1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #include <linux/module.h> 40 #include <linux/types.h> 41 #include <linux/kernel.h> 42 #include <linux/mm.h> 43 #include <linux/interrupt.h> 44 #include <linux/in.h> 45 #include <linux/inet.h> 46 #include <linux/slab.h> 47 #include <linux/netdevice.h> 48 #ifdef CONFIG_NET_CLS_ACT 49 #include <net/pkt_sched.h> 50 #endif 51 #include <linux/string.h> 52 #include <linux/skbuff.h> 53 #include <linux/splice.h> 54 #include <linux/cache.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/init.h> 57 #include <linux/scatterlist.h> 58 59 #include <net/protocol.h> 60 #include <net/dst.h> 61 #include <net/sock.h> 62 #include <net/checksum.h> 63 #include <net/xfrm.h> 64 65 #include <asm/uaccess.h> 66 #include <asm/system.h> 67 68 #include "kmap_skb.h" 69 70 static struct kmem_cache *skbuff_head_cache __read_mostly; 71 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 72 73 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 74 struct pipe_buffer *buf) 75 { 76 struct sk_buff *skb = (struct sk_buff *) buf->private; 77 78 kfree_skb(skb); 79 } 80 81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 82 struct pipe_buffer *buf) 83 { 84 struct sk_buff *skb = (struct sk_buff *) buf->private; 85 86 skb_get(skb); 87 } 88 89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 90 struct pipe_buffer *buf) 91 { 92 return 1; 93 } 94 95 96 /* Pipe buffer operations for a socket. */ 97 static struct pipe_buf_operations sock_pipe_buf_ops = { 98 .can_merge = 0, 99 .map = generic_pipe_buf_map, 100 .unmap = generic_pipe_buf_unmap, 101 .confirm = generic_pipe_buf_confirm, 102 .release = sock_pipe_buf_release, 103 .steal = sock_pipe_buf_steal, 104 .get = sock_pipe_buf_get, 105 }; 106 107 /* 108 * Keep out-of-line to prevent kernel bloat. 109 * __builtin_return_address is not used because it is not always 110 * reliable. 111 */ 112 113 /** 114 * skb_over_panic - private function 115 * @skb: buffer 116 * @sz: size 117 * @here: address 118 * 119 * Out of line support code for skb_put(). Not user callable. 120 */ 121 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 122 { 123 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 124 "data:%p tail:%#lx end:%#lx dev:%s\n", 125 here, skb->len, sz, skb->head, skb->data, 126 (unsigned long)skb->tail, (unsigned long)skb->end, 127 skb->dev ? skb->dev->name : "<NULL>"); 128 BUG(); 129 } 130 131 /** 132 * skb_under_panic - private function 133 * @skb: buffer 134 * @sz: size 135 * @here: address 136 * 137 * Out of line support code for skb_push(). Not user callable. 138 */ 139 140 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 141 { 142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 143 "data:%p tail:%#lx end:%#lx dev:%s\n", 144 here, skb->len, sz, skb->head, skb->data, 145 (unsigned long)skb->tail, (unsigned long)skb->end, 146 skb->dev ? skb->dev->name : "<NULL>"); 147 BUG(); 148 } 149 150 void skb_truesize_bug(struct sk_buff *skb) 151 { 152 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 153 "len=%u, sizeof(sk_buff)=%Zd\n", 154 skb->truesize, skb->len, sizeof(struct sk_buff)); 155 } 156 EXPORT_SYMBOL(skb_truesize_bug); 157 158 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 159 * 'private' fields and also do memory statistics to find all the 160 * [BEEP] leaks. 161 * 162 */ 163 164 /** 165 * __alloc_skb - allocate a network buffer 166 * @size: size to allocate 167 * @gfp_mask: allocation mask 168 * @fclone: allocate from fclone cache instead of head cache 169 * and allocate a cloned (child) skb 170 * @node: numa node to allocate memory on 171 * 172 * Allocate a new &sk_buff. The returned buffer has no headroom and a 173 * tail room of size bytes. The object has a reference count of one. 174 * The return is the buffer. On a failure the return is %NULL. 175 * 176 * Buffers may only be allocated from interrupts using a @gfp_mask of 177 * %GFP_ATOMIC. 178 */ 179 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 180 int fclone, int node) 181 { 182 struct kmem_cache *cache; 183 struct skb_shared_info *shinfo; 184 struct sk_buff *skb; 185 u8 *data; 186 187 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 188 189 /* Get the HEAD */ 190 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 191 if (!skb) 192 goto out; 193 194 size = SKB_DATA_ALIGN(size); 195 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 196 gfp_mask, node); 197 if (!data) 198 goto nodata; 199 200 /* 201 * Only clear those fields we need to clear, not those that we will 202 * actually initialise below. Hence, don't put any more fields after 203 * the tail pointer in struct sk_buff! 204 */ 205 memset(skb, 0, offsetof(struct sk_buff, tail)); 206 skb->truesize = size + sizeof(struct sk_buff); 207 atomic_set(&skb->users, 1); 208 skb->head = data; 209 skb->data = data; 210 skb_reset_tail_pointer(skb); 211 skb->end = skb->tail + size; 212 /* make sure we initialize shinfo sequentially */ 213 shinfo = skb_shinfo(skb); 214 atomic_set(&shinfo->dataref, 1); 215 shinfo->nr_frags = 0; 216 shinfo->gso_size = 0; 217 shinfo->gso_segs = 0; 218 shinfo->gso_type = 0; 219 shinfo->ip6_frag_id = 0; 220 shinfo->frag_list = NULL; 221 222 if (fclone) { 223 struct sk_buff *child = skb + 1; 224 atomic_t *fclone_ref = (atomic_t *) (child + 1); 225 226 skb->fclone = SKB_FCLONE_ORIG; 227 atomic_set(fclone_ref, 1); 228 229 child->fclone = SKB_FCLONE_UNAVAILABLE; 230 } 231 out: 232 return skb; 233 nodata: 234 kmem_cache_free(cache, skb); 235 skb = NULL; 236 goto out; 237 } 238 239 /** 240 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 241 * @dev: network device to receive on 242 * @length: length to allocate 243 * @gfp_mask: get_free_pages mask, passed to alloc_skb 244 * 245 * Allocate a new &sk_buff and assign it a usage count of one. The 246 * buffer has unspecified headroom built in. Users should allocate 247 * the headroom they think they need without accounting for the 248 * built in space. The built in space is used for optimisations. 249 * 250 * %NULL is returned if there is no free memory. 251 */ 252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 253 unsigned int length, gfp_t gfp_mask) 254 { 255 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 256 struct sk_buff *skb; 257 258 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 259 if (likely(skb)) { 260 skb_reserve(skb, NET_SKB_PAD); 261 skb->dev = dev; 262 } 263 return skb; 264 } 265 266 /** 267 * dev_alloc_skb - allocate an skbuff for receiving 268 * @length: length to allocate 269 * 270 * Allocate a new &sk_buff and assign it a usage count of one. The 271 * buffer has unspecified headroom built in. Users should allocate 272 * the headroom they think they need without accounting for the 273 * built in space. The built in space is used for optimisations. 274 * 275 * %NULL is returned if there is no free memory. Although this function 276 * allocates memory it can be called from an interrupt. 277 */ 278 struct sk_buff *dev_alloc_skb(unsigned int length) 279 { 280 /* 281 * There is more code here than it seems: 282 * __dev_alloc_skb is an inline 283 */ 284 return __dev_alloc_skb(length, GFP_ATOMIC); 285 } 286 EXPORT_SYMBOL(dev_alloc_skb); 287 288 static void skb_drop_list(struct sk_buff **listp) 289 { 290 struct sk_buff *list = *listp; 291 292 *listp = NULL; 293 294 do { 295 struct sk_buff *this = list; 296 list = list->next; 297 kfree_skb(this); 298 } while (list); 299 } 300 301 static inline void skb_drop_fraglist(struct sk_buff *skb) 302 { 303 skb_drop_list(&skb_shinfo(skb)->frag_list); 304 } 305 306 static void skb_clone_fraglist(struct sk_buff *skb) 307 { 308 struct sk_buff *list; 309 310 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 311 skb_get(list); 312 } 313 314 static void skb_release_data(struct sk_buff *skb) 315 { 316 if (!skb->cloned || 317 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 318 &skb_shinfo(skb)->dataref)) { 319 if (skb_shinfo(skb)->nr_frags) { 320 int i; 321 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 322 put_page(skb_shinfo(skb)->frags[i].page); 323 } 324 325 if (skb_shinfo(skb)->frag_list) 326 skb_drop_fraglist(skb); 327 328 kfree(skb->head); 329 } 330 } 331 332 /* 333 * Free an skbuff by memory without cleaning the state. 334 */ 335 static void kfree_skbmem(struct sk_buff *skb) 336 { 337 struct sk_buff *other; 338 atomic_t *fclone_ref; 339 340 switch (skb->fclone) { 341 case SKB_FCLONE_UNAVAILABLE: 342 kmem_cache_free(skbuff_head_cache, skb); 343 break; 344 345 case SKB_FCLONE_ORIG: 346 fclone_ref = (atomic_t *) (skb + 2); 347 if (atomic_dec_and_test(fclone_ref)) 348 kmem_cache_free(skbuff_fclone_cache, skb); 349 break; 350 351 case SKB_FCLONE_CLONE: 352 fclone_ref = (atomic_t *) (skb + 1); 353 other = skb - 1; 354 355 /* The clone portion is available for 356 * fast-cloning again. 