_size: size of data, or 0 if head was kmalloced 260 * 261 * Allocate a new &sk_buff. Caller provides space holding head and 262 * skb_shared_info. @data must have been allocated by kmalloc() only if 263 * @frag_size is 0, otherwise data should come from the page allocator 264 * or vmalloc() 265 * The return is the new skb buffer. 266 * On a failure the return is %NULL, and @data is not freed. 267 * Notes : 268 * Before IO, driver allocates only data buffer where NIC put incoming frame 269 * Driver should add room at head (NET_SKB_PAD) and 270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 272 * before giving packet to stack. 273 * RX rings only contains data buffers, not full skbs. 274 */ 275 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 276 { 277 struct skb_shared_info *shinfo; 278 struct sk_buff *skb; 279 unsigned int size = frag_size ? : ksize(data); 280 281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 282 if (!skb) 283 return NULL; 284 285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 286 287 memset(skb, 0, offsetof(struct sk_buff, tail)); 288 skb->truesize = SKB_TRUESIZE(size); 289 refcount_set(&skb->users, 1); 290 skb->head = data; 291 skb->data = data; 292 skb_reset_tail_pointer(skb); 293 skb->end = skb->tail + size; 294 skb->mac_header = (typeof(skb->mac_header))~0U; 295 skb->transport_header = (typeof(skb->transport_header))~0U; 296 297 /* make sure we initialize shinfo sequentially */ 298 shinfo = skb_shinfo(skb); 299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 300 atomic_set(&shinfo->dataref, 1); 301 302 return skb; 303 } 304 305 /* build_skb() is wrapper over __build_skb(), that specifically 306 * takes care of skb->head and skb->pfmemalloc 307 * This means that if @frag_size is not zero, then @data must be backed 308 * by a page fragment, not kmalloc() or vmalloc() 309 */ 310 struct sk_buff *build_skb(void *data, unsigned int frag_size) 311 { 312 struct sk_buff *skb = __build_skb(data, frag_size); 313 314 if (skb && frag_size) { 315 skb->head_frag = 1; 316 if (page_is_pfmemalloc(virt_to_head_page(data))) 317 skb->pfmemalloc = 1; 318 } 319 return skb; 320 } 321 EXPORT_SYMBOL(build_skb); 322 323 #define NAPI_SKB_CACHE_SIZE 64 324 325 struct napi_alloc_cache { 326 struct page_frag_cache page; 327 unsigned int skb_count; 328 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 329 }; 330 331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 333 334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 335 { 336 struct page_frag_cache *nc; 337 unsigned long flags; 338 void *data; 339 340 local_irq_save(flags); 341 nc = this_cpu_ptr(&netdev_alloc_cache); 342 data = page_frag_alloc(nc, fragsz, gfp_mask); 343 local_irq_restore(flags); 344 return data; 345 } 346 347 /** 348 * netdev_alloc_frag - allocate a page fragment 349 * @fragsz: fragment size 350 * 351 * Allocates a frag from a page for receive buffer. 352 * Uses GFP_ATOMIC allocations. 353 */ 354 void *netdev_alloc_frag(unsigned int fragsz) 355 { 356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC); 357 } 358 EXPORT_SYMBOL(netdev_alloc_frag); 359 360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 361 { 362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 363 364 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 365 } 366 367 void *napi_alloc_frag(unsigned int fragsz) 368 { 369 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 370 } 371 EXPORT_SYMBOL(napi_alloc_frag); 372 373 /** 374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 375 * @dev: network device to receive on 376 * @len: length to allocate 377 * @gfp_mask: get_free_pages mask, passed to alloc_skb 378 * 379 * Allocate a new &sk_buff and assign it a usage count of one. The 380 * buffer has NET_SKB_PAD headroom built in. Users should allocate 381 * the headroom they think they need without accounting for the 382 * built in space. The built in space is used for optimisations. 383 * 384 * %NULL is returned if there is no free memory. 385 */ 386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 387 gfp_t gfp_mask) 388 { 389 struct page_frag_cache *nc; 390 unsigned long flags; 391 struct sk_buff *skb; 392 bool pfmemalloc; 393 void *data; 394 395 len += NET_SKB_PAD; 396 397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 400 if (!skb) 401 goto skb_fail; 402 goto skb_success; 403 } 404 405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 406 len = SKB_DATA_ALIGN(len); 407 408 if (sk_memalloc_socks()) 409 gfp_mask |= __GFP_MEMALLOC; 410 411 local_irq_save(flags); 412 413 nc = this_cpu_ptr(&netdev_alloc_cache); 414 data = page_frag_alloc(nc, len, gfp_mask); 415 pfmemalloc = nc->pfmemalloc; 416 417 local_irq_restore(flags); 418 419 if (unlikely(!data)) 420 return NULL; 421 422 skb = __build_skb(data, len); 423 if (unlikely(!skb)) { 424 skb_free_frag(data); 425 return NULL; 426 } 427 428 /* use OR instead of assignment to avoid clearing of bits in mask */ 429 if (pfmemalloc) 430 skb->pfmemalloc = 1; 431 skb->head_frag = 1; 432 433 skb_success: 434 skb_reserve(skb, NET_SKB_PAD); 435 skb->dev = dev; 436 437 skb_fail: 438 return skb; 439 } 440 EXPORT_SYMBOL(__netdev_alloc_skb); 441 442 /** 443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 444 * @napi: napi instance this buffer was allocated for 445 * @len: length to allocate 446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 447 * 448 * Allocate a new sk_buff for use in NAPI receive. This buffer will 449 * attempt to allocate the head from a special reserved region used 450 * only for NAPI Rx allocation. By doing this we can save several 451 * CPU cycles by avoiding having to disable and re-enable IRQs. 452 * 453 * %NULL is returned if there is no free memory. 454 */ 455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 456 gfp_t gfp_mask) 457 { 458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 459 struct sk_buff *skb; 460 void *data; 461 462 len += NET_SKB_PAD + NET_IP_ALIGN; 463 464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 467 if (!skb) 468 goto skb_fail; 469 goto skb_success; 470 } 471 472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 473 len = SKB_DATA_ALIGN(len); 474 475 if (sk_memalloc_socks()) 476 gfp_mask |= __GFP_MEMALLOC; 477 478 data = page_frag_alloc(&nc->page, len, gfp_mask); 479 if (unlikely(!data)) 480 return NULL; 481 482 skb = __build_skb(data, len); 483 if (unlikely(!skb)) { 484 skb_free_frag(data); 485 return NULL; 486 } 487 488 /* use OR instead of assignment to avoid clearing of bits in mask */ 489 if (nc->page.pfmemalloc) 490 skb->pfmemalloc = 1; 491 skb->head_frag = 1; 492 493 skb_success: 494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 495 skb->dev = napi->dev; 496 497 skb_fail: 498 return skb; 499 } 500 EXPORT_SYMBOL(__napi_alloc_skb); 501 502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 503 int size, unsigned int truesize) 504 { 505 skb_fill_page_desc(skb, i, page, off, size); 506 skb->len += size; 507 skb->data_len += size; 508 skb->truesize += truesize; 509 } 510 EXPORT_SYMBOL(skb_add_rx_frag); 511 512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 513 unsigned int truesize) 514 { 515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 516 517 skb_frag_size_add(frag, size); 518 skb->len += size; 519 skb->data_len += size; 520 skb->truesize += truesize; 521 } 522 EXPORT_SYMBOL(skb_coalesce_rx_frag); 523 524 static void skb_drop_list(struct sk_buff **listp) 525 { 526 kfree_skb_list(*listp); 527 *listp = NULL; 528 } 529 530 static inline void skb_drop_fraglist(struct sk_buff *skb) 531 { 532 skb_drop_list(&skb_shinfo(skb)->frag_list); 533 } 534 535 static void skb_clone_fraglist(struct sk_buff *skb) 536 { 537 struct sk_buff *list; 538 539 skb_walk_frags(skb, list) 540 skb_get(list); 541 } 542 543 static void skb_free_head(struct sk_buff *skb) 544 { 545 unsigned char *head = skb->head; 546 547 if (skb->head_frag) 548 skb_free_frag(head); 549 else 550 kfree(head); 551 } 552 553 static void skb_release_data(struct sk_buff *skb) 554 { 555 struct skb_shared_info *shinfo = skb_shinfo(skb); 556 int i; 557 558 if (skb->cloned && 559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 560 &shinfo->dataref)) 561 return; 562 563 for (i = 0; i < shinfo->nr_frags; i++) 564 __skb_frag_unref(&shinfo->frags[i]); 565 566 if (shinfo->frag_list) 567 kfree_skb_list(shinfo->frag_list); 568 569 skb_zcopy_clear(skb, true); 570 skb_free_head(skb); 571 } 572 573 /* 574 * Free an skbuff by memory without cleaning the state. 575 */ 576 static void kfree_skbmem(struct sk_buff *skb) 577 { 578 struct sk_buff_fclones *fclones; 579 580 switch (skb->fclone) { 581 case SKB_FCLONE_UNAVAILABLE: 582 kmem_cache_free(skbuff_head_cache, skb); 583 return; 584 585 case SKB_FCLONE_ORIG: 586 fclones = container_of(skb, struct sk_buff_fclones, skb1); 587 588 /* We usually free the clone (TX completion) before original skb 589 * This test would have no chance to be true for the clone, 590 * while here, branch prediction will be good. 591 */ 592 if (refcount_read(&fclones->fclone_ref) == 1) 593 goto fastpath; 594 break; 595 596 default: /* SKB_FCLONE_CLONE */ 597 fclones = container_of(skb, struct sk_buff_fclones, skb2); 598 break; 599 } 600 if (!refcount_dec_and_test(&fclones->fclone_ref)) 601 return; 602 fastpath: 603 kmem_cache_free(skbuff_fclone_cache, fclones); 604 } 605 606 void skb_release_head_state(struct sk_buff *skb) 607 { 608 skb_dst_drop(skb); 609 secpath_reset(skb); 610 if (skb->destructor) { 611 WARN_ON(in_irq()); 612 skb->destructor(skb); 613 } 614 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 615 nf_conntrack_put(skb_nfct(skb)); 616 #endif 617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 618 nf_bridge_put(skb->nf_bridge); 619 #endif 620 } 621 622 /* Free everything but the sk_buff shell. */ 623 static void skb_release_all(struct sk_buff *skb) 624 { 625 skb_release_head_state(skb); 626 if (likely(skb->head)) 627 skb_release_data(skb); 628 } 629 630 /** 631 * __kfree_skb - private function 632 * @skb: buffer 633 * 634 * Free an sk_buff. Release anything attached to the buffer. 635 * Clean the state. This is an internal helper function. Users should 636 * always call kfree_skb 637 */ 638 639 void __kfree_skb(struct sk_buff *skb) 640 { 641 skb_release_all(skb); 642 kfree_skbmem(skb); 643 } 644 EXPORT_SYMBOL(__kfree_skb); 645 646 /** 647 * kfree_skb - free an sk_buff 648 * @skb: buffer to free 649 * 650 * Drop a reference to the buffer and free it if the usage count has 651 * hit zero. 652 */ 653 void kfree_skb(struct sk_buff *skb) 654 { 655 if (!skb_unref(skb)) 656 return; 657 658 trace_kfree_skb(skb, __builtin_return_address(0)); 659 __kfree_skb(skb); 660 } 661 EXPORT_SYMBOL(kfree_skb); 662 663 void kfree_skb_list(struct sk_buff *segs) 664 { 665 while (segs) { 666 struct sk_buff *next = segs->next; 667 668 kfree_skb(segs); 669 segs = next; 670 } 671 } 672 EXPORT_SYMBOL(kfree_skb_list); 673 674 /** 675 * skb_tx_error - report an sk_buff xmit error 676 * @skb: buffer that triggered an error 677 * 678 * Report xmit error if a device callback is tracking this skb. 679 * skb must be freed afterwards. 680 */ 681 void skb_tx_error(struct sk_buff *skb) 682 { 683 skb_zcopy_clear(skb, true); 684 } 685 EXPORT_SYMBOL(skb_tx_error); 686 687 /** 688 * consume_skb - free an skbuff 689 * @skb: buffer to free 690 * 691 * Drop a ref to the buffer and free it if the usage count has hit zero 692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 693 * is being dropped after a failure and notes that 694 */ 695 void consume_skb(struct sk_buff *skb) 696 { 697 if (!skb_unref(skb)) 698 return; 699 700 trace_consume_skb(skb); 701 __kfree_skb(skb); 702 } 703 EXPORT_SYMBOL(consume_skb); 704 705 /** 706 * consume_stateless_skb - free an skbuff, assuming it is stateless 707 * @skb: buffer to free 708 * 709 * Alike consume_skb(), but this variant assumes that this is the last 710 * skb reference and all the head states have been already dropped 711 */ 712 void __consume_stateless_skb(struct sk_buff *skb) 713 { 714 trace_consume_skb(skb); 715 skb_release_data(skb); 716 kfree_skbmem(skb); 717 } 718 719 void __kfree_skb_flush(void) 720 { 721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 722 723 /* flush skb_cache if containing objects */ 724 if (nc->skb_count) { 725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 726 nc->skb_cache); 727 nc->skb_count = 0; 728 } 729 } 730 731 static inline void _kfree_skb_defer(struct sk_buff *skb) 732 { 733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 734 735 /* drop skb->head and call any destructors for packet */ 736 skb_release_all(skb); 737 738 /* record skb to CPU local list */ 739 nc->skb_cache[nc->skb_count++] = skb; 740 741 #ifdef CONFIG_SLUB 742 /* SLUB writes into objects when freeing */ 743 prefetchw(skb); 744 #endif 745 746 /* flush skb_cache if it is filled */ 747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 749 nc->skb_cache); 750 nc->skb_count = 0; 751 } 752 } 753 void __kfree_skb_defer(struct sk_buff *skb) 754 { 755 _kfree_skb_defer(skb); 756 } 757 758 void napi_consume_skb(struct sk_buff *skb, int budget) 759 { 760 if (unlikely(!skb)) 761 return; 762 763 /* Zero budget indicate non-NAPI context called us, like netpoll */ 764 if (unlikely(!budget)) { 765 dev_consume_skb_any(skb); 766 return; 767 } 768 769 if (!skb_unref(skb)) 770 return; 771 772 /* if reaching here SKB is ready to free */ 773 trace_consume_skb(skb); 774 775 /* if SKB is a clone, don't handle this case */ 776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 777 __kfree_skb(skb); 778 return; 779 } 780 781 _kfree_skb_defer(skb); 782 } 783 EXPORT_SYMBOL(napi_consume_skb); 784 785 /* Make sure a field is enclosed inside headers_start/headers_end section */ 786 #define CHECK_SKB_FIELD(field) \ 787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 788 offsetof(struct sk_buff, headers_start)); \ 789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 790 offsetof(struct sk_buff, headers_end)); \ 791 792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 793 { 794 new->tstamp = old->tstamp; 795 /* We do not copy old->sk */ 796 new->dev = old->dev; 797 memcpy(new->cb, old->cb, sizeof(old->cb)); 798 skb_dst_copy(new, old); 799 #ifdef CONFIG_XFRM 800 new->sp = secpath_get(old->sp); 801 #endif 802 __nf_copy(new, old, false); 803 804 /* Note : this field could be in headers_start/headers_end section 805 * It is not yet because we do not want to have a 16 bit hole 806 */ 807 new->queue_mapping = old->queue_mapping; 808 809 memcpy(&new->headers_start, &old->headers_start, 810 offsetof(struct sk_buff, headers_end) - 811 offsetof(struct sk_buff, headers_start)); 812 CHECK_SKB_FIELD(protocol); 813 CHECK_SKB_FIELD(csum); 814 CHECK_SKB_FIELD(hash); 815 CHECK_SKB_FIELD(priority); 816 CHECK_SKB_FIELD(skb_iif); 817 CHECK_SKB_FIELD(vlan_proto); 818 CHECK_SKB_FIELD(vlan_tci); 819 CHECK_SKB_FIELD(transport_header); 820 CHECK_SKB_FIELD(network_header); 821 CHECK_SKB_FIELD(mac_header); 822 CHECK_SKB_FIELD(inner_protocol); 823 CHECK_SKB_FIELD(inner_transport_header); 824 CHECK_SKB_FIELD(inner_network_header); 825 CHECK_SKB_FIELD(inner_mac_header); 826 CHECK_SKB_FIELD(mark); 827 #ifdef CONFIG_NETWORK_SECMARK 828 CHECK_SKB_FIELD(secmark); 829 #endif 830 #ifdef CONFIG_NET_RX_BUSY_POLL 831 CHECK_SKB_FIELD(napi_id); 832 #endif 833 #ifdef CONFIG_XPS 834 CHECK_SKB_FIELD(sender_cpu); 835 #endif 836 #ifdef CONFIG_NET_SCHED 837 CHECK_SKB_FIELD(tc_index); 838 #endif 839 840 } 841 842 /* 843 * You should not add any new code to this function. Add it to 844 * __copy_skb_header above instead. 