xref: /openbmc/linux/net/core/skbuff.c (revision 384740dc)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/in.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
50 #endif
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
58 
59 #include <net/protocol.h>
60 #include <net/dst.h>
61 #include <net/sock.h>
62 #include <net/checksum.h>
63 #include <net/xfrm.h>
64 
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
67 
68 #include "kmap_skb.h"
69 
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
72 
73 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
74 				  struct pipe_buffer *buf)
75 {
76 	struct sk_buff *skb = (struct sk_buff *) buf->private;
77 
78 	kfree_skb(skb);
79 }
80 
81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
82 				struct pipe_buffer *buf)
83 {
84 	struct sk_buff *skb = (struct sk_buff *) buf->private;
85 
86 	skb_get(skb);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /*
108  *	Keep out-of-line to prevent kernel bloat.
109  *	__builtin_return_address is not used because it is not always
110  *	reliable.
111  */
112 
113 /**
114  *	skb_over_panic	- 	private function
115  *	@skb: buffer
116  *	@sz: size
117  *	@here: address
118  *
119  *	Out of line support code for skb_put(). Not user callable.
120  */
121 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
125 	       here, skb->len, sz, skb->head, skb->data,
126 	       (unsigned long)skb->tail, (unsigned long)skb->end,
127 	       skb->dev ? skb->dev->name : "<NULL>");
128 	BUG();
129 }
130 
131 /**
132  *	skb_under_panic	- 	private function
133  *	@skb: buffer
134  *	@sz: size
135  *	@here: address
136  *
137  *	Out of line support code for skb_push(). Not user callable.
138  */
139 
140 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 {
142 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
144 	       here, skb->len, sz, skb->head, skb->data,
145 	       (unsigned long)skb->tail, (unsigned long)skb->end,
146 	       skb->dev ? skb->dev->name : "<NULL>");
147 	BUG();
148 }
149 
150 void skb_truesize_bug(struct sk_buff *skb)
151 {
152 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
153 	       "len=%u, sizeof(sk_buff)=%Zd\n",
154 	       skb->truesize, skb->len, sizeof(struct sk_buff));
155 }
156 EXPORT_SYMBOL(skb_truesize_bug);
157 
158 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
159  *	'private' fields and also do memory statistics to find all the
160  *	[BEEP] leaks.
161  *
162  */
163 
164 /**
165  *	__alloc_skb	-	allocate a network buffer
166  *	@size: size to allocate
167  *	@gfp_mask: allocation mask
168  *	@fclone: allocate from fclone cache instead of head cache
169  *		and allocate a cloned (child) skb
170  *	@node: numa node to allocate memory on
171  *
172  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
173  *	tail room of size bytes. The object has a reference count of one.
174  *	The return is the buffer. On a failure the return is %NULL.
175  *
176  *	Buffers may only be allocated from interrupts using a @gfp_mask of
177  *	%GFP_ATOMIC.
178  */
179 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
180 			    int fclone, int node)
181 {
182 	struct kmem_cache *cache;
183 	struct skb_shared_info *shinfo;
184 	struct sk_buff *skb;
185 	u8 *data;
186 
187 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	/* Get the HEAD */
190 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
191 	if (!skb)
192 		goto out;
193 
194 	size = SKB_DATA_ALIGN(size);
195 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
196 			gfp_mask, node);
197 	if (!data)
198 		goto nodata;
199 
200 	/*
201 	 * Only clear those fields we need to clear, not those that we will
202 	 * actually initialise below. Hence, don't put any more fields after
203 	 * the tail pointer in struct sk_buff!
204 	 */
205 	memset(skb, 0, offsetof(struct sk_buff, tail));
206 	skb->truesize = size + sizeof(struct sk_buff);
207 	atomic_set(&skb->users, 1);
208 	skb->head = data;
209 	skb->data = data;
210 	skb_reset_tail_pointer(skb);
211 	skb->end = skb->tail + size;
212 	/* make sure we initialize shinfo sequentially */
213 	shinfo = skb_shinfo(skb);
214 	atomic_set(&shinfo->dataref, 1);
215 	shinfo->nr_frags  = 0;
216 	shinfo->gso_size = 0;
217 	shinfo->gso_segs = 0;
218 	shinfo->gso_type = 0;
219 	shinfo->ip6_frag_id = 0;
220 	shinfo->frag_list = NULL;
221 
222 	if (fclone) {
223 		struct sk_buff *child = skb + 1;
224 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
225 
226 		skb->fclone = SKB_FCLONE_ORIG;
227 		atomic_set(fclone_ref, 1);
228 
229 		child->fclone = SKB_FCLONE_UNAVAILABLE;
230 	}
231 out:
232 	return skb;
233 nodata:
234 	kmem_cache_free(cache, skb);
235 	skb = NULL;
236 	goto out;
237 }
238 
239 /**
240  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
241  *	@dev: network device to receive on
242  *	@length: length to allocate
243  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
244  *
245  *	Allocate a new &sk_buff and assign it a usage count of one. The
246  *	buffer has unspecified headroom built in. Users should allocate
247  *	the headroom they think they need without accounting for the
248  *	built in space. The built in space is used for optimisations.
249  *
250  *	%NULL is returned if there is no free memory.
251  */
252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
253 		unsigned int length, gfp_t gfp_mask)
254 {
255 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
256 	struct sk_buff *skb;
257 
258 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
259 	if (likely(skb)) {
260 		skb_reserve(skb, NET_SKB_PAD);
261 		skb->dev = dev;
262 	}
263 	return skb;
264 }
265 
266 /**
267  *	dev_alloc_skb - allocate an skbuff for receiving
268  *	@length: length to allocate
269  *
270  *	Allocate a new &sk_buff and assign it a usage count of one. The
271  *	buffer has unspecified headroom built in. Users should allocate
272  *	the headroom they think they need without accounting for the
273  *	built in space. The built in space is used for optimisations.
274  *
275  *	%NULL is returned if there is no free memory. Although this function
276  *	allocates memory it can be called from an interrupt.
277  */
278 struct sk_buff *dev_alloc_skb(unsigned int length)
279 {
280 	/*
281 	 * There is more code here than it seems:
282 	 * __dev_alloc_skb is an inline
283 	 */
284 	return __dev_alloc_skb(length, GFP_ATOMIC);
285 }
286 EXPORT_SYMBOL(dev_alloc_skb);
287 
288 static void skb_drop_list(struct sk_buff **listp)
289 {
290 	struct sk_buff *list = *listp;
291 
292 	*listp = NULL;
293 
294 	do {
295 		struct sk_buff *this = list;
296 		list = list->next;
297 		kfree_skb(this);
298 	} while (list);
299 }
300 
301 static inline void skb_drop_fraglist(struct sk_buff *skb)
302 {
303 	skb_drop_list(&skb_shinfo(skb)->frag_list);
304 }
305 
306 static void skb_clone_fraglist(struct sk_buff *skb)
307 {
308 	struct sk_buff *list;
309 
310 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
311 		skb_get(list);
312 }
313 
314 static void skb_release_data(struct sk_buff *skb)
315 {
316 	if (!skb->cloned ||
317 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
318 			       &skb_shinfo(skb)->dataref)) {
319 		if (skb_shinfo(skb)->nr_frags) {
320 			int i;
321 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
322 				put_page(skb_shinfo(skb)->frags[i].page);
323 		}
324 
325 		if (skb_shinfo(skb)->frag_list)
326 			skb_drop_fraglist(skb);
327 
328 		kfree(skb->head);
329 	}
330 }
331 
332 /*
333  *	Free an skbuff by memory without cleaning the state.
334  */
335 static void kfree_skbmem(struct sk_buff *skb)
336 {
337 	struct sk_buff *other;
338 	atomic_t *fclone_ref;
339 
340 	switch (skb->fclone) {
341 	case SKB_FCLONE_UNAVAILABLE:
342 		kmem_cache_free(skbuff_head_cache, skb);
343 		break;
344 
345 	case SKB_FCLONE_ORIG:
346 		fclone_ref = (atomic_t *) (skb + 2);
347 		if (atomic_dec_and_test(fclone_ref))
348 			kmem_cache_free(skbuff_fclone_cache, skb);
349 		break;
350 
351 	case SKB_FCLONE_CLONE:
352 		fclone_ref = (atomic_t *) (skb + 1);
353 		other = skb - 1;
354 
355 		/* The clone portion is available for
356 		 * fast-cloning again.
357 		 */
358 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
359 
360 		if (atomic_dec_and_test(fclone_ref))
361 			kmem_cache_free(skbuff_fclone_cache, other);
362 		break;
363 	}
364 }
365 
366 /* Free everything but the sk_buff shell. */
367 static void skb_release_all(struct sk_buff *skb)
368 {
369 	dst_release(skb->dst);
370 #ifdef CONFIG_XFRM
371 	secpath_put(skb->sp);
372 #endif
373 	if (skb->destructor) {
374 		WARN_ON(in_irq());
375 		skb->destructor(skb);
376 	}
377 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
378 	nf_conntrack_put(skb->nfct);
379 	nf_conntrack_put_reasm(skb->nfct_reasm);
380 #endif
381 #ifdef CONFIG_BRIDGE_NETFILTER
382 	nf_bridge_put(skb->nf_bridge);
383 #endif
384 /* XXX: IS this still necessary? - JHS */
385 #ifdef CONFIG_NET_SCHED
386 	skb->tc_index = 0;
387 #ifdef CONFIG_NET_CLS_ACT
388 	skb->tc_verd = 0;
389 #endif
390 #endif
391 	skb_release_data(skb);
392 }
393 
394 /**
395  *	__kfree_skb - private function
396  *	@skb: buffer
397  *
398  *	Free an sk_buff. Release anything attached to the buffer.
