1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/tcp.h> 51 #include <linux/udp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 66 #include <net/protocol.h> 67 #include <net/dst.h> 68 #include <net/sock.h> 69 #include <net/checksum.h> 70 #include <net/ip6_checksum.h> 71 #include <net/xfrm.h> 72 73 #include <asm/uaccess.h> 74 #include <trace/events/skb.h> 75 #include <linux/highmem.h> 76 77 struct kmem_cache *skbuff_head_cache __read_mostly; 78 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 79 80 /** 81 * skb_panic - private function for out-of-line support 82 * @skb: buffer 83 * @sz: size 84 * @addr: address 85 * @msg: skb_over_panic or skb_under_panic 86 * 87 * Out-of-line support for skb_put() and skb_push(). 88 * Called via the wrapper skb_over_panic() or skb_under_panic(). 89 * Keep out of line to prevent kernel bloat. 90 * __builtin_return_address is not used because it is not always reliable. 91 */ 92 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 93 const char msg[]) 94 { 95 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 96 msg, addr, skb->len, sz, skb->head, skb->data, 97 (unsigned long)skb->tail, (unsigned long)skb->end, 98 skb->dev ? skb->dev->name : "<NULL>"); 99 BUG(); 100 } 101 102 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 103 { 104 skb_panic(skb, sz, addr, __func__); 105 } 106 107 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 108 { 109 skb_panic(skb, sz, addr, __func__); 110 } 111 112 /* 113 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 114 * the caller if emergency pfmemalloc reserves are being used. If it is and 115 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 116 * may be used. Otherwise, the packet data may be discarded until enough 117 * memory is free 118 */ 119 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 120 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 121 122 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 123 unsigned long ip, bool *pfmemalloc) 124 { 125 void *obj; 126 bool ret_pfmemalloc = false; 127 128 /* 129 * Try a regular allocation, when that fails and we're not entitled 130 * to the reserves, fail. 131 */ 132 obj = kmalloc_node_track_caller(size, 133 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 134 node); 135 if (obj || !(gfp_pfmemalloc_allowed(flags))) 136 goto out; 137 138 /* Try again but now we are using pfmemalloc reserves */ 139 ret_pfmemalloc = true; 140 obj = kmalloc_node_track_caller(size, flags, node); 141 142 out: 143 if (pfmemalloc) 144 *pfmemalloc = ret_pfmemalloc; 145 146 return obj; 147 } 148 149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 150 * 'private' fields and also do memory statistics to find all the 151 * [BEEP] leaks. 152 * 153 */ 154 155 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node) 156 { 157 struct sk_buff *skb; 158 159 /* Get the HEAD */ 160 skb = kmem_cache_alloc_node(skbuff_head_cache, 161 gfp_mask & ~__GFP_DMA, node); 162 if (!skb) 163 goto out; 164 165 /* 166 * Only clear those fields we need to clear, not those that we will 167 * actually initialise below. Hence, don't put any more fields after 168 * the tail pointer in struct sk_buff! 169 */ 170 memset(skb, 0, offsetof(struct sk_buff, tail)); 171 skb->head = NULL; 172 skb->truesize = sizeof(struct sk_buff); 173 atomic_set(&skb->users, 1); 174 175 skb->mac_header = (typeof(skb->mac_header))~0U; 176 out: 177 return skb; 178 } 179 180 /** 181 * __alloc_skb - allocate a network buffer 182 * @size: size to allocate 183 * @gfp_mask: allocation mask 184 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 185 * instead of head cache and allocate a cloned (child) skb. 186 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 187 * allocations in case the data is required for writeback 188 * @node: numa node to allocate memory on 189 * 190 * Allocate a new &sk_buff. The returned buffer has no headroom and a 191 * tail room of at least size bytes. The object has a reference count 192 * of one. The return is the buffer. On a failure the return is %NULL. 193 * 194 * Buffers may only be allocated from interrupts using a @gfp_mask of 195 * %GFP_ATOMIC. 196 */ 197 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 198 int flags, int node) 199 { 200 struct kmem_cache *cache; 201 struct skb_shared_info *shinfo; 202 struct sk_buff *skb; 203 u8 *data; 204 bool pfmemalloc; 205 206 cache = (flags & SKB_ALLOC_FCLONE) 207 ? skbuff_fclone_cache : skbuff_head_cache; 208 209 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 210 gfp_mask |= __GFP_MEMALLOC; 211 212 /* Get the HEAD */ 213 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 214 if (!skb) 215 goto out; 216 prefetchw(skb); 217 218 /* We do our best to align skb_shared_info on a separate cache 219 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 220 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 221 * Both skb->head and skb_shared_info are cache line aligned. 222 */ 223 size = SKB_DATA_ALIGN(size); 224 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 225 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 226 if (!data) 227 goto nodata; 228 /* kmalloc(size) might give us more room than requested. 229 * Put skb_shared_info exactly at the end of allocated zone, 230 * to allow max possible filling before reallocation. 231 */ 232 size = SKB_WITH_OVERHEAD(ksize(data)); 233 prefetchw(data + size); 234 235 /* 236 * Only clear those fields we need to clear, not those that we will 237 * actually initialise below. Hence, don't put any more fields after 238 * the tail pointer in struct sk_buff! 239 */ 240 memset(skb, 0, offsetof(struct sk_buff, tail)); 241 /* Account for allocated memory : skb + skb->head */ 242 skb->truesize = SKB_TRUESIZE(size); 243 skb->pfmemalloc = pfmemalloc; 244 atomic_set(&skb->users, 1); 245 skb->head = data; 246 skb->data = data; 247 skb_reset_tail_pointer(skb); 248 skb->end = skb->tail + size; 249 skb->mac_header = (typeof(skb->mac_header))~0U; 250 skb->transport_header = (typeof(skb->transport_header))~0U; 251 252 /* make sure we initialize shinfo sequentially */ 253 shinfo = skb_shinfo(skb); 254 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 255 atomic_set(&shinfo->dataref, 1); 256 kmemcheck_annotate_variable(shinfo->destructor_arg); 257 258 if (flags & SKB_ALLOC_FCLONE) { 259 struct sk_buff *child = skb + 1; 260 atomic_t *fclone_ref = (atomic_t *) (child + 1); 261 262 kmemcheck_annotate_bitfield(child, flags1); 263 kmemcheck_annotate_bitfield(child, flags2); 264 skb->fclone = SKB_FCLONE_ORIG; 265 atomic_set(fclone_ref, 1); 266 267 child->fclone = SKB_FCLONE_UNAVAILABLE; 268 child->pfmemalloc = pfmemalloc; 269 } 270 out: 271 return skb; 272 nodata: 273 kmem_cache_free(cache, skb); 274 skb = NULL; 275 goto out; 276 } 277 EXPORT_SYMBOL(__alloc_skb); 278 279 /** 280 * build_skb - build a network buffer 281 * @data: data buffer provided by caller 282 * @frag_size: size of fragment, or 0 if head was kmalloced 283 * 284 * Allocate a new &sk_buff. Caller provides space holding head and 285 * skb_shared_info. @data must have been allocated by kmalloc() only if 286 * @frag_size is 0, otherwise data should come from the page allocator. 287 * The return is the new skb buffer. 288 * On a failure the return is %NULL, and @data is not freed. 289 * Notes : 290 * Before IO, driver allocates only data buffer where NIC put incoming frame 291 * Driver should add room at head (NET_SKB_PAD) and 292 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 293 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 294 * before giving packet to stack. 295 * RX rings only contains data buffers, not full skbs. 296 */ 297 struct sk_buff *build_skb(void *data, unsigned int frag_size) 298 { 299 struct skb_shared_info *shinfo; 300 struct sk_buff *skb; 301 unsigned int size = frag_size ? : ksize(data); 302 303 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 304 if (!skb) 305 return NULL; 306 307 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 308 309 memset(skb, 0, offsetof(struct sk_buff, tail)); 310 skb->truesize = SKB_TRUESIZE(size); 311 skb->head_frag = frag_size != 0; 312 atomic_set(&skb->users, 1); 313 skb->head = data; 314 skb->data = data; 315 skb_reset_tail_pointer(skb); 316 skb->end = skb->tail + size; 317 skb->mac_header = (typeof(skb->mac_header))~0U; 318 skb->transport_header = (typeof(skb->transport_header))~0U; 319 320 /* make sure we initialize shinfo sequentially */ 321 shinfo = skb_shinfo(skb); 322 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 323 atomic_set(&shinfo->dataref, 1); 324 kmemcheck_annotate_variable(shinfo->destructor_arg); 325 326 return skb; 327 } 328 EXPORT_SYMBOL(build_skb); 329 330 struct netdev_alloc_cache { 331 struct page_frag frag; 332 /* we maintain a pagecount bias, so that we dont dirty cache line 333 * containing page->_count every time we allocate a fragment. 334 */ 335 unsigned int pagecnt_bias; 336 }; 337 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache); 338 339 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 340 { 341 struct netdev_alloc_cache *nc; 342 void *data = NULL; 343 int order; 344 unsigned long flags; 345 346 local_irq_save(flags); 347 nc = &__get_cpu_var(netdev_alloc_cache); 348 if (unlikely(!nc->frag.page)) { 349 refill: 350 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) { 351 gfp_t gfp = gfp_mask; 352 353 if (order) 354 gfp |= __GFP_COMP | __GFP_NOWARN; 355 nc->frag.page = alloc_pages(gfp, order); 356 if (likely(nc->frag.page)) 357 break; 358 if (--order < 0) 359 goto end; 360 } 361 nc->frag.size = PAGE_SIZE << order; 362 recycle: 363 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS); 364 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS; 365 nc->frag.offset = 0; 366 } 367 368 if (nc->frag.offset + fragsz > nc->frag.size) { 369 /* avoid unnecessary locked operations if possible */ 370 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) || 371 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count)) 372 goto recycle; 373 goto refill; 374 } 375 376 data = page_address(nc->frag.page) + nc->frag.offset; 377 nc->frag.offset += fragsz; 378 nc->pagecnt_bias--; 379 end: 380 local_irq_restore(flags); 381 return data; 382 } 383 384 /** 385 * netdev_alloc_frag - allocate a page fragment 386 * @fragsz: fragment size 387 * 388 * Allocates a frag from a page for receive buffer. 389 * Uses GFP_ATOMIC allocations. 390 */ 391 void *netdev_alloc_frag(unsigned int fragsz) 392 { 393 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 394 } 395 EXPORT_SYMBOL(netdev_alloc_frag); 396 397 /** 398 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 399 * @dev: network device to receive on 400 * @length: length to allocate 401 * @gfp_mask: get_free_pages mask, passed to alloc_skb 402 * 403 * Allocate a new &sk_buff and assign it a usage count of one. The 404 * buffer has unspecified headroom built in. Users should allocate 405 * the headroom they think they need without accounting for the 406 * built in space. The built in space is used for optimisations. 407 * 408 * %NULL is returned if there is no free memory. 409 */ 410 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 411 unsigned int length, gfp_t gfp_mask) 412 { 413 struct sk_buff *skb = NULL; 414 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) + 415 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 416 417 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) { 418 void *data; 419 420 if (sk_memalloc_socks()) 421 gfp_mask |= __GFP_MEMALLOC; 422 423 data = __netdev_alloc_frag(fragsz, gfp_mask); 424 425 if (likely(data)) { 426 skb = build_skb(data, fragsz); 427 if (unlikely(!skb)) 428 put_page(virt_to_head_page(data)); 429 } 430 } else { 431 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 432 SKB_ALLOC_RX, NUMA_NO_NODE); 433 } 434 if (likely(skb)) { 435 skb_reserve(skb, NET_SKB_PAD); 436 skb->dev = dev; 437 } 438 return skb; 439 } 440 EXPORT_SYMBOL(__netdev_alloc_skb); 441 442 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 443 int size, unsigned int truesize) 444 { 445 skb_fill_page_desc(skb, i, page, off, size); 446 skb->len += size; 447 skb->data_len += size; 448 skb->truesize += truesize; 449 } 450 EXPORT_SYMBOL(skb_add_rx_frag); 451 452 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 453 unsigned int truesize) 454 { 455 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 456 457 skb_frag_size_add(frag, size); 458 skb->len += size; 459 skb->data_len += size; 460 skb->truesize += truesize; 461 } 462 EXPORT_SYMBOL(skb_coalesce_rx_frag); 463 464 static void skb_drop_list(struct sk_buff **listp) 465 { 466 kfree_skb_list(*listp); 467 *listp = NULL; 468 } 469 470 static inline void skb_drop_fraglist(struct sk_buff *skb) 471 { 472 skb_drop_list(&skb_shinfo(skb)->frag_list); 473 } 474 475 static void skb_clone_fraglist(struct sk_buff *skb) 476 { 477 struct sk_buff *list; 478 479 skb_walk_frags(skb, list) 480 skb_get(list); 481 } 482 483 static void skb_free_head(struct sk_buff *skb) 484 { 485 if (skb->head_frag) 486 put_page(virt_to_head_page(skb->head)); 487 else 488 kfree(skb->head); 489 } 490 491 static void skb_release_data(struct sk_buff *skb) 492 { 493 if (!skb->cloned || 494 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 495 &skb_shinfo(skb)->dataref)) { 496 if (skb_shinfo(skb)->nr_frags) { 497 int i; 498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 499 skb_frag_unref(skb, i); 500 } 501 502 /* 503 * If skb buf is from userspace, we need to notify the caller 504 * the lower device DMA has done; 505 */ 506 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 507 struct ubuf_info *uarg; 508 509 uarg = skb_shinfo(skb)->destructor_arg; 510 if (uarg->callback) 511 uarg->callback(uarg, true); 512 } 513 514 if (skb_has_frag_list(skb)) 515 skb_drop_fraglist(skb); 516 517 skb_free_head(skb); 518 } 519 } 520 521 /* 522 * Free an skbuff by memory without cleaning the state. 