xref: /openbmc/linux/net/core/skbuff.c (revision 3de34f85)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "dev.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 #undef FN
95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
96 const char * const drop_reasons[] = {
97 	[SKB_CONSUMED] = "CONSUMED",
98 	DEFINE_DROP_REASON(FN, FN)
99 };
100 EXPORT_SYMBOL(drop_reasons);
101 
102 /**
103  *	skb_panic - private function for out-of-line support
104  *	@skb:	buffer
105  *	@sz:	size
106  *	@addr:	address
107  *	@msg:	skb_over_panic or skb_under_panic
108  *
109  *	Out-of-line support for skb_put() and skb_push().
110  *	Called via the wrapper skb_over_panic() or skb_under_panic().
111  *	Keep out of line to prevent kernel bloat.
112  *	__builtin_return_address is not used because it is not always reliable.
113  */
114 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
115 		      const char msg[])
116 {
117 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
118 		 msg, addr, skb->len, sz, skb->head, skb->data,
119 		 (unsigned long)skb->tail, (unsigned long)skb->end,
120 		 skb->dev ? skb->dev->name : "<NULL>");
121 	BUG();
122 }
123 
124 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
125 {
126 	skb_panic(skb, sz, addr, __func__);
127 }
128 
129 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130 {
131 	skb_panic(skb, sz, addr, __func__);
132 }
133 
134 #define NAPI_SKB_CACHE_SIZE	64
135 #define NAPI_SKB_CACHE_BULK	16
136 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
137 
138 #if PAGE_SIZE == SZ_4K
139 
140 #define NAPI_HAS_SMALL_PAGE_FRAG	1
141 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
142 
143 /* specialized page frag allocator using a single order 0 page
144  * and slicing it into 1K sized fragment. Constrained to systems
145  * with a very limited amount of 1K fragments fitting a single
146  * page - to avoid excessive truesize underestimation
147  */
148 
149 struct page_frag_1k {
150 	void *va;
151 	u16 offset;
152 	bool pfmemalloc;
153 };
154 
155 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
156 {
157 	struct page *page;
158 	int offset;
159 
160 	offset = nc->offset - SZ_1K;
161 	if (likely(offset >= 0))
162 		goto use_frag;
163 
164 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
165 	if (!page)
166 		return NULL;
167 
168 	nc->va = page_address(page);
169 	nc->pfmemalloc = page_is_pfmemalloc(page);
170 	offset = PAGE_SIZE - SZ_1K;
171 	page_ref_add(page, offset / SZ_1K);
172 
173 use_frag:
174 	nc->offset = offset;
175 	return nc->va + offset;
176 }
177 #else
178 
179 /* the small page is actually unused in this build; add dummy helpers
180  * to please the compiler and avoid later preprocessor's conditionals
181  */
182 #define NAPI_HAS_SMALL_PAGE_FRAG	0
183 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
184 
185 struct page_frag_1k {
186 };
187 
188 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
189 {
190 	return NULL;
191 }
192 
193 #endif
194 
195 struct napi_alloc_cache {
196 	struct page_frag_cache page;
197 	struct page_frag_1k page_small;
198 	unsigned int skb_count;
199 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
200 };
201 
202 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
203 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
204 
205 /* Double check that napi_get_frags() allocates skbs with
206  * skb->head being backed by slab, not a page fragment.
207  * This is to make sure bug fixed in 3226b158e67c
208  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
209  * does not accidentally come back.
210  */
211 void napi_get_frags_check(struct napi_struct *napi)
212 {
213 	struct sk_buff *skb;
214 
215 	local_bh_disable();
216 	skb = napi_get_frags(napi);
217 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
218 	napi_free_frags(napi);
219 	local_bh_enable();
220 }
221 
222 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
223 {
224 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
225 
226 	fragsz = SKB_DATA_ALIGN(fragsz);
227 
228 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
229 }
230 EXPORT_SYMBOL(__napi_alloc_frag_align);
231 
232 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
233 {
234 	void *data;
235 
236 	fragsz = SKB_DATA_ALIGN(fragsz);
237 	if (in_hardirq() || irqs_disabled()) {
238 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
239 
240 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
241 	} else {
242 		struct napi_alloc_cache *nc;
243 
244 		local_bh_disable();
245 		nc = this_cpu_ptr(&napi_alloc_cache);
246 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
247 		local_bh_enable();
248 	}
249 	return data;
250 }
251 EXPORT_SYMBOL(__netdev_alloc_frag_align);
252 
253 static struct sk_buff *napi_skb_cache_get(void)
254 {
255 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
256 	struct sk_buff *skb;
257 
258 	if (unlikely(!nc->skb_count)) {
259 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
260 						      GFP_ATOMIC,
261 						      NAPI_SKB_CACHE_BULK,
262 						      nc->skb_cache);
263 		if (unlikely(!nc->skb_count))
264 			return NULL;
265 	}
266 
267 	skb = nc->skb_cache[--nc->skb_count];
268 	kasan_unpoison_object_data(skbuff_head_cache, skb);
269 
270 	return skb;
271 }
272 
273 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
274 					 unsigned int size)
275 {
276 	struct skb_shared_info *shinfo;
277 
278 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
279 
280 	/* Assumes caller memset cleared SKB */
281 	skb->truesize = SKB_TRUESIZE(size);
282 	refcount_set(&skb->users, 1);
283 	skb->head = data;
284 	skb->data = data;
285 	skb_reset_tail_pointer(skb);
286 	skb_set_end_offset(skb, size);
287 	skb->mac_header = (typeof(skb->mac_header))~0U;
288 	skb->transport_header = (typeof(skb->transport_header))~0U;
289 	skb->alloc_cpu = raw_smp_processor_id();
290 	/* make sure we initialize shinfo sequentially */
291 	shinfo = skb_shinfo(skb);
292 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
293 	atomic_set(&shinfo->dataref, 1);
294 
295 	skb_set_kcov_handle(skb, kcov_common_handle());
296 }
297 
298 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
299 				     unsigned int *size)
300 {
301 	void *resized;
302 
303 	/* Must find the allocation size (and grow it to match). */
304 	*size = ksize(data);
305 	/* krealloc() will immediately return "data" when
306 	 * "ksize(data)" is requested: it is the existing upper
307 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
308 	 * that this "new" pointer needs to be passed back to the
309 	 * caller for use so the __alloc_size hinting will be
310 	 * tracked correctly.
311 	 */
312 	resized = krealloc(data, *size, GFP_ATOMIC);
313 	WARN_ON_ONCE(resized != data);
314 	return resized;
315 }
316 
317 /* build_skb() variant which can operate on slab buffers.
318  * Note that this should be used sparingly as slab buffers
319  * cannot be combined efficiently by GRO!
320  */
321 struct sk_buff *slab_build_skb(void *data)
322 {
323 	struct sk_buff *skb;
324 	unsigned int size;
325 
326 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
327 	if (unlikely(!skb))
328 		return NULL;
329 
330 	memset(skb, 0, offsetof(struct sk_buff, tail));
331 	data = __slab_build_skb(skb, data, &size);
332 	__finalize_skb_around(skb, data, size);
333 
334 	return skb;
335 }
336 EXPORT_SYMBOL(slab_build_skb);
337 
338 /* Caller must provide SKB that is memset cleared */
339 static void __build_skb_around(struct sk_buff *skb, void *data,
340 			       unsigned int frag_size)
341 {
342 	unsigned int size = frag_size;
343 
344 	/* frag_size == 0 is considered deprecated now. Callers
345 	 * using slab buffer should use slab_build_skb() instead.
346 	 */
347 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
348 		data = __slab_build_skb(skb, data, &size);
349 
350 	__finalize_skb_around(skb, data, size);
351 }
352 
353 /**
354  * __build_skb - build a network buffer
355  * @data: data buffer provided by caller
356  * @frag_size: size of data (must not be 0)
357  *
358  * Allocate a new &sk_buff. Caller provides space holding head and
359  * skb_shared_info. @data must have been allocated from the page
360  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
361  * allocation is deprecated, and callers should use slab_build_skb()
362  * instead.)
363  * The return is the new skb buffer.
364  * On a failure the return is %NULL, and @data is not freed.
365  * Notes :
366  *  Before IO, driver allocates only data buffer where NIC put incoming frame
367  *  Driver should add room at head (NET_SKB_PAD) and
368  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
369  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
370  *  before giving packet to stack.
371  *  RX rings only contains data buffers, not full skbs.
372  */
373 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
374 {
375 	struct sk_buff *skb;
376 
377 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
378 	if (unlikely(!skb))
379 		return NULL;
380 
381 	memset(skb, 0, offsetof(struct sk_buff, tail));
382 	__build_skb_around(skb, data, frag_size);
383 
384 	return skb;
385 }
386 
387 /* build_skb() is wrapper over __build_skb(), that specifically
388  * takes care of skb->head and skb->pfmemalloc
389  * This means that if @frag_size is not zero, then @data must be backed
390  * by a page fragment, not kmalloc() or vmalloc()
391  */
392 struct sk_buff *build_skb(void *data, unsigned int frag_size)
393 {
394 	struct sk_buff *skb = __build_skb(data, frag_size);
395 
396 	if (skb && frag_size) {
397 		skb->head_frag = 1;
398 		if (page_is_pfmemalloc(virt_to_head_page(data)))
399 			skb->pfmemalloc = 1;
400 	}
401 	return skb;
402 }
403 EXPORT_SYMBOL(build_skb);
404 
405 /**
406  * build_skb_around - build a network buffer around provided skb
407  * @skb: sk_buff provide by caller, must be memset cleared
408  * @data: data buffer provided by caller
409  * @frag_size: size of data, or 0 if head was kmalloced
410  */
411 struct sk_buff *build_skb_around(struct sk_buff *skb,
412 				 void *data, unsigned int frag_size)
413 {
414 	if (unlikely(!skb))
415 		return NULL;
416 
417 	__build_skb_around(skb, data, frag_size);
418 
419 	if (frag_size) {
420 		skb->head_frag = 1;
421 		if (page_is_pfmemalloc(virt_to_head_page(data)))
422 			skb->pfmemalloc = 1;
423 	}
424 	return skb;
425 }
426 EXPORT_SYMBOL(build_skb_around);
427 
428 /**
429  * __napi_build_skb - build a network buffer
430  * @data: data buffer provided by caller
431  * @frag_size: size of data, or 0 if head was kmalloced
432  *
433  * Version of __build_skb() that uses NAPI percpu caches to obtain
434  * skbuff_head instead of inplace allocation.
435  *
436  * Returns a new &sk_buff on success, %NULL on allocation failure.
437  */
438 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
439 {
440 	struct sk_buff *skb;
441 
442 	skb = napi_skb_cache_get();
443 	if (unlikely(!skb))
444 		return NULL;
445 
446 	memset(skb, 0, offsetof(struct sk_buff, tail));
447 	__build_skb_around(skb, data, frag_size);
448 
449 	return skb;
450 }
451 
452 /**
453  * napi_build_skb - build a network buffer
454  * @data: data buffer provided by caller
455  * @frag_size: size of data, or 0 if head was kmalloced
456  *
457  * Version of __napi_build_skb() that takes care of skb->head_frag
458  * and skb->pfmemalloc when the data is a page or page fragment.
459  *
460  * Returns a new &sk_buff on success, %NULL on allocation failure.
461  */
462 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
463 {
464 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
465 
466 	if (likely(skb) && frag_size) {
467 		skb->head_frag = 1;
468 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
469 	}
470 
471 	return skb;
472 }
473 EXPORT_SYMBOL(napi_build_skb);
474 
475 /*
476  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
477  * the caller if emergency pfmemalloc reserves are being used. If it is and
478  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
479  * may be used. Otherwise, the packet data may be discarded until enough
480  * memory is free
481  */
482 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
483 			     bool *pfmemalloc)
484 {
485 	void *obj;
486 	bool ret_pfmemalloc = false;
487 
488 	/*
489 	 * Try a regular allocation, when that fails and we're not entitled
490 	 * to the reserves, fail.
491 	 */
492 	obj = kmalloc_node_track_caller(size,
493 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
494 					node);
495 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
496 		goto out;
497 
498 	/* Try again but now we are using pfmemalloc reserves */
499 	ret_pfmemalloc = true;
500 	obj = kmalloc_node_track_caller(size, flags, node);
501 
502 out:
503 	if (pfmemalloc)
504 		*pfmemalloc = ret_pfmemalloc;
505 
506 	return obj;
507 }
508 
509 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
510  *	'private' fields and also do memory statistics to find all the
511  *	[BEEP] leaks.
512  *
513  */
514 
515 /**
516  *	__alloc_skb	-	allocate a network buffer
517  *	@size: size to allocate
518  *	@gfp_mask: allocation mask
519  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
520  *		instead of head cache and allocate a cloned (child) skb.
521  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
522  *		allocations in case the data is required for writeback
523  *	@node: numa node to allocate memory on
524  *
525  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
526  *	tail room of at least size bytes. The object has a reference count
527  *	of one. The return is the buffer. On a failure the return is %NULL.
528  *
529  *	Buffers may only be allocated from interrupts using a @gfp_mask of
530  *	%GFP_ATOMIC.
531  */
532 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
533 			    int flags, int node)
534 {
535 	struct kmem_cache *cache;
536 	struct sk_buff *skb;
537 	unsigned int osize;
538 	bool pfmemalloc;
539 	u8 *data;
540 
541 	cache = (flags & SKB_ALLOC_FCLONE)
542 		? skbuff_fclone_cache : skbuff_head_cache;
543 
544 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
545 		gfp_mask |= __GFP_MEMALLOC;
546 
547 	/* Get the HEAD */
548 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
549 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
550 		skb = napi_skb_cache_get();
551 	else
552 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
553 	if (unlikely(!skb))
554 		return NULL;
555 	prefetchw(skb);
556 
557 	/* We do our best to align skb_shared_info on a separate cache
558 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
559 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
560 	 * Both skb->head and skb_shared_info are cache line aligned.
561 	 */
562 	size = SKB_DATA_ALIGN(size);
563 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
564 	osize = kmalloc_size_roundup(size);
565 	data = kmalloc_reserve(osize, gfp_mask, node, &pfmemalloc);
566 	if (unlikely(!data))
567 		goto nodata;
568 	/* kmalloc_size_roundup() might give us more room than requested.
569 	 * Put skb_shared_info exactly at the end of allocated zone,
570 	 * to allow max possible filling before reallocation.
571 	 */
572 	size = SKB_WITH_OVERHEAD(osize);
573 	prefetchw(data + size);
574 
575 	/*
576 	 * Only clear those fields we need to clear, not those that we will
577 	 * actually initialise below. Hence, don't put any more fields after
578 	 * the tail pointer in struct sk_buff!
579 	 */
580 	memset(skb, 0, offsetof(struct sk_buff, tail));
581 	__build_skb_around(skb, data, osize);
582 	skb->pfmemalloc = pfmemalloc;
583 
584 	if (flags & SKB_ALLOC_FCLONE) {
585 		struct sk_buff_fclones *fclones;
586 
587 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
588 
589 		skb->fclone = SKB_FCLONE_ORIG;
590 		refcount_set(&fclones->fclone_ref, 1);
591 	}
592 
593 	return skb;
594 
595 nodata:
596 	kmem_cache_free(cache, skb);
597 	return NULL;
598 }
599 EXPORT_SYMBOL(__alloc_skb);
600 
601 /**
602  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
603  *	@dev: network device to receive on
604  *	@len: length to allocate
605  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
606  *
607  *	Allocate a new &sk_buff and assign it a usage count of one. The
608  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
609  *	the headroom they think they need without accounting for the
610  *	built in space. The built in space is used for optimisations.
611  *
612  *	%NULL is returned if there is no free memory.
613  */
614 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
615 				   gfp_t gfp_mask)
616 {
617 	struct page_frag_cache *nc;
618 	struct sk_buff *skb;
619 	bool pfmemalloc;
620 	void *data;
621 
622 	len += NET_SKB_PAD;
623 
624 	/* If requested length is either too small or too big,
625 	 * we use kmalloc() for skb->head allocation.
626 	 */
627 	if (len <= SKB_WITH_OVERHEAD(1024) ||
628 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
629 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
630 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
631 		if (!skb)
632 			goto skb_fail;
633 		goto skb_success;
634 	}
635 
636 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
637 	len = SKB_DATA_ALIGN(len);
638 
639 	if (sk_memalloc_socks())
640 		gfp_mask |= __GFP_MEMALLOC;
641 
642 	if (in_hardirq() || irqs_disabled()) {
643 		nc = this_cpu_ptr(&netdev_alloc_cache);
644 		data = page_frag_alloc(nc, len, gfp_mask);
645 		pfmemalloc = nc->pfmemalloc;
646 	} else {
647 		local_bh_disable();
648 		nc = this_cpu_ptr(&napi_alloc_cache.page);
649 		data = page_frag_alloc(nc, len, gfp_mask);
650 		pfmemalloc = nc->pfmemalloc;
651 		local_bh_enable();
652 	}
653 
654 	if (unlikely(!data))
655 		return NULL;
656 
657 	skb = __build_skb(data, len);
658 	if (unlikely(!skb)) {
659 		skb_free_frag(data);
660 		return NULL;
661 	}
662 
663 	if (pfmemalloc)
664 		skb->pfmemalloc = 1;
665 	skb->head_frag = 1;
666 
667 skb_success:
668 	skb_reserve(skb, NET_SKB_PAD);
669 	skb->dev = dev;
670 
671 skb_fail:
672 	return skb;
673 }
674 EXPORT_SYMBOL(__netdev_alloc_skb);
675 
676 /**
677  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
678  *	@napi: napi instance this buffer was allocated for
679  *	@len: length to allocate
680  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
681  *
682  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
683  *	attempt to allocate the head from a special reserved region used
684  *	only for NAPI Rx allocation.  By doing this we can save several
685  *	CPU cycles by avoiding having to disable and re-enable IRQs.
686  *
687  *	%NULL is returned if there is no free memory.
688  */
689 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
690 				 gfp_t gfp_mask)
691 {
692 	struct napi_alloc_cache *nc;
693 	struct sk_buff *skb;
694 	bool pfmemalloc;
695 	void *data;
696 
697 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
698 	len += NET_SKB_PAD + NET_IP_ALIGN;
699 
700 	/* If requested length is either too small or too big,
701 	 * we use kmalloc() for skb->head allocation.
702 	 * When the small frag allocator is available, prefer it over kmalloc
703 	 * for small fragments
704 	 */
705 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
706 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
707 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
708 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
709 				  NUMA_NO_NODE);
710 		if (!skb)
711 			goto skb_fail;
712 		goto skb_success;
713 	}
714 
715 	nc = this_cpu_ptr(&napi_alloc_cache);
716 
717 	if (sk_memalloc_socks())
718 		gfp_mask |= __GFP_MEMALLOC;
719 
720 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
721 		/* we are artificially inflating the allocation size, but
722 		 * that is not as bad as it may look like, as:
723 		 * - 'len' less than GRO_MAX_HEAD makes little sense
724 		 * - On most systems, larger 'len' values lead to fragment
725 		 *   size above 512 bytes
726 		 * - kmalloc would use the kmalloc-1k slab for such values
727 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
728 		 *   little networking, as that implies no WiFi and no
729 		 *   tunnels support, and 32 bits arches.
730 		 */
731 		len = SZ_1K;
732 
733 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
734 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
735 	} else {
736 		len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
737 		len = SKB_DATA_ALIGN(len);
738 
739 		data = page_frag_alloc(&nc->page, len, gfp_mask);
740 		pfmemalloc = nc->page.pfmemalloc;
741 	}
742 
743 	if (unlikely(!data))
744 		return NULL;
745 
746 	skb = __napi_build_skb(data, len);
747 	if (unlikely(!skb)) {
748 		skb_free_frag(data);
749 		return NULL;
750 	}
751 
752 	if (pfmemalloc)
753 		skb->pfmemalloc = 1;
754 	skb->head_frag = 1;
755 
756 skb_success:
757 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
758 	skb->dev = napi->dev;
759 
760 skb_fail:
761 	return skb;
762 }
763 EXPORT_SYMBOL(__napi_alloc_skb);
764 
765 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
766 		     int size, unsigned int truesize)
767 {
768 	skb_fill_page_desc(skb, i, page, off, size);
769 	skb->len += size;
770 	skb->data_len += size;
771 	skb->truesize += truesize;
772 }
773 EXPORT_SYMBOL(skb_add_rx_frag);
774 
775 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
776 			  unsigned int truesize)
777 {
778 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
779 
780 	skb_frag_size_add(frag, size);
781 	skb->len += size;
782 	skb->data_len += size;
783 	skb->truesize += truesize;
784 }
785 EXPORT_SYMBOL(skb_coalesce_rx_frag);
786 
787 static void skb_drop_list(struct sk_buff **listp)
788 {
789 	kfree_skb_list(*listp);
790 	*listp = NULL;
791 }
792 
793 static inline void skb_drop_fraglist(struct sk_buff *skb)
794 {
795 	skb_drop_list(&skb_shinfo(skb)->frag_list);
796 }
797 
798 static void skb_clone_fraglist(struct sk_buff *skb)
799 {
800 	struct sk_buff *list;
801 
802 	skb_walk_frags(skb, list)
803 		skb_get(list);
804 }
805 
806 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
807 {
808 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
809 		return false;
810 	return page_pool_return_skb_page(virt_to_page(data));
811 }
812 
813 static void skb_free_head(struct sk_buff *skb)
814 {
815 	unsigned char *head = skb->head;
816 
817 	if (skb->head_frag) {
818 		if (skb_pp_recycle(skb, head))
819 			return;
820 		skb_free_frag(head);
821 	} else {
822 		kfree(head);
823 	}
824 }
825 
826 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
827 {
828 	struct skb_shared_info *shinfo = skb_shinfo(skb);
829 	int i;
830 
831 	if (skb->cloned &&
832 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
833 			      &shinfo->dataref))
834 		goto exit;
835 
836 	if (skb_zcopy(skb)) {
837 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
838 
839 		skb_zcopy_clear(skb, true);
840 		if (skip_unref)
841 			goto free_head;
842 	}
843 
844 	for (i = 0; i < shinfo->nr_frags; i++)
845 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
846 
847 free_head:
848 	if (shinfo->frag_list)
849 		kfree_skb_list_reason(shinfo->frag_list, reason);
850 
851 	skb_free_head(skb);
852 exit:
853 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
854 	 * bit is only set on the head though, so in order to avoid races
855 	 * while trying to recycle fragments on __skb_frag_unref() we need
856 	 * to make one SKB responsible for triggering the recycle path.
857 	 * So disable the recycling bit if an SKB is cloned and we have
858 	 * additional references to the fragmented part of the SKB.
859 	 * Eventually the last SKB will have the recycling bit set and it's
860 	 * dataref set to 0, which will trigger the recycling
861 	 */
862 	skb->pp_recycle = 0;
863 }
864 
865 /*
866  *	Free an skbuff by memory without cleaning the state.
867  */
868 static void kfree_skbmem(struct sk_buff *skb)
869 {
870 	struct sk_buff_fclones *fclones;
871 
872 	switch (skb->fclone) {
873 	case SKB_FCLONE_UNAVAILABLE:
874 		kmem_cache_free(skbuff_head_cache, skb);
875 		return;
876 
877 	case SKB_FCLONE_ORIG:
878 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
879 
880 		/* We usually free the clone (TX completion) before original skb
881 		 * This test would have no chance to be true for the clone,
882 		 * while here, branch prediction will be good.
883 		 */
884 		if (refcount_read(&fclones->fclone_ref) == 1)
885 			goto fastpath;
886 		break;
887 
888 	default: /* SKB_FCLONE_CLONE */
889 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
890 		break;
891 	}
892 	if (!refcount_dec_and_test(&fclones->fclone_ref))
893 		return;
894 fastpath:
895 	kmem_cache_free(skbuff_fclone_cache, fclones);
896 }
897 
898 void skb_release_head_state(struct sk_buff *skb)
899 {
900 	skb_dst_drop(skb);
901 	if (skb->destructor) {
902 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
903 		skb->destructor(skb);
904 	}
905 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
906 	nf_conntrack_put(skb_nfct(skb));
907 #endif
908 	skb_ext_put(skb);
909 }
910 
911 /* Free everything but the sk_buff shell. */
912 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
913 {
914 	skb_release_head_state(skb);
915 	if (likely(skb->head))
916 		skb_release_data(skb, reason);
917 }
918 
919 /**
920  *	__kfree_skb - private function
921  *	@skb: buffer
922  *
923  *	Free an sk_buff. Release anything attached to the buffer.
924  *	Clean the state. This is an internal helper function. Users should
925  *	always call kfree_skb
926  */
927 
928 void __kfree_skb(struct sk_buff *skb)
929 {
930 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
931 	kfree_skbmem(skb);
932 }
933 EXPORT_SYMBOL(__kfree_skb);
934 
935 /**
936  *	kfree_skb_reason - free an sk_buff with special reason
937  *	@skb: buffer to free
938  *	@reason: reason why this skb is dropped
939  *
940  *	Drop a reference to the buffer and free it if the usage count has
941  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
942  *	tracepoint.
