xref: /openbmc/linux/net/core/skbuff.c (revision 36acd5e2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72 
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79 
80 #include "datagram.h"
81 
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89 
90 /**
91  *	skb_panic - private function for out-of-line support
92  *	@skb:	buffer
93  *	@sz:	size
94  *	@addr:	address
95  *	@msg:	skb_over_panic or skb_under_panic
96  *
97  *	Out-of-line support for skb_put() and skb_push().
98  *	Called via the wrapper skb_over_panic() or skb_under_panic().
99  *	Keep out of line to prevent kernel bloat.
100  *	__builtin_return_address is not used because it is not always reliable.
101  */
102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 		      const char msg[])
104 {
105 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 		 msg, addr, skb->len, sz, skb->head, skb->data,
107 		 (unsigned long)skb->tail, (unsigned long)skb->end,
108 		 skb->dev ? skb->dev->name : "<NULL>");
109 	BUG();
110 }
111 
112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 	skb_panic(skb, sz, addr, __func__);
120 }
121 
122 /*
123  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124  * the caller if emergency pfmemalloc reserves are being used. If it is and
125  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126  * may be used. Otherwise, the packet data may be discarded until enough
127  * memory is free
128  */
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131 
132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 			       unsigned long ip, bool *pfmemalloc)
134 {
135 	void *obj;
136 	bool ret_pfmemalloc = false;
137 
138 	/*
139 	 * Try a regular allocation, when that fails and we're not entitled
140 	 * to the reserves, fail.
141 	 */
142 	obj = kmalloc_node_track_caller(size,
143 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 					node);
145 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 		goto out;
147 
148 	/* Try again but now we are using pfmemalloc reserves */
149 	ret_pfmemalloc = true;
150 	obj = kmalloc_node_track_caller(size, flags, node);
151 
152 out:
153 	if (pfmemalloc)
154 		*pfmemalloc = ret_pfmemalloc;
155 
156 	return obj;
157 }
158 
159 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
160  *	'private' fields and also do memory statistics to find all the
161  *	[BEEP] leaks.
162  *
163  */
164 
165 /**
166  *	__alloc_skb	-	allocate a network buffer
167  *	@size: size to allocate
168  *	@gfp_mask: allocation mask
169  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170  *		instead of head cache and allocate a cloned (child) skb.
171  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172  *		allocations in case the data is required for writeback
173  *	@node: numa node to allocate memory on
174  *
175  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
176  *	tail room of at least size bytes. The object has a reference count
177  *	of one. The return is the buffer. On a failure the return is %NULL.
178  *
179  *	Buffers may only be allocated from interrupts using a @gfp_mask of
180  *	%GFP_ATOMIC.
181  */
182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 			    int flags, int node)
184 {
185 	struct kmem_cache *cache;
186 	struct skb_shared_info *shinfo;
187 	struct sk_buff *skb;
188 	u8 *data;
189 	bool pfmemalloc;
190 
191 	cache = (flags & SKB_ALLOC_FCLONE)
192 		? skbuff_fclone_cache : skbuff_head_cache;
193 
194 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 		gfp_mask |= __GFP_MEMALLOC;
196 
197 	/* Get the HEAD */
198 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 	if (!skb)
200 		goto out;
201 	prefetchw(skb);
202 
203 	/* We do our best to align skb_shared_info on a separate cache
204 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 	 * Both skb->head and skb_shared_info are cache line aligned.
207 	 */
208 	size = SKB_DATA_ALIGN(size);
209 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 	if (!data)
212 		goto nodata;
213 	/* kmalloc(size) might give us more room than requested.
214 	 * Put skb_shared_info exactly at the end of allocated zone,
215 	 * to allow max possible filling before reallocation.
216 	 */
217 	size = SKB_WITH_OVERHEAD(ksize(data));
218 	prefetchw(data + size);
219 
220 	/*
221 	 * Only clear those fields we need to clear, not those that we will
222 	 * actually initialise below. Hence, don't put any more fields after
223 	 * the tail pointer in struct sk_buff!
224 	 */
225 	memset(skb, 0, offsetof(struct sk_buff, tail));
226 	/* Account for allocated memory : skb + skb->head */
227 	skb->truesize = SKB_TRUESIZE(size);
228 	skb->pfmemalloc = pfmemalloc;
229 	refcount_set(&skb->users, 1);
230 	skb->head = data;
231 	skb->data = data;
232 	skb_reset_tail_pointer(skb);
233 	skb->end = skb->tail + size;
234 	skb->mac_header = (typeof(skb->mac_header))~0U;
235 	skb->transport_header = (typeof(skb->transport_header))~0U;
236 
237 	/* make sure we initialize shinfo sequentially */
238 	shinfo = skb_shinfo(skb);
239 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 	atomic_set(&shinfo->dataref, 1);
241 
242 	if (flags & SKB_ALLOC_FCLONE) {
243 		struct sk_buff_fclones *fclones;
244 
245 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
246 
247 		skb->fclone = SKB_FCLONE_ORIG;
248 		refcount_set(&fclones->fclone_ref, 1);
249 
250 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 	}
252 
253 	skb_set_kcov_handle(skb, kcov_common_handle());
254 
255 out:
256 	return skb;
257 nodata:
258 	kmem_cache_free(cache, skb);
259 	skb = NULL;
260 	goto out;
261 }
262 EXPORT_SYMBOL(__alloc_skb);
263 
264 /* Caller must provide SKB that is memset cleared */
265 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
266 					  void *data, unsigned int frag_size)
267 {
268 	struct skb_shared_info *shinfo;
269 	unsigned int size = frag_size ? : ksize(data);
270 
271 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
272 
273 	/* Assumes caller memset cleared SKB */
274 	skb->truesize = SKB_TRUESIZE(size);
275 	refcount_set(&skb->users, 1);
276 	skb->head = data;
277 	skb->data = data;
278 	skb_reset_tail_pointer(skb);
279 	skb->end = skb->tail + size;
280 	skb->mac_header = (typeof(skb->mac_header))~0U;
281 	skb->transport_header = (typeof(skb->transport_header))~0U;
282 
283 	/* make sure we initialize shinfo sequentially */
284 	shinfo = skb_shinfo(skb);
285 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
286 	atomic_set(&shinfo->dataref, 1);
287 
288 	skb_set_kcov_handle(skb, kcov_common_handle());
289 
290 	return skb;
291 }
292 
293 /**
294  * __build_skb - build a network buffer
295  * @data: data buffer provided by caller
296  * @frag_size: size of data, or 0 if head was kmalloced
297  *
298  * Allocate a new &sk_buff. Caller provides space holding head and
299  * skb_shared_info. @data must have been allocated by kmalloc() only if
300  * @frag_size is 0, otherwise data should come from the page allocator
301  *  or vmalloc()
302  * The return is the new skb buffer.
303  * On a failure the return is %NULL, and @data is not freed.
304  * Notes :
305  *  Before IO, driver allocates only data buffer where NIC put incoming frame
306  *  Driver should add room at head (NET_SKB_PAD) and
307  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
308  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
309  *  before giving packet to stack.
310  *  RX rings only contains data buffers, not full skbs.
311  */
312 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
313 {
314 	struct sk_buff *skb;
315 
316 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
317 	if (unlikely(!skb))
318 		return NULL;
319 
320 	memset(skb, 0, offsetof(struct sk_buff, tail));
321 
322 	return __build_skb_around(skb, data, frag_size);
323 }
324 
325 /* build_skb() is wrapper over __build_skb(), that specifically
326  * takes care of skb->head and skb->pfmemalloc
327  * This means that if @frag_size is not zero, then @data must be backed
328  * by a page fragment, not kmalloc() or vmalloc()
329  */
330 struct sk_buff *build_skb(void *data, unsigned int frag_size)
331 {
332 	struct sk_buff *skb = __build_skb(data, frag_size);
333 
334 	if (skb && frag_size) {
335 		skb->head_frag = 1;
336 		if (page_is_pfmemalloc(virt_to_head_page(data)))
337 			skb->pfmemalloc = 1;
338 	}
339 	return skb;
340 }
341 EXPORT_SYMBOL(build_skb);
342 
343 /**
344  * build_skb_around - build a network buffer around provided skb
345  * @skb: sk_buff provide by caller, must be memset cleared
346  * @data: data buffer provided by caller
347  * @frag_size: size of data, or 0 if head was kmalloced
348  */
349 struct sk_buff *build_skb_around(struct sk_buff *skb,
350 				 void *data, unsigned int frag_size)
351 {
352 	if (unlikely(!skb))
353 		return NULL;
354 
355 	skb = __build_skb_around(skb, data, frag_size);
356 
357 	if (skb && frag_size) {
358 		skb->head_frag = 1;
359 		if (page_is_pfmemalloc(virt_to_head_page(data)))
360 			skb->pfmemalloc = 1;
361 	}
362 	return skb;
363 }
364 EXPORT_SYMBOL(build_skb_around);
365 
366 #define NAPI_SKB_CACHE_SIZE	64
367 
368 struct napi_alloc_cache {
369 	struct page_frag_cache page;
370 	unsigned int skb_count;
371 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
372 };
373 
374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
376 
377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
378 {
379 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
380 
381 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
382 }
383 
384 void *napi_alloc_frag(unsigned int fragsz)
385 {
386 	fragsz = SKB_DATA_ALIGN(fragsz);
387 
388 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
389 }
390 EXPORT_SYMBOL(napi_alloc_frag);
391 
392 /**
393  * netdev_alloc_frag - allocate a page fragment
394  * @fragsz: fragment size
395  *
396  * Allocates a frag from a page for receive buffer.
397  * Uses GFP_ATOMIC allocations.
398  */
399 void *netdev_alloc_frag(unsigned int fragsz)
400 {
401 	struct page_frag_cache *nc;
402 	void *data;
403 
404 	fragsz = SKB_DATA_ALIGN(fragsz);
405 	if (in_irq() || irqs_disabled()) {
406 		nc = this_cpu_ptr(&netdev_alloc_cache);
407 		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
408 	} else {
409 		local_bh_disable();
410 		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
411 		local_bh_enable();
412 	}
413 	return data;
414 }
415 EXPORT_SYMBOL(netdev_alloc_frag);
416 
417 /**
418  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
419  *	@dev: network device to receive on
420  *	@len: length to allocate
421  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
422  *
423  *	Allocate a new &sk_buff and assign it a usage count of one. The
424  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
425  *	the headroom they think they need without accounting for the
426  *	built in space. The built in space is used for optimisations.
427  *
428  *	%NULL is returned if there is no free memory.
429  */
430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
431 				   gfp_t gfp_mask)
432 {
433 	struct page_frag_cache *nc;
434 	struct sk_buff *skb;
435 	bool pfmemalloc;
436 	void *data;
437 
438 	len += NET_SKB_PAD;
439 
440 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
441 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
442 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
443 		if (!skb)
444 			goto skb_fail;
445 		goto skb_success;
446 	}
447 
448 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
449 	len = SKB_DATA_ALIGN(len);
450 
451 	if (sk_memalloc_socks())
452 		gfp_mask |= __GFP_MEMALLOC;
453 
454 	if (in_irq() || irqs_disabled()) {
455 		nc = this_cpu_ptr(&netdev_alloc_cache);
456 		data = page_frag_alloc(nc, len, gfp_mask);
457 		pfmemalloc = nc->pfmemalloc;
458 	} else {
459 		local_bh_disable();
460 		nc = this_cpu_ptr(&napi_alloc_cache.page);
461 		data = page_frag_alloc(nc, len, gfp_mask);
462 		pfmemalloc = nc->pfmemalloc;
463 		local_bh_enable();
464 	}
465 
466 	if (unlikely(!data))
467 		return NULL;
468 
469 	skb = __build_skb(data, len);
470 	if (unlikely(!skb)) {
471 		skb_free_frag(data);
472 		return NULL;
473 	}
474 
475 	if (pfmemalloc)
476 		skb->pfmemalloc = 1;
477 	skb->head_frag = 1;
478 
479 skb_success:
480 	skb_reserve(skb, NET_SKB_PAD);
481 	skb->dev = dev;
482 
483 skb_fail:
484 	return skb;
485 }
486 EXPORT_SYMBOL(__netdev_alloc_skb);
487 
488 /**
489  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
490  *	@napi: napi instance this buffer was allocated for
491  *	@len: length to allocate
492  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
493  *
494  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
495  *	attempt to allocate the head from a special reserved region used
496  *	only for NAPI Rx allocation.  By doing this we can save several
497  *	CPU cycles by avoiding having to disable and re-enable IRQs.
498  *
499  *	%NULL is returned if there is no free memory.
500  */
501 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
502 				 gfp_t gfp_mask)
503 {
504 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
505 	struct sk_buff *skb;
506 	void *data;
507 
508 	len += NET_SKB_PAD + NET_IP_ALIGN;
509 
510 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
511 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
512 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
513 		if (!skb)
514 			goto skb_fail;
515 		goto skb_success;
516 	}
517 
518 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
519 	len = SKB_DATA_ALIGN(len);
520 
521 	if (sk_memalloc_socks())
522 		gfp_mask |= __GFP_MEMALLOC;
523 
524 	data = page_frag_alloc(&nc->page, len, gfp_mask);
525 	if (unlikely(!data))
526 		return NULL;
527 
528 	skb = __build_skb(data, len);
529 	if (unlikely(!skb)) {
530 		skb_free_frag(data);
531 		return NULL;
532 	}
533 
534 	if (nc->page.pfmemalloc)
535 		skb->pfmemalloc = 1;
536 	skb->head_frag = 1;
537 
538 skb_success:
539 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
540 	skb->dev = napi->dev;
541 
542 skb_fail:
543 	return skb;
544 }
545 EXPORT_SYMBOL(__napi_alloc_skb);
546 
547 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
548 		     int size, unsigned int truesize)
549 {
550 	skb_fill_page_desc(skb, i, page, off, size);
551 	skb->len += size;
552 	skb->data_len += size;
553 	skb->truesize += truesize;
554 }
555 EXPORT_SYMBOL(skb_add_rx_frag);
556 
557 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
558 			  unsigned int truesize)
559 {
560 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
561 
562 	skb_frag_size_add(frag, size);
563 	skb->len += size;
564 	skb->data_len += size;
565 	skb->truesize += truesize;
566 }
567 EXPORT_SYMBOL(skb_coalesce_rx_frag);
568 
569 static void skb_drop_list(struct sk_buff **listp)
570 {
571 	kfree_skb_list(*listp);
572 	*listp = NULL;
573 }
574 
575 static inline void skb_drop_fraglist(struct sk_buff *skb)
576 {
577 	skb_drop_list(&skb_shinfo(skb)->frag_list);
578 }
579 
580 static void skb_clone_fraglist(struct sk_buff *skb)
581 {
582 	struct sk_buff *list;
583 
584 	skb_walk_frags(skb, list)
585 		skb_get(list);
586 }
587 
588 static void skb_free_head(struct sk_buff *skb)
589 {
590 	unsigned char *head = skb->head;
591 
592 	if (skb->head_frag)
593 		skb_free_frag(head);
594 	else
595 		kfree(head);
596 }
597 
598 static void skb_release_data(struct sk_buff *skb)
599 {
600 	struct skb_shared_info *shinfo = skb_shinfo(skb);
601 	int i;
602 
603 	if (skb->cloned &&
604 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
605 			      &shinfo->dataref))
606 		return;
607 
608 	for (i = 0; i < shinfo->nr_frags; i++)
609 		__skb_frag_unref(&shinfo->frags[i]);
610 
611 	if (shinfo->frag_list)
612 		kfree_skb_list(shinfo->frag_list);
613 
614 	skb_zcopy_clear(skb, true);
615 	skb_free_head(skb);
616 }
617 
618 /*
619  *	Free an skbuff by memory without cleaning the state.
620  */
621 static void kfree_skbmem(struct sk_buff *skb)
622 {
623 	struct sk_buff_fclones *fclones;
624 
625 	switch (skb->fclone) {
626 	case SKB_FCLONE_UNAVAILABLE:
627 		kmem_cache_free(skbuff_head_cache, skb);
628 		return;
629 
630 	case SKB_FCLONE_ORIG:
631 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
632 
633 		/* We usually free the clone (TX completion) before original skb
634 		 * This test would have no chance to be true for the clone,
635 		 * while here, branch prediction will be good.
636 		 */
637 		if (refcount_read(&fclones->fclone_ref) == 1)
638 			goto fastpath;
639 		break;
640 
641 	default: /* SKB_FCLONE_CLONE */
642 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
643 		break;
644 	}
645 	if (!refcount_dec_and_test(&fclones->fclone_ref))
646 		return;
647 fastpath:
648 	kmem_cache_free(skbuff_fclone_cache, fclones);
649 }
650 
651 void skb_release_head_state(struct sk_buff *skb)
652 {
653 	skb_dst_drop(skb);
654 	if (skb->destructor) {
655 		WARN_ON(in_irq());
656 		skb->destructor(skb);
657 	}
658 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
659 	nf_conntrack_put(skb_nfct(skb));
660 #endif
661 	skb_ext_put(skb);
662 }
663 
664 /* Free everything but the sk_buff shell. */
665 static void skb_release_all(struct sk_buff *skb)
666 {
667 	skb_release_head_state(skb);
668 	if (likely(skb->head))
669 		skb_release_data(skb);
670 }
671 
672 /**
673  *	__kfree_skb - private function
674  *	@skb: buffer
675  *
676  *	Free an sk_buff. Release anything attached to the buffer.
677  *	Clean the state. This is an internal helper function. Users should
678  *	always call kfree_skb
679  */
680 
681 void __kfree_skb(struct sk_buff *skb)
682 {
683 	skb_release_all(skb);
684 	kfree_skbmem(skb);
685 }
686 EXPORT_SYMBOL(__kfree_skb);
687 
688 /**
689  *	kfree_skb - free an sk_buff
690  *	@skb: buffer to free
691  *
692  *	Drop a reference to the buffer and free it if the usage count has
693  *	hit zero.
694  */
695 void kfree_skb(struct sk_buff *skb)
696 {
697 	if (!skb_unref(skb))
698 		return;
699 
700 	trace_kfree_skb(skb, __builtin_return_address(0));
701 	__kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(kfree_skb);
704 
705 void kfree_skb_list(struct sk_buff *segs)
706 {
707 	while (segs) {
708 		struct sk_buff *next = segs->next;
709 
710 		kfree_skb(segs);
711 		segs = next;
712 	}
713 }
714 EXPORT_SYMBOL(kfree_skb_list);
715 
716 /* Dump skb information and contents.
717  *
718  * Must only be called from net_ratelimit()-ed paths.