523 */ 524 static void kfree_skbmem(struct sk_buff *skb) 525 { 526 struct sk_buff *other; 527 atomic_t *fclone_ref; 528 529 switch (skb->fclone) { 530 case SKB_FCLONE_UNAVAILABLE: 531 kmem_cache_free(skbuff_head_cache, skb); 532 break; 533 534 case SKB_FCLONE_ORIG: 535 fclone_ref = (atomic_t *) (skb + 2); 536 if (atomic_dec_and_test(fclone_ref)) 537 kmem_cache_free(skbuff_fclone_cache, skb); 538 break; 539 540 case SKB_FCLONE_CLONE: 541 fclone_ref = (atomic_t *) (skb + 1); 542 other = skb - 1; 543 544 /* The clone portion is available for 545 * fast-cloning again. 546 */ 547 skb->fclone = SKB_FCLONE_UNAVAILABLE; 548 549 if (atomic_dec_and_test(fclone_ref)) 550 kmem_cache_free(skbuff_fclone_cache, other); 551 break; 552 } 553 } 554 555 static void skb_release_head_state(struct sk_buff *skb) 556 { 557 skb_dst_drop(skb); 558 #ifdef CONFIG_XFRM 559 secpath_put(skb->sp); 560 #endif 561 if (skb->destructor) { 562 WARN_ON(in_irq()); 563 skb->destructor(skb); 564 } 565 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 566 nf_conntrack_put(skb->nfct); 567 #endif 568 #ifdef CONFIG_BRIDGE_NETFILTER 569 nf_bridge_put(skb->nf_bridge); 570 #endif 571 /* XXX: IS this still necessary? - JHS */ 572 #ifdef CONFIG_NET_SCHED 573 skb->tc_index = 0; 574 #ifdef CONFIG_NET_CLS_ACT 575 skb->tc_verd = 0; 576 #endif 577 #endif 578 } 579 580 /* Free everything but the sk_buff shell. */ 581 static void skb_release_all(struct sk_buff *skb) 582 { 583 skb_release_head_state(skb); 584 if (likely(skb->head)) 585 skb_release_data(skb); 586 } 587 588 /** 589 * __kfree_skb - private function 590 * @skb: buffer 591 * 592 * Free an sk_buff. Release anything attached to the buffer. 593 * Clean the state. This is an internal helper function. Users should 594 * always call kfree_skb 595 */ 596 597 void __kfree_skb(struct sk_buff *skb) 598 { 599 skb_release_all(skb); 600 kfree_skbmem(skb); 601 } 602 EXPORT_SYMBOL(__kfree_skb); 603 604 /** 605 * kfree_skb - free an sk_buff 606 * @skb: buffer to free 607 * 608 * Drop a reference to the buffer and free it if the usage count has 609 * hit zero. 610 */ 611 void kfree_skb(struct sk_buff *skb) 612 { 613 if (unlikely(!skb)) 614 return; 615 if (likely(atomic_read(&skb->users) == 1)) 616 smp_rmb(); 617 else if (likely(!atomic_dec_and_test(&skb->users))) 618 return; 619 trace_kfree_skb(skb, __builtin_return_address(0)); 620 __kfree_skb(skb); 621 } 622 EXPORT_SYMBOL(kfree_skb); 623 624 void kfree_skb_list(struct sk_buff *segs) 625 { 626 while (segs) { 627 struct sk_buff *next = segs->next; 628 629 kfree_skb(segs); 630 segs = next; 631 } 632 } 633 EXPORT_SYMBOL(kfree_skb_list); 634 635 /** 636 * skb_tx_error - report an sk_buff xmit error 637 * @skb: buffer that triggered an error 638 * 639 * Report xmit error if a device callback is tracking this skb. 640 * skb must be freed afterwards. 641 */ 642 void skb_tx_error(struct sk_buff *skb) 643 { 644 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 645 struct ubuf_info *uarg; 646 647 uarg = skb_shinfo(skb)->destructor_arg; 648 if (uarg->callback) 649 uarg->callback(uarg, false); 650 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 651 } 652 } 653 EXPORT_SYMBOL(skb_tx_error); 654 655 /** 656 * consume_skb - free an skbuff 657 * @skb: buffer to free 658 * 659 * Drop a ref to the buffer and free it if the usage count has hit zero 660 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 661 * is being dropped after a failure and notes that 662 */ 663 void consume_skb(struct sk_buff *skb) 664 { 665 if (unlikely(!skb)) 666 return; 667 if (likely(atomic_read(&skb->users) == 1)) 668 smp_rmb(); 669 else if (likely(!atomic_dec_and_test(&skb->users))) 670 return; 671 trace_consume_skb(skb); 672 __kfree_skb(skb); 673 } 674 EXPORT_SYMBOL(consume_skb); 675 676 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 677 { 678 new->tstamp = old->tstamp; 679 new->dev = old->dev; 680 new->transport_header = old->transport_header; 681 new->network_header = old->network_header; 682 new->mac_header = old->mac_header; 683 new->inner_protocol = old->inner_protocol; 684 new->inner_transport_header = old->inner_transport_header; 685 new->inner_network_header = old->inner_network_header; 686 new->inner_mac_header = old->inner_mac_header; 687 skb_dst_copy(new, old); 688 skb_copy_hash(new, old); 689 new->ooo_okay = old->ooo_okay; 690 new->no_fcs = old->no_fcs; 691 new->encapsulation = old->encapsulation; 692 #ifdef CONFIG_XFRM 693 new->sp = secpath_get(old->sp); 694 #endif 695 memcpy(new->cb, old->cb, sizeof(old->cb)); 696 new->csum = old->csum; 697 new->local_df = old->local_df; 698 new->pkt_type = old->pkt_type; 699 new->ip_summed = old->ip_summed; 700 skb_copy_queue_mapping(new, old); 701 new->priority = old->priority; 702 #if IS_ENABLED(CONFIG_IP_VS) 703 new->ipvs_property = old->ipvs_property; 704 #endif 705 new->pfmemalloc = old->pfmemalloc; 706 new->protocol = old->protocol; 707 new->mark = old->mark; 708 new->skb_iif = old->skb_iif; 709 __nf_copy(new, old); 710 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) 711 new->nf_trace = old->nf_trace; 712 #endif 713 #ifdef CONFIG_NET_SCHED 714 new->tc_index = old->tc_index; 715 #ifdef CONFIG_NET_CLS_ACT 716 new->tc_verd = old->tc_verd; 717 #endif 718 #endif 719 new->vlan_proto = old->vlan_proto; 720 new->vlan_tci = old->vlan_tci; 721 722 skb_copy_secmark(new, old); 723 724 #ifdef CONFIG_NET_RX_BUSY_POLL 725 new->napi_id = old->napi_id; 726 #endif 727 } 728 729 /* 730 * You should not add any new code to this function. Add it to 731 * __copy_skb_header above instead. 732 */ 733 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 734 { 735 #define C(x) n->x = skb->x 736 737 n->next = n->prev = NULL; 738 n->sk = NULL; 739 __copy_skb_header(n, skb); 740 741 C(len); 742 C(data_len); 743 C(mac_len); 744 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 745 n->cloned = 1; 746 n->nohdr = 0; 747 n->destructor = NULL; 748 C(tail); 749 C(end); 750 C(head); 751 C(head_frag); 752 C(data); 753 C(truesize); 754 atomic_set(&n->users, 1); 755 756 atomic_inc(&(skb_shinfo(skb)->dataref)); 757 skb->cloned = 1; 758 759 return n; 760 #undef C 761 } 762 763 /** 764 * skb_morph - morph one skb into another 765 * @dst: the skb to receive the contents 766 * @src: the skb to supply the contents 767 * 768 * This is identical to skb_clone except that the target skb is 769 * supplied by the user. 770 * 771 * The target skb is returned upon exit. 772 */ 773 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 774 { 775 skb_release_all(dst); 776 return __skb_clone(dst, src); 777 } 778 EXPORT_SYMBOL_GPL(skb_morph); 779 780 /** 781 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 782 * @skb: the skb to modify 783 * @gfp_mask: allocation priority 784 * 785 * This must be called on SKBTX_DEV_ZEROCOPY skb. 786 * It will copy all frags into kernel and drop the reference 787 * to userspace pages. 788 * 789 * If this function is called from an interrupt gfp_mask() must be 790 * %GFP_ATOMIC. 791 * 792 * Returns 0 on success or a negative error code on failure 793 * to allocate kernel memory to copy to. 794 */ 795 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 796 { 797 int i; 798 int num_frags = skb_shinfo(skb)->nr_frags; 799 struct page *page, *head = NULL; 800 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 801 802 for (i = 0; i < num_frags; i++) { 803 u8 *vaddr; 804 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 805 806 page = alloc_page(gfp_mask); 807 if (!page) { 808 while (head) { 809 struct page *next = (struct page *)page_private(head); 810 put_page(head); 811 head = next; 812 } 813 return -ENOMEM; 814 } 815 vaddr = kmap_atomic(skb_frag_page(f)); 816 memcpy(page_address(page), 817 vaddr + f->page_offset, skb_frag_size(f)); 818 kunmap_atomic(vaddr); 819 set_page_private(page, (unsigned long)head); 820 head = page; 821 } 822 823 /* skb frags release userspace buffers */ 824 for (i = 0; i < num_frags; i++) 825 skb_frag_unref(skb, i); 826 827 uarg->callback(uarg, false); 828 829 /* skb frags point to kernel buffers */ 830 for (i = num_frags - 1; i >= 0; i--) { 831 __skb_fill_page_desc(skb, i, head, 0, 832 skb_shinfo(skb)->frags[i].size); 833 head = (struct page *)page_private(head); 834 } 835 836 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 837 return 0; 838 } 839 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 840 841 /** 842 * skb_clone - duplicate an sk_buff 843 * @skb: buffer to clone 844 * @gfp_mask: allocation priority 845 * 846 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 847 * copies share the same packet data but not structure. The new 848 * buffer has a reference count of 1. If the allocation fails the 849 * function returns %NULL otherwise the new buffer is returned. 850 * 851 * If this function is called from an interrupt gfp_mask() must be 852 * %GFP_ATOMIC. 853 */ 854 855 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 856 { 857 struct sk_buff *n; 858 859 if (skb_orphan_frags(skb, gfp_mask)) 860 return NULL; 861 862 n = skb + 1; 863 if (skb->fclone == SKB_FCLONE_ORIG && 864 n->fclone == SKB_FCLONE_UNAVAILABLE) { 865 atomic_t *fclone_ref = (atomic_t *) (n + 1); 866 n->fclone = SKB_FCLONE_CLONE; 867 atomic_inc(fclone_ref); 868 } else { 869 if (skb_pfmemalloc(skb)) 870 gfp_mask |= __GFP_MEMALLOC; 871 872 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 873 if (!n) 874 return NULL; 875 876 kmemcheck_annotate_bitfield(n, flags1); 877 kmemcheck_annotate_bitfield(n, flags2); 878 n->fclone = SKB_FCLONE_UNAVAILABLE; 879 } 880 881 return __skb_clone(n, skb); 882 } 883 EXPORT_SYMBOL(skb_clone); 884 885 static void skb_headers_offset_update(struct sk_buff *skb, int off) 886 { 887 /* Only adjust this if it actually is csum_start rather than csum */ 888 if (skb->ip_summed == CHECKSUM_PARTIAL) 889 skb->csum_start += off; 890 /* {transport,network,mac}_header and tail are relative to skb->head */ 891 skb->transport_header += off; 892 skb->network_header += off; 893 if (skb_mac_header_was_set(skb)) 894 skb->mac_header += off; 895 skb->inner_transport_header += off; 896 skb->inner_network_header += off; 897 skb->inner_mac_header += off; 898 } 899 900 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 901 { 902 __copy_skb_header(new, old); 903 904 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 905 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 906 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 907 } 908 909 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 910 { 911 if (skb_pfmemalloc(skb)) 912 return SKB_ALLOC_RX; 913 return 0; 914 } 915 916 /** 917 * skb_copy - create private copy of an sk_buff 918 * @skb: buffer to copy 919 * @gfp_mask: allocation priority 920 * 921 * Make a copy of both an &sk_buff and its data. This is used when the 922 * caller wishes to modify the data and needs a private copy of the 923 * data to alter. Returns %NULL on failure or the pointer to the buffer 924 * on success. The returned buffer has a reference count of 1. 925 * 926 * As by-product this function converts non-linear &sk_buff to linear 927 * one, so that &sk_buff becomes completely private and caller is allowed 928 * to modify all the data of returned buffer. This means that this 929 * function is not recommended for use in circumstances when only 930 * header is going to be modified. Use pskb_copy() instead. 931 */ 932 933 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 934 { 935 int headerlen = skb_headroom(skb); 936 unsigned int size = skb_end_offset(skb) + skb->data_len; 937 struct sk_buff *n = __alloc_skb(size, gfp_mask, 938 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 939 940 if (!n) 941 return NULL; 942 943 /* Set the data pointer */ 944 skb_reserve(n, headerlen); 945 /* Set the tail pointer and length */ 946 skb_put(n, skb->len); 947 948 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 949 BUG(); 950 951 copy_skb_header(n, skb); 952 return n; 953 } 954 EXPORT_SYMBOL(skb_copy); 955 956 /** 957 * __pskb_copy - create copy of an sk_buff with private head. 958 * @skb: buffer to copy 959 * @headroom: headroom of new skb 960 * @gfp_mask: allocation priority 961 * 962 * Make a copy of both an &sk_buff and part of its data, located 963 * in header. Fragmented data remain shared. This is used when 964 * the caller wishes to modify only header of &sk_buff and needs 965 * private copy of the header to alter. Returns %NULL on failure 966 * or the pointer to the buffer on success. 967 * The returned buffer has a reference count of 1. 