399  *	Clean the state. This is an internal helper function. Users should
400  *	always call kfree_skb
401  */
402 
403 void __kfree_skb(struct sk_buff *skb)
404 {
405 	skb_release_all(skb);
406 	kfree_skbmem(skb);
407 }
408 
409 /**
410  *	kfree_skb - free an sk_buff
411  *	@skb: buffer to free
412  *
413  *	Drop a reference to the buffer and free it if the usage count has
414  *	hit zero.
415  */
416 void kfree_skb(struct sk_buff *skb)
417 {
418 	if (unlikely(!skb))
419 		return;
420 	if (likely(atomic_read(&skb->users) == 1))
421 		smp_rmb();
422 	else if (likely(!atomic_dec_and_test(&skb->users)))
423 		return;
424 	__kfree_skb(skb);
425 }
426 
427 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
428 {
429 	new->tstamp		= old->tstamp;
430 	new->dev		= old->dev;
431 	new->transport_header	= old->transport_header;
432 	new->network_header	= old->network_header;
433 	new->mac_header		= old->mac_header;
434 	new->dst		= dst_clone(old->dst);
435 #ifdef CONFIG_INET
436 	new->sp			= secpath_get(old->sp);
437 #endif
438 	memcpy(new->cb, old->cb, sizeof(old->cb));
439 	new->csum_start		= old->csum_start;
440 	new->csum_offset	= old->csum_offset;
441 	new->local_df		= old->local_df;
442 	new->pkt_type		= old->pkt_type;
443 	new->ip_summed		= old->ip_summed;
444 	skb_copy_queue_mapping(new, old);
445 	new->priority		= old->priority;
446 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
447 	new->ipvs_property	= old->ipvs_property;
448 #endif
449 	new->protocol		= old->protocol;
450 	new->mark		= old->mark;
451 	__nf_copy(new, old);
452 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
453     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
454 	new->nf_trace		= old->nf_trace;
455 #endif
456 #ifdef CONFIG_NET_SCHED
457 	new->tc_index		= old->tc_index;
458 #ifdef CONFIG_NET_CLS_ACT
459 	new->tc_verd		= old->tc_verd;
460 #endif
461 #endif
462 	new->vlan_tci		= old->vlan_tci;
463 
464 	skb_copy_secmark(new, old);
465 }
466 
467 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
468 {
469 #define C(x) n->x = skb->x
470 
471 	n->next = n->prev = NULL;
472 	n->sk = NULL;
473 	__copy_skb_header(n, skb);
474 
475 	C(len);
476 	C(data_len);
477 	C(mac_len);
478 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
479 	n->cloned = 1;
480 	n->nohdr = 0;
481 	n->destructor = NULL;
482 	C(iif);
483 	C(tail);
484 	C(end);
485 	C(head);
486 	C(data);
487 	C(truesize);
488 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
489 	C(do_not_encrypt);
490 #endif
491 	atomic_set(&n->users, 1);
492 
493 	atomic_inc(&(skb_shinfo(skb)->dataref));
494 	skb->cloned = 1;
495 
496 	return n;
497 #undef C
498 }
499 
500 /**
501  *	skb_morph	-	morph one skb into another
502  *	@dst: the skb to receive the contents
503  *	@src: the skb to supply the contents
504  *
505  *	This is identical to skb_clone except that the target skb is
506  *	supplied by the user.
507  *
508  *	The target skb is returned upon exit.
509  */
510 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
511 {
512 	skb_release_all(dst);
513 	return __skb_clone(dst, src);
514 }
515 EXPORT_SYMBOL_GPL(skb_morph);
516 
517 /**
518  *	skb_clone	-	duplicate an sk_buff
519  *	@skb: buffer to clone
520  *	@gfp_mask: allocation priority
521  *
522  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
523  *	copies share the same packet data but not structure. The new
524  *	buffer has a reference count of 1. If the allocation fails the
525  *	function returns %NULL otherwise the new buffer is returned.
526  *
527  *	If this function is called from an interrupt gfp_mask() must be
528  *	%GFP_ATOMIC.
529  */
530 
531 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
532 {
533 	struct sk_buff *n;
534 
535 	n = skb + 1;
536 	if (skb->fclone == SKB_FCLONE_ORIG &&
537 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
538 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
539 		n->fclone = SKB_FCLONE_CLONE;
540 		atomic_inc(fclone_ref);
541 	} else {
542 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
543 		if (!n)
544 			return NULL;
545 		n->fclone = SKB_FCLONE_UNAVAILABLE;
546 	}
547 
548 	return __skb_clone(n, skb);
549 }
550 
551 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
552 {
553 #ifndef NET_SKBUFF_DATA_USES_OFFSET
554 	/*
555 	 *	Shift between the two data areas in bytes
556 	 */
557 	unsigned long offset = new->data - old->data;
558 #endif
559 
560 	__copy_skb_header(new, old);
561 
562 #ifndef NET_SKBUFF_DATA_USES_OFFSET
563 	/* {transport,network,mac}_header are relative to skb->head */
564 	new->transport_header += offset;
565 	new->network_header   += offset;
566 	new->mac_header	      += offset;
567 #endif
568 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
569 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
570 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
571 }
572 
573 /**
574  *	skb_copy	-	create private copy of an sk_buff
575  *	@skb: buffer to copy
576  *	@gfp_mask: allocation priority
577  *
578  *	Make a copy of both an &sk_buff and its data. This is used when the
579  *	caller wishes to modify the data and needs a private copy of the
580  *	data to alter. Returns %NULL on failure or the pointer to the buffer
581  *	on success. The returned buffer has a reference count of 1.
582  *
583  *	As by-product this function converts non-linear &sk_buff to linear
584  *	one, so that &sk_buff becomes completely private and caller is allowed
585  *	to modify all the data of returned buffer. This means that this
586  *	function is not recommended for use in circumstances when only
587  *	header is going to be modified. Use pskb_copy() instead.
588  */
589 
590 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
591 {
592 	int headerlen = skb->data - skb->head;
593 	/*
594 	 *	Allocate the copy buffer
595 	 */
596 	struct sk_buff *n;
597 #ifdef NET_SKBUFF_DATA_USES_OFFSET
598 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
599 #else
600 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
601 #endif
602 	if (!n)
603 		return NULL;
604 
605 	/* Set the data pointer */
606 	skb_reserve(n, headerlen);
607 	/* Set the tail pointer and length */
608 	skb_put(n, skb->len);
609 
610 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
611 		BUG();
612 
613 	copy_skb_header(n, skb);
614 	return n;
615 }
616 
617 
618 /**
619  *	pskb_copy	-	create copy of an sk_buff with private head.
620  *	@skb: buffer to copy
621  *	@gfp_mask: allocation priority
622  *
623  *	Make a copy of both an &sk_buff and part of its data, located
624  *	in header. Fragmented data remain shared. This is used when
625  *	the caller wishes to modify only header of &sk_buff and needs
626  *	private copy of the header to alter. Returns %NULL on failure
627  *	or the pointer to the buffer on success.
628  *	The returned buffer has a reference count of 1.
629  */
630 
631 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
632 {
633 	/*
634 	 *	Allocate the copy buffer
635 	 */
636 	struct sk_buff *n;
637 #ifdef NET_SKBUFF_DATA_USES_OFFSET
638 	n = alloc_skb(skb->end, gfp_mask);
639 #else
640 	n = alloc_skb(skb->end - skb->head, gfp_mask);
641 #endif
642 	if (!n)
643 		goto out;
644 
645 	/* Set the data pointer */
646 	skb_reserve(n, skb->data - skb->head);
647 	/* Set the tail pointer and length */
648 	skb_put(n, skb_headlen(skb));
649 	/* Copy the bytes */
650 	skb_copy_from_linear_data(skb, n->data, n->len);
651 
652 	n->truesize += skb->data_len;
653 	n->data_len  = skb->data_len;
654 	n->len	     = skb->len;
655 
656 	if (skb_shinfo(skb)->nr_frags) {
657 		int i;
658 
659 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
660 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
661 			get_page(skb_shinfo(n)->frags[i].page);
662 		}
663 		skb_shinfo(n)->nr_frags = i;
664 	}
665 
666 	if (skb_shinfo(skb)->frag_list) {
667 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
668 		skb_clone_fraglist(n);
669 	}
670 
671 	copy_skb_header(n, skb);
672 out:
673 	return n;
674 }
675 
676 /**
677  *	pskb_expand_head - reallocate header of &sk_buff
678  *	@skb: buffer to reallocate
679  *	@nhead: room to add at head
680  *	@ntail: room to add at tail
681  *	@gfp_mask: allocation priority
682  *
683  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
684  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
685  *	reference count of 1. Returns zero in the case of success or error,
686  *	if expansion failed. In the last case, &sk_buff is not changed.
687  *
688  *	All the pointers pointing into skb header may change and must be
689  *	reloaded after call to this function.