845 */ 846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 847 { 848 #define C(x) n->x = skb->x 849 850 n->next = n->prev = NULL; 851 n->sk = NULL; 852 __copy_skb_header(n, skb); 853 854 C(len); 855 C(data_len); 856 C(mac_len); 857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 858 n->cloned = 1; 859 n->nohdr = 0; 860 n->peeked = 0; 861 C(pfmemalloc); 862 n->destructor = NULL; 863 C(tail); 864 C(end); 865 C(head); 866 C(head_frag); 867 C(data); 868 C(truesize); 869 refcount_set(&n->users, 1); 870 871 atomic_inc(&(skb_shinfo(skb)->dataref)); 872 skb->cloned = 1; 873 874 return n; 875 #undef C 876 } 877 878 /** 879 * skb_morph - morph one skb into another 880 * @dst: the skb to receive the contents 881 * @src: the skb to supply the contents 882 * 883 * This is identical to skb_clone except that the target skb is 884 * supplied by the user. 885 * 886 * The target skb is returned upon exit. 887 */ 888 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 889 { 890 skb_release_all(dst); 891 return __skb_clone(dst, src); 892 } 893 EXPORT_SYMBOL_GPL(skb_morph); 894 895 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 896 { 897 unsigned long max_pg, num_pg, new_pg, old_pg; 898 struct user_struct *user; 899 900 if (capable(CAP_IPC_LOCK) || !size) 901 return 0; 902 903 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 904 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 905 user = mmp->user ? : current_user(); 906 907 do { 908 old_pg = atomic_long_read(&user->locked_vm); 909 new_pg = old_pg + num_pg; 910 if (new_pg > max_pg) 911 return -ENOBUFS; 912 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 913 old_pg); 914 915 if (!mmp->user) { 916 mmp->user = get_uid(user); 917 mmp->num_pg = num_pg; 918 } else { 919 mmp->num_pg += num_pg; 920 } 921 922 return 0; 923 } 924 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 925 926 void mm_unaccount_pinned_pages(struct mmpin *mmp) 927 { 928 if (mmp->user) { 929 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 930 free_uid(mmp->user); 931 } 932 } 933 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 934 935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 936 { 937 struct ubuf_info *uarg; 938 struct sk_buff *skb; 939 940 WARN_ON_ONCE(!in_task()); 941 942 skb = sock_omalloc(sk, 0, GFP_KERNEL); 943 if (!skb) 944 return NULL; 945 946 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 947 uarg = (void *)skb->cb; 948 uarg->mmp.user = NULL; 949 950 if (mm_account_pinned_pages(&uarg->mmp, size)) { 951 kfree_skb(skb); 952 return NULL; 953 } 954 955 uarg->callback = sock_zerocopy_callback; 956 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 957 uarg->len = 1; 958 uarg->bytelen = size; 959 uarg->zerocopy = 1; 960 refcount_set(&uarg->refcnt, 1); 961 sock_hold(sk); 962 963 return uarg; 964 } 965 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 966 967 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 968 { 969 return container_of((void *)uarg, struct sk_buff, cb); 970 } 971 972 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 973 struct ubuf_info *uarg) 974 { 975 if (uarg) { 976 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 977 u32 bytelen, next; 978 979 /* realloc only when socket is locked (TCP, UDP cork), 980 * so uarg->len and sk_zckey access is serialized 981 */ 982 if (!sock_owned_by_user(sk)) { 983 WARN_ON_ONCE(1); 984 return NULL; 985 } 986 987 bytelen = uarg->bytelen + size; 988 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 989 /* TCP can create new skb to attach new uarg */ 990 if (sk->sk_type == SOCK_STREAM) 991 goto new_alloc; 992 return NULL; 993 } 994 995 next = (u32)atomic_read(&sk->sk_zckey); 996 if ((u32)(uarg->id + uarg->len) == next) { 997 if (mm_account_pinned_pages(&uarg->mmp, size)) 998 return NULL; 999 uarg->len++; 1000 uarg->bytelen = bytelen; 1001 atomic_set(&sk->sk_zckey, ++next); 1002 sock_zerocopy_get(uarg); 1003 return uarg; 1004 } 1005 } 1006 1007 new_alloc: 1008 return sock_zerocopy_alloc(sk, size); 1009 } 1010 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1011 1012 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1013 { 1014 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1015 u32 old_lo, old_hi; 1016 u64 sum_len; 1017 1018 old_lo = serr->ee.ee_info; 1019 old_hi = serr->ee.ee_data; 1020 sum_len = old_hi - old_lo + 1ULL + len; 1021 1022 if (sum_len >= (1ULL << 32)) 1023 return false; 1024 1025 if (lo != old_hi + 1) 1026 return false; 1027 1028 serr->ee.ee_data += len; 1029 return true; 1030 } 1031 1032 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1033 { 1034 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1035 struct sock_exterr_skb *serr; 1036 struct sock *sk = skb->sk; 1037 struct sk_buff_head *q; 1038 unsigned long flags; 1039 u32 lo, hi; 1040 u16 len; 1041 1042 mm_unaccount_pinned_pages(&uarg->mmp); 1043 1044 /* if !len, there was only 1 call, and it was aborted 1045 * so do not queue a completion notification 1046 */ 1047 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1048 goto release; 1049 1050 len = uarg->len; 1051 lo = uarg->id; 1052 hi = uarg->id + len - 1; 1053 1054 serr = SKB_EXT_ERR(skb); 1055 memset(serr, 0, sizeof(*serr)); 1056 serr->ee.ee_errno = 0; 1057 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1058 serr->ee.ee_data = hi; 1059 serr->ee.ee_info = lo; 1060 if (!success) 1061 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1062 1063 q = &sk->sk_error_queue; 1064 spin_lock_irqsave(&q->lock, flags); 1065 tail = skb_peek_tail(q); 1066 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1067 !skb_zerocopy_notify_extend(tail, lo, len)) { 1068 __skb_queue_tail(q, skb); 1069 skb = NULL; 1070 } 1071 spin_unlock_irqrestore(&q->lock, flags); 1072 1073 sk->sk_error_report(sk); 1074 1075 release: 1076 consume_skb(skb); 1077 sock_put(sk); 1078 } 1079 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1080 1081 void sock_zerocopy_put(struct ubuf_info *uarg) 1082 { 1083 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1084 if (uarg->callback) 1085 uarg->callback(uarg, uarg->zerocopy); 1086 else 1087 consume_skb(skb_from_uarg(uarg)); 1088 } 1089 } 1090 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1091 1092 void sock_zerocopy_put_abort(struct ubuf_info *uarg) 1093 { 1094 if (uarg) { 1095 struct sock *sk = skb_from_uarg(uarg)->sk; 1096 1097 atomic_dec(&sk->sk_zckey); 1098 uarg->len--; 1099 1100 sock_zerocopy_put(uarg); 1101 } 1102 } 1103 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1104 1105 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1106 struct iov_iter *from, size_t length); 1107 1108 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1109 struct msghdr *msg, int len, 1110 struct ubuf_info *uarg) 1111 { 1112 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1113 struct iov_iter orig_iter = msg->msg_iter; 1114 int err, orig_len = skb->len; 1115 1116 /* An skb can only point to one uarg. This edge case happens when 1117 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1118 */ 1119 if (orig_uarg && uarg != orig_uarg) 1120 return -EEXIST; 1121 1122 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1123 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1124 struct sock *save_sk = skb->sk; 1125 1126 /* Streams do not free skb on error. Reset to prev state. */ 1127 msg->msg_iter = orig_iter; 1128 skb->sk = sk; 1129 ___pskb_trim(skb, orig_len); 1130 skb->sk = save_sk; 1131 return err; 1132 } 1133 1134 skb_zcopy_set(skb, uarg); 1135 return skb->len - orig_len; 1136 } 1137 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1138 1139 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1140 gfp_t gfp_mask) 1141 { 1142 if (skb_zcopy(orig)) { 1143 if (skb_zcopy(nskb)) { 1144 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1145 if (!gfp_mask) { 1146 WARN_ON_ONCE(1); 1147 return -ENOMEM; 1148 } 1149 if (skb_uarg(nskb) == skb_uarg(orig)) 1150 return 0; 1151 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1152 return -EIO; 1153 } 1154 skb_zcopy_set(nskb, skb_uarg(orig)); 1155 } 1156 return 0; 1157 } 1158 1159 /** 1160 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1161 * @skb: the skb to modify 1162 * @gfp_mask: allocation priority 1163 * 1164 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1165 * It will copy all frags into kernel and drop the reference 1166 * to userspace pages. 1167 * 1168 * If this function is called from an interrupt gfp_mask() must be 1169 * %GFP_ATOMIC. 1170 * 1171 * Returns 0 on success or a negative error code on failure 1172 * to allocate kernel memory to copy to. 1173 */ 1174 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1175 { 1176 int num_frags = skb_shinfo(skb)->nr_frags; 1177 struct page *page, *head = NULL; 1178 int i, new_frags; 1179 u32 d_off; 1180 1181 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1182 return -EINVAL; 1183 1184 if (!num_frags) 1185 goto release; 1186 1187 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1188 for (i = 0; i < new_frags; i++) { 1189 page = alloc_page(gfp_mask); 1190 if (!page) { 1191 while (head) { 1192 struct page *next = (struct page *)page_private(head); 1193 put_page(head); 1194 head = next; 1195 } 1196 return -ENOMEM; 1197 } 1198 set_page_private(page, (unsigned long)head); 1199 head = page; 1200 } 1201 1202 page = head; 1203 d_off = 0; 1204 for (i = 0; i < num_frags; i++) { 1205 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1206 u32 p_off, p_len, copied; 1207 struct page *p; 1208 u8 *vaddr; 1209 1210 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1211 p, p_off, p_len, copied) { 1212 u32 copy, done = 0; 1213 vaddr = kmap_atomic(p); 1214 1215 while (done < p_len) { 1216 if (d_off == PAGE_SIZE) { 1217 d_off = 0; 1218 page = (struct page *)page_private(page); 1219 } 1220 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1221 memcpy(page_address(page) + d_off, 1222 vaddr + p_off + done, copy); 1223 done += copy; 1224 d_off += copy; 1225 } 1226 kunmap_atomic(vaddr); 1227 } 1228 } 1229 1230 /* skb frags release userspace buffers */ 1231 for (i = 0; i < num_frags; i++) 1232 skb_frag_unref(skb, i); 1233 1234 /* skb frags point to kernel buffers */ 1235 for (i = 0; i < new_frags - 1; i++) { 1236 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1237 head = (struct page *)page_private(head); 1238 } 1239 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1240 skb_shinfo(skb)->nr_frags = new_frags; 1241 1242 release: 1243 skb_zcopy_clear(skb, false); 1244 return 0; 1245 } 1246 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1247 1248 /** 1249 * skb_clone - duplicate an sk_buff 1250 * @skb: buffer to clone 1251 * @gfp_mask: allocation priority 1252 * 1253 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1254 * copies share the same packet data but not structure. The new 1255 * buffer has a reference count of 1. If the allocation fails the 1256 * function returns %NULL otherwise the new buffer is returned. 1257 * 1258 * If this function is called from an interrupt gfp_mask() must be 1259 * %GFP_ATOMIC. 1260 */ 1261 1262 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1263 { 1264 struct sk_buff_fclones *fclones = container_of(skb, 1265 struct sk_buff_fclones, 1266 skb1); 1267 struct sk_buff *n; 1268 1269 if (skb_orphan_frags(skb, gfp_mask)) 1270 return NULL; 1271 1272 if (skb->fclone == SKB_FCLONE_ORIG && 1273 refcount_read(&fclones->fclone_ref) == 1) { 1274 n = &fclones->skb2; 1275 refcount_set(&fclones->fclone_ref, 2); 1276 } else { 1277 if (skb_pfmemalloc(skb)) 1278 gfp_mask |= __GFP_MEMALLOC; 1279 1280 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1281 if (!n) 1282 return NULL; 1283 1284 n->fclone = SKB_FCLONE_UNAVAILABLE; 1285 } 1286 1287 return __skb_clone(n, skb); 1288 } 1289 EXPORT_SYMBOL(skb_clone); 1290 1291 void skb_headers_offset_update(struct sk_buff *skb, int off) 1292 { 1293 /* Only adjust this if it actually is csum_start rather than csum */ 1294 if (skb->ip_summed == CHECKSUM_PARTIAL) 1295 skb->csum_start += off; 1296 /* {transport,network,mac}_header and tail are relative to skb->head */ 1297 skb->transport_header += off; 1298 skb->network_header += off; 1299 if (skb_mac_header_was_set(skb)) 1300 skb->mac_header += off; 1301 skb->inner_transport_header += off; 1302 skb->inner_network_header += off; 1303 skb->inner_mac_header += off; 1304 } 1305 EXPORT_SYMBOL(skb_headers_offset_update); 1306 1307 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1308 { 1309 __copy_skb_header(new, old); 1310 1311 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1312 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1313 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1314 } 1315 EXPORT_SYMBOL(skb_copy_header); 1316 1317 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1318 { 1319 if (skb_pfmemalloc(skb)) 1320 return SKB_ALLOC_RX; 1321 return 0; 1322 } 1323 1324 /** 1325 * skb_copy - create private copy of an sk_buff 1326 * @skb: buffer to copy 1327 * @gfp_mask: allocation priority 1328 * 1329 * Make a copy of both an &sk_buff and its data. This is used when the 1330 * caller wishes to modify the data and needs a private copy of the 1331 * data to alter. Returns %NULL on failure or the pointer to the buffer 1332 * on success. The returned buffer has a reference count of 1. 1333 * 1334 * As by-product this function converts non-linear &sk_buff to linear 1335 * one, so that &sk_buff becomes completely private and caller is allowed 1336 * to modify all the data of returned buffer. This means that this 1337 * function is not recommended for use in circumstances when only 1338 * header is going to be modified. Use pskb_copy() instead. 1339 */ 1340 1341 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1342 { 1343 int headerlen = skb_headroom(skb); 1344 unsigned int size = skb_end_offset(skb) + skb->data_len; 1345 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1346 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1347 1348 if (!n) 1349 return NULL; 1350 1351 /* Set the data pointer */ 1352 skb_reserve(n, headerlen); 1353 /* Set the tail pointer and length */ 1354 skb_put(n, skb->len); 1355 1356 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1357 1358 skb_copy_header(n, skb); 1359 return n; 1360 } 1361 EXPORT_SYMBOL(skb_copy); 1362 1363 /** 1364 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1365 * @skb: buffer to copy 1366 * @headroom: headroom of new skb 1367 * @gfp_mask: allocation priority 1368 * @fclone: if true allocate the copy of the skb from the fclone 1369 * cache instead of the head cache; it is recommended to set this 1370 * to true for the cases where the copy will likely be cloned 1371 * 1372 * Make a copy of both an &sk_buff and part of its data, located 1373 * in header. Fragmented data remain shared. This is used when 1374 * the caller wishes to modify only header of &sk_buff and needs 1375 * private copy of the header to alter. Returns %NULL on failure 1376 * or the pointer to the buffer on success. 1377 * The returned buffer has a reference count of 1. 1378 */ 1379 1380 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1381 gfp_t gfp_mask, bool fclone) 1382 { 1383 unsigned int size = skb_headlen(skb) + headroom; 1384 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1385 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1386 1387 if (!n) 1388 goto out; 1389 1390 /* Set the data pointer */ 1391 skb_reserve(n, headroom); 1392 /* Set the tail pointer and length */ 1393 skb_put(n, skb_headlen(skb)); 1394 /* Copy the bytes */ 1395 skb_copy_from_linear_data(skb, n->data, n->len); 1396 1397 n->truesize += skb->data_len; 1398 n->data_len = skb->data_len; 1399 n->len = skb->len; 1400 1401 if (skb_shinfo(skb)->nr_frags) { 1402 int i; 1403 1404 if (skb_orphan_frags(skb, gfp_mask) || 1405 skb_zerocopy_clone(n, skb, gfp_mask)) { 1406 kfree_skb(n); 1407 n = NULL; 1408 goto out; 1409 } 1410 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1411 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1412 skb_frag_ref(skb, i); 1413 } 1414 skb_shinfo(n)->nr_frags = i; 1415 } 1416 1417 if (skb_has_frag_list(skb)) { 1418 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1419 skb_clone_fraglist(n); 1420 } 1421 1422 skb_copy_header(n, skb); 1423 out: 1424 return n; 1425 } 1426 EXPORT_SYMBOL(__pskb_copy_fclone); 1427 1428 /** 1429 * pskb_expand_head - reallocate header of &sk_buff 1430 * @skb: buffer to reallocate 1431 * @nhead: room to add at head 1432 * @ntail: room to add at tail 1433 * @gfp_mask: allocation priority 1434 * 1435 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1436 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1437 * reference count of 1. Returns zero in the case of success or error, 1438 * if expansion failed. In the last case, &sk_buff is not changed. 1439 * 1440 * All the pointers pointing into skb header may change and must be 1441 * reloaded after call to this function. 1442 */ 1443 1444 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1445 gfp_t gfp_mask) 1446 { 1447 int i, osize = skb_end_offset(skb); 1448 int size = osize + nhead + ntail; 1449 long off; 1450 u8 *data; 1451 1452 BUG_ON(nhead < 0); 1453 1454 BUG_ON(skb_shared(skb)); 1455 1456 size = SKB_DATA_ALIGN(size); 1457 1458 if (skb_pfmemalloc(skb)) 1459 gfp_mask |= __GFP_MEMALLOC; 1460 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1461 gfp_mask, NUMA_NO_NODE, NULL); 1462 if (!data) 1463 goto nodata; 1464 size = SKB_WITH_OVERHEAD(ksize(data)); 1465 1466 /* Copy only real data... and, alas, header. This should be 1467 * optimized for the cases when header is void. 1468 */ 1469 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1470 1471 memcpy((struct skb_shared_info *)(data + size), 1472 skb_shinfo(skb), 1473 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1474 1475 /* 1476 * if shinfo is shared we must drop the old head gracefully, but if it 1477 * is not we can just drop the old head and let the existing refcount 1478 * be since all we did is relocate the values 1479 */ 1480 if (skb_cloned(skb)) { 1481 if (skb_orphan_frags(skb, gfp_mask)) 1482 goto nofrags; 1483 if (skb_zcopy(skb)) 1484 refcount_inc(&skb_uarg(skb)->refcnt); 1485 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1486 skb_frag_ref(skb, i); 1487 1488 if (skb_has_frag_list(skb)) 1489 skb_clone_fraglist(skb); 1490 1491 skb_release_data(skb); 1492 } else { 1493 skb_free_head(skb); 1494 } 1495 off = (data + nhead) - skb->head; 1496 1497 skb->head = data; 1498 skb->head_frag = 0; 1499 skb->data += off; 1500 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1501 skb->end = size; 1502 off = nhead; 1503 #else 1504 skb->end = skb->head + size; 1505 #endif 1506 skb->tail += off; 1507 skb_headers_offset_update(skb, nhead); 1508 skb->cloned = 0; 1509 skb->hdr_len = 0; 1510 skb->nohdr = 0; 1511 atomic_set(&skb_shinfo(skb)->dataref, 1); 1512 1513 skb_metadata_clear(skb); 1514 1515 /* It is not generally safe to change skb->truesize. 1516 * For the moment, we really care of rx path, or 1517 * when skb is orphaned (not attached to a socket). 1518 */ 1519 if (!skb->sk || skb->destructor == sock_edemux) 1520 skb->truesize += size - osize; 1521 1522 return 0; 1523 1524 nofrags: 1525 kfree(data); 1526 nodata: 1527 return -ENOMEM; 1528 } 1529 EXPORT_SYMBOL(pskb_expand_head); 1530 1531 /* Make private copy of skb with writable head and some headroom */ 1532 1533 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1534 { 1535 struct sk_buff *skb2; 1536 int delta = headroom - skb_headroom(skb); 1537 1538 if (delta <= 0) 1539 skb2 = pskb_copy(skb, GFP_ATOMIC); 1540 else { 1541 skb2 = skb_clone(skb, GFP_ATOMIC); 1542 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1543 GFP_ATOMIC)) { 1544 kfree_skb(skb2); 1545 skb2 = NULL; 1546 } 1547 } 1548 return skb2; 1549 } 1550 EXPORT_SYMBOL(skb_realloc_headroom); 1551 1552 /** 1553 * skb_copy_expand - copy and expand sk_buff 1554 * @skb: buffer to copy 1555 * @newheadroom: new free bytes at head 1556 * @newtailroom: new free bytes at tail 1557 * @gfp_mask: allocation priority 1558 * 1559 * Make a copy of both an &sk_buff and its data and while doing so 1560 * allocate additional space. 1561 * 1562 * This is used when the caller wishes to modify the data and needs a 1563 * private copy of the data to alter as well as more space for new fields. 1564 * Returns %NULL on failure or the pointer to the buffer 1565 * on success. The returned buffer has a reference count of 1. 1566 * 1567 * You must pass %GFP_ATOMIC as the allocation priority if this function 1568 * is called from an interrupt. 