xref: /openbmc/linux/net/core/skbuff.c (revision 37be287c)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 
66 #include <net/protocol.h>
67 #include <net/dst.h>
68 #include <net/sock.h>
69 #include <net/checksum.h>
70 #include <net/ip6_checksum.h>
71 #include <net/xfrm.h>
72 
73 #include <asm/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 
77 struct kmem_cache *skbuff_head_cache __read_mostly;
78 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
79 
80 /**
81  *	skb_panic - private function for out-of-line support
82  *	@skb:	buffer
83  *	@sz:	size
84  *	@addr:	address
85  *	@msg:	skb_over_panic or skb_under_panic
86  *
87  *	Out-of-line support for skb_put() and skb_push().
88  *	Called via the wrapper skb_over_panic() or skb_under_panic().
89  *	Keep out of line to prevent kernel bloat.
90  *	__builtin_return_address is not used because it is not always reliable.
91  */
92 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
93 		      const char msg[])
94 {
95 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
96 		 msg, addr, skb->len, sz, skb->head, skb->data,
97 		 (unsigned long)skb->tail, (unsigned long)skb->end,
98 		 skb->dev ? skb->dev->name : "<NULL>");
99 	BUG();
100 }
101 
102 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
103 {
104 	skb_panic(skb, sz, addr, __func__);
105 }
106 
107 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
112 /*
113  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
114  * the caller if emergency pfmemalloc reserves are being used. If it is and
115  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
116  * may be used. Otherwise, the packet data may be discarded until enough
117  * memory is free
118  */
119 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
120 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
121 
122 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
123 			       unsigned long ip, bool *pfmemalloc)
124 {
125 	void *obj;
126 	bool ret_pfmemalloc = false;
127 
128 	/*
129 	 * Try a regular allocation, when that fails and we're not entitled
130 	 * to the reserves, fail.
131 	 */
132 	obj = kmalloc_node_track_caller(size,
133 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
134 					node);
135 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
136 		goto out;
137 
138 	/* Try again but now we are using pfmemalloc reserves */
139 	ret_pfmemalloc = true;
140 	obj = kmalloc_node_track_caller(size, flags, node);
141 
142 out:
143 	if (pfmemalloc)
144 		*pfmemalloc = ret_pfmemalloc;
145 
146 	return obj;
147 }
148 
149 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
150  *	'private' fields and also do memory statistics to find all the
151  *	[BEEP] leaks.
152  *
153  */
154 
155 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
156 {
157 	struct sk_buff *skb;
158 
159 	/* Get the HEAD */
160 	skb = kmem_cache_alloc_node(skbuff_head_cache,
161 				    gfp_mask & ~__GFP_DMA, node);
162 	if (!skb)
163 		goto out;
164 
165 	/*
166 	 * Only clear those fields we need to clear, not those that we will
167 	 * actually initialise below. Hence, don't put any more fields after
168 	 * the tail pointer in struct sk_buff!
169 	 */
170 	memset(skb, 0, offsetof(struct sk_buff, tail));
171 	skb->head = NULL;
172 	skb->truesize = sizeof(struct sk_buff);
173 	atomic_set(&skb->users, 1);
174 
175 	skb->mac_header = (typeof(skb->mac_header))~0U;
176 out:
177 	return skb;
178 }
179 
180 /**
181  *	__alloc_skb	-	allocate a network buffer
182  *	@size: size to allocate
183  *	@gfp_mask: allocation mask
184  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
185  *		instead of head cache and allocate a cloned (child) skb.
186  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
187  *		allocations in case the data is required for writeback
188  *	@node: numa node to allocate memory on
189  *
190  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
191  *	tail room of at least size bytes. The object has a reference count
192  *	of one. The return is the buffer. On a failure the return is %NULL.
193  *
194  *	Buffers may only be allocated from interrupts using a @gfp_mask of
195  *	%GFP_ATOMIC.
196  */
197 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
198 			    int flags, int node)
199 {
200 	struct kmem_cache *cache;
201 	struct skb_shared_info *shinfo;
202 	struct sk_buff *skb;
203 	u8 *data;
204 	bool pfmemalloc;
205 
206 	cache = (flags & SKB_ALLOC_FCLONE)
207 		? skbuff_fclone_cache : skbuff_head_cache;
208 
209 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
210 		gfp_mask |= __GFP_MEMALLOC;
211 
212 	/* Get the HEAD */
213 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
214 	if (!skb)
215 		goto out;
216 	prefetchw(skb);
217 
218 	/* We do our best to align skb_shared_info on a separate cache
219 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
220 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
221 	 * Both skb->head and skb_shared_info are cache line aligned.
222 	 */
223 	size = SKB_DATA_ALIGN(size);
224 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
225 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
226 	if (!data)
227 		goto nodata;
228 	/* kmalloc(size) might give us more room than requested.
229 	 * Put skb_shared_info exactly at the end of allocated zone,
230 	 * to allow max possible filling before reallocation.
231 	 */
232 	size = SKB_WITH_OVERHEAD(ksize(data));
233 	prefetchw(data + size);
234 
235 	/*
236 	 * Only clear those fields we need to clear, not those that we will
237 	 * actually initialise below. Hence, don't put any more fields after
238 	 * the tail pointer in struct sk_buff!
239 	 */
240 	memset(skb, 0, offsetof(struct sk_buff, tail));
241 	/* Account for allocated memory : skb + skb->head */
242 	skb->truesize = SKB_TRUESIZE(size);
243 	skb->pfmemalloc = pfmemalloc;
244 	atomic_set(&skb->users, 1);
245 	skb->head = data;
246 	skb->data = data;
247 	skb_reset_tail_pointer(skb);
248 	skb->end = skb->tail + size;
249 	skb->mac_header = (typeof(skb->mac_header))~0U;
250 	skb->transport_header = (typeof(skb->transport_header))~0U;
251 
252 	/* make sure we initialize shinfo sequentially */
253 	shinfo = skb_shinfo(skb);
254 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
255 	atomic_set(&shinfo->dataref, 1);
256 	kmemcheck_annotate_variable(shinfo->destructor_arg);
257 
258 	if (flags & SKB_ALLOC_FCLONE) {
259 		struct sk_buff *child = skb + 1;
260 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
261 
262 		kmemcheck_annotate_bitfield(child, flags1);
263 		kmemcheck_annotate_bitfield(child, flags2);
264 		skb->fclone = SKB_FCLONE_ORIG;
265 		atomic_set(fclone_ref, 1);
266 
267 		child->fclone = SKB_FCLONE_UNAVAILABLE;
268 		child->pfmemalloc = pfmemalloc;
269 	}
270 out:
271 	return skb;
272 nodata:
273 	kmem_cache_free(cache, skb);
274 	skb = NULL;
275 	goto out;
276 }
277 EXPORT_SYMBOL(__alloc_skb);
278 
279 /**
280  * build_skb - build a network buffer
281  * @data: data buffer provided by caller
282  * @frag_size: size of fragment, or 0 if head was kmalloced
283  *
284  * Allocate a new &sk_buff. Caller provides space holding head and
285  * skb_shared_info. @data must have been allocated by kmalloc() only if
286  * @frag_size is 0, otherwise data should come from the page allocator.
287  * The return is the new skb buffer.
288  * On a failure the return is %NULL, and @data is not freed.
289  * Notes :
290  *  Before IO, driver allocates only data buffer where NIC put incoming frame
291  *  Driver should add room at head (NET_SKB_PAD) and
292  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
293  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
294  *  before giving packet to stack.
295  *  RX rings only contains data buffers, not full skbs.
296  */
297 struct sk_buff *build_skb(void *data, unsigned int frag_size)
298 {
299 	struct skb_shared_info *shinfo;
300 	struct sk_buff *skb;
301 	unsigned int size = frag_size ? : ksize(data);
302 
303 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
304 	if (!skb)
305 		return NULL;
306 
307 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
308 
309 	memset(skb, 0, offsetof(struct sk_buff, tail));
310 	skb->truesize = SKB_TRUESIZE(size);
311 	skb->head_frag = frag_size != 0;
312 	atomic_set(&skb->users, 1);
313 	skb->head = data;
314 	skb->data = data;
315 	skb_reset_tail_pointer(skb);
316 	skb->end = skb->tail + size;
317 	skb->mac_header = (typeof(skb->mac_header))~0U;
318 	skb->transport_header = (typeof(skb->transport_header))~0U;
319 
320 	/* make sure we initialize shinfo sequentially */
321 	shinfo = skb_shinfo(skb);
322 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
323 	atomic_set(&shinfo->dataref, 1);
324 	kmemcheck_annotate_variable(shinfo->destructor_arg);
325 
326 	return skb;
327 }
328 EXPORT_SYMBOL(build_skb);
329 
330 struct netdev_alloc_cache {
331 	struct page_frag	frag;
332 	/* we maintain a pagecount bias, so that we dont dirty cache line
333 	 * containing page->_count every time we allocate a fragment.
334 	 */
335 	unsigned int		pagecnt_bias;
336 };
337 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
338 
339 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
340 {
341 	struct netdev_alloc_cache *nc;
342 	void *data = NULL;
343 	int order;
344 	unsigned long flags;
345 
346 	local_irq_save(flags);
347 	nc = &__get_cpu_var(netdev_alloc_cache);
348 	if (unlikely(!nc->frag.page)) {
349 refill:
350 		for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
351 			gfp_t gfp = gfp_mask;
352 
353 			if (order)
354 				gfp |= __GFP_COMP | __GFP_NOWARN;
355 			nc->frag.page = alloc_pages(gfp, order);
356 			if (likely(nc->frag.page))
357 				break;
358 			if (--order < 0)
359 				goto end;
360 		}
361 		nc->frag.size = PAGE_SIZE << order;
362 recycle:
363 		atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
364 		nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
365 		nc->frag.offset = 0;
366 	}
367 
368 	if (nc->frag.offset + fragsz > nc->frag.size) {
369 		/* avoid unnecessary locked operations if possible */
370 		if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
371 		    atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
372 			goto recycle;
373 		goto refill;
374 	}
375 
376 	data = page_address(nc->frag.page) + nc->frag.offset;
377 	nc->frag.offset += fragsz;
378 	nc->pagecnt_bias--;
379 end:
380 	local_irq_restore(flags);
381 	return data;
382 }
383 
384 /**
385  * netdev_alloc_frag - allocate a page fragment
386  * @fragsz: fragment size
387  *
388  * Allocates a frag from a page for receive buffer.
389  * Uses GFP_ATOMIC allocations.
390  */
391 void *netdev_alloc_frag(unsigned int fragsz)
392 {
393 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
394 }
395 EXPORT_SYMBOL(netdev_alloc_frag);
396 
397 /**
398  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
399  *	@dev: network device to receive on
400  *	@length: length to allocate
401  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
402  *
403  *	Allocate a new &sk_buff and assign it a usage count of one. The
404  *	buffer has unspecified headroom built in. Users should allocate
405  *	the headroom they think they need without accounting for the
406  *	built in space. The built in space is used for optimisations.
407  *
408  *	%NULL is returned if there is no free memory.
409  */
410 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
411 				   unsigned int length, gfp_t gfp_mask)
412 {
413 	struct sk_buff *skb = NULL;
414 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
415 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
416 
417 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
418 		void *data;
419 
420 		if (sk_memalloc_socks())
421 			gfp_mask |= __GFP_MEMALLOC;
422 
423 		data = __netdev_alloc_frag(fragsz, gfp_mask);
424 
425 		if (likely(data)) {
426 			skb = build_skb(data, fragsz);
427 			if (unlikely(!skb))
428 				put_page(virt_to_head_page(data));
429 		}
430 	} else {
431 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
432 				  SKB_ALLOC_RX, NUMA_NO_NODE);
433 	}
434 	if (likely(skb)) {
435 		skb_reserve(skb, NET_SKB_PAD);
436 		skb->dev = dev;
437 	}
438 	return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441 
442 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
443 		     int size, unsigned int truesize)
444 {
445 	skb_fill_page_desc(skb, i, page, off, size);
446 	skb->len += size;
447 	skb->data_len += size;
448 	skb->truesize += truesize;
449 }
450 EXPORT_SYMBOL(skb_add_rx_frag);
451 
452 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
453 			  unsigned int truesize)
454 {
455 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
456 
457 	skb_frag_size_add(frag, size);
458 	skb->len += size;
459 	skb->data_len += size;
460 	skb->truesize += truesize;
461 }
462 EXPORT_SYMBOL(skb_coalesce_rx_frag);
463 
464 static void skb_drop_list(struct sk_buff **listp)
465 {
466 	kfree_skb_list(*listp);
467 	*listp = NULL;
468 }
469 
470 static inline void skb_drop_fraglist(struct sk_buff *skb)
471 {
472 	skb_drop_list(&skb_shinfo(skb)->frag_list);
473 }
474 
475 static void skb_clone_fraglist(struct sk_buff *skb)
476 {
477 	struct sk_buff *list;
478 
479 	skb_walk_frags(skb, list)
480 		skb_get(list);
481 }
482 
483 static void skb_free_head(struct sk_buff *skb)
484 {
485 	if (skb->head_frag)
486 		put_page(virt_to_head_page(skb->head));
487 	else
488 		kfree(skb->head);
489 }
490 
491 static void skb_release_data(struct sk_buff *skb)
492 {
493 	if (!skb->cloned ||
494 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
495 			       &skb_shinfo(skb)->dataref)) {
496 		if (skb_shinfo(skb)->nr_frags) {
497 			int i;
498 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
499 				skb_frag_unref(skb, i);
500 		}
501 
502 		/*
503 		 * If skb buf is from userspace, we need to notify the caller
504 		 * the lower device DMA has done;
505 		 */
506 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
507 			struct ubuf_info *uarg;
508 
509 			uarg = skb_shinfo(skb)->destructor_arg;
510 			if (uarg->callback)
511 				uarg->callback(uarg, true);
512 		}
513 
514 		if (skb_has_frag_list(skb))
515 			skb_drop_fraglist(skb);
516 
517 		skb_free_head(skb);
518 	}
519 }
520 
521 /*
522  *	Free an skbuff by memory without cleaning the state.
523  */
524 static void kfree_skbmem(struct sk_buff *skb)
525 {
526 	struct sk_buff *other;
527 	atomic_t *fclone_ref;
528 
529 	switch (skb->fclone) {
530 	case SKB_FCLONE_UNAVAILABLE:
531 		kmem_cache_free(skbuff_head_cache, skb);
532 		break;
533 
534 	case SKB_FCLONE_ORIG:
535 		fclone_ref = (atomic_t *) (skb + 2);
536 		if (atomic_dec_and_test(fclone_ref))
537 			kmem_cache_free(skbuff_fclone_cache, skb);
538 		break;
539 
540 	case SKB_FCLONE_CLONE:
541 		fclone_ref = (atomic_t *) (skb + 1);
542 		other = skb - 1;
543 
544 		/* The clone portion is available for
545 		 * fast-cloning again.