719  *
720  * Dumps whole packets if full_pkt, only headers otherwise.
721  */
722 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
723 {
724 	struct skb_shared_info *sh = skb_shinfo(skb);
725 	struct net_device *dev = skb->dev;
726 	struct sock *sk = skb->sk;
727 	struct sk_buff *list_skb;
728 	bool has_mac, has_trans;
729 	int headroom, tailroom;
730 	int i, len, seg_len;
731 
732 	if (full_pkt)
733 		len = skb->len;
734 	else
735 		len = min_t(int, skb->len, MAX_HEADER + 128);
736 
737 	headroom = skb_headroom(skb);
738 	tailroom = skb_tailroom(skb);
739 
740 	has_mac = skb_mac_header_was_set(skb);
741 	has_trans = skb_transport_header_was_set(skb);
742 
743 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
744 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
745 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
746 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
747 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
748 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
749 	       has_mac ? skb->mac_header : -1,
750 	       has_mac ? skb_mac_header_len(skb) : -1,
751 	       skb->network_header,
752 	       has_trans ? skb_network_header_len(skb) : -1,
753 	       has_trans ? skb->transport_header : -1,
754 	       sh->tx_flags, sh->nr_frags,
755 	       sh->gso_size, sh->gso_type, sh->gso_segs,
756 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
757 	       skb->csum_valid, skb->csum_level,
758 	       skb->hash, skb->sw_hash, skb->l4_hash,
759 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
760 
761 	if (dev)
762 		printk("%sdev name=%s feat=0x%pNF\n",
763 		       level, dev->name, &dev->features);
764 	if (sk)
765 		printk("%ssk family=%hu type=%u proto=%u\n",
766 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
767 
768 	if (full_pkt && headroom)
769 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
770 			       16, 1, skb->head, headroom, false);
771 
772 	seg_len = min_t(int, skb_headlen(skb), len);
773 	if (seg_len)
774 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
775 			       16, 1, skb->data, seg_len, false);
776 	len -= seg_len;
777 
778 	if (full_pkt && tailroom)
779 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
780 			       16, 1, skb_tail_pointer(skb), tailroom, false);
781 
782 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
783 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
784 		u32 p_off, p_len, copied;
785 		struct page *p;
786 		u8 *vaddr;
787 
788 		skb_frag_foreach_page(frag, skb_frag_off(frag),
789 				      skb_frag_size(frag), p, p_off, p_len,
790 				      copied) {
791 			seg_len = min_t(int, p_len, len);
792 			vaddr = kmap_atomic(p);
793 			print_hex_dump(level, "skb frag:     ",
794 				       DUMP_PREFIX_OFFSET,
795 				       16, 1, vaddr + p_off, seg_len, false);
796 			kunmap_atomic(vaddr);
797 			len -= seg_len;
798 			if (!len)
799 				break;
800 		}
801 	}
802 
803 	if (full_pkt && skb_has_frag_list(skb)) {
804 		printk("skb fraglist:\n");
805 		skb_walk_frags(skb, list_skb)
806 			skb_dump(level, list_skb, true);
807 	}
808 }
809 EXPORT_SYMBOL(skb_dump);
810 
811 /**
812  *	skb_tx_error - report an sk_buff xmit error
813  *	@skb: buffer that triggered an error
814  *
815  *	Report xmit error if a device callback is tracking this skb.
816  *	skb must be freed afterwards.
817  */
818 void skb_tx_error(struct sk_buff *skb)
819 {
820 	skb_zcopy_clear(skb, true);
821 }
822 EXPORT_SYMBOL(skb_tx_error);
823 
824 #ifdef CONFIG_TRACEPOINTS
825 /**
826  *	consume_skb - free an skbuff
827  *	@skb: buffer to free
828  *
829  *	Drop a ref to the buffer and free it if the usage count has hit zero
830  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
831  *	is being dropped after a failure and notes that
832  */
833 void consume_skb(struct sk_buff *skb)
834 {
835 	if (!skb_unref(skb))
836 		return;
837 
838 	trace_consume_skb(skb);
839 	__kfree_skb(skb);
840 }
841 EXPORT_SYMBOL(consume_skb);
842 #endif
843 
844 /**
845  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
846  *	@skb: buffer to free
847  *
848  *	Alike consume_skb(), but this variant assumes that this is the last
849  *	skb reference and all the head states have been already dropped
850  */
851 void __consume_stateless_skb(struct sk_buff *skb)
852 {
853 	trace_consume_skb(skb);
854 	skb_release_data(skb);
855 	kfree_skbmem(skb);
856 }
857 
858 void __kfree_skb_flush(void)
859 {
860 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
861 
862 	/* flush skb_cache if containing objects */
863 	if (nc->skb_count) {
864 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
865 				     nc->skb_cache);
866 		nc->skb_count = 0;
867 	}
868 }
869 
870 static inline void _kfree_skb_defer(struct sk_buff *skb)
871 {
872 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
873 
874 	/* drop skb->head and call any destructors for packet */
875 	skb_release_all(skb);
876 
877 	/* record skb to CPU local list */
878 	nc->skb_cache[nc->skb_count++] = skb;
879 
880 #ifdef CONFIG_SLUB
881 	/* SLUB writes into objects when freeing */
882 	prefetchw(skb);
883 #endif
884 
885 	/* flush skb_cache if it is filled */
886 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
887 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
888 				     nc->skb_cache);
889 		nc->skb_count = 0;
890 	}
891 }
892 void __kfree_skb_defer(struct sk_buff *skb)
893 {
894 	_kfree_skb_defer(skb);
895 }
896 
897 void napi_consume_skb(struct sk_buff *skb, int budget)
898 {
899 	/* Zero budget indicate non-NAPI context called us, like netpoll */
900 	if (unlikely(!budget)) {
901 		dev_consume_skb_any(skb);
902 		return;
903 	}
904 
905 	lockdep_assert_in_softirq();
906 
907 	if (!skb_unref(skb))
908 		return;
909 
910 	/* if reaching here SKB is ready to free */
911 	trace_consume_skb(skb);
912 
913 	/* if SKB is a clone, don't handle this case */
914 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
915 		__kfree_skb(skb);
916 		return;
917 	}
918 
919 	_kfree_skb_defer(skb);
920 }
921 EXPORT_SYMBOL(napi_consume_skb);
922 
923 /* Make sure a field is enclosed inside headers_start/headers_end section */
924 #define CHECK_SKB_FIELD(field) \
925 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
926 		     offsetof(struct sk_buff, headers_start));	\
927 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
928 		     offsetof(struct sk_buff, headers_end));	\
929 
930 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
931 {
932 	new->tstamp		= old->tstamp;
933 	/* We do not copy old->sk */
934 	new->dev		= old->dev;
935 	memcpy(new->cb, old->cb, sizeof(old->cb));
936 	skb_dst_copy(new, old);
937 	__skb_ext_copy(new, old);
938 	__nf_copy(new, old, false);
939 
940 	/* Note : this field could be in headers_start/headers_end section
941 	 * It is not yet because we do not want to have a 16 bit hole
942 	 */
943 	new->queue_mapping = old->queue_mapping;
944 
945 	memcpy(&new->headers_start, &old->headers_start,
946 	       offsetof(struct sk_buff, headers_end) -
947 	       offsetof(struct sk_buff, headers_start));
948 	CHECK_SKB_FIELD(protocol);
949 	CHECK_SKB_FIELD(csum);
950 	CHECK_SKB_FIELD(hash);
951 	CHECK_SKB_FIELD(priority);
952 	CHECK_SKB_FIELD(skb_iif);
953 	CHECK_SKB_FIELD(vlan_proto);
954 	CHECK_SKB_FIELD(vlan_tci);
955 	CHECK_SKB_FIELD(transport_header);
956 	CHECK_SKB_FIELD(network_header);
957 	CHECK_SKB_FIELD(mac_header);
958 	CHECK_SKB_FIELD(inner_protocol);
959 	CHECK_SKB_FIELD(inner_transport_header);
960 	CHECK_SKB_FIELD(inner_network_header);
961 	CHECK_SKB_FIELD(inner_mac_header);
962 	CHECK_SKB_FIELD(mark);
963 #ifdef CONFIG_NETWORK_SECMARK
964 	CHECK_SKB_FIELD(secmark);
965 #endif
966 #ifdef CONFIG_NET_RX_BUSY_POLL
967 	CHECK_SKB_FIELD(napi_id);
968 #endif
969 #ifdef CONFIG_XPS
970 	CHECK_SKB_FIELD(sender_cpu);
971 #endif
972 #ifdef CONFIG_NET_SCHED
973 	CHECK_SKB_FIELD(tc_index);
974 #endif
975 
976 }
977 
978 /*
979  * You should not add any new code to this function.  Add it to
980  * __copy_skb_header above instead.
981  */
982 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
983 {
984 #define C(x) n->x = skb->x
985 
986 	n->next = n->prev = NULL;
987 	n->sk = NULL;
988 	__copy_skb_header(n, skb);
989 
990 	C(len);
991 	C(data_len);
992 	C(mac_len);
993 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
994 	n->cloned = 1;
995 	n->nohdr = 0;
996 	n->peeked = 0;
997 	C(pfmemalloc);
998 	n->destructor = NULL;
999 	C(tail);
1000 	C(end);
1001 	C(head);
1002 	C(head_frag);
1003 	C(data);
1004 	C(truesize);
1005 	refcount_set(&n->users, 1);
1006 
1007 	atomic_inc(&(skb_shinfo(skb)->dataref));
1008 	skb->cloned = 1;
1009 
1010 	return n;
1011 #undef C
1012 }
1013 
1014 /**
1015  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1016  * @first: first sk_buff of the msg
1017  */
1018 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1019 {
1020 	struct sk_buff *n;
1021 
1022 	n = alloc_skb(0, GFP_ATOMIC);
1023 	if (!n)
1024 		return NULL;
1025 
1026 	n->len = first->len;
1027 	n->data_len = first->len;
1028 	n->truesize = first->truesize;
1029 
1030 	skb_shinfo(n)->frag_list = first;
1031 
1032 	__copy_skb_header(n, first);
1033 	n->destructor = NULL;
1034 
1035 	return n;
1036 }
1037 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1038 
1039 /**
1040  *	skb_morph	-	morph one skb into another
1041  *	@dst: the skb to receive the contents
1042  *	@src: the skb to supply the contents
1043  *
1044  *	This is identical to skb_clone except that the target skb is
1045  *	supplied by the user.
1046  *
1047  *	The target skb is returned upon exit.
1048  */
1049 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1050 {
1051 	skb_release_all(dst);
1052 	return __skb_clone(dst, src);
1053 }
1054 EXPORT_SYMBOL_GPL(skb_morph);
1055 
1056 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1057 {
1058 	unsigned long max_pg, num_pg, new_pg, old_pg;
1059 	struct user_struct *user;
1060 
1061 	if (capable(CAP_IPC_LOCK) || !size)
1062 		return 0;
1063 
1064 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1065 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1066 	user = mmp->user ? : current_user();
1067 
1068 	do {
1069 		old_pg = atomic_long_read(&user->locked_vm);
1070 		new_pg = old_pg + num_pg;
1071 		if (new_pg > max_pg)
1072 			return -ENOBUFS;
1073 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1074 		 old_pg);
1075 
1076 	if (!mmp->user) {
1077 		mmp->user = get_uid(user);
1078 		mmp->num_pg = num_pg;
1079 	} else {
1080 		mmp->num_pg += num_pg;
1081 	}
1082 
1083 	return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1086 
1087 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1088 {
1089 	if (mmp->user) {
1090 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1091 		free_uid(mmp->user);
1092 	}
1093 }
1094 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1095 
1096 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1097 {
1098 	struct ubuf_info *uarg;
1099 	struct sk_buff *skb;
1100 
1101 	WARN_ON_ONCE(!in_task());
1102 
1103 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1104 	if (!skb)
1105 		return NULL;
1106 
1107 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1108 	uarg = (void *)skb->cb;
1109 	uarg->mmp.user = NULL;
1110 
1111 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1112 		kfree_skb(skb);
1113 		return NULL;
1114 	}
1115 
1116 	uarg->callback = sock_zerocopy_callback;
1117 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1118 	uarg->len = 1;
1119 	uarg->bytelen = size;
1120 	uarg->zerocopy = 1;
1121 	refcount_set(&uarg->refcnt, 1);
1122 	sock_hold(sk);
1123 
1124 	return uarg;
1125 }
1126 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1127 
1128 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1129 {
1130 	return container_of((void *)uarg, struct sk_buff, cb);
1131 }
1132 
1133 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1134 					struct ubuf_info *uarg)
1135 {
1136 	if (uarg) {
1137 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1138 		u32 bytelen, next;
1139 
1140 		/* realloc only when socket is locked (TCP, UDP cork),
1141 		 * so uarg->len and sk_zckey access is serialized
1142 		 */
1143 		if (!sock_owned_by_user(sk)) {
1144 			WARN_ON_ONCE(1);
1145 			return NULL;
1146 		}
1147 
1148 		bytelen = uarg->bytelen + size;
1149 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1150 			/* TCP can create new skb to attach new uarg */
1151 			if (sk->sk_type == SOCK_STREAM)
1152 				goto new_alloc;
1153 			return NULL;
1154 		}
1155 
1156 		next = (u32)atomic_read(&sk->sk_zckey);
1157 		if ((u32)(uarg->id + uarg->len) == next) {
1158 			if (mm_account_pinned_pages(&uarg->mmp, size))
1159 				return NULL;
1160 			uarg->len++;
1161 			uarg->bytelen = bytelen;
1162 			atomic_set(&sk->sk_zckey, ++next);
1163 
1164 			/* no extra ref when appending to datagram (MSG_MORE) */
1165 			if (sk->sk_type == SOCK_STREAM)
1166 				sock_zerocopy_get(uarg);
1167 
1168 			return uarg;
1169 		}
1170 	}
1171 
1172 new_alloc:
1173 	return sock_zerocopy_alloc(sk, size);
1174 }
1175 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1176 
1177 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1178 {
1179 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1180 	u32 old_lo, old_hi;
1181 	u64 sum_len;
1182 
1183 	old_lo = serr->ee.ee_info;
1184 	old_hi = serr->ee.ee_data;
1185 	sum_len = old_hi - old_lo + 1ULL + len;
1186 
1187 	if (sum_len >= (1ULL << 32))
1188 		return false;
1189 
1190 	if (lo != old_hi + 1)
1191 		return false;
1192 
1193 	serr->ee.ee_data += len;
1194 	return true;
1195 }
1196 
1197 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1198 {
1199 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1200 	struct sock_exterr_skb *serr;
1201 	struct sock *sk = skb->sk;
1202 	struct sk_buff_head *q;
1203 	unsigned long flags;
1204 	u32 lo, hi;
1205 	u16 len;
1206 
1207 	mm_unaccount_pinned_pages(&uarg->mmp);
1208 
1209 	/* if !len, there was only 1 call, and it was aborted
1210 	 * so do not queue a completion notification
1211 	 */
1212 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1213 		goto release;
1214 
1215 	len = uarg->len;
1216 	lo = uarg->id;
1217 	hi = uarg->id + len - 1;
1218 
1219 	serr = SKB_EXT_ERR(skb);
1220 	memset(serr, 0, sizeof(*serr));
1221 	serr->ee.ee_errno = 0;
1222 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1223 	serr->ee.ee_data = hi;
1224 	serr->ee.ee_info = lo;
1225 	if (!success)
1226 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1227 
1228 	q = &sk->sk_error_queue;
1229 	spin_lock_irqsave(&q->lock, flags);
1230 	tail = skb_peek_tail(q);
1231 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1232 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1233 		__skb_queue_tail(q, skb);
1234 		skb = NULL;
1235 	}
1236 	spin_unlock_irqrestore(&q->lock, flags);
1237 
1238 	sk->sk_error_report(sk);
1239 
1240 release:
1241 	consume_skb(skb);
1242 	sock_put(sk);
1243 }
1244 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1245 
1246 void sock_zerocopy_put(struct ubuf_info *uarg)
1247 {
1248 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1249 		if (uarg->callback)
1250 			uarg->callback(uarg, uarg->zerocopy);
1251 		else
1252 			consume_skb(skb_from_uarg(uarg));
1253 	}
1254 }
1255 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1256 
1257 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1258 {
1259 	if (uarg) {
1260 		struct sock *sk = skb_from_uarg(uarg)->sk;
1261 
1262 		atomic_dec(&sk->sk_zckey);
1263 		uarg->len--;
1264 
1265 		if (have_uref)
1266 			sock_zerocopy_put(uarg);
1267 	}
1268 }
1269 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1270 
1271 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1272 {
1273 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1274 }
1275 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1276 
1277 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1278 			     struct msghdr *msg, int len,
1279 			     struct ubuf_info *uarg)
1280 {
1281 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1282 	struct iov_iter orig_iter = msg->msg_iter;
1283 	int err, orig_len = skb->len;
1284 
1285 	/* An skb can only point to one uarg. This edge case happens when
1286 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1287 	 */
1288 	if (orig_uarg && uarg != orig_uarg)
1289 		return -EEXIST;
1290 
1291 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1292 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1293 		struct sock *save_sk = skb->sk;
1294 
1295 		/* Streams do not free skb on error. Reset to prev state. */
1296 		msg->msg_iter = orig_iter;
1297 		skb->sk = sk;
1298 		___pskb_trim(skb, orig_len);
1299 		skb->sk = save_sk;
1300 		return err;
1301 	}
1302 
1303 	skb_zcopy_set(skb, uarg, NULL);
1304 	return skb->len - orig_len;
1305 }
1306 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1307 
1308 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1309 			      gfp_t gfp_mask)
1310 {
1311 	if (skb_zcopy(orig)) {
1312 		if (skb_zcopy(nskb)) {
1313 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1314 			if (!gfp_mask) {
1315 				WARN_ON_ONCE(1);
1316 				return -ENOMEM;
1317 			}
1318 			if (skb_uarg(nskb) == skb_uarg(orig))
1319 				return 0;
1320 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1321 				return -EIO;
1322 		}
1323 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1324 	}
1325 	return 0;
1326 }
1327 
1328 /**
1329  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1330  *	@skb: the skb to modify
1331  *	@gfp_mask: allocation priority
1332  *
1333  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1334  *	It will copy all frags into kernel and drop the reference
1335  *	to userspace pages.
1336  *
1337  *	If this function is called from an interrupt gfp_mask() must be
1338  *	%GFP_ATOMIC.
1339  *
1340  *	Returns 0 on success or a negative error code on failure
1341  *	to allocate kernel memory to copy to.