1569 */ 1570 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1571 int newheadroom, int newtailroom, 1572 gfp_t gfp_mask) 1573 { 1574 /* 1575 * Allocate the copy buffer 1576 */ 1577 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1578 gfp_mask, skb_alloc_rx_flag(skb), 1579 NUMA_NO_NODE); 1580 int oldheadroom = skb_headroom(skb); 1581 int head_copy_len, head_copy_off; 1582 1583 if (!n) 1584 return NULL; 1585 1586 skb_reserve(n, newheadroom); 1587 1588 /* Set the tail pointer and length */ 1589 skb_put(n, skb->len); 1590 1591 head_copy_len = oldheadroom; 1592 head_copy_off = 0; 1593 if (newheadroom <= head_copy_len) 1594 head_copy_len = newheadroom; 1595 else 1596 head_copy_off = newheadroom - head_copy_len; 1597 1598 /* Copy the linear header and data. */ 1599 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1600 skb->len + head_copy_len)); 1601 1602 skb_copy_header(n, skb); 1603 1604 skb_headers_offset_update(n, newheadroom - oldheadroom); 1605 1606 return n; 1607 } 1608 EXPORT_SYMBOL(skb_copy_expand); 1609 1610 /** 1611 * __skb_pad - zero pad the tail of an skb 1612 * @skb: buffer to pad 1613 * @pad: space to pad 1614 * @free_on_error: free buffer on error 1615 * 1616 * Ensure that a buffer is followed by a padding area that is zero 1617 * filled. Used by network drivers which may DMA or transfer data 1618 * beyond the buffer end onto the wire. 1619 * 1620 * May return error in out of memory cases. The skb is freed on error 1621 * if @free_on_error is true. 1622 */ 1623 1624 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1625 { 1626 int err; 1627 int ntail; 1628 1629 /* If the skbuff is non linear tailroom is always zero.. */ 1630 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1631 memset(skb->data+skb->len, 0, pad); 1632 return 0; 1633 } 1634 1635 ntail = skb->data_len + pad - (skb->end - skb->tail); 1636 if (likely(skb_cloned(skb) || ntail > 0)) { 1637 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1638 if (unlikely(err)) 1639 goto free_skb; 1640 } 1641 1642 /* FIXME: The use of this function with non-linear skb's really needs 1643 * to be audited. 1644 */ 1645 err = skb_linearize(skb); 1646 if (unlikely(err)) 1647 goto free_skb; 1648 1649 memset(skb->data + skb->len, 0, pad); 1650 return 0; 1651 1652 free_skb: 1653 if (free_on_error) 1654 kfree_skb(skb); 1655 return err; 1656 } 1657 EXPORT_SYMBOL(__skb_pad); 1658 1659 /** 1660 * pskb_put - add data to the tail of a potentially fragmented buffer 1661 * @skb: start of the buffer to use 1662 * @tail: tail fragment of the buffer to use 1663 * @len: amount of data to add 1664 * 1665 * This function extends the used data area of the potentially 1666 * fragmented buffer. @tail must be the last fragment of @skb -- or 1667 * @skb itself. If this would exceed the total buffer size the kernel 1668 * will panic. A pointer to the first byte of the extra data is 1669 * returned. 1670 */ 1671 1672 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1673 { 1674 if (tail != skb) { 1675 skb->data_len += len; 1676 skb->len += len; 1677 } 1678 return skb_put(tail, len); 1679 } 1680 EXPORT_SYMBOL_GPL(pskb_put); 1681 1682 /** 1683 * skb_put - add data to a buffer 1684 * @skb: buffer to use 1685 * @len: amount of data to add 1686 * 1687 * This function extends the used data area of the buffer. If this would 1688 * exceed the total buffer size the kernel will panic. A pointer to the 1689 * first byte of the extra data is returned. 1690 */ 1691 void *skb_put(struct sk_buff *skb, unsigned int len) 1692 { 1693 void *tmp = skb_tail_pointer(skb); 1694 SKB_LINEAR_ASSERT(skb); 1695 skb->tail += len; 1696 skb->len += len; 1697 if (unlikely(skb->tail > skb->end)) 1698 skb_over_panic(skb, len, __builtin_return_address(0)); 1699 return tmp; 1700 } 1701 EXPORT_SYMBOL(skb_put); 1702 1703 /** 1704 * skb_push - add data to the start of a buffer 1705 * @skb: buffer to use 1706 * @len: amount of data to add 1707 * 1708 * This function extends the used data area of the buffer at the buffer 1709 * start. If this would exceed the total buffer headroom the kernel will 1710 * panic. A pointer to the first byte of the extra data is returned. 1711 */ 1712 void *skb_push(struct sk_buff *skb, unsigned int len) 1713 { 1714 skb->data -= len; 1715 skb->len += len; 1716 if (unlikely(skb->data < skb->head)) 1717 skb_under_panic(skb, len, __builtin_return_address(0)); 1718 return skb->data; 1719 } 1720 EXPORT_SYMBOL(skb_push); 1721 1722 /** 1723 * skb_pull - remove data from the start of a buffer 1724 * @skb: buffer to use 1725 * @len: amount of data to remove 1726 * 1727 * This function removes data from the start of a buffer, returning 1728 * the memory to the headroom. A pointer to the next data in the buffer 1729 * is returned. Once the data has been pulled future pushes will overwrite 1730 * the old data. 1731 */ 1732 void *skb_pull(struct sk_buff *skb, unsigned int len) 1733 { 1734 return skb_pull_inline(skb, len); 1735 } 1736 EXPORT_SYMBOL(skb_pull); 1737 1738 /** 1739 * skb_trim - remove end from a buffer 1740 * @skb: buffer to alter 1741 * @len: new length 1742 * 1743 * Cut the length of a buffer down by removing data from the tail. If 1744 * the buffer is already under the length specified it is not modified. 1745 * The skb must be linear. 1746 */ 1747 void skb_trim(struct sk_buff *skb, unsigned int len) 1748 { 1749 if (skb->len > len) 1750 __skb_trim(skb, len); 1751 } 1752 EXPORT_SYMBOL(skb_trim); 1753 1754 /* Trims skb to length len. It can change skb pointers. 1755 */ 1756 1757 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1758 { 1759 struct sk_buff **fragp; 1760 struct sk_buff *frag; 1761 int offset = skb_headlen(skb); 1762 int nfrags = skb_shinfo(skb)->nr_frags; 1763 int i; 1764 int err; 1765 1766 if (skb_cloned(skb) && 1767 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1768 return err; 1769 1770 i = 0; 1771 if (offset >= len) 1772 goto drop_pages; 1773 1774 for (; i < nfrags; i++) { 1775 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1776 1777 if (end < len) { 1778 offset = end; 1779 continue; 1780 } 1781 1782 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1783 1784 drop_pages: 1785 skb_shinfo(skb)->nr_frags = i; 1786 1787 for (; i < nfrags; i++) 1788 skb_frag_unref(skb, i); 1789 1790 if (skb_has_frag_list(skb)) 1791 skb_drop_fraglist(skb); 1792 goto done; 1793 } 1794 1795 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1796 fragp = &frag->next) { 1797 int end = offset + frag->len; 1798 1799 if (skb_shared(frag)) { 1800 struct sk_buff *nfrag; 1801 1802 nfrag = skb_clone(frag, GFP_ATOMIC); 1803 if (unlikely(!nfrag)) 1804 return -ENOMEM; 1805 1806 nfrag->next = frag->next; 1807 consume_skb(frag); 1808 frag = nfrag; 1809 *fragp = frag; 1810 } 1811 1812 if (end < len) { 1813 offset = end; 1814 continue; 1815 } 1816 1817 if (end > len && 1818 unlikely((err = pskb_trim(frag, len - offset)))) 1819 return err; 1820 1821 if (frag->next) 1822 skb_drop_list(&frag->next); 1823 break; 1824 } 1825 1826 done: 1827 if (len > skb_headlen(skb)) { 1828 skb->data_len -= skb->len - len; 1829 skb->len = len; 1830 } else { 1831 skb->len = len; 1832 skb->data_len = 0; 1833 skb_set_tail_pointer(skb, len); 1834 } 1835 1836 if (!skb->sk || skb->destructor == sock_edemux) 1837 skb_condense(skb); 1838 return 0; 1839 } 1840 EXPORT_SYMBOL(___pskb_trim); 1841 1842 /* Note : use pskb_trim_rcsum() instead of calling this directly 1843 */ 1844 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 1845 { 1846 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1847 int delta = skb->len - len; 1848 1849 skb->csum = csum_block_sub(skb->csum, 1850 skb_checksum(skb, len, delta, 0), 1851 len); 1852 } 1853 return __pskb_trim(skb, len); 1854 } 1855 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 1856 1857 /** 1858 * __pskb_pull_tail - advance tail of skb header 1859 * @skb: buffer to reallocate 1860 * @delta: number of bytes to advance tail 1861 * 1862 * The function makes a sense only on a fragmented &sk_buff, 1863 * it expands header moving its tail forward and copying necessary 1864 * data from fragmented part. 1865 * 1866 * &sk_buff MUST have reference count of 1. 1867 * 1868 * Returns %NULL (and &sk_buff does not change) if pull failed 1869 * or value of new tail of skb in the case of success. 1870 * 1871 * All the pointers pointing into skb header may change and must be 1872 * reloaded after call to this function. 1873 */ 1874 1875 /* Moves tail of skb head forward, copying data from fragmented part, 1876 * when it is necessary. 1877 * 1. It may fail due to malloc failure. 1878 * 2. It may change skb pointers. 1879 * 1880 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1881 */ 1882 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1883 { 1884 /* If skb has not enough free space at tail, get new one 1885 * plus 128 bytes for future expansions. If we have enough 1886 * room at tail, reallocate without expansion only if skb is cloned. 1887 */ 1888 int i, k, eat = (skb->tail + delta) - skb->end; 1889 1890 if (eat > 0 || skb_cloned(skb)) { 1891 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1892 GFP_ATOMIC)) 1893 return NULL; 1894 } 1895 1896 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 1897 skb_tail_pointer(skb), delta)); 1898 1899 /* Optimization: no fragments, no reasons to preestimate 1900 * size of pulled pages. Superb. 1901 */ 1902 if (!skb_has_frag_list(skb)) 1903 goto pull_pages; 1904 1905 /* Estimate size of pulled pages. */ 1906 eat = delta; 1907 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1908 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1909 1910 if (size >= eat) 1911 goto pull_pages; 1912 eat -= size; 1913 } 1914 1915 /* If we need update frag list, we are in troubles. 1916 * Certainly, it is possible to add an offset to skb data, 1917 * but taking into account that pulling is expected to 1918 * be very rare operation, it is worth to fight against 1919 * further bloating skb head and crucify ourselves here instead. 1920 * Pure masohism, indeed. 8)8) 1921 */ 1922 if (eat) { 1923 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1924 struct sk_buff *clone = NULL; 1925 struct sk_buff *insp = NULL; 1926 1927 do { 1928 BUG_ON(!list); 1929 1930 if (list->len <= eat) { 1931 /* Eaten as whole. */ 1932 eat -= list->len; 1933 list = list->next; 1934 insp = list; 1935 } else { 1936 /* Eaten partially. */ 1937 1938 if (skb_shared(list)) { 1939 /* Sucks! We need to fork list. :-( */ 1940 clone = skb_clone(list, GFP_ATOMIC); 1941 if (!clone) 1942 return NULL; 1943 insp = list->next; 1944 list = clone; 1945 } else { 1946 /* This may be pulled without 1947 * problems. */ 1948 insp = list; 1949 } 1950 if (!pskb_pull(list, eat)) { 1951 kfree_skb(clone); 1952 return NULL; 1953 } 1954 break; 1955 } 1956 } while (eat); 1957 1958 /* Free pulled out fragments. */ 1959 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1960 skb_shinfo(skb)->frag_list = list->next; 1961 kfree_skb(list); 1962 } 1963 /* And insert new clone at head. */ 1964 if (clone) { 1965 clone->next = list; 1966 skb_shinfo(skb)->frag_list = clone; 1967 } 1968 } 1969 /* Success! Now we may commit changes to skb data. */ 1970 1971 pull_pages: 1972 eat = delta; 1973 k = 0; 1974 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1975 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1976 1977 if (size <= eat) { 1978 skb_frag_unref(skb, i); 1979 eat -= size; 1980 } else { 1981 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1982 if (eat) { 1983 skb_shinfo(skb)->frags[k].page_offset += eat; 1984 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1985 if (!i) 1986 goto end; 1987 eat = 0; 1988 } 1989 k++; 1990 } 1991 } 1992 skb_shinfo(skb)->nr_frags = k; 1993 1994 end: 1995 skb->tail += delta; 1996 skb->data_len -= delta; 1997 1998 if (!skb->data_len) 1999 skb_zcopy_clear(skb, false); 2000 2001 return skb_tail_pointer(skb); 2002 } 2003 EXPORT_SYMBOL(__pskb_pull_tail); 2004 2005 /** 2006 * skb_copy_bits - copy bits from skb to kernel buffer 2007 * @skb: source skb 2008 * @offset: offset in source 2009 * @to: destination buffer 2010 * @len: number of bytes to copy 2011 * 2012 * Copy the specified number of bytes from the source skb to the 2013 * destination buffer. 2014 * 2015 * CAUTION ! : 2016 * If its prototype is ever changed, 2017 * check arch/{*}/net/{*}.S files, 2018 * since it is called from BPF assembly code. 2019 */ 2020 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2021 { 2022 int start = skb_headlen(skb); 2023 struct sk_buff *frag_iter; 2024 int i, copy; 2025 2026 if (offset > (int)skb->len - len) 2027 goto fault; 2028 2029 /* Copy header. */ 2030 if ((copy = start - offset) > 0) { 2031 if (copy > len) 2032 copy = len; 2033 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2034 if ((len -= copy) == 0) 2035 return 0; 2036 offset += copy; 2037 to += copy; 2038 } 2039 2040 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2041 int end; 2042 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2043 2044 WARN_ON(start > offset + len); 2045 2046 end = start + skb_frag_size(f); 2047 if ((copy = end - offset) > 0) { 2048 u32 p_off, p_len, copied; 2049 struct page *p; 2050 u8 *vaddr; 2051 2052 if (copy > len) 2053 copy = len; 2054 2055 skb_frag_foreach_page(f, 2056 f->page_offset + offset - start, 2057 copy, p, p_off, p_len, copied) { 2058 vaddr = kmap_atomic(p); 2059 memcpy(to + copied, vaddr + p_off, p_len); 2060 kunmap_atomic(vaddr); 2061 } 2062 2063 if ((len -= copy) == 0) 2064 return 0; 2065 offset += copy; 2066 to += copy; 2067 } 2068 start = end; 2069 } 2070 2071 skb_walk_frags(skb, frag_iter) { 2072 int end; 2073 2074 WARN_ON(start > offset + len); 2075 2076 end = start + frag_iter->len; 2077 if ((copy = end - offset) > 0) { 2078 if (copy > len) 2079 copy = len; 2080 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2081 goto fault; 2082 if ((len -= copy) == 0) 2083 return 0; 2084 offset += copy; 2085 to += copy; 2086 } 2087 start = end; 2088 } 2089 2090 if (!len) 2091 return 0; 2092 2093 fault: 2094 return -EFAULT; 2095 } 2096 EXPORT_SYMBOL(skb_copy_bits); 2097 2098 /* 2099 * Callback from splice_to_pipe(), if we need to release some pages 2100 * at the end of the spd in case we error'ed out in filling the pipe. 2101 */ 2102 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2103 { 2104 put_page(spd->pages[i]); 2105 } 2106 2107 static struct page *linear_to_page(struct page *page, unsigned int *len, 2108 unsigned int *offset, 2109 struct sock *sk) 2110 { 2111 struct page_frag *pfrag = sk_page_frag(sk); 2112 2113 if (!sk_page_frag_refill(sk, pfrag)) 2114 return NULL; 2115 2116 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2117 2118 memcpy(page_address(pfrag->page) + pfrag->offset, 2119 page_address(page) + *offset, *len); 2120 *offset = pfrag->offset; 2121 pfrag->offset += *len; 2122 2123 return pfrag->page; 2124 } 2125 2126 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2127 struct page *page, 2128 unsigned int offset) 2129 { 2130 return spd->nr_pages && 2131 spd->pages[spd->nr_pages - 1] == page && 2132 (spd->partial[spd->nr_pages - 1].offset + 2133 spd->partial[spd->nr_pages - 1].len == offset); 2134 } 2135 2136 /* 2137 * Fill page/offset/length into spd, if it can hold more pages. 2138 */ 2139 static bool spd_fill_page(struct splice_pipe_desc *spd, 2140 struct pipe_inode_info *pipe, struct page *page, 2141 unsigned int *len, unsigned int offset, 2142 bool linear, 2143 struct sock *sk) 2144 { 2145 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2146 return true; 2147 2148 if (linear) { 2149 page = linear_to_page(page, len, &offset, sk); 2150 if (!page) 2151 return true; 2152 } 2153 if (spd_can_coalesce(spd, page, offset)) { 2154 spd->partial[spd->nr_pages - 1].len += *len; 2155 return false; 2156 } 2157 get_page(page); 2158 spd->pages[spd->nr_pages] = page; 2159 spd->partial[spd->nr_pages].len = *len; 2160 spd->partial[spd->nr_pages].offset = offset; 2161 spd->nr_pages++; 2162 2163 return false; 2164 } 2165 2166 static bool __splice_segment(struct page *page, unsigned int poff, 2167 unsigned int plen, unsigned int *off, 2168 unsigned int *len, 2169 struct splice_pipe_desc *spd, bool linear, 2170 struct sock *sk, 2171 struct pipe_inode_info *pipe) 2172 { 2173 if (!*len) 2174 return true; 2175 2176 /* skip this segment if already processed */ 2177 if (*off >= plen) { 2178 *off -= plen; 2179 return false; 2180 } 2181 2182 /* ignore any bits we already processed */ 2183 poff += *off; 2184 plen -= *off; 2185 *off = 0; 2186 2187 do { 2188 unsigned int flen = min(*len, plen); 2189 2190 if (spd_fill_page(spd, pipe, page, &flen, poff, 2191 linear, sk)) 2192 return true; 2193 poff += flen; 2194 plen -= flen; 2195 *len -= flen; 2196 } while (*len && plen); 2197 2198 return false; 2199 } 2200 2201 /* 2202 * Map linear and fragment data from the skb to spd. It reports true if the 2203 * pipe is full or if we already spliced the requested length. 