546 		 */
547 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
548 
549 		if (atomic_dec_and_test(fclone_ref))
550 			kmem_cache_free(skbuff_fclone_cache, other);
551 		break;
552 	}
553 }
554 
555 static void skb_release_head_state(struct sk_buff *skb)
556 {
557 	skb_dst_drop(skb);
558 #ifdef CONFIG_XFRM
559 	secpath_put(skb->sp);
560 #endif
561 	if (skb->destructor) {
562 		WARN_ON(in_irq());
563 		skb->destructor(skb);
564 	}
565 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
566 	nf_conntrack_put(skb->nfct);
567 #endif
568 #ifdef CONFIG_BRIDGE_NETFILTER
569 	nf_bridge_put(skb->nf_bridge);
570 #endif
571 /* XXX: IS this still necessary? - JHS */
572 #ifdef CONFIG_NET_SCHED
573 	skb->tc_index = 0;
574 #ifdef CONFIG_NET_CLS_ACT
575 	skb->tc_verd = 0;
576 #endif
577 #endif
578 }
579 
580 /* Free everything but the sk_buff shell. */
581 static void skb_release_all(struct sk_buff *skb)
582 {
583 	skb_release_head_state(skb);
584 	if (likely(skb->head))
585 		skb_release_data(skb);
586 }
587 
588 /**
589  *	__kfree_skb - private function
590  *	@skb: buffer
591  *
592  *	Free an sk_buff. Release anything attached to the buffer.
593  *	Clean the state. This is an internal helper function. Users should
594  *	always call kfree_skb
595  */
596 
597 void __kfree_skb(struct sk_buff *skb)
598 {
599 	skb_release_all(skb);
600 	kfree_skbmem(skb);
601 }
602 EXPORT_SYMBOL(__kfree_skb);
603 
604 /**
605  *	kfree_skb - free an sk_buff
606  *	@skb: buffer to free
607  *
608  *	Drop a reference to the buffer and free it if the usage count has
609  *	hit zero.
610  */
611 void kfree_skb(struct sk_buff *skb)
612 {
613 	if (unlikely(!skb))
614 		return;
615 	if (likely(atomic_read(&skb->users) == 1))
616 		smp_rmb();
617 	else if (likely(!atomic_dec_and_test(&skb->users)))
618 		return;
619 	trace_kfree_skb(skb, __builtin_return_address(0));
620 	__kfree_skb(skb);
621 }
622 EXPORT_SYMBOL(kfree_skb);
623 
624 void kfree_skb_list(struct sk_buff *segs)
625 {
626 	while (segs) {
627 		struct sk_buff *next = segs->next;
628 
629 		kfree_skb(segs);
630 		segs = next;
631 	}
632 }
633 EXPORT_SYMBOL(kfree_skb_list);
634 
635 /**
636  *	skb_tx_error - report an sk_buff xmit error
637  *	@skb: buffer that triggered an error
638  *
639  *	Report xmit error if a device callback is tracking this skb.
640  *	skb must be freed afterwards.
641  */
642 void skb_tx_error(struct sk_buff *skb)
643 {
644 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
645 		struct ubuf_info *uarg;
646 
647 		uarg = skb_shinfo(skb)->destructor_arg;
648 		if (uarg->callback)
649 			uarg->callback(uarg, false);
650 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
651 	}
652 }
653 EXPORT_SYMBOL(skb_tx_error);
654 
655 /**
656  *	consume_skb - free an skbuff
657  *	@skb: buffer to free
658  *
659  *	Drop a ref to the buffer and free it if the usage count has hit zero
660  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
661  *	is being dropped after a failure and notes that
662  */
663 void consume_skb(struct sk_buff *skb)
664 {
665 	if (unlikely(!skb))
666 		return;
667 	if (likely(atomic_read(&skb->users) == 1))
668 		smp_rmb();
669 	else if (likely(!atomic_dec_and_test(&skb->users)))
670 		return;
671 	trace_consume_skb(skb);
672 	__kfree_skb(skb);
673 }
674 EXPORT_SYMBOL(consume_skb);
675 
676 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
677 {
678 	new->tstamp		= old->tstamp;
679 	new->dev		= old->dev;
680 	new->transport_header	= old->transport_header;
681 	new->network_header	= old->network_header;
682 	new->mac_header		= old->mac_header;
683 	new->inner_protocol	= old->inner_protocol;
684 	new->inner_transport_header = old->inner_transport_header;
685 	new->inner_network_header = old->inner_network_header;
686 	new->inner_mac_header = old->inner_mac_header;
687 	skb_dst_copy(new, old);
688 	skb_copy_hash(new, old);
689 	new->ooo_okay		= old->ooo_okay;
690 	new->no_fcs		= old->no_fcs;
691 	new->encapsulation	= old->encapsulation;
692 #ifdef CONFIG_XFRM
693 	new->sp			= secpath_get(old->sp);
694 #endif
695 	memcpy(new->cb, old->cb, sizeof(old->cb));
696 	new->csum		= old->csum;
697 	new->local_df		= old->local_df;
698 	new->pkt_type		= old->pkt_type;
699 	new->ip_summed		= old->ip_summed;
700 	skb_copy_queue_mapping(new, old);
701 	new->priority		= old->priority;
702 #if IS_ENABLED(CONFIG_IP_VS)
703 	new->ipvs_property	= old->ipvs_property;
704 #endif
705 	new->pfmemalloc		= old->pfmemalloc;
706 	new->protocol		= old->protocol;
707 	new->mark		= old->mark;
708 	new->skb_iif		= old->skb_iif;
709 	__nf_copy(new, old);
710 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
711 	new->nf_trace		= old->nf_trace;
712 #endif
713 #ifdef CONFIG_NET_SCHED
714 	new->tc_index		= old->tc_index;
715 #ifdef CONFIG_NET_CLS_ACT
716 	new->tc_verd		= old->tc_verd;
717 #endif
718 #endif
719 	new->vlan_proto		= old->vlan_proto;
720 	new->vlan_tci		= old->vlan_tci;
721 
722 	skb_copy_secmark(new, old);
723 
724 #ifdef CONFIG_NET_RX_BUSY_POLL
725 	new->napi_id	= old->napi_id;
726 #endif
727 }
728 
729 /*
730  * You should not add any new code to this function.  Add it to
731  * __copy_skb_header above instead.
732  */
733 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
734 {
735 #define C(x) n->x = skb->x
736 
737 	n->next = n->prev = NULL;
738 	n->sk = NULL;
739 	__copy_skb_header(n, skb);
740 
741 	C(len);
742 	C(data_len);
743 	C(mac_len);
744 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
745 	n->cloned = 1;
746 	n->nohdr = 0;
747 	n->destructor = NULL;
748 	C(tail);
749 	C(end);
750 	C(head);
751 	C(head_frag);
752 	C(data);
753 	C(truesize);
754 	atomic_set(&n->users, 1);
755 
756 	atomic_inc(&(skb_shinfo(skb)->dataref));
757 	skb->cloned = 1;
758 
759 	return n;
760 #undef C
761 }
762 
763 /**
764  *	skb_morph	-	morph one skb into another
765  *	@dst: the skb to receive the contents
766  *	@src: the skb to supply the contents
767  *
768  *	This is identical to skb_clone except that the target skb is
769  *	supplied by the user.
770  *
771  *	The target skb is returned upon exit.
772  */
773 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
774 {
775 	skb_release_all(dst);
776 	return __skb_clone(dst, src);
777 }
778 EXPORT_SYMBOL_GPL(skb_morph);
779 
780 /**
781  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
782  *	@skb: the skb to modify
783  *	@gfp_mask: allocation priority
784  *
785  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
786  *	It will copy all frags into kernel and drop the reference
787  *	to userspace pages.
788  *
789  *	If this function is called from an interrupt gfp_mask() must be
790  *	%GFP_ATOMIC.
791  *
792  *	Returns 0 on success or a negative error code on failure
793  *	to allocate kernel memory to copy to.
794  */
795 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
796 {
797 	int i;
798 	int num_frags = skb_shinfo(skb)->nr_frags;
799 	struct page *page, *head = NULL;
800 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
801 
802 	for (i = 0; i < num_frags; i++) {
803 		u8 *vaddr;
804 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
805 
806 		page = alloc_page(gfp_mask);
807 		if (!page) {
808 			while (head) {
809 				struct page *next = (struct page *)page_private(head);
810 				put_page(head);
811 				head = next;
812 			}
813 			return -ENOMEM;
814 		}
815 		vaddr = kmap_atomic(skb_frag_page(f));
816 		memcpy(page_address(page),
817 		       vaddr + f->page_offset, skb_frag_size(f));
818 		kunmap_atomic(vaddr);
819 		set_page_private(page, (unsigned long)head);
820 		head = page;
821 	}
822 
823 	/* skb frags release userspace buffers */
824 	for (i = 0; i < num_frags; i++)
825 		skb_frag_unref(skb, i);
826 
827 	uarg->callback(uarg, false);
828 
829 	/* skb frags point to kernel buffers */
830 	for (i = num_frags - 1; i >= 0; i--) {
831 		__skb_fill_page_desc(skb, i, head, 0,
832 				     skb_shinfo(skb)->frags[i].size);
833 		head = (struct page *)page_private(head);
834 	}
835 
836 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
837 	return 0;
838 }
839 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
840 
841 /**
842  *	skb_clone	-	duplicate an sk_buff
843  *	@skb: buffer to clone
844  *	@gfp_mask: allocation priority
845  *
846  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
847  *	copies share the same packet data but not structure. The new
848  *	buffer has a reference count of 1. If the allocation fails the
849  *	function returns %NULL otherwise the new buffer is returned.
850  *
851  *	If this function is called from an interrupt gfp_mask() must be
852  *	%GFP_ATOMIC.
853  */
854 
855 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
856 {
857 	struct sk_buff *n;
858 
859 	if (skb_orphan_frags(skb, gfp_mask))
860 		return NULL;
861 
862 	n = skb + 1;
863 	if (skb->fclone == SKB_FCLONE_ORIG &&
864 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
865 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
866 		n->fclone = SKB_FCLONE_CLONE;
867 		atomic_inc(fclone_ref);
868 	} else {
869 		if (skb_pfmemalloc(skb))
870 			gfp_mask |= __GFP_MEMALLOC;
871 
872 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
873 		if (!n)
874 			return NULL;
875 
876 		kmemcheck_annotate_bitfield(n, flags1);
877 		kmemcheck_annotate_bitfield(n, flags2);
878 		n->fclone = SKB_FCLONE_UNAVAILABLE;
879 	}
880 
881 	return __skb_clone(n, skb);
882 }
883 EXPORT_SYMBOL(skb_clone);
884 
885 static void skb_headers_offset_update(struct sk_buff *skb, int off)
886 {
887 	/* Only adjust this if it actually is csum_start rather than csum */
888 	if (skb->ip_summed == CHECKSUM_PARTIAL)
889 		skb->csum_start += off;
890 	/* {transport,network,mac}_header and tail are relative to skb->head */
891 	skb->transport_header += off;
892 	skb->network_header   += off;
893 	if (skb_mac_header_was_set(skb))
894 		skb->mac_header += off;
895 	skb->inner_transport_header += off;
896 	skb->inner_network_header += off;
897 	skb->inner_mac_header += off;
898 }
899 
900 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
901 {
902 	__copy_skb_header(new, old);
903 
904 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
905 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
906 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
907 }
908 
909 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
910 {
911 	if (skb_pfmemalloc(skb))
912 		return SKB_ALLOC_RX;
913 	return 0;
914 }
915 
916 /**
917  *	skb_copy	-	create private copy of an sk_buff
918  *	@skb: buffer to copy
919  *	@gfp_mask: allocation priority
920  *
921  *	Make a copy of both an &sk_buff and its data. This is used when the
922  *	caller wishes to modify the data and needs a private copy of the
923  *	data to alter. Returns %NULL on failure or the pointer to the buffer
924  *	on success. The returned buffer has a reference count of 1.
925  *
926  *	As by-product this function converts non-linear &sk_buff to linear
927  *	one, so that &sk_buff becomes completely private and caller is allowed
928  *	to modify all the data of returned buffer. This means that this
929  *	function is not recommended for use in circumstances when only
930  *	header is going to be modified. Use pskb_copy() instead.
931  */
932 
933 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
934 {
935 	int headerlen = skb_headroom(skb);
936 	unsigned int size = skb_end_offset(skb) + skb->data_len;
937 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
938 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
939 
940 	if (!n)
941 		return NULL;
942 
943 	/* Set the data pointer */
944 	skb_reserve(n, headerlen);
945 	/* Set the tail pointer and length */
946 	skb_put(n, skb->len);
947 
948 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
949 		BUG();
950 
951 	copy_skb_header(n, skb);
952 	return n;
953 }
954 EXPORT_SYMBOL(skb_copy);
955 
956 /**
957  *	__pskb_copy	-	create copy of an sk_buff with private head.
958  *	@skb: buffer to copy
959  *	@headroom: headroom of new skb
960  *	@gfp_mask: allocation priority
961  *
962  *	Make a copy of both an &sk_buff and part of its data, located
963  *	in header. Fragmented data remain shared. This is used when
964  *	the caller wishes to modify only header of &sk_buff and needs
965  *	private copy of the header to alter. Returns %NULL on failure
966  *	or the pointer to the buffer on success.
967  *	The returned buffer has a reference count of 1.
968  */
969 
970 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
971 {
972 	unsigned int size = skb_headlen(skb) + headroom;
973 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
974 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
975 
976 	if (!n)
977 		goto out;
978 
979 	/* Set the data pointer */
980 	skb_reserve(n, headroom);
981 	/* Set the tail pointer and length */
982 	skb_put(n, skb_headlen(skb));
983 	/* Copy the bytes */
984 	skb_copy_from_linear_data(skb, n->data, n->len);
985 
986 	n->truesize += skb->data_len;
987 	n->data_len  = skb->data_len;
988 	n->len	     = skb->len;
989 
990 	if (skb_shinfo(skb)->nr_frags) {
991 		int i;
992 
993 		if (skb_orphan_frags(skb, gfp_mask)) {
994 			kfree_skb(n);
995 			n = NULL;
996 			goto out;
997 		}
998 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
999 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1000 			skb_frag_ref(skb, i);
1001 		}
1002 		skb_shinfo(n)->nr_frags = i;
1003 	}
1004 
1005 	if (skb_has_frag_list(skb)) {
1006 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1007 		skb_clone_fraglist(n);
1008 	}
1009 
1010 	copy_skb_header(n, skb);
1011 out:
1012 	return n;
1013 }
1014 EXPORT_SYMBOL(__pskb_copy);
1015 
1016 /**
1017  *	pskb_expand_head - reallocate header of &sk_buff
1018  *	@skb: buffer to reallocate
1019  *	@nhead: room to add at head
1020  *	@ntail: room to add at tail
1021  *	@gfp_mask: allocation priority
1022  *
1023  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1024  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1025  *	reference count of 1. Returns zero in the case of success or error,
1026  *	if expansion failed. In the last case, &sk_buff is not changed.
1027  *
1028  *	All the pointers pointing into skb header may change and must be
1029  *	reloaded after call to this function.