943  */
944 void __fix_address
945 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
946 {
947 	if (unlikely(!skb_unref(skb)))
948 		return;
949 
950 	DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
951 
952 	if (reason == SKB_CONSUMED)
953 		trace_consume_skb(skb);
954 	else
955 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
956 	__kfree_skb(skb);
957 }
958 EXPORT_SYMBOL(kfree_skb_reason);
959 
960 void kfree_skb_list_reason(struct sk_buff *segs,
961 			   enum skb_drop_reason reason)
962 {
963 	while (segs) {
964 		struct sk_buff *next = segs->next;
965 
966 		kfree_skb_reason(segs, reason);
967 		segs = next;
968 	}
969 }
970 EXPORT_SYMBOL(kfree_skb_list_reason);
971 
972 /* Dump skb information and contents.
973  *
974  * Must only be called from net_ratelimit()-ed paths.
975  *
976  * Dumps whole packets if full_pkt, only headers otherwise.
977  */
978 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
979 {
980 	struct skb_shared_info *sh = skb_shinfo(skb);
981 	struct net_device *dev = skb->dev;
982 	struct sock *sk = skb->sk;
983 	struct sk_buff *list_skb;
984 	bool has_mac, has_trans;
985 	int headroom, tailroom;
986 	int i, len, seg_len;
987 
988 	if (full_pkt)
989 		len = skb->len;
990 	else
991 		len = min_t(int, skb->len, MAX_HEADER + 128);
992 
993 	headroom = skb_headroom(skb);
994 	tailroom = skb_tailroom(skb);
995 
996 	has_mac = skb_mac_header_was_set(skb);
997 	has_trans = skb_transport_header_was_set(skb);
998 
999 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1000 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1001 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1002 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1003 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1004 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1005 	       has_mac ? skb->mac_header : -1,
1006 	       has_mac ? skb_mac_header_len(skb) : -1,
1007 	       skb->network_header,
1008 	       has_trans ? skb_network_header_len(skb) : -1,
1009 	       has_trans ? skb->transport_header : -1,
1010 	       sh->tx_flags, sh->nr_frags,
1011 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1012 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1013 	       skb->csum_valid, skb->csum_level,
1014 	       skb->hash, skb->sw_hash, skb->l4_hash,
1015 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1016 
1017 	if (dev)
1018 		printk("%sdev name=%s feat=%pNF\n",
1019 		       level, dev->name, &dev->features);
1020 	if (sk)
1021 		printk("%ssk family=%hu type=%u proto=%u\n",
1022 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1023 
1024 	if (full_pkt && headroom)
1025 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1026 			       16, 1, skb->head, headroom, false);
1027 
1028 	seg_len = min_t(int, skb_headlen(skb), len);
1029 	if (seg_len)
1030 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1031 			       16, 1, skb->data, seg_len, false);
1032 	len -= seg_len;
1033 
1034 	if (full_pkt && tailroom)
1035 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1036 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1037 
1038 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1039 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1040 		u32 p_off, p_len, copied;
1041 		struct page *p;
1042 		u8 *vaddr;
1043 
1044 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1045 				      skb_frag_size(frag), p, p_off, p_len,
1046 				      copied) {
1047 			seg_len = min_t(int, p_len, len);
1048 			vaddr = kmap_atomic(p);
1049 			print_hex_dump(level, "skb frag:     ",
1050 				       DUMP_PREFIX_OFFSET,
1051 				       16, 1, vaddr + p_off, seg_len, false);
1052 			kunmap_atomic(vaddr);
1053 			len -= seg_len;
1054 			if (!len)
1055 				break;
1056 		}
1057 	}
1058 
1059 	if (full_pkt && skb_has_frag_list(skb)) {
1060 		printk("skb fraglist:\n");
1061 		skb_walk_frags(skb, list_skb)
1062 			skb_dump(level, list_skb, true);
1063 	}
1064 }
1065 EXPORT_SYMBOL(skb_dump);
1066 
1067 /**
1068  *	skb_tx_error - report an sk_buff xmit error
1069  *	@skb: buffer that triggered an error
1070  *
1071  *	Report xmit error if a device callback is tracking this skb.
1072  *	skb must be freed afterwards.
1073  */
1074 void skb_tx_error(struct sk_buff *skb)
1075 {
1076 	if (skb) {
1077 		skb_zcopy_downgrade_managed(skb);
1078 		skb_zcopy_clear(skb, true);
1079 	}
1080 }
1081 EXPORT_SYMBOL(skb_tx_error);
1082 
1083 #ifdef CONFIG_TRACEPOINTS
1084 /**
1085  *	consume_skb - free an skbuff
1086  *	@skb: buffer to free
1087  *
1088  *	Drop a ref to the buffer and free it if the usage count has hit zero
1089  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1090  *	is being dropped after a failure and notes that
1091  */
1092 void consume_skb(struct sk_buff *skb)
1093 {
1094 	if (!skb_unref(skb))
1095 		return;
1096 
1097 	trace_consume_skb(skb);
1098 	__kfree_skb(skb);
1099 }
1100 EXPORT_SYMBOL(consume_skb);
1101 #endif
1102 
1103 /**
1104  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1105  *	@skb: buffer to free
1106  *
1107  *	Alike consume_skb(), but this variant assumes that this is the last
1108  *	skb reference and all the head states have been already dropped
1109  */
1110 void __consume_stateless_skb(struct sk_buff *skb)
1111 {
1112 	trace_consume_skb(skb);
1113 	skb_release_data(skb, SKB_CONSUMED);
1114 	kfree_skbmem(skb);
1115 }
1116 
1117 static void napi_skb_cache_put(struct sk_buff *skb)
1118 {
1119 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1120 	u32 i;
1121 
1122 	kasan_poison_object_data(skbuff_head_cache, skb);
1123 	nc->skb_cache[nc->skb_count++] = skb;
1124 
1125 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1126 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1127 			kasan_unpoison_object_data(skbuff_head_cache,
1128 						   nc->skb_cache[i]);
1129 
1130 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
1131 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1132 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1133 	}
1134 }
1135 
1136 void __kfree_skb_defer(struct sk_buff *skb)
1137 {
1138 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1139 	napi_skb_cache_put(skb);
1140 }
1141 
1142 void napi_skb_free_stolen_head(struct sk_buff *skb)
1143 {
1144 	if (unlikely(skb->slow_gro)) {
1145 		nf_reset_ct(skb);
1146 		skb_dst_drop(skb);
1147 		skb_ext_put(skb);
1148 		skb_orphan(skb);
1149 		skb->slow_gro = 0;
1150 	}
1151 	napi_skb_cache_put(skb);
1152 }
1153 
1154 void napi_consume_skb(struct sk_buff *skb, int budget)
1155 {
1156 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1157 	if (unlikely(!budget)) {
1158 		dev_consume_skb_any(skb);
1159 		return;
1160 	}
1161 
1162 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1163 
1164 	if (!skb_unref(skb))
1165 		return;
1166 
1167 	/* if reaching here SKB is ready to free */
1168 	trace_consume_skb(skb);
1169 
1170 	/* if SKB is a clone, don't handle this case */
1171 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1172 		__kfree_skb(skb);
1173 		return;
1174 	}
1175 
1176 	skb_release_all(skb, SKB_CONSUMED);
1177 	napi_skb_cache_put(skb);
1178 }
1179 EXPORT_SYMBOL(napi_consume_skb);
1180 
1181 /* Make sure a field is contained by headers group */
1182 #define CHECK_SKB_FIELD(field) \
1183 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1184 		     offsetof(struct sk_buff, headers.field));	\
1185 
1186 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1187 {
1188 	new->tstamp		= old->tstamp;
1189 	/* We do not copy old->sk */
1190 	new->dev		= old->dev;
1191 	memcpy(new->cb, old->cb, sizeof(old->cb));
1192 	skb_dst_copy(new, old);
1193 	__skb_ext_copy(new, old);
1194 	__nf_copy(new, old, false);
1195 
1196 	/* Note : this field could be in the headers group.
1197 	 * It is not yet because we do not want to have a 16 bit hole
1198 	 */
1199 	new->queue_mapping = old->queue_mapping;
1200 
1201 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1202 	CHECK_SKB_FIELD(protocol);
1203 	CHECK_SKB_FIELD(csum);
1204 	CHECK_SKB_FIELD(hash);
1205 	CHECK_SKB_FIELD(priority);
1206 	CHECK_SKB_FIELD(skb_iif);
1207 	CHECK_SKB_FIELD(vlan_proto);
1208 	CHECK_SKB_FIELD(vlan_tci);
1209 	CHECK_SKB_FIELD(transport_header);
1210 	CHECK_SKB_FIELD(network_header);
1211 	CHECK_SKB_FIELD(mac_header);
1212 	CHECK_SKB_FIELD(inner_protocol);
1213 	CHECK_SKB_FIELD(inner_transport_header);
1214 	CHECK_SKB_FIELD(inner_network_header);
1215 	CHECK_SKB_FIELD(inner_mac_header);
1216 	CHECK_SKB_FIELD(mark);
1217 #ifdef CONFIG_NETWORK_SECMARK
1218 	CHECK_SKB_FIELD(secmark);
1219 #endif
1220 #ifdef CONFIG_NET_RX_BUSY_POLL
1221 	CHECK_SKB_FIELD(napi_id);
1222 #endif
1223 	CHECK_SKB_FIELD(alloc_cpu);
1224 #ifdef CONFIG_XPS
1225 	CHECK_SKB_FIELD(sender_cpu);
1226 #endif
1227 #ifdef CONFIG_NET_SCHED
1228 	CHECK_SKB_FIELD(tc_index);
1229 #endif
1230 
1231 }
1232 
1233 /*
1234  * You should not add any new code to this function.  Add it to
1235  * __copy_skb_header above instead.
1236  */
1237 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1238 {
1239 #define C(x) n->x = skb->x
1240 
1241 	n->next = n->prev = NULL;
1242 	n->sk = NULL;
1243 	__copy_skb_header(n, skb);
1244 
1245 	C(len);
1246 	C(data_len);
1247 	C(mac_len);
1248 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1249 	n->cloned = 1;
1250 	n->nohdr = 0;
1251 	n->peeked = 0;
1252 	C(pfmemalloc);
1253 	C(pp_recycle);
1254 	n->destructor = NULL;
1255 	C(tail);
1256 	C(end);
1257 	C(head);
1258 	C(head_frag);
1259 	C(data);
1260 	C(truesize);
1261 	refcount_set(&n->users, 1);
1262 
1263 	atomic_inc(&(skb_shinfo(skb)->dataref));
1264 	skb->cloned = 1;
1265 
1266 	return n;
1267 #undef C
1268 }
1269 
1270 /**
1271  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1272  * @first: first sk_buff of the msg
1273  */
1274 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1275 {
1276 	struct sk_buff *n;
1277 
1278 	n = alloc_skb(0, GFP_ATOMIC);
1279 	if (!n)
1280 		return NULL;
1281 
1282 	n->len = first->len;
1283 	n->data_len = first->len;
1284 	n->truesize = first->truesize;
1285 
1286 	skb_shinfo(n)->frag_list = first;
1287 
1288 	__copy_skb_header(n, first);
1289 	n->destructor = NULL;
1290 
1291 	return n;
1292 }
1293 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1294 
1295 /**
1296  *	skb_morph	-	morph one skb into another
1297  *	@dst: the skb to receive the contents
1298  *	@src: the skb to supply the contents
1299  *
1300  *	This is identical to skb_clone except that the target skb is
1301  *	supplied by the user.
1302  *
1303  *	The target skb is returned upon exit.
1304  */
1305 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1306 {
1307 	skb_release_all(dst, SKB_CONSUMED);
1308 	return __skb_clone(dst, src);
1309 }
1310 EXPORT_SYMBOL_GPL(skb_morph);
1311 
1312 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1313 {
1314 	unsigned long max_pg, num_pg, new_pg, old_pg;
1315 	struct user_struct *user;
1316 
1317 	if (capable(CAP_IPC_LOCK) || !size)
1318 		return 0;
1319 
1320 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1321 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1322 	user = mmp->user ? : current_user();
1323 
1324 	old_pg = atomic_long_read(&user->locked_vm);
1325 	do {
1326 		new_pg = old_pg + num_pg;
1327 		if (new_pg > max_pg)
1328 			return -ENOBUFS;
1329 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1330 
1331 	if (!mmp->user) {
1332 		mmp->user = get_uid(user);
1333 		mmp->num_pg = num_pg;
1334 	} else {
1335 		mmp->num_pg += num_pg;
1336 	}
1337 
1338 	return 0;
1339 }
1340 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1341 
1342 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1343 {
1344 	if (mmp->user) {
1345 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1346 		free_uid(mmp->user);
1347 	}
1348 }
1349 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1350 
1351 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1352 {
1353 	struct ubuf_info_msgzc *uarg;
1354 	struct sk_buff *skb;
1355 
1356 	WARN_ON_ONCE(!in_task());
1357 
1358 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1359 	if (!skb)
1360 		return NULL;
1361 
1362 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1363 	uarg = (void *)skb->cb;
1364 	uarg->mmp.user = NULL;
1365 
1366 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1367 		kfree_skb(skb);
1368 		return NULL;
1369 	}
1370 
1371 	uarg->ubuf.callback = msg_zerocopy_callback;
1372 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1373 	uarg->len = 1;
1374 	uarg->bytelen = size;
1375 	uarg->zerocopy = 1;
1376 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1377 	refcount_set(&uarg->ubuf.refcnt, 1);
1378 	sock_hold(sk);
1379 
1380 	return &uarg->ubuf;
1381 }
1382 
1383 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1384 {
1385 	return container_of((void *)uarg, struct sk_buff, cb);
1386 }
1387 
1388 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1389 				       struct ubuf_info *uarg)
1390 {
1391 	if (uarg) {
1392 		struct ubuf_info_msgzc *uarg_zc;
1393 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1394 		u32 bytelen, next;
1395 
1396 		/* there might be non MSG_ZEROCOPY users */
1397 		if (uarg->callback != msg_zerocopy_callback)
1398 			return NULL;
1399 
1400 		/* realloc only when socket is locked (TCP, UDP cork),
1401 		 * so uarg->len and sk_zckey access is serialized
1402 		 */
1403 		if (!sock_owned_by_user(sk)) {
1404 			WARN_ON_ONCE(1);
1405 			return NULL;
1406 		}
1407 
1408 		uarg_zc = uarg_to_msgzc(uarg);
1409 		bytelen = uarg_zc->bytelen + size;
1410 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1411 			/* TCP can create new skb to attach new uarg */
1412 			if (sk->sk_type == SOCK_STREAM)
1413 				goto new_alloc;
1414 			return NULL;
1415 		}
1416 
1417 		next = (u32)atomic_read(&sk->sk_zckey);
1418 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1419 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1420 				return NULL;
1421 			uarg_zc->len++;
1422 			uarg_zc->bytelen = bytelen;
1423 			atomic_set(&sk->sk_zckey, ++next);
1424 
1425 			/* no extra ref when appending to datagram (MSG_MORE) */
1426 			if (sk->sk_type == SOCK_STREAM)
1427 				net_zcopy_get(uarg);
1428 
1429 			return uarg;
1430 		}
1431 	}
1432 
1433 new_alloc:
1434 	return msg_zerocopy_alloc(sk, size);
1435 }
1436 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1437 
1438 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1439 {
1440 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1441 	u32 old_lo, old_hi;
1442 	u64 sum_len;
1443 
1444 	old_lo = serr->ee.ee_info;
1445 	old_hi = serr->ee.ee_data;
1446 	sum_len = old_hi - old_lo + 1ULL + len;
1447 
1448 	if (sum_len >= (1ULL << 32))
1449 		return false;
1450 
1451 	if (lo != old_hi + 1)
1452 		return false;
1453 
1454 	serr->ee.ee_data += len;
1455 	return true;
1456 }
1457 
1458 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1459 {
1460 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1461 	struct sock_exterr_skb *serr;
1462 	struct sock *sk = skb->sk;
1463 	struct sk_buff_head *q;
1464 	unsigned long flags;
1465 	bool is_zerocopy;
1466 	u32 lo, hi;
1467 	u16 len;
1468 
1469 	mm_unaccount_pinned_pages(&uarg->mmp);
1470 
1471 	/* if !len, there was only 1 call, and it was aborted
1472 	 * so do not queue a completion notification
1473 	 */
1474 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1475 		goto release;
1476 
1477 	len = uarg->len;
1478 	lo = uarg->id;
1479 	hi = uarg->id + len - 1;
1480 	is_zerocopy = uarg->zerocopy;
1481 
1482 	serr = SKB_EXT_ERR(skb);
1483 	memset(serr, 0, sizeof(*serr));
1484 	serr->ee.ee_errno = 0;
1485 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1486 	serr->ee.ee_data = hi;
1487 	serr->ee.ee_info = lo;
1488 	if (!is_zerocopy)
1489 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1490 
1491 	q = &sk->sk_error_queue;
1492 	spin_lock_irqsave(&q->lock, flags);
1493 	tail = skb_peek_tail(q);
1494 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1495 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1496 		__skb_queue_tail(q, skb);
1497 		skb = NULL;
1498 	}
1499 	spin_unlock_irqrestore(&q->lock, flags);
1500 
1501 	sk_error_report(sk);
1502 
1503 release:
1504 	consume_skb(skb);
1505 	sock_put(sk);
1506 }
1507 
1508 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1509 			   bool success)
1510 {
1511 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1512 
1513 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1514 
1515 	if (refcount_dec_and_test(&uarg->refcnt))
1516 		__msg_zerocopy_callback(uarg_zc);
1517 }
1518 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1519 
1520 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1521 {
1522 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1523 
1524 	atomic_dec(&sk->sk_zckey);
1525 	uarg_to_msgzc(uarg)->len--;
1526 
1527 	if (have_uref)
1528 		msg_zerocopy_callback(NULL, uarg, true);
1529 }
1530 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1531 
1532 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1533 			     struct msghdr *msg, int len,
1534 			     struct ubuf_info *uarg)
1535 {
1536 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1537 	int err, orig_len = skb->len;
1538 
1539 	/* An skb can only point to one uarg. This edge case happens when
1540 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1541 	 */
1542 	if (orig_uarg && uarg != orig_uarg)
1543 		return -EEXIST;
1544 
1545 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1546 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1547 		struct sock *save_sk = skb->sk;
1548 
1549 		/* Streams do not free skb on error. Reset to prev state. */
1550 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1551 		skb->sk = sk;
1552 		___pskb_trim(skb, orig_len);
1553 		skb->sk = save_sk;
1554 		return err;
1555 	}
1556 
1557 	skb_zcopy_set(skb, uarg, NULL);
1558 	return skb->len - orig_len;
1559 }
1560 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1561 
1562 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1563 {
1564 	int i;
1565 
1566 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1567 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1568 		skb_frag_ref(skb, i);
1569 }
1570 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1571 
1572 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1573 			      gfp_t gfp_mask)
1574 {
1575 	if (skb_zcopy(orig)) {
1576 		if (skb_zcopy(nskb)) {
1577 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1578 			if (!gfp_mask) {
1579 				WARN_ON_ONCE(1);
1580 				return -ENOMEM;
1581 			}
1582 			if (skb_uarg(nskb) == skb_uarg(orig))
1583 				return 0;
1584 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1585 				return -EIO;
1586 		}
1587 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1588 	}
1589 	return 0;
1590 }
1591 
1592 /**
1593  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1594  *	@skb: the skb to modify
1595  *	@gfp_mask: allocation priority
1596  *
1597  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1598  *	It will copy all frags into kernel and drop the reference
1599  *	to userspace pages.
1600  *
1601  *	If this function is called from an interrupt gfp_mask() must be
1602  *	%GFP_ATOMIC.
1603  *
1604  *	Returns 0 on success or a negative error code on failure
1605  *	to allocate kernel memory to copy to.
1606  */
1607 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1608 {
1609 	int num_frags = skb_shinfo(skb)->nr_frags;
1610 	struct page *page, *head = NULL;
1611 	int i, new_frags;
1612 	u32 d_off;
1613 
1614 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1615 		return -EINVAL;
1616 
1617 	if (!num_frags)
1618 		goto release;
1619 
1620 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1621 	for (i = 0; i < new_frags; i++) {
1622 		page = alloc_page(gfp_mask);
1623 		if (!page) {
1624 			while (head) {
1625 				struct page *next = (struct page *)page_private(head);
1626 				put_page(head);
1627 				head = next;
1628 			}
1629 			return -ENOMEM;
1630 		}
1631 		set_page_private(page, (unsigned long)head);
1632 		head = page;
1633 	}
1634 
1635 	page = head;
1636 	d_off = 0;
1637 	for (i = 0; i < num_frags; i++) {
1638 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1639 		u32 p_off, p_len, copied;
1640 		struct page *p;
1641 		u8 *vaddr;
1642 
1643 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1644 				      p, p_off, p_len, copied) {
1645 			u32 copy, done = 0;
1646 			vaddr = kmap_atomic(p);
1647 
1648 			while (done < p_len) {
1649 				if (d_off == PAGE_SIZE) {
1650 					d_off = 0;
1651 					page = (struct page *)page_private(page);
1652 				}
1653 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1654 				memcpy(page_address(page) + d_off,
1655 				       vaddr + p_off + done, copy);
1656 				done += copy;
1657 				d_off += copy;
1658 			}
1659 			kunmap_atomic(vaddr);
1660 		}
1661 	}
1662 
1663 	/* skb frags release userspace buffers */
1664 	for (i = 0; i < num_frags; i++)
1665 		skb_frag_unref(skb, i);
1666 
1667 	/* skb frags point to kernel buffers */
1668 	for (i = 0; i < new_frags - 1; i++) {
1669 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1670 		head = (struct page *)page_private(head);
1671 	}
1672 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1673 	skb_shinfo(skb)->nr_frags = new_frags;
1674 
1675 release:
1676 	skb_zcopy_clear(skb, false);
1677 	return 0;
1678 }
1679 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1680 
1681 /**
1682  *	skb_clone	-	duplicate an sk_buff
1683  *	@skb: buffer to clone
1684  *	@gfp_mask: allocation priority
1685  *
1686  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1687  *	copies share the same packet data but not structure. The new
1688  *	buffer has a reference count of 1. If the allocation fails the
1689  *	function returns %NULL otherwise the new buffer is returned.
1690  *
1691  *	If this function is called from an interrupt gfp_mask() must be
1692  *	%GFP_ATOMIC.
1693  */
1694 
1695 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1696 {
1697 	struct sk_buff_fclones *fclones = container_of(skb,
1698 						       struct sk_buff_fclones,
1699 						       skb1);
1700 	struct sk_buff *n;
1701 
1702 	if (skb_orphan_frags(skb, gfp_mask))
1703 		return NULL;
1704 
1705 	if (skb->fclone == SKB_FCLONE_ORIG &&
1706 	    refcount_read(&fclones->fclone_ref) == 1) {
1707 		n = &fclones->skb2;
1708 		refcount_set(&fclones->fclone_ref, 2);
1709 		n->fclone = SKB_FCLONE_CLONE;
1710 	} else {
1711 		if (skb_pfmemalloc(skb))
1712 			gfp_mask |= __GFP_MEMALLOC;
1713 
1714 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1715 		if (!n)
1716 			return NULL;
1717 
1718 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1719 	}
1720 
1721 	return __skb_clone(n, skb);
1722 }
1723 EXPORT_SYMBOL(skb_clone);
1724 
1725 void skb_headers_offset_update(struct sk_buff *skb, int off)
1726 {
1727 	/* Only adjust this if it actually is csum_start rather than csum */
1728 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1729 		skb->csum_start += off;
1730 	/* {transport,network,mac}_header and tail are relative to skb->head */
1731 	skb->transport_header += off;
1732 	skb->network_header   += off;
1733 	if (skb_mac_header_was_set(skb))
1734 		skb->mac_header += off;
1735 	skb->inner_transport_header += off;
1736 	skb->inner_network_header += off;
1737 	skb->inner_mac_header += off;
1738 }
1739 EXPORT_SYMBOL(skb_headers_offset_update);
1740 
1741 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1742 {
1743 	__copy_skb_header(new, old);
1744 
1745 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1746 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1747 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1748 }
1749 EXPORT_SYMBOL(skb_copy_header);
1750 
1751 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1752 {
1753 	if (skb_pfmemalloc(skb))
1754 		return SKB_ALLOC_RX;
1755 	return 0;
1756 }
1757 
1758 /**
1759  *	skb_copy	-	create private copy of an sk_buff
1760  *	@skb: buffer to copy
1761  *	@gfp_mask: allocation priority
1762  *
1763  *	Make a copy of both an &sk_buff and its data. This is used when the
1764  *	caller wishes to modify the data and needs a private copy of the
1765  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1766  *	on success. The returned buffer has a reference count of 1.