2204 */ 2205 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2206 unsigned int *offset, unsigned int *len, 2207 struct splice_pipe_desc *spd, struct sock *sk) 2208 { 2209 int seg; 2210 struct sk_buff *iter; 2211 2212 /* map the linear part : 2213 * If skb->head_frag is set, this 'linear' part is backed by a 2214 * fragment, and if the head is not shared with any clones then 2215 * we can avoid a copy since we own the head portion of this page. 2216 */ 2217 if (__splice_segment(virt_to_page(skb->data), 2218 (unsigned long) skb->data & (PAGE_SIZE - 1), 2219 skb_headlen(skb), 2220 offset, len, spd, 2221 skb_head_is_locked(skb), 2222 sk, pipe)) 2223 return true; 2224 2225 /* 2226 * then map the fragments 2227 */ 2228 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2229 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2230 2231 if (__splice_segment(skb_frag_page(f), 2232 f->page_offset, skb_frag_size(f), 2233 offset, len, spd, false, sk, pipe)) 2234 return true; 2235 } 2236 2237 skb_walk_frags(skb, iter) { 2238 if (*offset >= iter->len) { 2239 *offset -= iter->len; 2240 continue; 2241 } 2242 /* __skb_splice_bits() only fails if the output has no room 2243 * left, so no point in going over the frag_list for the error 2244 * case. 2245 */ 2246 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2247 return true; 2248 } 2249 2250 return false; 2251 } 2252 2253 /* 2254 * Map data from the skb to a pipe. Should handle both the linear part, 2255 * the fragments, and the frag list. 2256 */ 2257 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2258 struct pipe_inode_info *pipe, unsigned int tlen, 2259 unsigned int flags) 2260 { 2261 struct partial_page partial[MAX_SKB_FRAGS]; 2262 struct page *pages[MAX_SKB_FRAGS]; 2263 struct splice_pipe_desc spd = { 2264 .pages = pages, 2265 .partial = partial, 2266 .nr_pages_max = MAX_SKB_FRAGS, 2267 .ops = &nosteal_pipe_buf_ops, 2268 .spd_release = sock_spd_release, 2269 }; 2270 int ret = 0; 2271 2272 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2273 2274 if (spd.nr_pages) 2275 ret = splice_to_pipe(pipe, &spd); 2276 2277 return ret; 2278 } 2279 EXPORT_SYMBOL_GPL(skb_splice_bits); 2280 2281 /* Send skb data on a socket. Socket must be locked. */ 2282 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2283 int len) 2284 { 2285 unsigned int orig_len = len; 2286 struct sk_buff *head = skb; 2287 unsigned short fragidx; 2288 int slen, ret; 2289 2290 do_frag_list: 2291 2292 /* Deal with head data */ 2293 while (offset < skb_headlen(skb) && len) { 2294 struct kvec kv; 2295 struct msghdr msg; 2296 2297 slen = min_t(int, len, skb_headlen(skb) - offset); 2298 kv.iov_base = skb->data + offset; 2299 kv.iov_len = slen; 2300 memset(&msg, 0, sizeof(msg)); 2301 2302 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2303 if (ret <= 0) 2304 goto error; 2305 2306 offset += ret; 2307 len -= ret; 2308 } 2309 2310 /* All the data was skb head? */ 2311 if (!len) 2312 goto out; 2313 2314 /* Make offset relative to start of frags */ 2315 offset -= skb_headlen(skb); 2316 2317 /* Find where we are in frag list */ 2318 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2319 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2320 2321 if (offset < frag->size) 2322 break; 2323 2324 offset -= frag->size; 2325 } 2326 2327 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2328 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2329 2330 slen = min_t(size_t, len, frag->size - offset); 2331 2332 while (slen) { 2333 ret = kernel_sendpage_locked(sk, frag->page.p, 2334 frag->page_offset + offset, 2335 slen, MSG_DONTWAIT); 2336 if (ret <= 0) 2337 goto error; 2338 2339 len -= ret; 2340 offset += ret; 2341 slen -= ret; 2342 } 2343 2344 offset = 0; 2345 } 2346 2347 if (len) { 2348 /* Process any frag lists */ 2349 2350 if (skb == head) { 2351 if (skb_has_frag_list(skb)) { 2352 skb = skb_shinfo(skb)->frag_list; 2353 goto do_frag_list; 2354 } 2355 } else if (skb->next) { 2356 skb = skb->next; 2357 goto do_frag_list; 2358 } 2359 } 2360 2361 out: 2362 return orig_len - len; 2363 2364 error: 2365 return orig_len == len ? ret : orig_len - len; 2366 } 2367 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2368 2369 /* Send skb data on a socket. */ 2370 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2371 { 2372 int ret = 0; 2373 2374 lock_sock(sk); 2375 ret = skb_send_sock_locked(sk, skb, offset, len); 2376 release_sock(sk); 2377 2378 return ret; 2379 } 2380 EXPORT_SYMBOL_GPL(skb_send_sock); 2381 2382 /** 2383 * skb_store_bits - store bits from kernel buffer to skb 2384 * @skb: destination buffer 2385 * @offset: offset in destination 2386 * @from: source buffer 2387 * @len: number of bytes to copy 2388 * 2389 * Copy the specified number of bytes from the source buffer to the 2390 * destination skb. This function handles all the messy bits of 2391 * traversing fragment lists and such. 2392 */ 2393 2394 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2395 { 2396 int start = skb_headlen(skb); 2397 struct sk_buff *frag_iter; 2398 int i, copy; 2399 2400 if (offset > (int)skb->len - len) 2401 goto fault; 2402 2403 if ((copy = start - offset) > 0) { 2404 if (copy > len) 2405 copy = len; 2406 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2407 if ((len -= copy) == 0) 2408 return 0; 2409 offset += copy; 2410 from += copy; 2411 } 2412 2413 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2414 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2415 int end; 2416 2417 WARN_ON(start > offset + len); 2418 2419 end = start + skb_frag_size(frag); 2420 if ((copy = end - offset) > 0) { 2421 u32 p_off, p_len, copied; 2422 struct page *p; 2423 u8 *vaddr; 2424 2425 if (copy > len) 2426 copy = len; 2427 2428 skb_frag_foreach_page(frag, 2429 frag->page_offset + offset - start, 2430 copy, p, p_off, p_len, copied) { 2431 vaddr = kmap_atomic(p); 2432 memcpy(vaddr + p_off, from + copied, p_len); 2433 kunmap_atomic(vaddr); 2434 } 2435 2436 if ((len -= copy) == 0) 2437 return 0; 2438 offset += copy; 2439 from += copy; 2440 } 2441 start = end; 2442 } 2443 2444 skb_walk_frags(skb, frag_iter) { 2445 int end; 2446 2447 WARN_ON(start > offset + len); 2448 2449 end = start + frag_iter->len; 2450 if ((copy = end - offset) > 0) { 2451 if (copy > len) 2452 copy = len; 2453 if (skb_store_bits(frag_iter, offset - start, 2454 from, copy)) 2455 goto fault; 2456 if ((len -= copy) == 0) 2457 return 0; 2458 offset += copy; 2459 from += copy; 2460 } 2461 start = end; 2462 } 2463 if (!len) 2464 return 0; 2465 2466 fault: 2467 return -EFAULT; 2468 } 2469 EXPORT_SYMBOL(skb_store_bits); 2470 2471 /* Checksum skb data. */ 2472 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2473 __wsum csum, const struct skb_checksum_ops *ops) 2474 { 2475 int start = skb_headlen(skb); 2476 int i, copy = start - offset; 2477 struct sk_buff *frag_iter; 2478 int pos = 0; 2479 2480 /* Checksum header. */ 2481 if (copy > 0) { 2482 if (copy > len) 2483 copy = len; 2484 csum = ops->update(skb->data + offset, copy, csum); 2485 if ((len -= copy) == 0) 2486 return csum; 2487 offset += copy; 2488 pos = copy; 2489 } 2490 2491 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2492 int end; 2493 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2494 2495 WARN_ON(start > offset + len); 2496 2497 end = start + skb_frag_size(frag); 2498 if ((copy = end - offset) > 0) { 2499 u32 p_off, p_len, copied; 2500 struct page *p; 2501 __wsum csum2; 2502 u8 *vaddr; 2503 2504 if (copy > len) 2505 copy = len; 2506 2507 skb_frag_foreach_page(frag, 2508 frag->page_offset + offset - start, 2509 copy, p, p_off, p_len, copied) { 2510 vaddr = kmap_atomic(p); 2511 csum2 = ops->update(vaddr + p_off, p_len, 0); 2512 kunmap_atomic(vaddr); 2513 csum = ops->combine(csum, csum2, pos, p_len); 2514 pos += p_len; 2515 } 2516 2517 if (!(len -= copy)) 2518 return csum; 2519 offset += copy; 2520 } 2521 start = end; 2522 } 2523 2524 skb_walk_frags(skb, frag_iter) { 2525 int end; 2526 2527 WARN_ON(start > offset + len); 2528 2529 end = start + frag_iter->len; 2530 if ((copy = end - offset) > 0) { 2531 __wsum csum2; 2532 if (copy > len) 2533 copy = len; 2534 csum2 = __skb_checksum(frag_iter, offset - start, 2535 copy, 0, ops); 2536 csum = ops->combine(csum, csum2, pos, copy); 2537 if ((len -= copy) == 0) 2538 return csum; 2539 offset += copy; 2540 pos += copy; 2541 } 2542 start = end; 2543 } 2544 BUG_ON(len); 2545 2546 return csum; 2547 } 2548 EXPORT_SYMBOL(__skb_checksum); 2549 2550 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2551 int len, __wsum csum) 2552 { 2553 const struct skb_checksum_ops ops = { 2554 .update = csum_partial_ext, 2555 .combine = csum_block_add_ext, 2556 }; 2557 2558 return __skb_checksum(skb, offset, len, csum, &ops); 2559 } 2560 EXPORT_SYMBOL(skb_checksum); 2561 2562 /* Both of above in one bottle. */ 2563 2564 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2565 u8 *to, int len, __wsum csum) 2566 { 2567 int start = skb_headlen(skb); 2568 int i, copy = start - offset; 2569 struct sk_buff *frag_iter; 2570 int pos = 0; 2571 2572 /* Copy header. */ 2573 if (copy > 0) { 2574 if (copy > len) 2575 copy = len; 2576 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2577 copy, csum); 2578 if ((len -= copy) == 0) 2579 return csum; 2580 offset += copy; 2581 to += copy; 2582 pos = copy; 2583 } 2584 2585 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2586 int end; 2587 2588 WARN_ON(start > offset + len); 2589 2590 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2591 if ((copy = end - offset) > 0) { 2592 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2593 u32 p_off, p_len, copied; 2594 struct page *p; 2595 __wsum csum2; 2596 u8 *vaddr; 2597 2598 if (copy > len) 2599 copy = len; 2600 2601 skb_frag_foreach_page(frag, 2602 frag->page_offset + offset - start, 2603 copy, p, p_off, p_len, copied) { 2604 vaddr = kmap_atomic(p); 2605 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2606 to + copied, 2607 p_len, 0); 2608 kunmap_atomic(vaddr); 2609 csum = csum_block_add(csum, csum2, pos); 2610 pos += p_len; 2611 } 2612 2613 if (!(len -= copy)) 2614 return csum; 2615 offset += copy; 2616 to += copy; 2617 } 2618 start = end; 2619 } 2620 2621 skb_walk_frags(skb, frag_iter) { 2622 __wsum csum2; 2623 int end; 2624 2625 WARN_ON(start > offset + len); 2626 2627 end = start + frag_iter->len; 2628 if ((copy = end - offset) > 0) { 2629 if (copy > len) 2630 copy = len; 2631 csum2 = skb_copy_and_csum_bits(frag_iter, 2632 offset - start, 2633 to, copy, 0); 2634 csum = csum_block_add(csum, csum2, pos); 2635 if ((len -= copy) == 0) 2636 return csum; 2637 offset += copy; 2638 to += copy; 2639 pos += copy; 2640 } 2641 start = end; 2642 } 2643 BUG_ON(len); 2644 return csum; 2645 } 2646 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2647 2648 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2649 { 2650 __sum16 sum; 2651 2652 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2653 if (likely(!sum)) { 2654 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2655 !skb->csum_complete_sw) 2656 netdev_rx_csum_fault(skb->dev); 2657 } 2658 if (!skb_shared(skb)) 2659 skb->csum_valid = !sum; 2660 return sum; 2661 } 2662 EXPORT_SYMBOL(__skb_checksum_complete_head); 2663 2664 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2665 { 2666 __wsum csum; 2667 __sum16 sum; 2668 2669 csum = skb_checksum(skb, 0, skb->len, 0); 2670 2671 /* skb->csum holds pseudo checksum */ 2672 sum = csum_fold(csum_add(skb->csum, csum)); 2673 if (likely(!sum)) { 2674 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2675 !skb->csum_complete_sw) 2676 netdev_rx_csum_fault(skb->dev); 2677 } 2678 2679 if (!skb_shared(skb)) { 2680 /* Save full packet checksum */ 2681 skb->csum = csum; 2682 skb->ip_summed = CHECKSUM_COMPLETE; 2683 skb->csum_complete_sw = 1; 2684 skb->csum_valid = !sum; 2685 } 2686 2687 return sum; 2688 } 2689 EXPORT_SYMBOL(__skb_checksum_complete); 2690 2691 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2692 { 2693 net_warn_ratelimited( 2694 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2695 __func__); 2696 return 0; 2697 } 2698 2699 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2700 int offset, int len) 2701 { 2702 net_warn_ratelimited( 2703 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2704 __func__); 2705 return 0; 2706 } 2707 2708 static const struct skb_checksum_ops default_crc32c_ops = { 2709 .update = warn_crc32c_csum_update, 2710 .combine = warn_crc32c_csum_combine, 2711 }; 2712 2713 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2714 &default_crc32c_ops; 2715 EXPORT_SYMBOL(crc32c_csum_stub); 2716 2717 /** 2718 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2719 * @from: source buffer 2720 * 2721 * Calculates the amount of linear headroom needed in the 'to' skb passed 2722 * into skb_zerocopy(). 2723 */ 2724 unsigned int 2725 skb_zerocopy_headlen(const struct sk_buff *from) 2726 { 2727 unsigned int hlen = 0; 2728 2729 if (!from->head_frag || 2730 skb_headlen(from) < L1_CACHE_BYTES || 2731 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2732 hlen = skb_headlen(from); 2733 2734 if (skb_has_frag_list(from)) 2735 hlen = from->len; 2736 2737 return hlen; 2738 } 2739 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2740 2741 /** 2742 * skb_zerocopy - Zero copy skb to skb 2743 * @to: destination buffer 2744 * @from: source buffer 2745 * @len: number of bytes to copy from source buffer 2746 * @hlen: size of linear headroom in destination buffer 2747 * 2748 * Copies up to `len` bytes from `from` to `to` by creating references 2749 * to the frags in the source buffer. 2750 * 2751 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2752 * headroom in the `to` buffer. 2753 * 2754 * Return value: 2755 * 0: everything is OK 2756 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2757 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2758 */ 2759 int 2760 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2761 { 2762 int i, j = 0; 2763 int plen = 0; /* length of skb->head fragment */ 2764 int ret; 2765 struct page *page; 2766 unsigned int offset; 2767 2768 BUG_ON(!from->head_frag && !hlen); 2769 2770 /* dont bother with small payloads */ 2771 if (len <= skb_tailroom(to)) 2772 return skb_copy_bits(from, 0, skb_put(to, len), len); 2773 2774 if (hlen) { 2775 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2776 if (unlikely(ret)) 2777 return ret; 2778 len -= hlen; 2779 } else { 2780 plen = min_t(int, skb_headlen(from), len); 2781 if (plen) { 2782 page = virt_to_head_page(from->head); 2783 offset = from->data - (unsigned char *)page_address(page); 2784 __skb_fill_page_desc(to, 0, page, offset, plen); 2785 get_page(page); 2786 j = 1; 2787 len -= plen; 2788 } 2789 } 2790 2791 to->truesize += len + plen; 2792 to->len += len + plen; 2793 to->data_len += len + plen; 2794 2795 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2796 skb_tx_error(from); 2797 return -ENOMEM; 2798 } 2799 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2800 2801 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2802 if (!len) 2803 break; 2804 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2805 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2806 len -= skb_shinfo(to)->frags[j].size; 2807 skb_frag_ref(to, j); 2808 j++; 2809 } 2810 skb_shinfo(to)->nr_frags = j; 2811 2812 return 0; 2813 } 2814 EXPORT_SYMBOL_GPL(skb_zerocopy); 2815 2816 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2817 { 2818 __wsum csum; 2819 long csstart; 2820 2821 if (skb->ip_summed == CHECKSUM_PARTIAL) 2822 csstart = skb_checksum_start_offset(skb); 2823 else 2824 csstart = skb_headlen(skb); 2825 2826 BUG_ON(csstart > skb_headlen(skb)); 2827 2828 skb_copy_from_linear_data(skb, to, csstart); 2829 2830 csum = 0; 2831 if (csstart != skb->len) 2832 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2833 skb->len - csstart, 0); 2834 2835 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2836 long csstuff = csstart + skb->csum_offset; 2837 2838 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2839 } 2840 } 2841 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2842 2843 /** 2844 * skb_dequeue - remove from the head of the queue 2845 * @list: list to dequeue from 2846 * 2847 * Remove the head of the list. The list lock is taken so the function 2848 * may be used safely with other locking list functions. The head item is 2849 * returned or %NULL if the list is empty. 2850 */ 2851 2852 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2853 { 2854 unsigned long flags; 2855 struct sk_buff *result; 2856 2857 spin_lock_irqsave(&list->lock, flags); 2858 result = __skb_dequeue(list); 2859 spin_unlock_irqrestore(&list->lock, flags); 2860 return result; 2861 } 2862 EXPORT_SYMBOL(skb_dequeue); 2863 2864 /** 2865 * skb_dequeue_tail - remove from the tail of the queue 2866 * @list: list to dequeue from 2867 * 2868 * Remove the tail of the list. The list lock is taken so the function 2869 * may be used safely with other locking list functions. The tail item is 2870 * returned or %NULL if the list is empty. 2871 */ 2872 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2873 { 2874 unsigned long flags; 2875 struct sk_buff *result; 2876 2877 spin_lock_irqsave(&list->lock, flags); 2878 result = __skb_dequeue_tail(list); 2879 spin_unlock_irqrestore(&list->lock, flags); 2880 return result; 2881 } 2882 EXPORT_SYMBOL(skb_dequeue_tail); 2883 2884 /** 2885 * skb_queue_purge - empty a list 2886 * @list: list to empty 2887 * 2888 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2889 * the list and one reference dropped. This function takes the list 2890 * lock and is atomic with respect to other list locking functions. 2891 */ 2892 void skb_queue_purge(struct sk_buff_head *list) 2893 { 2894 struct sk_buff *skb; 2895 while ((skb = skb_dequeue(list)) != NULL) 2896 kfree_skb(skb); 2897 } 2898 EXPORT_SYMBOL(skb_queue_purge); 2899 2900 /** 2901 * skb_rbtree_purge - empty a skb rbtree 2902 * @root: root of the rbtree to empty 2903 * Return value: the sum of truesizes of all purged skbs. 2904 * 2905 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2906 * the list and one reference dropped. This function does not take 2907 * any lock. Synchronization should be handled by the caller (e.g., TCP 2908 * out-of-order queue is protected by the socket lock). 2909 */ 2910 unsigned int skb_rbtree_purge(struct rb_root *root) 2911 { 2912 struct rb_node *p = rb_first(root); 2913 unsigned int sum = 0; 2914 2915 while (p) { 2916 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2917 2918 p = rb_next(p); 2919 rb_erase(&skb->rbnode, root); 2920 sum += skb->truesize; 2921 kfree_skb(skb); 2922 } 2923 return sum; 2924 } 2925 2926 /** 2927 * skb_queue_head - queue a buffer at the list head 2928 * @list: list to use 2929 * @newsk: buffer to queue 2930 * 2931 * Queue a buffer at the start of the list. This function takes the 2932 * list lock and can be used safely with other locking &sk_buff functions 2933 * safely. 2934 * 2935 * A buffer cannot be placed on two lists at the same time. 2936 */ 2937 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2938 { 2939 unsigned long flags; 2940 2941 spin_lock_irqsave(&list->lock, flags); 2942 __skb_queue_head(list, newsk); 2943 spin_unlock_irqrestore(&list->lock, flags); 2944 } 2945 EXPORT_SYMBOL(skb_queue_head); 2946 2947 /** 2948 * skb_queue_tail - queue a buffer at the list tail 2949 * @list: list to use 2950 * @newsk: buffer to queue 2951 * 2952 * Queue a buffer at the tail of the list. This function takes the 2953 * list lock and can be used safely with other locking &sk_buff functions 2954 * safely. 