1030  */
1031 
1032 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1033 		     gfp_t gfp_mask)
1034 {
1035 	int i;
1036 	u8 *data;
1037 	int size = nhead + skb_end_offset(skb) + ntail;
1038 	long off;
1039 
1040 	BUG_ON(nhead < 0);
1041 
1042 	if (skb_shared(skb))
1043 		BUG();
1044 
1045 	size = SKB_DATA_ALIGN(size);
1046 
1047 	if (skb_pfmemalloc(skb))
1048 		gfp_mask |= __GFP_MEMALLOC;
1049 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1050 			       gfp_mask, NUMA_NO_NODE, NULL);
1051 	if (!data)
1052 		goto nodata;
1053 	size = SKB_WITH_OVERHEAD(ksize(data));
1054 
1055 	/* Copy only real data... and, alas, header. This should be
1056 	 * optimized for the cases when header is void.
1057 	 */
1058 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1059 
1060 	memcpy((struct skb_shared_info *)(data + size),
1061 	       skb_shinfo(skb),
1062 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1063 
1064 	/*
1065 	 * if shinfo is shared we must drop the old head gracefully, but if it
1066 	 * is not we can just drop the old head and let the existing refcount
1067 	 * be since all we did is relocate the values
1068 	 */
1069 	if (skb_cloned(skb)) {
1070 		/* copy this zero copy skb frags */
1071 		if (skb_orphan_frags(skb, gfp_mask))
1072 			goto nofrags;
1073 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1074 			skb_frag_ref(skb, i);
1075 
1076 		if (skb_has_frag_list(skb))
1077 			skb_clone_fraglist(skb);
1078 
1079 		skb_release_data(skb);
1080 	} else {
1081 		skb_free_head(skb);
1082 	}
1083 	off = (data + nhead) - skb->head;
1084 
1085 	skb->head     = data;
1086 	skb->head_frag = 0;
1087 	skb->data    += off;
1088 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1089 	skb->end      = size;
1090 	off           = nhead;
1091 #else
1092 	skb->end      = skb->head + size;
1093 #endif
1094 	skb->tail	      += off;
1095 	skb_headers_offset_update(skb, nhead);
1096 	skb->cloned   = 0;
1097 	skb->hdr_len  = 0;
1098 	skb->nohdr    = 0;
1099 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1100 	return 0;
1101 
1102 nofrags:
1103 	kfree(data);
1104 nodata:
1105 	return -ENOMEM;
1106 }
1107 EXPORT_SYMBOL(pskb_expand_head);
1108 
1109 /* Make private copy of skb with writable head and some headroom */
1110 
1111 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1112 {
1113 	struct sk_buff *skb2;
1114 	int delta = headroom - skb_headroom(skb);
1115 
1116 	if (delta <= 0)
1117 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1118 	else {
1119 		skb2 = skb_clone(skb, GFP_ATOMIC);
1120 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1121 					     GFP_ATOMIC)) {
1122 			kfree_skb(skb2);
1123 			skb2 = NULL;
1124 		}
1125 	}
1126 	return skb2;
1127 }
1128 EXPORT_SYMBOL(skb_realloc_headroom);
1129 
1130 /**
1131  *	skb_copy_expand	-	copy and expand sk_buff
1132  *	@skb: buffer to copy
1133  *	@newheadroom: new free bytes at head
1134  *	@newtailroom: new free bytes at tail
1135  *	@gfp_mask: allocation priority
1136  *
1137  *	Make a copy of both an &sk_buff and its data and while doing so
1138  *	allocate additional space.
1139  *
1140  *	This is used when the caller wishes to modify the data and needs a
1141  *	private copy of the data to alter as well as more space for new fields.
1142  *	Returns %NULL on failure or the pointer to the buffer
1143  *	on success. The returned buffer has a reference count of 1.
1144  *
1145  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1146  *	is called from an interrupt.
1147  */
1148 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1149 				int newheadroom, int newtailroom,
1150 				gfp_t gfp_mask)
1151 {
1152 	/*
1153 	 *	Allocate the copy buffer
1154 	 */
1155 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1156 					gfp_mask, skb_alloc_rx_flag(skb),
1157 					NUMA_NO_NODE);
1158 	int oldheadroom = skb_headroom(skb);
1159 	int head_copy_len, head_copy_off;
1160 
1161 	if (!n)
1162 		return NULL;
1163 
1164 	skb_reserve(n, newheadroom);
1165 
1166 	/* Set the tail pointer and length */
1167 	skb_put(n, skb->len);
1168 
1169 	head_copy_len = oldheadroom;
1170 	head_copy_off = 0;
1171 	if (newheadroom <= head_copy_len)
1172 		head_copy_len = newheadroom;
1173 	else
1174 		head_copy_off = newheadroom - head_copy_len;
1175 
1176 	/* Copy the linear header and data. */
1177 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1178 			  skb->len + head_copy_len))
1179 		BUG();
1180 
1181 	copy_skb_header(n, skb);
1182 
1183 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1184 
1185 	return n;
1186 }
1187 EXPORT_SYMBOL(skb_copy_expand);
1188 
1189 /**
1190  *	skb_pad			-	zero pad the tail of an skb
1191  *	@skb: buffer to pad
1192  *	@pad: space to pad
1193  *
1194  *	Ensure that a buffer is followed by a padding area that is zero
1195  *	filled. Used by network drivers which may DMA or transfer data
1196  *	beyond the buffer end onto the wire.
1197  *
1198  *	May return error in out of memory cases. The skb is freed on error.
1199  */
1200 
1201 int skb_pad(struct sk_buff *skb, int pad)
1202 {
1203 	int err;
1204 	int ntail;
1205 
1206 	/* If the skbuff is non linear tailroom is always zero.. */
1207 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1208 		memset(skb->data+skb->len, 0, pad);
1209 		return 0;
1210 	}
1211 
1212 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1213 	if (likely(skb_cloned(skb) || ntail > 0)) {
1214 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1215 		if (unlikely(err))
1216 			goto free_skb;
1217 	}
1218 
1219 	/* FIXME: The use of this function with non-linear skb's really needs
1220 	 * to be audited.
1221 	 */
1222 	err = skb_linearize(skb);
1223 	if (unlikely(err))
1224 		goto free_skb;
1225 
1226 	memset(skb->data + skb->len, 0, pad);
1227 	return 0;
1228 
1229 free_skb:
1230 	kfree_skb(skb);
1231 	return err;
1232 }
1233 EXPORT_SYMBOL(skb_pad);
1234 
1235 /**
1236  *	pskb_put - add data to the tail of a potentially fragmented buffer
1237  *	@skb: start of the buffer to use
1238  *	@tail: tail fragment of the buffer to use
1239  *	@len: amount of data to add
1240  *
1241  *	This function extends the used data area of the potentially
1242  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1243  *	@skb itself. If this would exceed the total buffer size the kernel
1244  *	will panic. A pointer to the first byte of the extra data is
1245  *	returned.
1246  */
1247 
1248 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1249 {
1250 	if (tail != skb) {
1251 		skb->data_len += len;
1252 		skb->len += len;
1253 	}
1254 	return skb_put(tail, len);
1255 }
1256 EXPORT_SYMBOL_GPL(pskb_put);
1257 
1258 /**
1259  *	skb_put - add data to a buffer
1260  *	@skb: buffer to use
1261  *	@len: amount of data to add
1262  *
1263  *	This function extends the used data area of the buffer. If this would
1264  *	exceed the total buffer size the kernel will panic. A pointer to the
1265  *	first byte of the extra data is returned.
1266  */
1267 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1268 {
1269 	unsigned char *tmp = skb_tail_pointer(skb);
1270 	SKB_LINEAR_ASSERT(skb);
1271 	skb->tail += len;
1272 	skb->len  += len;
1273 	if (unlikely(skb->tail > skb->end))
1274 		skb_over_panic(skb, len, __builtin_return_address(0));
1275 	return tmp;
1276 }
1277 EXPORT_SYMBOL(skb_put);
1278 
1279 /**
1280  *	skb_push - add data to the start of a buffer
1281  *	@skb: buffer to use
1282  *	@len: amount of data to add
1283  *
1284  *	This function extends the used data area of the buffer at the buffer
1285  *	start. If this would exceed the total buffer headroom the kernel will
1286  *	panic. A pointer to the first byte of the extra data is returned.
1287  */
1288 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1289 {
1290 	skb->data -= len;
1291 	skb->len  += len;
1292 	if (unlikely(skb->data<skb->head))
1293 		skb_under_panic(skb, len, __builtin_return_address(0));
1294 	return skb->data;
1295 }
1296 EXPORT_SYMBOL(skb_push);
1297 
1298 /**
1299  *	skb_pull - remove data from the start of a buffer
1300  *	@skb: buffer to use
1301  *	@len: amount of data to remove
1302  *
1303  *	This function removes data from the start of a buffer, returning
1304  *	the memory to the headroom. A pointer to the next data in the buffer
1305  *	is returned. Once the data has been pulled future pushes will overwrite
1306  *	the old data.
1307  */
1308 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1309 {
1310 	return skb_pull_inline(skb, len);
1311 }
1312 EXPORT_SYMBOL(skb_pull);
1313 
1314 /**
1315  *	skb_trim - remove end from a buffer
1316  *	@skb: buffer to alter
1317  *	@len: new length
1318  *
1319  *	Cut the length of a buffer down by removing data from the tail. If
1320  *	the buffer is already under the length specified it is not modified.
1321  *	The skb must be linear.
1322  */
1323 void skb_trim(struct sk_buff *skb, unsigned int len)
1324 {
1325 	if (skb->len > len)
1326 		__skb_trim(skb, len);
1327 }
1328 EXPORT_SYMBOL(skb_trim);
1329 
1330 /* Trims skb to length len. It can change skb pointers.
1331  */
1332 
1333 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1334 {
1335 	struct sk_buff **fragp;
1336 	struct sk_buff *frag;
1337 	int offset = skb_headlen(skb);
1338 	int nfrags = skb_shinfo(skb)->nr_frags;
1339 	int i;
1340 	int err;
1341 
1342 	if (skb_cloned(skb) &&
1343 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1344 		return err;
1345 
1346 	i = 0;
1347 	if (offset >= len)
1348 		goto drop_pages;
1349 
1350 	for (; i < nfrags; i++) {
1351 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1352 
1353 		if (end < len) {
1354 			offset = end;
1355 			continue;
1356 		}
1357 
1358 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1359 
1360 drop_pages:
1361 		skb_shinfo(skb)->nr_frags = i;
1362 
1363 		for (; i < nfrags; i++)
1364 			skb_frag_unref(skb, i);
1365 
1366 		if (skb_has_frag_list(skb))
1367 			skb_drop_fraglist(skb);
1368 		goto done;
1369 	}
1370 
1371 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1372 	     fragp = &frag->next) {
1373 		int end = offset + frag->len;
1374 
1375 		if (skb_shared(frag)) {
1376 			struct sk_buff *nfrag;
1377 
1378 			nfrag = skb_clone(frag, GFP_ATOMIC);
1379 			if (unlikely(!nfrag))
1380 				return -ENOMEM;
1381 
1382 			nfrag->next = frag->next;
1383 			consume_skb(frag);
1384 			frag = nfrag;
1385 			*fragp = frag;
1386 		}
1387 
1388 		if (end < len) {
1389 			offset = end;
1390 			continue;
1391 		}
1392 
1393 		if (end > len &&
1394 		    unlikely((err = pskb_trim(frag, len - offset))))
1395 			return err;
1396 
1397 		if (frag->next)
1398 			skb_drop_list(&frag->next);
1399 		break;
1400 	}
1401 
1402 done:
1403 	if (len > skb_headlen(skb)) {
1404 		skb->data_len -= skb->len - len;
1405 		skb->len       = len;
1406 	} else {
1407 		skb->len       = len;
1408 		skb->data_len  = 0;
1409 		skb_set_tail_pointer(skb, len);
1410 	}
1411 
1412 	return 0;
1413 }
1414 EXPORT_SYMBOL(___pskb_trim);
1415 
1416 /**
1417  *	__pskb_pull_tail - advance tail of skb header
1418  *	@skb: buffer to reallocate
1419  *	@delta: number of bytes to advance tail
1420  *
1421  *	The function makes a sense only on a fragmented &sk_buff,
1422  *	it expands header moving its tail forward and copying necessary
1423  *	data from fragmented part.
1424  *
1425  *	&sk_buff MUST have reference count of 1.
1426  *
1427  *	Returns %NULL (and &sk_buff does not change) if pull failed
1428  *	or value of new tail of skb in the case of success.
1429  *
1430  *	All the pointers pointing into skb header may change and must be
1431  *	reloaded after call to this function.
1432  */
1433 
1434 /* Moves tail of skb head forward, copying data from fragmented part,
1435  * when it is necessary.
1436  * 1. It may fail due to malloc failure.
1437  * 2. It may change skb pointers.
1438  *
1439  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1440  */
1441 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1442 {
1443 	/* If skb has not enough free space at tail, get new one
1444 	 * plus 128 bytes for future expansions. If we have enough
1445 	 * room at tail, reallocate without expansion only if skb is cloned.
1446 	 */
1447 	int i, k, eat = (skb->tail + delta) - skb->end;
1448 
1449 	if (eat > 0 || skb_cloned(skb)) {
1450 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1451 				     GFP_ATOMIC))
1452 			return NULL;
1453 	}
1454 
1455 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1456 		BUG();
1457 
1458 	/* Optimization: no fragments, no reasons to preestimate
1459 	 * size of pulled pages. Superb.
1460 	 */
1461 	if (!skb_has_frag_list(skb))
1462 		goto pull_pages;
1463 
1464 	/* Estimate size of pulled pages. */
1465 	eat = delta;
1466 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1467 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1468 
1469 		if (size >= eat)
1470 			goto pull_pages;
1471 		eat -= size;
1472 	}
1473 
1474 	/* If we need update frag list, we are in troubles.
1475 	 * Certainly, it possible to add an offset to skb data,
1476 	 * but taking into account that pulling is expected to
1477 	 * be very rare operation, it is worth to fight against
1478 	 * further bloating skb head and crucify ourselves here instead.