1767  *
1768  *	As by-product this function converts non-linear &sk_buff to linear
1769  *	one, so that &sk_buff becomes completely private and caller is allowed
1770  *	to modify all the data of returned buffer. This means that this
1771  *	function is not recommended for use in circumstances when only
1772  *	header is going to be modified. Use pskb_copy() instead.
1773  */
1774 
1775 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1776 {
1777 	int headerlen = skb_headroom(skb);
1778 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1779 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1780 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1781 
1782 	if (!n)
1783 		return NULL;
1784 
1785 	/* Set the data pointer */
1786 	skb_reserve(n, headerlen);
1787 	/* Set the tail pointer and length */
1788 	skb_put(n, skb->len);
1789 
1790 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1791 
1792 	skb_copy_header(n, skb);
1793 	return n;
1794 }
1795 EXPORT_SYMBOL(skb_copy);
1796 
1797 /**
1798  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1799  *	@skb: buffer to copy
1800  *	@headroom: headroom of new skb
1801  *	@gfp_mask: allocation priority
1802  *	@fclone: if true allocate the copy of the skb from the fclone
1803  *	cache instead of the head cache; it is recommended to set this
1804  *	to true for the cases where the copy will likely be cloned
1805  *
1806  *	Make a copy of both an &sk_buff and part of its data, located
1807  *	in header. Fragmented data remain shared. This is used when
1808  *	the caller wishes to modify only header of &sk_buff and needs
1809  *	private copy of the header to alter. Returns %NULL on failure
1810  *	or the pointer to the buffer on success.
1811  *	The returned buffer has a reference count of 1.
1812  */
1813 
1814 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1815 				   gfp_t gfp_mask, bool fclone)
1816 {
1817 	unsigned int size = skb_headlen(skb) + headroom;
1818 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1819 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1820 
1821 	if (!n)
1822 		goto out;
1823 
1824 	/* Set the data pointer */
1825 	skb_reserve(n, headroom);
1826 	/* Set the tail pointer and length */
1827 	skb_put(n, skb_headlen(skb));
1828 	/* Copy the bytes */
1829 	skb_copy_from_linear_data(skb, n->data, n->len);
1830 
1831 	n->truesize += skb->data_len;
1832 	n->data_len  = skb->data_len;
1833 	n->len	     = skb->len;
1834 
1835 	if (skb_shinfo(skb)->nr_frags) {
1836 		int i;
1837 
1838 		if (skb_orphan_frags(skb, gfp_mask) ||
1839 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1840 			kfree_skb(n);
1841 			n = NULL;
1842 			goto out;
1843 		}
1844 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1845 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1846 			skb_frag_ref(skb, i);
1847 		}
1848 		skb_shinfo(n)->nr_frags = i;
1849 	}
1850 
1851 	if (skb_has_frag_list(skb)) {
1852 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1853 		skb_clone_fraglist(n);
1854 	}
1855 
1856 	skb_copy_header(n, skb);
1857 out:
1858 	return n;
1859 }
1860 EXPORT_SYMBOL(__pskb_copy_fclone);
1861 
1862 /**
1863  *	pskb_expand_head - reallocate header of &sk_buff
1864  *	@skb: buffer to reallocate
1865  *	@nhead: room to add at head
1866  *	@ntail: room to add at tail
1867  *	@gfp_mask: allocation priority
1868  *
1869  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1870  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1871  *	reference count of 1. Returns zero in the case of success or error,
1872  *	if expansion failed. In the last case, &sk_buff is not changed.
1873  *
1874  *	All the pointers pointing into skb header may change and must be
1875  *	reloaded after call to this function.
1876  */
1877 
1878 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1879 		     gfp_t gfp_mask)
1880 {
1881 	unsigned int osize = skb_end_offset(skb);
1882 	unsigned int size = osize + nhead + ntail;
1883 	long off;
1884 	u8 *data;
1885 	int i;
1886 
1887 	BUG_ON(nhead < 0);
1888 
1889 	BUG_ON(skb_shared(skb));
1890 
1891 	skb_zcopy_downgrade_managed(skb);
1892 
1893 	if (skb_pfmemalloc(skb))
1894 		gfp_mask |= __GFP_MEMALLOC;
1895 
1896 	size = SKB_DATA_ALIGN(size);
1897 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1898 	size = kmalloc_size_roundup(size);
1899 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
1900 	if (!data)
1901 		goto nodata;
1902 	size = SKB_WITH_OVERHEAD(size);
1903 
1904 	/* Copy only real data... and, alas, header. This should be
1905 	 * optimized for the cases when header is void.
1906 	 */
1907 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1908 
1909 	memcpy((struct skb_shared_info *)(data + size),
1910 	       skb_shinfo(skb),
1911 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1912 
1913 	/*
1914 	 * if shinfo is shared we must drop the old head gracefully, but if it
1915 	 * is not we can just drop the old head and let the existing refcount
1916 	 * be since all we did is relocate the values
1917 	 */
1918 	if (skb_cloned(skb)) {
1919 		if (skb_orphan_frags(skb, gfp_mask))
1920 			goto nofrags;
1921 		if (skb_zcopy(skb))
1922 			refcount_inc(&skb_uarg(skb)->refcnt);
1923 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1924 			skb_frag_ref(skb, i);
1925 
1926 		if (skb_has_frag_list(skb))
1927 			skb_clone_fraglist(skb);
1928 
1929 		skb_release_data(skb, SKB_CONSUMED);
1930 	} else {
1931 		skb_free_head(skb);
1932 	}
1933 	off = (data + nhead) - skb->head;
1934 
1935 	skb->head     = data;
1936 	skb->head_frag = 0;
1937 	skb->data    += off;
1938 
1939 	skb_set_end_offset(skb, size);
1940 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1941 	off           = nhead;
1942 #endif
1943 	skb->tail	      += off;
1944 	skb_headers_offset_update(skb, nhead);
1945 	skb->cloned   = 0;
1946 	skb->hdr_len  = 0;
1947 	skb->nohdr    = 0;
1948 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1949 
1950 	skb_metadata_clear(skb);
1951 
1952 	/* It is not generally safe to change skb->truesize.
1953 	 * For the moment, we really care of rx path, or
1954 	 * when skb is orphaned (not attached to a socket).
1955 	 */
1956 	if (!skb->sk || skb->destructor == sock_edemux)
1957 		skb->truesize += size - osize;
1958 
1959 	return 0;
1960 
1961 nofrags:
1962 	kfree(data);
1963 nodata:
1964 	return -ENOMEM;
1965 }
1966 EXPORT_SYMBOL(pskb_expand_head);
1967 
1968 /* Make private copy of skb with writable head and some headroom */
1969 
1970 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1971 {
1972 	struct sk_buff *skb2;
1973 	int delta = headroom - skb_headroom(skb);
1974 
1975 	if (delta <= 0)
1976 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1977 	else {
1978 		skb2 = skb_clone(skb, GFP_ATOMIC);
1979 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1980 					     GFP_ATOMIC)) {
1981 			kfree_skb(skb2);
1982 			skb2 = NULL;
1983 		}
1984 	}
1985 	return skb2;
1986 }
1987 EXPORT_SYMBOL(skb_realloc_headroom);
1988 
1989 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1990 {
1991 	unsigned int saved_end_offset, saved_truesize;
1992 	struct skb_shared_info *shinfo;
1993 	int res;
1994 
1995 	saved_end_offset = skb_end_offset(skb);
1996 	saved_truesize = skb->truesize;
1997 
1998 	res = pskb_expand_head(skb, 0, 0, pri);
1999 	if (res)
2000 		return res;
2001 
2002 	skb->truesize = saved_truesize;
2003 
2004 	if (likely(skb_end_offset(skb) == saved_end_offset))
2005 		return 0;
2006 
2007 	shinfo = skb_shinfo(skb);
2008 
2009 	/* We are about to change back skb->end,
2010 	 * we need to move skb_shinfo() to its new location.
2011 	 */
2012 	memmove(skb->head + saved_end_offset,
2013 		shinfo,
2014 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2015 
2016 	skb_set_end_offset(skb, saved_end_offset);
2017 
2018 	return 0;
2019 }
2020 
2021 /**
2022  *	skb_expand_head - reallocate header of &sk_buff
2023  *	@skb: buffer to reallocate
2024  *	@headroom: needed headroom
2025  *
2026  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2027  *	if possible; copies skb->sk to new skb as needed
2028  *	and frees original skb in case of failures.
2029  *
2030  *	It expect increased headroom and generates warning otherwise.
2031  */
2032 
2033 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2034 {
2035 	int delta = headroom - skb_headroom(skb);
2036 	int osize = skb_end_offset(skb);
2037 	struct sock *sk = skb->sk;
2038 
2039 	if (WARN_ONCE(delta <= 0,
2040 		      "%s is expecting an increase in the headroom", __func__))
2041 		return skb;
2042 
2043 	delta = SKB_DATA_ALIGN(delta);
2044 	/* pskb_expand_head() might crash, if skb is shared. */
2045 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2046 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2047 
2048 		if (unlikely(!nskb))
2049 			goto fail;
2050 
2051 		if (sk)
2052 			skb_set_owner_w(nskb, sk);
2053 		consume_skb(skb);
2054 		skb = nskb;
2055 	}
2056 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2057 		goto fail;
2058 
2059 	if (sk && is_skb_wmem(skb)) {
2060 		delta = skb_end_offset(skb) - osize;
2061 		refcount_add(delta, &sk->sk_wmem_alloc);
2062 		skb->truesize += delta;
2063 	}
2064 	return skb;
2065 
2066 fail:
2067 	kfree_skb(skb);
2068 	return NULL;
2069 }
2070 EXPORT_SYMBOL(skb_expand_head);
2071 
2072 /**
2073  *	skb_copy_expand	-	copy and expand sk_buff
2074  *	@skb: buffer to copy
2075  *	@newheadroom: new free bytes at head
2076  *	@newtailroom: new free bytes at tail
2077  *	@gfp_mask: allocation priority
2078  *
2079  *	Make a copy of both an &sk_buff and its data and while doing so
2080  *	allocate additional space.
2081  *
2082  *	This is used when the caller wishes to modify the data and needs a
2083  *	private copy of the data to alter as well as more space for new fields.
2084  *	Returns %NULL on failure or the pointer to the buffer
2085  *	on success. The returned buffer has a reference count of 1.
2086  *
2087  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2088  *	is called from an interrupt.
2089  */
2090 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2091 				int newheadroom, int newtailroom,
2092 				gfp_t gfp_mask)
2093 {
2094 	/*
2095 	 *	Allocate the copy buffer
2096 	 */
2097 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2098 					gfp_mask, skb_alloc_rx_flag(skb),
2099 					NUMA_NO_NODE);
2100 	int oldheadroom = skb_headroom(skb);
2101 	int head_copy_len, head_copy_off;
2102 
2103 	if (!n)
2104 		return NULL;
2105 
2106 	skb_reserve(n, newheadroom);
2107 
2108 	/* Set the tail pointer and length */
2109 	skb_put(n, skb->len);
2110 
2111 	head_copy_len = oldheadroom;
2112 	head_copy_off = 0;
2113 	if (newheadroom <= head_copy_len)
2114 		head_copy_len = newheadroom;
2115 	else
2116 		head_copy_off = newheadroom - head_copy_len;
2117 
2118 	/* Copy the linear header and data. */
2119 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2120 			     skb->len + head_copy_len));
2121 
2122 	skb_copy_header(n, skb);
2123 
2124 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2125 
2126 	return n;
2127 }
2128 EXPORT_SYMBOL(skb_copy_expand);
2129 
2130 /**
2131  *	__skb_pad		-	zero pad the tail of an skb
2132  *	@skb: buffer to pad
2133  *	@pad: space to pad
2134  *	@free_on_error: free buffer on error
2135  *
2136  *	Ensure that a buffer is followed by a padding area that is zero
2137  *	filled. Used by network drivers which may DMA or transfer data
2138  *	beyond the buffer end onto the wire.
2139  *
2140  *	May return error in out of memory cases. The skb is freed on error
2141  *	if @free_on_error is true.
2142  */
2143 
2144 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2145 {
2146 	int err;
2147 	int ntail;
2148 
2149 	/* If the skbuff is non linear tailroom is always zero.. */
2150 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2151 		memset(skb->data+skb->len, 0, pad);
2152 		return 0;
2153 	}
2154 
2155 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2156 	if (likely(skb_cloned(skb) || ntail > 0)) {
2157 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2158 		if (unlikely(err))
2159 			goto free_skb;
2160 	}
2161 
2162 	/* FIXME: The use of this function with non-linear skb's really needs
2163 	 * to be audited.
2164 	 */
2165 	err = skb_linearize(skb);
2166 	if (unlikely(err))
2167 		goto free_skb;
2168 
2169 	memset(skb->data + skb->len, 0, pad);
2170 	return 0;
2171 
2172 free_skb:
2173 	if (free_on_error)
2174 		kfree_skb(skb);
2175 	return err;
2176 }
2177 EXPORT_SYMBOL(__skb_pad);
2178 
2179 /**
2180  *	pskb_put - add data to the tail of a potentially fragmented buffer
2181  *	@skb: start of the buffer to use
2182  *	@tail: tail fragment of the buffer to use
2183  *	@len: amount of data to add
2184  *
2185  *	This function extends the used data area of the potentially
2186  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2187  *	@skb itself. If this would exceed the total buffer size the kernel
2188  *	will panic. A pointer to the first byte of the extra data is
2189  *	returned.
2190  */
2191 
2192 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2193 {
2194 	if (tail != skb) {
2195 		skb->data_len += len;
2196 		skb->len += len;
2197 	}
2198 	return skb_put(tail, len);
2199 }
2200 EXPORT_SYMBOL_GPL(pskb_put);
2201 
2202 /**
2203  *	skb_put - add data to a buffer
2204  *	@skb: buffer to use
2205  *	@len: amount of data to add
2206  *
2207  *	This function extends the used data area of the buffer. If this would
2208  *	exceed the total buffer size the kernel will panic. A pointer to the
2209  *	first byte of the extra data is returned.
2210  */
2211 void *skb_put(struct sk_buff *skb, unsigned int len)
2212 {
2213 	void *tmp = skb_tail_pointer(skb);
2214 	SKB_LINEAR_ASSERT(skb);
2215 	skb->tail += len;
2216 	skb->len  += len;
2217 	if (unlikely(skb->tail > skb->end))
2218 		skb_over_panic(skb, len, __builtin_return_address(0));
2219 	return tmp;
2220 }
2221 EXPORT_SYMBOL(skb_put);
2222 
2223 /**
2224  *	skb_push - add data to the start of a buffer
2225  *	@skb: buffer to use
2226  *	@len: amount of data to add
2227  *
2228  *	This function extends the used data area of the buffer at the buffer
2229  *	start. If this would exceed the total buffer headroom the kernel will
2230  *	panic. A pointer to the first byte of the extra data is returned.
2231  */
2232 void *skb_push(struct sk_buff *skb, unsigned int len)
2233 {
2234 	skb->data -= len;
2235 	skb->len  += len;
2236 	if (unlikely(skb->data < skb->head))
2237 		skb_under_panic(skb, len, __builtin_return_address(0));
2238 	return skb->data;
2239 }
2240 EXPORT_SYMBOL(skb_push);
2241 
2242 /**
2243  *	skb_pull - remove data from the start of a buffer
2244  *	@skb: buffer to use
2245  *	@len: amount of data to remove
2246  *
2247  *	This function removes data from the start of a buffer, returning
2248  *	the memory to the headroom. A pointer to the next data in the buffer
2249  *	is returned. Once the data has been pulled future pushes will overwrite
2250  *	the old data.
2251  */
2252 void *skb_pull(struct sk_buff *skb, unsigned int len)
2253 {
2254 	return skb_pull_inline(skb, len);
2255 }
2256 EXPORT_SYMBOL(skb_pull);
2257 
2258 /**
2259  *	skb_pull_data - remove data from the start of a buffer returning its
2260  *	original position.
2261  *	@skb: buffer to use
2262  *	@len: amount of data to remove
2263  *
2264  *	This function removes data from the start of a buffer, returning
2265  *	the memory to the headroom. A pointer to the original data in the buffer
2266  *	is returned after checking if there is enough data to pull. Once the
2267  *	data has been pulled future pushes will overwrite the old data.
2268  */
2269 void *skb_pull_data(struct sk_buff *skb, size_t len)
2270 {
2271 	void *data = skb->data;
2272 
2273 	if (skb->len < len)
2274 		return NULL;
2275 
2276 	skb_pull(skb, len);
2277 
2278 	return data;
2279 }
2280 EXPORT_SYMBOL(skb_pull_data);
2281 
2282 /**
2283  *	skb_trim - remove end from a buffer
2284  *	@skb: buffer to alter
2285  *	@len: new length
2286  *
2287  *	Cut the length of a buffer down by removing data from the tail. If
2288  *	the buffer is already under the length specified it is not modified.
2289  *	The skb must be linear.
2290  */
2291 void skb_trim(struct sk_buff *skb, unsigned int len)
2292 {
2293 	if (skb->len > len)
2294 		__skb_trim(skb, len);
2295 }
2296 EXPORT_SYMBOL(skb_trim);
2297 
2298 /* Trims skb to length len. It can change skb pointers.
2299  */
2300 
2301 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2302 {
2303 	struct sk_buff **fragp;
2304 	struct sk_buff *frag;
2305 	int offset = skb_headlen(skb);
2306 	int nfrags = skb_shinfo(skb)->nr_frags;
2307 	int i;
2308 	int err;
2309 
2310 	if (skb_cloned(skb) &&
2311 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2312 		return err;
2313 
2314 	i = 0;
2315 	if (offset >= len)
2316 		goto drop_pages;
2317 
2318 	for (; i < nfrags; i++) {
2319 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2320 
2321 		if (end < len) {
2322 			offset = end;
2323 			continue;
2324 		}
2325 
2326 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2327 
2328 drop_pages:
2329 		skb_shinfo(skb)->nr_frags = i;
2330 
2331 		for (; i < nfrags; i++)
2332 			skb_frag_unref(skb, i);
2333 
2334 		if (skb_has_frag_list(skb))
2335 			skb_drop_fraglist(skb);
2336 		goto done;
2337 	}
2338 
2339 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2340 	     fragp = &frag->next) {
2341 		int end = offset + frag->len;
2342 
2343 		if (skb_shared(frag)) {
2344 			struct sk_buff *nfrag;
2345 
2346 			nfrag = skb_clone(frag, GFP_ATOMIC);
2347 			if (unlikely(!nfrag))
2348 				return -ENOMEM;
2349 
2350 			nfrag->next = frag->next;
2351 			consume_skb(frag);
2352 			frag = nfrag;
2353 			*fragp = frag;
2354 		}
2355 
2356 		if (end < len) {
2357 			offset = end;
2358 			continue;
2359 		}
2360 
2361 		if (end > len &&
2362 		    unlikely((err = pskb_trim(frag, len - offset))))
2363 			return err;
2364 
2365 		if (frag->next)
2366 			skb_drop_list(&frag->next);
2367 		break;
2368 	}
2369 
2370 done:
2371 	if (len > skb_headlen(skb)) {
2372 		skb->data_len -= skb->len - len;
2373 		skb->len       = len;
2374 	} else {
2375 		skb->len       = len;
2376 		skb->data_len  = 0;
2377 		skb_set_tail_pointer(skb, len);
2378 	}
2379 
2380 	if (!skb->sk || skb->destructor == sock_edemux)
2381 		skb_condense(skb);
2382 	return 0;
2383 }
2384 EXPORT_SYMBOL(___pskb_trim);
2385 
2386 /* Note : use pskb_trim_rcsum() instead of calling this directly
2387  */
2388 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2389 {
2390 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2391 		int delta = skb->len - len;
2392 
2393 		skb->csum = csum_block_sub(skb->csum,
2394 					   skb_checksum(skb, len, delta, 0),
2395 					   len);
2396 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2397 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2398 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2399 
2400 		if (offset + sizeof(__sum16) > hdlen)
2401 			return -EINVAL;
2402 	}
2403 	return __pskb_trim(skb, len);
2404 }
2405 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2406 
2407 /**
2408  *	__pskb_pull_tail - advance tail of skb header
2409  *	@skb: buffer to reallocate
2410  *	@delta: number of bytes to advance tail
2411  *
2412  *	The function makes a sense only on a fragmented &sk_buff,
2413  *	it expands header moving its tail forward and copying necessary
2414  *	data from fragmented part.
2415  *
2416  *	&sk_buff MUST have reference count of 1.
2417  *
2418  *	Returns %NULL (and &sk_buff does not change) if pull failed
2419  *	or value of new tail of skb in the case of success.
2420  *
2421  *	All the pointers pointing into skb header may change and must be
2422  *	reloaded after call to this function.
2423  */
2424 
2425 /* Moves tail of skb head forward, copying data from fragmented part,
2426  * when it is necessary.
2427  * 1. It may fail due to malloc failure.
2428  * 2. It may change skb pointers.
2429  *
2430  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2431  */
2432 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2433 {
2434 	/* If skb has not enough free space at tail, get new one
2435 	 * plus 128 bytes for future expansions. If we have enough
2436 	 * room at tail, reallocate without expansion only if skb is cloned.
2437 	 */
2438 	int i, k, eat = (skb->tail + delta) - skb->end;
2439 
2440 	if (eat > 0 || skb_cloned(skb)) {
2441 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2442 				     GFP_ATOMIC))
2443 			return NULL;
2444 	}
2445 
2446 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2447 			     skb_tail_pointer(skb), delta));
2448 
2449 	/* Optimization: no fragments, no reasons to preestimate
2450 	 * size of pulled pages. Superb.
2451 	 */
2452 	if (!skb_has_frag_list(skb))
2453 		goto pull_pages;
2454 
2455 	/* Estimate size of pulled pages. */
2456 	eat = delta;
2457 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2458 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2459 
2460 		if (size >= eat)
2461 			goto pull_pages;
2462 		eat -= size;
2463 	}
2464 
2465 	/* If we need update frag list, we are in troubles.
2466 	 * Certainly, it is possible to add an offset to skb data,
2467 	 * but taking into account that pulling is expected to
2468 	 * be very rare operation, it is worth to fight against
2469 	 * further bloating skb head and crucify ourselves here instead.
2470 	 * Pure masohism, indeed. 8)8)
2471 	 */
2472 	if (eat) {
2473 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2474 		struct sk_buff *clone = NULL;
2475 		struct sk_buff *insp = NULL;
2476 
2477 		do {
2478 			if (list->len <= eat) {
2479 				/* Eaten as whole. */
2480 				eat -= list->len;
2481 				list = list->next;
2482 				insp = list;
2483 			} else {
2484 				/* Eaten partially. */
2485 				if (skb_is_gso(skb) && !list->head_frag &&
2486 				    skb_headlen(list))
2487 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2488 
2489 				if (skb_shared(list)) {
2490 					/* Sucks! We need to fork list. :-( */
2491 					clone = skb_clone(list, GFP_ATOMIC);
2492 					if (!clone)
2493 						return NULL;
2494 					insp = list->next;
2495 					list = clone;
2496 				} else {
2497 					/* This may be pulled without
2498 					 * problems. */
2499 					insp = list;
2500 				}
2501 				if (!pskb_pull(list, eat)) {
2502 					kfree_skb(clone);
2503 					return NULL;
2504 				}
2505 				break;
2506 			}
2507 		} while (eat);
2508 
2509 		/* Free pulled out fragments. */
2510 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2511 			skb_shinfo(skb)->frag_list = list->next;
2512 			consume_skb(list);
2513 		}
2514 		/* And insert new clone at head. */
2515 		if (clone) {
2516 			clone->next = list;
2517 			skb_shinfo(skb)->frag_list = clone;
2518 		}
2519 	}
2520 	/* Success! Now we may commit changes to skb data. */
2521 
2522 pull_pages:
2523 	eat = delta;
2524 	k = 0;
2525 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2526 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2527 
2528 		if (size <= eat) {
2529 			skb_frag_unref(skb, i);
2530 			eat -= size;
2531 		} else {
2532 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2533 
2534 			*frag = skb_shinfo(skb)->frags[i];
2535 			if (eat) {
2536 				skb_frag_off_add(frag, eat);
2537 				skb_frag_size_sub(frag, eat);
2538 				if (!i)
2539 					goto end;
2540 				eat = 0;
2541 			}
2542 			k++;
2543 		}
2544 	}
2545 	skb_shinfo(skb)->nr_frags = k;
2546 
2547 end:
2548 	skb->tail     += delta;
2549 	skb->data_len -= delta;
2550 
2551 	if (!skb->data_len)
2552 		skb_zcopy_clear(skb, false);
2553 
2554 	return skb_tail_pointer(skb);
2555 }
2556 EXPORT_SYMBOL(__pskb_pull_tail);
2557 
2558 /**
2559  *	skb_copy_bits - copy bits from skb to kernel buffer
2560  *	@skb: source skb
2561  *	@offset: offset in source
2562  *	@to: destination buffer
2563  *	@len: number of bytes to copy
2564  *
2565  *	Copy the specified number of bytes from the source skb to the
2566  *	destination buffer.