2955 * 2956 * A buffer cannot be placed on two lists at the same time. 2957 */ 2958 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2959 { 2960 unsigned long flags; 2961 2962 spin_lock_irqsave(&list->lock, flags); 2963 __skb_queue_tail(list, newsk); 2964 spin_unlock_irqrestore(&list->lock, flags); 2965 } 2966 EXPORT_SYMBOL(skb_queue_tail); 2967 2968 /** 2969 * skb_unlink - remove a buffer from a list 2970 * @skb: buffer to remove 2971 * @list: list to use 2972 * 2973 * Remove a packet from a list. The list locks are taken and this 2974 * function is atomic with respect to other list locked calls 2975 * 2976 * You must know what list the SKB is on. 2977 */ 2978 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2979 { 2980 unsigned long flags; 2981 2982 spin_lock_irqsave(&list->lock, flags); 2983 __skb_unlink(skb, list); 2984 spin_unlock_irqrestore(&list->lock, flags); 2985 } 2986 EXPORT_SYMBOL(skb_unlink); 2987 2988 /** 2989 * skb_append - append a buffer 2990 * @old: buffer to insert after 2991 * @newsk: buffer to insert 2992 * @list: list to use 2993 * 2994 * Place a packet after a given packet in a list. The list locks are taken 2995 * and this function is atomic with respect to other list locked calls. 2996 * A buffer cannot be placed on two lists at the same time. 2997 */ 2998 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2999 { 3000 unsigned long flags; 3001 3002 spin_lock_irqsave(&list->lock, flags); 3003 __skb_queue_after(list, old, newsk); 3004 spin_unlock_irqrestore(&list->lock, flags); 3005 } 3006 EXPORT_SYMBOL(skb_append); 3007 3008 /** 3009 * skb_insert - insert a buffer 3010 * @old: buffer to insert before 3011 * @newsk: buffer to insert 3012 * @list: list to use 3013 * 3014 * Place a packet before a given packet in a list. The list locks are 3015 * taken and this function is atomic with respect to other list locked 3016 * calls. 3017 * 3018 * A buffer cannot be placed on two lists at the same time. 3019 */ 3020 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3021 { 3022 unsigned long flags; 3023 3024 spin_lock_irqsave(&list->lock, flags); 3025 __skb_insert(newsk, old->prev, old, list); 3026 spin_unlock_irqrestore(&list->lock, flags); 3027 } 3028 EXPORT_SYMBOL(skb_insert); 3029 3030 static inline void skb_split_inside_header(struct sk_buff *skb, 3031 struct sk_buff* skb1, 3032 const u32 len, const int pos) 3033 { 3034 int i; 3035 3036 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3037 pos - len); 3038 /* And move data appendix as is. */ 3039 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3040 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3041 3042 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3043 skb_shinfo(skb)->nr_frags = 0; 3044 skb1->data_len = skb->data_len; 3045 skb1->len += skb1->data_len; 3046 skb->data_len = 0; 3047 skb->len = len; 3048 skb_set_tail_pointer(skb, len); 3049 } 3050 3051 static inline void skb_split_no_header(struct sk_buff *skb, 3052 struct sk_buff* skb1, 3053 const u32 len, int pos) 3054 { 3055 int i, k = 0; 3056 const int nfrags = skb_shinfo(skb)->nr_frags; 3057 3058 skb_shinfo(skb)->nr_frags = 0; 3059 skb1->len = skb1->data_len = skb->len - len; 3060 skb->len = len; 3061 skb->data_len = len - pos; 3062 3063 for (i = 0; i < nfrags; i++) { 3064 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3065 3066 if (pos + size > len) { 3067 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3068 3069 if (pos < len) { 3070 /* Split frag. 3071 * We have two variants in this case: 3072 * 1. Move all the frag to the second 3073 * part, if it is possible. F.e. 3074 * this approach is mandatory for TUX, 3075 * where splitting is expensive. 3076 * 2. Split is accurately. We make this. 3077 */ 3078 skb_frag_ref(skb, i); 3079 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3080 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3081 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3082 skb_shinfo(skb)->nr_frags++; 3083 } 3084 k++; 3085 } else 3086 skb_shinfo(skb)->nr_frags++; 3087 pos += size; 3088 } 3089 skb_shinfo(skb1)->nr_frags = k; 3090 } 3091 3092 /** 3093 * skb_split - Split fragmented skb to two parts at length len. 3094 * @skb: the buffer to split 3095 * @skb1: the buffer to receive the second part 3096 * @len: new length for skb 3097 */ 3098 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3099 { 3100 int pos = skb_headlen(skb); 3101 3102 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3103 SKBTX_SHARED_FRAG; 3104 skb_zerocopy_clone(skb1, skb, 0); 3105 if (len < pos) /* Split line is inside header. */ 3106 skb_split_inside_header(skb, skb1, len, pos); 3107 else /* Second chunk has no header, nothing to copy. */ 3108 skb_split_no_header(skb, skb1, len, pos); 3109 } 3110 EXPORT_SYMBOL(skb_split); 3111 3112 /* Shifting from/to a cloned skb is a no-go. 3113 * 3114 * Caller cannot keep skb_shinfo related pointers past calling here! 3115 */ 3116 static int skb_prepare_for_shift(struct sk_buff *skb) 3117 { 3118 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3119 } 3120 3121 /** 3122 * skb_shift - Shifts paged data partially from skb to another 3123 * @tgt: buffer into which tail data gets added 3124 * @skb: buffer from which the paged data comes from 3125 * @shiftlen: shift up to this many bytes 3126 * 3127 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3128 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3129 * It's up to caller to free skb if everything was shifted. 3130 * 3131 * If @tgt runs out of frags, the whole operation is aborted. 3132 * 3133 * Skb cannot include anything else but paged data while tgt is allowed 3134 * to have non-paged data as well. 3135 * 3136 * TODO: full sized shift could be optimized but that would need 3137 * specialized skb free'er to handle frags without up-to-date nr_frags. 3138 */ 3139 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3140 { 3141 int from, to, merge, todo; 3142 struct skb_frag_struct *fragfrom, *fragto; 3143 3144 BUG_ON(shiftlen > skb->len); 3145 3146 if (skb_headlen(skb)) 3147 return 0; 3148 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3149 return 0; 3150 3151 todo = shiftlen; 3152 from = 0; 3153 to = skb_shinfo(tgt)->nr_frags; 3154 fragfrom = &skb_shinfo(skb)->frags[from]; 3155 3156 /* Actual merge is delayed until the point when we know we can 3157 * commit all, so that we don't have to undo partial changes 3158 */ 3159 if (!to || 3160 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3161 fragfrom->page_offset)) { 3162 merge = -1; 3163 } else { 3164 merge = to - 1; 3165 3166 todo -= skb_frag_size(fragfrom); 3167 if (todo < 0) { 3168 if (skb_prepare_for_shift(skb) || 3169 skb_prepare_for_shift(tgt)) 3170 return 0; 3171 3172 /* All previous frag pointers might be stale! */ 3173 fragfrom = &skb_shinfo(skb)->frags[from]; 3174 fragto = &skb_shinfo(tgt)->frags[merge]; 3175 3176 skb_frag_size_add(fragto, shiftlen); 3177 skb_frag_size_sub(fragfrom, shiftlen); 3178 fragfrom->page_offset += shiftlen; 3179 3180 goto onlymerged; 3181 } 3182 3183 from++; 3184 } 3185 3186 /* Skip full, not-fitting skb to avoid expensive operations */ 3187 if ((shiftlen == skb->len) && 3188 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3189 return 0; 3190 3191 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3192 return 0; 3193 3194 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3195 if (to == MAX_SKB_FRAGS) 3196 return 0; 3197 3198 fragfrom = &skb_shinfo(skb)->frags[from]; 3199 fragto = &skb_shinfo(tgt)->frags[to]; 3200 3201 if (todo >= skb_frag_size(fragfrom)) { 3202 *fragto = *fragfrom; 3203 todo -= skb_frag_size(fragfrom); 3204 from++; 3205 to++; 3206 3207 } else { 3208 __skb_frag_ref(fragfrom); 3209 fragto->page = fragfrom->page; 3210 fragto->page_offset = fragfrom->page_offset; 3211 skb_frag_size_set(fragto, todo); 3212 3213 fragfrom->page_offset += todo; 3214 skb_frag_size_sub(fragfrom, todo); 3215 todo = 0; 3216 3217 to++; 3218 break; 3219 } 3220 } 3221 3222 /* Ready to "commit" this state change to tgt */ 3223 skb_shinfo(tgt)->nr_frags = to; 3224 3225 if (merge >= 0) { 3226 fragfrom = &skb_shinfo(skb)->frags[0]; 3227 fragto = &skb_shinfo(tgt)->frags[merge]; 3228 3229 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3230 __skb_frag_unref(fragfrom); 3231 } 3232 3233 /* Reposition in the original skb */ 3234 to = 0; 3235 while (from < skb_shinfo(skb)->nr_frags) 3236 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3237 skb_shinfo(skb)->nr_frags = to; 3238 3239 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3240 3241 onlymerged: 3242 /* Most likely the tgt won't ever need its checksum anymore, skb on 3243 * the other hand might need it if it needs to be resent 3244 */ 3245 tgt->ip_summed = CHECKSUM_PARTIAL; 3246 skb->ip_summed = CHECKSUM_PARTIAL; 3247 3248 /* Yak, is it really working this way? Some helper please? */ 3249 skb->len -= shiftlen; 3250 skb->data_len -= shiftlen; 3251 skb->truesize -= shiftlen; 3252 tgt->len += shiftlen; 3253 tgt->data_len += shiftlen; 3254 tgt->truesize += shiftlen; 3255 3256 return shiftlen; 3257 } 3258 3259 /** 3260 * skb_prepare_seq_read - Prepare a sequential read of skb data 3261 * @skb: the buffer to read 3262 * @from: lower offset of data to be read 3263 * @to: upper offset of data to be read 3264 * @st: state variable 3265 * 3266 * Initializes the specified state variable. Must be called before 3267 * invoking skb_seq_read() for the first time. 3268 */ 3269 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3270 unsigned int to, struct skb_seq_state *st) 3271 { 3272 st->lower_offset = from; 3273 st->upper_offset = to; 3274 st->root_skb = st->cur_skb = skb; 3275 st->frag_idx = st->stepped_offset = 0; 3276 st->frag_data = NULL; 3277 } 3278 EXPORT_SYMBOL(skb_prepare_seq_read); 3279 3280 /** 3281 * skb_seq_read - Sequentially read skb data 3282 * @consumed: number of bytes consumed by the caller so far 3283 * @data: destination pointer for data to be returned 3284 * @st: state variable 3285 * 3286 * Reads a block of skb data at @consumed relative to the 3287 * lower offset specified to skb_prepare_seq_read(). Assigns 3288 * the head of the data block to @data and returns the length 3289 * of the block or 0 if the end of the skb data or the upper 3290 * offset has been reached. 3291 * 3292 * The caller is not required to consume all of the data 3293 * returned, i.e. @consumed is typically set to the number 3294 * of bytes already consumed and the next call to 3295 * skb_seq_read() will return the remaining part of the block. 3296 * 3297 * Note 1: The size of each block of data returned can be arbitrary, 3298 * this limitation is the cost for zerocopy sequential 3299 * reads of potentially non linear data. 3300 * 3301 * Note 2: Fragment lists within fragments are not implemented 3302 * at the moment, state->root_skb could be replaced with 3303 * a stack for this purpose. 3304 */ 3305 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3306 struct skb_seq_state *st) 3307 { 3308 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3309 skb_frag_t *frag; 3310 3311 if (unlikely(abs_offset >= st->upper_offset)) { 3312 if (st->frag_data) { 3313 kunmap_atomic(st->frag_data); 3314 st->frag_data = NULL; 3315 } 3316 return 0; 3317 } 3318 3319 next_skb: 3320 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3321 3322 if (abs_offset < block_limit && !st->frag_data) { 3323 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3324 return block_limit - abs_offset; 3325 } 3326 3327 if (st->frag_idx == 0 && !st->frag_data) 3328 st->stepped_offset += skb_headlen(st->cur_skb); 3329 3330 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3331 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3332 block_limit = skb_frag_size(frag) + st->stepped_offset; 3333 3334 if (abs_offset < block_limit) { 3335 if (!st->frag_data) 3336 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3337 3338 *data = (u8 *) st->frag_data + frag->page_offset + 3339 (abs_offset - st->stepped_offset); 3340 3341 return block_limit - abs_offset; 3342 } 3343 3344 if (st->frag_data) { 3345 kunmap_atomic(st->frag_data); 3346 st->frag_data = NULL; 3347 } 3348 3349 st->frag_idx++; 3350 st->stepped_offset += skb_frag_size(frag); 3351 } 3352 3353 if (st->frag_data) { 3354 kunmap_atomic(st->frag_data); 3355 st->frag_data = NULL; 3356 } 3357 3358 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3359 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3360 st->frag_idx = 0; 3361 goto next_skb; 3362 } else if (st->cur_skb->next) { 3363 st->cur_skb = st->cur_skb->next; 3364 st->frag_idx = 0; 3365 goto next_skb; 3366 } 3367 3368 return 0; 3369 } 3370 EXPORT_SYMBOL(skb_seq_read); 3371 3372 /** 3373 * skb_abort_seq_read - Abort a sequential read of skb data 3374 * @st: state variable 3375 * 3376 * Must be called if skb_seq_read() was not called until it 3377 * returned 0. 3378 */ 3379 void skb_abort_seq_read(struct skb_seq_state *st) 3380 { 3381 if (st->frag_data) 3382 kunmap_atomic(st->frag_data); 3383 } 3384 EXPORT_SYMBOL(skb_abort_seq_read); 3385 3386 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3387 3388 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3389 struct ts_config *conf, 3390 struct ts_state *state) 3391 { 3392 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3393 } 3394 3395 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3396 { 3397 skb_abort_seq_read(TS_SKB_CB(state)); 3398 } 3399 3400 /** 3401 * skb_find_text - Find a text pattern in skb data 3402 * @skb: the buffer to look in 3403 * @from: search offset 3404 * @to: search limit 3405 * @config: textsearch configuration 3406 * 3407 * Finds a pattern in the skb data according to the specified 3408 * textsearch configuration. Use textsearch_next() to retrieve 3409 * subsequent occurrences of the pattern. Returns the offset 3410 * to the first occurrence or UINT_MAX if no match was found. 3411 */ 3412 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3413 unsigned int to, struct ts_config *config) 3414 { 3415 struct ts_state state; 3416 unsigned int ret; 3417 3418 config->get_next_block = skb_ts_get_next_block; 3419 config->finish = skb_ts_finish; 3420 3421 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3422 3423 ret = textsearch_find(config, &state); 3424 return (ret <= to - from ? ret : UINT_MAX); 3425 } 3426 EXPORT_SYMBOL(skb_find_text); 3427 3428 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3429 int offset, size_t size) 3430 { 3431 int i = skb_shinfo(skb)->nr_frags; 3432 3433 if (skb_can_coalesce(skb, i, page, offset)) { 3434 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3435 } else if (i < MAX_SKB_FRAGS) { 3436 get_page(page); 3437 skb_fill_page_desc(skb, i, page, offset, size); 3438 } else { 3439 return -EMSGSIZE; 3440 } 3441 3442 return 0; 3443 } 3444 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3445 3446 /** 3447 * skb_pull_rcsum - pull skb and update receive checksum 3448 * @skb: buffer to update 3449 * @len: length of data pulled 3450 * 3451 * This function performs an skb_pull on the packet and updates 3452 * the CHECKSUM_COMPLETE checksum. It should be used on 3453 * receive path processing instead of skb_pull unless you know 3454 * that the checksum difference is zero (e.g., a valid IP header) 3455 * or you are setting ip_summed to CHECKSUM_NONE. 3456 */ 3457 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3458 { 3459 unsigned char *data = skb->data; 3460 3461 BUG_ON(len > skb->len); 3462 __skb_pull(skb, len); 3463 skb_postpull_rcsum(skb, data, len); 3464 return skb->data; 3465 } 3466 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3467 3468 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3469 { 3470 skb_frag_t head_frag; 3471 struct page *page; 3472 3473 page = virt_to_head_page(frag_skb->head); 3474 head_frag.page.p = page; 3475 head_frag.page_offset = frag_skb->data - 3476 (unsigned char *)page_address(page); 3477 head_frag.size = skb_headlen(frag_skb); 3478 return head_frag; 3479 } 3480 3481 /** 3482 * skb_segment - Perform protocol segmentation on skb. 3483 * @head_skb: buffer to segment 3484 * @features: features for the output path (see dev->features) 3485 * 3486 * This function performs segmentation on the given skb. It returns 3487 * a pointer to the first in a list of new skbs for the segments. 3488 * In case of error it returns ERR_PTR(err). 3489 */ 3490 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3491 netdev_features_t features) 3492 { 3493 struct sk_buff *segs = NULL; 3494 struct sk_buff *tail = NULL; 3495 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3496 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3497 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3498 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3499 struct sk_buff *frag_skb = head_skb; 3500 unsigned int offset = doffset; 3501 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3502 unsigned int partial_segs = 0; 3503 unsigned int headroom; 3504 unsigned int len = head_skb->len; 3505 __be16 proto; 3506 bool csum, sg; 3507 int nfrags = skb_shinfo(head_skb)->nr_frags; 3508 int err = -ENOMEM; 3509 int i = 0; 3510 int pos; 3511 int dummy; 3512 3513 __skb_push(head_skb, doffset); 3514 proto = skb_network_protocol(head_skb, &dummy); 3515 if (unlikely(!proto)) 3516 return ERR_PTR(-EINVAL); 3517 3518 sg = !!(features & NETIF_F_SG); 3519 csum = !!can_checksum_protocol(features, proto); 3520 3521 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3522 if (!(features & NETIF_F_GSO_PARTIAL)) { 3523 struct sk_buff *iter; 3524 unsigned int frag_len; 3525 3526 if (!list_skb || 3527 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3528 goto normal; 3529 3530 /* If we get here then all the required 3531 * GSO features except frag_list are supported. 3532 * Try to split the SKB to multiple GSO SKBs 3533 * with no frag_list. 3534 * Currently we can do that only when the buffers don't 3535 * have a linear part and all the buffers except 3536 * the last are of the same length. 