690  */
691 
692 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
693 		     gfp_t gfp_mask)
694 {
695 	int i;
696 	u8 *data;
697 #ifdef NET_SKBUFF_DATA_USES_OFFSET
698 	int size = nhead + skb->end + ntail;
699 #else
700 	int size = nhead + (skb->end - skb->head) + ntail;
701 #endif
702 	long off;
703 
704 	if (skb_shared(skb))
705 		BUG();
706 
707 	size = SKB_DATA_ALIGN(size);
708 
709 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
710 	if (!data)
711 		goto nodata;
712 
713 	/* Copy only real data... and, alas, header. This should be
714 	 * optimized for the cases when header is void. */
715 #ifdef NET_SKBUFF_DATA_USES_OFFSET
716 	memcpy(data + nhead, skb->head, skb->tail);
717 #else
718 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
719 #endif
720 	memcpy(data + size, skb_end_pointer(skb),
721 	       sizeof(struct skb_shared_info));
722 
723 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
724 		get_page(skb_shinfo(skb)->frags[i].page);
725 
726 	if (skb_shinfo(skb)->frag_list)
727 		skb_clone_fraglist(skb);
728 
729 	skb_release_data(skb);
730 
731 	off = (data + nhead) - skb->head;
732 
733 	skb->head     = data;
734 	skb->data    += off;
735 #ifdef NET_SKBUFF_DATA_USES_OFFSET
736 	skb->end      = size;
737 	off           = nhead;
738 #else
739 	skb->end      = skb->head + size;
740 #endif
741 	/* {transport,network,mac}_header and tail are relative to skb->head */
742 	skb->tail	      += off;
743 	skb->transport_header += off;
744 	skb->network_header   += off;
745 	skb->mac_header	      += off;
746 	skb->csum_start       += nhead;
747 	skb->cloned   = 0;
748 	skb->hdr_len  = 0;
749 	skb->nohdr    = 0;
750 	atomic_set(&skb_shinfo(skb)->dataref, 1);
751 	return 0;
752 
753 nodata:
754 	return -ENOMEM;
755 }
756 
757 /* Make private copy of skb with writable head and some headroom */
758 
759 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
760 {
761 	struct sk_buff *skb2;
762 	int delta = headroom - skb_headroom(skb);
763 
764 	if (delta <= 0)
765 		skb2 = pskb_copy(skb, GFP_ATOMIC);
766 	else {
767 		skb2 = skb_clone(skb, GFP_ATOMIC);
768 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
769 					     GFP_ATOMIC)) {
770 			kfree_skb(skb2);
771 			skb2 = NULL;
772 		}
773 	}
774 	return skb2;
775 }
776 
777 
778 /**
779  *	skb_copy_expand	-	copy and expand sk_buff
780  *	@skb: buffer to copy
781  *	@newheadroom: new free bytes at head
782  *	@newtailroom: new free bytes at tail
783  *	@gfp_mask: allocation priority
784  *
785  *	Make a copy of both an &sk_buff and its data and while doing so
786  *	allocate additional space.
787  *
788  *	This is used when the caller wishes to modify the data and needs a
789  *	private copy of the data to alter as well as more space for new fields.
790  *	Returns %NULL on failure or the pointer to the buffer
791  *	on success. The returned buffer has a reference count of 1.
792  *
793  *	You must pass %GFP_ATOMIC as the allocation priority if this function
794  *	is called from an interrupt.
795  */
796 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
797 				int newheadroom, int newtailroom,
798 				gfp_t gfp_mask)
799 {
800 	/*
801 	 *	Allocate the copy buffer
802 	 */
803 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
804 				      gfp_mask);
805 	int oldheadroom = skb_headroom(skb);
806 	int head_copy_len, head_copy_off;
807 	int off;
808 
809 	if (!n)
810 		return NULL;
811 
812 	skb_reserve(n, newheadroom);
813 
814 	/* Set the tail pointer and length */
815 	skb_put(n, skb->len);
816 
817 	head_copy_len = oldheadroom;
818 	head_copy_off = 0;
819 	if (newheadroom <= head_copy_len)
820 		head_copy_len = newheadroom;
821 	else
822 		head_copy_off = newheadroom - head_copy_len;
823 
824 	/* Copy the linear header and data. */
825 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
826 			  skb->len + head_copy_len))
827 		BUG();
828 
829 	copy_skb_header(n, skb);
830 
831 	off                  = newheadroom - oldheadroom;
832 	n->csum_start       += off;
833 #ifdef NET_SKBUFF_DATA_USES_OFFSET
834 	n->transport_header += off;
835 	n->network_header   += off;
836 	n->mac_header	    += off;
837 #endif
838 
839 	return n;
840 }
841 
842 /**
843  *	skb_pad			-	zero pad the tail of an skb
844  *	@skb: buffer to pad
845  *	@pad: space to pad
846  *
847  *	Ensure that a buffer is followed by a padding area that is zero
848  *	filled. Used by network drivers which may DMA or transfer data
849  *	beyond the buffer end onto the wire.
850  *
851  *	May return error in out of memory cases. The skb is freed on error.
852  */
853 
854 int skb_pad(struct sk_buff *skb, int pad)
855 {
856 	int err;
857 	int ntail;
858 
859 	/* If the skbuff is non linear tailroom is always zero.. */
860 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
861 		memset(skb->data+skb->len, 0, pad);
862 		return 0;
863 	}
864 
865 	ntail = skb->data_len + pad - (skb->end - skb->tail);
866 	if (likely(skb_cloned(skb) || ntail > 0)) {
867 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
868 		if (unlikely(err))
869 			goto free_skb;
870 	}
871 
872 	/* FIXME: The use of this function with non-linear skb's really needs
873 	 * to be audited.
874 	 */
875 	err = skb_linearize(skb);
876 	if (unlikely(err))
877 		goto free_skb;
878 
879 	memset(skb->data + skb->len, 0, pad);
880 	return 0;
881 
882 free_skb:
883 	kfree_skb(skb);
884 	return err;
885 }
886 
887 /**
888  *	skb_put - add data to a buffer
889  *	@skb: buffer to use
890  *	@len: amount of data to add
891  *
892  *	This function extends the used data area of the buffer. If this would
893  *	exceed the total buffer size the kernel will panic. A pointer to the
894  *	first byte of the extra data is returned.
895  */
896 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
897 {
898 	unsigned char *tmp = skb_tail_pointer(skb);
899 	SKB_LINEAR_ASSERT(skb);
900 	skb->tail += len;
901 	skb->len  += len;
902 	if (unlikely(skb->tail > skb->end))
903 		skb_over_panic(skb, len, __builtin_return_address(0));
904 	return tmp;
905 }
906 EXPORT_SYMBOL(skb_put);
907 
908 /**
909  *	skb_push - add data to the start of a buffer
910  *	@skb: buffer to use
911  *	@len: amount of data to add
912  *
913  *	This function extends the used data area of the buffer at the buffer
914  *	start. If this would exceed the total buffer headroom the kernel will
915  *	panic. A pointer to the first byte of the extra data is returned.
916  */
917 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
918 {
919 	skb->data -= len;
920 	skb->len  += len;
921 	if (unlikely(skb->data<skb->head))
922 		skb_under_panic(skb, len, __builtin_return_address(0));
923 	return skb->data;
924 }
925 EXPORT_SYMBOL(skb_push);
926 
927 /**
928  *	skb_pull - remove data from the start of a buffer
929  *	@skb: buffer to use
930  *	@len: amount of data to remove
931  *
932  *	This function removes data from the start of a buffer, returning
933  *	the memory to the headroom. A pointer to the next data in the buffer
934  *	is returned. Once the data has been pulled future pushes will overwrite
935  *	the old data.
936  */
937 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
938 {
939 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
940 }
941 EXPORT_SYMBOL(skb_pull);
942 
943 /**
944  *	skb_trim - remove end from a buffer
945  *	@skb: buffer to alter
946  *	@len: new length
947  *
948  *	Cut the length of a buffer down by removing data from the tail. If
949  *	the buffer is already under the length specified it is not modified.
950  *	The skb must be linear.
951  */
952 void skb_trim(struct sk_buff *skb, unsigned int len)
953 {
954 	if (skb->len > len)
955 		__skb_trim(skb, len);
956 }
957 EXPORT_SYMBOL(skb_trim);
958 
959 /* Trims skb to length len. It can change skb pointers.
960  */
961 
962 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
963 {
964 	struct sk_buff **fragp;
965 	struct sk_buff *frag;
966 	int offset = skb_headlen(skb);
967 	int nfrags = skb_shinfo(skb)->nr_frags;
968 	int i;
969 	int err;
970 
971 	if (skb_cloned(skb) &&
972 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
973 		return err;
974 
975 	i = 0;
976 	if (offset >= len)
977 		goto drop_pages;
978 
979 	for (; i < nfrags; i++) {
980 		int end = offset + skb_shinfo(skb)->frags[i].size;
981 
982 		if (end < len) {
983 			offset = end;
984 			continue;
985 		}
986 
987 		skb_shinfo(skb)->frags[i++].size = len - offset;
988 
989 drop_pages:
990 		skb_shinfo(skb)->nr_frags = i;
991 
992 		for (; i < nfrags; i++)
993 			put_page(skb_shinfo(skb)->frags[i].page);
994 
995 		if (skb_shinfo(skb)->frag_list)
996 			skb_drop_fraglist(skb);
997 		goto done;
998 	}
999 
1000 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1001 	     fragp = &frag->next) {
1002 		int end = offset + frag->len;
1003 
1004 		if (skb_shared(frag)) {
1005 			struct sk_buff *nfrag;
1006 
1007 			nfrag = skb_clone(frag, GFP_ATOMIC);
1008 			if (unlikely(!nfrag))
1009 				return -ENOMEM;
1010 
1011 			nfrag->next = frag->next;
1012 			kfree_skb(frag);
1013 			frag = nfrag;
1014 			*fragp = frag;
1015 		}
1016 
1017 		if (end < len) {
1018 			offset = end;
1019 			continue;
1020 		}
1021 
1022 		if (end > len &&
1023 		    unlikely((err = pskb_trim(frag, len - offset))))
1024 			return err;
1025 
1026 		if (frag->next)
1027 			skb_drop_list(&frag->next);
1028 		break;
1029 	}
1030 
1031 done:
1032 	if (len > skb_headlen(skb)) {
1033 		skb->data_len -= skb->len - len;
1034 		skb->len       = len;
1035 	} else {
1036 		skb->len       = len;
1037 		skb->data_len  = 0;
1038 		skb_set_tail_pointer(skb, len);
1039 	}
1040 
1041 	return 0;
1042 }
1043 
1044 /**
1045  *	__pskb_pull_tail - advance tail of skb header
1046  *	@skb: buffer to reallocate
1047  *	@delta: number of bytes to advance tail
1048  *
1049  *	The function makes a sense only on a fragmented &sk_buff,
1050  *	it expands header moving its tail forward and copying necessary
1051  *	data from fragmented part.
1052  *
1053  *	&sk_buff MUST have reference count of 1.
1054  *
1055  *	Returns %NULL (and &sk_buff does not change) if pull failed
1056  *	or value of new tail of skb in the case of success.