968 */ 969 970 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask) 971 { 972 unsigned int size = skb_headlen(skb) + headroom; 973 struct sk_buff *n = __alloc_skb(size, gfp_mask, 974 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 975 976 if (!n) 977 goto out; 978 979 /* Set the data pointer */ 980 skb_reserve(n, headroom); 981 /* Set the tail pointer and length */ 982 skb_put(n, skb_headlen(skb)); 983 /* Copy the bytes */ 984 skb_copy_from_linear_data(skb, n->data, n->len); 985 986 n->truesize += skb->data_len; 987 n->data_len = skb->data_len; 988 n->len = skb->len; 989 990 if (skb_shinfo(skb)->nr_frags) { 991 int i; 992 993 if (skb_orphan_frags(skb, gfp_mask)) { 994 kfree_skb(n); 995 n = NULL; 996 goto out; 997 } 998 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 999 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1000 skb_frag_ref(skb, i); 1001 } 1002 skb_shinfo(n)->nr_frags = i; 1003 } 1004 1005 if (skb_has_frag_list(skb)) { 1006 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1007 skb_clone_fraglist(n); 1008 } 1009 1010 copy_skb_header(n, skb); 1011 out: 1012 return n; 1013 } 1014 EXPORT_SYMBOL(__pskb_copy); 1015 1016 /** 1017 * pskb_expand_head - reallocate header of &sk_buff 1018 * @skb: buffer to reallocate 1019 * @nhead: room to add at head 1020 * @ntail: room to add at tail 1021 * @gfp_mask: allocation priority 1022 * 1023 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1024 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1025 * reference count of 1. Returns zero in the case of success or error, 1026 * if expansion failed. In the last case, &sk_buff is not changed. 1027 * 1028 * All the pointers pointing into skb header may change and must be 1029 * reloaded after call to this function. 1030 */ 1031 1032 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1033 gfp_t gfp_mask) 1034 { 1035 int i; 1036 u8 *data; 1037 int size = nhead + skb_end_offset(skb) + ntail; 1038 long off; 1039 1040 BUG_ON(nhead < 0); 1041 1042 if (skb_shared(skb)) 1043 BUG(); 1044 1045 size = SKB_DATA_ALIGN(size); 1046 1047 if (skb_pfmemalloc(skb)) 1048 gfp_mask |= __GFP_MEMALLOC; 1049 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1050 gfp_mask, NUMA_NO_NODE, NULL); 1051 if (!data) 1052 goto nodata; 1053 size = SKB_WITH_OVERHEAD(ksize(data)); 1054 1055 /* Copy only real data... and, alas, header. This should be 1056 * optimized for the cases when header is void. 1057 */ 1058 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1059 1060 memcpy((struct skb_shared_info *)(data + size), 1061 skb_shinfo(skb), 1062 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1063 1064 /* 1065 * if shinfo is shared we must drop the old head gracefully, but if it 1066 * is not we can just drop the old head and let the existing refcount 1067 * be since all we did is relocate the values 1068 */ 1069 if (skb_cloned(skb)) { 1070 /* copy this zero copy skb frags */ 1071 if (skb_orphan_frags(skb, gfp_mask)) 1072 goto nofrags; 1073 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1074 skb_frag_ref(skb, i); 1075 1076 if (skb_has_frag_list(skb)) 1077 skb_clone_fraglist(skb); 1078 1079 skb_release_data(skb); 1080 } else { 1081 skb_free_head(skb); 1082 } 1083 off = (data + nhead) - skb->head; 1084 1085 skb->head = data; 1086 skb->head_frag = 0; 1087 skb->data += off; 1088 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1089 skb->end = size; 1090 off = nhead; 1091 #else 1092 skb->end = skb->head + size; 1093 #endif 1094 skb->tail += off; 1095 skb_headers_offset_update(skb, nhead); 1096 skb->cloned = 0; 1097 skb->hdr_len = 0; 1098 skb->nohdr = 0; 1099 atomic_set(&skb_shinfo(skb)->dataref, 1); 1100 return 0; 1101 1102 nofrags: 1103 kfree(data); 1104 nodata: 1105 return -ENOMEM; 1106 } 1107 EXPORT_SYMBOL(pskb_expand_head); 1108 1109 /* Make private copy of skb with writable head and some headroom */ 1110 1111 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1112 { 1113 struct sk_buff *skb2; 1114 int delta = headroom - skb_headroom(skb); 1115 1116 if (delta <= 0) 1117 skb2 = pskb_copy(skb, GFP_ATOMIC); 1118 else { 1119 skb2 = skb_clone(skb, GFP_ATOMIC); 1120 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1121 GFP_ATOMIC)) { 1122 kfree_skb(skb2); 1123 skb2 = NULL; 1124 } 1125 } 1126 return skb2; 1127 } 1128 EXPORT_SYMBOL(skb_realloc_headroom); 1129 1130 /** 1131 * skb_copy_expand - copy and expand sk_buff 1132 * @skb: buffer to copy 1133 * @newheadroom: new free bytes at head 1134 * @newtailroom: new free bytes at tail 1135 * @gfp_mask: allocation priority 1136 * 1137 * Make a copy of both an &sk_buff and its data and while doing so 1138 * allocate additional space. 1139 * 1140 * This is used when the caller wishes to modify the data and needs a 1141 * private copy of the data to alter as well as more space for new fields. 1142 * Returns %NULL on failure or the pointer to the buffer 1143 * on success. The returned buffer has a reference count of 1. 1144 * 1145 * You must pass %GFP_ATOMIC as the allocation priority if this function 1146 * is called from an interrupt. 1147 */ 1148 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1149 int newheadroom, int newtailroom, 1150 gfp_t gfp_mask) 1151 { 1152 /* 1153 * Allocate the copy buffer 1154 */ 1155 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1156 gfp_mask, skb_alloc_rx_flag(skb), 1157 NUMA_NO_NODE); 1158 int oldheadroom = skb_headroom(skb); 1159 int head_copy_len, head_copy_off; 1160 1161 if (!n) 1162 return NULL; 1163 1164 skb_reserve(n, newheadroom); 1165 1166 /* Set the tail pointer and length */ 1167 skb_put(n, skb->len); 1168 1169 head_copy_len = oldheadroom; 1170 head_copy_off = 0; 1171 if (newheadroom <= head_copy_len) 1172 head_copy_len = newheadroom; 1173 else 1174 head_copy_off = newheadroom - head_copy_len; 1175 1176 /* Copy the linear header and data. */ 1177 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1178 skb->len + head_copy_len)) 1179 BUG(); 1180 1181 copy_skb_header(n, skb); 1182 1183 skb_headers_offset_update(n, newheadroom - oldheadroom); 1184 1185 return n; 1186 } 1187 EXPORT_SYMBOL(skb_copy_expand); 1188 1189 /** 1190 * skb_pad - zero pad the tail of an skb 1191 * @skb: buffer to pad 1192 * @pad: space to pad 1193 * 1194 * Ensure that a buffer is followed by a padding area that is zero 1195 * filled. Used by network drivers which may DMA or transfer data 1196 * beyond the buffer end onto the wire. 1197 * 1198 * May return error in out of memory cases. The skb is freed on error. 1199 */ 1200 1201 int skb_pad(struct sk_buff *skb, int pad) 1202 { 1203 int err; 1204 int ntail; 1205 1206 /* If the skbuff is non linear tailroom is always zero.. */ 1207 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1208 memset(skb->data+skb->len, 0, pad); 1209 return 0; 1210 } 1211 1212 ntail = skb->data_len + pad - (skb->end - skb->tail); 1213 if (likely(skb_cloned(skb) || ntail > 0)) { 1214 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1215 if (unlikely(err)) 1216 goto free_skb; 1217 } 1218 1219 /* FIXME: The use of this function with non-linear skb's really needs 1220 * to be audited. 1221 */ 1222 err = skb_linearize(skb); 1223 if (unlikely(err)) 1224 goto free_skb; 1225 1226 memset(skb->data + skb->len, 0, pad); 1227 return 0; 1228 1229 free_skb: 1230 kfree_skb(skb); 1231 return err; 1232 } 1233 EXPORT_SYMBOL(skb_pad); 1234 1235 /** 1236 * pskb_put - add data to the tail of a potentially fragmented buffer 1237 * @skb: start of the buffer to use 1238 * @tail: tail fragment of the buffer to use 1239 * @len: amount of data to add 1240 * 1241 * This function extends the used data area of the potentially 1242 * fragmented buffer. @tail must be the last fragment of @skb -- or 1243 * @skb itself. If this would exceed the total buffer size the kernel 1244 * will panic. A pointer to the first byte of the extra data is 1245 * returned. 1246 */ 1247 1248 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1249 { 1250 if (tail != skb) { 1251 skb->data_len += len; 1252 skb->len += len; 1253 } 1254 return skb_put(tail, len); 1255 } 1256 EXPORT_SYMBOL_GPL(pskb_put); 1257 1258 /** 1259 * skb_put - add data to a buffer 1260 * @skb: buffer to use 1261 * @len: amount of data to add 1262 * 1263 * This function extends the used data area of the buffer. If this would 1264 * exceed the total buffer size the kernel will panic. A pointer to the 1265 * first byte of the extra data is returned. 1266 */ 1267 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1268 { 1269 unsigned char *tmp = skb_tail_pointer(skb); 1270 SKB_LINEAR_ASSERT(skb); 1271 skb->tail += len; 1272 skb->len += len; 1273 if (unlikely(skb->tail > skb->end)) 1274 skb_over_panic(skb, len, __builtin_return_address(0)); 1275 return tmp; 1276 } 1277 EXPORT_SYMBOL(skb_put); 1278 1279 /** 1280 * skb_push - add data to the start of a buffer 1281 * @skb: buffer to use 1282 * @len: amount of data to add 1283 * 1284 * This function extends the used data area of the buffer at the buffer 1285 * start. If this would exceed the total buffer headroom the kernel will 1286 * panic. A pointer to the first byte of the extra data is returned. 1287 */ 1288 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1289 { 1290 skb->data -= len; 1291 skb->len += len; 1292 if (unlikely(skb->data<skb->head)) 1293 skb_under_panic(skb, len, __builtin_return_address(0)); 1294 return skb->data; 1295 } 1296 EXPORT_SYMBOL(skb_push); 1297 1298 /** 1299 * skb_pull - remove data from the start of a buffer 1300 * @skb: buffer to use 1301 * @len: amount of data to remove 1302 * 1303 * This function removes data from the start of a buffer, returning 1304 * the memory to the headroom. A pointer to the next data in the buffer 1305 * is returned. Once the data has been pulled future pushes will overwrite 1306 * the old data. 1307 */ 1308 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1309 { 1310 return skb_pull_inline(skb, len); 1311 } 1312 EXPORT_SYMBOL(skb_pull); 1313 1314 /** 1315 * skb_trim - remove end from a buffer 1316 * @skb: buffer to alter 1317 * @len: new length 1318 * 1319 * Cut the length of a buffer down by removing data from the tail. If 1320 * the buffer is already under the length specified it is not modified. 1321 * The skb must be linear. 1322 */ 1323 void skb_trim(struct sk_buff *skb, unsigned int len) 1324 { 1325 if (skb->len > len) 1326 __skb_trim(skb, len); 1327 } 1328 EXPORT_SYMBOL(skb_trim); 1329 1330 /* Trims skb to length len. It can change skb pointers. 1331 */ 1332 1333 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1334 { 1335 struct sk_buff **fragp; 1336 struct sk_buff *frag; 1337 int offset = skb_headlen(skb); 1338 int nfrags = skb_shinfo(skb)->nr_frags; 1339 int i; 1340 int err; 1341 1342 if (skb_cloned(skb) && 1343 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1344 return err; 1345 1346 i = 0; 1347 if (offset >= len) 1348 goto drop_pages; 1349 1350 for (; i < nfrags; i++) { 1351 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1352 1353 if (end < len) { 1354 offset = end; 1355 continue; 1356 } 1357 1358 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1359 1360 drop_pages: 1361 skb_shinfo(skb)->nr_frags = i; 1362 1363 for (; i < nfrags; i++) 1364 skb_frag_unref(skb, i); 1365 1366 if (skb_has_frag_list(skb)) 1367 skb_drop_fraglist(skb); 1368 goto done; 1369 } 1370 1371 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1372 fragp = &frag->next) { 1373 int end = offset + frag->len; 1374 1375 if (skb_shared(frag)) { 1376 struct sk_buff *nfrag; 1377 1378 nfrag = skb_clone(frag, GFP_ATOMIC); 1379 if (unlikely(!nfrag)) 1380 return -ENOMEM; 1381 1382 nfrag->next = frag->next; 1383 consume_skb(frag); 1384 frag = nfrag; 1385 *fragp = frag; 1386 } 1387 1388 if (end < len) { 1389 offset = end; 1390 continue; 1391 } 1392 1393 if (end > len && 1394 unlikely((err = pskb_trim(frag, len - offset)))) 1395 return err; 1396 1397 if (frag->next) 1398 skb_drop_list(&frag->next); 1399 break; 1400 } 1401 1402 done: 1403 if (len > skb_headlen(skb)) { 1404 skb->data_len -= skb->len - len; 1405 skb->len = len; 1406 } else { 1407 skb->len = len; 1408 skb->data_len = 0; 1409 skb_set_tail_pointer(skb, len); 1410 } 1411 1412 return 0; 1413 } 1414 EXPORT_SYMBOL(___pskb_trim); 1415 1416 /** 1417 * __pskb_pull_tail - advance tail of skb header 1418 * @skb: buffer to reallocate 1419 * @delta: number of bytes to advance tail 1420 * 1421 * The function makes a sense only on a fragmented &sk_buff, 1422 * it expands header moving its tail forward and copying necessary 1423 * data from fragmented part. 1424 * 1425 * &sk_buff MUST have reference count of 1. 1426 * 1427 * Returns %NULL (and &sk_buff does not change) if pull failed 1428 * or value of new tail of skb in the case of success. 1429 * 1430 * All the pointers pointing into skb header may change and must be 1431 * reloaded after call to this function. 1432 */ 1433 1434 /* Moves tail of skb head forward, copying data from fragmented part, 1435 * when it is necessary. 1436 * 1. It may fail due to malloc failure. 1437 * 2. It may change skb pointers. 1438 * 1439 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1440 */ 1441 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1442 { 1443 /* If skb has not enough free space at tail, get new one 1444 * plus 128 bytes for future expansions. If we have enough 1445 * room at tail, reallocate without expansion only if skb is cloned. 1446 */ 1447 int i, k, eat = (skb->tail + delta) - skb->end; 1448 1449 if (eat > 0 || skb_cloned(skb)) { 1450 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1451 GFP_ATOMIC)) 1452 return NULL; 1453 } 1454 1455 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1456 BUG(); 1457 1458 /* Optimization: no fragments, no reasons to preestimate 1459 * size of pulled pages. Superb. 