3537 */ 3538 frag_len = list_skb->len; 3539 skb_walk_frags(head_skb, iter) { 3540 if (frag_len != iter->len && iter->next) 3541 goto normal; 3542 if (skb_headlen(iter) && !iter->head_frag) 3543 goto normal; 3544 3545 len -= iter->len; 3546 } 3547 3548 if (len != frag_len) 3549 goto normal; 3550 } 3551 3552 /* GSO partial only requires that we trim off any excess that 3553 * doesn't fit into an MSS sized block, so take care of that 3554 * now. 3555 */ 3556 partial_segs = len / mss; 3557 if (partial_segs > 1) 3558 mss *= partial_segs; 3559 else 3560 partial_segs = 0; 3561 } 3562 3563 normal: 3564 headroom = skb_headroom(head_skb); 3565 pos = skb_headlen(head_skb); 3566 3567 do { 3568 struct sk_buff *nskb; 3569 skb_frag_t *nskb_frag; 3570 int hsize; 3571 int size; 3572 3573 if (unlikely(mss == GSO_BY_FRAGS)) { 3574 len = list_skb->len; 3575 } else { 3576 len = head_skb->len - offset; 3577 if (len > mss) 3578 len = mss; 3579 } 3580 3581 hsize = skb_headlen(head_skb) - offset; 3582 if (hsize < 0) 3583 hsize = 0; 3584 if (hsize > len || !sg) 3585 hsize = len; 3586 3587 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3588 (skb_headlen(list_skb) == len || sg)) { 3589 BUG_ON(skb_headlen(list_skb) > len); 3590 3591 i = 0; 3592 nfrags = skb_shinfo(list_skb)->nr_frags; 3593 frag = skb_shinfo(list_skb)->frags; 3594 frag_skb = list_skb; 3595 pos += skb_headlen(list_skb); 3596 3597 while (pos < offset + len) { 3598 BUG_ON(i >= nfrags); 3599 3600 size = skb_frag_size(frag); 3601 if (pos + size > offset + len) 3602 break; 3603 3604 i++; 3605 pos += size; 3606 frag++; 3607 } 3608 3609 nskb = skb_clone(list_skb, GFP_ATOMIC); 3610 list_skb = list_skb->next; 3611 3612 if (unlikely(!nskb)) 3613 goto err; 3614 3615 if (unlikely(pskb_trim(nskb, len))) { 3616 kfree_skb(nskb); 3617 goto err; 3618 } 3619 3620 hsize = skb_end_offset(nskb); 3621 if (skb_cow_head(nskb, doffset + headroom)) { 3622 kfree_skb(nskb); 3623 goto err; 3624 } 3625 3626 nskb->truesize += skb_end_offset(nskb) - hsize; 3627 skb_release_head_state(nskb); 3628 __skb_push(nskb, doffset); 3629 } else { 3630 nskb = __alloc_skb(hsize + doffset + headroom, 3631 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3632 NUMA_NO_NODE); 3633 3634 if (unlikely(!nskb)) 3635 goto err; 3636 3637 skb_reserve(nskb, headroom); 3638 __skb_put(nskb, doffset); 3639 } 3640 3641 if (segs) 3642 tail->next = nskb; 3643 else 3644 segs = nskb; 3645 tail = nskb; 3646 3647 __copy_skb_header(nskb, head_skb); 3648 3649 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3650 skb_reset_mac_len(nskb); 3651 3652 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3653 nskb->data - tnl_hlen, 3654 doffset + tnl_hlen); 3655 3656 if (nskb->len == len + doffset) 3657 goto perform_csum_check; 3658 3659 if (!sg) { 3660 if (!nskb->remcsum_offload) 3661 nskb->ip_summed = CHECKSUM_NONE; 3662 SKB_GSO_CB(nskb)->csum = 3663 skb_copy_and_csum_bits(head_skb, offset, 3664 skb_put(nskb, len), 3665 len, 0); 3666 SKB_GSO_CB(nskb)->csum_start = 3667 skb_headroom(nskb) + doffset; 3668 continue; 3669 } 3670 3671 nskb_frag = skb_shinfo(nskb)->frags; 3672 3673 skb_copy_from_linear_data_offset(head_skb, offset, 3674 skb_put(nskb, hsize), hsize); 3675 3676 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3677 SKBTX_SHARED_FRAG; 3678 3679 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3680 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3681 goto err; 3682 3683 while (pos < offset + len) { 3684 if (i >= nfrags) { 3685 i = 0; 3686 nfrags = skb_shinfo(list_skb)->nr_frags; 3687 frag = skb_shinfo(list_skb)->frags; 3688 frag_skb = list_skb; 3689 if (!skb_headlen(list_skb)) { 3690 BUG_ON(!nfrags); 3691 } else { 3692 BUG_ON(!list_skb->head_frag); 3693 3694 /* to make room for head_frag. */ 3695 i--; 3696 frag--; 3697 } 3698 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3699 skb_zerocopy_clone(nskb, frag_skb, 3700 GFP_ATOMIC)) 3701 goto err; 3702 3703 list_skb = list_skb->next; 3704 } 3705 3706 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3707 MAX_SKB_FRAGS)) { 3708 net_warn_ratelimited( 3709 "skb_segment: too many frags: %u %u\n", 3710 pos, mss); 3711 err = -EINVAL; 3712 goto err; 3713 } 3714 3715 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3716 __skb_frag_ref(nskb_frag); 3717 size = skb_frag_size(nskb_frag); 3718 3719 if (pos < offset) { 3720 nskb_frag->page_offset += offset - pos; 3721 skb_frag_size_sub(nskb_frag, offset - pos); 3722 } 3723 3724 skb_shinfo(nskb)->nr_frags++; 3725 3726 if (pos + size <= offset + len) { 3727 i++; 3728 frag++; 3729 pos += size; 3730 } else { 3731 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3732 goto skip_fraglist; 3733 } 3734 3735 nskb_frag++; 3736 } 3737 3738 skip_fraglist: 3739 nskb->data_len = len - hsize; 3740 nskb->len += nskb->data_len; 3741 nskb->truesize += nskb->data_len; 3742 3743 perform_csum_check: 3744 if (!csum) { 3745 if (skb_has_shared_frag(nskb) && 3746 __skb_linearize(nskb)) 3747 goto err; 3748 3749 if (!nskb->remcsum_offload) 3750 nskb->ip_summed = CHECKSUM_NONE; 3751 SKB_GSO_CB(nskb)->csum = 3752 skb_checksum(nskb, doffset, 3753 nskb->len - doffset, 0); 3754 SKB_GSO_CB(nskb)->csum_start = 3755 skb_headroom(nskb) + doffset; 3756 } 3757 } while ((offset += len) < head_skb->len); 3758 3759 /* Some callers want to get the end of the list. 3760 * Put it in segs->prev to avoid walking the list. 3761 * (see validate_xmit_skb_list() for example) 3762 */ 3763 segs->prev = tail; 3764 3765 if (partial_segs) { 3766 struct sk_buff *iter; 3767 int type = skb_shinfo(head_skb)->gso_type; 3768 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3769 3770 /* Update type to add partial and then remove dodgy if set */ 3771 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3772 type &= ~SKB_GSO_DODGY; 3773 3774 /* Update GSO info and prepare to start updating headers on 3775 * our way back down the stack of protocols. 3776 */ 3777 for (iter = segs; iter; iter = iter->next) { 3778 skb_shinfo(iter)->gso_size = gso_size; 3779 skb_shinfo(iter)->gso_segs = partial_segs; 3780 skb_shinfo(iter)->gso_type = type; 3781 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3782 } 3783 3784 if (tail->len - doffset <= gso_size) 3785 skb_shinfo(tail)->gso_size = 0; 3786 else if (tail != segs) 3787 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3788 } 3789 3790 /* Following permits correct backpressure, for protocols 3791 * using skb_set_owner_w(). 3792 * Idea is to tranfert ownership from head_skb to last segment. 3793 */ 3794 if (head_skb->destructor == sock_wfree) { 3795 swap(tail->truesize, head_skb->truesize); 3796 swap(tail->destructor, head_skb->destructor); 3797 swap(tail->sk, head_skb->sk); 3798 } 3799 return segs; 3800 3801 err: 3802 kfree_skb_list(segs); 3803 return ERR_PTR(err); 3804 } 3805 EXPORT_SYMBOL_GPL(skb_segment); 3806 3807 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 3808 { 3809 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3810 unsigned int offset = skb_gro_offset(skb); 3811 unsigned int headlen = skb_headlen(skb); 3812 unsigned int len = skb_gro_len(skb); 3813 unsigned int delta_truesize; 3814 struct sk_buff *lp; 3815 3816 if (unlikely(p->len + len >= 65536)) 3817 return -E2BIG; 3818 3819 lp = NAPI_GRO_CB(p)->last; 3820 pinfo = skb_shinfo(lp); 3821 3822 if (headlen <= offset) { 3823 skb_frag_t *frag; 3824 skb_frag_t *frag2; 3825 int i = skbinfo->nr_frags; 3826 int nr_frags = pinfo->nr_frags + i; 3827 3828 if (nr_frags > MAX_SKB_FRAGS) 3829 goto merge; 3830 3831 offset -= headlen; 3832 pinfo->nr_frags = nr_frags; 3833 skbinfo->nr_frags = 0; 3834 3835 frag = pinfo->frags + nr_frags; 3836 frag2 = skbinfo->frags + i; 3837 do { 3838 *--frag = *--frag2; 3839 } while (--i); 3840 3841 frag->page_offset += offset; 3842 skb_frag_size_sub(frag, offset); 3843 3844 /* all fragments truesize : remove (head size + sk_buff) */ 3845 delta_truesize = skb->truesize - 3846 SKB_TRUESIZE(skb_end_offset(skb)); 3847 3848 skb->truesize -= skb->data_len; 3849 skb->len -= skb->data_len; 3850 skb->data_len = 0; 3851 3852 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3853 goto done; 3854 } else if (skb->head_frag) { 3855 int nr_frags = pinfo->nr_frags; 3856 skb_frag_t *frag = pinfo->frags + nr_frags; 3857 struct page *page = virt_to_head_page(skb->head); 3858 unsigned int first_size = headlen - offset; 3859 unsigned int first_offset; 3860 3861 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3862 goto merge; 3863 3864 first_offset = skb->data - 3865 (unsigned char *)page_address(page) + 3866 offset; 3867 3868 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3869 3870 frag->page.p = page; 3871 frag->page_offset = first_offset; 3872 skb_frag_size_set(frag, first_size); 3873 3874 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3875 /* We dont need to clear skbinfo->nr_frags here */ 3876 3877 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3878 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3879 goto done; 3880 } 3881 3882 merge: 3883 delta_truesize = skb->truesize; 3884 if (offset > headlen) { 3885 unsigned int eat = offset - headlen; 3886 3887 skbinfo->frags[0].page_offset += eat; 3888 skb_frag_size_sub(&skbinfo->frags[0], eat); 3889 skb->data_len -= eat; 3890 skb->len -= eat; 3891 offset = headlen; 3892 } 3893 3894 __skb_pull(skb, offset); 3895 3896 if (NAPI_GRO_CB(p)->last == p) 3897 skb_shinfo(p)->frag_list = skb; 3898 else 3899 NAPI_GRO_CB(p)->last->next = skb; 3900 NAPI_GRO_CB(p)->last = skb; 3901 __skb_header_release(skb); 3902 lp = p; 3903 3904 done: 3905 NAPI_GRO_CB(p)->count++; 3906 p->data_len += len; 3907 p->truesize += delta_truesize; 3908 p->len += len; 3909 if (lp != p) { 3910 lp->data_len += len; 3911 lp->truesize += delta_truesize; 3912 lp->len += len; 3913 } 3914 NAPI_GRO_CB(skb)->same_flow = 1; 3915 return 0; 3916 } 3917 EXPORT_SYMBOL_GPL(skb_gro_receive); 3918 3919 void __init skb_init(void) 3920 { 3921 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 3922 sizeof(struct sk_buff), 3923 0, 3924 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3925 offsetof(struct sk_buff, cb), 3926 sizeof_field(struct sk_buff, cb), 3927 NULL); 3928 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3929 sizeof(struct sk_buff_fclones), 3930 0, 3931 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3932 NULL); 3933 } 3934 3935 static int 3936 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3937 unsigned int recursion_level) 3938 { 3939 int start = skb_headlen(skb); 3940 int i, copy = start - offset; 3941 struct sk_buff *frag_iter; 3942 int elt = 0; 3943 3944 if (unlikely(recursion_level >= 24)) 3945 return -EMSGSIZE; 3946 3947 if (copy > 0) { 3948 if (copy > len) 3949 copy = len; 3950 sg_set_buf(sg, skb->data + offset, copy); 3951 elt++; 3952 if ((len -= copy) == 0) 3953 return elt; 3954 offset += copy; 3955 } 3956 3957 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3958 int end; 3959 3960 WARN_ON(start > offset + len); 3961 3962 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3963 if ((copy = end - offset) > 0) { 3964 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3965 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3966 return -EMSGSIZE; 3967 3968 if (copy > len) 3969 copy = len; 3970 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3971 frag->page_offset+offset-start); 3972 elt++; 3973 if (!(len -= copy)) 3974 return elt; 3975 offset += copy; 3976 } 3977 start = end; 3978 } 3979 3980 skb_walk_frags(skb, frag_iter) { 3981 int end, ret; 3982 3983 WARN_ON(start > offset + len); 3984 3985 end = start + frag_iter->len; 3986 if ((copy = end - offset) > 0) { 3987 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3988 return -EMSGSIZE; 3989 3990 if (copy > len) 3991 copy = len; 3992 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3993 copy, recursion_level + 1); 3994 if (unlikely(ret < 0)) 3995 return ret; 3996 elt += ret; 3997 if ((len -= copy) == 0) 3998 return elt; 3999 offset += copy; 4000 } 4001 start = end; 4002 } 4003 BUG_ON(len); 4004 return elt; 4005 } 4006 4007 /** 4008 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4009 * @skb: Socket buffer containing the buffers to be mapped 4010 * @sg: The scatter-gather list to map into 4011 * @offset: The offset into the buffer's contents to start mapping 4012 * @len: Length of buffer space to be mapped 4013 * 4014 * Fill the specified scatter-gather list with mappings/pointers into a 4015 * region of the buffer space attached to a socket buffer. Returns either 4016 * the number of scatterlist items used, or -EMSGSIZE if the contents 4017 * could not fit. 4018 */ 4019 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4020 { 4021 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4022 4023 if (nsg <= 0) 4024 return nsg; 4025 4026 sg_mark_end(&sg[nsg - 1]); 4027 4028 return nsg; 4029 } 4030 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4031 4032 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4033 * sglist without mark the sg which contain last skb data as the end. 4034 * So the caller can mannipulate sg list as will when padding new data after 4035 * the first call without calling sg_unmark_end to expend sg list. 4036 * 4037 * Scenario to use skb_to_sgvec_nomark: 4038 * 1. sg_init_table 4039 * 2. skb_to_sgvec_nomark(payload1) 4040 * 3. skb_to_sgvec_nomark(payload2) 4041 * 4042 * This is equivalent to: 4043 * 1. sg_init_table 4044 * 2. skb_to_sgvec(payload1) 4045 * 3. sg_unmark_end 4046 * 4. skb_to_sgvec(payload2) 4047 * 4048 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4049 * is more preferable. 4050 */ 4051 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4052 int offset, int len) 4053 { 4054 return __skb_to_sgvec(skb, sg, offset, len, 0); 4055 } 4056 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4057 4058 4059 4060 /** 4061 * skb_cow_data - Check that a socket buffer's data buffers are writable 4062 * @skb: The socket buffer to check. 4063 * @tailbits: Amount of trailing space to be added 4064 * @trailer: Returned pointer to the skb where the @tailbits space begins 4065 * 4066 * Make sure that the data buffers attached to a socket buffer are 4067 * writable. If they are not, private copies are made of the data buffers 4068 * and the socket buffer is set to use these instead. 4069 * 4070 * If @tailbits is given, make sure that there is space to write @tailbits 4071 * bytes of data beyond current end of socket buffer. @trailer will be 4072 * set to point to the skb in which this space begins. 4073 * 4074 * The number of scatterlist elements required to completely map the 4075 * COW'd and extended socket buffer will be returned. 4076 */ 4077 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4078 { 4079 int copyflag; 4080 int elt; 4081 struct sk_buff *skb1, **skb_p; 4082 4083 /* If skb is cloned or its head is paged, reallocate 4084 * head pulling out all the pages (pages are considered not writable 4085 * at the moment even if they are anonymous). 4086 */ 4087 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4088 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4089 return -ENOMEM; 4090 4091 /* Easy case. Most of packets will go this way. */ 4092 if (!skb_has_frag_list(skb)) { 4093 /* A little of trouble, not enough of space for trailer. 4094 * This should not happen, when stack is tuned to generate 4095 * good frames. OK, on miss we reallocate and reserve even more 4096 * space, 128 bytes is fair. */ 4097 4098 if (skb_tailroom(skb) < tailbits && 4099 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4100 return -ENOMEM; 4101 4102 /* Voila! */ 4103 *trailer = skb; 4104 return 1; 4105 } 4106 4107 /* Misery. We are in troubles, going to mincer fragments... */ 4108 4109 elt = 1; 4110 skb_p = &skb_shinfo(skb)->frag_list; 4111 copyflag = 0; 4112 4113 while ((skb1 = *skb_p) != NULL) { 4114 int ntail = 0; 4115 4116 /* The fragment is partially pulled by someone, 4117 * this can happen on input. Copy it and everything 4118 * after it. */ 4119 4120 if (skb_shared(skb1)) 4121 copyflag = 1; 4122 4123 /* If the skb is the last, worry about trailer. */ 4124 4125 if (skb1->next == NULL && tailbits) { 4126 if (skb_shinfo(skb1)->nr_frags || 4127 skb_has_frag_list(skb1) || 4128 skb_tailroom(skb1) < tailbits) 4129 ntail = tailbits + 128; 4130 } 4131 4132 if (copyflag || 4133 skb_cloned(skb1) || 4134 ntail || 4135 skb_shinfo(skb1)->nr_frags || 4136 skb_has_frag_list(skb1)) { 4137 struct sk_buff *skb2; 4138 4139 /* Fuck, we are miserable poor guys... */ 4140 if (ntail == 0) 4141 skb2 = skb_copy(skb1, GFP_ATOMIC); 4142 else 4143 skb2 = skb_copy_expand(skb1, 4144 skb_headroom(skb1), 4145 ntail, 4146 GFP_ATOMIC); 4147 if (unlikely(skb2 == NULL)) 4148 return -ENOMEM; 4149 4150 if (skb1->sk) 4151 skb_set_owner_w(skb2, skb1->sk); 4152 4153 /* Looking around. Are we still alive? 4154 * OK, link new skb, drop old one */ 4155 4156 skb2->next = skb1->next; 4157 *skb_p = skb2; 4158 kfree_skb(skb1); 4159 skb1 = skb2; 4160 } 4161 elt++; 4162 *trailer = skb1; 4163 skb_p = &skb1->next; 4164 } 4165 4166 return elt; 4167 } 4168 EXPORT_SYMBOL_GPL(skb_cow_data); 4169 4170 static void sock_rmem_free(struct sk_buff *skb) 4171 { 4172 struct sock *sk = skb->sk; 4173 4174 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4175 } 4176 4177 static void skb_set_err_queue(struct sk_buff *skb) 4178 { 4179 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4180 * So, it is safe to (mis)use it to mark skbs on the error queue. 4181 */ 4182 skb->pkt_type = PACKET_OUTGOING; 4183 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4184 } 4185 4186 /* 4187 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4188 */ 4189 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4190 { 4191 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4192 (unsigned int)sk->sk_rcvbuf) 4193 return -ENOMEM; 4194 4195 skb_orphan(skb); 4196 skb->sk = sk; 4197 skb->destructor = sock_rmem_free; 4198 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4199 skb_set_err_queue(skb); 4200 4201 /* before exiting rcu section, make sure dst is refcounted */ 4202 skb_dst_force(skb); 4203 4204 skb_queue_tail(&sk->sk_error_queue, skb); 4205 if (!sock_flag(sk, SOCK_DEAD)) 4206 sk->sk_error_report(sk); 4207 return 0; 4208 } 4209 EXPORT_SYMBOL(sock_queue_err_skb); 4210 4211 static bool is_icmp_err_skb(const struct sk_buff *skb) 4212 { 4213 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4214 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4215 } 4216 4217 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4218 { 4219 struct sk_buff_head *q = &sk->sk_error_queue; 4220 struct sk_buff *skb, *skb_next = NULL; 4221 bool icmp_next = false; 4222 unsigned long flags; 4223 4224 spin_lock_irqsave(&q->lock, flags); 4225 skb = __skb_dequeue(q); 4226 if (skb && (skb_next = skb_peek(q))) { 4227 icmp_next = is_icmp_err_skb(skb_next); 4228 if (icmp_next) 4229 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4230 } 4231 spin_unlock_irqrestore(&q->lock, flags); 4232 4233 if (is_icmp_err_skb(skb) && !icmp_next) 4234 sk->sk_err = 0; 4235 4236 if (skb_next) 4237 sk->sk_error_report(sk); 4238 4239 return skb; 4240 } 4241 EXPORT_SYMBOL(sock_dequeue_err_skb); 4242 4243 /** 4244 * skb_clone_sk - create clone of skb, and take reference to socket 4245 * @skb: the skb to clone 4246 * 4247 * This function creates a clone of a buffer that holds a reference on 4248 * sk_refcnt. Buffers created via this function are meant to be 4249 * returned using sock_queue_err_skb, or free via kfree_skb. 4250 * 4251 * When passing buffers allocated with this function to sock_queue_err_skb 4252 * it is necessary to wrap the call with sock_hold/sock_put in order to 4253 * prevent the socket from being released prior to being enqueued on 4254 * the sk_error_queue. 