1057  *
1058  *	All the pointers pointing into skb header may change and must be
1059  *	reloaded after call to this function.
1060  */
1061 
1062 /* Moves tail of skb head forward, copying data from fragmented part,
1063  * when it is necessary.
1064  * 1. It may fail due to malloc failure.
1065  * 2. It may change skb pointers.
1066  *
1067  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1068  */
1069 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1070 {
1071 	/* If skb has not enough free space at tail, get new one
1072 	 * plus 128 bytes for future expansions. If we have enough
1073 	 * room at tail, reallocate without expansion only if skb is cloned.
1074 	 */
1075 	int i, k, eat = (skb->tail + delta) - skb->end;
1076 
1077 	if (eat > 0 || skb_cloned(skb)) {
1078 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1079 				     GFP_ATOMIC))
1080 			return NULL;
1081 	}
1082 
1083 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1084 		BUG();
1085 
1086 	/* Optimization: no fragments, no reasons to preestimate
1087 	 * size of pulled pages. Superb.
1088 	 */
1089 	if (!skb_shinfo(skb)->frag_list)
1090 		goto pull_pages;
1091 
1092 	/* Estimate size of pulled pages. */
1093 	eat = delta;
1094 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1095 		if (skb_shinfo(skb)->frags[i].size >= eat)
1096 			goto pull_pages;
1097 		eat -= skb_shinfo(skb)->frags[i].size;
1098 	}
1099 
1100 	/* If we need update frag list, we are in troubles.
1101 	 * Certainly, it possible to add an offset to skb data,
1102 	 * but taking into account that pulling is expected to
1103 	 * be very rare operation, it is worth to fight against
1104 	 * further bloating skb head and crucify ourselves here instead.
1105 	 * Pure masohism, indeed. 8)8)
1106 	 */
1107 	if (eat) {
1108 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1109 		struct sk_buff *clone = NULL;
1110 		struct sk_buff *insp = NULL;
1111 
1112 		do {
1113 			BUG_ON(!list);
1114 
1115 			if (list->len <= eat) {
1116 				/* Eaten as whole. */
1117 				eat -= list->len;
1118 				list = list->next;
1119 				insp = list;
1120 			} else {
1121 				/* Eaten partially. */
1122 
1123 				if (skb_shared(list)) {
1124 					/* Sucks! We need to fork list. :-( */
1125 					clone = skb_clone(list, GFP_ATOMIC);
1126 					if (!clone)
1127 						return NULL;
1128 					insp = list->next;
1129 					list = clone;
1130 				} else {
1131 					/* This may be pulled without
1132 					 * problems. */
1133 					insp = list;
1134 				}
1135 				if (!pskb_pull(list, eat)) {
1136 					if (clone)
1137 						kfree_skb(clone);
1138 					return NULL;
1139 				}
1140 				break;
1141 			}
1142 		} while (eat);
1143 
1144 		/* Free pulled out fragments. */
1145 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1146 			skb_shinfo(skb)->frag_list = list->next;
1147 			kfree_skb(list);
1148 		}
1149 		/* And insert new clone at head. */
1150 		if (clone) {
1151 			clone->next = list;
1152 			skb_shinfo(skb)->frag_list = clone;
1153 		}
1154 	}
1155 	/* Success! Now we may commit changes to skb data. */
1156 
1157 pull_pages:
1158 	eat = delta;
1159 	k = 0;
1160 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1161 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1162 			put_page(skb_shinfo(skb)->frags[i].page);
1163 			eat -= skb_shinfo(skb)->frags[i].size;
1164 		} else {
1165 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1166 			if (eat) {
1167 				skb_shinfo(skb)->frags[k].page_offset += eat;
1168 				skb_shinfo(skb)->frags[k].size -= eat;
1169 				eat = 0;
1170 			}
1171 			k++;
1172 		}
1173 	}
1174 	skb_shinfo(skb)->nr_frags = k;
1175 
1176 	skb->tail     += delta;
1177 	skb->data_len -= delta;
1178 
1179 	return skb_tail_pointer(skb);
1180 }
1181 
1182 /* Copy some data bits from skb to kernel buffer. */
1183 
1184 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1185 {
1186 	int i, copy;
1187 	int start = skb_headlen(skb);
1188 
1189 	if (offset > (int)skb->len - len)
1190 		goto fault;
1191 
1192 	/* Copy header. */
1193 	if ((copy = start - offset) > 0) {
1194 		if (copy > len)
1195 			copy = len;
1196 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1197 		if ((len -= copy) == 0)
1198 			return 0;
1199 		offset += copy;
1200 		to     += copy;
1201 	}
1202 
1203 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1204 		int end;
1205 
1206 		WARN_ON(start > offset + len);
1207 
1208 		end = start + skb_shinfo(skb)->frags[i].size;
1209 		if ((copy = end - offset) > 0) {
1210 			u8 *vaddr;
1211 
1212 			if (copy > len)
1213 				copy = len;
1214 
1215 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1216 			memcpy(to,
1217 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1218 			       offset - start, copy);
1219 			kunmap_skb_frag(vaddr);
1220 
1221 			if ((len -= copy) == 0)
1222 				return 0;
1223 			offset += copy;
1224 			to     += copy;
1225 		}
1226 		start = end;
1227 	}
1228 
1229 	if (skb_shinfo(skb)->frag_list) {
1230 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1231 
1232 		for (; list; list = list->next) {
1233 			int end;
1234 
1235 			WARN_ON(start > offset + len);
1236 
1237 			end = start + list->len;
1238 			if ((copy = end - offset) > 0) {
1239 				if (copy > len)
1240 					copy = len;
1241 				if (skb_copy_bits(list, offset - start,
1242 						  to, copy))
1243 					goto fault;
1244 				if ((len -= copy) == 0)
1245 					return 0;
1246 				offset += copy;
1247 				to     += copy;
1248 			}
1249 			start = end;
1250 		}
1251 	}
1252 	if (!len)
1253 		return 0;
1254 
1255 fault:
1256 	return -EFAULT;
1257 }
1258 
1259 /*
1260  * Callback from splice_to_pipe(), if we need to release some pages
1261  * at the end of the spd in case we error'ed out in filling the pipe.
1262  */
1263 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1264 {
1265 	struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private;
1266 
1267 	kfree_skb(skb);
1268 }
1269 
1270 /*
1271  * Fill page/offset/length into spd, if it can hold more pages.
1272  */
1273 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1274 				unsigned int len, unsigned int offset,
1275 				struct sk_buff *skb)
1276 {
1277 	if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1278 		return 1;
1279 
1280 	spd->pages[spd->nr_pages] = page;
1281 	spd->partial[spd->nr_pages].len = len;
1282 	spd->partial[spd->nr_pages].offset = offset;
1283 	spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb);
1284 	spd->nr_pages++;
1285 	return 0;
1286 }
1287 
1288 static inline void __segment_seek(struct page **page, unsigned int *poff,
1289 				  unsigned int *plen, unsigned int off)
1290 {
1291 	*poff += off;
1292 	*page += *poff / PAGE_SIZE;
1293 	*poff = *poff % PAGE_SIZE;
1294 	*plen -= off;
1295 }
1296 
1297 static inline int __splice_segment(struct page *page, unsigned int poff,
1298 				   unsigned int plen, unsigned int *off,
1299 				   unsigned int *len, struct sk_buff *skb,
1300 				   struct splice_pipe_desc *spd)
1301 {
1302 	if (!*len)
1303 		return 1;
1304 
1305 	/* skip this segment if already processed */
1306 	if (*off >= plen) {
1307 		*off -= plen;
1308 		return 0;
1309 	}
1310 
1311 	/* ignore any bits we already processed */
1312 	if (*off) {
1313 		__segment_seek(&page, &poff, &plen, *off);
1314 		*off = 0;
1315 	}
1316 
1317 	do {
1318 		unsigned int flen = min(*len, plen);
1319 
1320 		/* the linear region may spread across several pages  */
1321 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1322 
1323 		if (spd_fill_page(spd, page, flen, poff, skb))
1324 			return 1;
1325 
1326 		__segment_seek(&page, &poff, &plen, flen);
1327 		*len -= flen;
1328 
1329 	} while (*len && plen);
1330 
1331 	return 0;
1332 }
1333 
1334 /*
1335  * Map linear and fragment data from the skb to spd. It reports failure if the
1336  * pipe is full or if we already spliced the requested length.
1337  */
1338 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1339 		      unsigned int *len,
1340 		      struct splice_pipe_desc *spd)
1341 {
1342 	int seg;
1343 
1344 	/*
1345 	 * map the linear part
1346 	 */
1347 	if (__splice_segment(virt_to_page(skb->data),
1348 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1349 			     skb_headlen(skb),
1350 			     offset, len, skb, spd))
1351 		return 1;
1352 
1353 	/*
1354 	 * then map the fragments
1355 	 */
1356 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1357 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1358 
1359 		if (__splice_segment(f->page, f->page_offset, f->size,
1360 				     offset, len, skb, spd))
1361 			return 1;
1362 	}
1363 
1364 	return 0;
1365 }
1366 
1367 /*
1368  * Map data from the skb to a pipe. Should handle both the linear part,
1369  * the fragments, and the frag list. It does NOT handle frag lists within
1370  * the frag list, if such a thing exists. We'd probably need to recurse to
1371  * handle that cleanly.
1372  */
1373 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset,
1374 		    struct pipe_inode_info *pipe, unsigned int tlen,
1375 		    unsigned int flags)
1376 {
1377 	struct partial_page partial[PIPE_BUFFERS];
1378 	struct page *pages[PIPE_BUFFERS];
1379 	struct splice_pipe_desc spd = {
1380 		.pages = pages,
1381 		.partial = partial,
1382 		.flags = flags,
1383 		.ops = &sock_pipe_buf_ops,
1384 		.spd_release = sock_spd_release,
1385 	};
1386 	struct sk_buff *skb;
1387 
1388 	/*
1389 	 * I'd love to avoid the clone here, but tcp_read_sock()
1390 	 * ignores reference counts and unconditonally kills the sk_buff
1391 	 * on return from the actor.