1479 	 * Pure masohism, indeed. 8)8)
1480 	 */
1481 	if (eat) {
1482 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1483 		struct sk_buff *clone = NULL;
1484 		struct sk_buff *insp = NULL;
1485 
1486 		do {
1487 			BUG_ON(!list);
1488 
1489 			if (list->len <= eat) {
1490 				/* Eaten as whole. */
1491 				eat -= list->len;
1492 				list = list->next;
1493 				insp = list;
1494 			} else {
1495 				/* Eaten partially. */
1496 
1497 				if (skb_shared(list)) {
1498 					/* Sucks! We need to fork list. :-( */
1499 					clone = skb_clone(list, GFP_ATOMIC);
1500 					if (!clone)
1501 						return NULL;
1502 					insp = list->next;
1503 					list = clone;
1504 				} else {
1505 					/* This may be pulled without
1506 					 * problems. */
1507 					insp = list;
1508 				}
1509 				if (!pskb_pull(list, eat)) {
1510 					kfree_skb(clone);
1511 					return NULL;
1512 				}
1513 				break;
1514 			}
1515 		} while (eat);
1516 
1517 		/* Free pulled out fragments. */
1518 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1519 			skb_shinfo(skb)->frag_list = list->next;
1520 			kfree_skb(list);
1521 		}
1522 		/* And insert new clone at head. */
1523 		if (clone) {
1524 			clone->next = list;
1525 			skb_shinfo(skb)->frag_list = clone;
1526 		}
1527 	}
1528 	/* Success! Now we may commit changes to skb data. */
1529 
1530 pull_pages:
1531 	eat = delta;
1532 	k = 0;
1533 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1534 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1535 
1536 		if (size <= eat) {
1537 			skb_frag_unref(skb, i);
1538 			eat -= size;
1539 		} else {
1540 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1541 			if (eat) {
1542 				skb_shinfo(skb)->frags[k].page_offset += eat;
1543 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1544 				eat = 0;
1545 			}
1546 			k++;
1547 		}
1548 	}
1549 	skb_shinfo(skb)->nr_frags = k;
1550 
1551 	skb->tail     += delta;
1552 	skb->data_len -= delta;
1553 
1554 	return skb_tail_pointer(skb);
1555 }
1556 EXPORT_SYMBOL(__pskb_pull_tail);
1557 
1558 /**
1559  *	skb_copy_bits - copy bits from skb to kernel buffer
1560  *	@skb: source skb
1561  *	@offset: offset in source
1562  *	@to: destination buffer
1563  *	@len: number of bytes to copy
1564  *
1565  *	Copy the specified number of bytes from the source skb to the
1566  *	destination buffer.
1567  *
1568  *	CAUTION ! :
1569  *		If its prototype is ever changed,
1570  *		check arch/{*}/net/{*}.S files,
1571  *		since it is called from BPF assembly code.
1572  */
1573 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1574 {
1575 	int start = skb_headlen(skb);
1576 	struct sk_buff *frag_iter;
1577 	int i, copy;
1578 
1579 	if (offset > (int)skb->len - len)
1580 		goto fault;
1581 
1582 	/* Copy header. */
1583 	if ((copy = start - offset) > 0) {
1584 		if (copy > len)
1585 			copy = len;
1586 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1587 		if ((len -= copy) == 0)
1588 			return 0;
1589 		offset += copy;
1590 		to     += copy;
1591 	}
1592 
1593 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1594 		int end;
1595 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1596 
1597 		WARN_ON(start > offset + len);
1598 
1599 		end = start + skb_frag_size(f);
1600 		if ((copy = end - offset) > 0) {
1601 			u8 *vaddr;
1602 
1603 			if (copy > len)
1604 				copy = len;
1605 
1606 			vaddr = kmap_atomic(skb_frag_page(f));
1607 			memcpy(to,
1608 			       vaddr + f->page_offset + offset - start,
1609 			       copy);
1610 			kunmap_atomic(vaddr);
1611 
1612 			if ((len -= copy) == 0)
1613 				return 0;
1614 			offset += copy;
1615 			to     += copy;
1616 		}
1617 		start = end;
1618 	}
1619 
1620 	skb_walk_frags(skb, frag_iter) {
1621 		int end;
1622 
1623 		WARN_ON(start > offset + len);
1624 
1625 		end = start + frag_iter->len;
1626 		if ((copy = end - offset) > 0) {
1627 			if (copy > len)
1628 				copy = len;
1629 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1630 				goto fault;
1631 			if ((len -= copy) == 0)
1632 				return 0;
1633 			offset += copy;
1634 			to     += copy;
1635 		}
1636 		start = end;
1637 	}
1638 
1639 	if (!len)
1640 		return 0;
1641 
1642 fault:
1643 	return -EFAULT;
1644 }
1645 EXPORT_SYMBOL(skb_copy_bits);
1646 
1647 /*
1648  * Callback from splice_to_pipe(), if we need to release some pages
1649  * at the end of the spd in case we error'ed out in filling the pipe.
1650  */
1651 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1652 {
1653 	put_page(spd->pages[i]);
1654 }
1655 
1656 static struct page *linear_to_page(struct page *page, unsigned int *len,
1657 				   unsigned int *offset,
1658 				   struct sock *sk)
1659 {
1660 	struct page_frag *pfrag = sk_page_frag(sk);
1661 
1662 	if (!sk_page_frag_refill(sk, pfrag))
1663 		return NULL;
1664 
1665 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1666 
1667 	memcpy(page_address(pfrag->page) + pfrag->offset,
1668 	       page_address(page) + *offset, *len);
1669 	*offset = pfrag->offset;
1670 	pfrag->offset += *len;
1671 
1672 	return pfrag->page;
1673 }
1674 
1675 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1676 			     struct page *page,
1677 			     unsigned int offset)
1678 {
1679 	return	spd->nr_pages &&
1680 		spd->pages[spd->nr_pages - 1] == page &&
1681 		(spd->partial[spd->nr_pages - 1].offset +
1682 		 spd->partial[spd->nr_pages - 1].len == offset);
1683 }
1684 
1685 /*
1686  * Fill page/offset/length into spd, if it can hold more pages.
1687  */
1688 static bool spd_fill_page(struct splice_pipe_desc *spd,
1689 			  struct pipe_inode_info *pipe, struct page *page,
1690 			  unsigned int *len, unsigned int offset,
1691 			  bool linear,
1692 			  struct sock *sk)
1693 {
1694 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1695 		return true;
1696 
1697 	if (linear) {
1698 		page = linear_to_page(page, len, &offset, sk);
1699 		if (!page)
1700 			return true;
1701 	}
1702 	if (spd_can_coalesce(spd, page, offset)) {
1703 		spd->partial[spd->nr_pages - 1].len += *len;
1704 		return false;
1705 	}
1706 	get_page(page);
1707 	spd->pages[spd->nr_pages] = page;
1708 	spd->partial[spd->nr_pages].len = *len;
1709 	spd->partial[spd->nr_pages].offset = offset;
1710 	spd->nr_pages++;
1711 
1712 	return false;
1713 }
1714 
1715 static bool __splice_segment(struct page *page, unsigned int poff,
1716 			     unsigned int plen, unsigned int *off,
1717 			     unsigned int *len,
1718 			     struct splice_pipe_desc *spd, bool linear,
1719 			     struct sock *sk,
1720 			     struct pipe_inode_info *pipe)
1721 {
1722 	if (!*len)
1723 		return true;
1724 
1725 	/* skip this segment if already processed */
1726 	if (*off >= plen) {
1727 		*off -= plen;
1728 		return false;
1729 	}
1730 
1731 	/* ignore any bits we already processed */
1732 	poff += *off;
1733 	plen -= *off;
1734 	*off = 0;
1735 
1736 	do {
1737 		unsigned int flen = min(*len, plen);
1738 
1739 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1740 				  linear, sk))
1741 			return true;
1742 		poff += flen;
1743 		plen -= flen;
1744 		*len -= flen;
1745 	} while (*len && plen);
1746 
1747 	return false;
1748 }
1749 
1750 /*
1751  * Map linear and fragment data from the skb to spd. It reports true if the
1752  * pipe is full or if we already spliced the requested length.
1753  */
1754 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1755 			      unsigned int *offset, unsigned int *len,
1756 			      struct splice_pipe_desc *spd, struct sock *sk)
1757 {
1758 	int seg;
1759 
1760 	/* map the linear part :
1761 	 * If skb->head_frag is set, this 'linear' part is backed by a
1762 	 * fragment, and if the head is not shared with any clones then
1763 	 * we can avoid a copy since we own the head portion of this page.
1764 	 */
1765 	if (__splice_segment(virt_to_page(skb->data),
1766 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1767 			     skb_headlen(skb),
1768 			     offset, len, spd,
1769 			     skb_head_is_locked(skb),
1770 			     sk, pipe))
1771 		return true;
1772 
1773 	/*
1774 	 * then map the fragments
1775 	 */
1776 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1777 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1778 
1779 		if (__splice_segment(skb_frag_page(f),
1780 				     f->page_offset, skb_frag_size(f),
1781 				     offset, len, spd, false, sk, pipe))
1782 			return true;
1783 	}
1784 
1785 	return false;
1786 }
1787 
1788 /*
1789  * Map data from the skb to a pipe. Should handle both the linear part,
1790  * the fragments, and the frag list. It does NOT handle frag lists within
1791  * the frag list, if such a thing exists. We'd probably need to recurse to
1792  * handle that cleanly.
1793  */
1794 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1795 		    struct pipe_inode_info *pipe, unsigned int tlen,
1796 		    unsigned int flags)
1797 {
1798 	struct partial_page partial[MAX_SKB_FRAGS];
1799 	struct page *pages[MAX_SKB_FRAGS];
1800 	struct splice_pipe_desc spd = {
1801 		.pages = pages,
1802 		.partial = partial,
1803 		.nr_pages_max = MAX_SKB_FRAGS,
1804 		.flags = flags,
1805 		.ops = &nosteal_pipe_buf_ops,
1806 		.spd_release = sock_spd_release,
1807 	};
1808 	struct sk_buff *frag_iter;
1809 	struct sock *sk = skb->sk;
1810 	int ret = 0;
1811 
1812 	/*
1813 	 * __skb_splice_bits() only fails if the output has no room left,
1814 	 * so no point in going over the frag_list for the error case.
1815 	 */
1816 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1817 		goto done;
1818 	else if (!tlen)
1819 		goto done;
1820 
1821 	/*
1822 	 * now see if we have a frag_list to map
1823 	 */
1824 	skb_walk_frags(skb, frag_iter) {
1825 		if (!tlen)
1826 			break;
1827 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1828 			break;
1829 	}
1830 
1831 done:
1832 	if (spd.nr_pages) {
1833 		/*
1834 		 * Drop the socket lock, otherwise we have reverse
1835 		 * locking dependencies between sk_lock and i_mutex
1836 		 * here as compared to sendfile(). We enter here
1837 		 * with the socket lock held, and splice_to_pipe() will
1838 		 * grab the pipe inode lock. For sendfile() emulation,
1839 		 * we call into ->sendpage() with the i_mutex lock held
1840 		 * and networking will grab the socket lock.
1841 		 */
1842 		release_sock(sk);
1843 		ret = splice_to_pipe(pipe, &spd);
1844 		lock_sock(sk);
1845 	}
1846 
1847 	return ret;
1848 }
1849 
1850 /**
1851  *	skb_store_bits - store bits from kernel buffer to skb
1852  *	@skb: destination buffer
1853  *	@offset: offset in destination
1854  *	@from: source buffer
1855  *	@len: number of bytes to copy
1856  *
1857  *	Copy the specified number of bytes from the source buffer to the
1858  *	destination skb.  This function handles all the messy bits of
1859  *	traversing fragment lists and such.
1860  */
1861 
1862 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1863 {
1864 	int start = skb_headlen(skb);
1865 	struct sk_buff *frag_iter;
1866 	int i, copy;
1867 
1868 	if (offset > (int)skb->len - len)
1869 		goto fault;
1870 
1871 	if ((copy = start - offset) > 0) {
1872 		if (copy > len)
1873 			copy = len;
1874 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1875 		if ((len -= copy) == 0)
1876 			return 0;
1877 		offset += copy;
1878 		from += copy;
1879 	}
1880 
1881 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1882 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1883 		int end;
1884 
1885 		WARN_ON(start > offset + len);
1886 
1887 		end = start + skb_frag_size(frag);
1888 		if ((copy = end - offset) > 0) {
1889 			u8 *vaddr;
1890 
1891 			if (copy > len)
1892 				copy = len;
1893 
1894 			vaddr = kmap_atomic(skb_frag_page(frag));
1895 			memcpy(vaddr + frag->page_offset + offset - start,
1896 			       from, copy);
1897 			kunmap_atomic(vaddr);
1898 
1899 			if ((len -= copy) == 0)
1900 				return 0;
1901 			offset += copy;
1902 			from += copy;
1903 		}
1904 		start = end;
1905 	}
1906 
1907 	skb_walk_frags(skb, frag_iter) {
1908 		int end;
1909 
1910 		WARN_ON(start > offset + len);
1911 
1912 		end = start + frag_iter->len;
1913 		if ((copy = end - offset) > 0) {
1914 			if (copy > len)
1915 				copy = len;
1916 			if (skb_store_bits(frag_iter, offset - start,
1917 					   from, copy))
1918 				goto fault;
1919 			if ((len -= copy) == 0)
1920 				return 0;
1921 			offset += copy;
1922 			from += copy;
1923 		}
1924 		start = end;
1925 	}
1926 	if (!len)
1927 		return 0;
1928 
1929 fault:
1930 	return -EFAULT;
1931 }
1932 EXPORT_SYMBOL(skb_store_bits);
1933 
1934 /* Checksum skb data. */
1935 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
1936 		      __wsum csum, const struct skb_checksum_ops *ops)
1937 {
1938 	int start = skb_headlen(skb);
1939 	int i, copy = start - offset;
1940 	struct sk_buff *frag_iter;
1941 	int pos = 0;
1942 
1943 	/* Checksum header. */
1944 	if (copy > 0) {
1945 		if (copy > len)
1946 			copy = len;
1947 		csum = ops->update(skb->data + offset, copy, csum);
1948 		if ((len -= copy) == 0)
1949 			return csum;
1950 		offset += copy;
1951 		pos	= copy;
1952 	}
1953 
1954 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1955 		int end;
1956 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1957 
1958 		WARN_ON(start > offset + len);
1959 
1960 		end = start + skb_frag_size(frag);
1961 		if ((copy = end - offset) > 0) {
1962 			__wsum csum2;
1963 			u8 *vaddr;
1964 
1965 			if (copy > len)
1966 				copy = len;
1967 			vaddr = kmap_atomic(skb_frag_page(frag));
1968 			csum2 = ops->update(vaddr + frag->page_offset +
1969 					    offset - start, copy, 0);
1970 			kunmap_atomic(vaddr);
1971 			csum = ops->combine(csum, csum2, pos, copy);
1972 			if (!(len -= copy))
1973 				return csum;
1974 			offset += copy;
1975 			pos    += copy;
1976 		}
1977 		start = end;
1978 	}
1979 
1980 	skb_walk_frags(skb, frag_iter) {
1981 		int end;
1982 
1983 		WARN_ON(start > offset + len);
1984 
1985 		end = start + frag_iter->len;
1986 		if ((copy = end - offset) > 0) {
1987 			__wsum csum2;
1988 			if (copy > len)
1989 				copy = len;
1990 			csum2 = __skb_checksum(frag_iter, offset - start,
1991 					       copy, 0, ops);
1992 			csum = ops->combine(csum, csum2, pos, copy);
1993 			if ((len -= copy) == 0)
1994 				return csum;
1995 			offset += copy;
1996 			pos    += copy;
1997 		}
1998 		start = end;
1999 	}
2000 	BUG_ON(len);
2001 
2002 	return csum;
2003 }
2004 EXPORT_SYMBOL(__skb_checksum);
2005 
2006 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2007 		    int len, __wsum csum)
2008 {
2009 	const struct skb_checksum_ops ops = {
2010 		.update  = csum_partial_ext,
2011 		.combine = csum_block_add_ext,
2012 	};
2013 
2014 	return __skb_checksum(skb, offset, len, csum, &ops);
2015 }
2016 EXPORT_SYMBOL(skb_checksum);
2017 
2018 /* Both of above in one bottle. */
2019 
2020 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2021 				    u8 *to, int len, __wsum csum)
2022 {
2023 	int start = skb_headlen(skb);
2024 	int i, copy = start - offset;
2025 	struct sk_buff *frag_iter;
2026 	int pos = 0;
2027 
2028 	/* Copy header. */
2029 	if (copy > 0) {
2030 		if (copy > len)
2031 			copy = len;
2032 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2033 						 copy, csum);
2034 		if ((len -= copy) == 0)
2035 			return csum;
2036 		offset += copy;
2037 		to     += copy;
2038 		pos	= copy;
2039 	}
2040 
2041 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2042 		int end;
2043 
2044 		WARN_ON(start > offset + len);
2045 
2046 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2047 		if ((copy = end - offset) > 0) {
2048 			__wsum csum2;
2049 			u8 *vaddr;
2050 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2051 
2052 			if (copy > len)
2053 				copy = len;
2054 			vaddr = kmap_atomic(skb_frag_page(frag));
2055 			csum2 = csum_partial_copy_nocheck(vaddr +
2056 							  frag->page_offset +
2057 							  offset - start, to,
2058 							  copy, 0);
2059 			kunmap_atomic(vaddr);
2060 			csum = csum_block_add(csum, csum2, pos);
2061 			if (!(len -= copy))
2062 				return csum;
2063 			offset += copy;
2064 			to     += copy;
2065 			pos    += copy;
2066 		}
2067 		start = end;
2068 	}
2069 
2070 	skb_walk_frags(skb, frag_iter) {
2071 		__wsum csum2;
2072 		int end;
2073 
2074 		WARN_ON(start > offset + len);
2075 
2076 		end = start + frag_iter->len;
2077 		if ((copy = end - offset) > 0) {
2078 			if (copy > len)
2079 				copy = len;
2080 			csum2 = skb_copy_and_csum_bits(frag_iter,
2081 						       offset - start,
2082 						       to, copy, 0);
2083 			csum = csum_block_add(csum, csum2, pos);
2084 			if ((len -= copy) == 0)
2085 				return csum;
2086 			offset += copy;
2087 			to     += copy;
2088 			pos    += copy;
2089 		}
2090 		start = end;
2091 	}
2092 	BUG_ON(len);
2093 	return csum;
2094 }
2095 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2096 
2097  /**
2098  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2099  *	@from: source buffer
2100  *
2101  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2102  *	into skb_zerocopy().