1342  */
1343 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1344 {
1345 	int num_frags = skb_shinfo(skb)->nr_frags;
1346 	struct page *page, *head = NULL;
1347 	int i, new_frags;
1348 	u32 d_off;
1349 
1350 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1351 		return -EINVAL;
1352 
1353 	if (!num_frags)
1354 		goto release;
1355 
1356 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1357 	for (i = 0; i < new_frags; i++) {
1358 		page = alloc_page(gfp_mask);
1359 		if (!page) {
1360 			while (head) {
1361 				struct page *next = (struct page *)page_private(head);
1362 				put_page(head);
1363 				head = next;
1364 			}
1365 			return -ENOMEM;
1366 		}
1367 		set_page_private(page, (unsigned long)head);
1368 		head = page;
1369 	}
1370 
1371 	page = head;
1372 	d_off = 0;
1373 	for (i = 0; i < num_frags; i++) {
1374 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1375 		u32 p_off, p_len, copied;
1376 		struct page *p;
1377 		u8 *vaddr;
1378 
1379 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1380 				      p, p_off, p_len, copied) {
1381 			u32 copy, done = 0;
1382 			vaddr = kmap_atomic(p);
1383 
1384 			while (done < p_len) {
1385 				if (d_off == PAGE_SIZE) {
1386 					d_off = 0;
1387 					page = (struct page *)page_private(page);
1388 				}
1389 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1390 				memcpy(page_address(page) + d_off,
1391 				       vaddr + p_off + done, copy);
1392 				done += copy;
1393 				d_off += copy;
1394 			}
1395 			kunmap_atomic(vaddr);
1396 		}
1397 	}
1398 
1399 	/* skb frags release userspace buffers */
1400 	for (i = 0; i < num_frags; i++)
1401 		skb_frag_unref(skb, i);
1402 
1403 	/* skb frags point to kernel buffers */
1404 	for (i = 0; i < new_frags - 1; i++) {
1405 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1406 		head = (struct page *)page_private(head);
1407 	}
1408 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1409 	skb_shinfo(skb)->nr_frags = new_frags;
1410 
1411 release:
1412 	skb_zcopy_clear(skb, false);
1413 	return 0;
1414 }
1415 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1416 
1417 /**
1418  *	skb_clone	-	duplicate an sk_buff
1419  *	@skb: buffer to clone
1420  *	@gfp_mask: allocation priority
1421  *
1422  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1423  *	copies share the same packet data but not structure. The new
1424  *	buffer has a reference count of 1. If the allocation fails the
1425  *	function returns %NULL otherwise the new buffer is returned.
1426  *
1427  *	If this function is called from an interrupt gfp_mask() must be
1428  *	%GFP_ATOMIC.
1429  */
1430 
1431 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1432 {
1433 	struct sk_buff_fclones *fclones = container_of(skb,
1434 						       struct sk_buff_fclones,
1435 						       skb1);
1436 	struct sk_buff *n;
1437 
1438 	if (skb_orphan_frags(skb, gfp_mask))
1439 		return NULL;
1440 
1441 	if (skb->fclone == SKB_FCLONE_ORIG &&
1442 	    refcount_read(&fclones->fclone_ref) == 1) {
1443 		n = &fclones->skb2;
1444 		refcount_set(&fclones->fclone_ref, 2);
1445 	} else {
1446 		if (skb_pfmemalloc(skb))
1447 			gfp_mask |= __GFP_MEMALLOC;
1448 
1449 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1450 		if (!n)
1451 			return NULL;
1452 
1453 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1454 	}
1455 
1456 	return __skb_clone(n, skb);
1457 }
1458 EXPORT_SYMBOL(skb_clone);
1459 
1460 void skb_headers_offset_update(struct sk_buff *skb, int off)
1461 {
1462 	/* Only adjust this if it actually is csum_start rather than csum */
1463 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1464 		skb->csum_start += off;
1465 	/* {transport,network,mac}_header and tail are relative to skb->head */
1466 	skb->transport_header += off;
1467 	skb->network_header   += off;
1468 	if (skb_mac_header_was_set(skb))
1469 		skb->mac_header += off;
1470 	skb->inner_transport_header += off;
1471 	skb->inner_network_header += off;
1472 	skb->inner_mac_header += off;
1473 }
1474 EXPORT_SYMBOL(skb_headers_offset_update);
1475 
1476 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1477 {
1478 	__copy_skb_header(new, old);
1479 
1480 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1481 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1482 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1483 }
1484 EXPORT_SYMBOL(skb_copy_header);
1485 
1486 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1487 {
1488 	if (skb_pfmemalloc(skb))
1489 		return SKB_ALLOC_RX;
1490 	return 0;
1491 }
1492 
1493 /**
1494  *	skb_copy	-	create private copy of an sk_buff
1495  *	@skb: buffer to copy
1496  *	@gfp_mask: allocation priority
1497  *
1498  *	Make a copy of both an &sk_buff and its data. This is used when the
1499  *	caller wishes to modify the data and needs a private copy of the
1500  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1501  *	on success. The returned buffer has a reference count of 1.
1502  *
1503  *	As by-product this function converts non-linear &sk_buff to linear
1504  *	one, so that &sk_buff becomes completely private and caller is allowed
1505  *	to modify all the data of returned buffer. This means that this
1506  *	function is not recommended for use in circumstances when only
1507  *	header is going to be modified. Use pskb_copy() instead.
1508  */
1509 
1510 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1511 {
1512 	int headerlen = skb_headroom(skb);
1513 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1514 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1515 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1516 
1517 	if (!n)
1518 		return NULL;
1519 
1520 	/* Set the data pointer */
1521 	skb_reserve(n, headerlen);
1522 	/* Set the tail pointer and length */
1523 	skb_put(n, skb->len);
1524 
1525 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1526 
1527 	skb_copy_header(n, skb);
1528 	return n;
1529 }
1530 EXPORT_SYMBOL(skb_copy);
1531 
1532 /**
1533  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1534  *	@skb: buffer to copy
1535  *	@headroom: headroom of new skb
1536  *	@gfp_mask: allocation priority
1537  *	@fclone: if true allocate the copy of the skb from the fclone
1538  *	cache instead of the head cache; it is recommended to set this
1539  *	to true for the cases where the copy will likely be cloned
1540  *
1541  *	Make a copy of both an &sk_buff and part of its data, located
1542  *	in header. Fragmented data remain shared. This is used when
1543  *	the caller wishes to modify only header of &sk_buff and needs
1544  *	private copy of the header to alter. Returns %NULL on failure
1545  *	or the pointer to the buffer on success.
1546  *	The returned buffer has a reference count of 1.
1547  */
1548 
1549 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1550 				   gfp_t gfp_mask, bool fclone)
1551 {
1552 	unsigned int size = skb_headlen(skb) + headroom;
1553 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1554 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1555 
1556 	if (!n)
1557 		goto out;
1558 
1559 	/* Set the data pointer */
1560 	skb_reserve(n, headroom);
1561 	/* Set the tail pointer and length */
1562 	skb_put(n, skb_headlen(skb));
1563 	/* Copy the bytes */
1564 	skb_copy_from_linear_data(skb, n->data, n->len);
1565 
1566 	n->truesize += skb->data_len;
1567 	n->data_len  = skb->data_len;
1568 	n->len	     = skb->len;
1569 
1570 	if (skb_shinfo(skb)->nr_frags) {
1571 		int i;
1572 
1573 		if (skb_orphan_frags(skb, gfp_mask) ||
1574 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1575 			kfree_skb(n);
1576 			n = NULL;
1577 			goto out;
1578 		}
1579 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1580 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1581 			skb_frag_ref(skb, i);
1582 		}
1583 		skb_shinfo(n)->nr_frags = i;
1584 	}
1585 
1586 	if (skb_has_frag_list(skb)) {
1587 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1588 		skb_clone_fraglist(n);
1589 	}
1590 
1591 	skb_copy_header(n, skb);
1592 out:
1593 	return n;
1594 }
1595 EXPORT_SYMBOL(__pskb_copy_fclone);
1596 
1597 /**
1598  *	pskb_expand_head - reallocate header of &sk_buff
1599  *	@skb: buffer to reallocate
1600  *	@nhead: room to add at head
1601  *	@ntail: room to add at tail
1602  *	@gfp_mask: allocation priority
1603  *
1604  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1605  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1606  *	reference count of 1. Returns zero in the case of success or error,
1607  *	if expansion failed. In the last case, &sk_buff is not changed.
1608  *
1609  *	All the pointers pointing into skb header may change and must be
1610  *	reloaded after call to this function.
1611  */
1612 
1613 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1614 		     gfp_t gfp_mask)
1615 {
1616 	int i, osize = skb_end_offset(skb);
1617 	int size = osize + nhead + ntail;
1618 	long off;
1619 	u8 *data;
1620 
1621 	BUG_ON(nhead < 0);
1622 
1623 	BUG_ON(skb_shared(skb));
1624 
1625 	size = SKB_DATA_ALIGN(size);
1626 
1627 	if (skb_pfmemalloc(skb))
1628 		gfp_mask |= __GFP_MEMALLOC;
1629 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1630 			       gfp_mask, NUMA_NO_NODE, NULL);
1631 	if (!data)
1632 		goto nodata;
1633 	size = SKB_WITH_OVERHEAD(ksize(data));
1634 
1635 	/* Copy only real data... and, alas, header. This should be
1636 	 * optimized for the cases when header is void.
1637 	 */
1638 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1639 
1640 	memcpy((struct skb_shared_info *)(data + size),
1641 	       skb_shinfo(skb),
1642 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1643 
1644 	/*
1645 	 * if shinfo is shared we must drop the old head gracefully, but if it
1646 	 * is not we can just drop the old head and let the existing refcount
1647 	 * be since all we did is relocate the values
1648 	 */
1649 	if (skb_cloned(skb)) {
1650 		if (skb_orphan_frags(skb, gfp_mask))
1651 			goto nofrags;
1652 		if (skb_zcopy(skb))
1653 			refcount_inc(&skb_uarg(skb)->refcnt);
1654 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1655 			skb_frag_ref(skb, i);
1656 
1657 		if (skb_has_frag_list(skb))
1658 			skb_clone_fraglist(skb);
1659 
1660 		skb_release_data(skb);
1661 	} else {
1662 		skb_free_head(skb);
1663 	}
1664 	off = (data + nhead) - skb->head;
1665 
1666 	skb->head     = data;
1667 	skb->head_frag = 0;
1668 	skb->data    += off;
1669 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1670 	skb->end      = size;
1671 	off           = nhead;
1672 #else
1673 	skb->end      = skb->head + size;
1674 #endif
1675 	skb->tail	      += off;
1676 	skb_headers_offset_update(skb, nhead);
1677 	skb->cloned   = 0;
1678 	skb->hdr_len  = 0;
1679 	skb->nohdr    = 0;
1680 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1681 
1682 	skb_metadata_clear(skb);
1683 
1684 	/* It is not generally safe to change skb->truesize.
1685 	 * For the moment, we really care of rx path, or
1686 	 * when skb is orphaned (not attached to a socket).
1687 	 */
1688 	if (!skb->sk || skb->destructor == sock_edemux)
1689 		skb->truesize += size - osize;
1690 
1691 	return 0;
1692 
1693 nofrags:
1694 	kfree(data);
1695 nodata:
1696 	return -ENOMEM;
1697 }
1698 EXPORT_SYMBOL(pskb_expand_head);
1699 
1700 /* Make private copy of skb with writable head and some headroom */
1701 
1702 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1703 {
1704 	struct sk_buff *skb2;
1705 	int delta = headroom - skb_headroom(skb);
1706 
1707 	if (delta <= 0)
1708 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1709 	else {
1710 		skb2 = skb_clone(skb, GFP_ATOMIC);
1711 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1712 					     GFP_ATOMIC)) {
1713 			kfree_skb(skb2);
1714 			skb2 = NULL;
1715 		}
1716 	}
1717 	return skb2;
1718 }
1719 EXPORT_SYMBOL(skb_realloc_headroom);
1720 
1721 /**
1722  *	skb_copy_expand	-	copy and expand sk_buff
1723  *	@skb: buffer to copy
1724  *	@newheadroom: new free bytes at head
1725  *	@newtailroom: new free bytes at tail
1726  *	@gfp_mask: allocation priority
1727  *
1728  *	Make a copy of both an &sk_buff and its data and while doing so
1729  *	allocate additional space.
1730  *
1731  *	This is used when the caller wishes to modify the data and needs a
1732  *	private copy of the data to alter as well as more space for new fields.
1733  *	Returns %NULL on failure or the pointer to the buffer
1734  *	on success. The returned buffer has a reference count of 1.
1735  *
1736  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1737  *	is called from an interrupt.
1738  */
1739 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1740 				int newheadroom, int newtailroom,
1741 				gfp_t gfp_mask)
1742 {
1743 	/*
1744 	 *	Allocate the copy buffer
1745 	 */
1746 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1747 					gfp_mask, skb_alloc_rx_flag(skb),
1748 					NUMA_NO_NODE);
1749 	int oldheadroom = skb_headroom(skb);
1750 	int head_copy_len, head_copy_off;
1751 
1752 	if (!n)
1753 		return NULL;
1754 
1755 	skb_reserve(n, newheadroom);
1756 
1757 	/* Set the tail pointer and length */
1758 	skb_put(n, skb->len);
1759 
1760 	head_copy_len = oldheadroom;
1761 	head_copy_off = 0;
1762 	if (newheadroom <= head_copy_len)
1763 		head_copy_len = newheadroom;
1764 	else
1765 		head_copy_off = newheadroom - head_copy_len;
1766 
1767 	/* Copy the linear header and data. */
1768 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1769 			     skb->len + head_copy_len));
1770 
1771 	skb_copy_header(n, skb);
1772 
1773 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1774 
1775 	return n;
1776 }
1777 EXPORT_SYMBOL(skb_copy_expand);
1778 
1779 /**
1780  *	__skb_pad		-	zero pad the tail of an skb
1781  *	@skb: buffer to pad
1782  *	@pad: space to pad
1783  *	@free_on_error: free buffer on error
1784  *
1785  *	Ensure that a buffer is followed by a padding area that is zero
1786  *	filled. Used by network drivers which may DMA or transfer data
1787  *	beyond the buffer end onto the wire.
1788  *
1789  *	May return error in out of memory cases. The skb is freed on error
1790  *	if @free_on_error is true.
1791  */
1792 
1793 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1794 {
1795 	int err;
1796 	int ntail;
1797 
1798 	/* If the skbuff is non linear tailroom is always zero.. */
1799 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1800 		memset(skb->data+skb->len, 0, pad);
1801 		return 0;
1802 	}
1803 
1804 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1805 	if (likely(skb_cloned(skb) || ntail > 0)) {
1806 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1807 		if (unlikely(err))
1808 			goto free_skb;
1809 	}
1810 
1811 	/* FIXME: The use of this function with non-linear skb's really needs
1812 	 * to be audited.
1813 	 */
1814 	err = skb_linearize(skb);
1815 	if (unlikely(err))
1816 		goto free_skb;
1817 
1818 	memset(skb->data + skb->len, 0, pad);
1819 	return 0;
1820 
1821 free_skb:
1822 	if (free_on_error)
1823 		kfree_skb(skb);
1824 	return err;
1825 }
1826 EXPORT_SYMBOL(__skb_pad);
1827 
1828 /**
1829  *	pskb_put - add data to the tail of a potentially fragmented buffer
1830  *	@skb: start of the buffer to use
1831  *	@tail: tail fragment of the buffer to use
1832  *	@len: amount of data to add
1833  *
1834  *	This function extends the used data area of the potentially
1835  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1836  *	@skb itself. If this would exceed the total buffer size the kernel
1837  *	will panic. A pointer to the first byte of the extra data is
1838  *	returned.
1839  */
1840 
1841 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1842 {
1843 	if (tail != skb) {
1844 		skb->data_len += len;
1845 		skb->len += len;
1846 	}
1847 	return skb_put(tail, len);
1848 }
1849 EXPORT_SYMBOL_GPL(pskb_put);
1850 
1851 /**
1852  *	skb_put - add data to a buffer
1853  *	@skb: buffer to use
1854  *	@len: amount of data to add
1855  *
1856  *	This function extends the used data area of the buffer. If this would
1857  *	exceed the total buffer size the kernel will panic. A pointer to the
1858  *	first byte of the extra data is returned.
1859  */
1860 void *skb_put(struct sk_buff *skb, unsigned int len)
1861 {
1862 	void *tmp = skb_tail_pointer(skb);
1863 	SKB_LINEAR_ASSERT(skb);
1864 	skb->tail += len;
1865 	skb->len  += len;
1866 	if (unlikely(skb->tail > skb->end))
1867 		skb_over_panic(skb, len, __builtin_return_address(0));
1868 	return tmp;
1869 }
1870 EXPORT_SYMBOL(skb_put);
1871 
1872 /**
1873  *	skb_push - add data to the start of a buffer
1874  *	@skb: buffer to use
1875  *	@len: amount of data to add
1876  *
1877  *	This function extends the used data area of the buffer at the buffer
1878  *	start. If this would exceed the total buffer headroom the kernel will
1879  *	panic. A pointer to the first byte of the extra data is returned.
1880  */
1881 void *skb_push(struct sk_buff *skb, unsigned int len)
1882 {
1883 	skb->data -= len;
1884 	skb->len  += len;
1885 	if (unlikely(skb->data < skb->head))
1886 		skb_under_panic(skb, len, __builtin_return_address(0));
1887 	return skb->data;
1888 }
1889 EXPORT_SYMBOL(skb_push);
1890 
1891 /**
1892  *	skb_pull - remove data from the start of a buffer
1893  *	@skb: buffer to use
1894  *	@len: amount of data to remove
1895  *
1896  *	This function removes data from the start of a buffer, returning
1897  *	the memory to the headroom. A pointer to the next data in the buffer
1898  *	is returned. Once the data has been pulled future pushes will overwrite
1899  *	the old data.
1900  */
1901 void *skb_pull(struct sk_buff *skb, unsigned int len)
1902 {
1903 	return skb_pull_inline(skb, len);
1904 }
1905 EXPORT_SYMBOL(skb_pull);
1906 
1907 /**
1908  *	skb_trim - remove end from a buffer
1909  *	@skb: buffer to alter
1910  *	@len: new length
1911  *
1912  *	Cut the length of a buffer down by removing data from the tail. If
1913  *	the buffer is already under the length specified it is not modified.
1914  *	The skb must be linear.