357 */ 358 skb->fclone = SKB_FCLONE_UNAVAILABLE; 359 360 if (atomic_dec_and_test(fclone_ref)) 361 kmem_cache_free(skbuff_fclone_cache, other); 362 break; 363 } 364 } 365 366 /* Free everything but the sk_buff shell. */ 367 static void skb_release_all(struct sk_buff *skb) 368 { 369 dst_release(skb->dst); 370 #ifdef CONFIG_XFRM 371 secpath_put(skb->sp); 372 #endif 373 if (skb->destructor) { 374 WARN_ON(in_irq()); 375 skb->destructor(skb); 376 } 377 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 378 nf_conntrack_put(skb->nfct); 379 nf_conntrack_put_reasm(skb->nfct_reasm); 380 #endif 381 #ifdef CONFIG_BRIDGE_NETFILTER 382 nf_bridge_put(skb->nf_bridge); 383 #endif 384 /* XXX: IS this still necessary? - JHS */ 385 #ifdef CONFIG_NET_SCHED 386 skb->tc_index = 0; 387 #ifdef CONFIG_NET_CLS_ACT 388 skb->tc_verd = 0; 389 #endif 390 #endif 391 skb_release_data(skb); 392 } 393 394 /** 395 * __kfree_skb - private function 396 * @skb: buffer 397 * 398 * Free an sk_buff. Release anything attached to the buffer. 399 * Clean the state. This is an internal helper function. Users should 400 * always call kfree_skb 401 */ 402 403 void __kfree_skb(struct sk_buff *skb) 404 { 405 skb_release_all(skb); 406 kfree_skbmem(skb); 407 } 408 409 /** 410 * kfree_skb - free an sk_buff 411 * @skb: buffer to free 412 * 413 * Drop a reference to the buffer and free it if the usage count has 414 * hit zero. 415 */ 416 void kfree_skb(struct sk_buff *skb) 417 { 418 if (unlikely(!skb)) 419 return; 420 if (likely(atomic_read(&skb->users) == 1)) 421 smp_rmb(); 422 else if (likely(!atomic_dec_and_test(&skb->users))) 423 return; 424 __kfree_skb(skb); 425 } 426 427 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 428 { 429 new->tstamp = old->tstamp; 430 new->dev = old->dev; 431 new->transport_header = old->transport_header; 432 new->network_header = old->network_header; 433 new->mac_header = old->mac_header; 434 new->dst = dst_clone(old->dst); 435 #ifdef CONFIG_INET 436 new->sp = secpath_get(old->sp); 437 #endif 438 memcpy(new->cb, old->cb, sizeof(old->cb)); 439 new->csum_start = old->csum_start; 440 new->csum_offset = old->csum_offset; 441 new->local_df = old->local_df; 442 new->pkt_type = old->pkt_type; 443 new->ip_summed = old->ip_summed; 444 skb_copy_queue_mapping(new, old); 445 new->priority = old->priority; 446 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 447 new->ipvs_property = old->ipvs_property; 448 #endif 449 new->protocol = old->protocol; 450 new->mark = old->mark; 451 __nf_copy(new, old); 452 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 453 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 454 new->nf_trace = old->nf_trace; 455 #endif 456 #ifdef CONFIG_NET_SCHED 457 new->tc_index = old->tc_index; 458 #ifdef CONFIG_NET_CLS_ACT 459 new->tc_verd = old->tc_verd; 460 #endif 461 #endif 462 new->vlan_tci = old->vlan_tci; 463 464 skb_copy_secmark(new, old); 465 } 466 467 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 468 { 469 #define C(x) n->x = skb->x 470 471 n->next = n->prev = NULL; 472 n->sk = NULL; 473 __copy_skb_header(n, skb); 474 475 C(len); 476 C(data_len); 477 C(mac_len); 478 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 479 n->cloned = 1; 480 n->nohdr = 0; 481 n->destructor = NULL; 482 C(iif); 483 C(tail); 484 C(end); 485 C(head); 486 C(data); 487 C(truesize); 488 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE) 489 C(do_not_encrypt); 490 #endif 491 atomic_set(&n->users, 1); 492 493 atomic_inc(&(skb_shinfo(skb)->dataref)); 494 skb->cloned = 1; 495 496 return n; 497 #undef C 498 } 499 500 /** 501 * skb_morph - morph one skb into another 502 * @dst: the skb to receive the contents 503 * @src: the skb to supply the contents 504 * 505 * This is identical to skb_clone except that the target skb is 506 * supplied by the user. 507 * 508 * The target skb is returned upon exit. 509 */ 510 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 511 { 512 skb_release_all(dst); 513 return __skb_clone(dst, src); 514 } 515 EXPORT_SYMBOL_GPL(skb_morph); 516 517 /** 518 * skb_clone - duplicate an sk_buff 519 * @skb: buffer to clone 520 * @gfp_mask: allocation priority 521 * 522 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 523 * copies share the same packet data but not structure. The new 524 * buffer has a reference count of 1. If the allocation fails the 525 * function returns %NULL otherwise the new buffer is returned. 526 * 527 * If this function is called from an interrupt gfp_mask() must be 528 * %GFP_ATOMIC. 529 */ 530 531 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 532 { 533 struct sk_buff *n; 534 535 n = skb + 1; 536 if (skb->fclone == SKB_FCLONE_ORIG && 537 n->fclone == SKB_FCLONE_UNAVAILABLE) { 538 atomic_t *fclone_ref = (atomic_t *) (n + 1); 539 n->fclone = SKB_FCLONE_CLONE; 540 atomic_inc(fclone_ref); 541 } else { 542 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 543 if (!n) 544 return NULL; 545 n->fclone = SKB_FCLONE_UNAVAILABLE; 546 } 547 548 return __skb_clone(n, skb); 549 } 550 551 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 552 { 553 #ifndef NET_SKBUFF_DATA_USES_OFFSET 554 /* 555 * Shift between the two data areas in bytes 556 */ 557 unsigned long offset = new->data - old->data; 558 #endif 559 560 __copy_skb_header(new, old); 561 562 #ifndef NET_SKBUFF_DATA_USES_OFFSET 563 /* {transport,network,mac}_header are relative to skb->head */ 564 new->transport_header += offset; 565 new->network_header += offset; 566 new->mac_header += offset; 567 #endif 568 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 569 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 570 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 571 } 572 573 /** 574 * skb_copy - create private copy of an sk_buff 575 * @skb: buffer to copy 576 * @gfp_mask: allocation priority 577 * 578 * Make a copy of both an &sk_buff and its data. This is used when the 579 * caller wishes to modify the data and needs a private copy of the 580 * data to alter. Returns %NULL on failure or the pointer to the buffer 581 * on success. The returned buffer has a reference count of 1. 582 * 583 * As by-product this function converts non-linear &sk_buff to linear 584 * one, so that &sk_buff becomes completely private and caller is allowed 585 * to modify all the data of returned buffer. This means that this 586 * function is not recommended for use in circumstances when only 587 * header is going to be modified. Use pskb_copy() instead. 588 */ 589 590 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 591 { 592 int headerlen = skb->data - skb->head; 593 /* 594 * Allocate the copy buffer 595 */ 596 struct sk_buff *n; 597 #ifdef NET_SKBUFF_DATA_USES_OFFSET 598 n = alloc_skb(skb->end + skb->data_len, gfp_mask); 599 #else 600 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); 601 #endif 602 if (!n) 603 return NULL; 604 605 /* Set the data pointer */ 606 skb_reserve(n, headerlen); 607 /* Set the tail pointer and length */ 608 skb_put(n, skb->len); 609 610 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 611 BUG(); 612 613 copy_skb_header(n, skb); 614 return n; 615 } 616 617 618 /** 619 * pskb_copy - create copy of an sk_buff with private head. 620 * @skb: buffer to copy 621 * @gfp_mask: allocation priority 622 * 623 * Make a copy of both an &sk_buff and part of its data, located 624 * in header. Fragmented data remain shared. This is used when 625 * the caller wishes to modify only header of &sk_buff and needs 626 * private copy of the header to alter. Returns %NULL on failure 627 * or the pointer to the buffer on success. 628 * The returned buffer has a reference count of 1. 629 */ 630 631 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 632 { 633 /* 634 * Allocate the copy buffer 635 */ 636 struct sk_buff *n; 637 #ifdef NET_SKBUFF_DATA_USES_OFFSET 638 n = alloc_skb(skb->end, gfp_mask); 639 #else 640 n = alloc_skb(skb->end - skb->head, gfp_mask); 641 #endif 642 if (!n) 643 goto out; 644 645 /* Set the data pointer */ 646 skb_reserve(n, skb->data - skb->head); 647 /* Set the tail pointer and length */ 648 skb_put(n, skb_headlen(skb)); 649 /* Copy the bytes */ 650 skb_copy_from_linear_data(skb, n->data, n->len); 651 652 n->truesize += skb->data_len; 653 n->data_len = skb->data_len; 654 n->len = skb->len; 655 656 if (skb_shinfo(skb)->nr_frags) { 657 int i; 658 659 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 660 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 661 get_page(skb_shinfo(n)->frags[i].page); 662 } 663 skb_shinfo(n)->nr_frags = i; 664 } 665 666 if (skb_shinfo(skb)->frag_list) { 667 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 668 skb_clone_fraglist(n); 669 } 670 671 copy_skb_header(n, skb); 672 out: 673 return n; 674 } 675 676 /** 677 * pskb_expand_head - reallocate header of &sk_buff 678 * @skb: buffer to reallocate 679 * @nhead: room to add at head 680 * @ntail: room to add at tail 681 * @gfp_mask: allocation priority 682 * 683 * Expands (or creates identical copy, if &nhead and &ntail are zero) 684 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 685 * reference count of 1. Returns zero in the case of success or error, 686 * if expansion failed. In the last case, &sk_buff is not changed. 