1392 	 */
1393 	skb = skb_clone(__skb, GFP_KERNEL);
1394 	if (unlikely(!skb))
1395 		return -ENOMEM;
1396 
1397 	/*
1398 	 * __skb_splice_bits() only fails if the output has no room left,
1399 	 * so no point in going over the frag_list for the error case.
1400 	 */
1401 	if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1402 		goto done;
1403 	else if (!tlen)
1404 		goto done;
1405 
1406 	/*
1407 	 * now see if we have a frag_list to map
1408 	 */
1409 	if (skb_shinfo(skb)->frag_list) {
1410 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1411 
1412 		for (; list && tlen; list = list->next) {
1413 			if (__skb_splice_bits(list, &offset, &tlen, &spd))
1414 				break;
1415 		}
1416 	}
1417 
1418 done:
1419 	/*
1420 	 * drop our reference to the clone, the pipe consumption will
1421 	 * drop the rest.
1422 	 */
1423 	kfree_skb(skb);
1424 
1425 	if (spd.nr_pages) {
1426 		int ret;
1427 		struct sock *sk = __skb->sk;
1428 
1429 		/*
1430 		 * Drop the socket lock, otherwise we have reverse
1431 		 * locking dependencies between sk_lock and i_mutex
1432 		 * here as compared to sendfile(). We enter here
1433 		 * with the socket lock held, and splice_to_pipe() will
1434 		 * grab the pipe inode lock. For sendfile() emulation,
1435 		 * we call into ->sendpage() with the i_mutex lock held
1436 		 * and networking will grab the socket lock.
1437 		 */
1438 		release_sock(sk);
1439 		ret = splice_to_pipe(pipe, &spd);
1440 		lock_sock(sk);
1441 		return ret;
1442 	}
1443 
1444 	return 0;
1445 }
1446 
1447 /**
1448  *	skb_store_bits - store bits from kernel buffer to skb
1449  *	@skb: destination buffer
1450  *	@offset: offset in destination
1451  *	@from: source buffer
1452  *	@len: number of bytes to copy
1453  *
1454  *	Copy the specified number of bytes from the source buffer to the
1455  *	destination skb.  This function handles all the messy bits of
1456  *	traversing fragment lists and such.
1457  */
1458 
1459 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1460 {
1461 	int i, copy;
1462 	int start = skb_headlen(skb);
1463 
1464 	if (offset > (int)skb->len - len)
1465 		goto fault;
1466 
1467 	if ((copy = start - offset) > 0) {
1468 		if (copy > len)
1469 			copy = len;
1470 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1471 		if ((len -= copy) == 0)
1472 			return 0;
1473 		offset += copy;
1474 		from += copy;
1475 	}
1476 
1477 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1478 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1479 		int end;
1480 
1481 		WARN_ON(start > offset + len);
1482 
1483 		end = start + frag->size;
1484 		if ((copy = end - offset) > 0) {
1485 			u8 *vaddr;
1486 
1487 			if (copy > len)
1488 				copy = len;
1489 
1490 			vaddr = kmap_skb_frag(frag);
1491 			memcpy(vaddr + frag->page_offset + offset - start,
1492 			       from, copy);
1493 			kunmap_skb_frag(vaddr);
1494 
1495 			if ((len -= copy) == 0)
1496 				return 0;
1497 			offset += copy;
1498 			from += copy;
1499 		}
1500 		start = end;
1501 	}
1502 
1503 	if (skb_shinfo(skb)->frag_list) {
1504 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1505 
1506 		for (; list; list = list->next) {
1507 			int end;
1508 
1509 			WARN_ON(start > offset + len);
1510 
1511 			end = start + list->len;
1512 			if ((copy = end - offset) > 0) {
1513 				if (copy > len)
1514 					copy = len;
1515 				if (skb_store_bits(list, offset - start,
1516 						   from, copy))
1517 					goto fault;
1518 				if ((len -= copy) == 0)
1519 					return 0;
1520 				offset += copy;
1521 				from += copy;
1522 			}
1523 			start = end;
1524 		}
1525 	}
1526 	if (!len)
1527 		return 0;
1528 
1529 fault:
1530 	return -EFAULT;
1531 }
1532 
1533 EXPORT_SYMBOL(skb_store_bits);
1534 
1535 /* Checksum skb data. */
1536 
1537 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1538 			  int len, __wsum csum)
1539 {
1540 	int start = skb_headlen(skb);
1541 	int i, copy = start - offset;
1542 	int pos = 0;
1543 
1544 	/* Checksum header. */
1545 	if (copy > 0) {
1546 		if (copy > len)
1547 			copy = len;
1548 		csum = csum_partial(skb->data + offset, copy, csum);
1549 		if ((len -= copy) == 0)
1550 			return csum;
1551 		offset += copy;
1552 		pos	= copy;
1553 	}
1554 
1555 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1556 		int end;
1557 
1558 		WARN_ON(start > offset + len);
1559 
1560 		end = start + skb_shinfo(skb)->frags[i].size;
1561 		if ((copy = end - offset) > 0) {
1562 			__wsum csum2;
1563 			u8 *vaddr;
1564 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1565 
1566 			if (copy > len)
1567 				copy = len;
1568 			vaddr = kmap_skb_frag(frag);
1569 			csum2 = csum_partial(vaddr + frag->page_offset +
1570 					     offset - start, copy, 0);
1571 			kunmap_skb_frag(vaddr);
1572 			csum = csum_block_add(csum, csum2, pos);
1573 			if (!(len -= copy))
1574 				return csum;
1575 			offset += copy;
1576 			pos    += copy;
1577 		}
1578 		start = end;
1579 	}
1580 
1581 	if (skb_shinfo(skb)->frag_list) {
1582 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1583 
1584 		for (; list; list = list->next) {
1585 			int end;
1586 
1587 			WARN_ON(start > offset + len);
1588 
1589 			end = start + list->len;
1590 			if ((copy = end - offset) > 0) {
1591 				__wsum csum2;
1592 				if (copy > len)
1593 					copy = len;
1594 				csum2 = skb_checksum(list, offset - start,
1595 						     copy, 0);
1596 				csum = csum_block_add(csum, csum2, pos);
1597 				if ((len -= copy) == 0)
1598 					return csum;
1599 				offset += copy;
1600 				pos    += copy;
1601 			}
1602 			start = end;
1603 		}
1604 	}
1605 	BUG_ON(len);
1606 
1607 	return csum;
1608 }
1609 
1610 /* Both of above in one bottle. */
1611 
1612 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1613 				    u8 *to, int len, __wsum csum)
1614 {
1615 	int start = skb_headlen(skb);
1616 	int i, copy = start - offset;
1617 	int pos = 0;
1618 
1619 	/* Copy header. */
1620 	if (copy > 0) {
1621 		if (copy > len)
1622 			copy = len;
1623 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1624 						 copy, csum);
1625 		if ((len -= copy) == 0)
1626 			return csum;
1627 		offset += copy;
1628 		to     += copy;
1629 		pos	= copy;
1630 	}
1631 
1632 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1633 		int end;
1634 
1635 		WARN_ON(start > offset + len);
1636 
1637 		end = start + skb_shinfo(skb)->frags[i].size;
1638 		if ((copy = end - offset) > 0) {
1639 			__wsum csum2;
1640 			u8 *vaddr;
1641 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1642 
1643 			if (copy > len)
1644 				copy = len;
1645 			vaddr = kmap_skb_frag(frag);
1646 			csum2 = csum_partial_copy_nocheck(vaddr +
1647 							  frag->page_offset +
1648 							  offset - start, to,
1649 							  copy, 0);
1650 			kunmap_skb_frag(vaddr);
1651 			csum = csum_block_add(csum, csum2, pos);
1652 			if (!(len -= copy))
1653 				return csum;
1654 			offset += copy;
1655 			to     += copy;
1656 			pos    += copy;
1657 		}
1658 		start = end;
1659 	}
1660 
1661 	if (skb_shinfo(skb)->frag_list) {
1662 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1663 
1664 		for (; list; list = list->next) {
1665 			__wsum csum2;
1666 			int end;
1667 
1668 			WARN_ON(start > offset + len);
1669 
1670 			end = start + list->len;
1671 			if ((copy = end - offset) > 0) {
1672 				if (copy > len)
1673 					copy = len;
1674 				csum2 = skb_copy_and_csum_bits(list,
1675 							       offset - start,
1676 							       to, copy, 0);
1677 				csum = csum_block_add(csum, csum2, pos);
1678 				if ((len -= copy) == 0)
1679 					return csum;
1680 				offset += copy;
1681 				to     += copy;
1682 				pos    += copy;
1683 			}
1684 			start = end;
1685 		}
1686 	}
1687 	BUG_ON(len);
1688 	return csum;
1689 }
1690 
1691 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1692 {
1693 	__wsum csum;
1694 	long csstart;
1695 
1696 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1697 		csstart = skb->csum_start - skb_headroom(skb);
1698 	else
1699 		csstart = skb_headlen(skb);
1700 
1701 	BUG_ON(csstart > skb_headlen(skb));
1702 
1703 	skb_copy_from_linear_data(skb, to, csstart);
1704 
1705 	csum = 0;
1706 	if (csstart != skb->len)
1707 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1708 					      skb->len - csstart, 0);
1709 
1710 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1711 		long csstuff = csstart + skb->csum_offset;
1712 
1713 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1714 	}
1715 }
1716 
1717 /**
1718  *	skb_dequeue - remove from the head of the queue
1719  *	@list: list to dequeue from
1720  *
1721  *	Remove the head of the list. The list lock is taken so the function
1722  *	may be used safely with other locking list functions. The head item is
1723  *	returned or %NULL if the list is empty.