1915  */
1916 void skb_trim(struct sk_buff *skb, unsigned int len)
1917 {
1918 	if (skb->len > len)
1919 		__skb_trim(skb, len);
1920 }
1921 EXPORT_SYMBOL(skb_trim);
1922 
1923 /* Trims skb to length len. It can change skb pointers.
1924  */
1925 
1926 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1927 {
1928 	struct sk_buff **fragp;
1929 	struct sk_buff *frag;
1930 	int offset = skb_headlen(skb);
1931 	int nfrags = skb_shinfo(skb)->nr_frags;
1932 	int i;
1933 	int err;
1934 
1935 	if (skb_cloned(skb) &&
1936 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1937 		return err;
1938 
1939 	i = 0;
1940 	if (offset >= len)
1941 		goto drop_pages;
1942 
1943 	for (; i < nfrags; i++) {
1944 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1945 
1946 		if (end < len) {
1947 			offset = end;
1948 			continue;
1949 		}
1950 
1951 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1952 
1953 drop_pages:
1954 		skb_shinfo(skb)->nr_frags = i;
1955 
1956 		for (; i < nfrags; i++)
1957 			skb_frag_unref(skb, i);
1958 
1959 		if (skb_has_frag_list(skb))
1960 			skb_drop_fraglist(skb);
1961 		goto done;
1962 	}
1963 
1964 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1965 	     fragp = &frag->next) {
1966 		int end = offset + frag->len;
1967 
1968 		if (skb_shared(frag)) {
1969 			struct sk_buff *nfrag;
1970 
1971 			nfrag = skb_clone(frag, GFP_ATOMIC);
1972 			if (unlikely(!nfrag))
1973 				return -ENOMEM;
1974 
1975 			nfrag->next = frag->next;
1976 			consume_skb(frag);
1977 			frag = nfrag;
1978 			*fragp = frag;
1979 		}
1980 
1981 		if (end < len) {
1982 			offset = end;
1983 			continue;
1984 		}
1985 
1986 		if (end > len &&
1987 		    unlikely((err = pskb_trim(frag, len - offset))))
1988 			return err;
1989 
1990 		if (frag->next)
1991 			skb_drop_list(&frag->next);
1992 		break;
1993 	}
1994 
1995 done:
1996 	if (len > skb_headlen(skb)) {
1997 		skb->data_len -= skb->len - len;
1998 		skb->len       = len;
1999 	} else {
2000 		skb->len       = len;
2001 		skb->data_len  = 0;
2002 		skb_set_tail_pointer(skb, len);
2003 	}
2004 
2005 	if (!skb->sk || skb->destructor == sock_edemux)
2006 		skb_condense(skb);
2007 	return 0;
2008 }
2009 EXPORT_SYMBOL(___pskb_trim);
2010 
2011 /* Note : use pskb_trim_rcsum() instead of calling this directly
2012  */
2013 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2014 {
2015 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2016 		int delta = skb->len - len;
2017 
2018 		skb->csum = csum_block_sub(skb->csum,
2019 					   skb_checksum(skb, len, delta, 0),
2020 					   len);
2021 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2022 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2023 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2024 
2025 		if (offset + sizeof(__sum16) > hdlen)
2026 			return -EINVAL;
2027 	}
2028 	return __pskb_trim(skb, len);
2029 }
2030 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2031 
2032 /**
2033  *	__pskb_pull_tail - advance tail of skb header
2034  *	@skb: buffer to reallocate
2035  *	@delta: number of bytes to advance tail
2036  *
2037  *	The function makes a sense only on a fragmented &sk_buff,
2038  *	it expands header moving its tail forward and copying necessary
2039  *	data from fragmented part.
2040  *
2041  *	&sk_buff MUST have reference count of 1.
2042  *
2043  *	Returns %NULL (and &sk_buff does not change) if pull failed
2044  *	or value of new tail of skb in the case of success.
2045  *
2046  *	All the pointers pointing into skb header may change and must be
2047  *	reloaded after call to this function.
2048  */
2049 
2050 /* Moves tail of skb head forward, copying data from fragmented part,
2051  * when it is necessary.
2052  * 1. It may fail due to malloc failure.
2053  * 2. It may change skb pointers.
2054  *
2055  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2056  */
2057 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2058 {
2059 	/* If skb has not enough free space at tail, get new one
2060 	 * plus 128 bytes for future expansions. If we have enough
2061 	 * room at tail, reallocate without expansion only if skb is cloned.
2062 	 */
2063 	int i, k, eat = (skb->tail + delta) - skb->end;
2064 
2065 	if (eat > 0 || skb_cloned(skb)) {
2066 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2067 				     GFP_ATOMIC))
2068 			return NULL;
2069 	}
2070 
2071 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2072 			     skb_tail_pointer(skb), delta));
2073 
2074 	/* Optimization: no fragments, no reasons to preestimate
2075 	 * size of pulled pages. Superb.
2076 	 */
2077 	if (!skb_has_frag_list(skb))
2078 		goto pull_pages;
2079 
2080 	/* Estimate size of pulled pages. */
2081 	eat = delta;
2082 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2083 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2084 
2085 		if (size >= eat)
2086 			goto pull_pages;
2087 		eat -= size;
2088 	}
2089 
2090 	/* If we need update frag list, we are in troubles.
2091 	 * Certainly, it is possible to add an offset to skb data,
2092 	 * but taking into account that pulling is expected to
2093 	 * be very rare operation, it is worth to fight against
2094 	 * further bloating skb head and crucify ourselves here instead.
2095 	 * Pure masohism, indeed. 8)8)
2096 	 */
2097 	if (eat) {
2098 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2099 		struct sk_buff *clone = NULL;
2100 		struct sk_buff *insp = NULL;
2101 
2102 		do {
2103 			if (list->len <= eat) {
2104 				/* Eaten as whole. */
2105 				eat -= list->len;
2106 				list = list->next;
2107 				insp = list;
2108 			} else {
2109 				/* Eaten partially. */
2110 
2111 				if (skb_shared(list)) {
2112 					/* Sucks! We need to fork list. :-( */
2113 					clone = skb_clone(list, GFP_ATOMIC);
2114 					if (!clone)
2115 						return NULL;
2116 					insp = list->next;
2117 					list = clone;
2118 				} else {
2119 					/* This may be pulled without
2120 					 * problems. */
2121 					insp = list;
2122 				}
2123 				if (!pskb_pull(list, eat)) {
2124 					kfree_skb(clone);
2125 					return NULL;
2126 				}
2127 				break;
2128 			}
2129 		} while (eat);
2130 
2131 		/* Free pulled out fragments. */
2132 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2133 			skb_shinfo(skb)->frag_list = list->next;
2134 			kfree_skb(list);
2135 		}
2136 		/* And insert new clone at head. */
2137 		if (clone) {
2138 			clone->next = list;
2139 			skb_shinfo(skb)->frag_list = clone;
2140 		}
2141 	}
2142 	/* Success! Now we may commit changes to skb data. */
2143 
2144 pull_pages:
2145 	eat = delta;
2146 	k = 0;
2147 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2148 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2149 
2150 		if (size <= eat) {
2151 			skb_frag_unref(skb, i);
2152 			eat -= size;
2153 		} else {
2154 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2155 
2156 			*frag = skb_shinfo(skb)->frags[i];
2157 			if (eat) {
2158 				skb_frag_off_add(frag, eat);
2159 				skb_frag_size_sub(frag, eat);
2160 				if (!i)
2161 					goto end;
2162 				eat = 0;
2163 			}
2164 			k++;
2165 		}
2166 	}
2167 	skb_shinfo(skb)->nr_frags = k;
2168 
2169 end:
2170 	skb->tail     += delta;
2171 	skb->data_len -= delta;
2172 
2173 	if (!skb->data_len)
2174 		skb_zcopy_clear(skb, false);
2175 
2176 	return skb_tail_pointer(skb);
2177 }
2178 EXPORT_SYMBOL(__pskb_pull_tail);
2179 
2180 /**
2181  *	skb_copy_bits - copy bits from skb to kernel buffer
2182  *	@skb: source skb
2183  *	@offset: offset in source
2184  *	@to: destination buffer
2185  *	@len: number of bytes to copy
2186  *
2187  *	Copy the specified number of bytes from the source skb to the
2188  *	destination buffer.
2189  *
2190  *	CAUTION ! :
2191  *		If its prototype is ever changed,
2192  *		check arch/{*}/net/{*}.S files,
2193  *		since it is called from BPF assembly code.
2194  */
2195 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2196 {
2197 	int start = skb_headlen(skb);
2198 	struct sk_buff *frag_iter;
2199 	int i, copy;
2200 
2201 	if (offset > (int)skb->len - len)
2202 		goto fault;
2203 
2204 	/* Copy header. */
2205 	if ((copy = start - offset) > 0) {
2206 		if (copy > len)
2207 			copy = len;
2208 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2209 		if ((len -= copy) == 0)
2210 			return 0;
2211 		offset += copy;
2212 		to     += copy;
2213 	}
2214 
2215 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2216 		int end;
2217 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2218 
2219 		WARN_ON(start > offset + len);
2220 
2221 		end = start + skb_frag_size(f);
2222 		if ((copy = end - offset) > 0) {
2223 			u32 p_off, p_len, copied;
2224 			struct page *p;
2225 			u8 *vaddr;
2226 
2227 			if (copy > len)
2228 				copy = len;
2229 
2230 			skb_frag_foreach_page(f,
2231 					      skb_frag_off(f) + offset - start,
2232 					      copy, p, p_off, p_len, copied) {
2233 				vaddr = kmap_atomic(p);
2234 				memcpy(to + copied, vaddr + p_off, p_len);
2235 				kunmap_atomic(vaddr);
2236 			}
2237 
2238 			if ((len -= copy) == 0)
2239 				return 0;
2240 			offset += copy;
2241 			to     += copy;
2242 		}
2243 		start = end;
2244 	}
2245 
2246 	skb_walk_frags(skb, frag_iter) {
2247 		int end;
2248 
2249 		WARN_ON(start > offset + len);
2250 
2251 		end = start + frag_iter->len;
2252 		if ((copy = end - offset) > 0) {
2253 			if (copy > len)
2254 				copy = len;
2255 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2256 				goto fault;
2257 			if ((len -= copy) == 0)
2258 				return 0;
2259 			offset += copy;
2260 			to     += copy;
2261 		}
2262 		start = end;
2263 	}
2264 
2265 	if (!len)
2266 		return 0;
2267 
2268 fault:
2269 	return -EFAULT;
2270 }
2271 EXPORT_SYMBOL(skb_copy_bits);
2272 
2273 /*
2274  * Callback from splice_to_pipe(), if we need to release some pages
2275  * at the end of the spd in case we error'ed out in filling the pipe.
2276  */
2277 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2278 {
2279 	put_page(spd->pages[i]);
2280 }
2281 
2282 static struct page *linear_to_page(struct page *page, unsigned int *len,
2283 				   unsigned int *offset,
2284 				   struct sock *sk)
2285 {
2286 	struct page_frag *pfrag = sk_page_frag(sk);
2287 
2288 	if (!sk_page_frag_refill(sk, pfrag))
2289 		return NULL;
2290 
2291 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2292 
2293 	memcpy(page_address(pfrag->page) + pfrag->offset,
2294 	       page_address(page) + *offset, *len);
2295 	*offset = pfrag->offset;
2296 	pfrag->offset += *len;
2297 
2298 	return pfrag->page;
2299 }
2300 
2301 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2302 			     struct page *page,
2303 			     unsigned int offset)
2304 {
2305 	return	spd->nr_pages &&
2306 		spd->pages[spd->nr_pages - 1] == page &&
2307 		(spd->partial[spd->nr_pages - 1].offset +
2308 		 spd->partial[spd->nr_pages - 1].len == offset);
2309 }
2310 
2311 /*
2312  * Fill page/offset/length into spd, if it can hold more pages.
2313  */
2314 static bool spd_fill_page(struct splice_pipe_desc *spd,
2315 			  struct pipe_inode_info *pipe, struct page *page,
2316 			  unsigned int *len, unsigned int offset,
2317 			  bool linear,
2318 			  struct sock *sk)
2319 {
2320 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2321 		return true;
2322 
2323 	if (linear) {
2324 		page = linear_to_page(page, len, &offset, sk);
2325 		if (!page)
2326 			return true;
2327 	}
2328 	if (spd_can_coalesce(spd, page, offset)) {
2329 		spd->partial[spd->nr_pages - 1].len += *len;
2330 		return false;
2331 	}
2332 	get_page(page);
2333 	spd->pages[spd->nr_pages] = page;
2334 	spd->partial[spd->nr_pages].len = *len;
2335 	spd->partial[spd->nr_pages].offset = offset;
2336 	spd->nr_pages++;
2337 
2338 	return false;
2339 }
2340 
2341 static bool __splice_segment(struct page *page, unsigned int poff,
2342 			     unsigned int plen, unsigned int *off,
2343 			     unsigned int *len,
2344 			     struct splice_pipe_desc *spd, bool linear,
2345 			     struct sock *sk,
2346 			     struct pipe_inode_info *pipe)
2347 {
2348 	if (!*len)
2349 		return true;
2350 
2351 	/* skip this segment if already processed */
2352 	if (*off >= plen) {
2353 		*off -= plen;
2354 		return false;
2355 	}
2356 
2357 	/* ignore any bits we already processed */
2358 	poff += *off;
2359 	plen -= *off;
2360 	*off = 0;
2361 
2362 	do {
2363 		unsigned int flen = min(*len, plen);
2364 
2365 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2366 				  linear, sk))
2367 			return true;
2368 		poff += flen;
2369 		plen -= flen;
2370 		*len -= flen;
2371 	} while (*len && plen);
2372 
2373 	return false;
2374 }
2375 
2376 /*
2377  * Map linear and fragment data from the skb to spd. It reports true if the
2378  * pipe is full or if we already spliced the requested length.
2379  */
2380 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2381 			      unsigned int *offset, unsigned int *len,
2382 			      struct splice_pipe_desc *spd, struct sock *sk)
2383 {
2384 	int seg;
2385 	struct sk_buff *iter;
2386 
2387 	/* map the linear part :
2388 	 * If skb->head_frag is set, this 'linear' part is backed by a
2389 	 * fragment, and if the head is not shared with any clones then
2390 	 * we can avoid a copy since we own the head portion of this page.
2391 	 */
2392 	if (__splice_segment(virt_to_page(skb->data),
2393 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2394 			     skb_headlen(skb),
2395 			     offset, len, spd,
2396 			     skb_head_is_locked(skb),
2397 			     sk, pipe))
2398 		return true;
2399 
2400 	/*
2401 	 * then map the fragments
2402 	 */
2403 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2404 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2405 
2406 		if (__splice_segment(skb_frag_page(f),
2407 				     skb_frag_off(f), skb_frag_size(f),
2408 				     offset, len, spd, false, sk, pipe))
2409 			return true;
2410 	}
2411 
2412 	skb_walk_frags(skb, iter) {
2413 		if (*offset >= iter->len) {
2414 			*offset -= iter->len;
2415 			continue;
2416 		}
2417 		/* __skb_splice_bits() only fails if the output has no room
2418 		 * left, so no point in going over the frag_list for the error
2419 		 * case.
2420 		 */
2421 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2422 			return true;
2423 	}
2424 
2425 	return false;
2426 }
2427 
2428 /*
2429  * Map data from the skb to a pipe. Should handle both the linear part,
2430  * the fragments, and the frag list.
2431  */
2432 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2433 		    struct pipe_inode_info *pipe, unsigned int tlen,
2434 		    unsigned int flags)
2435 {
2436 	struct partial_page partial[MAX_SKB_FRAGS];
2437 	struct page *pages[MAX_SKB_FRAGS];
2438 	struct splice_pipe_desc spd = {
2439 		.pages = pages,
2440 		.partial = partial,
2441 		.nr_pages_max = MAX_SKB_FRAGS,
2442 		.ops = &nosteal_pipe_buf_ops,
2443 		.spd_release = sock_spd_release,
2444 	};
2445 	int ret = 0;
2446 
2447 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2448 
2449 	if (spd.nr_pages)
2450 		ret = splice_to_pipe(pipe, &spd);
2451 
2452 	return ret;
2453 }
2454 EXPORT_SYMBOL_GPL(skb_splice_bits);
2455 
2456 /* Send skb data on a socket. Socket must be locked. */
2457 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2458 			 int len)
2459 {
2460 	unsigned int orig_len = len;
2461 	struct sk_buff *head = skb;
2462 	unsigned short fragidx;
2463 	int slen, ret;
2464 
2465 do_frag_list:
2466 
2467 	/* Deal with head data */
2468 	while (offset < skb_headlen(skb) && len) {
2469 		struct kvec kv;
2470 		struct msghdr msg;
2471 
2472 		slen = min_t(int, len, skb_headlen(skb) - offset);
2473 		kv.iov_base = skb->data + offset;
2474 		kv.iov_len = slen;
2475 		memset(&msg, 0, sizeof(msg));
2476 		msg.msg_flags = MSG_DONTWAIT;
2477 
2478 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2479 		if (ret <= 0)
2480 			goto error;
2481 
2482 		offset += ret;
2483 		len -= ret;
2484 	}
2485 
2486 	/* All the data was skb head? */
2487 	if (!len)
2488 		goto out;
2489 
2490 	/* Make offset relative to start of frags */
2491 	offset -= skb_headlen(skb);
2492 
2493 	/* Find where we are in frag list */
2494 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2495 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2496 
2497 		if (offset < skb_frag_size(frag))
2498 			break;
2499 
2500 		offset -= skb_frag_size(frag);
2501 	}
2502 
2503 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2504 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2505 
2506 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2507 
2508 		while (slen) {
2509 			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2510 						     skb_frag_off(frag) + offset,
2511 						     slen, MSG_DONTWAIT);
2512 			if (ret <= 0)
2513 				goto error;
2514 
2515 			len -= ret;
2516 			offset += ret;
2517 			slen -= ret;
2518 		}
2519 
2520 		offset = 0;
2521 	}
2522 
2523 	if (len) {
2524 		/* Process any frag lists */
2525 
2526 		if (skb == head) {
2527 			if (skb_has_frag_list(skb)) {
2528 				skb = skb_shinfo(skb)->frag_list;
2529 				goto do_frag_list;
2530 			}
2531 		} else if (skb->next) {
2532 			skb = skb->next;
2533 			goto do_frag_list;
2534 		}
2535 	}
2536 
2537 out:
2538 	return orig_len - len;
2539 
2540 error:
2541 	return orig_len == len ? ret : orig_len - len;
2542 }
2543 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2544 
2545 /**
2546  *	skb_store_bits - store bits from kernel buffer to skb
2547  *	@skb: destination buffer
2548  *	@offset: offset in destination
2549  *	@from: source buffer
2550  *	@len: number of bytes to copy
2551  *
2552  *	Copy the specified number of bytes from the source buffer to the
2553  *	destination skb.  This function handles all the messy bits of
2554  *	traversing fragment lists and such.