687 * 688 * All the pointers pointing into skb header may change and must be 689 * reloaded after call to this function. 690 */ 691 692 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 693 gfp_t gfp_mask) 694 { 695 int i; 696 u8 *data; 697 #ifdef NET_SKBUFF_DATA_USES_OFFSET 698 int size = nhead + skb->end + ntail; 699 #else 700 int size = nhead + (skb->end - skb->head) + ntail; 701 #endif 702 long off; 703 704 if (skb_shared(skb)) 705 BUG(); 706 707 size = SKB_DATA_ALIGN(size); 708 709 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 710 if (!data) 711 goto nodata; 712 713 /* Copy only real data... and, alas, header. This should be 714 * optimized for the cases when header is void. */ 715 #ifdef NET_SKBUFF_DATA_USES_OFFSET 716 memcpy(data + nhead, skb->head, skb->tail); 717 #else 718 memcpy(data + nhead, skb->head, skb->tail - skb->head); 719 #endif 720 memcpy(data + size, skb_end_pointer(skb), 721 sizeof(struct skb_shared_info)); 722 723 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 724 get_page(skb_shinfo(skb)->frags[i].page); 725 726 if (skb_shinfo(skb)->frag_list) 727 skb_clone_fraglist(skb); 728 729 skb_release_data(skb); 730 731 off = (data + nhead) - skb->head; 732 733 skb->head = data; 734 skb->data += off; 735 #ifdef NET_SKBUFF_DATA_USES_OFFSET 736 skb->end = size; 737 off = nhead; 738 #else 739 skb->end = skb->head + size; 740 #endif 741 /* {transport,network,mac}_header and tail are relative to skb->head */ 742 skb->tail += off; 743 skb->transport_header += off; 744 skb->network_header += off; 745 skb->mac_header += off; 746 skb->csum_start += nhead; 747 skb->cloned = 0; 748 skb->hdr_len = 0; 749 skb->nohdr = 0; 750 atomic_set(&skb_shinfo(skb)->dataref, 1); 751 return 0; 752 753 nodata: 754 return -ENOMEM; 755 } 756 757 /* Make private copy of skb with writable head and some headroom */ 758 759 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 760 { 761 struct sk_buff *skb2; 762 int delta = headroom - skb_headroom(skb); 763 764 if (delta <= 0) 765 skb2 = pskb_copy(skb, GFP_ATOMIC); 766 else { 767 skb2 = skb_clone(skb, GFP_ATOMIC); 768 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 769 GFP_ATOMIC)) { 770 kfree_skb(skb2); 771 skb2 = NULL; 772 } 773 } 774 return skb2; 775 } 776 777 778 /** 779 * skb_copy_expand - copy and expand sk_buff 780 * @skb: buffer to copy 781 * @newheadroom: new free bytes at head 782 * @newtailroom: new free bytes at tail 783 * @gfp_mask: allocation priority 784 * 785 * Make a copy of both an &sk_buff and its data and while doing so 786 * allocate additional space. 787 * 788 * This is used when the caller wishes to modify the data and needs a 789 * private copy of the data to alter as well as more space for new fields. 790 * Returns %NULL on failure or the pointer to the buffer 791 * on success. The returned buffer has a reference count of 1. 792 * 793 * You must pass %GFP_ATOMIC as the allocation priority if this function 794 * is called from an interrupt. 795 */ 796 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 797 int newheadroom, int newtailroom, 798 gfp_t gfp_mask) 799 { 800 /* 801 * Allocate the copy buffer 802 */ 803 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 804 gfp_mask); 805 int oldheadroom = skb_headroom(skb); 806 int head_copy_len, head_copy_off; 807 int off; 808 809 if (!n) 810 return NULL; 811 812 skb_reserve(n, newheadroom); 813 814 /* Set the tail pointer and length */ 815 skb_put(n, skb->len); 816 817 head_copy_len = oldheadroom; 818 head_copy_off = 0; 819 if (newheadroom <= head_copy_len) 820 head_copy_len = newheadroom; 821 else 822 head_copy_off = newheadroom - head_copy_len; 823 824 /* Copy the linear header and data. */ 825 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 826 skb->len + head_copy_len)) 827 BUG(); 828 829 copy_skb_header(n, skb); 830 831 off = newheadroom - oldheadroom; 832 n->csum_start += off; 833 #ifdef NET_SKBUFF_DATA_USES_OFFSET 834 n->transport_header += off; 835 n->network_header += off; 836 n->mac_header += off; 837 #endif 838 839 return n; 840 } 841 842 /** 843 * skb_pad - zero pad the tail of an skb 844 * @skb: buffer to pad 845 * @pad: space to pad 846 * 847 * Ensure that a buffer is followed by a padding area that is zero 848 * filled. Used by network drivers which may DMA or transfer data 849 * beyond the buffer end onto the wire. 850 * 851 * May return error in out of memory cases. The skb is freed on error. 852 */ 853 854 int skb_pad(struct sk_buff *skb, int pad) 855 { 856 int err; 857 int ntail; 858 859 /* If the skbuff is non linear tailroom is always zero.. */ 860 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 861 memset(skb->data+skb->len, 0, pad); 862 return 0; 863 } 864 865 ntail = skb->data_len + pad - (skb->end - skb->tail); 866 if (likely(skb_cloned(skb) || ntail > 0)) { 867 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 868 if (unlikely(err)) 869 goto free_skb; 870 } 871 872 /* FIXME: The use of this function with non-linear skb's really needs 873 * to be audited. 874 */ 875 err = skb_linearize(skb); 876 if (unlikely(err)) 877 goto free_skb; 878 879 memset(skb->data + skb->len, 0, pad); 880 return 0; 881 882 free_skb: 883 kfree_skb(skb); 884 return err; 885 } 886 887 /** 888 * skb_put - add data to a buffer 889 * @skb: buffer to use 890 * @len: amount of data to add 891 * 892 * This function extends the used data area of the buffer. If this would 893 * exceed the total buffer size the kernel will panic. A pointer to the 894 * first byte of the extra data is returned. 895 */ 896 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 897 { 898 unsigned char *tmp = skb_tail_pointer(skb); 899 SKB_LINEAR_ASSERT(skb); 900 skb->tail += len; 901 skb->len += len; 902 if (unlikely(skb->tail > skb->end)) 903 skb_over_panic(skb, len, __builtin_return_address(0)); 904 return tmp; 905 } 906 EXPORT_SYMBOL(skb_put); 907 908 /** 909 * skb_push - add data to the start of a buffer 910 * @skb: buffer to use 911 * @len: amount of data to add 912 * 913 * This function extends the used data area of the buffer at the buffer 914 * start. If this would exceed the total buffer headroom the kernel will 915 * panic. A pointer to the first byte of the extra data is returned. 916 */ 917 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 918 { 919 skb->data -= len; 920 skb->len += len; 921 if (unlikely(skb->data<skb->head)) 922 skb_under_panic(skb, len, __builtin_return_address(0)); 923 return skb->data; 924 } 925 EXPORT_SYMBOL(skb_push); 926 927 /** 928 * skb_pull - remove data from the start of a buffer 929 * @skb: buffer to use 930 * @len: amount of data to remove 931 * 932 * This function removes data from the start of a buffer, returning 933 * the memory to the headroom. A pointer to the next data in the buffer 934 * is returned. Once the data has been pulled future pushes will overwrite 935 * the old data. 936 */ 937 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 938 { 939 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 940 } 941 EXPORT_SYMBOL(skb_pull); 942 943 /** 944 * skb_trim - remove end from a buffer 945 * @skb: buffer to alter 946 * @len: new length 947 * 948 * Cut the length of a buffer down by removing data from the tail. If 949 * the buffer is already under the length specified it is not modified. 950 * The skb must be linear. 951 */ 952 void skb_trim(struct sk_buff *skb, unsigned int len) 953 { 954 if (skb->len > len) 955 __skb_trim(skb, len); 956 } 957 EXPORT_SYMBOL(skb_trim); 958 959 /* Trims skb to length len. It can change skb pointers. 