1724  */
1725 
1726 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1727 {
1728 	unsigned long flags;
1729 	struct sk_buff *result;
1730 
1731 	spin_lock_irqsave(&list->lock, flags);
1732 	result = __skb_dequeue(list);
1733 	spin_unlock_irqrestore(&list->lock, flags);
1734 	return result;
1735 }
1736 
1737 /**
1738  *	skb_dequeue_tail - remove from the tail of the queue
1739  *	@list: list to dequeue from
1740  *
1741  *	Remove the tail of the list. The list lock is taken so the function
1742  *	may be used safely with other locking list functions. The tail item is
1743  *	returned or %NULL if the list is empty.
1744  */
1745 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1746 {
1747 	unsigned long flags;
1748 	struct sk_buff *result;
1749 
1750 	spin_lock_irqsave(&list->lock, flags);
1751 	result = __skb_dequeue_tail(list);
1752 	spin_unlock_irqrestore(&list->lock, flags);
1753 	return result;
1754 }
1755 
1756 /**
1757  *	skb_queue_purge - empty a list
1758  *	@list: list to empty
1759  *
1760  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1761  *	the list and one reference dropped. This function takes the list
1762  *	lock and is atomic with respect to other list locking functions.
1763  */
1764 void skb_queue_purge(struct sk_buff_head *list)
1765 {
1766 	struct sk_buff *skb;
1767 	while ((skb = skb_dequeue(list)) != NULL)
1768 		kfree_skb(skb);
1769 }
1770 
1771 /**
1772  *	skb_queue_head - queue a buffer at the list head
1773  *	@list: list to use
1774  *	@newsk: buffer to queue
1775  *
1776  *	Queue a buffer at the start of the list. This function takes the
1777  *	list lock and can be used safely with other locking &sk_buff functions
1778  *	safely.
1779  *
1780  *	A buffer cannot be placed on two lists at the same time.
1781  */
1782 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1783 {
1784 	unsigned long flags;
1785 
1786 	spin_lock_irqsave(&list->lock, flags);
1787 	__skb_queue_head(list, newsk);
1788 	spin_unlock_irqrestore(&list->lock, flags);
1789 }
1790 
1791 /**
1792  *	skb_queue_tail - queue a buffer at the list tail
1793  *	@list: list to use
1794  *	@newsk: buffer to queue
1795  *
1796  *	Queue a buffer at the tail of the list. This function takes the
1797  *	list lock and can be used safely with other locking &sk_buff functions
1798  *	safely.
1799  *
1800  *	A buffer cannot be placed on two lists at the same time.
1801  */
1802 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1803 {
1804 	unsigned long flags;
1805 
1806 	spin_lock_irqsave(&list->lock, flags);
1807 	__skb_queue_tail(list, newsk);
1808 	spin_unlock_irqrestore(&list->lock, flags);
1809 }
1810 
1811 /**
1812  *	skb_unlink	-	remove a buffer from a list
1813  *	@skb: buffer to remove
1814  *	@list: list to use
1815  *
1816  *	Remove a packet from a list. The list locks are taken and this
1817  *	function is atomic with respect to other list locked calls
1818  *
1819  *	You must know what list the SKB is on.
1820  */
1821 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1822 {
1823 	unsigned long flags;
1824 
1825 	spin_lock_irqsave(&list->lock, flags);
1826 	__skb_unlink(skb, list);
1827 	spin_unlock_irqrestore(&list->lock, flags);
1828 }
1829 
1830 /**
1831  *	skb_append	-	append a buffer
1832  *	@old: buffer to insert after
1833  *	@newsk: buffer to insert
1834  *	@list: list to use
1835  *
1836  *	Place a packet after a given packet in a list. The list locks are taken
1837  *	and this function is atomic with respect to other list locked calls.
1838  *	A buffer cannot be placed on two lists at the same time.
1839  */
1840 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1841 {
1842 	unsigned long flags;
1843 
1844 	spin_lock_irqsave(&list->lock, flags);
1845 	__skb_queue_after(list, old, newsk);
1846 	spin_unlock_irqrestore(&list->lock, flags);
1847 }
1848 
1849 
1850 /**
1851  *	skb_insert	-	insert a buffer
1852  *	@old: buffer to insert before
1853  *	@newsk: buffer to insert
1854  *	@list: list to use
1855  *
1856  *	Place a packet before a given packet in a list. The list locks are
1857  * 	taken and this function is atomic with respect to other list locked
1858  *	calls.
1859  *
1860  *	A buffer cannot be placed on two lists at the same time.
1861  */
1862 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1863 {
1864 	unsigned long flags;
1865 
1866 	spin_lock_irqsave(&list->lock, flags);
1867 	__skb_insert(newsk, old->prev, old, list);
1868 	spin_unlock_irqrestore(&list->lock, flags);
1869 }
1870 
1871 static inline void skb_split_inside_header(struct sk_buff *skb,
1872 					   struct sk_buff* skb1,
1873 					   const u32 len, const int pos)
1874 {
1875 	int i;
1876 
1877 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1878 					 pos - len);
1879 	/* And move data appendix as is. */
1880 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1881 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1882 
1883 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1884 	skb_shinfo(skb)->nr_frags  = 0;
1885 	skb1->data_len		   = skb->data_len;
1886 	skb1->len		   += skb1->data_len;
1887 	skb->data_len		   = 0;
1888 	skb->len		   = len;
1889 	skb_set_tail_pointer(skb, len);
1890 }
1891 
1892 static inline void skb_split_no_header(struct sk_buff *skb,
1893 				       struct sk_buff* skb1,
1894 				       const u32 len, int pos)
1895 {
1896 	int i, k = 0;
1897 	const int nfrags = skb_shinfo(skb)->nr_frags;
1898 
1899 	skb_shinfo(skb)->nr_frags = 0;
1900 	skb1->len		  = skb1->data_len = skb->len - len;
1901 	skb->len		  = len;
1902 	skb->data_len		  = len - pos;
1903 
1904 	for (i = 0; i < nfrags; i++) {
1905 		int size = skb_shinfo(skb)->frags[i].size;
1906 
1907 		if (pos + size > len) {
1908 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1909 
1910 			if (pos < len) {
1911 				/* Split frag.
1912 				 * We have two variants in this case:
1913 				 * 1. Move all the frag to the second
1914 				 *    part, if it is possible. F.e.
1915 				 *    this approach is mandatory for TUX,
1916 				 *    where splitting is expensive.
1917 				 * 2. Split is accurately. We make this.
1918 				 */
1919 				get_page(skb_shinfo(skb)->frags[i].page);
1920 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1921 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1922 				skb_shinfo(skb)->frags[i].size	= len - pos;
1923 				skb_shinfo(skb)->nr_frags++;
1924 			}
1925 			k++;
1926 		} else
1927 			skb_shinfo(skb)->nr_frags++;
1928 		pos += size;
1929 	}
1930 	skb_shinfo(skb1)->nr_frags = k;
1931 }
1932 
1933 /**
1934  * skb_split - Split fragmented skb to two parts at length len.
1935  * @skb: the buffer to split
1936  * @skb1: the buffer to receive the second part
1937  * @len: new length for skb
1938  */
1939 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1940 {
1941 	int pos = skb_headlen(skb);
1942 
1943 	if (len < pos)	/* Split line is inside header. */
1944 		skb_split_inside_header(skb, skb1, len, pos);
1945 	else		/* Second chunk has no header, nothing to copy. */
1946 		skb_split_no_header(skb, skb1, len, pos);
1947 }
1948 
1949 /**
1950  * skb_prepare_seq_read - Prepare a sequential read of skb data
1951  * @skb: the buffer to read
1952  * @from: lower offset of data to be read
1953  * @to: upper offset of data to be read
1954  * @st: state variable
1955  *
1956  * Initializes the specified state variable. Must be called before
1957  * invoking skb_seq_read() for the first time.
1958  */
1959 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1960 			  unsigned int to, struct skb_seq_state *st)
1961 {
1962 	st->lower_offset = from;
1963 	st->upper_offset = to;
1964 	st->root_skb = st->cur_skb = skb;
1965 	st->frag_idx = st->stepped_offset = 0;
1966 	st->frag_data = NULL;
1967 }
1968 
1969 /**
1970  * skb_seq_read - Sequentially read skb data
1971  * @consumed: number of bytes consumed by the caller so far
1972  * @data: destination pointer for data to be returned
1973  * @st: state variable
1974  *
1975  * Reads a block of skb data at &consumed relative to the
1976  * lower offset specified to skb_prepare_seq_read(). Assigns
1977  * the head of the data block to &data and returns the length
1978  * of the block or 0 if the end of the skb data or the upper
1979  * offset has been reached.
1980  *
1981  * The caller is not required to consume all of the data
1982  * returned, i.e. &consumed is typically set to the number
1983  * of bytes already consumed and the next call to
1984  * skb_seq_read() will return the remaining part of the block.
1985  *
1986  * Note 1: The size of each block of data returned can be arbitary,
1987  *       this limitation is the cost for zerocopy seqeuental
1988  *       reads of potentially non linear data.
1989  *
1990  * Note 2: Fragment lists within fragments are not implemented
1991  *       at the moment, state->root_skb could be replaced with
1992  *       a stack for this purpose.