1460 */ 1461 if (!skb_has_frag_list(skb)) 1462 goto pull_pages; 1463 1464 /* Estimate size of pulled pages. */ 1465 eat = delta; 1466 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1467 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1468 1469 if (size >= eat) 1470 goto pull_pages; 1471 eat -= size; 1472 } 1473 1474 /* If we need update frag list, we are in troubles. 1475 * Certainly, it possible to add an offset to skb data, 1476 * but taking into account that pulling is expected to 1477 * be very rare operation, it is worth to fight against 1478 * further bloating skb head and crucify ourselves here instead. 1479 * Pure masohism, indeed. 8)8) 1480 */ 1481 if (eat) { 1482 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1483 struct sk_buff *clone = NULL; 1484 struct sk_buff *insp = NULL; 1485 1486 do { 1487 BUG_ON(!list); 1488 1489 if (list->len <= eat) { 1490 /* Eaten as whole. */ 1491 eat -= list->len; 1492 list = list->next; 1493 insp = list; 1494 } else { 1495 /* Eaten partially. */ 1496 1497 if (skb_shared(list)) { 1498 /* Sucks! We need to fork list. :-( */ 1499 clone = skb_clone(list, GFP_ATOMIC); 1500 if (!clone) 1501 return NULL; 1502 insp = list->next; 1503 list = clone; 1504 } else { 1505 /* This may be pulled without 1506 * problems. */ 1507 insp = list; 1508 } 1509 if (!pskb_pull(list, eat)) { 1510 kfree_skb(clone); 1511 return NULL; 1512 } 1513 break; 1514 } 1515 } while (eat); 1516 1517 /* Free pulled out fragments. */ 1518 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1519 skb_shinfo(skb)->frag_list = list->next; 1520 kfree_skb(list); 1521 } 1522 /* And insert new clone at head. */ 1523 if (clone) { 1524 clone->next = list; 1525 skb_shinfo(skb)->frag_list = clone; 1526 } 1527 } 1528 /* Success! Now we may commit changes to skb data. */ 1529 1530 pull_pages: 1531 eat = delta; 1532 k = 0; 1533 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1534 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1535 1536 if (size <= eat) { 1537 skb_frag_unref(skb, i); 1538 eat -= size; 1539 } else { 1540 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1541 if (eat) { 1542 skb_shinfo(skb)->frags[k].page_offset += eat; 1543 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1544 eat = 0; 1545 } 1546 k++; 1547 } 1548 } 1549 skb_shinfo(skb)->nr_frags = k; 1550 1551 skb->tail += delta; 1552 skb->data_len -= delta; 1553 1554 return skb_tail_pointer(skb); 1555 } 1556 EXPORT_SYMBOL(__pskb_pull_tail); 1557 1558 /** 1559 * skb_copy_bits - copy bits from skb to kernel buffer 1560 * @skb: source skb 1561 * @offset: offset in source 1562 * @to: destination buffer 1563 * @len: number of bytes to copy 1564 * 1565 * Copy the specified number of bytes from the source skb to the 1566 * destination buffer. 1567 * 1568 * CAUTION ! : 1569 * If its prototype is ever changed, 1570 * check arch/{*}/net/{*}.S files, 1571 * since it is called from BPF assembly code. 1572 */ 1573 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1574 { 1575 int start = skb_headlen(skb); 1576 struct sk_buff *frag_iter; 1577 int i, copy; 1578 1579 if (offset > (int)skb->len - len) 1580 goto fault; 1581 1582 /* Copy header. */ 1583 if ((copy = start - offset) > 0) { 1584 if (copy > len) 1585 copy = len; 1586 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1587 if ((len -= copy) == 0) 1588 return 0; 1589 offset += copy; 1590 to += copy; 1591 } 1592 1593 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1594 int end; 1595 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1596 1597 WARN_ON(start > offset + len); 1598 1599 end = start + skb_frag_size(f); 1600 if ((copy = end - offset) > 0) { 1601 u8 *vaddr; 1602 1603 if (copy > len) 1604 copy = len; 1605 1606 vaddr = kmap_atomic(skb_frag_page(f)); 1607 memcpy(to, 1608 vaddr + f->page_offset + offset - start, 1609 copy); 1610 kunmap_atomic(vaddr); 1611 1612 if ((len -= copy) == 0) 1613 return 0; 1614 offset += copy; 1615 to += copy; 1616 } 1617 start = end; 1618 } 1619 1620 skb_walk_frags(skb, frag_iter) { 1621 int end; 1622 1623 WARN_ON(start > offset + len); 1624 1625 end = start + frag_iter->len; 1626 if ((copy = end - offset) > 0) { 1627 if (copy > len) 1628 copy = len; 1629 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1630 goto fault; 1631 if ((len -= copy) == 0) 1632 return 0; 1633 offset += copy; 1634 to += copy; 1635 } 1636 start = end; 1637 } 1638 1639 if (!len) 1640 return 0; 1641 1642 fault: 1643 return -EFAULT; 1644 } 1645 EXPORT_SYMBOL(skb_copy_bits); 1646 1647 /* 1648 * Callback from splice_to_pipe(), if we need to release some pages 1649 * at the end of the spd in case we error'ed out in filling the pipe. 1650 */ 1651 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1652 { 1653 put_page(spd->pages[i]); 1654 } 1655 1656 static struct page *linear_to_page(struct page *page, unsigned int *len, 1657 unsigned int *offset, 1658 struct sock *sk) 1659 { 1660 struct page_frag *pfrag = sk_page_frag(sk); 1661 1662 if (!sk_page_frag_refill(sk, pfrag)) 1663 return NULL; 1664 1665 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 1666 1667 memcpy(page_address(pfrag->page) + pfrag->offset, 1668 page_address(page) + *offset, *len); 1669 *offset = pfrag->offset; 1670 pfrag->offset += *len; 1671 1672 return pfrag->page; 1673 } 1674 1675 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 1676 struct page *page, 1677 unsigned int offset) 1678 { 1679 return spd->nr_pages && 1680 spd->pages[spd->nr_pages - 1] == page && 1681 (spd->partial[spd->nr_pages - 1].offset + 1682 spd->partial[spd->nr_pages - 1].len == offset); 1683 } 1684 1685 /* 1686 * Fill page/offset/length into spd, if it can hold more pages. 1687 */ 1688 static bool spd_fill_page(struct splice_pipe_desc *spd, 1689 struct pipe_inode_info *pipe, struct page *page, 1690 unsigned int *len, unsigned int offset, 1691 bool linear, 1692 struct sock *sk) 1693 { 1694 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 1695 return true; 1696 1697 if (linear) { 1698 page = linear_to_page(page, len, &offset, sk); 1699 if (!page) 1700 return true; 1701 } 1702 if (spd_can_coalesce(spd, page, offset)) { 1703 spd->partial[spd->nr_pages - 1].len += *len; 1704 return false; 1705 } 1706 get_page(page); 1707 spd->pages[spd->nr_pages] = page; 1708 spd->partial[spd->nr_pages].len = *len; 1709 spd->partial[spd->nr_pages].offset = offset; 1710 spd->nr_pages++; 1711 1712 return false; 1713 } 1714 1715 static bool __splice_segment(struct page *page, unsigned int poff, 1716 unsigned int plen, unsigned int *off, 1717 unsigned int *len, 1718 struct splice_pipe_desc *spd, bool linear, 1719 struct sock *sk, 1720 struct pipe_inode_info *pipe) 1721 { 1722 if (!*len) 1723 return true; 1724 1725 /* skip this segment if already processed */ 1726 if (*off >= plen) { 1727 *off -= plen; 1728 return false; 1729 } 1730 1731 /* ignore any bits we already processed */ 1732 poff += *off; 1733 plen -= *off; 1734 *off = 0; 1735 1736 do { 1737 unsigned int flen = min(*len, plen); 1738 1739 if (spd_fill_page(spd, pipe, page, &flen, poff, 1740 linear, sk)) 1741 return true; 1742 poff += flen; 1743 plen -= flen; 1744 *len -= flen; 1745 } while (*len && plen); 1746 1747 return false; 1748 } 1749 1750 /* 1751 * Map linear and fragment data from the skb to spd. It reports true if the 1752 * pipe is full or if we already spliced the requested length. 1753 */ 1754 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1755 unsigned int *offset, unsigned int *len, 1756 struct splice_pipe_desc *spd, struct sock *sk) 1757 { 1758 int seg; 1759 1760 /* map the linear part : 1761 * If skb->head_frag is set, this 'linear' part is backed by a 1762 * fragment, and if the head is not shared with any clones then 1763 * we can avoid a copy since we own the head portion of this page. 1764 */ 1765 if (__splice_segment(virt_to_page(skb->data), 1766 (unsigned long) skb->data & (PAGE_SIZE - 1), 1767 skb_headlen(skb), 1768 offset, len, spd, 1769 skb_head_is_locked(skb), 1770 sk, pipe)) 1771 return true; 1772 1773 /* 1774 * then map the fragments 1775 */ 1776 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1777 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1778 1779 if (__splice_segment(skb_frag_page(f), 1780 f->page_offset, skb_frag_size(f), 1781 offset, len, spd, false, sk, pipe)) 1782 return true; 1783 } 1784 1785 return false; 1786 } 1787 1788 /* 1789 * Map data from the skb to a pipe. Should handle both the linear part, 1790 * the fragments, and the frag list. It does NOT handle frag lists within 1791 * the frag list, if such a thing exists. We'd probably need to recurse to 1792 * handle that cleanly. 1793 */ 1794 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1795 struct pipe_inode_info *pipe, unsigned int tlen, 1796 unsigned int flags) 1797 { 1798 struct partial_page partial[MAX_SKB_FRAGS]; 1799 struct page *pages[MAX_SKB_FRAGS]; 1800 struct splice_pipe_desc spd = { 1801 .pages = pages, 1802 .partial = partial, 1803 .nr_pages_max = MAX_SKB_FRAGS, 1804 .flags = flags, 1805 .ops = &nosteal_pipe_buf_ops, 1806 .spd_release = sock_spd_release, 1807 }; 1808 struct sk_buff *frag_iter; 1809 struct sock *sk = skb->sk; 1810 int ret = 0; 1811 1812 /* 1813 * __skb_splice_bits() only fails if the output has no room left, 1814 * so no point in going over the frag_list for the error case. 1815 */ 1816 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) 1817 goto done; 1818 else if (!tlen) 1819 goto done; 1820 1821 /* 1822 * now see if we have a frag_list to map 1823 */ 1824 skb_walk_frags(skb, frag_iter) { 1825 if (!tlen) 1826 break; 1827 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) 1828 break; 1829 } 1830 1831 done: 1832 if (spd.nr_pages) { 1833 /* 1834 * Drop the socket lock, otherwise we have reverse 1835 * locking dependencies between sk_lock and i_mutex 1836 * here as compared to sendfile(). We enter here 1837 * with the socket lock held, and splice_to_pipe() will 1838 * grab the pipe inode lock. For sendfile() emulation, 1839 * we call into ->sendpage() with the i_mutex lock held 1840 * and networking will grab the socket lock. 1841 */ 1842 release_sock(sk); 1843 ret = splice_to_pipe(pipe, &spd); 1844 lock_sock(sk); 1845 } 1846 1847 return ret; 1848 } 1849 1850 /** 1851 * skb_store_bits - store bits from kernel buffer to skb 1852 * @skb: destination buffer 1853 * @offset: offset in destination 1854 * @from: source buffer 1855 * @len: number of bytes to copy 1856 * 1857 * Copy the specified number of bytes from the source buffer to the 1858 * destination skb. This function handles all the messy bits of 1859 * traversing fragment lists and such. 1860 */ 1861 1862 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1863 { 1864 int start = skb_headlen(skb); 1865 struct sk_buff *frag_iter; 1866 int i, copy; 1867 1868 if (offset > (int)skb->len - len) 1869 goto fault; 1870 1871 if ((copy = start - offset) > 0) { 1872 if (copy > len) 1873 copy = len; 1874 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1875 if ((len -= copy) == 0) 1876 return 0; 1877 offset += copy; 1878 from += copy; 1879 } 1880 1881 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1882 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1883 int end; 1884 1885 WARN_ON(start > offset + len); 1886 1887 end = start + skb_frag_size(frag); 1888 if ((copy = end - offset) > 0) { 1889 u8 *vaddr; 1890 1891 if (copy > len) 1892 copy = len; 1893 1894 vaddr = kmap_atomic(skb_frag_page(frag)); 1895 memcpy(vaddr + frag->page_offset + offset - start, 1896 from, copy); 1897 kunmap_atomic(vaddr); 1898 1899 if ((len -= copy) == 0) 1900 return 0; 1901 offset += copy; 1902 from += copy; 1903 } 1904 start = end; 1905 } 1906 1907 skb_walk_frags(skb, frag_iter) { 1908 int end; 1909 1910 WARN_ON(start > offset + len); 1911 1912 end = start + frag_iter->len; 1913 if ((copy = end - offset) > 0) { 1914 if (copy > len) 1915 copy = len; 1916 if (skb_store_bits(frag_iter, offset - start, 1917 from, copy)) 1918 goto fault; 1919 if ((len -= copy) == 0) 1920 return 0; 1921 offset += copy; 1922 from += copy; 1923 } 1924 start = end; 1925 } 1926 if (!len) 1927 return 0; 1928 1929 fault: 1930 return -EFAULT; 1931 } 1932 EXPORT_SYMBOL(skb_store_bits); 1933 1934 /* Checksum skb data. */ 1935 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 1936 __wsum csum, const struct skb_checksum_ops *ops) 1937 { 1938 int start = skb_headlen(skb); 1939 int i, copy = start - offset; 1940 struct sk_buff *frag_iter; 1941 int pos = 0; 1942 1943 /* Checksum header. */ 1944 if (copy > 0) { 1945 if (copy > len) 1946 copy = len; 1947 csum = ops->update(skb->data + offset, copy, csum); 1948 if ((len -= copy) == 0) 1949 return csum; 1950 offset += copy; 1951 pos = copy; 1952 } 1953 1954 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1955 int end; 1956 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1957 1958 WARN_ON(start > offset + len); 1959 1960 end = start + skb_frag_size(frag); 1961 if ((copy = end - offset) > 0) { 1962 __wsum csum2; 1963 u8 *vaddr; 1964 1965 if (copy > len) 1966 copy = len; 1967 vaddr = kmap_atomic(skb_frag_page(frag)); 1968 csum2 = ops->update(vaddr + frag->page_offset + 1969 offset - start, copy, 0); 1970 kunmap_atomic(vaddr); 1971 csum = ops->combine(csum, csum2, pos, copy); 1972 if (!