2567  *
2568  *	CAUTION ! :
2569  *		If its prototype is ever changed,
2570  *		check arch/{*}/net/{*}.S files,
2571  *		since it is called from BPF assembly code.
2572  */
2573 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2574 {
2575 	int start = skb_headlen(skb);
2576 	struct sk_buff *frag_iter;
2577 	int i, copy;
2578 
2579 	if (offset > (int)skb->len - len)
2580 		goto fault;
2581 
2582 	/* Copy header. */
2583 	if ((copy = start - offset) > 0) {
2584 		if (copy > len)
2585 			copy = len;
2586 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2587 		if ((len -= copy) == 0)
2588 			return 0;
2589 		offset += copy;
2590 		to     += copy;
2591 	}
2592 
2593 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2594 		int end;
2595 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2596 
2597 		WARN_ON(start > offset + len);
2598 
2599 		end = start + skb_frag_size(f);
2600 		if ((copy = end - offset) > 0) {
2601 			u32 p_off, p_len, copied;
2602 			struct page *p;
2603 			u8 *vaddr;
2604 
2605 			if (copy > len)
2606 				copy = len;
2607 
2608 			skb_frag_foreach_page(f,
2609 					      skb_frag_off(f) + offset - start,
2610 					      copy, p, p_off, p_len, copied) {
2611 				vaddr = kmap_atomic(p);
2612 				memcpy(to + copied, vaddr + p_off, p_len);
2613 				kunmap_atomic(vaddr);
2614 			}
2615 
2616 			if ((len -= copy) == 0)
2617 				return 0;
2618 			offset += copy;
2619 			to     += copy;
2620 		}
2621 		start = end;
2622 	}
2623 
2624 	skb_walk_frags(skb, frag_iter) {
2625 		int end;
2626 
2627 		WARN_ON(start > offset + len);
2628 
2629 		end = start + frag_iter->len;
2630 		if ((copy = end - offset) > 0) {
2631 			if (copy > len)
2632 				copy = len;
2633 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2634 				goto fault;
2635 			if ((len -= copy) == 0)
2636 				return 0;
2637 			offset += copy;
2638 			to     += copy;
2639 		}
2640 		start = end;
2641 	}
2642 
2643 	if (!len)
2644 		return 0;
2645 
2646 fault:
2647 	return -EFAULT;
2648 }
2649 EXPORT_SYMBOL(skb_copy_bits);
2650 
2651 /*
2652  * Callback from splice_to_pipe(), if we need to release some pages
2653  * at the end of the spd in case we error'ed out in filling the pipe.
2654  */
2655 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2656 {
2657 	put_page(spd->pages[i]);
2658 }
2659 
2660 static struct page *linear_to_page(struct page *page, unsigned int *len,
2661 				   unsigned int *offset,
2662 				   struct sock *sk)
2663 {
2664 	struct page_frag *pfrag = sk_page_frag(sk);
2665 
2666 	if (!sk_page_frag_refill(sk, pfrag))
2667 		return NULL;
2668 
2669 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2670 
2671 	memcpy(page_address(pfrag->page) + pfrag->offset,
2672 	       page_address(page) + *offset, *len);
2673 	*offset = pfrag->offset;
2674 	pfrag->offset += *len;
2675 
2676 	return pfrag->page;
2677 }
2678 
2679 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2680 			     struct page *page,
2681 			     unsigned int offset)
2682 {
2683 	return	spd->nr_pages &&
2684 		spd->pages[spd->nr_pages - 1] == page &&
2685 		(spd->partial[spd->nr_pages - 1].offset +
2686 		 spd->partial[spd->nr_pages - 1].len == offset);
2687 }
2688 
2689 /*
2690  * Fill page/offset/length into spd, if it can hold more pages.
2691  */
2692 static bool spd_fill_page(struct splice_pipe_desc *spd,
2693 			  struct pipe_inode_info *pipe, struct page *page,
2694 			  unsigned int *len, unsigned int offset,
2695 			  bool linear,
2696 			  struct sock *sk)
2697 {
2698 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2699 		return true;
2700 
2701 	if (linear) {
2702 		page = linear_to_page(page, len, &offset, sk);
2703 		if (!page)
2704 			return true;
2705 	}
2706 	if (spd_can_coalesce(spd, page, offset)) {
2707 		spd->partial[spd->nr_pages - 1].len += *len;
2708 		return false;
2709 	}
2710 	get_page(page);
2711 	spd->pages[spd->nr_pages] = page;
2712 	spd->partial[spd->nr_pages].len = *len;
2713 	spd->partial[spd->nr_pages].offset = offset;
2714 	spd->nr_pages++;
2715 
2716 	return false;
2717 }
2718 
2719 static bool __splice_segment(struct page *page, unsigned int poff,
2720 			     unsigned int plen, unsigned int *off,
2721 			     unsigned int *len,
2722 			     struct splice_pipe_desc *spd, bool linear,
2723 			     struct sock *sk,
2724 			     struct pipe_inode_info *pipe)
2725 {
2726 	if (!*len)
2727 		return true;
2728 
2729 	/* skip this segment if already processed */
2730 	if (*off >= plen) {
2731 		*off -= plen;
2732 		return false;
2733 	}
2734 
2735 	/* ignore any bits we already processed */
2736 	poff += *off;
2737 	plen -= *off;
2738 	*off = 0;
2739 
2740 	do {
2741 		unsigned int flen = min(*len, plen);
2742 
2743 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2744 				  linear, sk))
2745 			return true;
2746 		poff += flen;
2747 		plen -= flen;
2748 		*len -= flen;
2749 	} while (*len && plen);
2750 
2751 	return false;
2752 }
2753 
2754 /*
2755  * Map linear and fragment data from the skb to spd. It reports true if the
2756  * pipe is full or if we already spliced the requested length.
2757  */
2758 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2759 			      unsigned int *offset, unsigned int *len,
2760 			      struct splice_pipe_desc *spd, struct sock *sk)
2761 {
2762 	int seg;
2763 	struct sk_buff *iter;
2764 
2765 	/* map the linear part :
2766 	 * If skb->head_frag is set, this 'linear' part is backed by a
2767 	 * fragment, and if the head is not shared with any clones then
2768 	 * we can avoid a copy since we own the head portion of this page.
2769 	 */
2770 	if (__splice_segment(virt_to_page(skb->data),
2771 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2772 			     skb_headlen(skb),
2773 			     offset, len, spd,
2774 			     skb_head_is_locked(skb),
2775 			     sk, pipe))
2776 		return true;
2777 
2778 	/*
2779 	 * then map the fragments
2780 	 */
2781 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2782 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2783 
2784 		if (__splice_segment(skb_frag_page(f),
2785 				     skb_frag_off(f), skb_frag_size(f),
2786 				     offset, len, spd, false, sk, pipe))
2787 			return true;
2788 	}
2789 
2790 	skb_walk_frags(skb, iter) {
2791 		if (*offset >= iter->len) {
2792 			*offset -= iter->len;
2793 			continue;
2794 		}
2795 		/* __skb_splice_bits() only fails if the output has no room
2796 		 * left, so no point in going over the frag_list for the error
2797 		 * case.
2798 		 */
2799 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2800 			return true;
2801 	}
2802 
2803 	return false;
2804 }
2805 
2806 /*
2807  * Map data from the skb to a pipe. Should handle both the linear part,
2808  * the fragments, and the frag list.
2809  */
2810 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2811 		    struct pipe_inode_info *pipe, unsigned int tlen,
2812 		    unsigned int flags)
2813 {
2814 	struct partial_page partial[MAX_SKB_FRAGS];
2815 	struct page *pages[MAX_SKB_FRAGS];
2816 	struct splice_pipe_desc spd = {
2817 		.pages = pages,
2818 		.partial = partial,
2819 		.nr_pages_max = MAX_SKB_FRAGS,
2820 		.ops = &nosteal_pipe_buf_ops,
2821 		.spd_release = sock_spd_release,
2822 	};
2823 	int ret = 0;
2824 
2825 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2826 
2827 	if (spd.nr_pages)
2828 		ret = splice_to_pipe(pipe, &spd);
2829 
2830 	return ret;
2831 }
2832 EXPORT_SYMBOL_GPL(skb_splice_bits);
2833 
2834 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2835 			    struct kvec *vec, size_t num, size_t size)
2836 {
2837 	struct socket *sock = sk->sk_socket;
2838 
2839 	if (!sock)
2840 		return -EINVAL;
2841 	return kernel_sendmsg(sock, msg, vec, num, size);
2842 }
2843 
2844 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2845 			     size_t size, int flags)
2846 {
2847 	struct socket *sock = sk->sk_socket;
2848 
2849 	if (!sock)
2850 		return -EINVAL;
2851 	return kernel_sendpage(sock, page, offset, size, flags);
2852 }
2853 
2854 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2855 			    struct kvec *vec, size_t num, size_t size);
2856 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2857 			     size_t size, int flags);
2858 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2859 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2860 {
2861 	unsigned int orig_len = len;
2862 	struct sk_buff *head = skb;
2863 	unsigned short fragidx;
2864 	int slen, ret;
2865 
2866 do_frag_list:
2867 
2868 	/* Deal with head data */
2869 	while (offset < skb_headlen(skb) && len) {
2870 		struct kvec kv;
2871 		struct msghdr msg;
2872 
2873 		slen = min_t(int, len, skb_headlen(skb) - offset);
2874 		kv.iov_base = skb->data + offset;
2875 		kv.iov_len = slen;
2876 		memset(&msg, 0, sizeof(msg));
2877 		msg.msg_flags = MSG_DONTWAIT;
2878 
2879 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2880 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2881 		if (ret <= 0)
2882 			goto error;
2883 
2884 		offset += ret;
2885 		len -= ret;
2886 	}
2887 
2888 	/* All the data was skb head? */
2889 	if (!len)
2890 		goto out;
2891 
2892 	/* Make offset relative to start of frags */
2893 	offset -= skb_headlen(skb);
2894 
2895 	/* Find where we are in frag list */
2896 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2897 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2898 
2899 		if (offset < skb_frag_size(frag))
2900 			break;
2901 
2902 		offset -= skb_frag_size(frag);
2903 	}
2904 
2905 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2906 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2907 
2908 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2909 
2910 		while (slen) {
2911 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2912 					      sendpage_unlocked, sk,
2913 					      skb_frag_page(frag),
2914 					      skb_frag_off(frag) + offset,
2915 					      slen, MSG_DONTWAIT);
2916 			if (ret <= 0)
2917 				goto error;
2918 
2919 			len -= ret;
2920 			offset += ret;
2921 			slen -= ret;
2922 		}
2923 
2924 		offset = 0;
2925 	}
2926 
2927 	if (len) {
2928 		/* Process any frag lists */
2929 
2930 		if (skb == head) {
2931 			if (skb_has_frag_list(skb)) {
2932 				skb = skb_shinfo(skb)->frag_list;
2933 				goto do_frag_list;
2934 			}
2935 		} else if (skb->next) {
2936 			skb = skb->next;
2937 			goto do_frag_list;
2938 		}
2939 	}
2940 
2941 out:
2942 	return orig_len - len;
2943 
2944 error:
2945 	return orig_len == len ? ret : orig_len - len;
2946 }
2947 
2948 /* Send skb data on a socket. Socket must be locked. */
2949 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2950 			 int len)
2951 {
2952 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2953 			       kernel_sendpage_locked);
2954 }
2955 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2956 
2957 /* Send skb data on a socket. Socket must be unlocked. */
2958 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2959 {
2960 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2961 			       sendpage_unlocked);
2962 }
2963 
2964 /**
2965  *	skb_store_bits - store bits from kernel buffer to skb
2966  *	@skb: destination buffer
2967  *	@offset: offset in destination
2968  *	@from: source buffer
2969  *	@len: number of bytes to copy
2970  *
2971  *	Copy the specified number of bytes from the source buffer to the
2972  *	destination skb.  This function handles all the messy bits of
2973  *	traversing fragment lists and such.
2974  */
2975 
2976 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2977 {
2978 	int start = skb_headlen(skb);
2979 	struct sk_buff *frag_iter;
2980 	int i, copy;
2981 
2982 	if (offset > (int)skb->len - len)
2983 		goto fault;
2984 
2985 	if ((copy = start - offset) > 0) {
2986 		if (copy > len)
2987 			copy = len;
2988 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2989 		if ((len -= copy) == 0)
2990 			return 0;
2991 		offset += copy;
2992 		from += copy;
2993 	}
2994 
2995 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2996 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2997 		int end;
2998 
2999 		WARN_ON(start > offset + len);
3000 
3001 		end = start + skb_frag_size(frag);
3002 		if ((copy = end - offset) > 0) {
3003 			u32 p_off, p_len, copied;
3004 			struct page *p;
3005 			u8 *vaddr;
3006 
3007 			if (copy > len)
3008 				copy = len;
3009 
3010 			skb_frag_foreach_page(frag,
3011 					      skb_frag_off(frag) + offset - start,
3012 					      copy, p, p_off, p_len, copied) {
3013 				vaddr = kmap_atomic(p);
3014 				memcpy(vaddr + p_off, from + copied, p_len);
3015 				kunmap_atomic(vaddr);
3016 			}
3017 
3018 			if ((len -= copy) == 0)
3019 				return 0;
3020 			offset += copy;
3021 			from += copy;
3022 		}
3023 		start = end;
3024 	}
3025 
3026 	skb_walk_frags(skb, frag_iter) {
3027 		int end;
3028 
3029 		WARN_ON(start > offset + len);
3030 
3031 		end = start + frag_iter->len;
3032 		if ((copy = end - offset) > 0) {
3033 			if (copy > len)
3034 				copy = len;
3035 			if (skb_store_bits(frag_iter, offset - start,
3036 					   from, copy))
3037 				goto fault;
3038 			if ((len -= copy) == 0)
3039 				return 0;
3040 			offset += copy;
3041 			from += copy;
3042 		}
3043 		start = end;
3044 	}
3045 	if (!len)
3046 		return 0;
3047 
3048 fault:
3049 	return -EFAULT;
3050 }
3051 EXPORT_SYMBOL(skb_store_bits);
3052 
3053 /* Checksum skb data. */
3054 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3055 		      __wsum csum, const struct skb_checksum_ops *ops)
3056 {
3057 	int start = skb_headlen(skb);
3058 	int i, copy = start - offset;
3059 	struct sk_buff *frag_iter;
3060 	int pos = 0;
3061 
3062 	/* Checksum header. */
3063 	if (copy > 0) {
3064 		if (copy > len)
3065 			copy = len;
3066 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3067 				       skb->data + offset, copy, csum);
3068 		if ((len -= copy) == 0)
3069 			return csum;
3070 		offset += copy;
3071 		pos	= copy;
3072 	}
3073 
3074 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3075 		int end;
3076 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3077 
3078 		WARN_ON(start > offset + len);
3079 
3080 		end = start + skb_frag_size(frag);
3081 		if ((copy = end - offset) > 0) {
3082 			u32 p_off, p_len, copied;
3083 			struct page *p;
3084 			__wsum csum2;
3085 			u8 *vaddr;
3086 
3087 			if (copy > len)
3088 				copy = len;
3089 
3090 			skb_frag_foreach_page(frag,
3091 					      skb_frag_off(frag) + offset - start,
3092 					      copy, p, p_off, p_len, copied) {
3093 				vaddr = kmap_atomic(p);
3094 				csum2 = INDIRECT_CALL_1(ops->update,
3095 							csum_partial_ext,
3096 							vaddr + p_off, p_len, 0);
3097 				kunmap_atomic(vaddr);
3098 				csum = INDIRECT_CALL_1(ops->combine,
3099 						       csum_block_add_ext, csum,
3100 						       csum2, pos, p_len);
3101 				pos += p_len;
3102 			}
3103 
3104 			if (!(len -= copy))
3105 				return csum;
3106 			offset += copy;
3107 		}
3108 		start = end;
3109 	}
3110 
3111 	skb_walk_frags(skb, frag_iter) {
3112 		int end;
3113 
3114 		WARN_ON(start > offset + len);
3115 
3116 		end = start + frag_iter->len;
3117 		if ((copy = end - offset) > 0) {
3118 			__wsum csum2;
3119 			if (copy > len)
3120 				copy = len;
3121 			csum2 = __skb_checksum(frag_iter, offset - start,
3122 					       copy, 0, ops);
3123 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3124 					       csum, csum2, pos, copy);
3125 			if ((len -= copy) == 0)
3126 				return csum;
3127 			offset += copy;
3128 			pos    += copy;
3129 		}
3130 		start = end;
3131 	}
3132 	BUG_ON(len);
3133 
3134 	return csum;
3135 }
3136 EXPORT_SYMBOL(__skb_checksum);
3137 
3138 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3139 		    int len, __wsum csum)
3140 {
3141 	const struct skb_checksum_ops ops = {
3142 		.update  = csum_partial_ext,
3143 		.combine = csum_block_add_ext,
3144 	};
3145 
3146 	return __skb_checksum(skb, offset, len, csum, &ops);
3147 }
3148 EXPORT_SYMBOL(skb_checksum);
3149 
3150 /* Both of above in one bottle. */
3151 
3152 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3153 				    u8 *to, int len)
3154 {
3155 	int start = skb_headlen(skb);
3156 	int i, copy = start - offset;
3157 	struct sk_buff *frag_iter;
3158 	int pos = 0;
3159 	__wsum csum = 0;
3160 
3161 	/* Copy header. */
3162 	if (copy > 0) {
3163 		if (copy > len)
3164 			copy = len;
3165 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3166 						 copy);
3167 		if ((len -= copy) == 0)
3168 			return csum;
3169 		offset += copy;
3170 		to     += copy;
3171 		pos	= copy;
3172 	}
3173 
3174 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3175 		int end;
3176 
3177 		WARN_ON(start > offset + len);
3178 
3179 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3180 		if ((copy = end - offset) > 0) {
3181 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3182 			u32 p_off, p_len, copied;
3183 			struct page *p;
3184 			__wsum csum2;
3185 			u8 *vaddr;
3186 
3187 			if (copy > len)
3188 				copy = len;
3189 
3190 			skb_frag_foreach_page(frag,
3191 					      skb_frag_off(frag) + offset - start,
3192 					      copy, p, p_off, p_len, copied) {
3193 				vaddr = kmap_atomic(p);
3194 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3195 								  to + copied,
3196 								  p_len);
3197 				kunmap_atomic(vaddr);
3198 				csum = csum_block_add(csum, csum2, pos);
3199 				pos += p_len;
3200 			}
3201 
3202 			if (!(len -= copy))
3203 				return csum;
3204 			offset += copy;
3205 			to     += copy;
3206 		}
3207 		start = end;
3208 	}
3209 
3210 	skb_walk_frags(skb, frag_iter) {
3211 		__wsum csum2;
3212 		int end;
3213 
3214 		WARN_ON(start > offset + len);
3215 
3216 		end = start + frag_iter->len;
3217 		if ((copy = end - offset) > 0) {
3218 			if (copy > len)
3219 				copy = len;
3220 			csum2 = skb_copy_and_csum_bits(frag_iter,
3221 						       offset - start,
3222 						       to, copy);
3223 			csum = csum_block_add(csum, csum2, pos);
3224 			if ((len -= copy) == 0)
3225 				return csum;
3226 			offset += copy;
3227 			to     += copy;
3228 			pos    += copy;
3229 		}
3230 		start = end;
3231 	}
3232 	BUG_ON(len);
3233 	return csum;
3234 }
3235 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3236 
3237 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3238 {
3239 	__sum16 sum;
3240 
3241 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3242 	/* See comments in __skb_checksum_complete(). */
3243 	if (likely(!sum)) {
3244 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3245 		    !skb->csum_complete_sw)
3246 			netdev_rx_csum_fault(skb->dev, skb);
3247 	}
3248 	if (!skb_shared(skb))
3249 		skb->csum_valid = !sum;
3250 	return sum;
3251 }
3252 EXPORT_SYMBOL(__skb_checksum_complete_head);
3253 
3254 /* This function assumes skb->csum already holds pseudo header's checksum,
3255  * which has been changed from the hardware checksum, for example, by
3256  * __skb_checksum_validate_complete(). And, the original skb->csum must
3257  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3258  *
3259  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3260  * zero. The new checksum is stored back into skb->csum unless the skb is
3261  * shared.
3262  */
3263 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3264 {
3265 	__wsum csum;
3266 	__sum16 sum;
3267 
3268 	csum = skb_checksum(skb, 0, skb->len, 0);
3269 
3270 	sum = csum_fold(csum_add(skb->csum, csum));
3271 	/* This check is inverted, because we already knew the hardware
3272 	 * checksum is invalid before calling this function. So, if the
3273 	 * re-computed checksum is valid instead, then we have a mismatch
3274 	 * between the original skb->csum and skb_checksum(). This means either
3275 	 * the original hardware checksum is incorrect or we screw up skb->csum
3276 	 * when moving skb->data around.
3277 	 */
3278 	if (likely(!sum)) {
3279 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3280 		    !skb->csum_complete_sw)
3281 			netdev_rx_csum_fault(skb->dev, skb);
3282 	}
3283 
3284 	if (!skb_shared(skb)) {
3285 		/* Save full packet checksum */
3286 		skb->csum = csum;
3287 		skb->ip_summed = CHECKSUM_COMPLETE;
3288 		skb->csum_complete_sw = 1;
3289 		skb->csum_valid = !sum;
3290 	}
3291 
3292 	return sum;
3293 }
3294 EXPORT_SYMBOL(__skb_checksum_complete);
3295 
3296 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3297 {
3298 	net_warn_ratelimited(
3299 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3300 		__func__);
3301 	return 0;
3302 }
3303 
3304 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3305 				       int offset, int len)
3306 {
3307 	net_warn_ratelimited(
3308 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3309 		__func__);
3310 	return 0;
3311 }
3312 
3313 static const struct skb_checksum_ops default_crc32c_ops = {
3314 	.update  = warn_crc32c_csum_update,
3315 	.combine = warn_crc32c_csum_combine,
3316 };
3317 
3318 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3319 	&default_crc32c_ops;
3320 EXPORT_SYMBOL(crc32c_csum_stub);
3321 
3322  /**
3323  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3324  *	@from: source buffer
3325  *
3326  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3327  *	into skb_zerocopy().
3328  */
3329 unsigned int
3330 skb_zerocopy_headlen(const struct sk_buff *from)
3331 {
3332 	unsigned int hlen = 0;
3333 
3334 	if (!from->head_frag ||
3335 	    skb_headlen(from) < L1_CACHE_BYTES ||
3336 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3337 		hlen = skb_headlen(from);
3338 		if (!hlen)
3339 			hlen = from->len;
3340 	}
3341 
3342 	if (skb_has_frag_list(from))
3343 		hlen = from->len;
3344 
3345 	return hlen;
3346 }
3347 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3348 
3349 /**
3350  *	skb_zerocopy - Zero copy skb to skb
3351  *	@to: destination buffer
3352  *	@from: source buffer
3353  *	@len: number of bytes to copy from source buffer
3354  *	@hlen: size of linear headroom in destination buffer
3355  *
3356  *	Copies up to `len` bytes from `from` to `to` by creating references
3357  *	to the frags in the source buffer.
3358  *
3359  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3360  *	headroom in the `to` buffer.