2555  */
2556 
2557 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2558 {
2559 	int start = skb_headlen(skb);
2560 	struct sk_buff *frag_iter;
2561 	int i, copy;
2562 
2563 	if (offset > (int)skb->len - len)
2564 		goto fault;
2565 
2566 	if ((copy = start - offset) > 0) {
2567 		if (copy > len)
2568 			copy = len;
2569 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2570 		if ((len -= copy) == 0)
2571 			return 0;
2572 		offset += copy;
2573 		from += copy;
2574 	}
2575 
2576 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2577 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2578 		int end;
2579 
2580 		WARN_ON(start > offset + len);
2581 
2582 		end = start + skb_frag_size(frag);
2583 		if ((copy = end - offset) > 0) {
2584 			u32 p_off, p_len, copied;
2585 			struct page *p;
2586 			u8 *vaddr;
2587 
2588 			if (copy > len)
2589 				copy = len;
2590 
2591 			skb_frag_foreach_page(frag,
2592 					      skb_frag_off(frag) + offset - start,
2593 					      copy, p, p_off, p_len, copied) {
2594 				vaddr = kmap_atomic(p);
2595 				memcpy(vaddr + p_off, from + copied, p_len);
2596 				kunmap_atomic(vaddr);
2597 			}
2598 
2599 			if ((len -= copy) == 0)
2600 				return 0;
2601 			offset += copy;
2602 			from += copy;
2603 		}
2604 		start = end;
2605 	}
2606 
2607 	skb_walk_frags(skb, frag_iter) {
2608 		int end;
2609 
2610 		WARN_ON(start > offset + len);
2611 
2612 		end = start + frag_iter->len;
2613 		if ((copy = end - offset) > 0) {
2614 			if (copy > len)
2615 				copy = len;
2616 			if (skb_store_bits(frag_iter, offset - start,
2617 					   from, copy))
2618 				goto fault;
2619 			if ((len -= copy) == 0)
2620 				return 0;
2621 			offset += copy;
2622 			from += copy;
2623 		}
2624 		start = end;
2625 	}
2626 	if (!len)
2627 		return 0;
2628 
2629 fault:
2630 	return -EFAULT;
2631 }
2632 EXPORT_SYMBOL(skb_store_bits);
2633 
2634 /* Checksum skb data. */
2635 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2636 		      __wsum csum, const struct skb_checksum_ops *ops)
2637 {
2638 	int start = skb_headlen(skb);
2639 	int i, copy = start - offset;
2640 	struct sk_buff *frag_iter;
2641 	int pos = 0;
2642 
2643 	/* Checksum header. */
2644 	if (copy > 0) {
2645 		if (copy > len)
2646 			copy = len;
2647 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2648 				       skb->data + offset, copy, csum);
2649 		if ((len -= copy) == 0)
2650 			return csum;
2651 		offset += copy;
2652 		pos	= copy;
2653 	}
2654 
2655 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2656 		int end;
2657 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2658 
2659 		WARN_ON(start > offset + len);
2660 
2661 		end = start + skb_frag_size(frag);
2662 		if ((copy = end - offset) > 0) {
2663 			u32 p_off, p_len, copied;
2664 			struct page *p;
2665 			__wsum csum2;
2666 			u8 *vaddr;
2667 
2668 			if (copy > len)
2669 				copy = len;
2670 
2671 			skb_frag_foreach_page(frag,
2672 					      skb_frag_off(frag) + offset - start,
2673 					      copy, p, p_off, p_len, copied) {
2674 				vaddr = kmap_atomic(p);
2675 				csum2 = INDIRECT_CALL_1(ops->update,
2676 							csum_partial_ext,
2677 							vaddr + p_off, p_len, 0);
2678 				kunmap_atomic(vaddr);
2679 				csum = INDIRECT_CALL_1(ops->combine,
2680 						       csum_block_add_ext, csum,
2681 						       csum2, pos, p_len);
2682 				pos += p_len;
2683 			}
2684 
2685 			if (!(len -= copy))
2686 				return csum;
2687 			offset += copy;
2688 		}
2689 		start = end;
2690 	}
2691 
2692 	skb_walk_frags(skb, frag_iter) {
2693 		int end;
2694 
2695 		WARN_ON(start > offset + len);
2696 
2697 		end = start + frag_iter->len;
2698 		if ((copy = end - offset) > 0) {
2699 			__wsum csum2;
2700 			if (copy > len)
2701 				copy = len;
2702 			csum2 = __skb_checksum(frag_iter, offset - start,
2703 					       copy, 0, ops);
2704 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2705 					       csum, csum2, pos, copy);
2706 			if ((len -= copy) == 0)
2707 				return csum;
2708 			offset += copy;
2709 			pos    += copy;
2710 		}
2711 		start = end;
2712 	}
2713 	BUG_ON(len);
2714 
2715 	return csum;
2716 }
2717 EXPORT_SYMBOL(__skb_checksum);
2718 
2719 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2720 		    int len, __wsum csum)
2721 {
2722 	const struct skb_checksum_ops ops = {
2723 		.update  = csum_partial_ext,
2724 		.combine = csum_block_add_ext,
2725 	};
2726 
2727 	return __skb_checksum(skb, offset, len, csum, &ops);
2728 }
2729 EXPORT_SYMBOL(skb_checksum);
2730 
2731 /* Both of above in one bottle. */
2732 
2733 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2734 				    u8 *to, int len)
2735 {
2736 	int start = skb_headlen(skb);
2737 	int i, copy = start - offset;
2738 	struct sk_buff *frag_iter;
2739 	int pos = 0;
2740 	__wsum csum = 0;
2741 
2742 	/* Copy header. */
2743 	if (copy > 0) {
2744 		if (copy > len)
2745 			copy = len;
2746 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2747 						 copy);
2748 		if ((len -= copy) == 0)
2749 			return csum;
2750 		offset += copy;
2751 		to     += copy;
2752 		pos	= copy;
2753 	}
2754 
2755 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2756 		int end;
2757 
2758 		WARN_ON(start > offset + len);
2759 
2760 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2761 		if ((copy = end - offset) > 0) {
2762 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763 			u32 p_off, p_len, copied;
2764 			struct page *p;
2765 			__wsum csum2;
2766 			u8 *vaddr;
2767 
2768 			if (copy > len)
2769 				copy = len;
2770 
2771 			skb_frag_foreach_page(frag,
2772 					      skb_frag_off(frag) + offset - start,
2773 					      copy, p, p_off, p_len, copied) {
2774 				vaddr = kmap_atomic(p);
2775 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2776 								  to + copied,
2777 								  p_len);
2778 				kunmap_atomic(vaddr);
2779 				csum = csum_block_add(csum, csum2, pos);
2780 				pos += p_len;
2781 			}
2782 
2783 			if (!(len -= copy))
2784 				return csum;
2785 			offset += copy;
2786 			to     += copy;
2787 		}
2788 		start = end;
2789 	}
2790 
2791 	skb_walk_frags(skb, frag_iter) {
2792 		__wsum csum2;
2793 		int end;
2794 
2795 		WARN_ON(start > offset + len);
2796 
2797 		end = start + frag_iter->len;
2798 		if ((copy = end - offset) > 0) {
2799 			if (copy > len)
2800 				copy = len;
2801 			csum2 = skb_copy_and_csum_bits(frag_iter,
2802 						       offset - start,
2803 						       to, copy);
2804 			csum = csum_block_add(csum, csum2, pos);
2805 			if ((len -= copy) == 0)
2806 				return csum;
2807 			offset += copy;
2808 			to     += copy;
2809 			pos    += copy;
2810 		}
2811 		start = end;
2812 	}
2813 	BUG_ON(len);
2814 	return csum;
2815 }
2816 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2817 
2818 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2819 {
2820 	__sum16 sum;
2821 
2822 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2823 	/* See comments in __skb_checksum_complete(). */
2824 	if (likely(!sum)) {
2825 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2826 		    !skb->csum_complete_sw)
2827 			netdev_rx_csum_fault(skb->dev, skb);
2828 	}
2829 	if (!skb_shared(skb))
2830 		skb->csum_valid = !sum;
2831 	return sum;
2832 }
2833 EXPORT_SYMBOL(__skb_checksum_complete_head);
2834 
2835 /* This function assumes skb->csum already holds pseudo header's checksum,
2836  * which has been changed from the hardware checksum, for example, by
2837  * __skb_checksum_validate_complete(). And, the original skb->csum must
2838  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2839  *
2840  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2841  * zero. The new checksum is stored back into skb->csum unless the skb is
2842  * shared.
2843  */
2844 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2845 {
2846 	__wsum csum;
2847 	__sum16 sum;
2848 
2849 	csum = skb_checksum(skb, 0, skb->len, 0);
2850 
2851 	sum = csum_fold(csum_add(skb->csum, csum));
2852 	/* This check is inverted, because we already knew the hardware
2853 	 * checksum is invalid before calling this function. So, if the
2854 	 * re-computed checksum is valid instead, then we have a mismatch
2855 	 * between the original skb->csum and skb_checksum(). This means either
2856 	 * the original hardware checksum is incorrect or we screw up skb->csum
2857 	 * when moving skb->data around.
2858 	 */
2859 	if (likely(!sum)) {
2860 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2861 		    !skb->csum_complete_sw)
2862 			netdev_rx_csum_fault(skb->dev, skb);
2863 	}
2864 
2865 	if (!skb_shared(skb)) {
2866 		/* Save full packet checksum */
2867 		skb->csum = csum;
2868 		skb->ip_summed = CHECKSUM_COMPLETE;
2869 		skb->csum_complete_sw = 1;
2870 		skb->csum_valid = !sum;
2871 	}
2872 
2873 	return sum;
2874 }
2875 EXPORT_SYMBOL(__skb_checksum_complete);
2876 
2877 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2878 {
2879 	net_warn_ratelimited(
2880 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2881 		__func__);
2882 	return 0;
2883 }
2884 
2885 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2886 				       int offset, int len)
2887 {
2888 	net_warn_ratelimited(
2889 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2890 		__func__);
2891 	return 0;
2892 }
2893 
2894 static const struct skb_checksum_ops default_crc32c_ops = {
2895 	.update  = warn_crc32c_csum_update,
2896 	.combine = warn_crc32c_csum_combine,
2897 };
2898 
2899 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2900 	&default_crc32c_ops;
2901 EXPORT_SYMBOL(crc32c_csum_stub);
2902 
2903  /**
2904  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2905  *	@from: source buffer
2906  *
2907  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2908  *	into skb_zerocopy().
2909  */
2910 unsigned int
2911 skb_zerocopy_headlen(const struct sk_buff *from)
2912 {
2913 	unsigned int hlen = 0;
2914 
2915 	if (!from->head_frag ||
2916 	    skb_headlen(from) < L1_CACHE_BYTES ||
2917 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2918 		hlen = skb_headlen(from);
2919 
2920 	if (skb_has_frag_list(from))
2921 		hlen = from->len;
2922 
2923 	return hlen;
2924 }
2925 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2926 
2927 /**
2928  *	skb_zerocopy - Zero copy skb to skb
2929  *	@to: destination buffer
2930  *	@from: source buffer
2931  *	@len: number of bytes to copy from source buffer
2932  *	@hlen: size of linear headroom in destination buffer
2933  *
2934  *	Copies up to `len` bytes from `from` to `to` by creating references
2935  *	to the frags in the source buffer.
2936  *
2937  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2938  *	headroom in the `to` buffer.
2939  *
2940  *	Return value:
2941  *	0: everything is OK
2942  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2943  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2944  */
2945 int
2946 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2947 {
2948 	int i, j = 0;
2949 	int plen = 0; /* length of skb->head fragment */
2950 	int ret;
2951 	struct page *page;
2952 	unsigned int offset;
2953 
2954 	BUG_ON(!from->head_frag && !hlen);
2955 
2956 	/* dont bother with small payloads */
2957 	if (len <= skb_tailroom(to))
2958 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2959 
2960 	if (hlen) {
2961 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2962 		if (unlikely(ret))
2963 			return ret;
2964 		len -= hlen;
2965 	} else {
2966 		plen = min_t(int, skb_headlen(from), len);
2967 		if (plen) {
2968 			page = virt_to_head_page(from->head);
2969 			offset = from->data - (unsigned char *)page_address(page);
2970 			__skb_fill_page_desc(to, 0, page, offset, plen);
2971 			get_page(page);
2972 			j = 1;
2973 			len -= plen;
2974 		}
2975 	}
2976 
2977 	to->truesize += len + plen;
2978 	to->len += len + plen;
2979 	to->data_len += len + plen;
2980 
2981 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2982 		skb_tx_error(from);
2983 		return -ENOMEM;
2984 	}
2985 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2986 
2987 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2988 		int size;
2989 
2990 		if (!len)
2991 			break;
2992 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2993 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2994 					len);
2995 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2996 		len -= size;
2997 		skb_frag_ref(to, j);
2998 		j++;
2999 	}
3000 	skb_shinfo(to)->nr_frags = j;
3001 
3002 	return 0;
3003 }
3004 EXPORT_SYMBOL_GPL(skb_zerocopy);
3005 
3006 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3007 {
3008 	__wsum csum;
3009 	long csstart;
3010 
3011 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3012 		csstart = skb_checksum_start_offset(skb);
3013 	else
3014 		csstart = skb_headlen(skb);
3015 
3016 	BUG_ON(csstart > skb_headlen(skb));
3017 
3018 	skb_copy_from_linear_data(skb, to, csstart);
3019 
3020 	csum = 0;
3021 	if (csstart != skb->len)
3022 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3023 					      skb->len - csstart);
3024 
3025 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3026 		long csstuff = csstart + skb->csum_offset;
3027 
3028 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3029 	}
3030 }
3031 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3032 
3033 /**
3034  *	skb_dequeue - remove from the head of the queue
3035  *	@list: list to dequeue from
3036  *
3037  *	Remove the head of the list. The list lock is taken so the function
3038  *	may be used safely with other locking list functions. The head item is
3039  *	returned or %NULL if the list is empty.
3040  */
3041 
3042 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3043 {
3044 	unsigned long flags;
3045 	struct sk_buff *result;
3046 
3047 	spin_lock_irqsave(&list->lock, flags);
3048 	result = __skb_dequeue(list);
3049 	spin_unlock_irqrestore(&list->lock, flags);
3050 	return result;
3051 }
3052 EXPORT_SYMBOL(skb_dequeue);
3053 
3054 /**
3055  *	skb_dequeue_tail - remove from the tail of the queue
3056  *	@list: list to dequeue from
3057  *
3058  *	Remove the tail of the list. The list lock is taken so the function
3059  *	may be used safely with other locking list functions. The tail item is
3060  *	returned or %NULL if the list is empty.
3061  */
3062 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3063 {
3064 	unsigned long flags;
3065 	struct sk_buff *result;
3066 
3067 	spin_lock_irqsave(&list->lock, flags);
3068 	result = __skb_dequeue_tail(list);
3069 	spin_unlock_irqrestore(&list->lock, flags);
3070 	return result;
3071 }
3072 EXPORT_SYMBOL(skb_dequeue_tail);
3073 
3074 /**
3075  *	skb_queue_purge - empty a list
3076  *	@list: list to empty
3077  *
3078  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3079  *	the list and one reference dropped. This function takes the list
3080  *	lock and is atomic with respect to other list locking functions.
3081  */
3082 void skb_queue_purge(struct sk_buff_head *list)
3083 {
3084 	struct sk_buff *skb;
3085 	while ((skb = skb_dequeue(list)) != NULL)
3086 		kfree_skb(skb);
3087 }
3088 EXPORT_SYMBOL(skb_queue_purge);
3089 
3090 /**
3091  *	skb_rbtree_purge - empty a skb rbtree
3092  *	@root: root of the rbtree to empty
3093  *	Return value: the sum of truesizes of all purged skbs.
3094  *
3095  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3096  *	the list and one reference dropped. This function does not take
3097  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3098  *	out-of-order queue is protected by the socket lock).
3099  */
3100 unsigned int skb_rbtree_purge(struct rb_root *root)
3101 {
3102 	struct rb_node *p = rb_first(root);
3103 	unsigned int sum = 0;
3104 
3105 	while (p) {
3106 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3107 
3108 		p = rb_next(p);
3109 		rb_erase(&skb->rbnode, root);
3110 		sum += skb->truesize;
3111 		kfree_skb(skb);
3112 	}
3113 	return sum;
3114 }
3115 
3116 /**
3117  *	skb_queue_head - queue a buffer at the list head
3118  *	@list: list to use
3119  *	@newsk: buffer to queue
3120  *
3121  *	Queue a buffer at the start of the list. This function takes the
3122  *	list lock and can be used safely with other locking &sk_buff functions
3123  *	safely.
3124  *
3125  *	A buffer cannot be placed on two lists at the same time.
3126  */
3127 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3128 {
3129 	unsigned long flags;
3130 
3131 	spin_lock_irqsave(&list->lock, flags);
3132 	__skb_queue_head(list, newsk);
3133 	spin_unlock_irqrestore(&list->lock, flags);
3134 }
3135 EXPORT_SYMBOL(skb_queue_head);
3136 
3137 /**
3138  *	skb_queue_tail - queue a buffer at the list tail
3139  *	@list: list to use
3140  *	@newsk: buffer to queue
3141  *
3142  *	Queue a buffer at the tail of the list. This function takes the
3143  *	list lock and can be used safely with other locking &sk_buff functions
3144  *	safely.
3145  *
3146  *	A buffer cannot be placed on two lists at the same time.
3147  */
3148 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3149 {
3150 	unsigned long flags;
3151 
3152 	spin_lock_irqsave(&list->lock, flags);
3153 	__skb_queue_tail(list, newsk);
3154 	spin_unlock_irqrestore(&list->lock, flags);
3155 }
3156 EXPORT_SYMBOL(skb_queue_tail);
3157 
3158 /**
3159  *	skb_unlink	-	remove a buffer from a list
3160  *	@skb: buffer to remove
3161  *	@list: list to use
3162  *
3163  *	Remove a packet from a list. The list locks are taken and this
3164  *	function is atomic with respect to other list locked calls
3165  *
3166  *	You must know what list the SKB is on.