(len -= copy)) 1973 return csum; 1974 offset += copy; 1975 pos += copy; 1976 } 1977 start = end; 1978 } 1979 1980 skb_walk_frags(skb, frag_iter) { 1981 int end; 1982 1983 WARN_ON(start > offset + len); 1984 1985 end = start + frag_iter->len; 1986 if ((copy = end - offset) > 0) { 1987 __wsum csum2; 1988 if (copy > len) 1989 copy = len; 1990 csum2 = __skb_checksum(frag_iter, offset - start, 1991 copy, 0, ops); 1992 csum = ops->combine(csum, csum2, pos, copy); 1993 if ((len -= copy) == 0) 1994 return csum; 1995 offset += copy; 1996 pos += copy; 1997 } 1998 start = end; 1999 } 2000 BUG_ON(len); 2001 2002 return csum; 2003 } 2004 EXPORT_SYMBOL(__skb_checksum); 2005 2006 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2007 int len, __wsum csum) 2008 { 2009 const struct skb_checksum_ops ops = { 2010 .update = csum_partial_ext, 2011 .combine = csum_block_add_ext, 2012 }; 2013 2014 return __skb_checksum(skb, offset, len, csum, &ops); 2015 } 2016 EXPORT_SYMBOL(skb_checksum); 2017 2018 /* Both of above in one bottle. */ 2019 2020 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2021 u8 *to, int len, __wsum csum) 2022 { 2023 int start = skb_headlen(skb); 2024 int i, copy = start - offset; 2025 struct sk_buff *frag_iter; 2026 int pos = 0; 2027 2028 /* Copy header. */ 2029 if (copy > 0) { 2030 if (copy > len) 2031 copy = len; 2032 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2033 copy, csum); 2034 if ((len -= copy) == 0) 2035 return csum; 2036 offset += copy; 2037 to += copy; 2038 pos = copy; 2039 } 2040 2041 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2042 int end; 2043 2044 WARN_ON(start > offset + len); 2045 2046 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2047 if ((copy = end - offset) > 0) { 2048 __wsum csum2; 2049 u8 *vaddr; 2050 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2051 2052 if (copy > len) 2053 copy = len; 2054 vaddr = kmap_atomic(skb_frag_page(frag)); 2055 csum2 = csum_partial_copy_nocheck(vaddr + 2056 frag->page_offset + 2057 offset - start, to, 2058 copy, 0); 2059 kunmap_atomic(vaddr); 2060 csum = csum_block_add(csum, csum2, pos); 2061 if (!(len -= copy)) 2062 return csum; 2063 offset += copy; 2064 to += copy; 2065 pos += copy; 2066 } 2067 start = end; 2068 } 2069 2070 skb_walk_frags(skb, frag_iter) { 2071 __wsum csum2; 2072 int end; 2073 2074 WARN_ON(start > offset + len); 2075 2076 end = start + frag_iter->len; 2077 if ((copy = end - offset) > 0) { 2078 if (copy > len) 2079 copy = len; 2080 csum2 = skb_copy_and_csum_bits(frag_iter, 2081 offset - start, 2082 to, copy, 0); 2083 csum = csum_block_add(csum, csum2, pos); 2084 if ((len -= copy) == 0) 2085 return csum; 2086 offset += copy; 2087 to += copy; 2088 pos += copy; 2089 } 2090 start = end; 2091 } 2092 BUG_ON(len); 2093 return csum; 2094 } 2095 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2096 2097 /** 2098 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2099 * @from: source buffer 2100 * 2101 * Calculates the amount of linear headroom needed in the 'to' skb passed 2102 * into skb_zerocopy(). 2103 */ 2104 unsigned int 2105 skb_zerocopy_headlen(const struct sk_buff *from) 2106 { 2107 unsigned int hlen = 0; 2108 2109 if (!from->head_frag || 2110 skb_headlen(from) < L1_CACHE_BYTES || 2111 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2112 hlen = skb_headlen(from); 2113 2114 if (skb_has_frag_list(from)) 2115 hlen = from->len; 2116 2117 return hlen; 2118 } 2119 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2120 2121 /** 2122 * skb_zerocopy - Zero copy skb to skb 2123 * @to: destination buffer 2124 * @from: source buffer 2125 * @len: number of bytes to copy from source buffer 2126 * @hlen: size of linear headroom in destination buffer 2127 * 2128 * Copies up to `len` bytes from `from` to `to` by creating references 2129 * to the frags in the source buffer. 2130 * 2131 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2132 * headroom in the `to` buffer. 2133 */ 2134 void 2135 skb_zerocopy(struct sk_buff *to, const struct sk_buff *from, int len, int hlen) 2136 { 2137 int i, j = 0; 2138 int plen = 0; /* length of skb->head fragment */ 2139 struct page *page; 2140 unsigned int offset; 2141 2142 BUG_ON(!from->head_frag && !hlen); 2143 2144 /* dont bother with small payloads */ 2145 if (len <= skb_tailroom(to)) { 2146 skb_copy_bits(from, 0, skb_put(to, len), len); 2147 return; 2148 } 2149 2150 if (hlen) { 2151 skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2152 len -= hlen; 2153 } else { 2154 plen = min_t(int, skb_headlen(from), len); 2155 if (plen) { 2156 page = virt_to_head_page(from->head); 2157 offset = from->data - (unsigned char *)page_address(page); 2158 __skb_fill_page_desc(to, 0, page, offset, plen); 2159 get_page(page); 2160 j = 1; 2161 len -= plen; 2162 } 2163 } 2164 2165 to->truesize += len + plen; 2166 to->len += len + plen; 2167 to->data_len += len + plen; 2168 2169 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2170 if (!len) 2171 break; 2172 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2173 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2174 len -= skb_shinfo(to)->frags[j].size; 2175 skb_frag_ref(to, j); 2176 j++; 2177 } 2178 skb_shinfo(to)->nr_frags = j; 2179 } 2180 EXPORT_SYMBOL_GPL(skb_zerocopy); 2181 2182 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2183 { 2184 __wsum csum; 2185 long csstart; 2186 2187 if (skb->ip_summed == CHECKSUM_PARTIAL) 2188 csstart = skb_checksum_start_offset(skb); 2189 else 2190 csstart = skb_headlen(skb); 2191 2192 BUG_ON(csstart > skb_headlen(skb)); 2193 2194 skb_copy_from_linear_data(skb, to, csstart); 2195 2196 csum = 0; 2197 if (csstart != skb->len) 2198 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2199 skb->len - csstart, 0); 2200 2201 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2202 long csstuff = csstart + skb->csum_offset; 2203 2204 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2205 } 2206 } 2207 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2208 2209 /** 2210 * skb_dequeue - remove from the head of the queue 2211 * @list: list to dequeue from 2212 * 2213 * Remove the head of the list. The list lock is taken so the function 2214 * may be used safely with other locking list functions. The head item is 2215 * returned or %NULL if the list is empty. 2216 */ 2217 2218 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2219 { 2220 unsigned long flags; 2221 struct sk_buff *result; 2222 2223 spin_lock_irqsave(&list->lock, flags); 2224 result = __skb_dequeue(list); 2225 spin_unlock_irqrestore(&list->lock, flags); 2226 return result; 2227 } 2228 EXPORT_SYMBOL(skb_dequeue); 2229 2230 /** 2231 * skb_dequeue_tail - remove from the tail of the queue 2232 * @list: list to dequeue from 2233 * 2234 * Remove the tail of the list. The list lock is taken so the function 2235 * may be used safely with other locking list functions. The tail item is 2236 * returned or %NULL if the list is empty. 2237 */ 2238 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2239 { 2240 unsigned long flags; 2241 struct sk_buff *result; 2242 2243 spin_lock_irqsave(&list->lock, flags); 2244 result = __skb_dequeue_tail(list); 2245 spin_unlock_irqrestore(&list->lock, flags); 2246 return result; 2247 } 2248 EXPORT_SYMBOL(skb_dequeue_tail); 2249 2250 /** 2251 * skb_queue_purge - empty a list 2252 * @list: list to empty 2253 * 2254 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2255 * the list and one reference dropped. This function takes the list 2256 * lock and is atomic with respect to other list locking functions. 2257 */ 2258 void skb_queue_purge(struct sk_buff_head *list) 2259 { 2260 struct sk_buff *skb; 2261 while ((skb = skb_dequeue(list)) != NULL) 2262 kfree_skb(skb); 2263 } 2264 EXPORT_SYMBOL(skb_queue_purge); 2265 2266 /** 2267 * skb_queue_head - queue a buffer at the list head 2268 * @list: list to use 2269 * @newsk: buffer to queue 2270 * 2271 * Queue a buffer at the start of the list. This function takes the 2272 * list lock and can be used safely with other locking &sk_buff functions 2273 * safely. 2274 * 2275 * A buffer cannot be placed on two lists at the same time. 2276 */ 2277 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2278 { 2279 unsigned long flags; 2280 2281 spin_lock_irqsave(&list->lock, flags); 2282 __skb_queue_head(list, newsk); 2283 spin_unlock_irqrestore(&list->lock, flags); 2284 } 2285 EXPORT_SYMBOL(skb_queue_head); 2286 2287 /** 2288 * skb_queue_tail - queue a buffer at the list tail 2289 * @list: list to use 2290 * @newsk: buffer to queue 2291 * 2292 * Queue a buffer at the tail of the list. This function takes the 2293 * list lock and can be used safely with other locking &sk_buff functions 2294 * safely. 2295 * 2296 * A buffer cannot be placed on two lists at the same time. 2297 */ 2298 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2299 { 2300 unsigned long flags; 2301 2302 spin_lock_irqsave(&list->lock, flags); 2303 __skb_queue_tail(list, newsk); 2304 spin_unlock_irqrestore(&list->lock, flags); 2305 } 2306 EXPORT_SYMBOL(skb_queue_tail); 2307 2308 /** 2309 * skb_unlink - remove a buffer from a list 2310 * @skb: buffer to remove 2311 * @list: list to use 2312 * 2313 * Remove a packet from a list. The list locks are taken and this 2314 * function is atomic with respect to other list locked calls 2315 * 2316 * You must know what list the SKB is on. 2317 */ 2318 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2319 { 2320 unsigned long flags; 2321 2322 spin_lock_irqsave(&list->lock, flags); 2323 __skb_unlink(skb, list); 2324 spin_unlock_irqrestore(&list->lock, flags); 2325 } 2326 EXPORT_SYMBOL(skb_unlink); 2327 2328 /** 2329 * skb_append - append a buffer 2330 * @old: buffer to insert after 2331 * @newsk: buffer to insert 2332 * @list: list to use 2333 * 2334 * Place a packet after a given packet in a list. The list locks are taken 2335 * and this function is atomic with respect to other list locked calls. 2336 * A buffer cannot be placed on two lists at the same time. 2337 */ 2338 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2339 { 2340 unsigned long flags; 2341 2342 spin_lock_irqsave(&list->lock, flags); 2343 __skb_queue_after(list, old, newsk); 2344 spin_unlock_irqrestore(&list->lock, flags); 2345 } 2346 EXPORT_SYMBOL(skb_append); 2347 2348 /** 2349 * skb_insert - insert a buffer 2350 * @old: buffer to insert before 2351 * @newsk: buffer to insert 2352 * @list: list to use 2353 * 2354 * Place a packet before a given packet in a list. The list locks are 2355 * taken and this function is atomic with respect to other list locked 2356 * calls. 2357 * 2358 * A buffer cannot be placed on two lists at the same time. 2359 */ 2360 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2361 { 2362 unsigned long flags; 2363 2364 spin_lock_irqsave(&list->lock, flags); 2365 __skb_insert(newsk, old->prev, old, list); 2366 spin_unlock_irqrestore(&list->lock, flags); 2367 } 2368 EXPORT_SYMBOL(skb_insert); 2369 2370 static inline void skb_split_inside_header(struct sk_buff *skb, 2371 struct sk_buff* skb1, 2372 const u32 len, const int pos) 2373 { 2374 int i; 2375 2376 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2377 pos - len); 2378 /* And move data appendix as is. */ 2379 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2380 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2381 2382 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2383 skb_shinfo(skb)->nr_frags = 0; 2384 skb1->data_len = skb->data_len; 2385 skb1->len += skb1->data_len; 2386 skb->data_len = 0; 2387 skb->len = len; 2388 skb_set_tail_pointer(skb, len); 2389 } 2390 2391 static inline void skb_split_no_header(struct sk_buff *skb, 2392 struct sk_buff* skb1, 2393 const u32 len, int pos) 2394 { 2395 int i, k = 0; 2396 const int nfrags = skb_shinfo(skb)->nr_frags; 2397 2398 skb_shinfo(skb)->nr_frags = 0; 2399 skb1->len = skb1->data_len = skb->len - len; 2400 skb->len = len; 2401 skb->data_len = len - pos; 2402 2403 for (i = 0; i < nfrags; i++) { 2404 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2405 2406 if (pos + size > len) { 2407 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2408 2409 if (pos < len) { 2410 /* Split frag. 2411 * We have two variants in this case: 2412 * 1. Move all the frag to the second 2413 * part, if it is possible. F.e. 2414 * this approach is mandatory for TUX, 2415 * where splitting is expensive. 2416 * 2. Split is accurately. We make this. 2417 */ 2418 skb_frag_ref(skb, i); 2419 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2420 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2421 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2422 skb_shinfo(skb)->nr_frags++; 2423 } 2424 k++; 2425 } else 2426 skb_shinfo(skb)->nr_frags++; 2427 pos += size; 2428 } 2429 skb_shinfo(skb1)->nr_frags = k; 2430 } 2431 2432 /** 2433 * skb_split - Split fragmented skb to two parts at length len. 2434 * @skb: the buffer to split 2435 * @skb1: the buffer to receive the second part 2436 * @len: new length for skb 2437 */ 2438 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2439 { 2440 int pos = skb_headlen(skb); 2441 2442 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2443 if (len < pos) /* Split line is inside header. */ 2444 skb_split_inside_header(skb, skb1, len, pos); 2445 else /* Second chunk has no header, nothing to copy. */ 2446 skb_split_no_header(skb, skb1, len, pos); 2447 } 2448 EXPORT_SYMBOL(skb_split); 2449 2450 /* Shifting from/to a cloned skb is a no-go. 2451 * 2452 * Caller cannot keep skb_shinfo related pointers past calling here! 2453 */ 2454 static int skb_prepare_for_shift(struct sk_buff *skb) 2455 { 2456 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2457 } 2458 2459 /** 2460 * skb_shift - Shifts paged data partially from skb to another 2461 * @tgt: buffer into which tail data gets added 2462 * @skb: buffer from which the paged data comes from 2463 * @shiftlen: shift up to this many bytes 2464 * 2465 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2466 * the length of the skb, from skb to tgt. Returns number bytes shifted. 