3361  *
3362  *	Return value:
3363  *	0: everything is OK
3364  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3365  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3366  */
3367 int
3368 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3369 {
3370 	int i, j = 0;
3371 	int plen = 0; /* length of skb->head fragment */
3372 	int ret;
3373 	struct page *page;
3374 	unsigned int offset;
3375 
3376 	BUG_ON(!from->head_frag && !hlen);
3377 
3378 	/* dont bother with small payloads */
3379 	if (len <= skb_tailroom(to))
3380 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3381 
3382 	if (hlen) {
3383 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3384 		if (unlikely(ret))
3385 			return ret;
3386 		len -= hlen;
3387 	} else {
3388 		plen = min_t(int, skb_headlen(from), len);
3389 		if (plen) {
3390 			page = virt_to_head_page(from->head);
3391 			offset = from->data - (unsigned char *)page_address(page);
3392 			__skb_fill_page_desc(to, 0, page, offset, plen);
3393 			get_page(page);
3394 			j = 1;
3395 			len -= plen;
3396 		}
3397 	}
3398 
3399 	skb_len_add(to, len + plen);
3400 
3401 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3402 		skb_tx_error(from);
3403 		return -ENOMEM;
3404 	}
3405 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3406 
3407 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3408 		int size;
3409 
3410 		if (!len)
3411 			break;
3412 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3413 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3414 					len);
3415 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3416 		len -= size;
3417 		skb_frag_ref(to, j);
3418 		j++;
3419 	}
3420 	skb_shinfo(to)->nr_frags = j;
3421 
3422 	return 0;
3423 }
3424 EXPORT_SYMBOL_GPL(skb_zerocopy);
3425 
3426 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3427 {
3428 	__wsum csum;
3429 	long csstart;
3430 
3431 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3432 		csstart = skb_checksum_start_offset(skb);
3433 	else
3434 		csstart = skb_headlen(skb);
3435 
3436 	BUG_ON(csstart > skb_headlen(skb));
3437 
3438 	skb_copy_from_linear_data(skb, to, csstart);
3439 
3440 	csum = 0;
3441 	if (csstart != skb->len)
3442 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3443 					      skb->len - csstart);
3444 
3445 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3446 		long csstuff = csstart + skb->csum_offset;
3447 
3448 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3449 	}
3450 }
3451 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3452 
3453 /**
3454  *	skb_dequeue - remove from the head of the queue
3455  *	@list: list to dequeue from
3456  *
3457  *	Remove the head of the list. The list lock is taken so the function
3458  *	may be used safely with other locking list functions. The head item is
3459  *	returned or %NULL if the list is empty.
3460  */
3461 
3462 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3463 {
3464 	unsigned long flags;
3465 	struct sk_buff *result;
3466 
3467 	spin_lock_irqsave(&list->lock, flags);
3468 	result = __skb_dequeue(list);
3469 	spin_unlock_irqrestore(&list->lock, flags);
3470 	return result;
3471 }
3472 EXPORT_SYMBOL(skb_dequeue);
3473 
3474 /**
3475  *	skb_dequeue_tail - remove from the tail of the queue
3476  *	@list: list to dequeue from
3477  *
3478  *	Remove the tail of the list. The list lock is taken so the function
3479  *	may be used safely with other locking list functions. The tail item is
3480  *	returned or %NULL if the list is empty.
3481  */
3482 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3483 {
3484 	unsigned long flags;
3485 	struct sk_buff *result;
3486 
3487 	spin_lock_irqsave(&list->lock, flags);
3488 	result = __skb_dequeue_tail(list);
3489 	spin_unlock_irqrestore(&list->lock, flags);
3490 	return result;
3491 }
3492 EXPORT_SYMBOL(skb_dequeue_tail);
3493 
3494 /**
3495  *	skb_queue_purge - empty a list
3496  *	@list: list to empty
3497  *
3498  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3499  *	the list and one reference dropped. This function takes the list
3500  *	lock and is atomic with respect to other list locking functions.
3501  */
3502 void skb_queue_purge(struct sk_buff_head *list)
3503 {
3504 	struct sk_buff *skb;
3505 	while ((skb = skb_dequeue(list)) != NULL)
3506 		kfree_skb(skb);
3507 }
3508 EXPORT_SYMBOL(skb_queue_purge);
3509 
3510 /**
3511  *	skb_rbtree_purge - empty a skb rbtree
3512  *	@root: root of the rbtree to empty
3513  *	Return value: the sum of truesizes of all purged skbs.
3514  *
3515  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3516  *	the list and one reference dropped. This function does not take
3517  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3518  *	out-of-order queue is protected by the socket lock).
3519  */
3520 unsigned int skb_rbtree_purge(struct rb_root *root)
3521 {
3522 	struct rb_node *p = rb_first(root);
3523 	unsigned int sum = 0;
3524 
3525 	while (p) {
3526 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3527 
3528 		p = rb_next(p);
3529 		rb_erase(&skb->rbnode, root);
3530 		sum += skb->truesize;
3531 		kfree_skb(skb);
3532 	}
3533 	return sum;
3534 }
3535 
3536 /**
3537  *	skb_queue_head - queue a buffer at the list head
3538  *	@list: list to use
3539  *	@newsk: buffer to queue
3540  *
3541  *	Queue a buffer at the start of the list. This function takes the
3542  *	list lock and can be used safely with other locking &sk_buff functions
3543  *	safely.
3544  *
3545  *	A buffer cannot be placed on two lists at the same time.
3546  */
3547 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3548 {
3549 	unsigned long flags;
3550 
3551 	spin_lock_irqsave(&list->lock, flags);
3552 	__skb_queue_head(list, newsk);
3553 	spin_unlock_irqrestore(&list->lock, flags);
3554 }
3555 EXPORT_SYMBOL(skb_queue_head);
3556 
3557 /**
3558  *	skb_queue_tail - queue a buffer at the list tail
3559  *	@list: list to use
3560  *	@newsk: buffer to queue
3561  *
3562  *	Queue a buffer at the tail of the list. This function takes the
3563  *	list lock and can be used safely with other locking &sk_buff functions
3564  *	safely.
3565  *
3566  *	A buffer cannot be placed on two lists at the same time.
3567  */
3568 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3569 {
3570 	unsigned long flags;
3571 
3572 	spin_lock_irqsave(&list->lock, flags);
3573 	__skb_queue_tail(list, newsk);
3574 	spin_unlock_irqrestore(&list->lock, flags);
3575 }
3576 EXPORT_SYMBOL(skb_queue_tail);
3577 
3578 /**
3579  *	skb_unlink	-	remove a buffer from a list
3580  *	@skb: buffer to remove
3581  *	@list: list to use
3582  *
3583  *	Remove a packet from a list. The list locks are taken and this
3584  *	function is atomic with respect to other list locked calls
3585  *
3586  *	You must know what list the SKB is on.
3587  */
3588 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3589 {
3590 	unsigned long flags;
3591 
3592 	spin_lock_irqsave(&list->lock, flags);
3593 	__skb_unlink(skb, list);
3594 	spin_unlock_irqrestore(&list->lock, flags);
3595 }
3596 EXPORT_SYMBOL(skb_unlink);
3597 
3598 /**
3599  *	skb_append	-	append a buffer
3600  *	@old: buffer to insert after
3601  *	@newsk: buffer to insert
3602  *	@list: list to use
3603  *
3604  *	Place a packet after a given packet in a list. The list locks are taken
3605  *	and this function is atomic with respect to other list locked calls.
3606  *	A buffer cannot be placed on two lists at the same time.
3607  */
3608 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3609 {
3610 	unsigned long flags;
3611 
3612 	spin_lock_irqsave(&list->lock, flags);
3613 	__skb_queue_after(list, old, newsk);
3614 	spin_unlock_irqrestore(&list->lock, flags);
3615 }
3616 EXPORT_SYMBOL(skb_append);
3617 
3618 static inline void skb_split_inside_header(struct sk_buff *skb,
3619 					   struct sk_buff* skb1,
3620 					   const u32 len, const int pos)
3621 {
3622 	int i;
3623 
3624 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3625 					 pos - len);
3626 	/* And move data appendix as is. */
3627 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3628 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3629 
3630 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3631 	skb_shinfo(skb)->nr_frags  = 0;
3632 	skb1->data_len		   = skb->data_len;
3633 	skb1->len		   += skb1->data_len;
3634 	skb->data_len		   = 0;
3635 	skb->len		   = len;
3636 	skb_set_tail_pointer(skb, len);
3637 }
3638 
3639 static inline void skb_split_no_header(struct sk_buff *skb,
3640 				       struct sk_buff* skb1,
3641 				       const u32 len, int pos)
3642 {
3643 	int i, k = 0;
3644 	const int nfrags = skb_shinfo(skb)->nr_frags;
3645 
3646 	skb_shinfo(skb)->nr_frags = 0;
3647 	skb1->len		  = skb1->data_len = skb->len - len;
3648 	skb->len		  = len;
3649 	skb->data_len		  = len - pos;
3650 
3651 	for (i = 0; i < nfrags; i++) {
3652 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3653 
3654 		if (pos + size > len) {
3655 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3656 
3657 			if (pos < len) {
3658 				/* Split frag.
3659 				 * We have two variants in this case:
3660 				 * 1. Move all the frag to the second
3661 				 *    part, if it is possible. F.e.
3662 				 *    this approach is mandatory for TUX,
3663 				 *    where splitting is expensive.
3664 				 * 2. Split is accurately. We make this.
3665 				 */
3666 				skb_frag_ref(skb, i);
3667 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3668 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3669 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3670 				skb_shinfo(skb)->nr_frags++;
3671 			}
3672 			k++;
3673 		} else
3674 			skb_shinfo(skb)->nr_frags++;
3675 		pos += size;
3676 	}
3677 	skb_shinfo(skb1)->nr_frags = k;
3678 }
3679 
3680 /**
3681  * skb_split - Split fragmented skb to two parts at length len.
3682  * @skb: the buffer to split
3683  * @skb1: the buffer to receive the second part
3684  * @len: new length for skb
3685  */
3686 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3687 {
3688 	int pos = skb_headlen(skb);
3689 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3690 
3691 	skb_zcopy_downgrade_managed(skb);
3692 
3693 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3694 	skb_zerocopy_clone(skb1, skb, 0);
3695 	if (len < pos)	/* Split line is inside header. */
3696 		skb_split_inside_header(skb, skb1, len, pos);
3697 	else		/* Second chunk has no header, nothing to copy. */
3698 		skb_split_no_header(skb, skb1, len, pos);
3699 }
3700 EXPORT_SYMBOL(skb_split);
3701 
3702 /* Shifting from/to a cloned skb is a no-go.
3703  *
3704  * Caller cannot keep skb_shinfo related pointers past calling here!
3705  */
3706 static int skb_prepare_for_shift(struct sk_buff *skb)
3707 {
3708 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3709 }
3710 
3711 /**
3712  * skb_shift - Shifts paged data partially from skb to another
3713  * @tgt: buffer into which tail data gets added
3714  * @skb: buffer from which the paged data comes from
3715  * @shiftlen: shift up to this many bytes
3716  *
3717  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3718  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3719  * It's up to caller to free skb if everything was shifted.
3720  *
3721  * If @tgt runs out of frags, the whole operation is aborted.
3722  *
3723  * Skb cannot include anything else but paged data while tgt is allowed
3724  * to have non-paged data as well.
3725  *
3726  * TODO: full sized shift could be optimized but that would need
3727  * specialized skb free'er to handle frags without up-to-date nr_frags.
3728  */
3729 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3730 {
3731 	int from, to, merge, todo;
3732 	skb_frag_t *fragfrom, *fragto;
3733 
3734 	BUG_ON(shiftlen > skb->len);
3735 
3736 	if (skb_headlen(skb))
3737 		return 0;
3738 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3739 		return 0;
3740 
3741 	todo = shiftlen;
3742 	from = 0;
3743 	to = skb_shinfo(tgt)->nr_frags;
3744 	fragfrom = &skb_shinfo(skb)->frags[from];
3745 
3746 	/* Actual merge is delayed until the point when we know we can
3747 	 * commit all, so that we don't have to undo partial changes
3748 	 */
3749 	if (!to ||
3750 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3751 			      skb_frag_off(fragfrom))) {
3752 		merge = -1;
3753 	} else {
3754 		merge = to - 1;
3755 
3756 		todo -= skb_frag_size(fragfrom);
3757 		if (todo < 0) {
3758 			if (skb_prepare_for_shift(skb) ||
3759 			    skb_prepare_for_shift(tgt))
3760 				return 0;
3761 
3762 			/* All previous frag pointers might be stale! */
3763 			fragfrom = &skb_shinfo(skb)->frags[from];
3764 			fragto = &skb_shinfo(tgt)->frags[merge];
3765 
3766 			skb_frag_size_add(fragto, shiftlen);
3767 			skb_frag_size_sub(fragfrom, shiftlen);
3768 			skb_frag_off_add(fragfrom, shiftlen);
3769 
3770 			goto onlymerged;
3771 		}
3772 
3773 		from++;
3774 	}
3775 
3776 	/* Skip full, not-fitting skb to avoid expensive operations */
3777 	if ((shiftlen == skb->len) &&
3778 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3779 		return 0;
3780 
3781 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3782 		return 0;
3783 
3784 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3785 		if (to == MAX_SKB_FRAGS)
3786 			return 0;
3787 
3788 		fragfrom = &skb_shinfo(skb)->frags[from];
3789 		fragto = &skb_shinfo(tgt)->frags[to];
3790 
3791 		if (todo >= skb_frag_size(fragfrom)) {
3792 			*fragto = *fragfrom;
3793 			todo -= skb_frag_size(fragfrom);
3794 			from++;
3795 			to++;
3796 
3797 		} else {
3798 			__skb_frag_ref(fragfrom);
3799 			skb_frag_page_copy(fragto, fragfrom);
3800 			skb_frag_off_copy(fragto, fragfrom);
3801 			skb_frag_size_set(fragto, todo);
3802 
3803 			skb_frag_off_add(fragfrom, todo);
3804 			skb_frag_size_sub(fragfrom, todo);
3805 			todo = 0;
3806 
3807 			to++;
3808 			break;
3809 		}
3810 	}
3811 
3812 	/* Ready to "commit" this state change to tgt */
3813 	skb_shinfo(tgt)->nr_frags = to;
3814 
3815 	if (merge >= 0) {
3816 		fragfrom = &skb_shinfo(skb)->frags[0];
3817 		fragto = &skb_shinfo(tgt)->frags[merge];
3818 
3819 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3820 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3821 	}
3822 
3823 	/* Reposition in the original skb */
3824 	to = 0;
3825 	while (from < skb_shinfo(skb)->nr_frags)
3826 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3827 	skb_shinfo(skb)->nr_frags = to;
3828 
3829 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3830 
3831 onlymerged:
3832 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3833 	 * the other hand might need it if it needs to be resent
3834 	 */
3835 	tgt->ip_summed = CHECKSUM_PARTIAL;
3836 	skb->ip_summed = CHECKSUM_PARTIAL;
3837 
3838 	skb_len_add(skb, -shiftlen);
3839 	skb_len_add(tgt, shiftlen);
3840 
3841 	return shiftlen;
3842 }
3843 
3844 /**
3845  * skb_prepare_seq_read - Prepare a sequential read of skb data
3846  * @skb: the buffer to read
3847  * @from: lower offset of data to be read
3848  * @to: upper offset of data to be read
3849  * @st: state variable
3850  *
3851  * Initializes the specified state variable. Must be called before
3852  * invoking skb_seq_read() for the first time.
3853  */
3854 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3855 			  unsigned int to, struct skb_seq_state *st)
3856 {
3857 	st->lower_offset = from;
3858 	st->upper_offset = to;
3859 	st->root_skb = st->cur_skb = skb;
3860 	st->frag_idx = st->stepped_offset = 0;
3861 	st->frag_data = NULL;
3862 	st->frag_off = 0;
3863 }
3864 EXPORT_SYMBOL(skb_prepare_seq_read);
3865 
3866 /**
3867  * skb_seq_read - Sequentially read skb data
3868  * @consumed: number of bytes consumed by the caller so far
3869  * @data: destination pointer for data to be returned
3870  * @st: state variable
3871  *
3872  * Reads a block of skb data at @consumed relative to the
3873  * lower offset specified to skb_prepare_seq_read(). Assigns
3874  * the head of the data block to @data and returns the length
3875  * of the block or 0 if the end of the skb data or the upper
3876  * offset has been reached.
3877  *
3878  * The caller is not required to consume all of the data
3879  * returned, i.e. @consumed is typically set to the number
3880  * of bytes already consumed and the next call to
3881  * skb_seq_read() will return the remaining part of the block.
3882  *
3883  * Note 1: The size of each block of data returned can be arbitrary,
3884  *       this limitation is the cost for zerocopy sequential
3885  *       reads of potentially non linear data.
3886  *
3887  * Note 2: Fragment lists within fragments are not implemented
3888  *       at the moment, state->root_skb could be replaced with
3889  *       a stack for this purpose.
3890  */
3891 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3892 			  struct skb_seq_state *st)
3893 {
3894 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3895 	skb_frag_t *frag;
3896 
3897 	if (unlikely(abs_offset >= st->upper_offset)) {
3898 		if (st->frag_data) {
3899 			kunmap_atomic(st->frag_data);
3900 			st->frag_data = NULL;
3901 		}
3902 		return 0;
3903 	}
3904 
3905 next_skb:
3906 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3907 
3908 	if (abs_offset < block_limit && !st->frag_data) {
3909 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3910 		return block_limit - abs_offset;
3911 	}
3912 
3913 	if (st->frag_idx == 0 && !st->frag_data)
3914 		st->stepped_offset += skb_headlen(st->cur_skb);
3915 
3916 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3917 		unsigned int pg_idx, pg_off, pg_sz;
3918 
3919 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3920 
3921 		pg_idx = 0;
3922 		pg_off = skb_frag_off(frag);
3923 		pg_sz = skb_frag_size(frag);
3924 
3925 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3926 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3927 			pg_off = offset_in_page(pg_off + st->frag_off);
3928 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3929 						    PAGE_SIZE - pg_off);
3930 		}
3931 
3932 		block_limit = pg_sz + st->stepped_offset;
3933 		if (abs_offset < block_limit) {
3934 			if (!st->frag_data)
3935 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3936 
3937 			*data = (u8 *)st->frag_data + pg_off +
3938 				(abs_offset - st->stepped_offset);
3939 
3940 			return block_limit - abs_offset;
3941 		}
3942 
3943 		if (st->frag_data) {
3944 			kunmap_atomic(st->frag_data);
3945 			st->frag_data = NULL;
3946 		}
3947 
3948 		st->stepped_offset += pg_sz;
3949 		st->frag_off += pg_sz;
3950 		if (st->frag_off == skb_frag_size(frag)) {
3951 			st->frag_off = 0;
3952 			st->frag_idx++;
3953 		}
3954 	}
3955 
3956 	if (st->frag_data) {
3957 		kunmap_atomic(st->frag_data);
3958 		st->frag_data = NULL;
3959 	}
3960 
3961 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3962 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3963 		st->frag_idx = 0;
3964 		goto next_skb;
3965 	} else if (st->cur_skb->next) {
3966 		st->cur_skb = st->cur_skb->next;
3967 		st->frag_idx = 0;
3968 		goto next_skb;
3969 	}
3970 
3971 	return 0;
3972 }
3973 EXPORT_SYMBOL(skb_seq_read);
3974 
3975 /**
3976  * skb_abort_seq_read - Abort a sequential read of skb data
3977  * @st: state variable
3978  *
3979  * Must be called if skb_seq_read() was not called until it
3980  * returned 0.
3981  */
3982 void skb_abort_seq_read(struct skb_seq_state *st)
3983 {
3984 	if (st->frag_data)
3985 		kunmap_atomic(st->frag_data);
3986 }
3987 EXPORT_SYMBOL(skb_abort_seq_read);
3988 
3989 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3990 
3991 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3992 					  struct ts_config *conf,
3993 					  struct ts_state *state)
3994 {
3995 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3996 }
3997 
3998 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3999 {
4000 	skb_abort_seq_read(TS_SKB_CB(state));
4001 }
4002 
4003 /**
4004  * skb_find_text - Find a text pattern in skb data
4005  * @skb: the buffer to look in
4006  * @from: search offset
4007  * @to: search limit
4008  * @config: textsearch configuration
4009  *
4010  * Finds a pattern in the skb data according to the specified
4011  * textsearch configuration. Use textsearch_next() to retrieve
4012  * subsequent occurrences of the pattern. Returns the offset
4013  * to the first occurrence or UINT_MAX if no match was found.
4014  */
4015 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4016 			   unsigned int to, struct ts_config *config)
4017 {
4018 	struct ts_state state;
4019 	unsigned int ret;
4020 
4021 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4022 
4023 	config->get_next_block = skb_ts_get_next_block;
4024 	config->finish = skb_ts_finish;
4025 
4026 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4027 
4028 	ret = textsearch_find(config, &state);
4029 	return (ret <= to - from ? ret : UINT_MAX);
4030 }
4031 EXPORT_SYMBOL(skb_find_text);
4032 
4033 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4034 			 int offset, size_t size)
4035 {
4036 	int i = skb_shinfo(skb)->nr_frags;
4037 
4038 	if (skb_can_coalesce(skb, i, page, offset)) {
4039 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4040 	} else if (i < MAX_SKB_FRAGS) {
4041 		skb_zcopy_downgrade_managed(skb);
4042 		get_page(page);
4043 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4044 	} else {
4045 		return -EMSGSIZE;
4046 	}
4047 
4048 	return 0;
4049 }
4050 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4051 
4052 /**
4053  *	skb_pull_rcsum - pull skb and update receive checksum
4054  *	@skb: buffer to update
4055  *	@len: length of data pulled
4056  *
4057  *	This function performs an skb_pull on the packet and updates
4058  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4059  *	receive path processing instead of skb_pull unless you know
4060  *	that the checksum difference is zero (e.g., a valid IP header)
4061  *	or you are setting ip_summed to CHECKSUM_NONE.
4062  */
4063 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4064 {
4065 	unsigned char *data = skb->data;
4066 
4067 	BUG_ON(len > skb->len);
4068 	__skb_pull(skb, len);
4069 	skb_postpull_rcsum(skb, data, len);
4070 	return skb->data;
4071 }
4072 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4073 
4074 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4075 {
4076 	skb_frag_t head_frag;
4077 	struct page *page;
4078 
4079 	page = virt_to_head_page(frag_skb->head);
4080 	__skb_frag_set_page(&head_frag, page);
4081 	skb_frag_off_set(&head_frag, frag_skb->data -
4082 			 (unsigned char *)page_address(page));
4083 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4084 	return head_frag;
4085 }
4086 
4087 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4088 				 netdev_features_t features,
4089 				 unsigned int offset)
4090 {
4091 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4092 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4093 	unsigned int delta_truesize = 0;
4094 	unsigned int delta_len = 0;
4095 	struct sk_buff *tail = NULL;
4096 	struct sk_buff *nskb, *tmp;
4097 	int len_diff, err;
4098 
4099 	skb_push(skb, -skb_network_offset(skb) + offset);
4100 
4101 	skb_shinfo(skb)->frag_list = NULL;
4102 
4103 	while (list_skb) {
4104 		nskb = list_skb;
4105 		list_skb = list_skb->next;
4106 
4107 		err = 0;
4108 		delta_truesize += nskb->truesize;
4109 		if (skb_shared(nskb)) {
4110 			tmp = skb_clone(nskb, GFP_ATOMIC);
4111 			if (tmp) {
4112 				consume_skb(nskb);
4113 				nskb = tmp;
4114 				err = skb_unclone(nskb, GFP_ATOMIC);
4115 			} else {
4116 				err = -ENOMEM;
4117 			}
4118 		}
4119 
4120 		if (!tail)
4121 			skb->next = nskb;
4122 		else
4123 			tail->next = nskb;
4124 
4125 		if (unlikely(err)) {
4126 			nskb->next = list_skb;
4127 			goto err_linearize;
4128 		}
4129 
4130 		tail = nskb;
4131 
4132 		delta_len += nskb->len;
4133 
4134 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4135 
4136 		skb_release_head_state(nskb);
4137 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4138 		__copy_skb_header(nskb, skb);
4139 
4140 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4141 		nskb->transport_header += len_diff;
4142 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4143 						 nskb->data - tnl_hlen,
4144 						 offset + tnl_hlen);
4145 
4146 		if (skb_needs_linearize(nskb, features) &&
4147 		    __skb_linearize(nskb))
4148 			goto err_linearize;
4149 	}
4150 
4151 	skb->truesize = skb->truesize - delta_truesize;
4152 	skb->data_len = skb->data_len - delta_len;
4153 	skb->len = skb->len - delta_len;
4154 
4155 	skb_gso_reset(skb);
4156 
4157 	skb->prev = tail;
4158 
4159 	if (skb_needs_linearize(skb, features) &&
4160 	    __skb_linearize(skb))
4161 		goto err_linearize;
4162 
4163 	skb_get(skb);
4164 
4165 	return skb;
4166 
4167 err_linearize:
4168 	kfree_skb_list(skb->next);
4169 	skb->next = NULL;
4170 	return ERR_PTR(-ENOMEM);
4171 }
4172 EXPORT_SYMBOL_GPL(skb_segment_list);
4173 
4174 /**
4175  *	skb_segment - Perform protocol segmentation on skb.
4176  *	@head_skb: buffer to segment
4177  *	@features: features for the output path (see dev->features)
4178  *
4179  *	This function performs segmentation on the given skb.  It returns
4180  *	a pointer to the first in a list of new skbs for the segments.
4181  *	In case of error it returns ERR_PTR(err).