2103  */
2104 unsigned int
2105 skb_zerocopy_headlen(const struct sk_buff *from)
2106 {
2107 	unsigned int hlen = 0;
2108 
2109 	if (!from->head_frag ||
2110 	    skb_headlen(from) < L1_CACHE_BYTES ||
2111 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2112 		hlen = skb_headlen(from);
2113 
2114 	if (skb_has_frag_list(from))
2115 		hlen = from->len;
2116 
2117 	return hlen;
2118 }
2119 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2120 
2121 /**
2122  *	skb_zerocopy - Zero copy skb to skb
2123  *	@to: destination buffer
2124  *	@from: source buffer
2125  *	@len: number of bytes to copy from source buffer
2126  *	@hlen: size of linear headroom in destination buffer
2127  *
2128  *	Copies up to `len` bytes from `from` to `to` by creating references
2129  *	to the frags in the source buffer.
2130  *
2131  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2132  *	headroom in the `to` buffer.
2133  */
2134 void
2135 skb_zerocopy(struct sk_buff *to, const struct sk_buff *from, int len, int hlen)
2136 {
2137 	int i, j = 0;
2138 	int plen = 0; /* length of skb->head fragment */
2139 	struct page *page;
2140 	unsigned int offset;
2141 
2142 	BUG_ON(!from->head_frag && !hlen);
2143 
2144 	/* dont bother with small payloads */
2145 	if (len <= skb_tailroom(to)) {
2146 		skb_copy_bits(from, 0, skb_put(to, len), len);
2147 		return;
2148 	}
2149 
2150 	if (hlen) {
2151 		skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2152 		len -= hlen;
2153 	} else {
2154 		plen = min_t(int, skb_headlen(from), len);
2155 		if (plen) {
2156 			page = virt_to_head_page(from->head);
2157 			offset = from->data - (unsigned char *)page_address(page);
2158 			__skb_fill_page_desc(to, 0, page, offset, plen);
2159 			get_page(page);
2160 			j = 1;
2161 			len -= plen;
2162 		}
2163 	}
2164 
2165 	to->truesize += len + plen;
2166 	to->len += len + plen;
2167 	to->data_len += len + plen;
2168 
2169 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2170 		if (!len)
2171 			break;
2172 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2173 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2174 		len -= skb_shinfo(to)->frags[j].size;
2175 		skb_frag_ref(to, j);
2176 		j++;
2177 	}
2178 	skb_shinfo(to)->nr_frags = j;
2179 }
2180 EXPORT_SYMBOL_GPL(skb_zerocopy);
2181 
2182 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2183 {
2184 	__wsum csum;
2185 	long csstart;
2186 
2187 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2188 		csstart = skb_checksum_start_offset(skb);
2189 	else
2190 		csstart = skb_headlen(skb);
2191 
2192 	BUG_ON(csstart > skb_headlen(skb));
2193 
2194 	skb_copy_from_linear_data(skb, to, csstart);
2195 
2196 	csum = 0;
2197 	if (csstart != skb->len)
2198 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2199 					      skb->len - csstart, 0);
2200 
2201 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2202 		long csstuff = csstart + skb->csum_offset;
2203 
2204 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2205 	}
2206 }
2207 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2208 
2209 /**
2210  *	skb_dequeue - remove from the head of the queue
2211  *	@list: list to dequeue from
2212  *
2213  *	Remove the head of the list. The list lock is taken so the function
2214  *	may be used safely with other locking list functions. The head item is
2215  *	returned or %NULL if the list is empty.
2216  */
2217 
2218 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2219 {
2220 	unsigned long flags;
2221 	struct sk_buff *result;
2222 
2223 	spin_lock_irqsave(&list->lock, flags);
2224 	result = __skb_dequeue(list);
2225 	spin_unlock_irqrestore(&list->lock, flags);
2226 	return result;
2227 }
2228 EXPORT_SYMBOL(skb_dequeue);
2229 
2230 /**
2231  *	skb_dequeue_tail - remove from the tail of the queue
2232  *	@list: list to dequeue from
2233  *
2234  *	Remove the tail of the list. The list lock is taken so the function
2235  *	may be used safely with other locking list functions. The tail item is
2236  *	returned or %NULL if the list is empty.
2237  */
2238 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2239 {
2240 	unsigned long flags;
2241 	struct sk_buff *result;
2242 
2243 	spin_lock_irqsave(&list->lock, flags);
2244 	result = __skb_dequeue_tail(list);
2245 	spin_unlock_irqrestore(&list->lock, flags);
2246 	return result;
2247 }
2248 EXPORT_SYMBOL(skb_dequeue_tail);
2249 
2250 /**
2251  *	skb_queue_purge - empty a list
2252  *	@list: list to empty
2253  *
2254  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2255  *	the list and one reference dropped. This function takes the list
2256  *	lock and is atomic with respect to other list locking functions.
2257  */
2258 void skb_queue_purge(struct sk_buff_head *list)
2259 {
2260 	struct sk_buff *skb;
2261 	while ((skb = skb_dequeue(list)) != NULL)
2262 		kfree_skb(skb);
2263 }
2264 EXPORT_SYMBOL(skb_queue_purge);
2265 
2266 /**
2267  *	skb_queue_head - queue a buffer at the list head
2268  *	@list: list to use
2269  *	@newsk: buffer to queue
2270  *
2271  *	Queue a buffer at the start of the list. This function takes the
2272  *	list lock and can be used safely with other locking &sk_buff functions
2273  *	safely.
2274  *
2275  *	A buffer cannot be placed on two lists at the same time.
2276  */
2277 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2278 {
2279 	unsigned long flags;
2280 
2281 	spin_lock_irqsave(&list->lock, flags);
2282 	__skb_queue_head(list, newsk);
2283 	spin_unlock_irqrestore(&list->lock, flags);
2284 }
2285 EXPORT_SYMBOL(skb_queue_head);
2286 
2287 /**
2288  *	skb_queue_tail - queue a buffer at the list tail
2289  *	@list: list to use
2290  *	@newsk: buffer to queue
2291  *
2292  *	Queue a buffer at the tail of the list. This function takes the
2293  *	list lock and can be used safely with other locking &sk_buff functions
2294  *	safely.
2295  *
2296  *	A buffer cannot be placed on two lists at the same time.
2297  */
2298 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2299 {
2300 	unsigned long flags;
2301 
2302 	spin_lock_irqsave(&list->lock, flags);
2303 	__skb_queue_tail(list, newsk);
2304 	spin_unlock_irqrestore(&list->lock, flags);
2305 }
2306 EXPORT_SYMBOL(skb_queue_tail);
2307 
2308 /**
2309  *	skb_unlink	-	remove a buffer from a list
2310  *	@skb: buffer to remove
2311  *	@list: list to use
2312  *
2313  *	Remove a packet from a list. The list locks are taken and this
2314  *	function is atomic with respect to other list locked calls
2315  *
2316  *	You must know what list the SKB is on.
2317  */
2318 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2319 {
2320 	unsigned long flags;
2321 
2322 	spin_lock_irqsave(&list->lock, flags);
2323 	__skb_unlink(skb, list);
2324 	spin_unlock_irqrestore(&list->lock, flags);
2325 }
2326 EXPORT_SYMBOL(skb_unlink);
2327 
2328 /**
2329  *	skb_append	-	append a buffer
2330  *	@old: buffer to insert after
2331  *	@newsk: buffer to insert
2332  *	@list: list to use
2333  *
2334  *	Place a packet after a given packet in a list. The list locks are taken
2335  *	and this function is atomic with respect to other list locked calls.
2336  *	A buffer cannot be placed on two lists at the same time.
2337  */
2338 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2339 {
2340 	unsigned long flags;
2341 
2342 	spin_lock_irqsave(&list->lock, flags);
2343 	__skb_queue_after(list, old, newsk);
2344 	spin_unlock_irqrestore(&list->lock, flags);
2345 }
2346 EXPORT_SYMBOL(skb_append);
2347 
2348 /**
2349  *	skb_insert	-	insert a buffer
2350  *	@old: buffer to insert before
2351  *	@newsk: buffer to insert
2352  *	@list: list to use
2353  *
2354  *	Place a packet before a given packet in a list. The list locks are
2355  * 	taken and this function is atomic with respect to other list locked
2356  *	calls.
2357  *
2358  *	A buffer cannot be placed on two lists at the same time.
2359  */
2360 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2361 {
2362 	unsigned long flags;
2363 
2364 	spin_lock_irqsave(&list->lock, flags);
2365 	__skb_insert(newsk, old->prev, old, list);
2366 	spin_unlock_irqrestore(&list->lock, flags);
2367 }
2368 EXPORT_SYMBOL(skb_insert);
2369 
2370 static inline void skb_split_inside_header(struct sk_buff *skb,
2371 					   struct sk_buff* skb1,
2372 					   const u32 len, const int pos)
2373 {
2374 	int i;
2375 
2376 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2377 					 pos - len);
2378 	/* And move data appendix as is. */
2379 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2380 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2381 
2382 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2383 	skb_shinfo(skb)->nr_frags  = 0;
2384 	skb1->data_len		   = skb->data_len;
2385 	skb1->len		   += skb1->data_len;
2386 	skb->data_len		   = 0;
2387 	skb->len		   = len;
2388 	skb_set_tail_pointer(skb, len);
2389 }
2390 
2391 static inline void skb_split_no_header(struct sk_buff *skb,
2392 				       struct sk_buff* skb1,
2393 				       const u32 len, int pos)
2394 {
2395 	int i, k = 0;
2396 	const int nfrags = skb_shinfo(skb)->nr_frags;
2397 
2398 	skb_shinfo(skb)->nr_frags = 0;
2399 	skb1->len		  = skb1->data_len = skb->len - len;
2400 	skb->len		  = len;
2401 	skb->data_len		  = len - pos;
2402 
2403 	for (i = 0; i < nfrags; i++) {
2404 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2405 
2406 		if (pos + size > len) {
2407 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2408 
2409 			if (pos < len) {
2410 				/* Split frag.
2411 				 * We have two variants in this case:
2412 				 * 1. Move all the frag to the second
2413 				 *    part, if it is possible. F.e.
2414 				 *    this approach is mandatory for TUX,
2415 				 *    where splitting is expensive.
2416 				 * 2. Split is accurately. We make this.
2417 				 */
2418 				skb_frag_ref(skb, i);
2419 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2420 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2421 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2422 				skb_shinfo(skb)->nr_frags++;
2423 			}
2424 			k++;
2425 		} else
2426 			skb_shinfo(skb)->nr_frags++;
2427 		pos += size;
2428 	}
2429 	skb_shinfo(skb1)->nr_frags = k;
2430 }
2431 
2432 /**
2433  * skb_split - Split fragmented skb to two parts at length len.
2434  * @skb: the buffer to split
2435  * @skb1: the buffer to receive the second part
2436  * @len: new length for skb
2437  */
2438 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2439 {
2440 	int pos = skb_headlen(skb);
2441 
2442 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2443 	if (len < pos)	/* Split line is inside header. */
2444 		skb_split_inside_header(skb, skb1, len, pos);
2445 	else		/* Second chunk has no header, nothing to copy. */
2446 		skb_split_no_header(skb, skb1, len, pos);
2447 }
2448 EXPORT_SYMBOL(skb_split);
2449 
2450 /* Shifting from/to a cloned skb is a no-go.
2451  *
2452  * Caller cannot keep skb_shinfo related pointers past calling here!
2453  */
2454 static int skb_prepare_for_shift(struct sk_buff *skb)
2455 {
2456 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2457 }
2458 
2459 /**
2460  * skb_shift - Shifts paged data partially from skb to another
2461  * @tgt: buffer into which tail data gets added
2462  * @skb: buffer from which the paged data comes from
2463  * @shiftlen: shift up to this many bytes
2464  *
2465  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2466  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2467  * It's up to caller to free skb if everything was shifted.
2468  *
2469  * If @tgt runs out of frags, the whole operation is aborted.
2470  *
2471  * Skb cannot include anything else but paged data while tgt is allowed
2472  * to have non-paged data as well.
2473  *
2474  * TODO: full sized shift could be optimized but that would need
2475  * specialized skb free'er to handle frags without up-to-date nr_frags.