3167  */
3168 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3169 {
3170 	unsigned long flags;
3171 
3172 	spin_lock_irqsave(&list->lock, flags);
3173 	__skb_unlink(skb, list);
3174 	spin_unlock_irqrestore(&list->lock, flags);
3175 }
3176 EXPORT_SYMBOL(skb_unlink);
3177 
3178 /**
3179  *	skb_append	-	append a buffer
3180  *	@old: buffer to insert after
3181  *	@newsk: buffer to insert
3182  *	@list: list to use
3183  *
3184  *	Place a packet after a given packet in a list. The list locks are taken
3185  *	and this function is atomic with respect to other list locked calls.
3186  *	A buffer cannot be placed on two lists at the same time.
3187  */
3188 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3189 {
3190 	unsigned long flags;
3191 
3192 	spin_lock_irqsave(&list->lock, flags);
3193 	__skb_queue_after(list, old, newsk);
3194 	spin_unlock_irqrestore(&list->lock, flags);
3195 }
3196 EXPORT_SYMBOL(skb_append);
3197 
3198 static inline void skb_split_inside_header(struct sk_buff *skb,
3199 					   struct sk_buff* skb1,
3200 					   const u32 len, const int pos)
3201 {
3202 	int i;
3203 
3204 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3205 					 pos - len);
3206 	/* And move data appendix as is. */
3207 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3208 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3209 
3210 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3211 	skb_shinfo(skb)->nr_frags  = 0;
3212 	skb1->data_len		   = skb->data_len;
3213 	skb1->len		   += skb1->data_len;
3214 	skb->data_len		   = 0;
3215 	skb->len		   = len;
3216 	skb_set_tail_pointer(skb, len);
3217 }
3218 
3219 static inline void skb_split_no_header(struct sk_buff *skb,
3220 				       struct sk_buff* skb1,
3221 				       const u32 len, int pos)
3222 {
3223 	int i, k = 0;
3224 	const int nfrags = skb_shinfo(skb)->nr_frags;
3225 
3226 	skb_shinfo(skb)->nr_frags = 0;
3227 	skb1->len		  = skb1->data_len = skb->len - len;
3228 	skb->len		  = len;
3229 	skb->data_len		  = len - pos;
3230 
3231 	for (i = 0; i < nfrags; i++) {
3232 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3233 
3234 		if (pos + size > len) {
3235 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3236 
3237 			if (pos < len) {
3238 				/* Split frag.
3239 				 * We have two variants in this case:
3240 				 * 1. Move all the frag to the second
3241 				 *    part, if it is possible. F.e.
3242 				 *    this approach is mandatory for TUX,
3243 				 *    where splitting is expensive.
3244 				 * 2. Split is accurately. We make this.
3245 				 */
3246 				skb_frag_ref(skb, i);
3247 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3248 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3249 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3250 				skb_shinfo(skb)->nr_frags++;
3251 			}
3252 			k++;
3253 		} else
3254 			skb_shinfo(skb)->nr_frags++;
3255 		pos += size;
3256 	}
3257 	skb_shinfo(skb1)->nr_frags = k;
3258 }
3259 
3260 /**
3261  * skb_split - Split fragmented skb to two parts at length len.
3262  * @skb: the buffer to split
3263  * @skb1: the buffer to receive the second part
3264  * @len: new length for skb
3265  */
3266 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3267 {
3268 	int pos = skb_headlen(skb);
3269 
3270 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3271 				      SKBTX_SHARED_FRAG;
3272 	skb_zerocopy_clone(skb1, skb, 0);
3273 	if (len < pos)	/* Split line is inside header. */
3274 		skb_split_inside_header(skb, skb1, len, pos);
3275 	else		/* Second chunk has no header, nothing to copy. */
3276 		skb_split_no_header(skb, skb1, len, pos);
3277 }
3278 EXPORT_SYMBOL(skb_split);
3279 
3280 /* Shifting from/to a cloned skb is a no-go.
3281  *
3282  * Caller cannot keep skb_shinfo related pointers past calling here!
3283  */
3284 static int skb_prepare_for_shift(struct sk_buff *skb)
3285 {
3286 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3287 }
3288 
3289 /**
3290  * skb_shift - Shifts paged data partially from skb to another
3291  * @tgt: buffer into which tail data gets added
3292  * @skb: buffer from which the paged data comes from
3293  * @shiftlen: shift up to this many bytes
3294  *
3295  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3296  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3297  * It's up to caller to free skb if everything was shifted.
3298  *
3299  * If @tgt runs out of frags, the whole operation is aborted.
3300  *
3301  * Skb cannot include anything else but paged data while tgt is allowed
3302  * to have non-paged data as well.
3303  *
3304  * TODO: full sized shift could be optimized but that would need
3305  * specialized skb free'er to handle frags without up-to-date nr_frags.
3306  */
3307 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3308 {
3309 	int from, to, merge, todo;
3310 	skb_frag_t *fragfrom, *fragto;
3311 
3312 	BUG_ON(shiftlen > skb->len);
3313 
3314 	if (skb_headlen(skb))
3315 		return 0;
3316 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3317 		return 0;
3318 
3319 	todo = shiftlen;
3320 	from = 0;
3321 	to = skb_shinfo(tgt)->nr_frags;
3322 	fragfrom = &skb_shinfo(skb)->frags[from];
3323 
3324 	/* Actual merge is delayed until the point when we know we can
3325 	 * commit all, so that we don't have to undo partial changes
3326 	 */
3327 	if (!to ||
3328 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3329 			      skb_frag_off(fragfrom))) {
3330 		merge = -1;
3331 	} else {
3332 		merge = to - 1;
3333 
3334 		todo -= skb_frag_size(fragfrom);
3335 		if (todo < 0) {
3336 			if (skb_prepare_for_shift(skb) ||
3337 			    skb_prepare_for_shift(tgt))
3338 				return 0;
3339 
3340 			/* All previous frag pointers might be stale! */
3341 			fragfrom = &skb_shinfo(skb)->frags[from];
3342 			fragto = &skb_shinfo(tgt)->frags[merge];
3343 
3344 			skb_frag_size_add(fragto, shiftlen);
3345 			skb_frag_size_sub(fragfrom, shiftlen);
3346 			skb_frag_off_add(fragfrom, shiftlen);
3347 
3348 			goto onlymerged;
3349 		}
3350 
3351 		from++;
3352 	}
3353 
3354 	/* Skip full, not-fitting skb to avoid expensive operations */
3355 	if ((shiftlen == skb->len) &&
3356 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3357 		return 0;
3358 
3359 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3360 		return 0;
3361 
3362 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3363 		if (to == MAX_SKB_FRAGS)
3364 			return 0;
3365 
3366 		fragfrom = &skb_shinfo(skb)->frags[from];
3367 		fragto = &skb_shinfo(tgt)->frags[to];
3368 
3369 		if (todo >= skb_frag_size(fragfrom)) {
3370 			*fragto = *fragfrom;
3371 			todo -= skb_frag_size(fragfrom);
3372 			from++;
3373 			to++;
3374 
3375 		} else {
3376 			__skb_frag_ref(fragfrom);
3377 			skb_frag_page_copy(fragto, fragfrom);
3378 			skb_frag_off_copy(fragto, fragfrom);
3379 			skb_frag_size_set(fragto, todo);
3380 
3381 			skb_frag_off_add(fragfrom, todo);
3382 			skb_frag_size_sub(fragfrom, todo);
3383 			todo = 0;
3384 
3385 			to++;
3386 			break;
3387 		}
3388 	}
3389 
3390 	/* Ready to "commit" this state change to tgt */
3391 	skb_shinfo(tgt)->nr_frags = to;
3392 
3393 	if (merge >= 0) {
3394 		fragfrom = &skb_shinfo(skb)->frags[0];
3395 		fragto = &skb_shinfo(tgt)->frags[merge];
3396 
3397 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3398 		__skb_frag_unref(fragfrom);
3399 	}
3400 
3401 	/* Reposition in the original skb */
3402 	to = 0;
3403 	while (from < skb_shinfo(skb)->nr_frags)
3404 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3405 	skb_shinfo(skb)->nr_frags = to;
3406 
3407 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3408 
3409 onlymerged:
3410 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3411 	 * the other hand might need it if it needs to be resent
3412 	 */
3413 	tgt->ip_summed = CHECKSUM_PARTIAL;
3414 	skb->ip_summed = CHECKSUM_PARTIAL;
3415 
3416 	/* Yak, is it really working this way? Some helper please? */
3417 	skb->len -= shiftlen;
3418 	skb->data_len -= shiftlen;
3419 	skb->truesize -= shiftlen;
3420 	tgt->len += shiftlen;
3421 	tgt->data_len += shiftlen;
3422 	tgt->truesize += shiftlen;
3423 
3424 	return shiftlen;
3425 }
3426 
3427 /**
3428  * skb_prepare_seq_read - Prepare a sequential read of skb data
3429  * @skb: the buffer to read
3430  * @from: lower offset of data to be read
3431  * @to: upper offset of data to be read
3432  * @st: state variable
3433  *
3434  * Initializes the specified state variable. Must be called before
3435  * invoking skb_seq_read() for the first time.
3436  */
3437 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3438 			  unsigned int to, struct skb_seq_state *st)
3439 {
3440 	st->lower_offset = from;
3441 	st->upper_offset = to;
3442 	st->root_skb = st->cur_skb = skb;
3443 	st->frag_idx = st->stepped_offset = 0;
3444 	st->frag_data = NULL;
3445 }
3446 EXPORT_SYMBOL(skb_prepare_seq_read);
3447 
3448 /**
3449  * skb_seq_read - Sequentially read skb data
3450  * @consumed: number of bytes consumed by the caller so far
3451  * @data: destination pointer for data to be returned
3452  * @st: state variable
3453  *
3454  * Reads a block of skb data at @consumed relative to the
3455  * lower offset specified to skb_prepare_seq_read(). Assigns
3456  * the head of the data block to @data and returns the length
3457  * of the block or 0 if the end of the skb data or the upper
3458  * offset has been reached.
3459  *
3460  * The caller is not required to consume all of the data
3461  * returned, i.e. @consumed is typically set to the number
3462  * of bytes already consumed and the next call to
3463  * skb_seq_read() will return the remaining part of the block.
3464  *
3465  * Note 1: The size of each block of data returned can be arbitrary,
3466  *       this limitation is the cost for zerocopy sequential
3467  *       reads of potentially non linear data.
3468  *
3469  * Note 2: Fragment lists within fragments are not implemented
3470  *       at the moment, state->root_skb could be replaced with
3471  *       a stack for this purpose.
3472  */
3473 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3474 			  struct skb_seq_state *st)
3475 {
3476 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3477 	skb_frag_t *frag;
3478 
3479 	if (unlikely(abs_offset >= st->upper_offset)) {
3480 		if (st->frag_data) {
3481 			kunmap_atomic(st->frag_data);
3482 			st->frag_data = NULL;
3483 		}
3484 		return 0;
3485 	}
3486 
3487 next_skb:
3488 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3489 
3490 	if (abs_offset < block_limit && !st->frag_data) {
3491 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3492 		return block_limit - abs_offset;
3493 	}
3494 
3495 	if (st->frag_idx == 0 && !st->frag_data)
3496 		st->stepped_offset += skb_headlen(st->cur_skb);
3497 
3498 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3499 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3500 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3501 
3502 		if (abs_offset < block_limit) {
3503 			if (!st->frag_data)
3504 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3505 
3506 			*data = (u8 *) st->frag_data + skb_frag_off(frag) +
3507 				(abs_offset - st->stepped_offset);
3508 
3509 			return block_limit - abs_offset;
3510 		}
3511 
3512 		if (st->frag_data) {
3513 			kunmap_atomic(st->frag_data);
3514 			st->frag_data = NULL;
3515 		}
3516 
3517 		st->frag_idx++;
3518 		st->stepped_offset += skb_frag_size(frag);
3519 	}
3520 
3521 	if (st->frag_data) {
3522 		kunmap_atomic(st->frag_data);
3523 		st->frag_data = NULL;
3524 	}
3525 
3526 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3527 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3528 		st->frag_idx = 0;
3529 		goto next_skb;
3530 	} else if (st->cur_skb->next) {
3531 		st->cur_skb = st->cur_skb->next;
3532 		st->frag_idx = 0;
3533 		goto next_skb;
3534 	}
3535 
3536 	return 0;
3537 }
3538 EXPORT_SYMBOL(skb_seq_read);
3539 
3540 /**
3541  * skb_abort_seq_read - Abort a sequential read of skb data
3542  * @st: state variable
3543  *
3544  * Must be called if skb_seq_read() was not called until it
3545  * returned 0.
3546  */
3547 void skb_abort_seq_read(struct skb_seq_state *st)
3548 {
3549 	if (st->frag_data)
3550 		kunmap_atomic(st->frag_data);
3551 }
3552 EXPORT_SYMBOL(skb_abort_seq_read);
3553 
3554 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3555 
3556 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3557 					  struct ts_config *conf,
3558 					  struct ts_state *state)
3559 {
3560 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3561 }
3562 
3563 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3564 {
3565 	skb_abort_seq_read(TS_SKB_CB(state));
3566 }
3567 
3568 /**
3569  * skb_find_text - Find a text pattern in skb data
3570  * @skb: the buffer to look in
3571  * @from: search offset
3572  * @to: search limit
3573  * @config: textsearch configuration
3574  *
3575  * Finds a pattern in the skb data according to the specified
3576  * textsearch configuration. Use textsearch_next() to retrieve
3577  * subsequent occurrences of the pattern. Returns the offset
3578  * to the first occurrence or UINT_MAX if no match was found.
3579  */
3580 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3581 			   unsigned int to, struct ts_config *config)
3582 {
3583 	struct ts_state state;
3584 	unsigned int ret;
3585 
3586 	config->get_next_block = skb_ts_get_next_block;
3587 	config->finish = skb_ts_finish;
3588 
3589 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3590 
3591 	ret = textsearch_find(config, &state);
3592 	return (ret <= to - from ? ret : UINT_MAX);
3593 }
3594 EXPORT_SYMBOL(skb_find_text);
3595 
3596 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3597 			 int offset, size_t size)
3598 {
3599 	int i = skb_shinfo(skb)->nr_frags;
3600 
3601 	if (skb_can_coalesce(skb, i, page, offset)) {
3602 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3603 	} else if (i < MAX_SKB_FRAGS) {
3604 		get_page(page);
3605 		skb_fill_page_desc(skb, i, page, offset, size);
3606 	} else {
3607 		return -EMSGSIZE;
3608 	}
3609 
3610 	return 0;
3611 }
3612 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3613 
3614 /**
3615  *	skb_pull_rcsum - pull skb and update receive checksum
3616  *	@skb: buffer to update
3617  *	@len: length of data pulled
3618  *
3619  *	This function performs an skb_pull on the packet and updates
3620  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3621  *	receive path processing instead of skb_pull unless you know
3622  *	that the checksum difference is zero (e.g., a valid IP header)
3623  *	or you are setting ip_summed to CHECKSUM_NONE.
3624  */
3625 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3626 {
3627 	unsigned char *data = skb->data;
3628 
3629 	BUG_ON(len > skb->len);
3630 	__skb_pull(skb, len);
3631 	skb_postpull_rcsum(skb, data, len);
3632 	return skb->data;
3633 }
3634 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3635 
3636 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3637 {
3638 	skb_frag_t head_frag;
3639 	struct page *page;
3640 
3641 	page = virt_to_head_page(frag_skb->head);
3642 	__skb_frag_set_page(&head_frag, page);
3643 	skb_frag_off_set(&head_frag, frag_skb->data -
3644 			 (unsigned char *)page_address(page));
3645 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3646 	return head_frag;
3647 }
3648 
3649 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3650 				 netdev_features_t features,
3651 				 unsigned int offset)
3652 {
3653 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3654 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3655 	unsigned int delta_truesize = 0;
3656 	unsigned int delta_len = 0;
3657 	struct sk_buff *tail = NULL;
3658 	struct sk_buff *nskb;
3659 
3660 	skb_push(skb, -skb_network_offset(skb) + offset);
3661 
3662 	skb_shinfo(skb)->frag_list = NULL;
3663 
3664 	do {
3665 		nskb = list_skb;
3666 		list_skb = list_skb->next;
3667 
3668 		if (!tail)
3669 			skb->next = nskb;
3670 		else
3671 			tail->next = nskb;
3672 
3673 		tail = nskb;
3674 
3675 		delta_len += nskb->len;
3676 		delta_truesize += nskb->truesize;
3677 
3678 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3679 
3680 		skb_release_head_state(nskb);
3681 		 __copy_skb_header(nskb, skb);
3682 
3683 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3684 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3685 						 nskb->data - tnl_hlen,
3686 						 offset + tnl_hlen);
3687 
3688 		if (skb_needs_linearize(nskb, features) &&
3689 		    __skb_linearize(nskb))
3690 			goto err_linearize;
3691 
3692 	} while (list_skb);
3693 
3694 	skb->truesize = skb->truesize - delta_truesize;
3695 	skb->data_len = skb->data_len - delta_len;
3696 	skb->len = skb->len - delta_len;
3697 
3698 	skb_gso_reset(skb);
3699 
3700 	skb->prev = tail;
3701 
3702 	if (skb_needs_linearize(skb, features) &&
3703 	    __skb_linearize(skb))
3704 		goto err_linearize;
3705 
3706 	skb_get(skb);
3707 
3708 	return skb;
3709 
3710 err_linearize:
3711 	kfree_skb_list(skb->next);
3712 	skb->next = NULL;
3713 	return ERR_PTR(-ENOMEM);
3714 }
3715 EXPORT_SYMBOL_GPL(skb_segment_list);
3716 
3717 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3718 {
3719 	if (unlikely(p->len + skb->len >= 65536))
3720 		return -E2BIG;
3721 
3722 	if (NAPI_GRO_CB(p)->last == p)
3723 		skb_shinfo(p)->frag_list = skb;
3724 	else
3725 		NAPI_GRO_CB(p)->last->next = skb;
3726 
3727 	skb_pull(skb, skb_gro_offset(skb));
3728 
3729 	NAPI_GRO_CB(p)->last = skb;
3730 	NAPI_GRO_CB(p)->count++;
3731 	p->data_len += skb->len;
3732 	p->truesize += skb->truesize;
3733 	p->len += skb->len;
3734 
3735 	NAPI_GRO_CB(skb)->same_flow = 1;
3736 
3737 	return 0;
3738 }
3739 
3740 /**
3741  *	skb_segment - Perform protocol segmentation on skb.