4182  */
4183 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4184 			    netdev_features_t features)
4185 {
4186 	struct sk_buff *segs = NULL;
4187 	struct sk_buff *tail = NULL;
4188 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4189 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4190 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4191 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4192 	struct sk_buff *frag_skb = head_skb;
4193 	unsigned int offset = doffset;
4194 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4195 	unsigned int partial_segs = 0;
4196 	unsigned int headroom;
4197 	unsigned int len = head_skb->len;
4198 	__be16 proto;
4199 	bool csum, sg;
4200 	int nfrags = skb_shinfo(head_skb)->nr_frags;
4201 	int err = -ENOMEM;
4202 	int i = 0;
4203 	int pos;
4204 
4205 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4206 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4207 		struct sk_buff *check_skb;
4208 
4209 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4210 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4211 				/* gso_size is untrusted, and we have a frag_list with
4212 				 * a linear non head_frag item.
4213 				 *
4214 				 * If head_skb's headlen does not fit requested gso_size,
4215 				 * it means that the frag_list members do NOT terminate
4216 				 * on exact gso_size boundaries. Hence we cannot perform
4217 				 * skb_frag_t page sharing. Therefore we must fallback to
4218 				 * copying the frag_list skbs; we do so by disabling SG.
4219 				 */
4220 				features &= ~NETIF_F_SG;
4221 				break;
4222 			}
4223 		}
4224 	}
4225 
4226 	__skb_push(head_skb, doffset);
4227 	proto = skb_network_protocol(head_skb, NULL);
4228 	if (unlikely(!proto))
4229 		return ERR_PTR(-EINVAL);
4230 
4231 	sg = !!(features & NETIF_F_SG);
4232 	csum = !!can_checksum_protocol(features, proto);
4233 
4234 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4235 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4236 			struct sk_buff *iter;
4237 			unsigned int frag_len;
4238 
4239 			if (!list_skb ||
4240 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4241 				goto normal;
4242 
4243 			/* If we get here then all the required
4244 			 * GSO features except frag_list are supported.
4245 			 * Try to split the SKB to multiple GSO SKBs
4246 			 * with no frag_list.
4247 			 * Currently we can do that only when the buffers don't
4248 			 * have a linear part and all the buffers except
4249 			 * the last are of the same length.
4250 			 */
4251 			frag_len = list_skb->len;
4252 			skb_walk_frags(head_skb, iter) {
4253 				if (frag_len != iter->len && iter->next)
4254 					goto normal;
4255 				if (skb_headlen(iter) && !iter->head_frag)
4256 					goto normal;
4257 
4258 				len -= iter->len;
4259 			}
4260 
4261 			if (len != frag_len)
4262 				goto normal;
4263 		}
4264 
4265 		/* GSO partial only requires that we trim off any excess that
4266 		 * doesn't fit into an MSS sized block, so take care of that
4267 		 * now.
4268 		 */
4269 		partial_segs = len / mss;
4270 		if (partial_segs > 1)
4271 			mss *= partial_segs;
4272 		else
4273 			partial_segs = 0;
4274 	}
4275 
4276 normal:
4277 	headroom = skb_headroom(head_skb);
4278 	pos = skb_headlen(head_skb);
4279 
4280 	do {
4281 		struct sk_buff *nskb;
4282 		skb_frag_t *nskb_frag;
4283 		int hsize;
4284 		int size;
4285 
4286 		if (unlikely(mss == GSO_BY_FRAGS)) {
4287 			len = list_skb->len;
4288 		} else {
4289 			len = head_skb->len - offset;
4290 			if (len > mss)
4291 				len = mss;
4292 		}
4293 
4294 		hsize = skb_headlen(head_skb) - offset;
4295 
4296 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4297 		    (skb_headlen(list_skb) == len || sg)) {
4298 			BUG_ON(skb_headlen(list_skb) > len);
4299 
4300 			i = 0;
4301 			nfrags = skb_shinfo(list_skb)->nr_frags;
4302 			frag = skb_shinfo(list_skb)->frags;
4303 			frag_skb = list_skb;
4304 			pos += skb_headlen(list_skb);
4305 
4306 			while (pos < offset + len) {
4307 				BUG_ON(i >= nfrags);
4308 
4309 				size = skb_frag_size(frag);
4310 				if (pos + size > offset + len)
4311 					break;
4312 
4313 				i++;
4314 				pos += size;
4315 				frag++;
4316 			}
4317 
4318 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4319 			list_skb = list_skb->next;
4320 
4321 			if (unlikely(!nskb))
4322 				goto err;
4323 
4324 			if (unlikely(pskb_trim(nskb, len))) {
4325 				kfree_skb(nskb);
4326 				goto err;
4327 			}
4328 
4329 			hsize = skb_end_offset(nskb);
4330 			if (skb_cow_head(nskb, doffset + headroom)) {
4331 				kfree_skb(nskb);
4332 				goto err;
4333 			}
4334 
4335 			nskb->truesize += skb_end_offset(nskb) - hsize;
4336 			skb_release_head_state(nskb);
4337 			__skb_push(nskb, doffset);
4338 		} else {
4339 			if (hsize < 0)
4340 				hsize = 0;
4341 			if (hsize > len || !sg)
4342 				hsize = len;
4343 
4344 			nskb = __alloc_skb(hsize + doffset + headroom,
4345 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4346 					   NUMA_NO_NODE);
4347 
4348 			if (unlikely(!nskb))
4349 				goto err;
4350 
4351 			skb_reserve(nskb, headroom);
4352 			__skb_put(nskb, doffset);
4353 		}
4354 
4355 		if (segs)
4356 			tail->next = nskb;
4357 		else
4358 			segs = nskb;
4359 		tail = nskb;
4360 
4361 		__copy_skb_header(nskb, head_skb);
4362 
4363 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4364 		skb_reset_mac_len(nskb);
4365 
4366 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4367 						 nskb->data - tnl_hlen,
4368 						 doffset + tnl_hlen);
4369 
4370 		if (nskb->len == len + doffset)
4371 			goto perform_csum_check;
4372 
4373 		if (!sg) {
4374 			if (!csum) {
4375 				if (!nskb->remcsum_offload)
4376 					nskb->ip_summed = CHECKSUM_NONE;
4377 				SKB_GSO_CB(nskb)->csum =
4378 					skb_copy_and_csum_bits(head_skb, offset,
4379 							       skb_put(nskb,
4380 								       len),
4381 							       len);
4382 				SKB_GSO_CB(nskb)->csum_start =
4383 					skb_headroom(nskb) + doffset;
4384 			} else {
4385 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4386 					goto err;
4387 			}
4388 			continue;
4389 		}
4390 
4391 		nskb_frag = skb_shinfo(nskb)->frags;
4392 
4393 		skb_copy_from_linear_data_offset(head_skb, offset,
4394 						 skb_put(nskb, hsize), hsize);
4395 
4396 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4397 					   SKBFL_SHARED_FRAG;
4398 
4399 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4400 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4401 			goto err;
4402 
4403 		while (pos < offset + len) {
4404 			if (i >= nfrags) {
4405 				i = 0;
4406 				nfrags = skb_shinfo(list_skb)->nr_frags;
4407 				frag = skb_shinfo(list_skb)->frags;
4408 				frag_skb = list_skb;
4409 				if (!skb_headlen(list_skb)) {
4410 					BUG_ON(!nfrags);
4411 				} else {
4412 					BUG_ON(!list_skb->head_frag);
4413 
4414 					/* to make room for head_frag. */
4415 					i--;
4416 					frag--;
4417 				}
4418 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4419 				    skb_zerocopy_clone(nskb, frag_skb,
4420 						       GFP_ATOMIC))
4421 					goto err;
4422 
4423 				list_skb = list_skb->next;
4424 			}
4425 
4426 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4427 				     MAX_SKB_FRAGS)) {
4428 				net_warn_ratelimited(
4429 					"skb_segment: too many frags: %u %u\n",
4430 					pos, mss);
4431 				err = -EINVAL;
4432 				goto err;
4433 			}
4434 
4435 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4436 			__skb_frag_ref(nskb_frag);
4437 			size = skb_frag_size(nskb_frag);
4438 
4439 			if (pos < offset) {
4440 				skb_frag_off_add(nskb_frag, offset - pos);
4441 				skb_frag_size_sub(nskb_frag, offset - pos);
4442 			}
4443 
4444 			skb_shinfo(nskb)->nr_frags++;
4445 
4446 			if (pos + size <= offset + len) {
4447 				i++;
4448 				frag++;
4449 				pos += size;
4450 			} else {
4451 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4452 				goto skip_fraglist;
4453 			}
4454 
4455 			nskb_frag++;
4456 		}
4457 
4458 skip_fraglist:
4459 		nskb->data_len = len - hsize;
4460 		nskb->len += nskb->data_len;
4461 		nskb->truesize += nskb->data_len;
4462 
4463 perform_csum_check:
4464 		if (!csum) {
4465 			if (skb_has_shared_frag(nskb) &&
4466 			    __skb_linearize(nskb))
4467 				goto err;
4468 
4469 			if (!nskb->remcsum_offload)
4470 				nskb->ip_summed = CHECKSUM_NONE;
4471 			SKB_GSO_CB(nskb)->csum =
4472 				skb_checksum(nskb, doffset,
4473 					     nskb->len - doffset, 0);
4474 			SKB_GSO_CB(nskb)->csum_start =
4475 				skb_headroom(nskb) + doffset;
4476 		}
4477 	} while ((offset += len) < head_skb->len);
4478 
4479 	/* Some callers want to get the end of the list.
4480 	 * Put it in segs->prev to avoid walking the list.
4481 	 * (see validate_xmit_skb_list() for example)
4482 	 */
4483 	segs->prev = tail;
4484 
4485 	if (partial_segs) {
4486 		struct sk_buff *iter;
4487 		int type = skb_shinfo(head_skb)->gso_type;
4488 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4489 
4490 		/* Update type to add partial and then remove dodgy if set */
4491 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4492 		type &= ~SKB_GSO_DODGY;
4493 
4494 		/* Update GSO info and prepare to start updating headers on
4495 		 * our way back down the stack of protocols.
4496 		 */
4497 		for (iter = segs; iter; iter = iter->next) {
4498 			skb_shinfo(iter)->gso_size = gso_size;
4499 			skb_shinfo(iter)->gso_segs = partial_segs;
4500 			skb_shinfo(iter)->gso_type = type;
4501 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4502 		}
4503 
4504 		if (tail->len - doffset <= gso_size)
4505 			skb_shinfo(tail)->gso_size = 0;
4506 		else if (tail != segs)
4507 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4508 	}
4509 
4510 	/* Following permits correct backpressure, for protocols
4511 	 * using skb_set_owner_w().
4512 	 * Idea is to tranfert ownership from head_skb to last segment.
4513 	 */
4514 	if (head_skb->destructor == sock_wfree) {
4515 		swap(tail->truesize, head_skb->truesize);
4516 		swap(tail->destructor, head_skb->destructor);
4517 		swap(tail->sk, head_skb->sk);
4518 	}
4519 	return segs;
4520 
4521 err:
4522 	kfree_skb_list(segs);
4523 	return ERR_PTR(err);
4524 }
4525 EXPORT_SYMBOL_GPL(skb_segment);
4526 
4527 #ifdef CONFIG_SKB_EXTENSIONS
4528 #define SKB_EXT_ALIGN_VALUE	8
4529 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4530 
4531 static const u8 skb_ext_type_len[] = {
4532 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4533 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4534 #endif
4535 #ifdef CONFIG_XFRM
4536 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4537 #endif
4538 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4539 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4540 #endif
4541 #if IS_ENABLED(CONFIG_MPTCP)
4542 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4543 #endif
4544 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4545 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4546 #endif
4547 };
4548 
4549 static __always_inline unsigned int skb_ext_total_length(void)
4550 {
4551 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4552 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4553 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4554 #endif
4555 #ifdef CONFIG_XFRM
4556 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4557 #endif
4558 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4559 		skb_ext_type_len[TC_SKB_EXT] +
4560 #endif
4561 #if IS_ENABLED(CONFIG_MPTCP)
4562 		skb_ext_type_len[SKB_EXT_MPTCP] +
4563 #endif
4564 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4565 		skb_ext_type_len[SKB_EXT_MCTP] +
4566 #endif
4567 		0;
4568 }
4569 
4570 static void skb_extensions_init(void)
4571 {
4572 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4573 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4574 
4575 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4576 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4577 					     0,
4578 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4579 					     NULL);
4580 }
4581 #else
4582 static void skb_extensions_init(void) {}
4583 #endif
4584 
4585 void __init skb_init(void)
4586 {
4587 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4588 					      sizeof(struct sk_buff),
4589 					      0,
4590 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4591 					      offsetof(struct sk_buff, cb),
4592 					      sizeof_field(struct sk_buff, cb),
4593 					      NULL);
4594 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4595 						sizeof(struct sk_buff_fclones),
4596 						0,
4597 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4598 						NULL);
4599 	skb_extensions_init();
4600 }
4601 
4602 static int
4603 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4604 	       unsigned int recursion_level)
4605 {
4606 	int start = skb_headlen(skb);
4607 	int i, copy = start - offset;
4608 	struct sk_buff *frag_iter;
4609 	int elt = 0;
4610 
4611 	if (unlikely(recursion_level >= 24))
4612 		return -EMSGSIZE;
4613 
4614 	if (copy > 0) {
4615 		if (copy > len)
4616 			copy = len;
4617 		sg_set_buf(sg, skb->data + offset, copy);
4618 		elt++;
4619 		if ((len -= copy) == 0)
4620 			return elt;
4621 		offset += copy;
4622 	}
4623 
4624 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4625 		int end;
4626 
4627 		WARN_ON(start > offset + len);
4628 
4629 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4630 		if ((copy = end - offset) > 0) {
4631 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4632 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4633 				return -EMSGSIZE;
4634 
4635 			if (copy > len)
4636 				copy = len;
4637 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4638 				    skb_frag_off(frag) + offset - start);
4639 			elt++;
4640 			if (!(len -= copy))
4641 				return elt;
4642 			offset += copy;
4643 		}
4644 		start = end;
4645 	}
4646 
4647 	skb_walk_frags(skb, frag_iter) {
4648 		int end, ret;
4649 
4650 		WARN_ON(start > offset + len);
4651 
4652 		end = start + frag_iter->len;
4653 		if ((copy = end - offset) > 0) {
4654 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4655 				return -EMSGSIZE;
4656 
4657 			if (copy > len)
4658 				copy = len;
4659 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4660 					      copy, recursion_level + 1);
4661 			if (unlikely(ret < 0))
4662 				return ret;
4663 			elt += ret;
4664 			if ((len -= copy) == 0)
4665 				return elt;
4666 			offset += copy;
4667 		}
4668 		start = end;
4669 	}
4670 	BUG_ON(len);
4671 	return elt;
4672 }
4673 
4674 /**
4675  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4676  *	@skb: Socket buffer containing the buffers to be mapped
4677  *	@sg: The scatter-gather list to map into
4678  *	@offset: The offset into the buffer's contents to start mapping
4679  *	@len: Length of buffer space to be mapped
4680  *
4681  *	Fill the specified scatter-gather list with mappings/pointers into a
4682  *	region of the buffer space attached to a socket buffer. Returns either
4683  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4684  *	could not fit.
4685  */
4686 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4687 {
4688 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4689 
4690 	if (nsg <= 0)
4691 		return nsg;
4692 
4693 	sg_mark_end(&sg[nsg - 1]);
4694 
4695 	return nsg;
4696 }
4697 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4698 
4699 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4700  * sglist without mark the sg which contain last skb data as the end.
4701  * So the caller can mannipulate sg list as will when padding new data after
4702  * the first call without calling sg_unmark_end to expend sg list.
4703  *
4704  * Scenario to use skb_to_sgvec_nomark:
4705  * 1. sg_init_table
4706  * 2. skb_to_sgvec_nomark(payload1)
4707  * 3. skb_to_sgvec_nomark(payload2)
4708  *
4709  * This is equivalent to:
4710  * 1. sg_init_table
4711  * 2. skb_to_sgvec(payload1)
4712  * 3. sg_unmark_end
4713  * 4. skb_to_sgvec(payload2)
4714  *
4715  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4716  * is more preferable.
4717  */
4718 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4719 			int offset, int len)
4720 {
4721 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4722 }
4723 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4724 
4725 
4726 
4727 /**
4728  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4729  *	@skb: The socket buffer to check.
4730  *	@tailbits: Amount of trailing space to be added
4731  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4732  *
4733  *	Make sure that the data buffers attached to a socket buffer are
4734  *	writable. If they are not, private copies are made of the data buffers
4735  *	and the socket buffer is set to use these instead.
4736  *
4737  *	If @tailbits is given, make sure that there is space to write @tailbits
4738  *	bytes of data beyond current end of socket buffer.  @trailer will be
4739  *	set to point to the skb in which this space begins.
4740  *
4741  *	The number of scatterlist elements required to completely map the
4742  *	COW'd and extended socket buffer will be returned.
4743  */
4744 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4745 {
4746 	int copyflag;
4747 	int elt;
4748 	struct sk_buff *skb1, **skb_p;
4749 
4750 	/* If skb is cloned or its head is paged, reallocate
4751 	 * head pulling out all the pages (pages are considered not writable
4752 	 * at the moment even if they are anonymous).
4753 	 */
4754 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4755 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4756 		return -ENOMEM;
4757 
4758 	/* Easy case. Most of packets will go this way. */
4759 	if (!skb_has_frag_list(skb)) {
4760 		/* A little of trouble, not enough of space for trailer.
4761 		 * This should not happen, when stack is tuned to generate
4762 		 * good frames. OK, on miss we reallocate and reserve even more
4763 		 * space, 128 bytes is fair. */
4764 
4765 		if (skb_tailroom(skb) < tailbits &&
4766 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4767 			return -ENOMEM;
4768 
4769 		/* Voila! */
4770 		*trailer = skb;
4771 		return 1;
4772 	}
4773 
4774 	/* Misery. We are in troubles, going to mincer fragments... */
4775 
4776 	elt = 1;
4777 	skb_p = &skb_shinfo(skb)->frag_list;
4778 	copyflag = 0;
4779 
4780 	while ((skb1 = *skb_p) != NULL) {
4781 		int ntail = 0;
4782 
4783 		/* The fragment is partially pulled by someone,
4784 		 * this can happen on input. Copy it and everything
4785 		 * after it. */
4786 
4787 		if (skb_shared(skb1))
4788 			copyflag = 1;
4789 
4790 		/* If the skb is the last, worry about trailer. */
4791 
4792 		if (skb1->next == NULL && tailbits) {
4793 			if (skb_shinfo(skb1)->nr_frags ||
4794 			    skb_has_frag_list(skb1) ||
4795 			    skb_tailroom(skb1) < tailbits)
4796 				ntail = tailbits + 128;
4797 		}
4798 
4799 		if (copyflag ||
4800 		    skb_cloned(skb1) ||
4801 		    ntail ||
4802 		    skb_shinfo(skb1)->nr_frags ||
4803 		    skb_has_frag_list(skb1)) {
4804 			struct sk_buff *skb2;
4805 
4806 			/* Fuck, we are miserable poor guys... */
4807 			if (ntail == 0)
4808 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4809 			else
4810 				skb2 = skb_copy_expand(skb1,
4811 						       skb_headroom(skb1),
4812 						       ntail,
4813 						       GFP_ATOMIC);
4814 			if (unlikely(skb2 == NULL))
4815 				return -ENOMEM;
4816 
4817 			if (skb1->sk)
4818 				skb_set_owner_w(skb2, skb1->sk);
4819 
4820 			/* Looking around. Are we still alive?
4821 			 * OK, link new skb, drop old one */
4822 
4823 			skb2->next = skb1->next;
4824 			*skb_p = skb2;
4825 			kfree_skb(skb1);
4826 			skb1 = skb2;
4827 		}
4828 		elt++;
4829 		*trailer = skb1;
4830 		skb_p = &skb1->next;
4831 	}
4832 
4833 	return elt;
4834 }
4835 EXPORT_SYMBOL_GPL(skb_cow_data);
4836 
4837 static void sock_rmem_free(struct sk_buff *skb)
4838 {
4839 	struct sock *sk = skb->sk;
4840 
4841 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4842 }
4843 
4844 static void skb_set_err_queue(struct sk_buff *skb)
4845 {
4846 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4847 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4848 	 */
4849 	skb->pkt_type = PACKET_OUTGOING;
4850 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4851 }
4852 
4853 /*
4854  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4855  */
4856 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4857 {
4858 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4859 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4860 		return -ENOMEM;
4861 
4862 	skb_orphan(skb);
4863 	skb->sk = sk;
4864 	skb->destructor = sock_rmem_free;
4865 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4866 	skb_set_err_queue(skb);
4867 
4868 	/* before exiting rcu section, make sure dst is refcounted */
4869 	skb_dst_force(skb);
4870 
4871 	skb_queue_tail(&sk->sk_error_queue, skb);
4872 	if (!sock_flag(sk, SOCK_DEAD))
4873 		sk_error_report(sk);
4874 	return 0;
4875 }
4876 EXPORT_SYMBOL(sock_queue_err_skb);
4877 
4878 static bool is_icmp_err_skb(const struct sk_buff *skb)
4879 {
4880 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4881 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4882 }
4883 
4884 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4885 {
4886 	struct sk_buff_head *q = &sk->sk_error_queue;
4887 	struct sk_buff *skb, *skb_next = NULL;
4888 	bool icmp_next = false;
4889 	unsigned long flags;
4890 
4891 	spin_lock_irqsave(&q->lock, flags);
4892 	skb = __skb_dequeue(q);
4893 	if (skb && (skb_next = skb_peek(q))) {
4894 		icmp_next = is_icmp_err_skb(skb_next);
4895 		if (icmp_next)
4896 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4897 	}
4898 	spin_unlock_irqrestore(&q->lock, flags);
4899 
4900 	if (is_icmp_err_skb(skb) && !icmp_next)
4901 		sk->sk_err = 0;
4902 
4903 	if (skb_next)
4904 		sk_error_report(sk);
4905 
4906 	return skb;
4907 }
4908 EXPORT_SYMBOL(sock_dequeue_err_skb);
4909 
4910 /**
4911  * skb_clone_sk - create clone of skb, and take reference to socket
4912  * @skb: the skb to clone
4913  *
4914  * This function creates a clone of a buffer that holds a reference on
4915  * sk_refcnt.  Buffers created via this function are meant to be
4916  * returned using sock_queue_err_skb, or free via kfree_skb.
4917  *
4918  * When passing buffers allocated with this function to sock_queue_err_skb
4919  * it is necessary to wrap the call with sock_hold/sock_put in order to
4920  * prevent the socket from being released prior to being enqueued on
4921  * the sk_error_queue.
4922  */
4923 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4924 {
4925 	struct sock *sk = skb->sk;
4926 	struct sk_buff *clone;
4927 
4928 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4929 		return NULL;
4930 
4931 	clone = skb_clone(skb, GFP_ATOMIC);
4932 	if (!clone) {
4933 		sock_put(sk);
4934 		return NULL;
4935 	}
4936 
4937 	clone->sk = sk;
4938 	clone->destructor = sock_efree;
4939 
4940 	return clone;
4941 }
4942 EXPORT_SYMBOL(skb_clone_sk);
4943 
4944 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4945 					struct sock *sk,
4946 					int tstype,
4947 					bool opt_stats)
4948 {
4949 	struct sock_exterr_skb *serr;
4950 	int err;
4951 
4952 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4953 
4954 	serr = SKB_EXT_ERR(skb);
4955 	memset(serr, 0, sizeof(*serr));
4956 	serr->ee.ee_errno = ENOMSG;
4957 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4958 	serr->ee.ee_info = tstype;
4959 	serr->opt_stats = opt_stats;
4960 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4961 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4962 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4963 		if (sk_is_tcp(sk))
4964 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4965 	}
4966 
4967 	err = sock_queue_err_skb(sk, skb);
4968 
4969 	if (err)
4970 		kfree_skb(skb);
4971 }
4972 
4973 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4974 {
4975 	bool ret;
4976 
4977 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4978 		return true;
4979 
4980 	read_lock_bh(&sk->sk_callback_lock);
4981 	ret = sk->sk_socket && sk->sk_socket->file &&
4982 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4983 	read_unlock_bh(&sk->sk_callback_lock);
4984 	return ret;
4985 }
4986 
4987 void skb_complete_tx_timestamp(struct sk_buff *skb,
4988 			       struct skb_shared_hwtstamps *hwtstamps)
4989 {
4990 	struct sock *sk = skb->sk;
4991 
4992 	if (!skb_may_tx_timestamp(sk, false))
4993 		goto err;
4994 
4995 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4996 	 * but only if the socket refcount is not zero.