2467 * It's up to caller to free skb if everything was shifted. 2468 * 2469 * If @tgt runs out of frags, the whole operation is aborted. 2470 * 2471 * Skb cannot include anything else but paged data while tgt is allowed 2472 * to have non-paged data as well. 2473 * 2474 * TODO: full sized shift could be optimized but that would need 2475 * specialized skb free'er to handle frags without up-to-date nr_frags. 2476 */ 2477 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2478 { 2479 int from, to, merge, todo; 2480 struct skb_frag_struct *fragfrom, *fragto; 2481 2482 BUG_ON(shiftlen > skb->len); 2483 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2484 2485 todo = shiftlen; 2486 from = 0; 2487 to = skb_shinfo(tgt)->nr_frags; 2488 fragfrom = &skb_shinfo(skb)->frags[from]; 2489 2490 /* Actual merge is delayed until the point when we know we can 2491 * commit all, so that we don't have to undo partial changes 2492 */ 2493 if (!to || 2494 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2495 fragfrom->page_offset)) { 2496 merge = -1; 2497 } else { 2498 merge = to - 1; 2499 2500 todo -= skb_frag_size(fragfrom); 2501 if (todo < 0) { 2502 if (skb_prepare_for_shift(skb) || 2503 skb_prepare_for_shift(tgt)) 2504 return 0; 2505 2506 /* All previous frag pointers might be stale! */ 2507 fragfrom = &skb_shinfo(skb)->frags[from]; 2508 fragto = &skb_shinfo(tgt)->frags[merge]; 2509 2510 skb_frag_size_add(fragto, shiftlen); 2511 skb_frag_size_sub(fragfrom, shiftlen); 2512 fragfrom->page_offset += shiftlen; 2513 2514 goto onlymerged; 2515 } 2516 2517 from++; 2518 } 2519 2520 /* Skip full, not-fitting skb to avoid expensive operations */ 2521 if ((shiftlen == skb->len) && 2522 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2523 return 0; 2524 2525 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2526 return 0; 2527 2528 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2529 if (to == MAX_SKB_FRAGS) 2530 return 0; 2531 2532 fragfrom = &skb_shinfo(skb)->frags[from]; 2533 fragto = &skb_shinfo(tgt)->frags[to]; 2534 2535 if (todo >= skb_frag_size(fragfrom)) { 2536 *fragto = *fragfrom; 2537 todo -= skb_frag_size(fragfrom); 2538 from++; 2539 to++; 2540 2541 } else { 2542 __skb_frag_ref(fragfrom); 2543 fragto->page = fragfrom->page; 2544 fragto->page_offset = fragfrom->page_offset; 2545 skb_frag_size_set(fragto, todo); 2546 2547 fragfrom->page_offset += todo; 2548 skb_frag_size_sub(fragfrom, todo); 2549 todo = 0; 2550 2551 to++; 2552 break; 2553 } 2554 } 2555 2556 /* Ready to "commit" this state change to tgt */ 2557 skb_shinfo(tgt)->nr_frags = to; 2558 2559 if (merge >= 0) { 2560 fragfrom = &skb_shinfo(skb)->frags[0]; 2561 fragto = &skb_shinfo(tgt)->frags[merge]; 2562 2563 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2564 __skb_frag_unref(fragfrom); 2565 } 2566 2567 /* Reposition in the original skb */ 2568 to = 0; 2569 while (from < skb_shinfo(skb)->nr_frags) 2570 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2571 skb_shinfo(skb)->nr_frags = to; 2572 2573 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2574 2575 onlymerged: 2576 /* Most likely the tgt won't ever need its checksum anymore, skb on 2577 * the other hand might need it if it needs to be resent 2578 */ 2579 tgt->ip_summed = CHECKSUM_PARTIAL; 2580 skb->ip_summed = CHECKSUM_PARTIAL; 2581 2582 /* Yak, is it really working this way? Some helper please? */ 2583 skb->len -= shiftlen; 2584 skb->data_len -= shiftlen; 2585 skb->truesize -= shiftlen; 2586 tgt->len += shiftlen; 2587 tgt->data_len += shiftlen; 2588 tgt->truesize += shiftlen; 2589 2590 return shiftlen; 2591 } 2592 2593 /** 2594 * skb_prepare_seq_read - Prepare a sequential read of skb data 2595 * @skb: the buffer to read 2596 * @from: lower offset of data to be read 2597 * @to: upper offset of data to be read 2598 * @st: state variable 2599 * 2600 * Initializes the specified state variable. Must be called before 2601 * invoking skb_seq_read() for the first time. 2602 */ 2603 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2604 unsigned int to, struct skb_seq_state *st) 2605 { 2606 st->lower_offset = from; 2607 st->upper_offset = to; 2608 st->root_skb = st->cur_skb = skb; 2609 st->frag_idx = st->stepped_offset = 0; 2610 st->frag_data = NULL; 2611 } 2612 EXPORT_SYMBOL(skb_prepare_seq_read); 2613 2614 /** 2615 * skb_seq_read - Sequentially read skb data 2616 * @consumed: number of bytes consumed by the caller so far 2617 * @data: destination pointer for data to be returned 2618 * @st: state variable 2619 * 2620 * Reads a block of skb data at @consumed relative to the 2621 * lower offset specified to skb_prepare_seq_read(). Assigns 2622 * the head of the data block to @data and returns the length 2623 * of the block or 0 if the end of the skb data or the upper 2624 * offset has been reached. 2625 * 2626 * The caller is not required to consume all of the data 2627 * returned, i.e. @consumed is typically set to the number 2628 * of bytes already consumed and the next call to 2629 * skb_seq_read() will return the remaining part of the block. 2630 * 2631 * Note 1: The size of each block of data returned can be arbitrary, 2632 * this limitation is the cost for zerocopy seqeuental 2633 * reads of potentially non linear data. 2634 * 2635 * Note 2: Fragment lists within fragments are not implemented 2636 * at the moment, state->root_skb could be replaced with 2637 * a stack for this purpose. 2638 */ 2639 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2640 struct skb_seq_state *st) 2641 { 2642 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2643 skb_frag_t *frag; 2644 2645 if (unlikely(abs_offset >= st->upper_offset)) { 2646 if (st->frag_data) { 2647 kunmap_atomic(st->frag_data); 2648 st->frag_data = NULL; 2649 } 2650 return 0; 2651 } 2652 2653 next_skb: 2654 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2655 2656 if (abs_offset < block_limit && !st->frag_data) { 2657 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2658 return block_limit - abs_offset; 2659 } 2660 2661 if (st->frag_idx == 0 && !st->frag_data) 2662 st->stepped_offset += skb_headlen(st->cur_skb); 2663 2664 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2665 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2666 block_limit = skb_frag_size(frag) + st->stepped_offset; 2667 2668 if (abs_offset < block_limit) { 2669 if (!st->frag_data) 2670 st->frag_data = kmap_atomic(skb_frag_page(frag)); 2671 2672 *data = (u8 *) st->frag_data + frag->page_offset + 2673 (abs_offset - st->stepped_offset); 2674 2675 return block_limit - abs_offset; 2676 } 2677 2678 if (st->frag_data) { 2679 kunmap_atomic(st->frag_data); 2680 st->frag_data = NULL; 2681 } 2682 2683 st->frag_idx++; 2684 st->stepped_offset += skb_frag_size(frag); 2685 } 2686 2687 if (st->frag_data) { 2688 kunmap_atomic(st->frag_data); 2689 st->frag_data = NULL; 2690 } 2691 2692 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2693 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2694 st->frag_idx = 0; 2695 goto next_skb; 2696 } else if (st->cur_skb->next) { 2697 st->cur_skb = st->cur_skb->next; 2698 st->frag_idx = 0; 2699 goto next_skb; 2700 } 2701 2702 return 0; 2703 } 2704 EXPORT_SYMBOL(skb_seq_read); 2705 2706 /** 2707 * skb_abort_seq_read - Abort a sequential read of skb data 2708 * @st: state variable 2709 * 2710 * Must be called if skb_seq_read() was not called until it 2711 * returned 0. 2712 */ 2713 void skb_abort_seq_read(struct skb_seq_state *st) 2714 { 2715 if (st->frag_data) 2716 kunmap_atomic(st->frag_data); 2717 } 2718 EXPORT_SYMBOL(skb_abort_seq_read); 2719 2720 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2721 2722 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2723 struct ts_config *conf, 2724 struct ts_state *state) 2725 { 2726 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2727 } 2728 2729 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2730 { 2731 skb_abort_seq_read(TS_SKB_CB(state)); 2732 } 2733 2734 /** 2735 * skb_find_text - Find a text pattern in skb data 2736 * @skb: the buffer to look in 2737 * @from: search offset 2738 * @to: search limit 2739 * @config: textsearch configuration 2740 * @state: uninitialized textsearch state variable 2741 * 2742 * Finds a pattern in the skb data according to the specified 2743 * textsearch configuration. Use textsearch_next() to retrieve 2744 * subsequent occurrences of the pattern. Returns the offset 2745 * to the first occurrence or UINT_MAX if no match was found. 2746 */ 2747 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2748 unsigned int to, struct ts_config *config, 2749 struct ts_state *state) 2750 { 2751 unsigned int ret; 2752 2753 config->get_next_block = skb_ts_get_next_block; 2754 config->finish = skb_ts_finish; 2755 2756 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2757 2758 ret = textsearch_find(config, state); 2759 return (ret <= to - from ? ret : UINT_MAX); 2760 } 2761 EXPORT_SYMBOL(skb_find_text); 2762 2763 /** 2764 * skb_append_datato_frags - append the user data to a skb 2765 * @sk: sock structure 2766 * @skb: skb structure to be appened with user data. 2767 * @getfrag: call back function to be used for getting the user data 2768 * @from: pointer to user message iov 2769 * @length: length of the iov message 2770 * 2771 * Description: This procedure append the user data in the fragment part 2772 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2773 */ 2774 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2775 int (*getfrag)(void *from, char *to, int offset, 2776 int len, int odd, struct sk_buff *skb), 2777 void *from, int length) 2778 { 2779 int frg_cnt = skb_shinfo(skb)->nr_frags; 2780 int copy; 2781 int offset = 0; 2782 int ret; 2783 struct page_frag *pfrag = ¤t->task_frag; 2784 2785 do { 2786 /* Return error if we don't have space for new frag */ 2787 if (frg_cnt >= MAX_SKB_FRAGS) 2788 return -EMSGSIZE; 2789 2790 if (!sk_page_frag_refill(sk, pfrag)) 2791 return -ENOMEM; 2792 2793 /* copy the user data to page */ 2794 copy = min_t(int, length, pfrag->size - pfrag->offset); 2795 2796 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 2797 offset, copy, 0, skb); 2798 if (ret < 0) 2799 return -EFAULT; 2800 2801 /* copy was successful so update the size parameters */ 2802 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 2803 copy); 2804 frg_cnt++; 2805 pfrag->offset += copy; 2806 get_page(pfrag->page); 2807 2808 skb->truesize += copy; 2809 atomic_add(copy, &sk->sk_wmem_alloc); 2810 skb->len += copy; 2811 skb->data_len += copy; 2812 offset += copy; 2813 length -= copy; 2814 2815 } while (length > 0); 2816 2817 return 0; 2818 } 2819 EXPORT_SYMBOL(skb_append_datato_frags); 2820 2821 /** 2822 * skb_pull_rcsum - pull skb and update receive checksum 2823 * @skb: buffer to update 2824 * @len: length of data pulled 2825 * 2826 * This function performs an skb_pull on the packet and updates 2827 * the CHECKSUM_COMPLETE checksum. It should be used on 2828 * receive path processing instead of skb_pull unless you know 2829 * that the checksum difference is zero (e.g., a valid IP header) 2830 * or you are setting ip_summed to CHECKSUM_NONE. 2831 */ 2832 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2833 { 2834 BUG_ON(len > skb->len); 2835 skb->len -= len; 2836 BUG_ON(skb->len < skb->data_len); 2837 skb_postpull_rcsum(skb, skb->data, len); 2838 return skb->data += len; 2839 } 2840 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2841 2842 /** 2843 * skb_segment - Perform protocol segmentation on skb. 2844 * @skb: buffer to segment 2845 * @features: features for the output path (see dev->features) 2846 * 2847 * This function performs segmentation on the given skb. It returns 2848 * a pointer to the first in a list of new skbs for the segments. 2849 * In case of error it returns ERR_PTR(err). 2850 */ 2851 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features) 2852 { 2853 struct sk_buff *segs = NULL; 2854 struct sk_buff *tail = NULL; 2855 struct sk_buff *fskb = skb_shinfo(skb)->frag_list; 2856 skb_frag_t *skb_frag = skb_shinfo(skb)->frags; 2857 unsigned int mss = skb_shinfo(skb)->gso_size; 2858 unsigned int doffset = skb->data - skb_mac_header(skb); 2859 unsigned int offset = doffset; 2860 unsigned int tnl_hlen = skb_tnl_header_len(skb); 2861 unsigned int headroom; 2862 unsigned int len; 2863 __be16 proto; 2864 bool csum; 2865 int sg = !!