3742  *	@head_skb: buffer to segment
3743  *	@features: features for the output path (see dev->features)
3744  *
3745  *	This function performs segmentation on the given skb.  It returns
3746  *	a pointer to the first in a list of new skbs for the segments.
3747  *	In case of error it returns ERR_PTR(err).
3748  */
3749 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3750 			    netdev_features_t features)
3751 {
3752 	struct sk_buff *segs = NULL;
3753 	struct sk_buff *tail = NULL;
3754 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3755 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3756 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3757 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3758 	struct sk_buff *frag_skb = head_skb;
3759 	unsigned int offset = doffset;
3760 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3761 	unsigned int partial_segs = 0;
3762 	unsigned int headroom;
3763 	unsigned int len = head_skb->len;
3764 	__be16 proto;
3765 	bool csum, sg;
3766 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3767 	int err = -ENOMEM;
3768 	int i = 0;
3769 	int pos;
3770 
3771 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3772 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3773 		/* gso_size is untrusted, and we have a frag_list with a linear
3774 		 * non head_frag head.
3775 		 *
3776 		 * (we assume checking the first list_skb member suffices;
3777 		 * i.e if either of the list_skb members have non head_frag
3778 		 * head, then the first one has too).
3779 		 *
3780 		 * If head_skb's headlen does not fit requested gso_size, it
3781 		 * means that the frag_list members do NOT terminate on exact
3782 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3783 		 * sharing. Therefore we must fallback to copying the frag_list
3784 		 * skbs; we do so by disabling SG.
3785 		 */
3786 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3787 			features &= ~NETIF_F_SG;
3788 	}
3789 
3790 	__skb_push(head_skb, doffset);
3791 	proto = skb_network_protocol(head_skb, NULL);
3792 	if (unlikely(!proto))
3793 		return ERR_PTR(-EINVAL);
3794 
3795 	sg = !!(features & NETIF_F_SG);
3796 	csum = !!can_checksum_protocol(features, proto);
3797 
3798 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3799 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3800 			struct sk_buff *iter;
3801 			unsigned int frag_len;
3802 
3803 			if (!list_skb ||
3804 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3805 				goto normal;
3806 
3807 			/* If we get here then all the required
3808 			 * GSO features except frag_list are supported.
3809 			 * Try to split the SKB to multiple GSO SKBs
3810 			 * with no frag_list.
3811 			 * Currently we can do that only when the buffers don't
3812 			 * have a linear part and all the buffers except
3813 			 * the last are of the same length.
3814 			 */
3815 			frag_len = list_skb->len;
3816 			skb_walk_frags(head_skb, iter) {
3817 				if (frag_len != iter->len && iter->next)
3818 					goto normal;
3819 				if (skb_headlen(iter) && !iter->head_frag)
3820 					goto normal;
3821 
3822 				len -= iter->len;
3823 			}
3824 
3825 			if (len != frag_len)
3826 				goto normal;
3827 		}
3828 
3829 		/* GSO partial only requires that we trim off any excess that
3830 		 * doesn't fit into an MSS sized block, so take care of that
3831 		 * now.
3832 		 */
3833 		partial_segs = len / mss;
3834 		if (partial_segs > 1)
3835 			mss *= partial_segs;
3836 		else
3837 			partial_segs = 0;
3838 	}
3839 
3840 normal:
3841 	headroom = skb_headroom(head_skb);
3842 	pos = skb_headlen(head_skb);
3843 
3844 	do {
3845 		struct sk_buff *nskb;
3846 		skb_frag_t *nskb_frag;
3847 		int hsize;
3848 		int size;
3849 
3850 		if (unlikely(mss == GSO_BY_FRAGS)) {
3851 			len = list_skb->len;
3852 		} else {
3853 			len = head_skb->len - offset;
3854 			if (len > mss)
3855 				len = mss;
3856 		}
3857 
3858 		hsize = skb_headlen(head_skb) - offset;
3859 		if (hsize < 0)
3860 			hsize = 0;
3861 		if (hsize > len || !sg)
3862 			hsize = len;
3863 
3864 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3865 		    (skb_headlen(list_skb) == len || sg)) {
3866 			BUG_ON(skb_headlen(list_skb) > len);
3867 
3868 			i = 0;
3869 			nfrags = skb_shinfo(list_skb)->nr_frags;
3870 			frag = skb_shinfo(list_skb)->frags;
3871 			frag_skb = list_skb;
3872 			pos += skb_headlen(list_skb);
3873 
3874 			while (pos < offset + len) {
3875 				BUG_ON(i >= nfrags);
3876 
3877 				size = skb_frag_size(frag);
3878 				if (pos + size > offset + len)
3879 					break;
3880 
3881 				i++;
3882 				pos += size;
3883 				frag++;
3884 			}
3885 
3886 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3887 			list_skb = list_skb->next;
3888 
3889 			if (unlikely(!nskb))
3890 				goto err;
3891 
3892 			if (unlikely(pskb_trim(nskb, len))) {
3893 				kfree_skb(nskb);
3894 				goto err;
3895 			}
3896 
3897 			hsize = skb_end_offset(nskb);
3898 			if (skb_cow_head(nskb, doffset + headroom)) {
3899 				kfree_skb(nskb);
3900 				goto err;
3901 			}
3902 
3903 			nskb->truesize += skb_end_offset(nskb) - hsize;
3904 			skb_release_head_state(nskb);
3905 			__skb_push(nskb, doffset);
3906 		} else {
3907 			nskb = __alloc_skb(hsize + doffset + headroom,
3908 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3909 					   NUMA_NO_NODE);
3910 
3911 			if (unlikely(!nskb))
3912 				goto err;
3913 
3914 			skb_reserve(nskb, headroom);
3915 			__skb_put(nskb, doffset);
3916 		}
3917 
3918 		if (segs)
3919 			tail->next = nskb;
3920 		else
3921 			segs = nskb;
3922 		tail = nskb;
3923 
3924 		__copy_skb_header(nskb, head_skb);
3925 
3926 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3927 		skb_reset_mac_len(nskb);
3928 
3929 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3930 						 nskb->data - tnl_hlen,
3931 						 doffset + tnl_hlen);
3932 
3933 		if (nskb->len == len + doffset)
3934 			goto perform_csum_check;
3935 
3936 		if (!sg) {
3937 			if (!csum) {
3938 				if (!nskb->remcsum_offload)
3939 					nskb->ip_summed = CHECKSUM_NONE;
3940 				SKB_GSO_CB(nskb)->csum =
3941 					skb_copy_and_csum_bits(head_skb, offset,
3942 							       skb_put(nskb,
3943 								       len),
3944 							       len);
3945 				SKB_GSO_CB(nskb)->csum_start =
3946 					skb_headroom(nskb) + doffset;
3947 			} else {
3948 				skb_copy_bits(head_skb, offset,
3949 					      skb_put(nskb, len),
3950 					      len);
3951 			}
3952 			continue;
3953 		}
3954 
3955 		nskb_frag = skb_shinfo(nskb)->frags;
3956 
3957 		skb_copy_from_linear_data_offset(head_skb, offset,
3958 						 skb_put(nskb, hsize), hsize);
3959 
3960 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3961 					      SKBTX_SHARED_FRAG;
3962 
3963 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3964 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3965 			goto err;
3966 
3967 		while (pos < offset + len) {
3968 			if (i >= nfrags) {
3969 				i = 0;
3970 				nfrags = skb_shinfo(list_skb)->nr_frags;
3971 				frag = skb_shinfo(list_skb)->frags;
3972 				frag_skb = list_skb;
3973 				if (!skb_headlen(list_skb)) {
3974 					BUG_ON(!nfrags);
3975 				} else {
3976 					BUG_ON(!list_skb->head_frag);
3977 
3978 					/* to make room for head_frag. */
3979 					i--;
3980 					frag--;
3981 				}
3982 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3983 				    skb_zerocopy_clone(nskb, frag_skb,
3984 						       GFP_ATOMIC))
3985 					goto err;
3986 
3987 				list_skb = list_skb->next;
3988 			}
3989 
3990 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3991 				     MAX_SKB_FRAGS)) {
3992 				net_warn_ratelimited(
3993 					"skb_segment: too many frags: %u %u\n",
3994 					pos, mss);
3995 				err = -EINVAL;
3996 				goto err;
3997 			}
3998 
3999 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4000 			__skb_frag_ref(nskb_frag);
4001 			size = skb_frag_size(nskb_frag);
4002 
4003 			if (pos < offset) {
4004 				skb_frag_off_add(nskb_frag, offset - pos);
4005 				skb_frag_size_sub(nskb_frag, offset - pos);
4006 			}
4007 
4008 			skb_shinfo(nskb)->nr_frags++;
4009 
4010 			if (pos + size <= offset + len) {
4011 				i++;
4012 				frag++;
4013 				pos += size;
4014 			} else {
4015 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4016 				goto skip_fraglist;
4017 			}
4018 
4019 			nskb_frag++;
4020 		}
4021 
4022 skip_fraglist:
4023 		nskb->data_len = len - hsize;
4024 		nskb->len += nskb->data_len;
4025 		nskb->truesize += nskb->data_len;
4026 
4027 perform_csum_check:
4028 		if (!csum) {
4029 			if (skb_has_shared_frag(nskb) &&
4030 			    __skb_linearize(nskb))
4031 				goto err;
4032 
4033 			if (!nskb->remcsum_offload)
4034 				nskb->ip_summed = CHECKSUM_NONE;
4035 			SKB_GSO_CB(nskb)->csum =
4036 				skb_checksum(nskb, doffset,
4037 					     nskb->len - doffset, 0);
4038 			SKB_GSO_CB(nskb)->csum_start =
4039 				skb_headroom(nskb) + doffset;
4040 		}
4041 	} while ((offset += len) < head_skb->len);
4042 
4043 	/* Some callers want to get the end of the list.
4044 	 * Put it in segs->prev to avoid walking the list.
4045 	 * (see validate_xmit_skb_list() for example)
4046 	 */
4047 	segs->prev = tail;
4048 
4049 	if (partial_segs) {
4050 		struct sk_buff *iter;
4051 		int type = skb_shinfo(head_skb)->gso_type;
4052 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4053 
4054 		/* Update type to add partial and then remove dodgy if set */
4055 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4056 		type &= ~SKB_GSO_DODGY;
4057 
4058 		/* Update GSO info and prepare to start updating headers on
4059 		 * our way back down the stack of protocols.
4060 		 */
4061 		for (iter = segs; iter; iter = iter->next) {
4062 			skb_shinfo(iter)->gso_size = gso_size;
4063 			skb_shinfo(iter)->gso_segs = partial_segs;
4064 			skb_shinfo(iter)->gso_type = type;
4065 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4066 		}
4067 
4068 		if (tail->len - doffset <= gso_size)
4069 			skb_shinfo(tail)->gso_size = 0;
4070 		else if (tail != segs)
4071 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4072 	}
4073 
4074 	/* Following permits correct backpressure, for protocols
4075 	 * using skb_set_owner_w().
4076 	 * Idea is to tranfert ownership from head_skb to last segment.
4077 	 */
4078 	if (head_skb->destructor == sock_wfree) {
4079 		swap(tail->truesize, head_skb->truesize);
4080 		swap(tail->destructor, head_skb->destructor);
4081 		swap(tail->sk, head_skb->sk);
4082 	}
4083 	return segs;
4084 
4085 err:
4086 	kfree_skb_list(segs);
4087 	return ERR_PTR(err);
4088 }
4089 EXPORT_SYMBOL_GPL(skb_segment);
4090 
4091 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4092 {
4093 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4094 	unsigned int offset = skb_gro_offset(skb);
4095 	unsigned int headlen = skb_headlen(skb);
4096 	unsigned int len = skb_gro_len(skb);
4097 	unsigned int delta_truesize;
4098 	struct sk_buff *lp;
4099 
4100 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4101 		return -E2BIG;
4102 
4103 	lp = NAPI_GRO_CB(p)->last;
4104 	pinfo = skb_shinfo(lp);
4105 
4106 	if (headlen <= offset) {
4107 		skb_frag_t *frag;
4108 		skb_frag_t *frag2;
4109 		int i = skbinfo->nr_frags;
4110 		int nr_frags = pinfo->nr_frags + i;
4111 
4112 		if (nr_frags > MAX_SKB_FRAGS)
4113 			goto merge;
4114 
4115 		offset -= headlen;
4116 		pinfo->nr_frags = nr_frags;
4117 		skbinfo->nr_frags = 0;
4118 
4119 		frag = pinfo->frags + nr_frags;
4120 		frag2 = skbinfo->frags + i;
4121 		do {
4122 			*--frag = *--frag2;
4123 		} while (--i);
4124 
4125 		skb_frag_off_add(frag, offset);
4126 		skb_frag_size_sub(frag, offset);
4127 
4128 		/* all fragments truesize : remove (head size + sk_buff) */
4129 		delta_truesize = skb->truesize -
4130 				 SKB_TRUESIZE(skb_end_offset(skb));
4131 
4132 		skb->truesize -= skb->data_len;
4133 		skb->len -= skb->data_len;
4134 		skb->data_len = 0;
4135 
4136 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4137 		goto done;
4138 	} else if (skb->head_frag) {
4139 		int nr_frags = pinfo->nr_frags;
4140 		skb_frag_t *frag = pinfo->frags + nr_frags;
4141 		struct page *page = virt_to_head_page(skb->head);
4142 		unsigned int first_size = headlen - offset;
4143 		unsigned int first_offset;
4144 
4145 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4146 			goto merge;
4147 
4148 		first_offset = skb->data -
4149 			       (unsigned char *)page_address(page) +
4150 			       offset;
4151 
4152 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4153 
4154 		__skb_frag_set_page(frag, page);
4155 		skb_frag_off_set(frag, first_offset);
4156 		skb_frag_size_set(frag, first_size);
4157 
4158 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4159 		/* We dont need to clear skbinfo->nr_frags here */
4160 
4161 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4162 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4163 		goto done;
4164 	}
4165 
4166 merge:
4167 	delta_truesize = skb->truesize;
4168 	if (offset > headlen) {
4169 		unsigned int eat = offset - headlen;
4170 
4171 		skb_frag_off_add(&skbinfo->frags[0], eat);
4172 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4173 		skb->data_len -= eat;
4174 		skb->len -= eat;
4175 		offset = headlen;
4176 	}
4177 
4178 	__skb_pull(skb, offset);
4179 
4180 	if (NAPI_GRO_CB(p)->last == p)
4181 		skb_shinfo(p)->frag_list = skb;
4182 	else
4183 		NAPI_GRO_CB(p)->last->next = skb;
4184 	NAPI_GRO_CB(p)->last = skb;
4185 	__skb_header_release(skb);
4186 	lp = p;
4187 
4188 done:
4189 	NAPI_GRO_CB(p)->count++;
4190 	p->data_len += len;
4191 	p->truesize += delta_truesize;
4192 	p->len += len;
4193 	if (lp != p) {
4194 		lp->data_len += len;
4195 		lp->truesize += delta_truesize;
4196 		lp->len += len;
4197 	}
4198 	NAPI_GRO_CB(skb)->same_flow = 1;
4199 	return 0;
4200 }
4201 
4202 #ifdef CONFIG_SKB_EXTENSIONS
4203 #define SKB_EXT_ALIGN_VALUE	8
4204 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4205 
4206 static const u8 skb_ext_type_len[] = {
4207 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4208 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4209 #endif
4210 #ifdef CONFIG_XFRM
4211 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4212 #endif
4213 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4214 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4215 #endif
4216 #if IS_ENABLED(CONFIG_MPTCP)
4217 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4218 #endif
4219 };
4220 
4221 static __always_inline unsigned int skb_ext_total_length(void)
4222 {
4223 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4224 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4225 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4226 #endif
4227 #ifdef CONFIG_XFRM
4228 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4229 #endif
4230 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4231 		skb_ext_type_len[TC_SKB_EXT] +
4232 #endif
4233 #if IS_ENABLED(CONFIG_MPTCP)
4234 		skb_ext_type_len[SKB_EXT_MPTCP] +
4235 #endif
4236 		0;
4237 }
4238 
4239 static void skb_extensions_init(void)
4240 {
4241 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4242 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4243 
4244 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4245 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4246 					     0,
4247 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4248 					     NULL);
4249 }
4250 #else
4251 static void skb_extensions_init(void) {}
4252 #endif
4253 
4254 void __init skb_init(void)
4255 {
4256 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4257 					      sizeof(struct sk_buff),
4258 					      0,
4259 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4260 					      offsetof(struct sk_buff, cb),
4261 					      sizeof_field(struct sk_buff, cb),
4262 					      NULL);
4263 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4264 						sizeof(struct sk_buff_fclones),
4265 						0,
4266 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4267 						NULL);
4268 	skb_extensions_init();
4269 }
4270 
4271 static int
4272 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4273 	       unsigned int recursion_level)
4274 {
4275 	int start = skb_headlen(skb);
4276 	int i, copy = start - offset;
4277 	struct sk_buff *frag_iter;
4278 	int elt = 0;
4279 
4280 	if (unlikely(recursion_level >= 24))
4281 		return -EMSGSIZE;
4282 
4283 	if (copy > 0) {
4284 		if (copy > len)
4285 			copy = len;
4286 		sg_set_buf(sg, skb->data + offset, copy);
4287 		elt++;
4288 		if ((len -= copy) == 0)
4289 			return elt;
4290 		offset += copy;
4291 	}
4292 
4293 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4294 		int end;
4295 
4296 		WARN_ON(start > offset + len);
4297 
4298 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4299 		if ((copy = end - offset) > 0) {
4300 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4301 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4302 				return -EMSGSIZE;
4303 
4304 			if (copy > len)
4305 				copy = len;
4306 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4307 				    skb_frag_off(frag) + offset - start);
4308 			elt++;
4309 			if (!(len -= copy))
4310 				return elt;
4311 			offset += copy;
4312 		}
4313 		start = end;
4314 	}
4315 
4316 	skb_walk_frags(skb, frag_iter) {
4317 		int end, ret;
4318 
4319 		WARN_ON(start > offset + len);
4320 
4321 		end = start + frag_iter->len;
4322 		if ((copy = end - offset) > 0) {
4323 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4324 				return -EMSGSIZE;
4325 
4326 			if (copy > len)
4327 				copy = len;
4328 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4329 					      copy, recursion_level + 1);
4330 			if (unlikely(ret < 0))
4331 				return ret;
4332 			elt += ret;
4333 			if ((len -= copy) == 0)
4334 				return elt;
4335 			offset += copy;
4336 		}
4337 		start = end;
4338 	}
4339 	BUG_ON(len);
4340 	return elt;
4341 }
4342 
4343 /**
4344  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4345  *	@skb: Socket buffer containing the buffers to be mapped
4346  *	@sg: The scatter-gather list to map into
4347  *	@offset: The offset into the buffer's contents to start mapping
4348  *	@len: Length of buffer space to be mapped
4349  *
4350  *	Fill the specified scatter-gather list with mappings/pointers into a
4351  *	region of the buffer space attached to a socket buffer. Returns either
4352  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4353  *	could not fit.