960 */ 961 962 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 963 { 964 struct sk_buff **fragp; 965 struct sk_buff *frag; 966 int offset = skb_headlen(skb); 967 int nfrags = skb_shinfo(skb)->nr_frags; 968 int i; 969 int err; 970 971 if (skb_cloned(skb) && 972 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 973 return err; 974 975 i = 0; 976 if (offset >= len) 977 goto drop_pages; 978 979 for (; i < nfrags; i++) { 980 int end = offset + skb_shinfo(skb)->frags[i].size; 981 982 if (end < len) { 983 offset = end; 984 continue; 985 } 986 987 skb_shinfo(skb)->frags[i++].size = len - offset; 988 989 drop_pages: 990 skb_shinfo(skb)->nr_frags = i; 991 992 for (; i < nfrags; i++) 993 put_page(skb_shinfo(skb)->frags[i].page); 994 995 if (skb_shinfo(skb)->frag_list) 996 skb_drop_fraglist(skb); 997 goto done; 998 } 999 1000 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1001 fragp = &frag->next) { 1002 int end = offset + frag->len; 1003 1004 if (skb_shared(frag)) { 1005 struct sk_buff *nfrag; 1006 1007 nfrag = skb_clone(frag, GFP_ATOMIC); 1008 if (unlikely(!nfrag)) 1009 return -ENOMEM; 1010 1011 nfrag->next = frag->next; 1012 kfree_skb(frag); 1013 frag = nfrag; 1014 *fragp = frag; 1015 } 1016 1017 if (end < len) { 1018 offset = end; 1019 continue; 1020 } 1021 1022 if (end > len && 1023 unlikely((err = pskb_trim(frag, len - offset)))) 1024 return err; 1025 1026 if (frag->next) 1027 skb_drop_list(&frag->next); 1028 break; 1029 } 1030 1031 done: 1032 if (len > skb_headlen(skb)) { 1033 skb->data_len -= skb->len - len; 1034 skb->len = len; 1035 } else { 1036 skb->len = len; 1037 skb->data_len = 0; 1038 skb_set_tail_pointer(skb, len); 1039 } 1040 1041 return 0; 1042 } 1043 1044 /** 1045 * __pskb_pull_tail - advance tail of skb header 1046 * @skb: buffer to reallocate 1047 * @delta: number of bytes to advance tail 1048 * 1049 * The function makes a sense only on a fragmented &sk_buff, 1050 * it expands header moving its tail forward and copying necessary 1051 * data from fragmented part. 1052 * 1053 * &sk_buff MUST have reference count of 1. 1054 * 1055 * Returns %NULL (and &sk_buff does not change) if pull failed 1056 * or value of new tail of skb in the case of success. 1057 * 1058 * All the pointers pointing into skb header may change and must be 1059 * reloaded after call to this function. 1060 */ 1061 1062 /* Moves tail of skb head forward, copying data from fragmented part, 1063 * when it is necessary. 1064 * 1. It may fail due to malloc failure. 1065 * 2. It may change skb pointers. 1066 * 1067 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1068 */ 1069 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1070 { 1071 /* If skb has not enough free space at tail, get new one 1072 * plus 128 bytes for future expansions. If we have enough 1073 * room at tail, reallocate without expansion only if skb is cloned. 1074 */ 1075 int i, k, eat = (skb->tail + delta) - skb->end; 1076 1077 if (eat > 0 || skb_cloned(skb)) { 1078 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1079 GFP_ATOMIC)) 1080 return NULL; 1081 } 1082 1083 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1084 BUG(); 1085 1086 /* Optimization: no fragments, no reasons to preestimate 1087 * size of pulled pages. Superb. 1088 */ 1089 if (!skb_shinfo(skb)->frag_list) 1090 goto pull_pages; 1091 1092 /* Estimate size of pulled pages. */ 1093 eat = delta; 1094 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1095 if (skb_shinfo(skb)->frags[i].size >= eat) 1096 goto pull_pages; 1097 eat -= skb_shinfo(skb)->frags[i].size; 1098 } 1099 1100 /* If we need update frag list, we are in troubles. 1101 * Certainly, it possible to add an offset to skb data, 1102 * but taking into account that pulling is expected to 1103 * be very rare operation, it is worth to fight against 1104 * further bloating skb head and crucify ourselves here instead. 1105 * Pure masohism, indeed. 8)8) 1106 */ 1107 if (eat) { 1108 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1109 struct sk_buff *clone = NULL; 1110 struct sk_buff *insp = NULL; 1111 1112 do { 1113 BUG_ON(!list); 1114 1115 if (list->len <= eat) { 1116 /* Eaten as whole. */ 1117 eat -= list->len; 1118 list = list->next; 1119 insp = list; 1120 } else { 1121 /* Eaten partially. */ 1122 1123 if (skb_shared(list)) { 1124 /* Sucks! We need to fork list. :-( */ 1125 clone = skb_clone(list, GFP_ATOMIC); 1126 if (!clone) 1127 return NULL; 1128 insp = list->next; 1129 list = clone; 1130 } else { 1131 /* This may be pulled without 1132 * problems. */ 1133 insp = list; 1134 } 1135 if (!pskb_pull(list, eat)) { 1136 if (clone) 1137 kfree_skb(clone); 1138 return NULL; 1139 } 1140 break; 1141 } 1142 } while (eat); 1143 1144 /* Free pulled out fragments. */ 1145 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1146 skb_shinfo(skb)->frag_list = list->next; 1147 kfree_skb(list); 1148 } 1149 /* And insert new clone at head. */ 1150 if (clone) { 1151 clone->next = list; 1152 skb_shinfo(skb)->frag_list = clone; 1153 } 1154 } 1155 /* Success! Now we may commit changes to skb data. */ 1156 1157 pull_pages: 1158 eat = delta; 1159 k = 0; 1160 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1161 if (skb_shinfo(skb)->frags[i].size <= eat) { 1162 put_page(skb_shinfo(skb)->frags[i].page); 1163 eat -= skb_shinfo(skb)->frags[i].size; 1164 } else { 1165 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1166 if (eat) { 1167 skb_shinfo(skb)->frags[k].page_offset += eat; 1168 skb_shinfo(skb)->frags[k].size -= eat; 1169 eat = 0; 1170 } 1171 k++; 1172 } 1173 } 1174 skb_shinfo(skb)->nr_frags = k; 1175 1176 skb->tail += delta; 1177 skb->data_len -= delta; 1178 1179 return skb_tail_pointer(skb); 1180 } 1181 1182 /* Copy some data bits from skb to kernel buffer. */ 1183 1184 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1185 { 1186 int i, copy; 1187 int start = skb_headlen(skb); 1188 1189 if (offset > (int)skb->len - len) 1190 goto fault; 1191 1192 /* Copy header. */ 1193 if ((copy = start - offset) > 0) { 1194 if (copy > len) 1195 copy = len; 1196 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1197 if ((len -= copy) == 0) 1198 return 0; 1199 offset += copy; 1200 to += copy; 1201 } 1202 1203 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1204 int end; 1205 1206 WARN_ON(start > offset + len); 1207 1208 end = start + skb_shinfo(skb)->frags[i].size; 1209 if ((copy = end - offset) > 0) { 1210 u8 *vaddr; 1211 1212 if (copy > len) 1213 copy = len; 1214 1215 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1216 memcpy(to, 1217 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1218 offset - start, copy); 1219 kunmap_skb_frag(vaddr); 1220 1221 if ((len -= copy) == 0) 1222 return 0; 1223 offset += copy; 1224 to += copy; 1225 } 1226 start = end; 1227 } 1228 1229 if (skb_shinfo(skb)->frag_list) { 1230 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1231 1232 for (; list; list = list->next) { 1233 int end; 1234 1235 WARN_ON(start > offset + len); 1236 1237 end = start + list->len; 1238 if ((copy = end - offset) > 0) { 1239 if (copy > len) 1240 copy = len; 1241 if (skb_copy_bits(list, offset - start, 1242 to, copy)) 1243 goto fault; 1244 if ((len -= copy) == 0) 1245 return 0; 1246 offset += copy; 1247 to += copy; 1248 } 1249 start = end; 1250 } 1251 } 1252 if (!len) 1253 return 0; 1254 1255 fault: 1256 return -EFAULT; 1257 } 1258 1259 /* 1260 * Callback from splice_to_pipe(), if we need to release some pages 1261 * at the end of the spd in case we error'ed out in filling the pipe. 1262 */ 1263 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1264 { 1265 struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private; 1266 1267 kfree_skb(skb); 1268 } 1269 1270 /* 1271 * Fill page/offset/length into spd, if it can hold more pages. 1272 */ 1273 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 1274 unsigned int len, unsigned int offset, 1275 struct sk_buff *skb) 1276 { 1277 if (unlikely(spd->nr_pages == PIPE_BUFFERS)) 1278 return 1; 1279 1280 spd->pages[spd->nr_pages] = page; 1281 spd->partial[spd->nr_pages].len = len; 1282 spd->partial[spd->nr_pages].offset = offset; 1283 spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb); 1284 spd->nr_pages++; 1285 return 0; 1286 } 1287 1288 static inline void __segment_seek(struct page **page, unsigned int *poff, 1289 unsigned int *plen, unsigned int off) 1290 { 1291 *poff += off; 1292 *page += *poff / PAGE_SIZE; 1293 *poff = *poff % PAGE_SIZE; 1294 *plen -= off; 1295 } 1296 1297 static inline int __splice_segment(struct page *page, unsigned int poff, 1298 unsigned int plen, unsigned int *off, 1299 unsigned int *len, struct sk_buff *skb, 1300 struct splice_pipe_desc *spd) 1301 { 1302 if (!*len) 1303 return 1; 1304 1305 /* skip this segment if already processed */ 1306 if (*off >= plen) { 1307 *off -= plen; 1308 return 0; 1309 } 1310 1311 /* ignore any bits we already processed */ 1312 if (*off) { 1313 __segment_seek(&page, &poff, &plen, *off); 1314 *off = 0; 1315 } 1316 1317 do { 1318 unsigned int flen = min(*len, plen); 1319 1320 /* the linear region may spread across several pages */ 1321 flen = min_t(unsigned int, flen, PAGE_SIZE - poff); 1322 1323 if (spd_fill_page(spd, page, flen, poff, skb)) 1324 return 1; 1325 1326 __segment_seek(&page, &poff, &plen, flen); 1327 *len -= flen; 1328 1329 } while (*len && plen); 1330 1331 return 0; 1332 } 1333 1334 /* 1335 * Map linear and fragment data from the skb to spd. It reports failure if the 1336 * pipe is full or if we already spliced the requested length. 