(features & NETIF_F_SG); 2866 int nfrags = skb_shinfo(skb)->nr_frags; 2867 int err = -ENOMEM; 2868 int i = 0; 2869 int pos; 2870 2871 proto = skb_network_protocol(skb); 2872 if (unlikely(!proto)) 2873 return ERR_PTR(-EINVAL); 2874 2875 csum = !!can_checksum_protocol(features, proto); 2876 __skb_push(skb, doffset); 2877 headroom = skb_headroom(skb); 2878 pos = skb_headlen(skb); 2879 2880 do { 2881 struct sk_buff *nskb; 2882 skb_frag_t *frag; 2883 int hsize; 2884 int size; 2885 2886 len = skb->len - offset; 2887 if (len > mss) 2888 len = mss; 2889 2890 hsize = skb_headlen(skb) - offset; 2891 if (hsize < 0) 2892 hsize = 0; 2893 if (hsize > len || !sg) 2894 hsize = len; 2895 2896 if (!hsize && i >= nfrags && skb_headlen(fskb) && 2897 (skb_headlen(fskb) == len || sg)) { 2898 BUG_ON(skb_headlen(fskb) > len); 2899 2900 i = 0; 2901 nfrags = skb_shinfo(fskb)->nr_frags; 2902 skb_frag = skb_shinfo(fskb)->frags; 2903 pos += skb_headlen(fskb); 2904 2905 while (pos < offset + len) { 2906 BUG_ON(i >= nfrags); 2907 2908 size = skb_frag_size(skb_frag); 2909 if (pos + size > offset + len) 2910 break; 2911 2912 i++; 2913 pos += size; 2914 skb_frag++; 2915 } 2916 2917 nskb = skb_clone(fskb, GFP_ATOMIC); 2918 fskb = fskb->next; 2919 2920 if (unlikely(!nskb)) 2921 goto err; 2922 2923 if (unlikely(pskb_trim(nskb, len))) { 2924 kfree_skb(nskb); 2925 goto err; 2926 } 2927 2928 hsize = skb_end_offset(nskb); 2929 if (skb_cow_head(nskb, doffset + headroom)) { 2930 kfree_skb(nskb); 2931 goto err; 2932 } 2933 2934 nskb->truesize += skb_end_offset(nskb) - hsize; 2935 skb_release_head_state(nskb); 2936 __skb_push(nskb, doffset); 2937 } else { 2938 nskb = __alloc_skb(hsize + doffset + headroom, 2939 GFP_ATOMIC, skb_alloc_rx_flag(skb), 2940 NUMA_NO_NODE); 2941 2942 if (unlikely(!nskb)) 2943 goto err; 2944 2945 skb_reserve(nskb, headroom); 2946 __skb_put(nskb, doffset); 2947 } 2948 2949 if (segs) 2950 tail->next = nskb; 2951 else 2952 segs = nskb; 2953 tail = nskb; 2954 2955 __copy_skb_header(nskb, skb); 2956 nskb->mac_len = skb->mac_len; 2957 2958 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 2959 2960 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 2961 nskb->data - tnl_hlen, 2962 doffset + tnl_hlen); 2963 2964 if (nskb->len == len + doffset) 2965 goto perform_csum_check; 2966 2967 if (!sg) { 2968 nskb->ip_summed = CHECKSUM_NONE; 2969 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2970 skb_put(nskb, len), 2971 len, 0); 2972 continue; 2973 } 2974 2975 frag = skb_shinfo(nskb)->frags; 2976 2977 skb_copy_from_linear_data_offset(skb, offset, 2978 skb_put(nskb, hsize), hsize); 2979 2980 skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2981 2982 while (pos < offset + len) { 2983 if (i >= nfrags) { 2984 BUG_ON(skb_headlen(fskb)); 2985 2986 i = 0; 2987 nfrags = skb_shinfo(fskb)->nr_frags; 2988 skb_frag = skb_shinfo(fskb)->frags; 2989 2990 BUG_ON(!nfrags); 2991 2992 fskb = fskb->next; 2993 } 2994 2995 if (unlikely(skb_shinfo(nskb)->nr_frags >= 2996 MAX_SKB_FRAGS)) { 2997 net_warn_ratelimited( 2998 "skb_segment: too many frags: %u %u\n", 2999 pos, mss); 3000 goto err; 3001 } 3002 3003 *frag = *skb_frag; 3004 __skb_frag_ref(frag); 3005 size = skb_frag_size(frag); 3006 3007 if (pos < offset) { 3008 frag->page_offset += offset - pos; 3009 skb_frag_size_sub(frag, offset - pos); 3010 } 3011 3012 skb_shinfo(nskb)->nr_frags++; 3013 3014 if (pos + size <= offset + len) { 3015 i++; 3016 skb_frag++; 3017 pos += size; 3018 } else { 3019 skb_frag_size_sub(frag, pos + size - (offset + len)); 3020 goto skip_fraglist; 3021 } 3022 3023 frag++; 3024 } 3025 3026 skip_fraglist: 3027 nskb->data_len = len - hsize; 3028 nskb->len += nskb->data_len; 3029 nskb->truesize += nskb->data_len; 3030 3031 perform_csum_check: 3032 if (!csum) { 3033 nskb->csum = skb_checksum(nskb, doffset, 3034 nskb->len - doffset, 0); 3035 nskb->ip_summed = CHECKSUM_NONE; 3036 } 3037 } while ((offset += len) < skb->len); 3038 3039 return segs; 3040 3041 err: 3042 kfree_skb_list(segs); 3043 return ERR_PTR(err); 3044 } 3045 EXPORT_SYMBOL_GPL(skb_segment); 3046 3047 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3048 { 3049 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3050 unsigned int offset = skb_gro_offset(skb); 3051 unsigned int headlen = skb_headlen(skb); 3052 struct sk_buff *nskb, *lp, *p = *head; 3053 unsigned int len = skb_gro_len(skb); 3054 unsigned int delta_truesize; 3055 unsigned int headroom; 3056 3057 if (unlikely(p->len + len >= 65536)) 3058 return -E2BIG; 3059 3060 lp = NAPI_GRO_CB(p)->last ?: p; 3061 pinfo = skb_shinfo(lp); 3062 3063 if (headlen <= offset) { 3064 skb_frag_t *frag; 3065 skb_frag_t *frag2; 3066 int i = skbinfo->nr_frags; 3067 int nr_frags = pinfo->nr_frags + i; 3068 3069 if (nr_frags > MAX_SKB_FRAGS) 3070 goto merge; 3071 3072 offset -= headlen; 3073 pinfo->nr_frags = nr_frags; 3074 skbinfo->nr_frags = 0; 3075 3076 frag = pinfo->frags + nr_frags; 3077 frag2 = skbinfo->frags + i; 3078 do { 3079 *--frag = *--frag2; 3080 } while (--i); 3081 3082 frag->page_offset += offset; 3083 skb_frag_size_sub(frag, offset); 3084 3085 /* all fragments truesize : remove (head size + sk_buff) */ 3086 delta_truesize = skb->truesize - 3087 SKB_TRUESIZE(skb_end_offset(skb)); 3088 3089 skb->truesize -= skb->data_len; 3090 skb->len -= skb->data_len; 3091 skb->data_len = 0; 3092 3093 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3094 goto done; 3095 } else if (skb->head_frag) { 3096 int nr_frags = pinfo->nr_frags; 3097 skb_frag_t *frag = pinfo->frags + nr_frags; 3098 struct page *page = virt_to_head_page(skb->head); 3099 unsigned int first_size = headlen - offset; 3100 unsigned int first_offset; 3101 3102 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3103 goto merge; 3104 3105 first_offset = skb->data - 3106 (unsigned char *)page_address(page) + 3107 offset; 3108 3109 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3110 3111 frag->page.p = page; 3112 frag->page_offset = first_offset; 3113 skb_frag_size_set(frag, first_size); 3114 3115 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3116 /* We dont need to clear skbinfo->nr_frags here */ 3117 3118 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3119 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3120 goto done; 3121 } 3122 if (pinfo->frag_list) 3123 goto merge; 3124 if (skb_gro_len(p) != pinfo->gso_size) 3125 return -E2BIG; 3126 3127 headroom = skb_headroom(p); 3128 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC); 3129 if (unlikely(!nskb)) 3130 return -ENOMEM; 3131 3132 __copy_skb_header(nskb, p); 3133 nskb->mac_len = p->mac_len; 3134 3135 skb_reserve(nskb, headroom); 3136 __skb_put(nskb, skb_gro_offset(p)); 3137 3138 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 3139 skb_set_network_header(nskb, skb_network_offset(p)); 3140 skb_set_transport_header(nskb, skb_transport_offset(p)); 3141 3142 __skb_pull(p, skb_gro_offset(p)); 3143 memcpy(skb_mac_header(nskb), skb_mac_header(p), 3144 p->data - skb_mac_header(p)); 3145 3146 skb_shinfo(nskb)->frag_list = p; 3147 skb_shinfo(nskb)->gso_size = pinfo->gso_size; 3148 pinfo->gso_size = 0; 3149 skb_header_release(p); 3150 NAPI_GRO_CB(nskb)->last = p; 3151 3152 nskb->data_len += p->len; 3153 nskb->truesize += p->truesize; 3154 nskb->len += p->len; 3155 3156 *head = nskb; 3157 nskb->next = p->next; 3158 p->next = NULL; 3159 3160 p = nskb; 3161 3162 merge: 3163 delta_truesize = skb->truesize; 3164 if (offset > headlen) { 3165 unsigned int eat = offset - headlen; 3166 3167 skbinfo->frags[0].page_offset += eat; 3168 skb_frag_size_sub(&skbinfo->frags[0], eat); 3169 skb->data_len -= eat; 3170 skb->len -= eat; 3171 offset = headlen; 3172 } 3173 3174 __skb_pull(skb, offset); 3175 3176 if (!NAPI_GRO_CB(p)->last) 3177 skb_shinfo(p)->frag_list = skb; 3178 else 3179 NAPI_GRO_CB(p)->last->next = skb; 3180 NAPI_GRO_CB(p)->last = skb; 3181 skb_header_release(skb); 3182 lp = p; 3183 3184 done: 3185 NAPI_GRO_CB(p)->count++; 3186 p->data_len += len; 3187 p->truesize += delta_truesize; 3188 p->len += len; 3189 if (lp != p) { 3190 lp->data_len += len; 3191 lp->truesize += delta_truesize; 3192 lp->len += len; 3193 } 3194 NAPI_GRO_CB(skb)->same_flow = 1; 3195 return 0; 3196 } 3197 EXPORT_SYMBOL_GPL(skb_gro_receive); 3198 3199 void __init skb_init(void) 3200 { 3201 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3202 sizeof(struct sk_buff), 3203 0, 3204 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3205 NULL); 3206 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3207 (2*sizeof(struct sk_buff)) + 3208 sizeof(atomic_t), 3209 0, 3210 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3211 NULL); 3212 } 3213 3214 /** 3215 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3216 * @skb: Socket buffer containing the buffers to be mapped 3217 * @sg: The scatter-gather list to map into 3218 * @offset: The offset into the buffer's contents to start mapping 3219 * @len: Length of buffer space to be mapped 3220 * 3221 * Fill the specified scatter-gather list with mappings/pointers into a 3222 * region of the buffer space attached to a socket buffer. 3223 */ 3224 static int 3225 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3226 { 3227 int start = skb_headlen(skb); 3228 int i, copy = start - offset; 3229 struct sk_buff *frag_iter; 3230 int elt = 0; 3231 3232 if (copy > 0) { 3233 if (copy > len) 3234 copy = len; 3235 sg_set_buf(sg, skb->data + offset, copy); 3236 elt++; 3237 if ((len -= copy) == 0) 3238 return elt; 3239 offset += copy; 3240 } 3241 3242 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3243 int end; 3244 3245 WARN_ON(start > offset + len); 3246 3247 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3248 if ((copy = end - offset) > 0) { 3249 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3250 3251 if (copy > len) 3252 copy = len; 3253 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3254 frag->page_offset+offset-start); 3255 elt++; 3256 if (!(len -= copy)) 3257 return elt; 3258 offset += copy; 3259 } 3260 start = end; 3261 } 3262 3263 skb_walk_frags(skb, frag_iter) { 3264 int end; 3265 3266 WARN_ON(start > offset + len); 3267 3268 end = start + frag_iter->len; 3269 if ((copy = end - offset) > 0) { 3270 if (copy > len) 3271 copy = len; 3272 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3273 copy); 3274 if ((len -= copy) == 0) 3275 return elt; 3276 offset += copy; 3277 } 3278 start = end; 3279 } 3280 BUG_ON(len); 3281 return elt; 3282 } 3283 3284 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3285 { 3286 int nsg = __skb_to_sgvec(skb, sg, offset, len); 3287 3288 sg_mark_end(&sg[nsg - 1]); 3289 3290 return nsg; 3291 } 3292 EXPORT_SYMBOL_GPL(skb_to_sgvec); 3293 3294 /** 3295 * skb_cow_data - Check that a socket buffer's data buffers are writable 3296 * @skb: The socket buffer to check. 3297 * @tailbits: Amount of trailing space to be added 3298 * @trailer: Returned pointer to the skb where the @tailbits space begins 3299 * 3300 * Make sure that the data buffers attached to a socket buffer are 3301 * writable. If they are not, private copies are made of the data buffers 3302 * and the socket buffer is set to use these instead. 3303 * 3304 * If @tailbits is given, make sure that there is space to write @tailbits 3305 * bytes of data beyond current end of socket buffer. @trailer will be 3306 * set to point to the skb in which this space begins. 3307 * 3308 * The number of scatterlist elements required to completely map the 3309 * COW'd and extended socket buffer will be returned. 3310 */ 3311 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3312 { 3313 int copyflag; 3314 int elt; 3315 struct sk_buff *skb1, **skb_p; 3316 3317 /* If skb is cloned or its head is paged, reallocate 3318 * head pulling out all the pages (pages are considered not writable 3319 * at the moment even if they are anonymous). 3320 */ 3321 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3322 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3323 return -ENOMEM; 3324 3325 /* Easy case. Most of packets will go this way. */ 3326 if (!skb_has_frag_list(skb)) { 3327 /* A little of trouble, not enough of space for trailer. 3328 * This should not happen, when stack is tuned to generate 3329 * good frames. OK, on miss we reallocate and reserve even more 3330 * space, 128 bytes is fair. */ 3331 3332 if (skb_tailroom(skb) < tailbits && 3333 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3334 return -ENOMEM; 3335 3336 /* Voila! */ 3337 *trailer = skb; 3338 return 1; 3339 } 3340 3341 /* Misery. We are in troubles, going to mincer fragments... */ 3342 3343 elt = 1; 3344 skb_p = &skb_shinfo(skb)->frag_list; 3345 copyflag = 0; 3346 3347 while ((skb1 = *skb_p) != NULL) { 3348 int ntail = 0; 3349 3350 /* The fragment is partially pulled by someone, 3351 * this can happen on input. Copy it and everything 3352 * after it. */ 3353 3354 if (skb_shared(skb1)) 3355 copyflag = 1; 3356 3357 /* If the skb is the last, worry about trailer. */ 3358 3359 if (skb1->next == NULL && tailbits) { 3360 if (skb_shinfo(skb1)->nr_frags || 3361 skb_has_frag_list(skb1) || 3362 skb_tailroom(skb1) < tailbits) 3363 ntail = tailbits + 128; 3364 } 3365 3366 if (copyflag || 3367 skb_cloned(skb1) || 3368 ntail || 3369 skb_shinfo(skb1)->nr_frags || 3370 skb_has_frag_list(skb1)) { 3371 struct sk_buff *skb2; 3372 3373 /* Fuck, we are miserable poor guys... */ 3374 if (ntail == 0) 3375 skb2 = skb_copy(skb1, GFP_ATOMIC); 3376 else 3377 skb2 = skb_copy_expand(skb1, 3378 skb_headroom(skb1), 3379 ntail, 3380 GFP_ATOMIC); 3381 if (unlikely(skb2 == NULL)) 3382 return -ENOMEM; 3383 3384 if (skb1->sk) 3385 skb_set_owner_w(skb2, skb1->sk); 3386 3387 /* Looking around. Are we still alive? 