2476  */
2477 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2478 {
2479 	int from, to, merge, todo;
2480 	struct skb_frag_struct *fragfrom, *fragto;
2481 
2482 	BUG_ON(shiftlen > skb->len);
2483 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2484 
2485 	todo = shiftlen;
2486 	from = 0;
2487 	to = skb_shinfo(tgt)->nr_frags;
2488 	fragfrom = &skb_shinfo(skb)->frags[from];
2489 
2490 	/* Actual merge is delayed until the point when we know we can
2491 	 * commit all, so that we don't have to undo partial changes
2492 	 */
2493 	if (!to ||
2494 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2495 			      fragfrom->page_offset)) {
2496 		merge = -1;
2497 	} else {
2498 		merge = to - 1;
2499 
2500 		todo -= skb_frag_size(fragfrom);
2501 		if (todo < 0) {
2502 			if (skb_prepare_for_shift(skb) ||
2503 			    skb_prepare_for_shift(tgt))
2504 				return 0;
2505 
2506 			/* All previous frag pointers might be stale! */
2507 			fragfrom = &skb_shinfo(skb)->frags[from];
2508 			fragto = &skb_shinfo(tgt)->frags[merge];
2509 
2510 			skb_frag_size_add(fragto, shiftlen);
2511 			skb_frag_size_sub(fragfrom, shiftlen);
2512 			fragfrom->page_offset += shiftlen;
2513 
2514 			goto onlymerged;
2515 		}
2516 
2517 		from++;
2518 	}
2519 
2520 	/* Skip full, not-fitting skb to avoid expensive operations */
2521 	if ((shiftlen == skb->len) &&
2522 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2523 		return 0;
2524 
2525 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2526 		return 0;
2527 
2528 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2529 		if (to == MAX_SKB_FRAGS)
2530 			return 0;
2531 
2532 		fragfrom = &skb_shinfo(skb)->frags[from];
2533 		fragto = &skb_shinfo(tgt)->frags[to];
2534 
2535 		if (todo >= skb_frag_size(fragfrom)) {
2536 			*fragto = *fragfrom;
2537 			todo -= skb_frag_size(fragfrom);
2538 			from++;
2539 			to++;
2540 
2541 		} else {
2542 			__skb_frag_ref(fragfrom);
2543 			fragto->page = fragfrom->page;
2544 			fragto->page_offset = fragfrom->page_offset;
2545 			skb_frag_size_set(fragto, todo);
2546 
2547 			fragfrom->page_offset += todo;
2548 			skb_frag_size_sub(fragfrom, todo);
2549 			todo = 0;
2550 
2551 			to++;
2552 			break;
2553 		}
2554 	}
2555 
2556 	/* Ready to "commit" this state change to tgt */
2557 	skb_shinfo(tgt)->nr_frags = to;
2558 
2559 	if (merge >= 0) {
2560 		fragfrom = &skb_shinfo(skb)->frags[0];
2561 		fragto = &skb_shinfo(tgt)->frags[merge];
2562 
2563 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2564 		__skb_frag_unref(fragfrom);
2565 	}
2566 
2567 	/* Reposition in the original skb */
2568 	to = 0;
2569 	while (from < skb_shinfo(skb)->nr_frags)
2570 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2571 	skb_shinfo(skb)->nr_frags = to;
2572 
2573 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2574 
2575 onlymerged:
2576 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2577 	 * the other hand might need it if it needs to be resent
2578 	 */
2579 	tgt->ip_summed = CHECKSUM_PARTIAL;
2580 	skb->ip_summed = CHECKSUM_PARTIAL;
2581 
2582 	/* Yak, is it really working this way? Some helper please? */
2583 	skb->len -= shiftlen;
2584 	skb->data_len -= shiftlen;
2585 	skb->truesize -= shiftlen;
2586 	tgt->len += shiftlen;
2587 	tgt->data_len += shiftlen;
2588 	tgt->truesize += shiftlen;
2589 
2590 	return shiftlen;
2591 }
2592 
2593 /**
2594  * skb_prepare_seq_read - Prepare a sequential read of skb data
2595  * @skb: the buffer to read
2596  * @from: lower offset of data to be read
2597  * @to: upper offset of data to be read
2598  * @st: state variable
2599  *
2600  * Initializes the specified state variable. Must be called before
2601  * invoking skb_seq_read() for the first time.
2602  */
2603 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2604 			  unsigned int to, struct skb_seq_state *st)
2605 {
2606 	st->lower_offset = from;
2607 	st->upper_offset = to;
2608 	st->root_skb = st->cur_skb = skb;
2609 	st->frag_idx = st->stepped_offset = 0;
2610 	st->frag_data = NULL;
2611 }
2612 EXPORT_SYMBOL(skb_prepare_seq_read);
2613 
2614 /**
2615  * skb_seq_read - Sequentially read skb data
2616  * @consumed: number of bytes consumed by the caller so far
2617  * @data: destination pointer for data to be returned
2618  * @st: state variable
2619  *
2620  * Reads a block of skb data at @consumed relative to the
2621  * lower offset specified to skb_prepare_seq_read(). Assigns
2622  * the head of the data block to @data and returns the length
2623  * of the block or 0 if the end of the skb data or the upper
2624  * offset has been reached.
2625  *
2626  * The caller is not required to consume all of the data
2627  * returned, i.e. @consumed is typically set to the number
2628  * of bytes already consumed and the next call to
2629  * skb_seq_read() will return the remaining part of the block.
2630  *
2631  * Note 1: The size of each block of data returned can be arbitrary,
2632  *       this limitation is the cost for zerocopy seqeuental
2633  *       reads of potentially non linear data.
2634  *
2635  * Note 2: Fragment lists within fragments are not implemented
2636  *       at the moment, state->root_skb could be replaced with
2637  *       a stack for this purpose.
2638  */
2639 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2640 			  struct skb_seq_state *st)
2641 {
2642 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2643 	skb_frag_t *frag;
2644 
2645 	if (unlikely(abs_offset >= st->upper_offset)) {
2646 		if (st->frag_data) {
2647 			kunmap_atomic(st->frag_data);
2648 			st->frag_data = NULL;
2649 		}
2650 		return 0;
2651 	}
2652 
2653 next_skb:
2654 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2655 
2656 	if (abs_offset < block_limit && !st->frag_data) {
2657 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2658 		return block_limit - abs_offset;
2659 	}
2660 
2661 	if (st->frag_idx == 0 && !st->frag_data)
2662 		st->stepped_offset += skb_headlen(st->cur_skb);
2663 
2664 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2665 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2666 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2667 
2668 		if (abs_offset < block_limit) {
2669 			if (!st->frag_data)
2670 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2671 
2672 			*data = (u8 *) st->frag_data + frag->page_offset +
2673 				(abs_offset - st->stepped_offset);
2674 
2675 			return block_limit - abs_offset;
2676 		}
2677 
2678 		if (st->frag_data) {
2679 			kunmap_atomic(st->frag_data);
2680 			st->frag_data = NULL;
2681 		}
2682 
2683 		st->frag_idx++;
2684 		st->stepped_offset += skb_frag_size(frag);
2685 	}
2686 
2687 	if (st->frag_data) {
2688 		kunmap_atomic(st->frag_data);
2689 		st->frag_data = NULL;
2690 	}
2691 
2692 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2693 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2694 		st->frag_idx = 0;
2695 		goto next_skb;
2696 	} else if (st->cur_skb->next) {
2697 		st->cur_skb = st->cur_skb->next;
2698 		st->frag_idx = 0;
2699 		goto next_skb;
2700 	}
2701 
2702 	return 0;
2703 }
2704 EXPORT_SYMBOL(skb_seq_read);
2705 
2706 /**
2707  * skb_abort_seq_read - Abort a sequential read of skb data
2708  * @st: state variable
2709  *
2710  * Must be called if skb_seq_read() was not called until it
2711  * returned 0.
2712  */
2713 void skb_abort_seq_read(struct skb_seq_state *st)
2714 {
2715 	if (st->frag_data)
2716 		kunmap_atomic(st->frag_data);
2717 }
2718 EXPORT_SYMBOL(skb_abort_seq_read);
2719 
2720 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2721 
2722 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2723 					  struct ts_config *conf,
2724 					  struct ts_state *state)
2725 {
2726 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2727 }
2728 
2729 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2730 {
2731 	skb_abort_seq_read(TS_SKB_CB(state));
2732 }
2733 
2734 /**
2735  * skb_find_text - Find a text pattern in skb data
2736  * @skb: the buffer to look in
2737  * @from: search offset
2738  * @to: search limit
2739  * @config: textsearch configuration
2740  * @state: uninitialized textsearch state variable
2741  *
2742  * Finds a pattern in the skb data according to the specified
2743  * textsearch configuration. Use textsearch_next() to retrieve
2744  * subsequent occurrences of the pattern. Returns the offset
2745  * to the first occurrence or UINT_MAX if no match was found.
2746  */
2747 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2748 			   unsigned int to, struct ts_config *config,
2749 			   struct ts_state *state)
2750 {
2751 	unsigned int ret;
2752 
2753 	config->get_next_block = skb_ts_get_next_block;
2754 	config->finish = skb_ts_finish;
2755 
2756 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2757 
2758 	ret = textsearch_find(config, state);
2759 	return (ret <= to - from ? ret : UINT_MAX);
2760 }
2761 EXPORT_SYMBOL(skb_find_text);
2762 
2763 /**
2764  * skb_append_datato_frags - append the user data to a skb
2765  * @sk: sock  structure
2766  * @skb: skb structure to be appened with user data.
2767  * @getfrag: call back function to be used for getting the user data
2768  * @from: pointer to user message iov
2769  * @length: length of the iov message
2770  *
2771  * Description: This procedure append the user data in the fragment part
2772  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2773  */
2774 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2775 			int (*getfrag)(void *from, char *to, int offset,
2776 					int len, int odd, struct sk_buff *skb),
2777 			void *from, int length)
2778 {
2779 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2780 	int copy;
2781 	int offset = 0;
2782 	int ret;
2783 	struct page_frag *pfrag = &current->task_frag;
2784 
2785 	do {
2786 		/* Return error if we don't have space for new frag */
2787 		if (frg_cnt >= MAX_SKB_FRAGS)
2788 			return -EMSGSIZE;
2789 
2790 		if (!sk_page_frag_refill(sk, pfrag))
2791 			return -ENOMEM;
2792 
2793 		/* copy the user data to page */
2794 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2795 
2796 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2797 			      offset, copy, 0, skb);
2798 		if (ret < 0)
2799 			return -EFAULT;
2800 
2801 		/* copy was successful so update the size parameters */
2802 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2803 				   copy);
2804 		frg_cnt++;
2805 		pfrag->offset += copy;
2806 		get_page(pfrag->page);
2807 
2808 		skb->truesize += copy;
2809 		atomic_add(copy, &sk->sk_wmem_alloc);
2810 		skb->len += copy;
2811 		skb->data_len += copy;
2812 		offset += copy;
2813 		length -= copy;
2814 
2815 	} while (length > 0);
2816 
2817 	return 0;
2818 }
2819 EXPORT_SYMBOL(skb_append_datato_frags);
2820 
2821 /**
2822  *	skb_pull_rcsum - pull skb and update receive checksum
2823  *	@skb: buffer to update
2824  *	@len: length of data pulled
2825  *
2826  *	This function performs an skb_pull on the packet and updates
2827  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2828  *	receive path processing instead of skb_pull unless you know
2829  *	that the checksum difference is zero (e.g., a valid IP header)
2830  *	or you are setting ip_summed to CHECKSUM_NONE.
2831  */
2832 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2833 {
2834 	BUG_ON(len > skb->len);
2835 	skb->len -= len;
2836 	BUG_ON(skb->len < skb->data_len);
2837 	skb_postpull_rcsum(skb, skb->data, len);
2838 	return skb->data += len;
2839 }
2840 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2841 
2842 /**
2843  *	skb_segment - Perform protocol segmentation on skb.
2844  *	@skb: buffer to segment
2845  *	@features: features for the output path (see dev->features)
2846  *
2847  *	This function performs segmentation on the given skb.  It returns
2848  *	a pointer to the first in a list of new skbs for the segments.
2849  *	In case of error it returns ERR_PTR(err).