4255 */ 4256 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4257 { 4258 struct sock *sk = skb->sk; 4259 struct sk_buff *clone; 4260 4261 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4262 return NULL; 4263 4264 clone = skb_clone(skb, GFP_ATOMIC); 4265 if (!clone) { 4266 sock_put(sk); 4267 return NULL; 4268 } 4269 4270 clone->sk = sk; 4271 clone->destructor = sock_efree; 4272 4273 return clone; 4274 } 4275 EXPORT_SYMBOL(skb_clone_sk); 4276 4277 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4278 struct sock *sk, 4279 int tstype, 4280 bool opt_stats) 4281 { 4282 struct sock_exterr_skb *serr; 4283 int err; 4284 4285 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4286 4287 serr = SKB_EXT_ERR(skb); 4288 memset(serr, 0, sizeof(*serr)); 4289 serr->ee.ee_errno = ENOMSG; 4290 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4291 serr->ee.ee_info = tstype; 4292 serr->opt_stats = opt_stats; 4293 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4294 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4295 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4296 if (sk->sk_protocol == IPPROTO_TCP && 4297 sk->sk_type == SOCK_STREAM) 4298 serr->ee.ee_data -= sk->sk_tskey; 4299 } 4300 4301 err = sock_queue_err_skb(sk, skb); 4302 4303 if (err) 4304 kfree_skb(skb); 4305 } 4306 4307 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4308 { 4309 bool ret; 4310 4311 if (likely(sysctl_tstamp_allow_data || tsonly)) 4312 return true; 4313 4314 read_lock_bh(&sk->sk_callback_lock); 4315 ret = sk->sk_socket && sk->sk_socket->file && 4316 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4317 read_unlock_bh(&sk->sk_callback_lock); 4318 return ret; 4319 } 4320 4321 void skb_complete_tx_timestamp(struct sk_buff *skb, 4322 struct skb_shared_hwtstamps *hwtstamps) 4323 { 4324 struct sock *sk = skb->sk; 4325 4326 if (!skb_may_tx_timestamp(sk, false)) 4327 goto err; 4328 4329 /* Take a reference to prevent skb_orphan() from freeing the socket, 4330 * but only if the socket refcount is not zero. 4331 */ 4332 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4333 *skb_hwtstamps(skb) = *hwtstamps; 4334 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4335 sock_put(sk); 4336 return; 4337 } 4338 4339 err: 4340 kfree_skb(skb); 4341 } 4342 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4343 4344 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4345 struct skb_shared_hwtstamps *hwtstamps, 4346 struct sock *sk, int tstype) 4347 { 4348 struct sk_buff *skb; 4349 bool tsonly, opt_stats = false; 4350 4351 if (!sk) 4352 return; 4353 4354 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4355 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4356 return; 4357 4358 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4359 if (!skb_may_tx_timestamp(sk, tsonly)) 4360 return; 4361 4362 if (tsonly) { 4363 #ifdef CONFIG_INET 4364 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4365 sk->sk_protocol == IPPROTO_TCP && 4366 sk->sk_type == SOCK_STREAM) { 4367 skb = tcp_get_timestamping_opt_stats(sk); 4368 opt_stats = true; 4369 } else 4370 #endif 4371 skb = alloc_skb(0, GFP_ATOMIC); 4372 } else { 4373 skb = skb_clone(orig_skb, GFP_ATOMIC); 4374 } 4375 if (!skb) 4376 return; 4377 4378 if (tsonly) { 4379 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4380 SKBTX_ANY_TSTAMP; 4381 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4382 } 4383 4384 if (hwtstamps) 4385 *skb_hwtstamps(skb) = *hwtstamps; 4386 else 4387 skb->tstamp = ktime_get_real(); 4388 4389 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4390 } 4391 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4392 4393 void skb_tstamp_tx(struct sk_buff *orig_skb, 4394 struct skb_shared_hwtstamps *hwtstamps) 4395 { 4396 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4397 SCM_TSTAMP_SND); 4398 } 4399 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4400 4401 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4402 { 4403 struct sock *sk = skb->sk; 4404 struct sock_exterr_skb *serr; 4405 int err = 1; 4406 4407 skb->wifi_acked_valid = 1; 4408 skb->wifi_acked = acked; 4409 4410 serr = SKB_EXT_ERR(skb); 4411 memset(serr, 0, sizeof(*serr)); 4412 serr->ee.ee_errno = ENOMSG; 4413 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4414 4415 /* Take a reference to prevent skb_orphan() from freeing the socket, 4416 * but only if the socket refcount is not zero. 4417 */ 4418 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4419 err = sock_queue_err_skb(sk, skb); 4420 sock_put(sk); 4421 } 4422 if (err) 4423 kfree_skb(skb); 4424 } 4425 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4426 4427 /** 4428 * skb_partial_csum_set - set up and verify partial csum values for packet 4429 * @skb: the skb to set 4430 * @start: the number of bytes after skb->data to start checksumming. 4431 * @off: the offset from start to place the checksum. 4432 * 4433 * For untrusted partially-checksummed packets, we need to make sure the values 4434 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4435 * 4436 * This function checks and sets those values and skb->ip_summed: if this 4437 * returns false you should drop the packet. 4438 */ 4439 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4440 { 4441 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4442 u32 csum_start = skb_headroom(skb) + (u32)start; 4443 4444 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4445 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4446 start, off, skb_headroom(skb), skb_headlen(skb)); 4447 return false; 4448 } 4449 skb->ip_summed = CHECKSUM_PARTIAL; 4450 skb->csum_start = csum_start; 4451 skb->csum_offset = off; 4452 skb_set_transport_header(skb, start); 4453 return true; 4454 } 4455 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4456 4457 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4458 unsigned int max) 4459 { 4460 if (skb_headlen(skb) >= len) 4461 return 0; 4462 4463 /* If we need to pullup then pullup to the max, so we 4464 * won't need to do it again. 4465 */ 4466 if (max > skb->len) 4467 max = skb->len; 4468 4469 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4470 return -ENOMEM; 4471 4472 if (skb_headlen(skb) < len) 4473 return -EPROTO; 4474 4475 return 0; 4476 } 4477 4478 #define MAX_TCP_HDR_LEN (15 * 4) 4479 4480 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4481 typeof(IPPROTO_IP) proto, 4482 unsigned int off) 4483 { 4484 switch (proto) { 4485 int err; 4486 4487 case IPPROTO_TCP: 4488 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4489 off + MAX_TCP_HDR_LEN); 4490 if (!err && !skb_partial_csum_set(skb, off, 4491 offsetof(struct tcphdr, 4492 check))) 4493 err = -EPROTO; 4494 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4495 4496 case IPPROTO_UDP: 4497 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4498 off + sizeof(struct udphdr)); 4499 if (!err && !skb_partial_csum_set(skb, off, 4500 offsetof(struct udphdr, 4501 check))) 4502 err = -EPROTO; 4503 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4504 } 4505 4506 return ERR_PTR(-EPROTO); 4507 } 4508 4509 /* This value should be large enough to cover a tagged ethernet header plus 4510 * maximally sized IP and TCP or UDP headers. 4511 */ 4512 #define MAX_IP_HDR_LEN 128 4513 4514 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4515 { 4516 unsigned int off; 4517 bool fragment; 4518 __sum16 *csum; 4519 int err; 4520 4521 fragment = false; 4522 4523 err = skb_maybe_pull_tail(skb, 4524 sizeof(struct iphdr), 4525 MAX_IP_HDR_LEN); 4526 if (err < 0) 4527 goto out; 4528 4529 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4530 fragment = true; 4531 4532 off = ip_hdrlen(skb); 4533 4534 err = -EPROTO; 4535 4536 if (fragment) 4537 goto out; 4538 4539 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4540 if (IS_ERR(csum)) 4541 return PTR_ERR(csum); 4542 4543 if (recalculate) 4544 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4545 ip_hdr(skb)->daddr, 4546 skb->len - off, 4547 ip_hdr(skb)->protocol, 0); 4548 err = 0; 4549 4550 out: 4551 return err; 4552 } 4553 4554 /* This value should be large enough to cover a tagged ethernet header plus 4555 * an IPv6 header, all options, and a maximal TCP or UDP header. 4556 */ 4557 #define MAX_IPV6_HDR_LEN 256 4558 4559 #define OPT_HDR(type, skb, off) \ 4560 (type *)(skb_network_header(skb) + (off)) 4561 4562 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4563 { 4564 int err; 4565 u8 nexthdr; 4566 unsigned int off; 4567 unsigned int len; 4568 bool fragment; 4569 bool done; 4570 __sum16 *csum; 4571 4572 fragment = false; 4573 done = false; 4574 4575 off = sizeof(struct ipv6hdr); 4576 4577 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4578 if (err < 0) 4579 goto out; 4580 4581 nexthdr = ipv6_hdr(skb)->nexthdr; 4582 4583 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4584 while (off <= len && !done) { 4585 switch (nexthdr) { 4586 case IPPROTO_DSTOPTS: 4587 case IPPROTO_HOPOPTS: 4588 case IPPROTO_ROUTING: { 4589 struct ipv6_opt_hdr *hp; 4590 4591 err = skb_maybe_pull_tail(skb, 4592 off + 4593 sizeof(struct ipv6_opt_hdr), 4594 MAX_IPV6_HDR_LEN); 4595 if (err < 0) 4596 goto out; 4597 4598 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4599 nexthdr = hp->nexthdr; 4600 off += ipv6_optlen(hp); 4601 break; 4602 } 4603 case IPPROTO_AH: { 4604 struct ip_auth_hdr *hp; 4605 4606 err = skb_maybe_pull_tail(skb, 4607 off + 4608 sizeof(struct ip_auth_hdr), 4609 MAX_IPV6_HDR_LEN); 4610 if (err < 0) 4611 goto out; 4612 4613 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4614 nexthdr = hp->nexthdr; 4615 off += ipv6_authlen(hp); 4616 break; 4617 } 4618 case IPPROTO_FRAGMENT: { 4619 struct frag_hdr *hp; 4620 4621 err = skb_maybe_pull_tail(skb, 4622 off + 4623 sizeof(struct frag_hdr), 4624 MAX_IPV6_HDR_LEN); 4625 if (err < 0) 4626 goto out; 4627 4628 hp = OPT_HDR(struct frag_hdr, skb, off); 4629 4630 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4631 fragment = true; 4632 4633 nexthdr = hp->nexthdr; 4634 off += sizeof(struct frag_hdr); 4635 break; 4636 } 4637 default: 4638 done = true; 4639 break; 4640 } 4641 } 4642 4643 err = -EPROTO; 4644 4645 if (!done || fragment) 4646 goto out; 4647 4648 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4649 if (IS_ERR(csum)) 4650 return PTR_ERR(csum); 4651 4652 if (recalculate) 4653 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4654 &ipv6_hdr(skb)->daddr, 4655 skb->len - off, nexthdr, 0); 4656 err = 0; 4657 4658 out: 4659 return err; 4660 } 4661 4662 /** 4663 * skb_checksum_setup - set up partial checksum offset 4664 * @skb: the skb to set up 4665 * @recalculate: if true the pseudo-header checksum will be recalculated 4666 */ 4667 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4668 { 4669 int err; 4670 4671 switch (skb->protocol) { 4672 case htons(ETH_P_IP): 4673 err = skb_checksum_setup_ipv4(skb, recalculate); 4674 break; 4675 4676 case htons(ETH_P_IPV6): 4677 err = skb_checksum_setup_ipv6(skb, recalculate); 4678 break; 4679 4680 default: 4681 err = -EPROTO; 4682 break; 4683 } 4684 4685 return err; 4686 } 4687 EXPORT_SYMBOL(skb_checksum_setup); 4688 4689 /** 4690 * skb_checksum_maybe_trim - maybe trims the given skb 4691 * @skb: the skb to check 4692 * @transport_len: the data length beyond the network header 4693 * 4694 * Checks whether the given skb has data beyond the given transport length. 4695 * If so, returns a cloned skb trimmed to this transport length. 4696 * Otherwise returns the provided skb. Returns NULL in error cases 4697 * (e.g. transport_len exceeds skb length or out-of-memory). 4698 * 4699 * Caller needs to set the skb transport header and free any returned skb if it 4700 * differs from the provided skb. 4701 */ 4702 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4703 unsigned int transport_len) 4704 { 4705 struct sk_buff *skb_chk; 4706 unsigned int len = skb_transport_offset(skb) + transport_len; 4707 int ret; 4708 4709 if (skb->len < len) 4710 return NULL; 4711 else if (skb->len == len) 4712 return skb; 4713 4714 skb_chk = skb_clone(skb, GFP_ATOMIC); 4715 if (!skb_chk) 4716 return NULL; 4717 4718 ret = pskb_trim_rcsum(skb_chk, len); 4719 if (ret) { 4720 kfree_skb(skb_chk); 4721 return NULL; 4722 } 4723 4724 return skb_chk; 4725 } 4726 4727 /** 4728 * skb_checksum_trimmed - validate checksum of an skb 4729 * @skb: the skb to check 4730 * @transport_len: the data length beyond the network header 4731 * @skb_chkf: checksum function to use 4732 * 4733 * Applies the given checksum function skb_chkf to the provided skb. 4734 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4735 * 4736 * If the skb has data beyond the given transport length, then a 4737 * trimmed & cloned skb is checked and returned. 4738 * 4739 * Caller needs to set the skb transport header and free any returned skb if it 4740 * differs from the provided skb. 4741 */ 4742 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4743 unsigned int transport_len, 4744 __sum16(*skb_chkf)(struct sk_buff *skb)) 4745 { 4746 struct sk_buff *skb_chk; 4747 unsigned int offset = skb_transport_offset(skb); 4748 __sum16 ret; 4749 4750 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4751 if (!skb_chk) 4752 goto err; 4753 4754 if (!pskb_may_pull(skb_chk, offset)) 4755 goto err; 4756 4757 skb_pull_rcsum(skb_chk, offset); 4758 ret = skb_chkf(skb_chk); 4759 skb_push_rcsum(skb_chk, offset); 4760 4761 if (ret) 4762 goto err; 4763 4764 return skb_chk; 4765 4766 err: 4767 if (skb_chk && skb_chk != skb) 4768 kfree_skb(skb_chk); 4769 4770 return NULL; 4771 4772 } 4773 EXPORT_SYMBOL(skb_checksum_trimmed); 4774 4775 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4776 { 4777 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4778 skb->dev->name); 4779 } 4780 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4781 4782 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4783 { 4784 if (head_stolen) { 4785 skb_release_head_state(skb); 4786 kmem_cache_free(skbuff_head_cache, skb); 4787 } else { 4788 __kfree_skb(skb); 4789 } 4790 } 4791 EXPORT_SYMBOL(kfree_skb_partial); 4792 4793 /** 4794 * skb_try_coalesce - try to merge skb to prior one 4795 * @to: prior buffer 4796 * @from: buffer to add 4797 * @fragstolen: pointer to boolean 4798 * @delta_truesize: how much more was allocated than was requested 4799 */ 4800 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4801 bool *fragstolen, int *delta_truesize) 4802 { 4803 struct skb_shared_info *to_shinfo, *from_shinfo; 4804 int i, delta, len = from->len; 4805 4806 *fragstolen = false; 4807 4808 if (skb_cloned(to)) 4809 return false; 4810 4811 if (len <= skb_tailroom(to)) { 4812 if (len) 4813 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4814 *delta_truesize = 0; 4815 return true; 4816 } 4817 4818 to_shinfo = skb_shinfo(to); 4819 from_shinfo = skb_shinfo(from); 4820 if (to_shinfo->frag_list || from_shinfo->frag_list) 4821 return false; 4822 if (skb_zcopy(to) || skb_zcopy(from)) 4823 return false; 4824 4825 if (skb_headlen(from) != 0) { 4826 struct page *page; 4827 unsigned int offset; 4828 4829 if (to_shinfo->nr_frags + 4830 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 4831 return false; 4832 4833 if (skb_head_is_locked(from)) 4834 return false; 4835 4836 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4837 4838 page = virt_to_head_page(from->head); 4839 offset = from->data - (unsigned char *)page_address(page); 4840 4841 skb_fill_page_desc(to, to_shinfo->nr_frags, 4842 page, offset, skb_headlen(from)); 4843 *fragstolen = true; 4844 } else { 4845 if (to_shinfo->nr_frags + 4846 from_shinfo->nr_frags > MAX_SKB_FRAGS) 4847 return false; 4848 4849 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4850 } 4851 4852 WARN_ON_ONCE(delta < len); 4853 4854 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 4855 from_shinfo->frags, 4856 from_shinfo->nr_frags * sizeof(skb_frag_t)); 4857 to_shinfo->nr_frags += from_shinfo->nr_frags; 4858 4859 if (!skb_cloned(from)) 4860 from_shinfo->nr_frags = 0; 4861 4862 /* if the skb is not cloned this does nothing 4863 * since we set nr_frags to 0. 4864 */ 4865 for (i = 0; i < from_shinfo->nr_frags; i++) 4866 __skb_frag_ref(&from_shinfo->frags[i]); 4867 4868 to->truesize += delta; 4869 to->len += len; 4870 to->data_len += len; 4871 4872 *delta_truesize = delta; 4873 return true; 4874 } 4875 EXPORT_SYMBOL(skb_try_coalesce); 4876 4877 /** 4878 * skb_scrub_packet - scrub an skb 4879 * 4880 * @skb: buffer to clean 4881 * @xnet: packet is crossing netns 4882 * 4883 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4884 * into/from a tunnel. Some information have to be cleared during these 4885 * operations. 4886 * skb_scrub_packet can also be used to clean a skb before injecting it in 4887 * another namespace (@xnet == true). We have to clear all information in the 4888 * skb that could impact namespace isolation. 4889 */ 4890 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4891 { 4892 skb->pkt_type = PACKET_HOST; 4893 skb->skb_iif = 0; 4894 skb->ignore_df = 0; 4895 skb_dst_drop(skb); 4896 secpath_reset(skb); 4897 nf_reset(skb); 4898 nf_reset_trace(skb); 4899 4900 if (!xnet) 4901 return; 4902 4903 ipvs_reset(skb); 4904 skb->mark = 0; 4905 skb->tstamp = 0; 4906 } 4907 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4908 4909 /** 4910 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4911 * 4912 * @skb: GSO skb 4913 * 4914 * skb_gso_transport_seglen is used to determine the real size of the 4915 * individual segments, including Layer4 headers (TCP/UDP). 