4997 	 */
4998 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4999 		*skb_hwtstamps(skb) = *hwtstamps;
5000 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5001 		sock_put(sk);
5002 		return;
5003 	}
5004 
5005 err:
5006 	kfree_skb(skb);
5007 }
5008 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5009 
5010 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5011 		     const struct sk_buff *ack_skb,
5012 		     struct skb_shared_hwtstamps *hwtstamps,
5013 		     struct sock *sk, int tstype)
5014 {
5015 	struct sk_buff *skb;
5016 	bool tsonly, opt_stats = false;
5017 
5018 	if (!sk)
5019 		return;
5020 
5021 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5022 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5023 		return;
5024 
5025 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5026 	if (!skb_may_tx_timestamp(sk, tsonly))
5027 		return;
5028 
5029 	if (tsonly) {
5030 #ifdef CONFIG_INET
5031 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5032 		    sk_is_tcp(sk)) {
5033 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5034 							     ack_skb);
5035 			opt_stats = true;
5036 		} else
5037 #endif
5038 			skb = alloc_skb(0, GFP_ATOMIC);
5039 	} else {
5040 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5041 	}
5042 	if (!skb)
5043 		return;
5044 
5045 	if (tsonly) {
5046 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5047 					     SKBTX_ANY_TSTAMP;
5048 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5049 	}
5050 
5051 	if (hwtstamps)
5052 		*skb_hwtstamps(skb) = *hwtstamps;
5053 	else
5054 		__net_timestamp(skb);
5055 
5056 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5057 }
5058 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5059 
5060 void skb_tstamp_tx(struct sk_buff *orig_skb,
5061 		   struct skb_shared_hwtstamps *hwtstamps)
5062 {
5063 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5064 			       SCM_TSTAMP_SND);
5065 }
5066 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5067 
5068 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5069 {
5070 	struct sock *sk = skb->sk;
5071 	struct sock_exterr_skb *serr;
5072 	int err = 1;
5073 
5074 	skb->wifi_acked_valid = 1;
5075 	skb->wifi_acked = acked;
5076 
5077 	serr = SKB_EXT_ERR(skb);
5078 	memset(serr, 0, sizeof(*serr));
5079 	serr->ee.ee_errno = ENOMSG;
5080 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5081 
5082 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5083 	 * but only if the socket refcount is not zero.
5084 	 */
5085 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5086 		err = sock_queue_err_skb(sk, skb);
5087 		sock_put(sk);
5088 	}
5089 	if (err)
5090 		kfree_skb(skb);
5091 }
5092 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5093 
5094 /**
5095  * skb_partial_csum_set - set up and verify partial csum values for packet
5096  * @skb: the skb to set
5097  * @start: the number of bytes after skb->data to start checksumming.
5098  * @off: the offset from start to place the checksum.
5099  *
5100  * For untrusted partially-checksummed packets, we need to make sure the values
5101  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5102  *
5103  * This function checks and sets those values and skb->ip_summed: if this
5104  * returns false you should drop the packet.
5105  */
5106 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5107 {
5108 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5109 	u32 csum_start = skb_headroom(skb) + (u32)start;
5110 
5111 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5112 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5113 				     start, off, skb_headroom(skb), skb_headlen(skb));
5114 		return false;
5115 	}
5116 	skb->ip_summed = CHECKSUM_PARTIAL;
5117 	skb->csum_start = csum_start;
5118 	skb->csum_offset = off;
5119 	skb_set_transport_header(skb, start);
5120 	return true;
5121 }
5122 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5123 
5124 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5125 			       unsigned int max)
5126 {
5127 	if (skb_headlen(skb) >= len)
5128 		return 0;
5129 
5130 	/* If we need to pullup then pullup to the max, so we
5131 	 * won't need to do it again.
5132 	 */
5133 	if (max > skb->len)
5134 		max = skb->len;
5135 
5136 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5137 		return -ENOMEM;
5138 
5139 	if (skb_headlen(skb) < len)
5140 		return -EPROTO;
5141 
5142 	return 0;
5143 }
5144 
5145 #define MAX_TCP_HDR_LEN (15 * 4)
5146 
5147 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5148 				      typeof(IPPROTO_IP) proto,
5149 				      unsigned int off)
5150 {
5151 	int err;
5152 
5153 	switch (proto) {
5154 	case IPPROTO_TCP:
5155 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5156 					  off + MAX_TCP_HDR_LEN);
5157 		if (!err && !skb_partial_csum_set(skb, off,
5158 						  offsetof(struct tcphdr,
5159 							   check)))
5160 			err = -EPROTO;
5161 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5162 
5163 	case IPPROTO_UDP:
5164 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5165 					  off + sizeof(struct udphdr));
5166 		if (!err && !skb_partial_csum_set(skb, off,
5167 						  offsetof(struct udphdr,
5168 							   check)))
5169 			err = -EPROTO;
5170 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5171 	}
5172 
5173 	return ERR_PTR(-EPROTO);
5174 }
5175 
5176 /* This value should be large enough to cover a tagged ethernet header plus
5177  * maximally sized IP and TCP or UDP headers.
5178  */
5179 #define MAX_IP_HDR_LEN 128
5180 
5181 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5182 {
5183 	unsigned int off;
5184 	bool fragment;
5185 	__sum16 *csum;
5186 	int err;
5187 
5188 	fragment = false;
5189 
5190 	err = skb_maybe_pull_tail(skb,
5191 				  sizeof(struct iphdr),
5192 				  MAX_IP_HDR_LEN);
5193 	if (err < 0)
5194 		goto out;
5195 
5196 	if (ip_is_fragment(ip_hdr(skb)))
5197 		fragment = true;
5198 
5199 	off = ip_hdrlen(skb);
5200 
5201 	err = -EPROTO;
5202 
5203 	if (fragment)
5204 		goto out;
5205 
5206 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5207 	if (IS_ERR(csum))
5208 		return PTR_ERR(csum);
5209 
5210 	if (recalculate)
5211 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5212 					   ip_hdr(skb)->daddr,
5213 					   skb->len - off,
5214 					   ip_hdr(skb)->protocol, 0);
5215 	err = 0;
5216 
5217 out:
5218 	return err;
5219 }
5220 
5221 /* This value should be large enough to cover a tagged ethernet header plus
5222  * an IPv6 header, all options, and a maximal TCP or UDP header.
5223  */
5224 #define MAX_IPV6_HDR_LEN 256
5225 
5226 #define OPT_HDR(type, skb, off) \
5227 	(type *)(skb_network_header(skb) + (off))
5228 
5229 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5230 {
5231 	int err;
5232 	u8 nexthdr;
5233 	unsigned int off;
5234 	unsigned int len;
5235 	bool fragment;
5236 	bool done;
5237 	__sum16 *csum;
5238 
5239 	fragment = false;
5240 	done = false;
5241 
5242 	off = sizeof(struct ipv6hdr);
5243 
5244 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5245 	if (err < 0)
5246 		goto out;
5247 
5248 	nexthdr = ipv6_hdr(skb)->nexthdr;
5249 
5250 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5251 	while (off <= len && !done) {
5252 		switch (nexthdr) {
5253 		case IPPROTO_DSTOPTS:
5254 		case IPPROTO_HOPOPTS:
5255 		case IPPROTO_ROUTING: {
5256 			struct ipv6_opt_hdr *hp;
5257 
5258 			err = skb_maybe_pull_tail(skb,
5259 						  off +
5260 						  sizeof(struct ipv6_opt_hdr),
5261 						  MAX_IPV6_HDR_LEN);
5262 			if (err < 0)
5263 				goto out;
5264 
5265 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5266 			nexthdr = hp->nexthdr;
5267 			off += ipv6_optlen(hp);
5268 			break;
5269 		}
5270 		case IPPROTO_AH: {
5271 			struct ip_auth_hdr *hp;
5272 
5273 			err = skb_maybe_pull_tail(skb,
5274 						  off +
5275 						  sizeof(struct ip_auth_hdr),
5276 						  MAX_IPV6_HDR_LEN);
5277 			if (err < 0)
5278 				goto out;
5279 
5280 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5281 			nexthdr = hp->nexthdr;
5282 			off += ipv6_authlen(hp);
5283 			break;
5284 		}
5285 		case IPPROTO_FRAGMENT: {
5286 			struct frag_hdr *hp;
5287 
5288 			err = skb_maybe_pull_tail(skb,
5289 						  off +
5290 						  sizeof(struct frag_hdr),
5291 						  MAX_IPV6_HDR_LEN);
5292 			if (err < 0)
5293 				goto out;
5294 
5295 			hp = OPT_HDR(struct frag_hdr, skb, off);
5296 
5297 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5298 				fragment = true;
5299 
5300 			nexthdr = hp->nexthdr;
5301 			off += sizeof(struct frag_hdr);
5302 			break;
5303 		}
5304 		default:
5305 			done = true;
5306 			break;
5307 		}
5308 	}
5309 
5310 	err = -EPROTO;
5311 
5312 	if (!done || fragment)
5313 		goto out;
5314 
5315 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5316 	if (IS_ERR(csum))
5317 		return PTR_ERR(csum);
5318 
5319 	if (recalculate)
5320 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5321 					 &ipv6_hdr(skb)->daddr,
5322 					 skb->len - off, nexthdr, 0);
5323 	err = 0;
5324 
5325 out:
5326 	return err;
5327 }
5328 
5329 /**
5330  * skb_checksum_setup - set up partial checksum offset
5331  * @skb: the skb to set up
5332  * @recalculate: if true the pseudo-header checksum will be recalculated
5333  */
5334 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5335 {
5336 	int err;
5337 
5338 	switch (skb->protocol) {
5339 	case htons(ETH_P_IP):
5340 		err = skb_checksum_setup_ipv4(skb, recalculate);
5341 		break;
5342 
5343 	case htons(ETH_P_IPV6):
5344 		err = skb_checksum_setup_ipv6(skb, recalculate);
5345 		break;
5346 
5347 	default:
5348 		err = -EPROTO;
5349 		break;
5350 	}
5351 
5352 	return err;
5353 }
5354 EXPORT_SYMBOL(skb_checksum_setup);
5355 
5356 /**
5357  * skb_checksum_maybe_trim - maybe trims the given skb
5358  * @skb: the skb to check
5359  * @transport_len: the data length beyond the network header
5360  *
5361  * Checks whether the given skb has data beyond the given transport length.
5362  * If so, returns a cloned skb trimmed to this transport length.
5363  * Otherwise returns the provided skb. Returns NULL in error cases
5364  * (e.g. transport_len exceeds skb length or out-of-memory).
5365  *
5366  * Caller needs to set the skb transport header and free any returned skb if it
5367  * differs from the provided skb.
5368  */
5369 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5370 					       unsigned int transport_len)
5371 {
5372 	struct sk_buff *skb_chk;
5373 	unsigned int len = skb_transport_offset(skb) + transport_len;
5374 	int ret;
5375 
5376 	if (skb->len < len)
5377 		return NULL;
5378 	else if (skb->len == len)
5379 		return skb;
5380 
5381 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5382 	if (!skb_chk)
5383 		return NULL;
5384 
5385 	ret = pskb_trim_rcsum(skb_chk, len);
5386 	if (ret) {
5387 		kfree_skb(skb_chk);
5388 		return NULL;
5389 	}
5390 
5391 	return skb_chk;
5392 }
5393 
5394 /**
5395  * skb_checksum_trimmed - validate checksum of an skb
5396  * @skb: the skb to check
5397  * @transport_len: the data length beyond the network header
5398  * @skb_chkf: checksum function to use
5399  *
5400  * Applies the given checksum function skb_chkf to the provided skb.
5401  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5402  *
5403  * If the skb has data beyond the given transport length, then a
5404  * trimmed & cloned skb is checked and returned.
5405  *
5406  * Caller needs to set the skb transport header and free any returned skb if it
5407  * differs from the provided skb.
5408  */
5409 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5410 				     unsigned int transport_len,
5411 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5412 {
5413 	struct sk_buff *skb_chk;
5414 	unsigned int offset = skb_transport_offset(skb);
5415 	__sum16 ret;
5416 
5417 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5418 	if (!skb_chk)
5419 		goto err;
5420 
5421 	if (!pskb_may_pull(skb_chk, offset))
5422 		goto err;
5423 
5424 	skb_pull_rcsum(skb_chk, offset);
5425 	ret = skb_chkf(skb_chk);
5426 	skb_push_rcsum(skb_chk, offset);
5427 
5428 	if (ret)
5429 		goto err;
5430 
5431 	return skb_chk;
5432 
5433 err:
5434 	if (skb_chk && skb_chk != skb)
5435 		kfree_skb(skb_chk);
5436 
5437 	return NULL;
5438 
5439 }
5440 EXPORT_SYMBOL(skb_checksum_trimmed);
5441 
5442 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5443 {
5444 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5445 			     skb->dev->name);
5446 }
5447 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5448 
5449 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5450 {
5451 	if (head_stolen) {
5452 		skb_release_head_state(skb);
5453 		kmem_cache_free(skbuff_head_cache, skb);
5454 	} else {
5455 		__kfree_skb(skb);
5456 	}
5457 }
5458 EXPORT_SYMBOL(kfree_skb_partial);
5459 
5460 /**
5461  * skb_try_coalesce - try to merge skb to prior one
5462  * @to: prior buffer
5463  * @from: buffer to add
5464  * @fragstolen: pointer to boolean
5465  * @delta_truesize: how much more was allocated than was requested
5466  */
5467 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5468 		      bool *fragstolen, int *delta_truesize)
5469 {
5470 	struct skb_shared_info *to_shinfo, *from_shinfo;
5471 	int i, delta, len = from->len;
5472 
5473 	*fragstolen = false;
5474 
5475 	if (skb_cloned(to))
5476 		return false;
5477 
5478 	/* In general, avoid mixing slab allocated and page_pool allocated
5479 	 * pages within the same SKB. However when @to is not pp_recycle and
5480 	 * @from is cloned, we can transition frag pages from page_pool to
5481 	 * reference counted.
5482 	 *
5483 	 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5484 	 * @from is cloned, in case the SKB is using page_pool fragment
5485 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5486 	 * references for cloned SKBs at the moment that would result in
5487 	 * inconsistent reference counts.
5488 	 */
5489 	if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5490 		return false;
5491 
5492 	if (len <= skb_tailroom(to)) {
5493 		if (len)
5494 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5495 		*delta_truesize = 0;
5496 		return true;
5497 	}
5498 
5499 	to_shinfo = skb_shinfo(to);
5500 	from_shinfo = skb_shinfo(from);
5501 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5502 		return false;
5503 	if (skb_zcopy(to) || skb_zcopy(from))
5504 		return false;
5505 
5506 	if (skb_headlen(from) != 0) {
5507 		struct page *page;
5508 		unsigned int offset;
5509 
5510 		if (to_shinfo->nr_frags +
5511 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5512 			return false;
5513 
5514 		if (skb_head_is_locked(from))
5515 			return false;
5516 
5517 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5518 
5519 		page = virt_to_head_page(from->head);
5520 		offset = from->data - (unsigned char *)page_address(page);
5521 
5522 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5523 				   page, offset, skb_headlen(from));
5524 		*fragstolen = true;
5525 	} else {
5526 		if (to_shinfo->nr_frags +
5527 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5528 			return false;
5529 
5530 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5531 	}
5532 
5533 	WARN_ON_ONCE(delta < len);
5534 
5535 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5536 	       from_shinfo->frags,
5537 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5538 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5539 
5540 	if (!skb_cloned(from))
5541 		from_shinfo->nr_frags = 0;
5542 
5543 	/* if the skb is not cloned this does nothing
5544 	 * since we set nr_frags to 0.
5545 	 */
5546 	for (i = 0; i < from_shinfo->nr_frags; i++)
5547 		__skb_frag_ref(&from_shinfo->frags[i]);
5548 
5549 	to->truesize += delta;
5550 	to->len += len;
5551 	to->data_len += len;
5552 
5553 	*delta_truesize = delta;
5554 	return true;
5555 }
5556 EXPORT_SYMBOL(skb_try_coalesce);
5557 
5558 /**
5559  * skb_scrub_packet - scrub an skb
5560  *
5561  * @skb: buffer to clean
5562  * @xnet: packet is crossing netns
5563  *
5564  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5565  * into/from a tunnel. Some information have to be cleared during these
5566  * operations.
5567  * skb_scrub_packet can also be used to clean a skb before injecting it in
5568  * another namespace (@xnet == true). We have to clear all information in the
5569  * skb that could impact namespace isolation.
5570  */
5571 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5572 {
5573 	skb->pkt_type = PACKET_HOST;
5574 	skb->skb_iif = 0;
5575 	skb->ignore_df = 0;
5576 	skb_dst_drop(skb);
5577 	skb_ext_reset(skb);
5578 	nf_reset_ct(skb);
5579 	nf_reset_trace(skb);
5580 
5581 #ifdef CONFIG_NET_SWITCHDEV
5582 	skb->offload_fwd_mark = 0;
5583 	skb->offload_l3_fwd_mark = 0;
5584 #endif
5585 
5586 	if (!xnet)
5587 		return;
5588 
5589 	ipvs_reset(skb);
5590 	skb->mark = 0;
5591 	skb_clear_tstamp(skb);
5592 }
5593 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5594 
5595 /**
5596  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5597  *
5598  * @skb: GSO skb
5599  *
5600  * skb_gso_transport_seglen is used to determine the real size of the
5601  * individual segments, including Layer4 headers (TCP/UDP).
5602  *
5603  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5604  */
5605 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5606 {
5607 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5608 	unsigned int thlen = 0;
5609 
5610 	if (skb->encapsulation) {
5611 		thlen = skb_inner_transport_header(skb) -
5612 			skb_transport_header(skb);
5613 
5614 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5615 			thlen += inner_tcp_hdrlen(skb);
5616 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5617 		thlen = tcp_hdrlen(skb);
5618 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5619 		thlen = sizeof(struct sctphdr);
5620 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5621 		thlen = sizeof(struct udphdr);
5622 	}
5623 	/* UFO sets gso_size to the size of the fragmentation
5624 	 * payload, i.e. the size of the L4 (UDP) header is already
5625 	 * accounted for.
5626 	 */
5627 	return thlen + shinfo->gso_size;
5628 }
5629 
5630 /**
5631  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5632  *
5633  * @skb: GSO skb
5634  *
5635  * skb_gso_network_seglen is used to determine the real size of the
5636  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5637  *
5638  * The MAC/L2 header is not accounted for.
5639  */
5640 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5641 {
5642 	unsigned int hdr_len = skb_transport_header(skb) -
5643 			       skb_network_header(skb);
5644 
5645 	return hdr_len + skb_gso_transport_seglen(skb);
5646 }
5647 
5648 /**
5649  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5650  *
5651  * @skb: GSO skb
5652  *
5653  * skb_gso_mac_seglen is used to determine the real size of the
5654  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5655  * headers (TCP/UDP).
5656  */
5657 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5658 {
5659 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5660 
5661 	return hdr_len + skb_gso_transport_seglen(skb);
5662 }
5663 
5664 /**
5665  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5666  *
5667  * There are a couple of instances where we have a GSO skb, and we
5668  * want to determine what size it would be after it is segmented.
5669  *
5670  * We might want to check:
5671  * -    L3+L4+payload size (e.g. IP forwarding)
5672  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5673  *
5674  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5675  *
5676  * @skb: GSO skb
5677  *
5678  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5679  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5680  *
5681  * @max_len: The maximum permissible length.
5682  *
5683  * Returns true if the segmented length <= max length.
5684  */
5685 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5686 				      unsigned int seg_len,
5687 				      unsigned int max_len) {
5688 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5689 	const struct sk_buff *iter;
5690 
5691 	if (shinfo->gso_size != GSO_BY_FRAGS)
5692 		return seg_len <= max_len;
5693 
5694 	/* Undo this so we can re-use header sizes */
5695 	seg_len -= GSO_BY_FRAGS;
5696 
5697 	skb_walk_frags(skb, iter) {
5698 		if (seg_len + skb_headlen(iter) > max_len)
5699 			return false;
5700 	}
5701 
5702 	return true;
5703 }
5704 
5705 /**
5706  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5707  *
5708  * @skb: GSO skb
5709  * @mtu: MTU to validate against
5710  *
5711  * skb_gso_validate_network_len validates if a given skb will fit a
5712  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5713  * payload.
5714  */
5715 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5716 {
5717 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5718 }
5719 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5720 
5721 /**
5722  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5723  *
5724  * @skb: GSO skb
5725  * @len: length to validate against
5726  *
5727  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5728  * length once split, including L2, L3 and L4 headers and the payload.
5729  */
5730 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5731 {
5732 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5733 }
5734 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5735 
5736 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5737 {
5738 	int mac_len, meta_len;
5739 	void *meta;
5740 
5741 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5742 		kfree_skb(skb);
5743 		return NULL;
5744 	}
5745 
5746 	mac_len = skb->data - skb_mac_header(skb);
5747 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5748 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5749 			mac_len - VLAN_HLEN - ETH_TLEN);
5750 	}
5751 
5752 	meta_len = skb_metadata_len(skb);
5753 	if (meta_len) {
5754 		meta = skb_metadata_end(skb) - meta_len;
5755 		memmove(meta + VLAN_HLEN, meta, meta_len);
5756 	}
5757 
5758 	skb->mac_header += VLAN_HLEN;
5759 	return skb;
5760 }
5761 
5762 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5763 {
5764 	struct vlan_hdr *vhdr;
5765 	u16 vlan_tci;
5766 
5767 	if (unlikely(skb_vlan_tag_present(skb))) {
5768 		/* vlan_tci is already set-up so leave this for another time */
5769 		return skb;
5770 	}
5771 
5772 	skb = skb_share_check(skb, GFP_ATOMIC);
5773 	if (unlikely(!skb))
5774 		goto err_free;
5775 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5776 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5777 		goto err_free;
5778 
5779 	vhdr = (struct vlan_hdr *)skb->data;
5780 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5781 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5782 
5783 	skb_pull_rcsum(skb, VLAN_HLEN);
5784 	vlan_set_encap_proto(skb, vhdr);
5785 
5786 	skb = skb_reorder_vlan_header(skb);
5787 	if (unlikely(!skb))
5788 		goto err_free;
5789 
5790 	skb_reset_network_header(skb);
5791 	if (!skb_transport_header_was_set(skb))
5792 		skb_reset_transport_header(skb);
5793 	skb_reset_mac_len(skb);
5794 
5795 	return skb;
5796 
5797 err_free:
5798 	kfree_skb(skb);
5799 	return NULL;
5800 }
5801 EXPORT_SYMBOL(skb_vlan_untag);
5802 
5803 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5804 {
5805 	if (!pskb_may_pull(skb, write_len))
5806 		return -ENOMEM;
5807 
5808 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5809 		return 0;
5810 
5811 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5812 }
5813 EXPORT_SYMBOL(skb_ensure_writable);
5814 
5815 /* remove VLAN header from packet and update csum accordingly.
5816  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5817  */
5818 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5819 {
5820 	struct vlan_hdr *vhdr;
5821 	int offset = skb->data - skb_mac_header(skb);
5822 	int err;
5823 
5824 	if (WARN_ONCE(offset,
5825 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5826 		      offset)) {
5827 		return -EINVAL;
5828 	}
5829 
5830 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5831 	if (unlikely(err))
5832 		return err;
5833 
5834 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5835 
5836 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5837 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5838 
5839 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5840 	__skb_pull(skb, VLAN_HLEN);
5841 
5842 	vlan_set_encap_proto(skb, vhdr);
5843 	skb->mac_header += VLAN_HLEN;
5844 
5845 	if (skb_network_offset(skb) < ETH_HLEN)
5846 		skb_set_network_header(skb, ETH_HLEN);
5847 
5848 	skb_reset_mac_len(skb);
5849 
5850 	return err;
5851 }
5852 EXPORT_SYMBOL(__skb_vlan_pop);
5853 
5854 /* Pop a vlan tag either from hwaccel or from payload.
5855  * Expects skb->data at mac header.
5856  */
5857 int skb_vlan_pop(struct sk_buff *skb)
5858 {
5859 	u16 vlan_tci;
5860 	__be16 vlan_proto;
5861 	int err;
5862 
5863 	if (likely(skb_vlan_tag_present(skb))) {
5864 		__vlan_hwaccel_clear_tag(skb);
5865 	} else {
5866 		if (unlikely(!eth_type_vlan(skb->protocol)))
5867 			return 0;
5868 
5869 		err = __skb_vlan_pop(skb, &vlan_tci);
5870 		if (err)
5871 			return err;
5872 	}
5873 	/* move next vlan tag to hw accel tag */
5874 	if (likely(!eth_type_vlan(skb->protocol)))
5875 		return 0;
5876 
5877 	vlan_proto = skb->protocol;
5878 	err = __skb_vlan_pop(skb, &vlan_tci);
5879 	if (unlikely(err))
5880 		return err;
5881 
5882 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5883 	return 0;
5884 }
5885 EXPORT_SYMBOL(skb_vlan_pop);
5886 
5887 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5888  * Expects skb->data at mac header.