1337 */ 1338 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset, 1339 unsigned int *len, 1340 struct splice_pipe_desc *spd) 1341 { 1342 int seg; 1343 1344 /* 1345 * map the linear part 1346 */ 1347 if (__splice_segment(virt_to_page(skb->data), 1348 (unsigned long) skb->data & (PAGE_SIZE - 1), 1349 skb_headlen(skb), 1350 offset, len, skb, spd)) 1351 return 1; 1352 1353 /* 1354 * then map the fragments 1355 */ 1356 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1357 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1358 1359 if (__splice_segment(f->page, f->page_offset, f->size, 1360 offset, len, skb, spd)) 1361 return 1; 1362 } 1363 1364 return 0; 1365 } 1366 1367 /* 1368 * Map data from the skb to a pipe. Should handle both the linear part, 1369 * the fragments, and the frag list. It does NOT handle frag lists within 1370 * the frag list, if such a thing exists. We'd probably need to recurse to 1371 * handle that cleanly. 1372 */ 1373 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset, 1374 struct pipe_inode_info *pipe, unsigned int tlen, 1375 unsigned int flags) 1376 { 1377 struct partial_page partial[PIPE_BUFFERS]; 1378 struct page *pages[PIPE_BUFFERS]; 1379 struct splice_pipe_desc spd = { 1380 .pages = pages, 1381 .partial = partial, 1382 .flags = flags, 1383 .ops = &sock_pipe_buf_ops, 1384 .spd_release = sock_spd_release, 1385 }; 1386 struct sk_buff *skb; 1387 1388 /* 1389 * I'd love to avoid the clone here, but tcp_read_sock() 1390 * ignores reference counts and unconditonally kills the sk_buff 1391 * on return from the actor. 1392 */ 1393 skb = skb_clone(__skb, GFP_KERNEL); 1394 if (unlikely(!skb)) 1395 return -ENOMEM; 1396 1397 /* 1398 * __skb_splice_bits() only fails if the output has no room left, 1399 * so no point in going over the frag_list for the error case. 1400 */ 1401 if (__skb_splice_bits(skb, &offset, &tlen, &spd)) 1402 goto done; 1403 else if (!tlen) 1404 goto done; 1405 1406 /* 1407 * now see if we have a frag_list to map 1408 */ 1409 if (skb_shinfo(skb)->frag_list) { 1410 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1411 1412 for (; list && tlen; list = list->next) { 1413 if (__skb_splice_bits(list, &offset, &tlen, &spd)) 1414 break; 1415 } 1416 } 1417 1418 done: 1419 /* 1420 * drop our reference to the clone, the pipe consumption will 1421 * drop the rest. 1422 */ 1423 kfree_skb(skb); 1424 1425 if (spd.nr_pages) { 1426 int ret; 1427 struct sock *sk = __skb->sk; 1428 1429 /* 1430 * Drop the socket lock, otherwise we have reverse 1431 * locking dependencies between sk_lock and i_mutex 1432 * here as compared to sendfile(). We enter here 1433 * with the socket lock held, and splice_to_pipe() will 1434 * grab the pipe inode lock. For sendfile() emulation, 1435 * we call into ->sendpage() with the i_mutex lock held 1436 * and networking will grab the socket lock. 1437 */ 1438 release_sock(sk); 1439 ret = splice_to_pipe(pipe, &spd); 1440 lock_sock(sk); 1441 return ret; 1442 } 1443 1444 return 0; 1445 } 1446 1447 /** 1448 * skb_store_bits - store bits from kernel buffer to skb 1449 * @skb: destination buffer 1450 * @offset: offset in destination 1451 * @from: source buffer 1452 * @len: number of bytes to copy 1453 * 1454 * Copy the specified number of bytes from the source buffer to the 1455 * destination skb. This function handles all the messy bits of 1456 * traversing fragment lists and such. 1457 */ 1458 1459 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1460 { 1461 int i, copy; 1462 int start = skb_headlen(skb); 1463 1464 if (offset > (int)skb->len - len) 1465 goto fault; 1466 1467 if ((copy = start - offset) > 0) { 1468 if (copy > len) 1469 copy = len; 1470 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1471 if ((len -= copy) == 0) 1472 return 0; 1473 offset += copy; 1474 from += copy; 1475 } 1476 1477 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1478 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1479 int end; 1480 1481 WARN_ON(start > offset + len); 1482 1483 end = start + frag->size; 1484 if ((copy = end - offset) > 0) { 1485 u8 *vaddr; 1486 1487 if (copy > len) 1488 copy = len; 1489 1490 vaddr = kmap_skb_frag(frag); 1491 memcpy(vaddr + frag->page_offset + offset - start, 1492 from, copy); 1493 kunmap_skb_frag(vaddr); 1494 1495 if ((len -= copy) == 0) 1496 return 0; 1497 offset += copy; 1498 from += copy; 1499 } 1500 start = end; 1501 } 1502 1503 if (skb_shinfo(skb)->frag_list) { 1504 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1505 1506 for (; list; list = list->next) { 1507 int end; 1508 1509 WARN_ON(start > offset + len); 1510 1511 end = start + list->len; 1512 if ((copy = end - offset) > 0) { 1513 if (copy > len) 1514 copy = len; 1515 if (skb_store_bits(list, offset - start, 1516 from, copy)) 1517 goto fault; 1518 if ((len -= copy) == 0) 1519 return 0; 1520 offset += copy; 1521 from += copy; 1522 } 1523 start = end; 1524 } 1525 } 1526 if (!len) 1527 return 0; 1528 1529 fault: 1530 return -EFAULT; 1531 } 1532 1533 EXPORT_SYMBOL(skb_store_bits); 1534 1535 /* Checksum skb data. */ 1536 1537 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1538 int len, __wsum csum) 1539 { 1540 int start = skb_headlen(skb); 1541 int i, copy = start - offset; 1542 int pos = 0; 1543 1544 /* Checksum header. */ 1545 if (copy > 0) { 1546 if (copy > len) 1547 copy = len; 1548 csum = csum_partial(skb->data + offset, copy, csum); 1549 if ((len -= copy) == 0) 1550 return csum; 1551 offset += copy; 1552 pos = copy; 1553 } 1554 1555 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1556 int end; 1557 1558 WARN_ON(start > offset + len); 1559 1560 end = start + skb_shinfo(skb)->frags[i].size; 1561 if ((copy = end - offset) > 0) { 1562 __wsum csum2; 1563 u8 *vaddr; 1564 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1565 1566 if (copy > len) 1567 copy = len; 1568 vaddr = kmap_skb_frag(frag); 1569 csum2 = csum_partial(vaddr + frag->page_offset + 1570 offset - start, copy, 0); 1571 kunmap_skb_frag(vaddr); 1572 csum = csum_block_add(csum, csum2, pos); 1573 if (!(len -= copy)) 1574 return csum; 1575 offset += copy; 1576 pos += copy; 1577 } 1578 start = end; 1579 } 1580 1581 if (skb_shinfo(skb)->frag_list) { 1582 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1583 1584 for (; list; list = list->next) { 1585 int end; 1586 1587 WARN_ON(start > offset + len); 1588 1589 end = start + list->len; 1590 if ((copy = end - offset) > 0) { 1591 __wsum csum2; 1592 if (copy > len) 1593 copy = len; 1594 csum2 = skb_checksum(list, offset - start, 1595 copy, 0); 1596 csum = csum_block_add(csum, csum2, pos); 1597 if ((len -= copy) == 0) 1598 return csum; 1599 offset += copy; 1600 pos += copy; 1601 } 1602 start = end; 1603 } 1604 } 1605 BUG_ON(len); 1606 1607 return csum; 1608 } 1609 1610 /* Both of above in one bottle. */ 1611 1612 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1613 u8 *to, int len, __wsum csum) 1614 { 1615 int start = skb_headlen(skb); 1616 int i, copy = start - offset; 1617 int pos = 0; 1618 1619 /* Copy header. */ 1620 if (copy > 0) { 1621 if (copy > len) 1622 copy = len; 1623 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1624 copy, csum); 1625 if ((len -= copy) == 0) 1626 return csum; 1627 offset += copy; 1628 to += copy; 1629 pos = copy; 1630 } 1631 1632 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1633 int end; 1634 1635 WARN_ON(start > offset + len); 1636 1637 end = start + skb_shinfo(skb)->frags[i].size; 1638 if ((copy = end - offset) > 0) { 1639 __wsum csum2; 1640 u8 *vaddr; 1641 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1642 1643 if (copy > len) 1644 copy = len; 1645 vaddr = kmap_skb_frag(frag); 1646 csum2 = csum_partial_copy_nocheck(vaddr + 1647 frag->page_offset + 1648 offset - start, to, 1649 copy, 0); 1650 kunmap_skb_frag(vaddr); 1651 csum = csum_block_add(csum, csum2, pos); 1652 if (!(len -= copy)) 1653 return csum; 1654 offset += copy; 1655 to += copy; 1656 pos += copy; 1657 } 1658 start = end; 1659 } 1660 1661 if (skb_shinfo(skb)->frag_list) { 1662 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1663 1664 for (; list; list = list->next) { 1665 __wsum csum2; 1666 int end; 1667 1668 WARN_ON(start > offset + len); 1669 1670 end = start + list->len; 1671 if ((copy = end - offset) > 0) { 1672 if (copy > len) 1673 copy = len; 1674 csum2 = skb_copy_and_csum_bits(list, 1675 offset - start, 1676 to, copy, 0); 1677 csum = csum_block_add(csum, csum2, pos); 1678 if ((len -= copy) == 0) 1679 return csum; 1680 offset += copy; 1681 to += copy; 1682 pos += copy; 1683 } 1684 start = end; 1685 } 1686 } 1687 BUG_ON(len); 1688 return csum; 1689 } 1690 1691 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1692 { 1693 __wsum csum; 1694 long csstart; 1695 1696 if (skb->ip_summed == CHECKSUM_PARTIAL) 1697 csstart = skb->csum_start - skb_headroom(skb); 1698 else 1699 csstart = skb_headlen(skb); 1700 1701 BUG_ON(csstart > skb_headlen(skb)); 1702 1703 skb_copy_from_linear_data(skb, to, csstart); 1704 1705 csum = 0; 1706 if (csstart != skb->len) 1707 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1708 skb->len - csstart, 0); 1709 1710 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1711 long csstuff = csstart + skb->csum_offset; 1712 1713 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1714 } 1715 } 1716 1717 /** 1718 * skb_dequeue - remove from the head of the queue 1719 * @list: list to dequeue from 1720 * 1721 * Remove the head of the list. The list lock is taken so the function 1722 * may be used safely with other locking list functions. The head item is 1723 * returned or %NULL if the list is empty. 