1993  */
1994 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1995 			  struct skb_seq_state *st)
1996 {
1997 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1998 	skb_frag_t *frag;
1999 
2000 	if (unlikely(abs_offset >= st->upper_offset))
2001 		return 0;
2002 
2003 next_skb:
2004 	block_limit = skb_headlen(st->cur_skb);
2005 
2006 	if (abs_offset < block_limit) {
2007 		*data = st->cur_skb->data + abs_offset;
2008 		return block_limit - abs_offset;
2009 	}
2010 
2011 	if (st->frag_idx == 0 && !st->frag_data)
2012 		st->stepped_offset += skb_headlen(st->cur_skb);
2013 
2014 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2015 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2016 		block_limit = frag->size + st->stepped_offset;
2017 
2018 		if (abs_offset < block_limit) {
2019 			if (!st->frag_data)
2020 				st->frag_data = kmap_skb_frag(frag);
2021 
2022 			*data = (u8 *) st->frag_data + frag->page_offset +
2023 				(abs_offset - st->stepped_offset);
2024 
2025 			return block_limit - abs_offset;
2026 		}
2027 
2028 		if (st->frag_data) {
2029 			kunmap_skb_frag(st->frag_data);
2030 			st->frag_data = NULL;
2031 		}
2032 
2033 		st->frag_idx++;
2034 		st->stepped_offset += frag->size;
2035 	}
2036 
2037 	if (st->frag_data) {
2038 		kunmap_skb_frag(st->frag_data);
2039 		st->frag_data = NULL;
2040 	}
2041 
2042 	if (st->cur_skb->next) {
2043 		st->cur_skb = st->cur_skb->next;
2044 		st->frag_idx = 0;
2045 		goto next_skb;
2046 	} else if (st->root_skb == st->cur_skb &&
2047 		   skb_shinfo(st->root_skb)->frag_list) {
2048 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2049 		goto next_skb;
2050 	}
2051 
2052 	return 0;
2053 }
2054 
2055 /**
2056  * skb_abort_seq_read - Abort a sequential read of skb data
2057  * @st: state variable
2058  *
2059  * Must be called if skb_seq_read() was not called until it
2060  * returned 0.
2061  */
2062 void skb_abort_seq_read(struct skb_seq_state *st)
2063 {
2064 	if (st->frag_data)
2065 		kunmap_skb_frag(st->frag_data);
2066 }
2067 
2068 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2069 
2070 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2071 					  struct ts_config *conf,
2072 					  struct ts_state *state)
2073 {
2074 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2075 }
2076 
2077 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2078 {
2079 	skb_abort_seq_read(TS_SKB_CB(state));
2080 }
2081 
2082 /**
2083  * skb_find_text - Find a text pattern in skb data
2084  * @skb: the buffer to look in
2085  * @from: search offset
2086  * @to: search limit
2087  * @config: textsearch configuration
2088  * @state: uninitialized textsearch state variable
2089  *
2090  * Finds a pattern in the skb data according to the specified
2091  * textsearch configuration. Use textsearch_next() to retrieve
2092  * subsequent occurrences of the pattern. Returns the offset
2093  * to the first occurrence or UINT_MAX if no match was found.
2094  */
2095 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2096 			   unsigned int to, struct ts_config *config,
2097 			   struct ts_state *state)
2098 {
2099 	unsigned int ret;
2100 
2101 	config->get_next_block = skb_ts_get_next_block;
2102 	config->finish = skb_ts_finish;
2103 
2104 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2105 
2106 	ret = textsearch_find(config, state);
2107 	return (ret <= to - from ? ret : UINT_MAX);
2108 }
2109 
2110 /**
2111  * skb_append_datato_frags: - append the user data to a skb
2112  * @sk: sock  structure
2113  * @skb: skb structure to be appened with user data.
2114  * @getfrag: call back function to be used for getting the user data
2115  * @from: pointer to user message iov
2116  * @length: length of the iov message
2117  *
2118  * Description: This procedure append the user data in the fragment part
2119  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2120  */
2121 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2122 			int (*getfrag)(void *from, char *to, int offset,
2123 					int len, int odd, struct sk_buff *skb),
2124 			void *from, int length)
2125 {
2126 	int frg_cnt = 0;
2127 	skb_frag_t *frag = NULL;
2128 	struct page *page = NULL;
2129 	int copy, left;
2130 	int offset = 0;
2131 	int ret;
2132 
2133 	do {
2134 		/* Return error if we don't have space for new frag */
2135 		frg_cnt = skb_shinfo(skb)->nr_frags;
2136 		if (frg_cnt >= MAX_SKB_FRAGS)
2137 			return -EFAULT;
2138 
2139 		/* allocate a new page for next frag */
2140 		page = alloc_pages(sk->sk_allocation, 0);
2141 
2142 		/* If alloc_page fails just return failure and caller will
2143 		 * free previous allocated pages by doing kfree_skb()
2144 		 */
2145 		if (page == NULL)
2146 			return -ENOMEM;
2147 
2148 		/* initialize the next frag */
2149 		sk->sk_sndmsg_page = page;
2150 		sk->sk_sndmsg_off = 0;
2151 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2152 		skb->truesize += PAGE_SIZE;
2153 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2154 
2155 		/* get the new initialized frag */
2156 		frg_cnt = skb_shinfo(skb)->nr_frags;
2157 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2158 
2159 		/* copy the user data to page */
2160 		left = PAGE_SIZE - frag->page_offset;
2161 		copy = (length > left)? left : length;
2162 
2163 		ret = getfrag(from, (page_address(frag->page) +
2164 			    frag->page_offset + frag->size),
2165 			    offset, copy, 0, skb);
2166 		if (ret < 0)
2167 			return -EFAULT;
2168 
2169 		/* copy was successful so update the size parameters */
2170 		sk->sk_sndmsg_off += copy;
2171 		frag->size += copy;
2172 		skb->len += copy;
2173 		skb->data_len += copy;
2174 		offset += copy;
2175 		length -= copy;
2176 
2177 	} while (length > 0);
2178 
2179 	return 0;
2180 }
2181 
2182 /**
2183  *	skb_pull_rcsum - pull skb and update receive checksum
2184  *	@skb: buffer to update
2185  *	@len: length of data pulled
2186  *
2187  *	This function performs an skb_pull on the packet and updates
2188  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2189  *	receive path processing instead of skb_pull unless you know
2190  *	that the checksum difference is zero (e.g., a valid IP header)
2191  *	or you are setting ip_summed to CHECKSUM_NONE.
2192  */
2193 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2194 {
2195 	BUG_ON(len > skb->len);
2196 	skb->len -= len;
2197 	BUG_ON(skb->len < skb->data_len);
2198 	skb_postpull_rcsum(skb, skb->data, len);
2199 	return skb->data += len;
2200 }
2201 
2202 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2203 
2204 /**
2205  *	skb_segment - Perform protocol segmentation on skb.
2206  *	@skb: buffer to segment
2207  *	@features: features for the output path (see dev->features)
2208  *
2209  *	This function performs segmentation on the given skb.  It returns
2210  *	a pointer to the first in a list of new skbs for the segments.
2211  *	In case of error it returns ERR_PTR(err).
2212  */
2213 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2214 {
2215 	struct sk_buff *segs = NULL;
2216 	struct sk_buff *tail = NULL;
2217 	unsigned int mss = skb_shinfo(skb)->gso_size;
2218 	unsigned int doffset = skb->data - skb_mac_header(skb);
2219 	unsigned int offset = doffset;
2220 	unsigned int headroom;
2221 	unsigned int len;
2222 	int sg = features & NETIF_F_SG;
2223 	int nfrags = skb_shinfo(skb)->nr_frags;
2224 	int err = -ENOMEM;
2225 	int i = 0;
2226 	int pos;
2227 
2228 	__skb_push(skb, doffset);
2229 	headroom = skb_headroom(skb);
2230 	pos = skb_headlen(skb);
2231 
2232 	do {
2233 		struct sk_buff *nskb;
2234 		skb_frag_t *frag;
2235 		int hsize;
2236 		int k;
2237 		int size;
2238 
2239 		len = skb->len - offset;
2240 		if (len > mss)
2241 			len = mss;
2242 
2243 		hsize = skb_headlen(skb) - offset;
2244 		if (hsize < 0)
2245 			hsize = 0;
2246 		if (hsize > len || !sg)
2247 			hsize = len;
2248 
2249 		nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
2250 		if (unlikely(!nskb))
2251 			goto err;
2252 
2253 		if (segs)
2254 			tail->next = nskb;
2255 		else
2256 			segs = nskb;
2257 		tail = nskb;
2258 
2259 		__copy_skb_header(nskb, skb);
2260 		nskb->mac_len = skb->mac_len;
2261 
2262 		skb_reserve(nskb, headroom);
2263 		skb_reset_mac_header(nskb);
2264 		skb_set_network_header(nskb, skb->mac_len);
2265 		nskb->transport_header = (nskb->network_header +
2266 					  skb_network_header_len(skb));
2267 		skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
2268 					  doffset);
2269 		if (!sg) {
2270 			nskb->ip_summed = CHECKSUM_NONE;
2271 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2272 							    skb_put(nskb, len),
2273 							    len, 0);
2274 			continue;
2275 		}
2276 
2277 		frag = skb_shinfo(nskb)->frags;
2278 		k = 0;
2279 
2280 		skb_copy_from_linear_data_offset(skb, offset,
2281 						 skb_put(nskb, hsize), hsize);
2282 
2283 		while (pos < offset + len) {
2284 			BUG_ON(i >= nfrags);
2285 
2286 			*frag = skb_shinfo(skb)->frags[i];
2287 			get_page(frag->page);
2288 			size = frag->size;
2289 
2290 			if (pos < offset) {
2291 				frag->page_offset += offset - pos;
2292 				frag->size -= offset - pos;
2293 			}
2294 
2295 			k++;
2296 
2297 			if (pos + size <= offset + len) {
2298 				i++;
2299 				pos += size;
2300 			} else {
2301 				frag->size -= pos + size - (offset + len);
2302 				break;
2303 			}
2304 
2305 			frag++;
2306 		}
2307 
2308 		skb_shinfo(nskb)->nr_frags = k;
2309 		nskb->data_len = len - hsize;
2310 		nskb->len += nskb->data_len;
2311 		nskb->truesize += nskb->data_len;
2312 	} while ((offset += len) < skb->len);
2313 
2314 	return segs;
2315 
2316 err:
2317 	while ((skb = segs)) {
2318 		segs = skb->next;
2319 		kfree_skb(skb);
2320 	}
2321 	return ERR_PTR(err);
2322 }
2323 
2324 EXPORT_SYMBOL_GPL(skb_segment);
2325 
2326 void __init skb_init(void)
2327 {
2328 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2329 					      sizeof(struct sk_buff),
2330 					      0,
2331 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2332 					      NULL);
2333 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2334 						(2*sizeof(struct sk_buff)) +
2335 						sizeof(atomic_t),
2336 						0,
2337 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2338 						NULL);
2339 }
2340 
2341 /**
2342  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2343  *	@skb: Socket buffer containing the buffers to be mapped
2344  *	@sg: The scatter-gather list to map into
2345  *	@offset: The offset into the buffer's contents to start mapping
2346  *	@len: Length of buffer space to be mapped
2347  *
2348  *	Fill the specified scatter-gather list with mappings/pointers into a
2349  *	region of the buffer space attached to a socket buffer.