2850  */
2851 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2852 {
2853 	struct sk_buff *segs = NULL;
2854 	struct sk_buff *tail = NULL;
2855 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2856 	skb_frag_t *skb_frag = skb_shinfo(skb)->frags;
2857 	unsigned int mss = skb_shinfo(skb)->gso_size;
2858 	unsigned int doffset = skb->data - skb_mac_header(skb);
2859 	unsigned int offset = doffset;
2860 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
2861 	unsigned int headroom;
2862 	unsigned int len;
2863 	__be16 proto;
2864 	bool csum;
2865 	int sg = !!(features & NETIF_F_SG);
2866 	int nfrags = skb_shinfo(skb)->nr_frags;
2867 	int err = -ENOMEM;
2868 	int i = 0;
2869 	int pos;
2870 
2871 	proto = skb_network_protocol(skb);
2872 	if (unlikely(!proto))
2873 		return ERR_PTR(-EINVAL);
2874 
2875 	csum = !!can_checksum_protocol(features, proto);
2876 	__skb_push(skb, doffset);
2877 	headroom = skb_headroom(skb);
2878 	pos = skb_headlen(skb);
2879 
2880 	do {
2881 		struct sk_buff *nskb;
2882 		skb_frag_t *frag;
2883 		int hsize;
2884 		int size;
2885 
2886 		len = skb->len - offset;
2887 		if (len > mss)
2888 			len = mss;
2889 
2890 		hsize = skb_headlen(skb) - offset;
2891 		if (hsize < 0)
2892 			hsize = 0;
2893 		if (hsize > len || !sg)
2894 			hsize = len;
2895 
2896 		if (!hsize && i >= nfrags && skb_headlen(fskb) &&
2897 		    (skb_headlen(fskb) == len || sg)) {
2898 			BUG_ON(skb_headlen(fskb) > len);
2899 
2900 			i = 0;
2901 			nfrags = skb_shinfo(fskb)->nr_frags;
2902 			skb_frag = skb_shinfo(fskb)->frags;
2903 			pos += skb_headlen(fskb);
2904 
2905 			while (pos < offset + len) {
2906 				BUG_ON(i >= nfrags);
2907 
2908 				size = skb_frag_size(skb_frag);
2909 				if (pos + size > offset + len)
2910 					break;
2911 
2912 				i++;
2913 				pos += size;
2914 				skb_frag++;
2915 			}
2916 
2917 			nskb = skb_clone(fskb, GFP_ATOMIC);
2918 			fskb = fskb->next;
2919 
2920 			if (unlikely(!nskb))
2921 				goto err;
2922 
2923 			if (unlikely(pskb_trim(nskb, len))) {
2924 				kfree_skb(nskb);
2925 				goto err;
2926 			}
2927 
2928 			hsize = skb_end_offset(nskb);
2929 			if (skb_cow_head(nskb, doffset + headroom)) {
2930 				kfree_skb(nskb);
2931 				goto err;
2932 			}
2933 
2934 			nskb->truesize += skb_end_offset(nskb) - hsize;
2935 			skb_release_head_state(nskb);
2936 			__skb_push(nskb, doffset);
2937 		} else {
2938 			nskb = __alloc_skb(hsize + doffset + headroom,
2939 					   GFP_ATOMIC, skb_alloc_rx_flag(skb),
2940 					   NUMA_NO_NODE);
2941 
2942 			if (unlikely(!nskb))
2943 				goto err;
2944 
2945 			skb_reserve(nskb, headroom);
2946 			__skb_put(nskb, doffset);
2947 		}
2948 
2949 		if (segs)
2950 			tail->next = nskb;
2951 		else
2952 			segs = nskb;
2953 		tail = nskb;
2954 
2955 		__copy_skb_header(nskb, skb);
2956 		nskb->mac_len = skb->mac_len;
2957 
2958 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
2959 
2960 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
2961 						 nskb->data - tnl_hlen,
2962 						 doffset + tnl_hlen);
2963 
2964 		if (nskb->len == len + doffset)
2965 			goto perform_csum_check;
2966 
2967 		if (!sg) {
2968 			nskb->ip_summed = CHECKSUM_NONE;
2969 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2970 							    skb_put(nskb, len),
2971 							    len, 0);
2972 			continue;
2973 		}
2974 
2975 		frag = skb_shinfo(nskb)->frags;
2976 
2977 		skb_copy_from_linear_data_offset(skb, offset,
2978 						 skb_put(nskb, hsize), hsize);
2979 
2980 		skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2981 
2982 		while (pos < offset + len) {
2983 			if (i >= nfrags) {
2984 				BUG_ON(skb_headlen(fskb));
2985 
2986 				i = 0;
2987 				nfrags = skb_shinfo(fskb)->nr_frags;
2988 				skb_frag = skb_shinfo(fskb)->frags;
2989 
2990 				BUG_ON(!nfrags);
2991 
2992 				fskb = fskb->next;
2993 			}
2994 
2995 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
2996 				     MAX_SKB_FRAGS)) {
2997 				net_warn_ratelimited(
2998 					"skb_segment: too many frags: %u %u\n",
2999 					pos, mss);
3000 				goto err;
3001 			}
3002 
3003 			*frag = *skb_frag;
3004 			__skb_frag_ref(frag);
3005 			size = skb_frag_size(frag);
3006 
3007 			if (pos < offset) {
3008 				frag->page_offset += offset - pos;
3009 				skb_frag_size_sub(frag, offset - pos);
3010 			}
3011 
3012 			skb_shinfo(nskb)->nr_frags++;
3013 
3014 			if (pos + size <= offset + len) {
3015 				i++;
3016 				skb_frag++;
3017 				pos += size;
3018 			} else {
3019 				skb_frag_size_sub(frag, pos + size - (offset + len));
3020 				goto skip_fraglist;
3021 			}
3022 
3023 			frag++;
3024 		}
3025 
3026 skip_fraglist:
3027 		nskb->data_len = len - hsize;
3028 		nskb->len += nskb->data_len;
3029 		nskb->truesize += nskb->data_len;
3030 
3031 perform_csum_check:
3032 		if (!csum) {
3033 			nskb->csum = skb_checksum(nskb, doffset,
3034 						  nskb->len - doffset, 0);
3035 			nskb->ip_summed = CHECKSUM_NONE;
3036 		}
3037 	} while ((offset += len) < skb->len);
3038 
3039 	return segs;
3040 
3041 err:
3042 	kfree_skb_list(segs);
3043 	return ERR_PTR(err);
3044 }
3045 EXPORT_SYMBOL_GPL(skb_segment);
3046 
3047 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3048 {
3049 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3050 	unsigned int offset = skb_gro_offset(skb);
3051 	unsigned int headlen = skb_headlen(skb);
3052 	struct sk_buff *nskb, *lp, *p = *head;
3053 	unsigned int len = skb_gro_len(skb);
3054 	unsigned int delta_truesize;
3055 	unsigned int headroom;
3056 
3057 	if (unlikely(p->len + len >= 65536))
3058 		return -E2BIG;
3059 
3060 	lp = NAPI_GRO_CB(p)->last ?: p;
3061 	pinfo = skb_shinfo(lp);
3062 
3063 	if (headlen <= offset) {
3064 		skb_frag_t *frag;
3065 		skb_frag_t *frag2;
3066 		int i = skbinfo->nr_frags;
3067 		int nr_frags = pinfo->nr_frags + i;
3068 
3069 		if (nr_frags > MAX_SKB_FRAGS)
3070 			goto merge;
3071 
3072 		offset -= headlen;
3073 		pinfo->nr_frags = nr_frags;
3074 		skbinfo->nr_frags = 0;
3075 
3076 		frag = pinfo->frags + nr_frags;
3077 		frag2 = skbinfo->frags + i;
3078 		do {
3079 			*--frag = *--frag2;
3080 		} while (--i);
3081 
3082 		frag->page_offset += offset;
3083 		skb_frag_size_sub(frag, offset);
3084 
3085 		/* all fragments truesize : remove (head size + sk_buff) */
3086 		delta_truesize = skb->truesize -
3087 				 SKB_TRUESIZE(skb_end_offset(skb));
3088 
3089 		skb->truesize -= skb->data_len;
3090 		skb->len -= skb->data_len;
3091 		skb->data_len = 0;
3092 
3093 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3094 		goto done;
3095 	} else if (skb->head_frag) {
3096 		int nr_frags = pinfo->nr_frags;
3097 		skb_frag_t *frag = pinfo->frags + nr_frags;
3098 		struct page *page = virt_to_head_page(skb->head);
3099 		unsigned int first_size = headlen - offset;
3100 		unsigned int first_offset;
3101 
3102 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3103 			goto merge;
3104 
3105 		first_offset = skb->data -
3106 			       (unsigned char *)page_address(page) +
3107 			       offset;
3108 
3109 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3110 
3111 		frag->page.p	  = page;
3112 		frag->page_offset = first_offset;
3113 		skb_frag_size_set(frag, first_size);
3114 
3115 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3116 		/* We dont need to clear skbinfo->nr_frags here */
3117 
3118 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3119 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3120 		goto done;
3121 	}
3122 	if (pinfo->frag_list)
3123 		goto merge;
3124 	if (skb_gro_len(p) != pinfo->gso_size)
3125 		return -E2BIG;
3126 
3127 	headroom = skb_headroom(p);
3128 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3129 	if (unlikely(!nskb))
3130 		return -ENOMEM;
3131 
3132 	__copy_skb_header(nskb, p);
3133 	nskb->mac_len = p->mac_len;
3134 
3135 	skb_reserve(nskb, headroom);
3136 	__skb_put(nskb, skb_gro_offset(p));
3137 
3138 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3139 	skb_set_network_header(nskb, skb_network_offset(p));
3140 	skb_set_transport_header(nskb, skb_transport_offset(p));
3141 
3142 	__skb_pull(p, skb_gro_offset(p));
3143 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
3144 	       p->data - skb_mac_header(p));
3145 
3146 	skb_shinfo(nskb)->frag_list = p;
3147 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3148 	pinfo->gso_size = 0;
3149 	skb_header_release(p);
3150 	NAPI_GRO_CB(nskb)->last = p;
3151 
3152 	nskb->data_len += p->len;
3153 	nskb->truesize += p->truesize;
3154 	nskb->len += p->len;
3155 
3156 	*head = nskb;
3157 	nskb->next = p->next;
3158 	p->next = NULL;
3159 
3160 	p = nskb;
3161 
3162 merge:
3163 	delta_truesize = skb->truesize;
3164 	if (offset > headlen) {
3165 		unsigned int eat = offset - headlen;
3166 
3167 		skbinfo->frags[0].page_offset += eat;
3168 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3169 		skb->data_len -= eat;
3170 		skb->len -= eat;
3171 		offset = headlen;
3172 	}
3173 
3174 	__skb_pull(skb, offset);
3175 
3176 	if (!NAPI_GRO_CB(p)->last)
3177 		skb_shinfo(p)->frag_list = skb;
3178 	else
3179 		NAPI_GRO_CB(p)->last->next = skb;
3180 	NAPI_GRO_CB(p)->last = skb;
3181 	skb_header_release(skb);
3182 	lp = p;
3183 
3184 done:
3185 	NAPI_GRO_CB(p)->count++;
3186 	p->data_len += len;
3187 	p->truesize += delta_truesize;
3188 	p->len += len;
3189 	if (lp != p) {
3190 		lp->data_len += len;
3191 		lp->truesize += delta_truesize;
3192 		lp->len += len;
3193 	}
3194 	NAPI_GRO_CB(skb)->same_flow = 1;
3195 	return 0;
3196 }
3197 EXPORT_SYMBOL_GPL(skb_gro_receive);
3198 
3199 void __init skb_init(void)
3200 {
3201 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3202 					      sizeof(struct sk_buff),
3203 					      0,
3204 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3205 					      NULL);
3206 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3207 						(2*sizeof(struct sk_buff)) +
3208 						sizeof(atomic_t),
3209 						0,
3210 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3211 						NULL);
3212 }
3213 
3214 /**
3215  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3216  *	@skb: Socket buffer containing the buffers to be mapped
3217  *	@sg: The scatter-gather list to map into
3218  *	@offset: The offset into the buffer's contents to start mapping
3219  *	@len: Length of buffer space to be mapped
3220  *
3221  *	Fill the specified scatter-gather list with mappings/pointers into a
3222  *	region of the buffer space attached to a socket buffer.
3223  */
3224 static int
3225 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3226 {
3227 	int start = skb_headlen(skb);
3228 	int i, copy = start - offset;
3229 	struct sk_buff *frag_iter;
3230 	int elt = 0;
3231 
3232 	if (copy > 0) {
3233 		if (copy > len)
3234 			copy = len;
3235 		sg_set_buf(sg, skb->data + offset, copy);
3236 		elt++;
3237 		if ((len -= copy) == 0)
3238 			return elt;
3239 		offset += copy;
3240 	}
3241 
3242 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3243 		int end;
3244 
3245 		WARN_ON(start > offset + len);
3246 
3247 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3248 		if ((copy = end - offset) > 0) {
3249 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3250 
3251 			if (copy > len)
3252 				copy = len;
3253 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3254 					frag->page_offset+offset-start);
3255 			elt++;
3256 			if (!(len -= copy))
3257 				return elt;
3258 			offset += copy;
3259 		}
3260 		start = end;
3261 	}
3262 
3263 	skb_walk_frags(skb, frag_iter) {
3264 		int end;
3265 
3266 		WARN_ON(start > offset + len);
3267 
3268 		end = start + frag_iter->len;
3269 		if ((copy = end - offset) > 0) {
3270 			if (copy > len)
3271 				copy = len;
3272 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3273 					      copy);
3274 			if ((len -= copy) == 0)
3275 				return elt;
3276 			offset += copy;
3277 		}
3278 		start = end;
3279 	}
3280 	BUG_ON(len);
3281 	return elt;
3282 }
3283 
3284 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3285 {
3286 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3287 
3288 	sg_mark_end(&sg[nsg - 1]);
3289 
3290 	return nsg;
3291 }
3292 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3293 
3294 /**
3295  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3296  *	@skb: The socket buffer to check.
3297  *	@tailbits: Amount of trailing space to be added
3298  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3299  *
3300  *	Make sure that the data buffers attached to a socket buffer are
3301  *	writable. If they are not, private copies are made of the data buffers
3302  *	and the socket buffer is set to use these instead.
3303  *
3304  *	If @tailbits is given, make sure that there is space to write @tailbits
3305  *	bytes of data beyond current end of socket buffer.  @trailer will be
3306  *	set to point to the skb in which this space begins.
3307  *
3308  *	The number of scatterlist elements required to completely map the
3309  *	COW'd and extended socket buffer will be returned.
3310  */
3311 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3312 {
3313 	int copyflag;
3314 	int elt;
3315 	struct sk_buff *skb1, **skb_p;
3316 
3317 	/* If skb is cloned or its head is paged, reallocate
3318 	 * head pulling out all the pages (pages are considered not writable
3319 	 * at the moment even if they are anonymous).
3320 	 */
3321 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3322 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3323 		return -ENOMEM;
3324 
3325 	/* Easy case. Most of packets will go this way. */
3326 	if (!skb_has_frag_list(skb)) {
3327 		/* A little of trouble, not enough of space for trailer.
3328 		 * This should not happen, when stack is tuned to generate
3329 		 * good frames. OK, on miss we reallocate and reserve even more
3330 		 * space, 128 bytes is fair. */
3331 
3332 		if (skb_tailroom(skb) < tailbits &&
3333 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3334 			return -ENOMEM;
3335 
3336 		/* Voila! */
3337 		*trailer = skb;
3338 		return 1;
3339 	}
3340 
3341 	/* Misery. We are in troubles, going to mincer fragments... */
3342 
3343 	elt = 1;
3344 	skb_p = &skb_shinfo(skb)->frag_list;
3345 	copyflag = 0;
3346 
3347 	while ((skb1 = *skb_p) != NULL) {
3348 		int ntail = 0;
3349 
3350 		/* The fragment is partially pulled by someone,
3351 		 * this can happen on input. Copy it and everything
3352 		 * after it. */
3353 
3354 		if (skb_shared(skb1))
3355 			copyflag = 1;
3356 
3357 		/* If the skb is the last, worry about trailer. */
3358 
3359 		if (skb1->next == NULL && tailbits) {
3360 			if (skb_shinfo(skb1)->nr_frags ||
3361 			    skb_has_frag_list(skb1) ||
3362 			    skb_tailroom(skb1) < tailbits)
3363 				ntail = tailbits + 128;
3364 		}
3365 
3366 		if (copyflag ||
3367 		    skb_cloned(skb1) ||
3368 		    ntail ||
3369 		    skb_shinfo(skb1)->nr_frags ||
3370 		    skb_has_frag_list(skb1)) {
3371 			struct sk_buff *skb2;
3372 
3373 			/* Fuck, we are miserable poor guys... */
3374 			if (ntail == 0)
3375 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3376 			else
3377 				skb2 = skb_copy_expand(skb1,
3378 						       skb_headroom(skb1),
3379 						       ntail,
3380 						       GFP_ATOMIC);
3381 			if (unlikely(skb2 == NULL))
3382 				return -ENOMEM;
3383 
3384 			if (skb1->sk)
3385 				skb_set_owner_w(skb2, skb1->sk);
3386 
3387 			/* Looking around. Are we still alive?