1724 */ 1725 1726 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1727 { 1728 unsigned long flags; 1729 struct sk_buff *result; 1730 1731 spin_lock_irqsave(&list->lock, flags); 1732 result = __skb_dequeue(list); 1733 spin_unlock_irqrestore(&list->lock, flags); 1734 return result; 1735 } 1736 1737 /** 1738 * skb_dequeue_tail - remove from the tail of the queue 1739 * @list: list to dequeue from 1740 * 1741 * Remove the tail of the list. The list lock is taken so the function 1742 * may be used safely with other locking list functions. The tail item is 1743 * returned or %NULL if the list is empty. 1744 */ 1745 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1746 { 1747 unsigned long flags; 1748 struct sk_buff *result; 1749 1750 spin_lock_irqsave(&list->lock, flags); 1751 result = __skb_dequeue_tail(list); 1752 spin_unlock_irqrestore(&list->lock, flags); 1753 return result; 1754 } 1755 1756 /** 1757 * skb_queue_purge - empty a list 1758 * @list: list to empty 1759 * 1760 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1761 * the list and one reference dropped. This function takes the list 1762 * lock and is atomic with respect to other list locking functions. 1763 */ 1764 void skb_queue_purge(struct sk_buff_head *list) 1765 { 1766 struct sk_buff *skb; 1767 while ((skb = skb_dequeue(list)) != NULL) 1768 kfree_skb(skb); 1769 } 1770 1771 /** 1772 * skb_queue_head - queue a buffer at the list head 1773 * @list: list to use 1774 * @newsk: buffer to queue 1775 * 1776 * Queue a buffer at the start of the list. This function takes the 1777 * list lock and can be used safely with other locking &sk_buff functions 1778 * safely. 1779 * 1780 * A buffer cannot be placed on two lists at the same time. 1781 */ 1782 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1783 { 1784 unsigned long flags; 1785 1786 spin_lock_irqsave(&list->lock, flags); 1787 __skb_queue_head(list, newsk); 1788 spin_unlock_irqrestore(&list->lock, flags); 1789 } 1790 1791 /** 1792 * skb_queue_tail - queue a buffer at the list tail 1793 * @list: list to use 1794 * @newsk: buffer to queue 1795 * 1796 * Queue a buffer at the tail of the list. This function takes the 1797 * list lock and can be used safely with other locking &sk_buff functions 1798 * safely. 1799 * 1800 * A buffer cannot be placed on two lists at the same time. 1801 */ 1802 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1803 { 1804 unsigned long flags; 1805 1806 spin_lock_irqsave(&list->lock, flags); 1807 __skb_queue_tail(list, newsk); 1808 spin_unlock_irqrestore(&list->lock, flags); 1809 } 1810 1811 /** 1812 * skb_unlink - remove a buffer from a list 1813 * @skb: buffer to remove 1814 * @list: list to use 1815 * 1816 * Remove a packet from a list. The list locks are taken and this 1817 * function is atomic with respect to other list locked calls 1818 * 1819 * You must know what list the SKB is on. 1820 */ 1821 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1822 { 1823 unsigned long flags; 1824 1825 spin_lock_irqsave(&list->lock, flags); 1826 __skb_unlink(skb, list); 1827 spin_unlock_irqrestore(&list->lock, flags); 1828 } 1829 1830 /** 1831 * skb_append - append a buffer 1832 * @old: buffer to insert after 1833 * @newsk: buffer to insert 1834 * @list: list to use 1835 * 1836 * Place a packet after a given packet in a list. The list locks are taken 1837 * and this function is atomic with respect to other list locked calls. 1838 * A buffer cannot be placed on two lists at the same time. 1839 */ 1840 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1841 { 1842 unsigned long flags; 1843 1844 spin_lock_irqsave(&list->lock, flags); 1845 __skb_queue_after(list, old, newsk); 1846 spin_unlock_irqrestore(&list->lock, flags); 1847 } 1848 1849 1850 /** 1851 * skb_insert - insert a buffer 1852 * @old: buffer to insert before 1853 * @newsk: buffer to insert 1854 * @list: list to use 1855 * 1856 * Place a packet before a given packet in a list. The list locks are 1857 * taken and this function is atomic with respect to other list locked 1858 * calls. 1859 * 1860 * A buffer cannot be placed on two lists at the same time. 1861 */ 1862 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1863 { 1864 unsigned long flags; 1865 1866 spin_lock_irqsave(&list->lock, flags); 1867 __skb_insert(newsk, old->prev, old, list); 1868 spin_unlock_irqrestore(&list->lock, flags); 1869 } 1870 1871 static inline void skb_split_inside_header(struct sk_buff *skb, 1872 struct sk_buff* skb1, 1873 const u32 len, const int pos) 1874 { 1875 int i; 1876 1877 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 1878 pos - len); 1879 /* And move data appendix as is. */ 1880 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1881 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1882 1883 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1884 skb_shinfo(skb)->nr_frags = 0; 1885 skb1->data_len = skb->data_len; 1886 skb1->len += skb1->data_len; 1887 skb->data_len = 0; 1888 skb->len = len; 1889 skb_set_tail_pointer(skb, len); 1890 } 1891 1892 static inline void skb_split_no_header(struct sk_buff *skb, 1893 struct sk_buff* skb1, 1894 const u32 len, int pos) 1895 { 1896 int i, k = 0; 1897 const int nfrags = skb_shinfo(skb)->nr_frags; 1898 1899 skb_shinfo(skb)->nr_frags = 0; 1900 skb1->len = skb1->data_len = skb->len - len; 1901 skb->len = len; 1902 skb->data_len = len - pos; 1903 1904 for (i = 0; i < nfrags; i++) { 1905 int size = skb_shinfo(skb)->frags[i].size; 1906 1907 if (pos + size > len) { 1908 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1909 1910 if (pos < len) { 1911 /* Split frag. 1912 * We have two variants in this case: 1913 * 1. Move all the frag to the second 1914 * part, if it is possible. F.e. 1915 * this approach is mandatory for TUX, 1916 * where splitting is expensive. 1917 * 2. Split is accurately. We make this. 1918 */ 1919 get_page(skb_shinfo(skb)->frags[i].page); 1920 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1921 skb_shinfo(skb1)->frags[0].size -= len - pos; 1922 skb_shinfo(skb)->frags[i].size = len - pos; 1923 skb_shinfo(skb)->nr_frags++; 1924 } 1925 k++; 1926 } else 1927 skb_shinfo(skb)->nr_frags++; 1928 pos += size; 1929 } 1930 skb_shinfo(skb1)->nr_frags = k; 1931 } 1932 1933 /** 1934 * skb_split - Split fragmented skb to two parts at length len. 1935 * @skb: the buffer to split 1936 * @skb1: the buffer to receive the second part 1937 * @len: new length for skb 1938 */ 1939 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1940 { 1941 int pos = skb_headlen(skb); 1942 1943 if (len < pos) /* Split line is inside header. */ 1944 skb_split_inside_header(skb, skb1, len, pos); 1945 else /* Second chunk has no header, nothing to copy. */ 1946 skb_split_no_header(skb, skb1, len, pos); 1947 } 1948 1949 /** 1950 * skb_prepare_seq_read - Prepare a sequential read of skb data 1951 * @skb: the buffer to read 1952 * @from: lower offset of data to be read 1953 * @to: upper offset of data to be read 1954 * @st: state variable 1955 * 1956 * Initializes the specified state variable. Must be called before 1957 * invoking skb_seq_read() for the first time. 1958 */ 1959 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1960 unsigned int to, struct skb_seq_state *st) 1961 { 1962 st->lower_offset = from; 1963 st->upper_offset = to; 1964 st->root_skb = st->cur_skb = skb; 1965 st->frag_idx = st->stepped_offset = 0; 1966 st->frag_data = NULL; 1967 } 1968 1969 /** 1970 * skb_seq_read - Sequentially read skb data 1971 * @consumed: number of bytes consumed by the caller so far 1972 * @data: destination pointer for data to be returned 1973 * @st: state variable 1974 * 1975 * Reads a block of skb data at &consumed relative to the 1976 * lower offset specified to skb_prepare_seq_read(). Assigns 1977 * the head of the data block to &data and returns the length 1978 * of the block or 0 if the end of the skb data or the upper 1979 * offset has been reached. 1980 * 1981 * The caller is not required to consume all of the data 1982 * returned, i.e. &consumed is typically set to the number 1983 * of bytes already consumed and the next call to 1984 * skb_seq_read() will return the remaining part of the block. 1985 * 1986 * Note 1: The size of each block of data returned can be arbitary, 1987 * this limitation is the cost for zerocopy seqeuental 1988 * reads of potentially non linear data. 1989 * 1990 * Note 2: Fragment lists within fragments are not implemented 1991 * at the moment, state->root_skb could be replaced with 1992 * a stack for this purpose. 