2350  */
2351 static int
2352 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2353 {
2354 	int start = skb_headlen(skb);
2355 	int i, copy = start - offset;
2356 	int elt = 0;
2357 
2358 	if (copy > 0) {
2359 		if (copy > len)
2360 			copy = len;
2361 		sg_set_buf(sg, skb->data + offset, copy);
2362 		elt++;
2363 		if ((len -= copy) == 0)
2364 			return elt;
2365 		offset += copy;
2366 	}
2367 
2368 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2369 		int end;
2370 
2371 		WARN_ON(start > offset + len);
2372 
2373 		end = start + skb_shinfo(skb)->frags[i].size;
2374 		if ((copy = end - offset) > 0) {
2375 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2376 
2377 			if (copy > len)
2378 				copy = len;
2379 			sg_set_page(&sg[elt], frag->page, copy,
2380 					frag->page_offset+offset-start);
2381 			elt++;
2382 			if (!(len -= copy))
2383 				return elt;
2384 			offset += copy;
2385 		}
2386 		start = end;
2387 	}
2388 
2389 	if (skb_shinfo(skb)->frag_list) {
2390 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2391 
2392 		for (; list; list = list->next) {
2393 			int end;
2394 
2395 			WARN_ON(start > offset + len);
2396 
2397 			end = start + list->len;
2398 			if ((copy = end - offset) > 0) {
2399 				if (copy > len)
2400 					copy = len;
2401 				elt += __skb_to_sgvec(list, sg+elt, offset - start,
2402 						      copy);
2403 				if ((len -= copy) == 0)
2404 					return elt;
2405 				offset += copy;
2406 			}
2407 			start = end;
2408 		}
2409 	}
2410 	BUG_ON(len);
2411 	return elt;
2412 }
2413 
2414 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2415 {
2416 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
2417 
2418 	sg_mark_end(&sg[nsg - 1]);
2419 
2420 	return nsg;
2421 }
2422 
2423 /**
2424  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2425  *	@skb: The socket buffer to check.
2426  *	@tailbits: Amount of trailing space to be added
2427  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2428  *
2429  *	Make sure that the data buffers attached to a socket buffer are
2430  *	writable. If they are not, private copies are made of the data buffers
2431  *	and the socket buffer is set to use these instead.
2432  *
2433  *	If @tailbits is given, make sure that there is space to write @tailbits
2434  *	bytes of data beyond current end of socket buffer.  @trailer will be
2435  *	set to point to the skb in which this space begins.
2436  *
2437  *	The number of scatterlist elements required to completely map the
2438  *	COW'd and extended socket buffer will be returned.
2439  */
2440 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2441 {
2442 	int copyflag;
2443 	int elt;
2444 	struct sk_buff *skb1, **skb_p;
2445 
2446 	/* If skb is cloned or its head is paged, reallocate
2447 	 * head pulling out all the pages (pages are considered not writable
2448 	 * at the moment even if they are anonymous).
2449 	 */
2450 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2451 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2452 		return -ENOMEM;
2453 
2454 	/* Easy case. Most of packets will go this way. */
2455 	if (!skb_shinfo(skb)->frag_list) {
2456 		/* A little of trouble, not enough of space for trailer.
2457 		 * This should not happen, when stack is tuned to generate
2458 		 * good frames. OK, on miss we reallocate and reserve even more
2459 		 * space, 128 bytes is fair. */
2460 
2461 		if (skb_tailroom(skb) < tailbits &&
2462 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2463 			return -ENOMEM;
2464 
2465 		/* Voila! */
2466 		*trailer = skb;
2467 		return 1;
2468 	}
2469 
2470 	/* Misery. We are in troubles, going to mincer fragments... */
2471 
2472 	elt = 1;
2473 	skb_p = &skb_shinfo(skb)->frag_list;
2474 	copyflag = 0;
2475 
2476 	while ((skb1 = *skb_p) != NULL) {
2477 		int ntail = 0;
2478 
2479 		/* The fragment is partially pulled by someone,
2480 		 * this can happen on input. Copy it and everything
2481 		 * after it. */
2482 
2483 		if (skb_shared(skb1))
2484 			copyflag = 1;
2485 
2486 		/* If the skb is the last, worry about trailer. */
2487 
2488 		if (skb1->next == NULL && tailbits) {
2489 			if (skb_shinfo(skb1)->nr_frags ||
2490 			    skb_shinfo(skb1)->frag_list ||
2491 			    skb_tailroom(skb1) < tailbits)
2492 				ntail = tailbits + 128;
2493 		}
2494 
2495 		if (copyflag ||
2496 		    skb_cloned(skb1) ||
2497 		    ntail ||
2498 		    skb_shinfo(skb1)->nr_frags ||
2499 		    skb_shinfo(skb1)->frag_list) {
2500 			struct sk_buff *skb2;
2501 
2502 			/* Fuck, we are miserable poor guys... */
2503 			if (ntail == 0)
2504 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2505 			else
2506 				skb2 = skb_copy_expand(skb1,
2507 						       skb_headroom(skb1),
2508 						       ntail,
2509 						       GFP_ATOMIC);
2510 			if (unlikely(skb2 == NULL))
2511 				return -ENOMEM;
2512 
2513 			if (skb1->sk)
2514 				skb_set_owner_w(skb2, skb1->sk);
2515 
2516 			/* Looking around. Are we still alive?
2517 			 * OK, link new skb, drop old one */
2518 
2519 			skb2->next = skb1->next;
2520 			*skb_p = skb2;
2521 			kfree_skb(skb1);
2522 			skb1 = skb2;
2523 		}
2524 		elt++;
2525 		*trailer = skb1;
2526 		skb_p = &skb1->next;
2527 	}
2528 
2529 	return elt;
2530 }
2531 
2532 /**
2533  * skb_partial_csum_set - set up and verify partial csum values for packet
2534  * @skb: the skb to set
2535  * @start: the number of bytes after skb->data to start checksumming.
2536  * @off: the offset from start to place the checksum.
2537  *
2538  * For untrusted partially-checksummed packets, we need to make sure the values
2539  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2540  *
2541  * This function checks and sets those values and skb->ip_summed: if this
2542  * returns false you should drop the packet.
2543  */
2544 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
2545 {
2546 	if (unlikely(start > skb->len - 2) ||
2547 	    unlikely((int)start + off > skb->len - 2)) {
2548 		if (net_ratelimit())
2549 			printk(KERN_WARNING
2550 			       "bad partial csum: csum=%u/%u len=%u\n",
2551 			       start, off, skb->len);
2552 		return false;
2553 	}
2554 	skb->ip_summed = CHECKSUM_PARTIAL;
2555 	skb->csum_start = skb_headroom(skb) + start;
2556 	skb->csum_offset = off;
2557 	return true;
2558 }
2559 
2560 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
2561 {
2562 	if (net_ratelimit())
2563 		pr_warning("%s: received packets cannot be forwarded"
2564 			   " while LRO is enabled\n", skb->dev->name);
2565 }
2566 
2567 EXPORT_SYMBOL(___pskb_trim);
2568 EXPORT_SYMBOL(__kfree_skb);
2569 EXPORT_SYMBOL(kfree_skb);
2570 EXPORT_SYMBOL(__pskb_pull_tail);
2571 EXPORT_SYMBOL(__alloc_skb);
2572 EXPORT_SYMBOL(__netdev_alloc_skb);
2573 EXPORT_SYMBOL(pskb_copy);
2574 EXPORT_SYMBOL(pskb_expand_head);
2575 EXPORT_SYMBOL(skb_checksum);
2576 EXPORT_SYMBOL(skb_clone);
2577 EXPORT_SYMBOL(skb_copy);
2578 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2579 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2580 EXPORT_SYMBOL(skb_copy_bits);
2581 EXPORT_SYMBOL(skb_copy_expand);
2582 EXPORT_SYMBOL(skb_over_panic);
2583 EXPORT_SYMBOL(skb_pad);
2584 EXPORT_SYMBOL(skb_realloc_headroom);
2585 EXPORT_SYMBOL(skb_under_panic);
2586 EXPORT_SYMBOL(skb_dequeue);
2587 EXPORT_SYMBOL(skb_dequeue_tail);
2588 EXPORT_SYMBOL(skb_insert);
2589 EXPORT_SYMBOL(skb_queue_purge);
2590 EXPORT_SYMBOL(skb_queue_head);
2591 EXPORT_SYMBOL(skb_queue_tail);
2592 EXPORT_SYMBOL(skb_unlink);
2593 EXPORT_SYMBOL(skb_append);
2594 EXPORT_SYMBOL(skb_split);
2595 EXPORT_SYMBOL(skb_prepare_seq_read);
2596 EXPORT_SYMBOL(skb_seq_read);
2597 EXPORT_SYMBOL(skb_abort_seq_read);
2598 EXPORT_SYMBOL(skb_find_text);
2599 EXPORT_SYMBOL(skb_append_datato_frags);
2600 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
2601 
2602 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2603 EXPORT_SYMBOL_GPL(skb_cow_data);
2604 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
2605