3388 * OK, link new skb, drop old one */ 3389 3390 skb2->next = skb1->next; 3391 *skb_p = skb2; 3392 kfree_skb(skb1); 3393 skb1 = skb2; 3394 } 3395 elt++; 3396 *trailer = skb1; 3397 skb_p = &skb1->next; 3398 } 3399 3400 return elt; 3401 } 3402 EXPORT_SYMBOL_GPL(skb_cow_data); 3403 3404 static void sock_rmem_free(struct sk_buff *skb) 3405 { 3406 struct sock *sk = skb->sk; 3407 3408 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3409 } 3410 3411 /* 3412 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3413 */ 3414 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3415 { 3416 int len = skb->len; 3417 3418 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3419 (unsigned int)sk->sk_rcvbuf) 3420 return -ENOMEM; 3421 3422 skb_orphan(skb); 3423 skb->sk = sk; 3424 skb->destructor = sock_rmem_free; 3425 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3426 3427 /* before exiting rcu section, make sure dst is refcounted */ 3428 skb_dst_force(skb); 3429 3430 skb_queue_tail(&sk->sk_error_queue, skb); 3431 if (!sock_flag(sk, SOCK_DEAD)) 3432 sk->sk_data_ready(sk, len); 3433 return 0; 3434 } 3435 EXPORT_SYMBOL(sock_queue_err_skb); 3436 3437 void skb_tstamp_tx(struct sk_buff *orig_skb, 3438 struct skb_shared_hwtstamps *hwtstamps) 3439 { 3440 struct sock *sk = orig_skb->sk; 3441 struct sock_exterr_skb *serr; 3442 struct sk_buff *skb; 3443 int err; 3444 3445 if (!sk) 3446 return; 3447 3448 if (hwtstamps) { 3449 *skb_hwtstamps(orig_skb) = 3450 *hwtstamps; 3451 } else { 3452 /* 3453 * no hardware time stamps available, 3454 * so keep the shared tx_flags and only 3455 * store software time stamp 3456 */ 3457 orig_skb->tstamp = ktime_get_real(); 3458 } 3459 3460 skb = skb_clone(orig_skb, GFP_ATOMIC); 3461 if (!skb) 3462 return; 3463 3464 serr = SKB_EXT_ERR(skb); 3465 memset(serr, 0, sizeof(*serr)); 3466 serr->ee.ee_errno = ENOMSG; 3467 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3468 3469 err = sock_queue_err_skb(sk, skb); 3470 3471 if (err) 3472 kfree_skb(skb); 3473 } 3474 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3475 3476 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 3477 { 3478 struct sock *sk = skb->sk; 3479 struct sock_exterr_skb *serr; 3480 int err; 3481 3482 skb->wifi_acked_valid = 1; 3483 skb->wifi_acked = acked; 3484 3485 serr = SKB_EXT_ERR(skb); 3486 memset(serr, 0, sizeof(*serr)); 3487 serr->ee.ee_errno = ENOMSG; 3488 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 3489 3490 err = sock_queue_err_skb(sk, skb); 3491 if (err) 3492 kfree_skb(skb); 3493 } 3494 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 3495 3496 3497 /** 3498 * skb_partial_csum_set - set up and verify partial csum values for packet 3499 * @skb: the skb to set 3500 * @start: the number of bytes after skb->data to start checksumming. 3501 * @off: the offset from start to place the checksum. 3502 * 3503 * For untrusted partially-checksummed packets, we need to make sure the values 3504 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3505 * 3506 * This function checks and sets those values and skb->ip_summed: if this 3507 * returns false you should drop the packet. 3508 */ 3509 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3510 { 3511 if (unlikely(start > skb_headlen(skb)) || 3512 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3513 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 3514 start, off, skb_headlen(skb)); 3515 return false; 3516 } 3517 skb->ip_summed = CHECKSUM_PARTIAL; 3518 skb->csum_start = skb_headroom(skb) + start; 3519 skb->csum_offset = off; 3520 skb_set_transport_header(skb, start); 3521 return true; 3522 } 3523 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3524 3525 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 3526 unsigned int max) 3527 { 3528 if (skb_headlen(skb) >= len) 3529 return 0; 3530 3531 /* If we need to pullup then pullup to the max, so we 3532 * won't need to do it again. 3533 */ 3534 if (max > skb->len) 3535 max = skb->len; 3536 3537 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 3538 return -ENOMEM; 3539 3540 if (skb_headlen(skb) < len) 3541 return -EPROTO; 3542 3543 return 0; 3544 } 3545 3546 /* This value should be large enough to cover a tagged ethernet header plus 3547 * maximally sized IP and TCP or UDP headers. 3548 */ 3549 #define MAX_IP_HDR_LEN 128 3550 3551 static int skb_checksum_setup_ip(struct sk_buff *skb, bool recalculate) 3552 { 3553 unsigned int off; 3554 bool fragment; 3555 int err; 3556 3557 fragment = false; 3558 3559 err = skb_maybe_pull_tail(skb, 3560 sizeof(struct iphdr), 3561 MAX_IP_HDR_LEN); 3562 if (err < 0) 3563 goto out; 3564 3565 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 3566 fragment = true; 3567 3568 off = ip_hdrlen(skb); 3569 3570 err = -EPROTO; 3571 3572 if (fragment) 3573 goto out; 3574 3575 switch (ip_hdr(skb)->protocol) { 3576 case IPPROTO_TCP: 3577 err = skb_maybe_pull_tail(skb, 3578 off + sizeof(struct tcphdr), 3579 MAX_IP_HDR_LEN); 3580 if (err < 0) 3581 goto out; 3582 3583 if (!skb_partial_csum_set(skb, off, 3584 offsetof(struct tcphdr, check))) { 3585 err = -EPROTO; 3586 goto out; 3587 } 3588 3589 if (recalculate) 3590 tcp_hdr(skb)->check = 3591 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3592 ip_hdr(skb)->daddr, 3593 skb->len - off, 3594 IPPROTO_TCP, 0); 3595 break; 3596 case IPPROTO_UDP: 3597 err = skb_maybe_pull_tail(skb, 3598 off + sizeof(struct udphdr), 3599 MAX_IP_HDR_LEN); 3600 if (err < 0) 3601 goto out; 3602 3603 if (!skb_partial_csum_set(skb, off, 3604 offsetof(struct udphdr, check))) { 3605 err = -EPROTO; 3606 goto out; 3607 } 3608 3609 if (recalculate) 3610 udp_hdr(skb)->check = 3611 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3612 ip_hdr(skb)->daddr, 3613 skb->len - off, 3614 IPPROTO_UDP, 0); 3615 break; 3616 default: 3617 goto out; 3618 } 3619 3620 err = 0; 3621 3622 out: 3623 return err; 3624 } 3625 3626 /* This value should be large enough to cover a tagged ethernet header plus 3627 * an IPv6 header, all options, and a maximal TCP or UDP header. 3628 */ 3629 #define MAX_IPV6_HDR_LEN 256 3630 3631 #define OPT_HDR(type, skb, off) \ 3632 (type *)(skb_network_header(skb) + (off)) 3633 3634 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 3635 { 3636 int err; 3637 u8 nexthdr; 3638 unsigned int off; 3639 unsigned int len; 3640 bool fragment; 3641 bool done; 3642 3643 fragment = false; 3644 done = false; 3645 3646 off = sizeof(struct ipv6hdr); 3647 3648 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 3649 if (err < 0) 3650 goto out; 3651 3652 nexthdr = ipv6_hdr(skb)->nexthdr; 3653 3654 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 3655 while (off <= len && !done) { 3656 switch (nexthdr) { 3657 case IPPROTO_DSTOPTS: 3658 case IPPROTO_HOPOPTS: 3659 case IPPROTO_ROUTING: { 3660 struct ipv6_opt_hdr *hp; 3661 3662 err = skb_maybe_pull_tail(skb, 3663 off + 3664 sizeof(struct ipv6_opt_hdr), 3665 MAX_IPV6_HDR_LEN); 3666 if (err < 0) 3667 goto out; 3668 3669 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 3670 nexthdr = hp->nexthdr; 3671 off += ipv6_optlen(hp); 3672 break; 3673 } 3674 case IPPROTO_AH: { 3675 struct ip_auth_hdr *hp; 3676 3677 err = skb_maybe_pull_tail(skb, 3678 off + 3679 sizeof(struct ip_auth_hdr), 3680 MAX_IPV6_HDR_LEN); 3681 if (err < 0) 3682 goto out; 3683 3684 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 3685 nexthdr = hp->nexthdr; 3686 off += ipv6_authlen(hp); 3687 break; 3688 } 3689 case IPPROTO_FRAGMENT: { 3690 struct frag_hdr *hp; 3691 3692 err = skb_maybe_pull_tail(skb, 3693 off + 3694 sizeof(struct frag_hdr), 3695 MAX_IPV6_HDR_LEN); 3696 if (err < 0) 3697 goto out; 3698 3699 hp = OPT_HDR(struct frag_hdr, skb, off); 3700 3701 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 3702 fragment = true; 3703 3704 nexthdr = hp->nexthdr; 3705 off += sizeof(struct frag_hdr); 3706 break; 3707 } 3708 default: 3709 done = true; 3710 break; 3711 } 3712 } 3713 3714 err = -EPROTO; 3715 3716 if (!done || fragment) 3717 goto out; 3718 3719 switch (nexthdr) { 3720 case IPPROTO_TCP: 3721 err = skb_maybe_pull_tail(skb, 3722 off + sizeof(struct tcphdr), 3723 MAX_IPV6_HDR_LEN); 3724 if (err < 0) 3725 goto out; 3726 3727 if (!skb_partial_csum_set(skb, off, 3728 offsetof(struct tcphdr, check))) { 3729 err = -EPROTO; 3730 goto out; 3731 } 3732 3733 if (recalculate) 3734 tcp_hdr(skb)->check = 3735 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3736 &ipv6_hdr(skb)->daddr, 3737 skb->len - off, 3738 IPPROTO_TCP, 0); 3739 break; 3740 case IPPROTO_UDP: 3741 err = skb_maybe_pull_tail(skb, 3742 off + sizeof(struct udphdr), 3743 MAX_IPV6_HDR_LEN); 3744 if (err < 0) 3745 goto out; 3746 3747 if (!skb_partial_csum_set(skb, off, 3748 offsetof(struct udphdr, check))) { 3749 err = -EPROTO; 3750 goto out; 3751 } 3752 3753 if (recalculate) 3754 udp_hdr(skb)->check = 3755 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3756 &ipv6_hdr(skb)->daddr, 3757 skb->len - off, 3758 IPPROTO_UDP, 0); 3759 break; 3760 default: 3761 goto out; 3762 } 3763 3764 err = 0; 3765 3766 out: 3767 return err; 3768 } 3769 3770 /** 3771 * skb_checksum_setup - set up partial checksum offset 3772 * @skb: the skb to set up 3773 * @recalculate: if true the pseudo-header checksum will be recalculated 3774 */ 3775 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 3776 { 3777 int err; 3778 3779 switch (skb->protocol) { 3780 case htons(ETH_P_IP): 3781 err = skb_checksum_setup_ip(skb, recalculate); 3782 break; 3783 3784 case htons(ETH_P_IPV6): 3785 err = skb_checksum_setup_ipv6(skb, recalculate); 3786 break; 3787 3788 default: 3789 err = -EPROTO; 3790 break; 3791 } 3792 3793 return err; 3794 } 3795 EXPORT_SYMBOL(skb_checksum_setup); 3796 3797 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3798 { 3799 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 3800 skb->dev->name); 3801 } 3802 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3803 3804 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 3805 { 3806 if (head_stolen) { 3807 skb_release_head_state(skb); 3808 kmem_cache_free(skbuff_head_cache, skb); 3809 } else { 3810 __kfree_skb(skb); 3811 } 3812 } 3813 EXPORT_SYMBOL(kfree_skb_partial); 3814 3815 /** 3816 * skb_try_coalesce - try to merge skb to prior one 3817 * @to: prior buffer 3818 * @from: buffer to add 3819 * @fragstolen: pointer to boolean 3820 * @delta_truesize: how much more was allocated than was requested 3821 */ 3822 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 3823 bool *fragstolen, int *delta_truesize) 3824 { 3825 int i, delta, len = from->len; 3826 3827 *fragstolen = false; 3828 3829 if (skb_cloned(to)) 3830 return false; 3831 3832 if (len <= skb_tailroom(to)) { 3833 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 3834 *delta_truesize = 0; 3835 return true; 3836 } 3837 3838 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 3839 return false; 3840 3841 if (skb_headlen(from) != 0) { 3842 struct page *page; 3843 unsigned int offset; 3844 3845 if (skb_shinfo(to)->nr_frags + 3846 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 3847 return false; 3848 3849 if (skb_head_is_locked(from)) 3850 return false; 3851 3852 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3853 3854 page = virt_to_head_page(from->head); 3855 offset = from->data - (unsigned char *)page_address(page); 3856 3857 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 3858 page, offset, skb_headlen(from)); 3859 *fragstolen = true; 3860 } else { 3861 if (skb_shinfo(to)->nr_frags + 3862 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 3863 return false; 3864 3865 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 3866 } 3867 3868 WARN_ON_ONCE(delta < len); 3869 3870 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 3871 skb_shinfo(from)->frags, 3872 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 3873 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 3874 3875 if (!skb_cloned(from)) 3876 skb_shinfo(from)->nr_frags = 0; 3877 3878 /* if the skb is not cloned this does nothing 3879 * since we set nr_frags to 0. 3880 */ 3881 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 3882 skb_frag_ref(from, i); 3883 3884 to->truesize += delta; 3885 to->len += len; 3886 to->data_len += len; 3887 3888 *delta_truesize = delta; 3889 return true; 3890 } 3891 EXPORT_SYMBOL(skb_try_coalesce); 3892 3893 /** 3894 * skb_scrub_packet - scrub an skb 3895 * 3896 * @skb: buffer to clean 3897 * @xnet: packet is crossing netns 3898 * 3899 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 3900 * into/from a tunnel. Some information have to be cleared during these 3901 * operations. 3902 * skb_scrub_packet can also be used to clean a skb before injecting it in 3903 * another namespace (@xnet == true). We have to clear all information in the 3904 * skb that could impact namespace isolation. 3905 */ 3906 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 3907 { 3908 if (xnet) 3909 skb_orphan(skb); 3910 skb->tstamp.tv64 = 0; 3911 skb->pkt_type = PACKET_HOST; 3912 skb->skb_iif = 0; 3913 skb->local_df = 0; 3914 skb_dst_drop(skb); 3915 skb->mark = 0; 3916 secpath_reset(skb); 3917 nf_reset(skb); 3918 nf_reset_trace(skb); 3919 } 3920 EXPORT_SYMBOL_GPL(skb_scrub_packet); 3921 3922 /** 3923 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 3924 * 3925 * @skb: GSO skb 3926 * 3927 * skb_gso_transport_seglen is used to determine the real size of the 3928 * individual segments, including Layer4 headers (TCP/UDP). 3929 * 3930 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 3931 */ 3932 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 3933 { 3934 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3935 unsigned int hdr_len; 3936 3937 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3938 hdr_len = tcp_hdrlen(skb); 3939 else 3940 hdr_len = sizeof(struct udphdr); 3941 return hdr_len + shinfo->gso_size; 3942 } 3943 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen); 3944