1993 */ 1994 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1995 struct skb_seq_state *st) 1996 { 1997 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1998 skb_frag_t *frag; 1999 2000 if (unlikely(abs_offset >= st->upper_offset)) 2001 return 0; 2002 2003 next_skb: 2004 block_limit = skb_headlen(st->cur_skb); 2005 2006 if (abs_offset < block_limit) { 2007 *data = st->cur_skb->data + abs_offset; 2008 return block_limit - abs_offset; 2009 } 2010 2011 if (st->frag_idx == 0 && !st->frag_data) 2012 st->stepped_offset += skb_headlen(st->cur_skb); 2013 2014 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2015 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2016 block_limit = frag->size + st->stepped_offset; 2017 2018 if (abs_offset < block_limit) { 2019 if (!st->frag_data) 2020 st->frag_data = kmap_skb_frag(frag); 2021 2022 *data = (u8 *) st->frag_data + frag->page_offset + 2023 (abs_offset - st->stepped_offset); 2024 2025 return block_limit - abs_offset; 2026 } 2027 2028 if (st->frag_data) { 2029 kunmap_skb_frag(st->frag_data); 2030 st->frag_data = NULL; 2031 } 2032 2033 st->frag_idx++; 2034 st->stepped_offset += frag->size; 2035 } 2036 2037 if (st->frag_data) { 2038 kunmap_skb_frag(st->frag_data); 2039 st->frag_data = NULL; 2040 } 2041 2042 if (st->cur_skb->next) { 2043 st->cur_skb = st->cur_skb->next; 2044 st->frag_idx = 0; 2045 goto next_skb; 2046 } else if (st->root_skb == st->cur_skb && 2047 skb_shinfo(st->root_skb)->frag_list) { 2048 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2049 goto next_skb; 2050 } 2051 2052 return 0; 2053 } 2054 2055 /** 2056 * skb_abort_seq_read - Abort a sequential read of skb data 2057 * @st: state variable 2058 * 2059 * Must be called if skb_seq_read() was not called until it 2060 * returned 0. 2061 */ 2062 void skb_abort_seq_read(struct skb_seq_state *st) 2063 { 2064 if (st->frag_data) 2065 kunmap_skb_frag(st->frag_data); 2066 } 2067 2068 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2069 2070 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2071 struct ts_config *conf, 2072 struct ts_state *state) 2073 { 2074 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2075 } 2076 2077 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2078 { 2079 skb_abort_seq_read(TS_SKB_CB(state)); 2080 } 2081 2082 /** 2083 * skb_find_text - Find a text pattern in skb data 2084 * @skb: the buffer to look in 2085 * @from: search offset 2086 * @to: search limit 2087 * @config: textsearch configuration 2088 * @state: uninitialized textsearch state variable 2089 * 2090 * Finds a pattern in the skb data according to the specified 2091 * textsearch configuration. Use textsearch_next() to retrieve 2092 * subsequent occurrences of the pattern. Returns the offset 2093 * to the first occurrence or UINT_MAX if no match was found. 2094 */ 2095 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2096 unsigned int to, struct ts_config *config, 2097 struct ts_state *state) 2098 { 2099 unsigned int ret; 2100 2101 config->get_next_block = skb_ts_get_next_block; 2102 config->finish = skb_ts_finish; 2103 2104 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2105 2106 ret = textsearch_find(config, state); 2107 return (ret <= to - from ? ret : UINT_MAX); 2108 } 2109 2110 /** 2111 * skb_append_datato_frags: - append the user data to a skb 2112 * @sk: sock structure 2113 * @skb: skb structure to be appened with user data. 2114 * @getfrag: call back function to be used for getting the user data 2115 * @from: pointer to user message iov 2116 * @length: length of the iov message 2117 * 2118 * Description: This procedure append the user data in the fragment part 2119 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2120 */ 2121 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2122 int (*getfrag)(void *from, char *to, int offset, 2123 int len, int odd, struct sk_buff *skb), 2124 void *from, int length) 2125 { 2126 int frg_cnt = 0; 2127 skb_frag_t *frag = NULL; 2128 struct page *page = NULL; 2129 int copy, left; 2130 int offset = 0; 2131 int ret; 2132 2133 do { 2134 /* Return error if we don't have space for new frag */ 2135 frg_cnt = skb_shinfo(skb)->nr_frags; 2136 if (frg_cnt >= MAX_SKB_FRAGS) 2137 return -EFAULT; 2138 2139 /* allocate a new page for next frag */ 2140 page = alloc_pages(sk->sk_allocation, 0); 2141 2142 /* If alloc_page fails just return failure and caller will 2143 * free previous allocated pages by doing kfree_skb() 2144 */ 2145 if (page == NULL) 2146 return -ENOMEM; 2147 2148 /* initialize the next frag */ 2149 sk->sk_sndmsg_page = page; 2150 sk->sk_sndmsg_off = 0; 2151 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 2152 skb->truesize += PAGE_SIZE; 2153 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 2154 2155 /* get the new initialized frag */ 2156 frg_cnt = skb_shinfo(skb)->nr_frags; 2157 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 2158 2159 /* copy the user data to page */ 2160 left = PAGE_SIZE - frag->page_offset; 2161 copy = (length > left)? left : length; 2162 2163 ret = getfrag(from, (page_address(frag->page) + 2164 frag->page_offset + frag->size), 2165 offset, copy, 0, skb); 2166 if (ret < 0) 2167 return -EFAULT; 2168 2169 /* copy was successful so update the size parameters */ 2170 sk->sk_sndmsg_off += copy; 2171 frag->size += copy; 2172 skb->len += copy; 2173 skb->data_len += copy; 2174 offset += copy; 2175 length -= copy; 2176 2177 } while (length > 0); 2178 2179 return 0; 2180 } 2181 2182 /** 2183 * skb_pull_rcsum - pull skb and update receive checksum 2184 * @skb: buffer to update 2185 * @len: length of data pulled 2186 * 2187 * This function performs an skb_pull on the packet and updates 2188 * the CHECKSUM_COMPLETE checksum. It should be used on 2189 * receive path processing instead of skb_pull unless you know 2190 * that the checksum difference is zero (e.g., a valid IP header) 2191 * or you are setting ip_summed to CHECKSUM_NONE. 2192 */ 2193 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2194 { 2195 BUG_ON(len > skb->len); 2196 skb->len -= len; 2197 BUG_ON(skb->len < skb->data_len); 2198 skb_postpull_rcsum(skb, skb->data, len); 2199 return skb->data += len; 2200 } 2201 2202 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2203 2204 /** 2205 * skb_segment - Perform protocol segmentation on skb. 2206 * @skb: buffer to segment 2207 * @features: features for the output path (see dev->features) 2208 * 2209 * This function performs segmentation on the given skb. It returns 2210 * a pointer to the first in a list of new skbs for the segments. 2211 * In case of error it returns ERR_PTR(err). 2212 */ 2213 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 2214 { 2215 struct sk_buff *segs = NULL; 2216 struct sk_buff *tail = NULL; 2217 unsigned int mss = skb_shinfo(skb)->gso_size; 2218 unsigned int doffset = skb->data - skb_mac_header(skb); 2219 unsigned int offset = doffset; 2220 unsigned int headroom; 2221 unsigned int len; 2222 int sg = features & NETIF_F_SG; 2223 int nfrags = skb_shinfo(skb)->nr_frags; 2224 int err = -ENOMEM; 2225 int i = 0; 2226 int pos; 2227 2228 __skb_push(skb, doffset); 2229 headroom = skb_headroom(skb); 2230 pos = skb_headlen(skb); 2231 2232 do { 2233 struct sk_buff *nskb; 2234 skb_frag_t *frag; 2235 int hsize; 2236 int k; 2237 int size; 2238 2239 len = skb->len - offset; 2240 if (len > mss) 2241 len = mss; 2242 2243 hsize = skb_headlen(skb) - offset; 2244 if (hsize < 0) 2245 hsize = 0; 2246 if (hsize > len || !sg) 2247 hsize = len; 2248 2249 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC); 2250 if (unlikely(!nskb)) 2251 goto err; 2252 2253 if (segs) 2254 tail->next = nskb; 2255 else 2256 segs = nskb; 2257 tail = nskb; 2258 2259 __copy_skb_header(nskb, skb); 2260 nskb->mac_len = skb->mac_len; 2261 2262 skb_reserve(nskb, headroom); 2263 skb_reset_mac_header(nskb); 2264 skb_set_network_header(nskb, skb->mac_len); 2265 nskb->transport_header = (nskb->network_header + 2266 skb_network_header_len(skb)); 2267 skb_copy_from_linear_data(skb, skb_put(nskb, doffset), 2268 doffset); 2269 if (!sg) { 2270 nskb->ip_summed = CHECKSUM_NONE; 2271 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2272 skb_put(nskb, len), 2273 len, 0); 2274 continue; 2275 } 2276 2277 frag = skb_shinfo(nskb)->frags; 2278 k = 0; 2279 2280 skb_copy_from_linear_data_offset(skb, offset, 2281 skb_put(nskb, hsize), hsize); 2282 2283 while (pos < offset + len) { 2284 BUG_ON(i >= nfrags); 2285 2286 *frag = skb_shinfo(skb)->frags[i]; 2287 get_page(frag->page); 2288 size = frag->size; 2289 2290 if (pos < offset) { 2291 frag->page_offset += offset - pos; 2292 frag->size -= offset - pos; 2293 } 2294 2295 k++; 2296 2297 if (pos + size <= offset + len) { 2298 i++; 2299 pos += size; 2300 } else { 2301 frag->size -= pos + size - (offset + len); 2302 break; 2303 } 2304 2305 frag++; 2306 } 2307 2308 skb_shinfo(nskb)->nr_frags = k; 2309 nskb->data_len = len - hsize; 2310 nskb->len += nskb->data_len; 2311 nskb->truesize += nskb->data_len; 2312 } while ((offset += len) < skb->len); 2313 2314 return segs; 2315 2316 err: 2317 while ((skb = segs)) { 2318 segs = skb->next; 2319 kfree_skb(skb); 2320 } 2321 return ERR_PTR(err); 2322 } 2323 2324 EXPORT_SYMBOL_GPL(skb_segment); 2325 2326 void __init skb_init(void) 2327 { 2328 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2329 sizeof(struct sk_buff), 2330 0, 2331 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2332 NULL); 2333 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2334 (2*sizeof(struct sk_buff)) + 2335 sizeof(atomic_t), 2336 0, 2337 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2338 NULL); 2339 } 2340 2341 /** 2342 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2343 * @skb: Socket buffer containing the buffers to be mapped 2344 * @sg: The scatter-gather list to map into 2345 * @offset: The offset into the buffer's contents to start mapping 2346 * @len: Length of buffer space to be mapped 2347 * 2348 * Fill the specified scatter-gather list with mappings/pointers into a 2349 * region of the buffer space attached to a socket buffer. 2350 */ 2351 static int 2352 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2353 { 2354 int start = skb_headlen(skb); 2355 int i, copy = start - offset; 2356 int elt = 0; 2357 2358 if (copy > 0) { 2359 if (copy > len) 2360 copy = len; 2361 sg_set_buf(sg, skb->data + offset, copy); 2362 elt++; 2363 if ((len -= copy) == 0) 2364 return elt; 2365 offset += copy; 2366 } 2367 2368 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2369 int end; 2370 2371 WARN_ON(start > offset + len); 2372 2373 end = start + skb_shinfo(skb)->frags[i].size; 2374 if ((copy = end - offset) > 0) { 2375 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2376 2377 if (copy > len) 2378 copy = len; 2379 sg_set_page(&sg[elt], frag->page, copy, 2380 frag->page_offset+offset-start); 2381 elt++; 2382 if (!(len -= copy)) 2383 return elt; 2384 offset += copy; 2385 } 2386 start = end; 2387 } 2388 2389 if (skb_shinfo(skb)->frag_list) { 2390 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2391 2392 for (; list; list = list->next) { 2393 int end; 2394 2395 WARN_ON(start > offset + len); 2396 2397 end = start + list->len; 2398 if ((copy = end - offset) > 0) { 2399 if (copy > len) 2400 copy = len; 2401 elt += __skb_to_sgvec(list, sg+elt, offset - start, 2402 copy); 2403 if ((len -= copy) == 0) 2404 return elt; 2405 offset += copy; 2406 } 2407 start = end; 2408 } 2409 } 2410 BUG_ON(len); 2411 return elt; 2412 } 2413 2414 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2415 { 2416 int nsg = __skb_to_sgvec(skb, sg, offset, len); 2417 2418 sg_mark_end(&sg[nsg - 1]); 2419 2420 return nsg; 2421 } 2422 2423 /** 2424 * skb_cow_data - Check that a socket buffer's data buffers are writable 2425 * @skb: The socket buffer to check. 2426 * @tailbits: Amount of trailing space to be added 2427 * @trailer: Returned pointer to the skb where the @tailbits space begins 2428 * 2429 * Make sure that the data buffers attached to a socket buffer are 2430 * writable. If they are not, private copies are made of the data buffers 2431 * and the socket buffer is set to use these instead. 2432 * 2433 * If @tailbits is given, make sure that there is space to write @tailbits 2434 * bytes of data beyond current end of socket buffer. @trailer will be 2435 * set to point to the skb in which this space begins. 2436 * 2437 * The number of scatterlist elements required to completely map the 2438 * COW'd and extended socket buffer will be returned. 2439 */ 2440 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2441 { 2442 int copyflag; 2443 int elt; 2444 struct sk_buff *skb1, **skb_p; 2445 2446 /* If skb is cloned or its head is paged, reallocate 2447 * head pulling out all the pages (pages are considered not writable 2448 * at the moment even if they are anonymous). 2449 */ 2450 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2451 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2452 return -ENOMEM; 2453 2454 /* Easy case. Most of packets will go this way. */ 2455 if (!skb_shinfo(skb)->frag_list) { 2456 /* A little of trouble, not enough of space for trailer. 2457 * This should not happen, when stack is tuned to generate 2458 * good frames. OK, on miss we reallocate and reserve even more 2459 * space, 128 bytes is fair. */ 2460 2461 if (skb_tailroom(skb) < tailbits && 2462 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2463 return -ENOMEM; 2464 2465 /* Voila! */ 2466 *trailer = skb; 2467 return 1; 2468 } 2469 2470 /* Misery. We are in troubles, going to mincer fragments... */ 2471 2472 elt = 1; 2473 skb_p = &skb_shinfo(skb)->frag_list; 2474 copyflag = 0; 2475 2476 while ((skb1 = *skb_p) != NULL) { 2477 int ntail = 0; 2478 2479 /* The fragment is partially pulled by someone, 2480 * this can happen on input. Copy it and everything 2481 * after it. */ 2482 2483 if (skb_shared(skb1)) 2484 copyflag = 1; 2485 2486 /* If the skb is the last, worry about trailer. */ 2487 2488 if (skb1->next == NULL && tailbits) { 2489 if (skb_shinfo(skb1)->nr_frags || 2490 skb_shinfo(skb1)->frag_list || 2491 skb_tailroom(skb1) < tailbits) 2492 ntail = tailbits + 128; 2493 } 2494 2495 if (copyflag || 2496 skb_cloned(skb1) || 2497 ntail || 2498 skb_shinfo(skb1)->nr_frags || 2499 skb_shinfo(skb1)->frag_list) { 2500 struct sk_buff *skb2; 2501 2502 /* Fuck, we are miserable poor guys... */ 2503 if (ntail == 0) 2504 skb2 = skb_copy(skb1, GFP_ATOMIC); 2505 else 2506 skb2 = skb_copy_expand(skb1, 2507 skb_headroom(skb1), 2508 ntail, 2509 GFP_ATOMIC); 2510 if (unlikely(skb2 == NULL)) 2511 return -ENOMEM; 2512 2513 if (skb1->sk) 2514 skb_set_owner_w(skb2, skb1->sk); 2515 2516 /* Looking around. Are we still alive? 2517 * OK, link new skb, drop old one */ 2518 2519 skb2->next = skb1->next; 2520 *skb_p = skb2; 2521 kfree_skb(skb1); 2522 skb1 = skb2; 2523 } 2524 elt++; 2525 *trailer = skb1; 2526 skb_p = &skb1->next; 2527 } 2528 2529 return elt; 2530 } 2531 2532 /** 2533 * skb_partial_csum_set - set up and verify partial csum values for packet 2534 * @skb: the skb to set 2535 * @start: the number of bytes after skb->data to start checksumming. 2536 * @off: the offset from start to place the checksum. 2537 * 2538 * For untrusted partially-checksummed packets, we need to make sure the values 2539 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 2540 * 2541 * This function checks and sets those values and skb->ip_summed: if this 2542 * returns false you should drop the packet. 2543 */ 2544 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 2545 { 2546 if (unlikely(start > skb->len - 2) || 2547 unlikely((int)start + off > skb->len - 2)) { 2548 if (net_ratelimit()) 2549 printk(KERN_WARNING 2550 "bad partial csum: csum=%u/%u len=%u\n", 2551 start, off, skb->len); 2552 return false; 2553 } 2554 skb->ip_summed = CHECKSUM_PARTIAL; 2555 skb->csum_start = skb_headroom(skb) + start; 2556 skb->csum_offset = off; 2557 return true; 2558 } 2559 2560 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 2561 { 2562 if (net_ratelimit()) 2563 pr_warning("%s: received packets cannot be forwarded" 2564 " while LRO is enabled\n", skb->dev->name); 2565 } 2566 2567 EXPORT_SYMBOL(___pskb_trim); 2568 EXPORT_SYMBOL(__kfree_skb); 2569 EXPORT_SYMBOL(kfree_skb); 2570 EXPORT_SYMBOL(__pskb_pull_tail); 2571 EXPORT_SYMBOL(__alloc_skb); 2572 EXPORT_SYMBOL(__netdev_alloc_skb); 2573 EXPORT_SYMBOL(pskb_copy); 2574 EXPORT_SYMBOL(pskb_expand_head); 2575 EXPORT_SYMBOL(skb_checksum); 2576 EXPORT_SYMBOL(skb_clone); 2577 EXPORT_SYMBOL(skb_copy); 2578 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2579 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2580 EXPORT_SYMBOL(skb_copy_bits); 2581 EXPORT_SYMBOL(skb_copy_expand); 2582 EXPORT_SYMBOL(skb_over_panic); 2583 EXPORT_SYMBOL(skb_pad); 2584 EXPORT_SYMBOL(skb_realloc_headroom); 2585 EXPORT_SYMBOL(skb_under_panic); 2586 EXPORT_SYMBOL(skb_dequeue); 2587 EXPORT_SYMBOL(skb_dequeue_tail); 2588 EXPORT_SYMBOL(skb_insert); 2589 EXPORT_SYMBOL(skb_queue_purge); 2590 EXPORT_SYMBOL(skb_queue_head); 2591 EXPORT_SYMBOL(skb_queue_tail); 2592 EXPORT_SYMBOL(skb_unlink); 2593 EXPORT_SYMBOL(skb_append); 2594 EXPORT_SYMBOL(skb_split); 2595 EXPORT_SYMBOL(skb_prepare_seq_read); 2596 EXPORT_SYMBOL(skb_seq_read); 2597 EXPORT_SYMBOL(skb_abort_seq_read); 2598 EXPORT_SYMBOL(skb_find_text); 2599 EXPORT_SYMBOL(skb_append_datato_frags); 2600 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 2601 2602 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2603 EXPORT_SYMBOL_GPL(skb_cow_data); 2604 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 2605