5889  */
5890 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5891 {
5892 	if (skb_vlan_tag_present(skb)) {
5893 		int offset = skb->data - skb_mac_header(skb);
5894 		int err;
5895 
5896 		if (WARN_ONCE(offset,
5897 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5898 			      offset)) {
5899 			return -EINVAL;
5900 		}
5901 
5902 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5903 					skb_vlan_tag_get(skb));
5904 		if (err)
5905 			return err;
5906 
5907 		skb->protocol = skb->vlan_proto;
5908 		skb->mac_len += VLAN_HLEN;
5909 
5910 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5911 	}
5912 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5913 	return 0;
5914 }
5915 EXPORT_SYMBOL(skb_vlan_push);
5916 
5917 /**
5918  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5919  *
5920  * @skb: Socket buffer to modify
5921  *
5922  * Drop the Ethernet header of @skb.
5923  *
5924  * Expects that skb->data points to the mac header and that no VLAN tags are
5925  * present.
5926  *
5927  * Returns 0 on success, -errno otherwise.
5928  */
5929 int skb_eth_pop(struct sk_buff *skb)
5930 {
5931 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5932 	    skb_network_offset(skb) < ETH_HLEN)
5933 		return -EPROTO;
5934 
5935 	skb_pull_rcsum(skb, ETH_HLEN);
5936 	skb_reset_mac_header(skb);
5937 	skb_reset_mac_len(skb);
5938 
5939 	return 0;
5940 }
5941 EXPORT_SYMBOL(skb_eth_pop);
5942 
5943 /**
5944  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5945  *
5946  * @skb: Socket buffer to modify
5947  * @dst: Destination MAC address of the new header
5948  * @src: Source MAC address of the new header
5949  *
5950  * Prepend @skb with a new Ethernet header.
5951  *
5952  * Expects that skb->data points to the mac header, which must be empty.
5953  *
5954  * Returns 0 on success, -errno otherwise.
5955  */
5956 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5957 		 const unsigned char *src)
5958 {
5959 	struct ethhdr *eth;
5960 	int err;
5961 
5962 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5963 		return -EPROTO;
5964 
5965 	err = skb_cow_head(skb, sizeof(*eth));
5966 	if (err < 0)
5967 		return err;
5968 
5969 	skb_push(skb, sizeof(*eth));
5970 	skb_reset_mac_header(skb);
5971 	skb_reset_mac_len(skb);
5972 
5973 	eth = eth_hdr(skb);
5974 	ether_addr_copy(eth->h_dest, dst);
5975 	ether_addr_copy(eth->h_source, src);
5976 	eth->h_proto = skb->protocol;
5977 
5978 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5979 
5980 	return 0;
5981 }
5982 EXPORT_SYMBOL(skb_eth_push);
5983 
5984 /* Update the ethertype of hdr and the skb csum value if required. */
5985 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5986 			     __be16 ethertype)
5987 {
5988 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5989 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5990 
5991 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5992 	}
5993 
5994 	hdr->h_proto = ethertype;
5995 }
5996 
5997 /**
5998  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5999  *                   the packet
6000  *
6001  * @skb: buffer
6002  * @mpls_lse: MPLS label stack entry to push
6003  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6004  * @mac_len: length of the MAC header
6005  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6006  *            ethernet
6007  *
6008  * Expects skb->data at mac header.
6009  *
6010  * Returns 0 on success, -errno otherwise.
6011  */
6012 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6013 		  int mac_len, bool ethernet)
6014 {
6015 	struct mpls_shim_hdr *lse;
6016 	int err;
6017 
6018 	if (unlikely(!eth_p_mpls(mpls_proto)))
6019 		return -EINVAL;
6020 
6021 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6022 	if (skb->encapsulation)
6023 		return -EINVAL;
6024 
6025 	err = skb_cow_head(skb, MPLS_HLEN);
6026 	if (unlikely(err))
6027 		return err;
6028 
6029 	if (!skb->inner_protocol) {
6030 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6031 		skb_set_inner_protocol(skb, skb->protocol);
6032 	}
6033 
6034 	skb_push(skb, MPLS_HLEN);
6035 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6036 		mac_len);
6037 	skb_reset_mac_header(skb);
6038 	skb_set_network_header(skb, mac_len);
6039 	skb_reset_mac_len(skb);
6040 
6041 	lse = mpls_hdr(skb);
6042 	lse->label_stack_entry = mpls_lse;
6043 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6044 
6045 	if (ethernet && mac_len >= ETH_HLEN)
6046 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6047 	skb->protocol = mpls_proto;
6048 
6049 	return 0;
6050 }
6051 EXPORT_SYMBOL_GPL(skb_mpls_push);
6052 
6053 /**
6054  * skb_mpls_pop() - pop the outermost MPLS header
6055  *
6056  * @skb: buffer
6057  * @next_proto: ethertype of header after popped MPLS header
6058  * @mac_len: length of the MAC header
6059  * @ethernet: flag to indicate if the packet is ethernet
6060  *
6061  * Expects skb->data at mac header.
6062  *
6063  * Returns 0 on success, -errno otherwise.
6064  */
6065 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6066 		 bool ethernet)
6067 {
6068 	int err;
6069 
6070 	if (unlikely(!eth_p_mpls(skb->protocol)))
6071 		return 0;
6072 
6073 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6074 	if (unlikely(err))
6075 		return err;
6076 
6077 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6078 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6079 		mac_len);
6080 
6081 	__skb_pull(skb, MPLS_HLEN);
6082 	skb_reset_mac_header(skb);
6083 	skb_set_network_header(skb, mac_len);
6084 
6085 	if (ethernet && mac_len >= ETH_HLEN) {
6086 		struct ethhdr *hdr;
6087 
6088 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6089 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6090 		skb_mod_eth_type(skb, hdr, next_proto);
6091 	}
6092 	skb->protocol = next_proto;
6093 
6094 	return 0;
6095 }
6096 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6097 
6098 /**
6099  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6100  *
6101  * @skb: buffer
6102  * @mpls_lse: new MPLS label stack entry to update to
6103  *
6104  * Expects skb->data at mac header.
6105  *
6106  * Returns 0 on success, -errno otherwise.
6107  */
6108 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6109 {
6110 	int err;
6111 
6112 	if (unlikely(!eth_p_mpls(skb->protocol)))
6113 		return -EINVAL;
6114 
6115 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6116 	if (unlikely(err))
6117 		return err;
6118 
6119 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6120 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6121 
6122 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6123 	}
6124 
6125 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6126 
6127 	return 0;
6128 }
6129 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6130 
6131 /**
6132  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6133  *
6134  * @skb: buffer
6135  *
6136  * Expects skb->data at mac header.
6137  *
6138  * Returns 0 on success, -errno otherwise.
6139  */
6140 int skb_mpls_dec_ttl(struct sk_buff *skb)
6141 {
6142 	u32 lse;
6143 	u8 ttl;
6144 
6145 	if (unlikely(!eth_p_mpls(skb->protocol)))
6146 		return -EINVAL;
6147 
6148 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6149 		return -ENOMEM;
6150 
6151 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6152 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6153 	if (!--ttl)
6154 		return -EINVAL;
6155 
6156 	lse &= ~MPLS_LS_TTL_MASK;
6157 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6158 
6159 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6160 }
6161 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6162 
6163 /**
6164  * alloc_skb_with_frags - allocate skb with page frags
6165  *
6166  * @header_len: size of linear part
6167  * @data_len: needed length in frags
6168  * @max_page_order: max page order desired.
6169  * @errcode: pointer to error code if any
6170  * @gfp_mask: allocation mask
6171  *
6172  * This can be used to allocate a paged skb, given a maximal order for frags.
6173  */
6174 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6175 				     unsigned long data_len,
6176 				     int max_page_order,
6177 				     int *errcode,
6178 				     gfp_t gfp_mask)
6179 {
6180 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6181 	unsigned long chunk;
6182 	struct sk_buff *skb;
6183 	struct page *page;
6184 	int i;
6185 
6186 	*errcode = -EMSGSIZE;
6187 	/* Note this test could be relaxed, if we succeed to allocate
6188 	 * high order pages...
6189 	 */
6190 	if (npages > MAX_SKB_FRAGS)
6191 		return NULL;
6192 
6193 	*errcode = -ENOBUFS;
6194 	skb = alloc_skb(header_len, gfp_mask);
6195 	if (!skb)
6196 		return NULL;
6197 
6198 	skb->truesize += npages << PAGE_SHIFT;
6199 
6200 	for (i = 0; npages > 0; i++) {
6201 		int order = max_page_order;
6202 
6203 		while (order) {
6204 			if (npages >= 1 << order) {
6205 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6206 						   __GFP_COMP |
6207 						   __GFP_NOWARN,
6208 						   order);
6209 				if (page)
6210 					goto fill_page;
6211 				/* Do not retry other high order allocations */
6212 				order = 1;
6213 				max_page_order = 0;
6214 			}
6215 			order--;
6216 		}
6217 		page = alloc_page(gfp_mask);
6218 		if (!page)
6219 			goto failure;
6220 fill_page:
6221 		chunk = min_t(unsigned long, data_len,
6222 			      PAGE_SIZE << order);
6223 		skb_fill_page_desc(skb, i, page, 0, chunk);
6224 		data_len -= chunk;
6225 		npages -= 1 << order;
6226 	}
6227 	return skb;
6228 
6229 failure:
6230 	kfree_skb(skb);
6231 	return NULL;
6232 }
6233 EXPORT_SYMBOL(alloc_skb_with_frags);
6234 
6235 /* carve out the first off bytes from skb when off < headlen */
6236 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6237 				    const int headlen, gfp_t gfp_mask)
6238 {
6239 	int i;
6240 	unsigned int size = skb_end_offset(skb);
6241 	int new_hlen = headlen - off;
6242 	u8 *data;
6243 
6244 	if (skb_pfmemalloc(skb))
6245 		gfp_mask |= __GFP_MEMALLOC;
6246 
6247 	size = SKB_DATA_ALIGN(size);
6248 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6249 	size = kmalloc_size_roundup(size);
6250 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6251 	if (!data)
6252 		return -ENOMEM;
6253 	size = SKB_WITH_OVERHEAD(size);
6254 
6255 	/* Copy real data, and all frags */
6256 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6257 	skb->len -= off;
6258 
6259 	memcpy((struct skb_shared_info *)(data + size),
6260 	       skb_shinfo(skb),
6261 	       offsetof(struct skb_shared_info,
6262 			frags[skb_shinfo(skb)->nr_frags]));
6263 	if (skb_cloned(skb)) {
6264 		/* drop the old head gracefully */
6265 		if (skb_orphan_frags(skb, gfp_mask)) {
6266 			kfree(data);
6267 			return -ENOMEM;
6268 		}
6269 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6270 			skb_frag_ref(skb, i);
6271 		if (skb_has_frag_list(skb))
6272 			skb_clone_fraglist(skb);
6273 		skb_release_data(skb, SKB_CONSUMED);
6274 	} else {
6275 		/* we can reuse existing recount- all we did was
6276 		 * relocate values
6277 		 */
6278 		skb_free_head(skb);
6279 	}
6280 
6281 	skb->head = data;
6282 	skb->data = data;
6283 	skb->head_frag = 0;
6284 	skb_set_end_offset(skb, size);
6285 	skb_set_tail_pointer(skb, skb_headlen(skb));
6286 	skb_headers_offset_update(skb, 0);
6287 	skb->cloned = 0;
6288 	skb->hdr_len = 0;
6289 	skb->nohdr = 0;
6290 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6291 
6292 	return 0;
6293 }
6294 
6295 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6296 
6297 /* carve out the first eat bytes from skb's frag_list. May recurse into
6298  * pskb_carve()
6299  */
6300 static int pskb_carve_frag_list(struct sk_buff *skb,
6301 				struct skb_shared_info *shinfo, int eat,
6302 				gfp_t gfp_mask)
6303 {
6304 	struct sk_buff *list = shinfo->frag_list;
6305 	struct sk_buff *clone = NULL;
6306 	struct sk_buff *insp = NULL;
6307 
6308 	do {
6309 		if (!list) {
6310 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6311 			return -EFAULT;
6312 		}
6313 		if (list->len <= eat) {
6314 			/* Eaten as whole. */
6315 			eat -= list->len;
6316 			list = list->next;
6317 			insp = list;
6318 		} else {
6319 			/* Eaten partially. */
6320 			if (skb_shared(list)) {
6321 				clone = skb_clone(list, gfp_mask);
6322 				if (!clone)
6323 					return -ENOMEM;
6324 				insp = list->next;
6325 				list = clone;
6326 			} else {
6327 				/* This may be pulled without problems. */
6328 				insp = list;
6329 			}
6330 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6331 				kfree_skb(clone);
6332 				return -ENOMEM;
6333 			}
6334 			break;
6335 		}
6336 	} while (eat);
6337 
6338 	/* Free pulled out fragments. */
6339 	while ((list = shinfo->frag_list) != insp) {
6340 		shinfo->frag_list = list->next;
6341 		consume_skb(list);
6342 	}
6343 	/* And insert new clone at head. */
6344 	if (clone) {
6345 		clone->next = list;
6346 		shinfo->frag_list = clone;
6347 	}
6348 	return 0;
6349 }
6350 
6351 /* carve off first len bytes from skb. Split line (off) is in the
6352  * non-linear part of skb
6353  */
6354 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6355 				       int pos, gfp_t gfp_mask)
6356 {
6357 	int i, k = 0;
6358 	unsigned int size = skb_end_offset(skb);
6359 	u8 *data;
6360 	const int nfrags = skb_shinfo(skb)->nr_frags;
6361 	struct skb_shared_info *shinfo;
6362 
6363 	if (skb_pfmemalloc(skb))
6364 		gfp_mask |= __GFP_MEMALLOC;
6365 
6366 	size = SKB_DATA_ALIGN(size);
6367 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6368 	size = kmalloc_size_roundup(size);
6369 	data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6370 	if (!data)
6371 		return -ENOMEM;
6372 	size = SKB_WITH_OVERHEAD(size);
6373 
6374 	memcpy((struct skb_shared_info *)(data + size),
6375 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6376 	if (skb_orphan_frags(skb, gfp_mask)) {
6377 		kfree(data);
6378 		return -ENOMEM;
6379 	}
6380 	shinfo = (struct skb_shared_info *)(data + size);
6381 	for (i = 0; i < nfrags; i++) {
6382 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6383 
6384 		if (pos + fsize > off) {
6385 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6386 
6387 			if (pos < off) {
6388 				/* Split frag.
6389 				 * We have two variants in this case:
6390 				 * 1. Move all the frag to the second
6391 				 *    part, if it is possible. F.e.
6392 				 *    this approach is mandatory for TUX,
6393 				 *    where splitting is expensive.
6394 				 * 2. Split is accurately. We make this.
6395 				 */
6396 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6397 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6398 			}
6399 			skb_frag_ref(skb, i);
6400 			k++;
6401 		}
6402 		pos += fsize;
6403 	}
6404 	shinfo->nr_frags = k;
6405 	if (skb_has_frag_list(skb))
6406 		skb_clone_fraglist(skb);
6407 
6408 	/* split line is in frag list */
6409 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6410 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6411 		if (skb_has_frag_list(skb))
6412 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6413 		kfree(data);
6414 		return -ENOMEM;
6415 	}
6416 	skb_release_data(skb, SKB_CONSUMED);
6417 
6418 	skb->head = data;
6419 	skb->head_frag = 0;
6420 	skb->data = data;
6421 	skb_set_end_offset(skb, size);
6422 	skb_reset_tail_pointer(skb);
6423 	skb_headers_offset_update(skb, 0);
6424 	skb->cloned   = 0;
6425 	skb->hdr_len  = 0;
6426 	skb->nohdr    = 0;
6427 	skb->len -= off;
6428 	skb->data_len = skb->len;
6429 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6430 	return 0;
6431 }
6432 
6433 /* remove len bytes from the beginning of the skb */
6434 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6435 {
6436 	int headlen = skb_headlen(skb);
6437 
6438 	if (len < headlen)
6439 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6440 	else
6441 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6442 }
6443 
6444 /* Extract to_copy bytes starting at off from skb, and return this in
6445  * a new skb
6446  */
6447 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6448 			     int to_copy, gfp_t gfp)
6449 {
6450 	struct sk_buff  *clone = skb_clone(skb, gfp);
6451 
6452 	if (!clone)
6453 		return NULL;
6454 
6455 	if (pskb_carve(clone, off, gfp) < 0 ||
6456 	    pskb_trim(clone, to_copy)) {
6457 		kfree_skb(clone);
6458 		return NULL;
6459 	}
6460 	return clone;
6461 }
6462 EXPORT_SYMBOL(pskb_extract);
6463 
6464 /**
6465  * skb_condense - try to get rid of fragments/frag_list if possible
6466  * @skb: buffer
6467  *
6468  * Can be used to save memory before skb is added to a busy queue.
6469  * If packet has bytes in frags and enough tail room in skb->head,
6470  * pull all of them, so that we can free the frags right now and adjust
6471  * truesize.
6472  * Notes:
6473  *	We do not reallocate skb->head thus can not fail.
6474  *	Caller must re-evaluate skb->truesize if needed.
6475  */
6476 void skb_condense(struct sk_buff *skb)
6477 {
6478 	if (skb->data_len) {
6479 		if (skb->data_len > skb->end - skb->tail ||
6480 		    skb_cloned(skb))
6481 			return;
6482 
6483 		/* Nice, we can free page frag(s) right now */
6484 		__pskb_pull_tail(skb, skb->data_len);
6485 	}
6486 	/* At this point, skb->truesize might be over estimated,
6487 	 * because skb had a fragment, and fragments do not tell
6488 	 * their truesize.
6489 	 * When we pulled its content into skb->head, fragment
6490 	 * was freed, but __pskb_pull_tail() could not possibly
6491 	 * adjust skb->truesize, not knowing the frag truesize.
6492 	 */
6493 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6494 }
6495 EXPORT_SYMBOL(skb_condense);
6496 
6497 #ifdef CONFIG_SKB_EXTENSIONS
6498 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6499 {
6500 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6501 }
6502 
6503 /**
6504  * __skb_ext_alloc - allocate a new skb extensions storage
6505  *
6506  * @flags: See kmalloc().
6507  *
6508  * Returns the newly allocated pointer. The pointer can later attached to a
6509  * skb via __skb_ext_set().
6510  * Note: caller must handle the skb_ext as an opaque data.
6511  */
6512 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6513 {
6514 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6515 
6516 	if (new) {
6517 		memset(new->offset, 0, sizeof(new->offset));
6518 		refcount_set(&new->refcnt, 1);
6519 	}
6520 
6521 	return new;
6522 }
6523 
6524 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6525 					 unsigned int old_active)
6526 {
6527 	struct skb_ext *new;
6528 
6529 	if (refcount_read(&old->refcnt) == 1)
6530 		return old;
6531 
6532 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6533 	if (!new)
6534 		return NULL;
6535 
6536 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6537 	refcount_set(&new->refcnt, 1);
6538 
6539 #ifdef CONFIG_XFRM
6540 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6541 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6542 		unsigned int i;
6543 
6544 		for (i = 0; i < sp->len; i++)
6545 			xfrm_state_hold(sp->xvec[i]);
6546 	}
6547 #endif
6548 	__skb_ext_put(old);
6549 	return new;
6550 }
6551 
6552 /**
6553  * __skb_ext_set - attach the specified extension storage to this skb
6554  * @skb: buffer
6555  * @id: extension id
6556  * @ext: extension storage previously allocated via __skb_ext_alloc()
6557  *
6558  * Existing extensions, if any, are cleared.
6559  *
6560  * Returns the pointer to the extension.
6561  */
6562 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6563 		    struct skb_ext *ext)
6564 {
6565 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6566 
6567 	skb_ext_put(skb);
6568 	newlen = newoff + skb_ext_type_len[id];
6569 	ext->chunks = newlen;
6570 	ext->offset[id] = newoff;
6571 	skb->extensions = ext;
6572 	skb->active_extensions = 1 << id;
6573 	return skb_ext_get_ptr(ext, id);
6574 }
6575 
6576 /**
6577  * skb_ext_add - allocate space for given extension, COW if needed
6578  * @skb: buffer
6579  * @id: extension to allocate space for
6580  *
6581  * Allocates enough space for the given extension.
6582  * If the extension is already present, a pointer to that extension
6583  * is returned.
6584  *
6585  * If the skb was cloned, COW applies and the returned memory can be
6586  * modified without changing the extension space of clones buffers.
6587  *
6588  * Returns pointer to the extension or NULL on allocation failure.
6589  */
6590 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6591 {
6592 	struct skb_ext *new, *old = NULL;
6593 	unsigned int newlen, newoff;
6594 
6595 	if (skb->active_extensions) {
6596 		old = skb->extensions;
6597 
6598 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6599 		if (!new)
6600 			return NULL;
6601 
6602 		if (__skb_ext_exist(new, id))
6603 			goto set_active;
6604 
6605 		newoff = new->chunks;
6606 	} else {
6607 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6608 
6609 		new = __skb_ext_alloc(GFP_ATOMIC);
6610 		if (!new)
6611 			return NULL;
6612 	}
6613 
6614 	newlen = newoff + skb_ext_type_len[id];
6615 	new->chunks = newlen;
6616 	new->offset[id] = newoff;
6617 set_active:
6618 	skb->slow_gro = 1;
6619 	skb->extensions = new;
6620 	skb->active_extensions |= 1 << id;
6621 	return skb_ext_get_ptr(new, id);
6622 }
6623 EXPORT_SYMBOL(skb_ext_add);
6624 
6625 #ifdef CONFIG_XFRM
6626 static void skb_ext_put_sp(struct sec_path *sp)
6627 {
6628 	unsigned int i;
6629 
6630 	for (i = 0; i < sp->len; i++)
6631 		xfrm_state_put(sp->xvec[i]);
6632 }
6633 #endif
6634 
6635 #ifdef CONFIG_MCTP_FLOWS
6636 static void skb_ext_put_mctp(struct mctp_flow *flow)
6637 {
6638 	if (flow->key)
6639 		mctp_key_unref(flow->key);
6640 }
6641 #endif
6642 
6643 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6644 {
6645 	struct skb_ext *ext = skb->extensions;
6646 
6647 	skb->active_extensions &= ~(1 << id);
6648 	if (skb->active_extensions == 0) {
6649 		skb->extensions = NULL;
6650 		__skb_ext_put(ext);
6651 #ifdef CONFIG_XFRM
6652 	} else if (id == SKB_EXT_SEC_PATH &&
6653 		   refcount_read(&ext->refcnt) == 1) {
6654 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6655 
6656 		skb_ext_put_sp(sp);
6657 		sp->len = 0;
6658 #endif
6659 	}
6660 }
6661 EXPORT_SYMBOL(__skb_ext_del);
6662 
6663 void __skb_ext_put(struct skb_ext *ext)
6664 {
6665 	/* If this is last clone, nothing can increment
6666 	 * it after check passes.  Avoids one atomic op.
6667 	 */
6668 	if (refcount_read(&ext->refcnt) == 1)
6669 		goto free_now;
6670 
6671 	if (!refcount_dec_and_test(&ext->refcnt))
6672 		return;
6673 free_now:
6674 #ifdef CONFIG_XFRM
6675 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6676 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6677 #endif
6678 #ifdef CONFIG_MCTP_FLOWS
6679 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6680 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6681 #endif
6682 
6683 	kmem_cache_free(skbuff_ext_cache, ext);
6684 }
6685 EXPORT_SYMBOL(__skb_ext_put);
6686 #endif /* CONFIG_SKB_EXTENSIONS */
6687 
6688 /**
6689  * skb_attempt_defer_free - queue skb for remote freeing
6690  * @skb: buffer
6691  *
6692  * Put @skb in a per-cpu list, using the cpu which
6693  * allocated the skb/pages to reduce false sharing
6694  * and memory zone spinlock contention.
6695  */
6696 void skb_attempt_defer_free(struct sk_buff *skb)
6697 {
6698 	int cpu = skb->alloc_cpu;
6699 	struct softnet_data *sd;
6700 	unsigned long flags;
6701 	unsigned int defer_max;
6702 	bool kick;
6703 
6704 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6705 	    !cpu_online(cpu) ||
6706 	    cpu == raw_smp_processor_id()) {
6707 nodefer:	__kfree_skb(skb);
6708 		return;
6709 	}
6710 
6711 	sd = &per_cpu(softnet_data, cpu);
6712 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6713 	if (READ_ONCE(sd->defer_count) >= defer_max)
6714 		goto nodefer;
6715 
6716 	spin_lock_irqsave(&sd->defer_lock, flags);
6717 	/* Send an IPI every time queue reaches half capacity. */
6718 	kick = sd->defer_count == (defer_max >> 1);
6719 	/* Paired with the READ_ONCE() few lines above */
6720 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6721 
6722 	skb->next = sd->defer_list;
6723 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6724 	WRITE_ONCE(sd->defer_list, skb);
6725 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6726 
6727 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6728 	 * if we are unlucky enough (this seems very unlikely).
6729 	 */
6730 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6731 		smp_call_function_single_async(cpu, &sd->defer_csd);
6732 }
6733