3388 			 * OK, link new skb, drop old one */
3389 
3390 			skb2->next = skb1->next;
3391 			*skb_p = skb2;
3392 			kfree_skb(skb1);
3393 			skb1 = skb2;
3394 		}
3395 		elt++;
3396 		*trailer = skb1;
3397 		skb_p = &skb1->next;
3398 	}
3399 
3400 	return elt;
3401 }
3402 EXPORT_SYMBOL_GPL(skb_cow_data);
3403 
3404 static void sock_rmem_free(struct sk_buff *skb)
3405 {
3406 	struct sock *sk = skb->sk;
3407 
3408 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3409 }
3410 
3411 /*
3412  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3413  */
3414 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3415 {
3416 	int len = skb->len;
3417 
3418 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3419 	    (unsigned int)sk->sk_rcvbuf)
3420 		return -ENOMEM;
3421 
3422 	skb_orphan(skb);
3423 	skb->sk = sk;
3424 	skb->destructor = sock_rmem_free;
3425 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3426 
3427 	/* before exiting rcu section, make sure dst is refcounted */
3428 	skb_dst_force(skb);
3429 
3430 	skb_queue_tail(&sk->sk_error_queue, skb);
3431 	if (!sock_flag(sk, SOCK_DEAD))
3432 		sk->sk_data_ready(sk, len);
3433 	return 0;
3434 }
3435 EXPORT_SYMBOL(sock_queue_err_skb);
3436 
3437 void skb_tstamp_tx(struct sk_buff *orig_skb,
3438 		struct skb_shared_hwtstamps *hwtstamps)
3439 {
3440 	struct sock *sk = orig_skb->sk;
3441 	struct sock_exterr_skb *serr;
3442 	struct sk_buff *skb;
3443 	int err;
3444 
3445 	if (!sk)
3446 		return;
3447 
3448 	if (hwtstamps) {
3449 		*skb_hwtstamps(orig_skb) =
3450 			*hwtstamps;
3451 	} else {
3452 		/*
3453 		 * no hardware time stamps available,
3454 		 * so keep the shared tx_flags and only
3455 		 * store software time stamp
3456 		 */
3457 		orig_skb->tstamp = ktime_get_real();
3458 	}
3459 
3460 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3461 	if (!skb)
3462 		return;
3463 
3464 	serr = SKB_EXT_ERR(skb);
3465 	memset(serr, 0, sizeof(*serr));
3466 	serr->ee.ee_errno = ENOMSG;
3467 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3468 
3469 	err = sock_queue_err_skb(sk, skb);
3470 
3471 	if (err)
3472 		kfree_skb(skb);
3473 }
3474 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3475 
3476 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3477 {
3478 	struct sock *sk = skb->sk;
3479 	struct sock_exterr_skb *serr;
3480 	int err;
3481 
3482 	skb->wifi_acked_valid = 1;
3483 	skb->wifi_acked = acked;
3484 
3485 	serr = SKB_EXT_ERR(skb);
3486 	memset(serr, 0, sizeof(*serr));
3487 	serr->ee.ee_errno = ENOMSG;
3488 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3489 
3490 	err = sock_queue_err_skb(sk, skb);
3491 	if (err)
3492 		kfree_skb(skb);
3493 }
3494 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3495 
3496 
3497 /**
3498  * skb_partial_csum_set - set up and verify partial csum values for packet
3499  * @skb: the skb to set
3500  * @start: the number of bytes after skb->data to start checksumming.
3501  * @off: the offset from start to place the checksum.
3502  *
3503  * For untrusted partially-checksummed packets, we need to make sure the values
3504  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3505  *
3506  * This function checks and sets those values and skb->ip_summed: if this
3507  * returns false you should drop the packet.
3508  */
3509 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3510 {
3511 	if (unlikely(start > skb_headlen(skb)) ||
3512 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3513 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3514 				     start, off, skb_headlen(skb));
3515 		return false;
3516 	}
3517 	skb->ip_summed = CHECKSUM_PARTIAL;
3518 	skb->csum_start = skb_headroom(skb) + start;
3519 	skb->csum_offset = off;
3520 	skb_set_transport_header(skb, start);
3521 	return true;
3522 }
3523 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3524 
3525 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3526 			       unsigned int max)
3527 {
3528 	if (skb_headlen(skb) >= len)
3529 		return 0;
3530 
3531 	/* If we need to pullup then pullup to the max, so we
3532 	 * won't need to do it again.
3533 	 */
3534 	if (max > skb->len)
3535 		max = skb->len;
3536 
3537 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3538 		return -ENOMEM;
3539 
3540 	if (skb_headlen(skb) < len)
3541 		return -EPROTO;
3542 
3543 	return 0;
3544 }
3545 
3546 /* This value should be large enough to cover a tagged ethernet header plus
3547  * maximally sized IP and TCP or UDP headers.
3548  */
3549 #define MAX_IP_HDR_LEN 128
3550 
3551 static int skb_checksum_setup_ip(struct sk_buff *skb, bool recalculate)
3552 {
3553 	unsigned int off;
3554 	bool fragment;
3555 	int err;
3556 
3557 	fragment = false;
3558 
3559 	err = skb_maybe_pull_tail(skb,
3560 				  sizeof(struct iphdr),
3561 				  MAX_IP_HDR_LEN);
3562 	if (err < 0)
3563 		goto out;
3564 
3565 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3566 		fragment = true;
3567 
3568 	off = ip_hdrlen(skb);
3569 
3570 	err = -EPROTO;
3571 
3572 	if (fragment)
3573 		goto out;
3574 
3575 	switch (ip_hdr(skb)->protocol) {
3576 	case IPPROTO_TCP:
3577 		err = skb_maybe_pull_tail(skb,
3578 					  off + sizeof(struct tcphdr),
3579 					  MAX_IP_HDR_LEN);
3580 		if (err < 0)
3581 			goto out;
3582 
3583 		if (!skb_partial_csum_set(skb, off,
3584 					  offsetof(struct tcphdr, check))) {
3585 			err = -EPROTO;
3586 			goto out;
3587 		}
3588 
3589 		if (recalculate)
3590 			tcp_hdr(skb)->check =
3591 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3592 						   ip_hdr(skb)->daddr,
3593 						   skb->len - off,
3594 						   IPPROTO_TCP, 0);
3595 		break;
3596 	case IPPROTO_UDP:
3597 		err = skb_maybe_pull_tail(skb,
3598 					  off + sizeof(struct udphdr),
3599 					  MAX_IP_HDR_LEN);
3600 		if (err < 0)
3601 			goto out;
3602 
3603 		if (!skb_partial_csum_set(skb, off,
3604 					  offsetof(struct udphdr, check))) {
3605 			err = -EPROTO;
3606 			goto out;
3607 		}
3608 
3609 		if (recalculate)
3610 			udp_hdr(skb)->check =
3611 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3612 						   ip_hdr(skb)->daddr,
3613 						   skb->len - off,
3614 						   IPPROTO_UDP, 0);
3615 		break;
3616 	default:
3617 		goto out;
3618 	}
3619 
3620 	err = 0;
3621 
3622 out:
3623 	return err;
3624 }
3625 
3626 /* This value should be large enough to cover a tagged ethernet header plus
3627  * an IPv6 header, all options, and a maximal TCP or UDP header.
3628  */
3629 #define MAX_IPV6_HDR_LEN 256
3630 
3631 #define OPT_HDR(type, skb, off) \
3632 	(type *)(skb_network_header(skb) + (off))
3633 
3634 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3635 {
3636 	int err;
3637 	u8 nexthdr;
3638 	unsigned int off;
3639 	unsigned int len;
3640 	bool fragment;
3641 	bool done;
3642 
3643 	fragment = false;
3644 	done = false;
3645 
3646 	off = sizeof(struct ipv6hdr);
3647 
3648 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3649 	if (err < 0)
3650 		goto out;
3651 
3652 	nexthdr = ipv6_hdr(skb)->nexthdr;
3653 
3654 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3655 	while (off <= len && !done) {
3656 		switch (nexthdr) {
3657 		case IPPROTO_DSTOPTS:
3658 		case IPPROTO_HOPOPTS:
3659 		case IPPROTO_ROUTING: {
3660 			struct ipv6_opt_hdr *hp;
3661 
3662 			err = skb_maybe_pull_tail(skb,
3663 						  off +
3664 						  sizeof(struct ipv6_opt_hdr),
3665 						  MAX_IPV6_HDR_LEN);
3666 			if (err < 0)
3667 				goto out;
3668 
3669 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3670 			nexthdr = hp->nexthdr;
3671 			off += ipv6_optlen(hp);
3672 			break;
3673 		}
3674 		case IPPROTO_AH: {
3675 			struct ip_auth_hdr *hp;
3676 
3677 			err = skb_maybe_pull_tail(skb,
3678 						  off +
3679 						  sizeof(struct ip_auth_hdr),
3680 						  MAX_IPV6_HDR_LEN);
3681 			if (err < 0)
3682 				goto out;
3683 
3684 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3685 			nexthdr = hp->nexthdr;
3686 			off += ipv6_authlen(hp);
3687 			break;
3688 		}
3689 		case IPPROTO_FRAGMENT: {
3690 			struct frag_hdr *hp;
3691 
3692 			err = skb_maybe_pull_tail(skb,
3693 						  off +
3694 						  sizeof(struct frag_hdr),
3695 						  MAX_IPV6_HDR_LEN);
3696 			if (err < 0)
3697 				goto out;
3698 
3699 			hp = OPT_HDR(struct frag_hdr, skb, off);
3700 
3701 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3702 				fragment = true;
3703 
3704 			nexthdr = hp->nexthdr;
3705 			off += sizeof(struct frag_hdr);
3706 			break;
3707 		}
3708 		default:
3709 			done = true;
3710 			break;
3711 		}
3712 	}
3713 
3714 	err = -EPROTO;
3715 
3716 	if (!done || fragment)
3717 		goto out;
3718 
3719 	switch (nexthdr) {
3720 	case IPPROTO_TCP:
3721 		err = skb_maybe_pull_tail(skb,
3722 					  off + sizeof(struct tcphdr),
3723 					  MAX_IPV6_HDR_LEN);
3724 		if (err < 0)
3725 			goto out;
3726 
3727 		if (!skb_partial_csum_set(skb, off,
3728 					  offsetof(struct tcphdr, check))) {
3729 			err = -EPROTO;
3730 			goto out;
3731 		}
3732 
3733 		if (recalculate)
3734 			tcp_hdr(skb)->check =
3735 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3736 						 &ipv6_hdr(skb)->daddr,
3737 						 skb->len - off,
3738 						 IPPROTO_TCP, 0);
3739 		break;
3740 	case IPPROTO_UDP:
3741 		err = skb_maybe_pull_tail(skb,
3742 					  off + sizeof(struct udphdr),
3743 					  MAX_IPV6_HDR_LEN);
3744 		if (err < 0)
3745 			goto out;
3746 
3747 		if (!skb_partial_csum_set(skb, off,
3748 					  offsetof(struct udphdr, check))) {
3749 			err = -EPROTO;
3750 			goto out;
3751 		}
3752 
3753 		if (recalculate)
3754 			udp_hdr(skb)->check =
3755 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3756 						 &ipv6_hdr(skb)->daddr,
3757 						 skb->len - off,
3758 						 IPPROTO_UDP, 0);
3759 		break;
3760 	default:
3761 		goto out;
3762 	}
3763 
3764 	err = 0;
3765 
3766 out:
3767 	return err;
3768 }
3769 
3770 /**
3771  * skb_checksum_setup - set up partial checksum offset
3772  * @skb: the skb to set up
3773  * @recalculate: if true the pseudo-header checksum will be recalculated
3774  */
3775 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
3776 {
3777 	int err;
3778 
3779 	switch (skb->protocol) {
3780 	case htons(ETH_P_IP):
3781 		err = skb_checksum_setup_ip(skb, recalculate);
3782 		break;
3783 
3784 	case htons(ETH_P_IPV6):
3785 		err = skb_checksum_setup_ipv6(skb, recalculate);
3786 		break;
3787 
3788 	default:
3789 		err = -EPROTO;
3790 		break;
3791 	}
3792 
3793 	return err;
3794 }
3795 EXPORT_SYMBOL(skb_checksum_setup);
3796 
3797 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3798 {
3799 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3800 			     skb->dev->name);
3801 }
3802 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3803 
3804 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3805 {
3806 	if (head_stolen) {
3807 		skb_release_head_state(skb);
3808 		kmem_cache_free(skbuff_head_cache, skb);
3809 	} else {
3810 		__kfree_skb(skb);
3811 	}
3812 }
3813 EXPORT_SYMBOL(kfree_skb_partial);
3814 
3815 /**
3816  * skb_try_coalesce - try to merge skb to prior one
3817  * @to: prior buffer
3818  * @from: buffer to add
3819  * @fragstolen: pointer to boolean
3820  * @delta_truesize: how much more was allocated than was requested
3821  */
3822 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3823 		      bool *fragstolen, int *delta_truesize)
3824 {
3825 	int i, delta, len = from->len;
3826 
3827 	*fragstolen = false;
3828 
3829 	if (skb_cloned(to))
3830 		return false;
3831 
3832 	if (len <= skb_tailroom(to)) {
3833 		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3834 		*delta_truesize = 0;
3835 		return true;
3836 	}
3837 
3838 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3839 		return false;
3840 
3841 	if (skb_headlen(from) != 0) {
3842 		struct page *page;
3843 		unsigned int offset;
3844 
3845 		if (skb_shinfo(to)->nr_frags +
3846 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3847 			return false;
3848 
3849 		if (skb_head_is_locked(from))
3850 			return false;
3851 
3852 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3853 
3854 		page = virt_to_head_page(from->head);
3855 		offset = from->data - (unsigned char *)page_address(page);
3856 
3857 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3858 				   page, offset, skb_headlen(from));
3859 		*fragstolen = true;
3860 	} else {
3861 		if (skb_shinfo(to)->nr_frags +
3862 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3863 			return false;
3864 
3865 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3866 	}
3867 
3868 	WARN_ON_ONCE(delta < len);
3869 
3870 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3871 	       skb_shinfo(from)->frags,
3872 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3873 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3874 
3875 	if (!skb_cloned(from))
3876 		skb_shinfo(from)->nr_frags = 0;
3877 
3878 	/* if the skb is not cloned this does nothing
3879 	 * since we set nr_frags to 0.
3880 	 */
3881 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3882 		skb_frag_ref(from, i);
3883 
3884 	to->truesize += delta;
3885 	to->len += len;
3886 	to->data_len += len;
3887 
3888 	*delta_truesize = delta;
3889 	return true;
3890 }
3891 EXPORT_SYMBOL(skb_try_coalesce);
3892 
3893 /**
3894  * skb_scrub_packet - scrub an skb
3895  *
3896  * @skb: buffer to clean
3897  * @xnet: packet is crossing netns
3898  *
3899  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
3900  * into/from a tunnel. Some information have to be cleared during these
3901  * operations.
3902  * skb_scrub_packet can also be used to clean a skb before injecting it in
3903  * another namespace (@xnet == true). We have to clear all information in the
3904  * skb that could impact namespace isolation.
3905  */
3906 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
3907 {
3908 	if (xnet)
3909 		skb_orphan(skb);
3910 	skb->tstamp.tv64 = 0;
3911 	skb->pkt_type = PACKET_HOST;
3912 	skb->skb_iif = 0;
3913 	skb->local_df = 0;
3914 	skb_dst_drop(skb);
3915 	skb->mark = 0;
3916 	secpath_reset(skb);
3917 	nf_reset(skb);
3918 	nf_reset_trace(skb);
3919 }
3920 EXPORT_SYMBOL_GPL(skb_scrub_packet);
3921 
3922 /**
3923  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
3924  *
3925  * @skb: GSO skb
3926  *
3927  * skb_gso_transport_seglen is used to determine the real size of the
3928  * individual segments, including Layer4 headers (TCP/UDP).
3929  *
3930  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
3931  */
3932 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
3933 {
3934 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3935 	unsigned int hdr_len;
3936 
3937 	if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3938 		hdr_len = tcp_hdrlen(skb);
3939 	else
3940 		hdr_len = sizeof(struct udphdr);
3941 	return hdr_len + shinfo->gso_size;
3942 }
3943 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
3944