4916 * 4917 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4918 */ 4919 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4920 { 4921 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4922 unsigned int thlen = 0; 4923 4924 if (skb->encapsulation) { 4925 thlen = skb_inner_transport_header(skb) - 4926 skb_transport_header(skb); 4927 4928 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4929 thlen += inner_tcp_hdrlen(skb); 4930 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4931 thlen = tcp_hdrlen(skb); 4932 } else if (unlikely(skb_is_gso_sctp(skb))) { 4933 thlen = sizeof(struct sctphdr); 4934 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4935 thlen = sizeof(struct udphdr); 4936 } 4937 /* UFO sets gso_size to the size of the fragmentation 4938 * payload, i.e. the size of the L4 (UDP) header is already 4939 * accounted for. 4940 */ 4941 return thlen + shinfo->gso_size; 4942 } 4943 4944 /** 4945 * skb_gso_network_seglen - Return length of individual segments of a gso packet 4946 * 4947 * @skb: GSO skb 4948 * 4949 * skb_gso_network_seglen is used to determine the real size of the 4950 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 4951 * 4952 * The MAC/L2 header is not accounted for. 4953 */ 4954 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 4955 { 4956 unsigned int hdr_len = skb_transport_header(skb) - 4957 skb_network_header(skb); 4958 4959 return hdr_len + skb_gso_transport_seglen(skb); 4960 } 4961 4962 /** 4963 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 4964 * 4965 * @skb: GSO skb 4966 * 4967 * skb_gso_mac_seglen is used to determine the real size of the 4968 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 4969 * headers (TCP/UDP). 4970 */ 4971 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 4972 { 4973 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 4974 4975 return hdr_len + skb_gso_transport_seglen(skb); 4976 } 4977 4978 /** 4979 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 4980 * 4981 * There are a couple of instances where we have a GSO skb, and we 4982 * want to determine what size it would be after it is segmented. 4983 * 4984 * We might want to check: 4985 * - L3+L4+payload size (e.g. IP forwarding) 4986 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 4987 * 4988 * This is a helper to do that correctly considering GSO_BY_FRAGS. 4989 * 4990 * @skb: GSO skb 4991 * 4992 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 4993 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 4994 * 4995 * @max_len: The maximum permissible length. 4996 * 4997 * Returns true if the segmented length <= max length. 4998 */ 4999 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5000 unsigned int seg_len, 5001 unsigned int max_len) { 5002 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5003 const struct sk_buff *iter; 5004 5005 if (shinfo->gso_size != GSO_BY_FRAGS) 5006 return seg_len <= max_len; 5007 5008 /* Undo this so we can re-use header sizes */ 5009 seg_len -= GSO_BY_FRAGS; 5010 5011 skb_walk_frags(skb, iter) { 5012 if (seg_len + skb_headlen(iter) > max_len) 5013 return false; 5014 } 5015 5016 return true; 5017 } 5018 5019 /** 5020 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5021 * 5022 * @skb: GSO skb 5023 * @mtu: MTU to validate against 5024 * 5025 * skb_gso_validate_network_len validates if a given skb will fit a 5026 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5027 * payload. 5028 */ 5029 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5030 { 5031 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5032 } 5033 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5034 5035 /** 5036 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5037 * 5038 * @skb: GSO skb 5039 * @len: length to validate against 5040 * 5041 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5042 * length once split, including L2, L3 and L4 headers and the payload. 5043 */ 5044 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5045 { 5046 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5047 } 5048 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5049 5050 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5051 { 5052 int mac_len; 5053 5054 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5055 kfree_skb(skb); 5056 return NULL; 5057 } 5058 5059 mac_len = skb->data - skb_mac_header(skb); 5060 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5061 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5062 mac_len - VLAN_HLEN - ETH_TLEN); 5063 } 5064 skb->mac_header += VLAN_HLEN; 5065 return skb; 5066 } 5067 5068 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5069 { 5070 struct vlan_hdr *vhdr; 5071 u16 vlan_tci; 5072 5073 if (unlikely(skb_vlan_tag_present(skb))) { 5074 /* vlan_tci is already set-up so leave this for another time */ 5075 return skb; 5076 } 5077 5078 skb = skb_share_check(skb, GFP_ATOMIC); 5079 if (unlikely(!skb)) 5080 goto err_free; 5081 5082 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5083 goto err_free; 5084 5085 vhdr = (struct vlan_hdr *)skb->data; 5086 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5087 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5088 5089 skb_pull_rcsum(skb, VLAN_HLEN); 5090 vlan_set_encap_proto(skb, vhdr); 5091 5092 skb = skb_reorder_vlan_header(skb); 5093 if (unlikely(!skb)) 5094 goto err_free; 5095 5096 skb_reset_network_header(skb); 5097 skb_reset_transport_header(skb); 5098 skb_reset_mac_len(skb); 5099 5100 return skb; 5101 5102 err_free: 5103 kfree_skb(skb); 5104 return NULL; 5105 } 5106 EXPORT_SYMBOL(skb_vlan_untag); 5107 5108 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5109 { 5110 if (!pskb_may_pull(skb, write_len)) 5111 return -ENOMEM; 5112 5113 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5114 return 0; 5115 5116 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5117 } 5118 EXPORT_SYMBOL(skb_ensure_writable); 5119 5120 /* remove VLAN header from packet and update csum accordingly. 5121 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5122 */ 5123 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5124 { 5125 struct vlan_hdr *vhdr; 5126 int offset = skb->data - skb_mac_header(skb); 5127 int err; 5128 5129 if (WARN_ONCE(offset, 5130 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5131 offset)) { 5132 return -EINVAL; 5133 } 5134 5135 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5136 if (unlikely(err)) 5137 return err; 5138 5139 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5140 5141 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5142 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5143 5144 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5145 __skb_pull(skb, VLAN_HLEN); 5146 5147 vlan_set_encap_proto(skb, vhdr); 5148 skb->mac_header += VLAN_HLEN; 5149 5150 if (skb_network_offset(skb) < ETH_HLEN) 5151 skb_set_network_header(skb, ETH_HLEN); 5152 5153 skb_reset_mac_len(skb); 5154 5155 return err; 5156 } 5157 EXPORT_SYMBOL(__skb_vlan_pop); 5158 5159 /* Pop a vlan tag either from hwaccel or from payload. 5160 * Expects skb->data at mac header. 5161 */ 5162 int skb_vlan_pop(struct sk_buff *skb) 5163 { 5164 u16 vlan_tci; 5165 __be16 vlan_proto; 5166 int err; 5167 5168 if (likely(skb_vlan_tag_present(skb))) { 5169 __vlan_hwaccel_clear_tag(skb); 5170 } else { 5171 if (unlikely(!eth_type_vlan(skb->protocol))) 5172 return 0; 5173 5174 err = __skb_vlan_pop(skb, &vlan_tci); 5175 if (err) 5176 return err; 5177 } 5178 /* move next vlan tag to hw accel tag */ 5179 if (likely(!eth_type_vlan(skb->protocol))) 5180 return 0; 5181 5182 vlan_proto = skb->protocol; 5183 err = __skb_vlan_pop(skb, &vlan_tci); 5184 if (unlikely(err)) 5185 return err; 5186 5187 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5188 return 0; 5189 } 5190 EXPORT_SYMBOL(skb_vlan_pop); 5191 5192 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5193 * Expects skb->data at mac header. 5194 */ 5195 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5196 { 5197 if (skb_vlan_tag_present(skb)) { 5198 int offset = skb->data - skb_mac_header(skb); 5199 int err; 5200 5201 if (WARN_ONCE(offset, 5202 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5203 offset)) { 5204 return -EINVAL; 5205 } 5206 5207 err = __vlan_insert_tag(skb, skb->vlan_proto, 5208 skb_vlan_tag_get(skb)); 5209 if (err) 5210 return err; 5211 5212 skb->protocol = skb->vlan_proto; 5213 skb->mac_len += VLAN_HLEN; 5214 5215 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5216 } 5217 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5218 return 0; 5219 } 5220 EXPORT_SYMBOL(skb_vlan_push); 5221 5222 /** 5223 * alloc_skb_with_frags - allocate skb with page frags 5224 * 5225 * @header_len: size of linear part 5226 * @data_len: needed length in frags 5227 * @max_page_order: max page order desired. 5228 * @errcode: pointer to error code if any 5229 * @gfp_mask: allocation mask 5230 * 5231 * This can be used to allocate a paged skb, given a maximal order for frags. 5232 */ 5233 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5234 unsigned long data_len, 5235 int max_page_order, 5236 int *errcode, 5237 gfp_t gfp_mask) 5238 { 5239 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5240 unsigned long chunk; 5241 struct sk_buff *skb; 5242 struct page *page; 5243 gfp_t gfp_head; 5244 int i; 5245 5246 *errcode = -EMSGSIZE; 5247 /* Note this test could be relaxed, if we succeed to allocate 5248 * high order pages... 5249 */ 5250 if (npages > MAX_SKB_FRAGS) 5251 return NULL; 5252 5253 gfp_head = gfp_mask; 5254 if (gfp_head & __GFP_DIRECT_RECLAIM) 5255 gfp_head |= __GFP_RETRY_MAYFAIL; 5256 5257 *errcode = -ENOBUFS; 5258 skb = alloc_skb(header_len, gfp_head); 5259 if (!skb) 5260 return NULL; 5261 5262 skb->truesize += npages << PAGE_SHIFT; 5263 5264 for (i = 0; npages > 0; i++) { 5265 int order = max_page_order; 5266 5267 while (order) { 5268 if (npages >= 1 << order) { 5269 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5270 __GFP_COMP | 5271 __GFP_NOWARN, 5272 order); 5273 if (page) 5274 goto fill_page; 5275 /* Do not retry other high order allocations */ 5276 order = 1; 5277 max_page_order = 0; 5278 } 5279 order--; 5280 } 5281 page = alloc_page(gfp_mask); 5282 if (!page) 5283 goto failure; 5284 fill_page: 5285 chunk = min_t(unsigned long, data_len, 5286 PAGE_SIZE << order); 5287 skb_fill_page_desc(skb, i, page, 0, chunk); 5288 data_len -= chunk; 5289 npages -= 1 << order; 5290 } 5291 return skb; 5292 5293 failure: 5294 kfree_skb(skb); 5295 return NULL; 5296 } 5297 EXPORT_SYMBOL(alloc_skb_with_frags); 5298 5299 /* carve out the first off bytes from skb when off < headlen */ 5300 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5301 const int headlen, gfp_t gfp_mask) 5302 { 5303 int i; 5304 int size = skb_end_offset(skb); 5305 int new_hlen = headlen - off; 5306 u8 *data; 5307 5308 size = SKB_DATA_ALIGN(size); 5309 5310 if (skb_pfmemalloc(skb)) 5311 gfp_mask |= __GFP_MEMALLOC; 5312 data = kmalloc_reserve(size + 5313 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5314 gfp_mask, NUMA_NO_NODE, NULL); 5315 if (!data) 5316 return -ENOMEM; 5317 5318 size = SKB_WITH_OVERHEAD(ksize(data)); 5319 5320 /* Copy real data, and all frags */ 5321 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5322 skb->len -= off; 5323 5324 memcpy((struct skb_shared_info *)(data + size), 5325 skb_shinfo(skb), 5326 offsetof(struct skb_shared_info, 5327 frags[skb_shinfo(skb)->nr_frags])); 5328 if (skb_cloned(skb)) { 5329 /* drop the old head gracefully */ 5330 if (skb_orphan_frags(skb, gfp_mask)) { 5331 kfree(data); 5332 return -ENOMEM; 5333 } 5334 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5335 skb_frag_ref(skb, i); 5336 if (skb_has_frag_list(skb)) 5337 skb_clone_fraglist(skb); 5338 skb_release_data(skb); 5339 } else { 5340 /* we can reuse existing recount- all we did was 5341 * relocate values 5342 */ 5343 skb_free_head(skb); 5344 } 5345 5346 skb->head = data; 5347 skb->data = data; 5348 skb->head_frag = 0; 5349 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5350 skb->end = size; 5351 #else 5352 skb->end = skb->head + size; 5353 #endif 5354 skb_set_tail_pointer(skb, skb_headlen(skb)); 5355 skb_headers_offset_update(skb, 0); 5356 skb->cloned = 0; 5357 skb->hdr_len = 0; 5358 skb->nohdr = 0; 5359 atomic_set(&skb_shinfo(skb)->dataref, 1); 5360 5361 return 0; 5362 } 5363 5364 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5365 5366 /* carve out the first eat bytes from skb's frag_list. May recurse into 5367 * pskb_carve() 5368 */ 5369 static int pskb_carve_frag_list(struct sk_buff *skb, 5370 struct skb_shared_info *shinfo, int eat, 5371 gfp_t gfp_mask) 5372 { 5373 struct sk_buff *list = shinfo->frag_list; 5374 struct sk_buff *clone = NULL; 5375 struct sk_buff *insp = NULL; 5376 5377 do { 5378 if (!list) { 5379 pr_err("Not enough bytes to eat. Want %d\n", eat); 5380 return -EFAULT; 5381 } 5382 if (list->len <= eat) { 5383 /* Eaten as whole. */ 5384 eat -= list->len; 5385 list = list->next; 5386 insp = list; 5387 } else { 5388 /* Eaten partially. */ 5389 if (skb_shared(list)) { 5390 clone = skb_clone(list, gfp_mask); 5391 if (!clone) 5392 return -ENOMEM; 5393 insp = list->next; 5394 list = clone; 5395 } else { 5396 /* This may be pulled without problems. */ 5397 insp = list; 5398 } 5399 if (pskb_carve(list, eat, gfp_mask) < 0) { 5400 kfree_skb(clone); 5401 return -ENOMEM; 5402 } 5403 break; 5404 } 5405 } while (eat); 5406 5407 /* Free pulled out fragments. */ 5408 while ((list = shinfo->frag_list) != insp) { 5409 shinfo->frag_list = list->next; 5410 kfree_skb(list); 5411 } 5412 /* And insert new clone at head. */ 5413 if (clone) { 5414 clone->next = list; 5415 shinfo->frag_list = clone; 5416 } 5417 return 0; 5418 } 5419 5420 /* carve off first len bytes from skb. Split line (off) is in the 5421 * non-linear part of skb 5422 */ 5423 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5424 int pos, gfp_t gfp_mask) 5425 { 5426 int i, k = 0; 5427 int size = skb_end_offset(skb); 5428 u8 *data; 5429 const int nfrags = skb_shinfo(skb)->nr_frags; 5430 struct skb_shared_info *shinfo; 5431 5432 size = SKB_DATA_ALIGN(size); 5433 5434 if (skb_pfmemalloc(skb)) 5435 gfp_mask |= __GFP_MEMALLOC; 5436 data = kmalloc_reserve(size + 5437 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5438 gfp_mask, NUMA_NO_NODE, NULL); 5439 if (!data) 5440 return -ENOMEM; 5441 5442 size = SKB_WITH_OVERHEAD(ksize(data)); 5443 5444 memcpy((struct skb_shared_info *)(data + size), 5445 skb_shinfo(skb), offsetof(struct skb_shared_info, 5446 frags[skb_shinfo(skb)->nr_frags])); 5447 if (skb_orphan_frags(skb, gfp_mask)) { 5448 kfree(data); 5449 return -ENOMEM; 5450 } 5451 shinfo = (struct skb_shared_info *)(data + size); 5452 for (i = 0; i < nfrags; i++) { 5453 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5454 5455 if (pos + fsize > off) { 5456 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5457 5458 if (pos < off) { 5459 /* Split frag. 5460 * We have two variants in this case: 5461 * 1. Move all the frag to the second 5462 * part, if it is possible. F.e. 5463 * this approach is mandatory for TUX, 5464 * where splitting is expensive. 5465 * 2. Split is accurately. We make this. 5466 */ 5467 shinfo->frags[0].page_offset += off - pos; 5468 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5469 } 5470 skb_frag_ref(skb, i); 5471 k++; 5472 } 5473 pos += fsize; 5474 } 5475 shinfo->nr_frags = k; 5476 if (skb_has_frag_list(skb)) 5477 skb_clone_fraglist(skb); 5478 5479 if (k == 0) { 5480 /* split line is in frag list */ 5481 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5482 } 5483 skb_release_data(skb); 5484 5485 skb->head = data; 5486 skb->head_frag = 0; 5487 skb->data = data; 5488 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5489 skb->end = size; 5490 #else 5491 skb->end = skb->head + size; 5492 #endif 5493 skb_reset_tail_pointer(skb); 5494 skb_headers_offset_update(skb, 0); 5495 skb->cloned = 0; 5496 skb->hdr_len = 0; 5497 skb->nohdr = 0; 5498 skb->len -= off; 5499 skb->data_len = skb->len; 5500 atomic_set(&skb_shinfo(skb)->dataref, 1); 5501 return 0; 5502 } 5503 5504 /* remove len bytes from the beginning of the skb */ 5505 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5506 { 5507 int headlen = skb_headlen(skb); 5508 5509 if (len < headlen) 5510 return pskb_carve_inside_header(skb, len, headlen, gfp); 5511 else 5512 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5513 } 5514 5515 /* Extract to_copy bytes starting at off from skb, and return this in 5516 * a new skb 5517 */ 5518 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5519 int to_copy, gfp_t gfp) 5520 { 5521 struct sk_buff *clone = skb_clone(skb, gfp); 5522 5523 if (!clone) 5524 return NULL; 5525 5526 if (pskb_carve(clone, off, gfp) < 0 || 5527 pskb_trim(clone, to_copy)) { 5528 kfree_skb(clone); 5529 return NULL; 5530 } 5531 return clone; 5532 } 5533 EXPORT_SYMBOL(pskb_extract); 5534 5535 /** 5536 * skb_condense - try to get rid of fragments/frag_list if possible 5537 * @skb: buffer 5538 * 5539 * Can be used to save memory before skb is added to a busy queue. 5540 * If packet has bytes in frags and enough tail room in skb->head, 5541 * pull all of them, so that we can free the frags right now and adjust 5542 * truesize. 5543 * Notes: 5544 * We do not reallocate skb->head thus can not fail. 5545 * Caller must re-evaluate skb->truesize if needed. 5546 */ 5547 void skb_condense(struct sk_buff *skb) 5548 { 5549 if (skb->data_len) { 5550 if (skb->data_len > skb->end - skb->tail || 5551 skb_cloned(skb)) 5552 return; 5553 5554 /* Nice, we can free page frag(s) right now */ 5555 __pskb_pull_tail(skb, skb->data_len); 5556 } 5557 /* At this point, skb->truesize might be over estimated, 5558 * because skb had a fragment, and fragments do not tell 5559 * their truesize. 5560 * When we pulled its content into skb->head, fragment 5561 * was freed, but __pskb_pull_tail() could not possibly 5562 * adjust skb->truesize, not knowing the frag truesize. 5563 */ 5564 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5565 } 5566