4354  */
4355 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4356 {
4357 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4358 
4359 	if (nsg <= 0)
4360 		return nsg;
4361 
4362 	sg_mark_end(&sg[nsg - 1]);
4363 
4364 	return nsg;
4365 }
4366 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4367 
4368 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4369  * sglist without mark the sg which contain last skb data as the end.
4370  * So the caller can mannipulate sg list as will when padding new data after
4371  * the first call without calling sg_unmark_end to expend sg list.
4372  *
4373  * Scenario to use skb_to_sgvec_nomark:
4374  * 1. sg_init_table
4375  * 2. skb_to_sgvec_nomark(payload1)
4376  * 3. skb_to_sgvec_nomark(payload2)
4377  *
4378  * This is equivalent to:
4379  * 1. sg_init_table
4380  * 2. skb_to_sgvec(payload1)
4381  * 3. sg_unmark_end
4382  * 4. skb_to_sgvec(payload2)
4383  *
4384  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4385  * is more preferable.
4386  */
4387 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4388 			int offset, int len)
4389 {
4390 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4391 }
4392 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4393 
4394 
4395 
4396 /**
4397  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4398  *	@skb: The socket buffer to check.
4399  *	@tailbits: Amount of trailing space to be added
4400  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4401  *
4402  *	Make sure that the data buffers attached to a socket buffer are
4403  *	writable. If they are not, private copies are made of the data buffers
4404  *	and the socket buffer is set to use these instead.
4405  *
4406  *	If @tailbits is given, make sure that there is space to write @tailbits
4407  *	bytes of data beyond current end of socket buffer.  @trailer will be
4408  *	set to point to the skb in which this space begins.
4409  *
4410  *	The number of scatterlist elements required to completely map the
4411  *	COW'd and extended socket buffer will be returned.
4412  */
4413 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4414 {
4415 	int copyflag;
4416 	int elt;
4417 	struct sk_buff *skb1, **skb_p;
4418 
4419 	/* If skb is cloned or its head is paged, reallocate
4420 	 * head pulling out all the pages (pages are considered not writable
4421 	 * at the moment even if they are anonymous).
4422 	 */
4423 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4424 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4425 		return -ENOMEM;
4426 
4427 	/* Easy case. Most of packets will go this way. */
4428 	if (!skb_has_frag_list(skb)) {
4429 		/* A little of trouble, not enough of space for trailer.
4430 		 * This should not happen, when stack is tuned to generate
4431 		 * good frames. OK, on miss we reallocate and reserve even more
4432 		 * space, 128 bytes is fair. */
4433 
4434 		if (skb_tailroom(skb) < tailbits &&
4435 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4436 			return -ENOMEM;
4437 
4438 		/* Voila! */
4439 		*trailer = skb;
4440 		return 1;
4441 	}
4442 
4443 	/* Misery. We are in troubles, going to mincer fragments... */
4444 
4445 	elt = 1;
4446 	skb_p = &skb_shinfo(skb)->frag_list;
4447 	copyflag = 0;
4448 
4449 	while ((skb1 = *skb_p) != NULL) {
4450 		int ntail = 0;
4451 
4452 		/* The fragment is partially pulled by someone,
4453 		 * this can happen on input. Copy it and everything
4454 		 * after it. */
4455 
4456 		if (skb_shared(skb1))
4457 			copyflag = 1;
4458 
4459 		/* If the skb is the last, worry about trailer. */
4460 
4461 		if (skb1->next == NULL && tailbits) {
4462 			if (skb_shinfo(skb1)->nr_frags ||
4463 			    skb_has_frag_list(skb1) ||
4464 			    skb_tailroom(skb1) < tailbits)
4465 				ntail = tailbits + 128;
4466 		}
4467 
4468 		if (copyflag ||
4469 		    skb_cloned(skb1) ||
4470 		    ntail ||
4471 		    skb_shinfo(skb1)->nr_frags ||
4472 		    skb_has_frag_list(skb1)) {
4473 			struct sk_buff *skb2;
4474 
4475 			/* Fuck, we are miserable poor guys... */
4476 			if (ntail == 0)
4477 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4478 			else
4479 				skb2 = skb_copy_expand(skb1,
4480 						       skb_headroom(skb1),
4481 						       ntail,
4482 						       GFP_ATOMIC);
4483 			if (unlikely(skb2 == NULL))
4484 				return -ENOMEM;
4485 
4486 			if (skb1->sk)
4487 				skb_set_owner_w(skb2, skb1->sk);
4488 
4489 			/* Looking around. Are we still alive?
4490 			 * OK, link new skb, drop old one */
4491 
4492 			skb2->next = skb1->next;
4493 			*skb_p = skb2;
4494 			kfree_skb(skb1);
4495 			skb1 = skb2;
4496 		}
4497 		elt++;
4498 		*trailer = skb1;
4499 		skb_p = &skb1->next;
4500 	}
4501 
4502 	return elt;
4503 }
4504 EXPORT_SYMBOL_GPL(skb_cow_data);
4505 
4506 static void sock_rmem_free(struct sk_buff *skb)
4507 {
4508 	struct sock *sk = skb->sk;
4509 
4510 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4511 }
4512 
4513 static void skb_set_err_queue(struct sk_buff *skb)
4514 {
4515 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4516 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4517 	 */
4518 	skb->pkt_type = PACKET_OUTGOING;
4519 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4520 }
4521 
4522 /*
4523  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4524  */
4525 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4526 {
4527 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4528 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4529 		return -ENOMEM;
4530 
4531 	skb_orphan(skb);
4532 	skb->sk = sk;
4533 	skb->destructor = sock_rmem_free;
4534 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4535 	skb_set_err_queue(skb);
4536 
4537 	/* before exiting rcu section, make sure dst is refcounted */
4538 	skb_dst_force(skb);
4539 
4540 	skb_queue_tail(&sk->sk_error_queue, skb);
4541 	if (!sock_flag(sk, SOCK_DEAD))
4542 		sk->sk_error_report(sk);
4543 	return 0;
4544 }
4545 EXPORT_SYMBOL(sock_queue_err_skb);
4546 
4547 static bool is_icmp_err_skb(const struct sk_buff *skb)
4548 {
4549 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4550 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4551 }
4552 
4553 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4554 {
4555 	struct sk_buff_head *q = &sk->sk_error_queue;
4556 	struct sk_buff *skb, *skb_next = NULL;
4557 	bool icmp_next = false;
4558 	unsigned long flags;
4559 
4560 	spin_lock_irqsave(&q->lock, flags);
4561 	skb = __skb_dequeue(q);
4562 	if (skb && (skb_next = skb_peek(q))) {
4563 		icmp_next = is_icmp_err_skb(skb_next);
4564 		if (icmp_next)
4565 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4566 	}
4567 	spin_unlock_irqrestore(&q->lock, flags);
4568 
4569 	if (is_icmp_err_skb(skb) && !icmp_next)
4570 		sk->sk_err = 0;
4571 
4572 	if (skb_next)
4573 		sk->sk_error_report(sk);
4574 
4575 	return skb;
4576 }
4577 EXPORT_SYMBOL(sock_dequeue_err_skb);
4578 
4579 /**
4580  * skb_clone_sk - create clone of skb, and take reference to socket
4581  * @skb: the skb to clone
4582  *
4583  * This function creates a clone of a buffer that holds a reference on
4584  * sk_refcnt.  Buffers created via this function are meant to be
4585  * returned using sock_queue_err_skb, or free via kfree_skb.
4586  *
4587  * When passing buffers allocated with this function to sock_queue_err_skb
4588  * it is necessary to wrap the call with sock_hold/sock_put in order to
4589  * prevent the socket from being released prior to being enqueued on
4590  * the sk_error_queue.
4591  */
4592 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4593 {
4594 	struct sock *sk = skb->sk;
4595 	struct sk_buff *clone;
4596 
4597 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4598 		return NULL;
4599 
4600 	clone = skb_clone(skb, GFP_ATOMIC);
4601 	if (!clone) {
4602 		sock_put(sk);
4603 		return NULL;
4604 	}
4605 
4606 	clone->sk = sk;
4607 	clone->destructor = sock_efree;
4608 
4609 	return clone;
4610 }
4611 EXPORT_SYMBOL(skb_clone_sk);
4612 
4613 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4614 					struct sock *sk,
4615 					int tstype,
4616 					bool opt_stats)
4617 {
4618 	struct sock_exterr_skb *serr;
4619 	int err;
4620 
4621 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4622 
4623 	serr = SKB_EXT_ERR(skb);
4624 	memset(serr, 0, sizeof(*serr));
4625 	serr->ee.ee_errno = ENOMSG;
4626 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4627 	serr->ee.ee_info = tstype;
4628 	serr->opt_stats = opt_stats;
4629 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4630 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4631 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4632 		if (sk->sk_protocol == IPPROTO_TCP &&
4633 		    sk->sk_type == SOCK_STREAM)
4634 			serr->ee.ee_data -= sk->sk_tskey;
4635 	}
4636 
4637 	err = sock_queue_err_skb(sk, skb);
4638 
4639 	if (err)
4640 		kfree_skb(skb);
4641 }
4642 
4643 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4644 {
4645 	bool ret;
4646 
4647 	if (likely(sysctl_tstamp_allow_data || tsonly))
4648 		return true;
4649 
4650 	read_lock_bh(&sk->sk_callback_lock);
4651 	ret = sk->sk_socket && sk->sk_socket->file &&
4652 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4653 	read_unlock_bh(&sk->sk_callback_lock);
4654 	return ret;
4655 }
4656 
4657 void skb_complete_tx_timestamp(struct sk_buff *skb,
4658 			       struct skb_shared_hwtstamps *hwtstamps)
4659 {
4660 	struct sock *sk = skb->sk;
4661 
4662 	if (!skb_may_tx_timestamp(sk, false))
4663 		goto err;
4664 
4665 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4666 	 * but only if the socket refcount is not zero.
4667 	 */
4668 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4669 		*skb_hwtstamps(skb) = *hwtstamps;
4670 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4671 		sock_put(sk);
4672 		return;
4673 	}
4674 
4675 err:
4676 	kfree_skb(skb);
4677 }
4678 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4679 
4680 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4681 		     struct skb_shared_hwtstamps *hwtstamps,
4682 		     struct sock *sk, int tstype)
4683 {
4684 	struct sk_buff *skb;
4685 	bool tsonly, opt_stats = false;
4686 
4687 	if (!sk)
4688 		return;
4689 
4690 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4691 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4692 		return;
4693 
4694 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4695 	if (!skb_may_tx_timestamp(sk, tsonly))
4696 		return;
4697 
4698 	if (tsonly) {
4699 #ifdef CONFIG_INET
4700 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4701 		    sk->sk_protocol == IPPROTO_TCP &&
4702 		    sk->sk_type == SOCK_STREAM) {
4703 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4704 			opt_stats = true;
4705 		} else
4706 #endif
4707 			skb = alloc_skb(0, GFP_ATOMIC);
4708 	} else {
4709 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4710 	}
4711 	if (!skb)
4712 		return;
4713 
4714 	if (tsonly) {
4715 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4716 					     SKBTX_ANY_TSTAMP;
4717 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4718 	}
4719 
4720 	if (hwtstamps)
4721 		*skb_hwtstamps(skb) = *hwtstamps;
4722 	else
4723 		skb->tstamp = ktime_get_real();
4724 
4725 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4726 }
4727 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4728 
4729 void skb_tstamp_tx(struct sk_buff *orig_skb,
4730 		   struct skb_shared_hwtstamps *hwtstamps)
4731 {
4732 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4733 			       SCM_TSTAMP_SND);
4734 }
4735 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4736 
4737 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4738 {
4739 	struct sock *sk = skb->sk;
4740 	struct sock_exterr_skb *serr;
4741 	int err = 1;
4742 
4743 	skb->wifi_acked_valid = 1;
4744 	skb->wifi_acked = acked;
4745 
4746 	serr = SKB_EXT_ERR(skb);
4747 	memset(serr, 0, sizeof(*serr));
4748 	serr->ee.ee_errno = ENOMSG;
4749 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4750 
4751 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4752 	 * but only if the socket refcount is not zero.
4753 	 */
4754 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4755 		err = sock_queue_err_skb(sk, skb);
4756 		sock_put(sk);
4757 	}
4758 	if (err)
4759 		kfree_skb(skb);
4760 }
4761 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4762 
4763 /**
4764  * skb_partial_csum_set - set up and verify partial csum values for packet
4765  * @skb: the skb to set
4766  * @start: the number of bytes after skb->data to start checksumming.
4767  * @off: the offset from start to place the checksum.
4768  *
4769  * For untrusted partially-checksummed packets, we need to make sure the values
4770  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4771  *
4772  * This function checks and sets those values and skb->ip_summed: if this
4773  * returns false you should drop the packet.
4774  */
4775 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4776 {
4777 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4778 	u32 csum_start = skb_headroom(skb) + (u32)start;
4779 
4780 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4781 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4782 				     start, off, skb_headroom(skb), skb_headlen(skb));
4783 		return false;
4784 	}
4785 	skb->ip_summed = CHECKSUM_PARTIAL;
4786 	skb->csum_start = csum_start;
4787 	skb->csum_offset = off;
4788 	skb_set_transport_header(skb, start);
4789 	return true;
4790 }
4791 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4792 
4793 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4794 			       unsigned int max)
4795 {
4796 	if (skb_headlen(skb) >= len)
4797 		return 0;
4798 
4799 	/* If we need to pullup then pullup to the max, so we
4800 	 * won't need to do it again.
4801 	 */
4802 	if (max > skb->len)
4803 		max = skb->len;
4804 
4805 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4806 		return -ENOMEM;
4807 
4808 	if (skb_headlen(skb) < len)
4809 		return -EPROTO;
4810 
4811 	return 0;
4812 }
4813 
4814 #define MAX_TCP_HDR_LEN (15 * 4)
4815 
4816 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4817 				      typeof(IPPROTO_IP) proto,
4818 				      unsigned int off)
4819 {
4820 	int err;
4821 
4822 	switch (proto) {
4823 	case IPPROTO_TCP:
4824 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4825 					  off + MAX_TCP_HDR_LEN);
4826 		if (!err && !skb_partial_csum_set(skb, off,
4827 						  offsetof(struct tcphdr,
4828 							   check)))
4829 			err = -EPROTO;
4830 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4831 
4832 	case IPPROTO_UDP:
4833 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4834 					  off + sizeof(struct udphdr));
4835 		if (!err && !skb_partial_csum_set(skb, off,
4836 						  offsetof(struct udphdr,
4837 							   check)))
4838 			err = -EPROTO;
4839 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4840 	}
4841 
4842 	return ERR_PTR(-EPROTO);
4843 }
4844 
4845 /* This value should be large enough to cover a tagged ethernet header plus
4846  * maximally sized IP and TCP or UDP headers.
4847  */
4848 #define MAX_IP_HDR_LEN 128
4849 
4850 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4851 {
4852 	unsigned int off;
4853 	bool fragment;
4854 	__sum16 *csum;
4855 	int err;
4856 
4857 	fragment = false;
4858 
4859 	err = skb_maybe_pull_tail(skb,
4860 				  sizeof(struct iphdr),
4861 				  MAX_IP_HDR_LEN);
4862 	if (err < 0)
4863 		goto out;
4864 
4865 	if (ip_is_fragment(ip_hdr(skb)))
4866 		fragment = true;
4867 
4868 	off = ip_hdrlen(skb);
4869 
4870 	err = -EPROTO;
4871 
4872 	if (fragment)
4873 		goto out;
4874 
4875 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4876 	if (IS_ERR(csum))
4877 		return PTR_ERR(csum);
4878 
4879 	if (recalculate)
4880 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4881 					   ip_hdr(skb)->daddr,
4882 					   skb->len - off,
4883 					   ip_hdr(skb)->protocol, 0);
4884 	err = 0;
4885 
4886 out:
4887 	return err;
4888 }
4889 
4890 /* This value should be large enough to cover a tagged ethernet header plus
4891  * an IPv6 header, all options, and a maximal TCP or UDP header.
4892  */
4893 #define MAX_IPV6_HDR_LEN 256
4894 
4895 #define OPT_HDR(type, skb, off) \
4896 	(type *)(skb_network_header(skb) + (off))
4897 
4898 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4899 {
4900 	int err;
4901 	u8 nexthdr;
4902 	unsigned int off;
4903 	unsigned int len;
4904 	bool fragment;
4905 	bool done;
4906 	__sum16 *csum;
4907 
4908 	fragment = false;
4909 	done = false;
4910 
4911 	off = sizeof(struct ipv6hdr);
4912 
4913 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4914 	if (err < 0)
4915 		goto out;
4916 
4917 	nexthdr = ipv6_hdr(skb)->nexthdr;
4918 
4919 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4920 	while (off <= len && !done) {
4921 		switch (nexthdr) {
4922 		case IPPROTO_DSTOPTS:
4923 		case IPPROTO_HOPOPTS:
4924 		case IPPROTO_ROUTING: {
4925 			struct ipv6_opt_hdr *hp;
4926 
4927 			err = skb_maybe_pull_tail(skb,
4928 						  off +
4929 						  sizeof(struct ipv6_opt_hdr),
4930 						  MAX_IPV6_HDR_LEN);
4931 			if (err < 0)
4932 				goto out;
4933 
4934 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4935 			nexthdr = hp->nexthdr;
4936 			off += ipv6_optlen(hp);
4937 			break;
4938 		}
4939 		case IPPROTO_AH: {
4940 			struct ip_auth_hdr *hp;
4941 
4942 			err = skb_maybe_pull_tail(skb,
4943 						  off +
4944 						  sizeof(struct ip_auth_hdr),
4945 						  MAX_IPV6_HDR_LEN);
4946 			if (err < 0)
4947 				goto out;
4948 
4949 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4950 			nexthdr = hp->nexthdr;
4951 			off += ipv6_authlen(hp);
4952 			break;
4953 		}
4954 		case IPPROTO_FRAGMENT: {
4955 			struct frag_hdr *hp;
4956 
4957 			err = skb_maybe_pull_tail(skb,
4958 						  off +
4959 						  sizeof(struct frag_hdr),
4960 						  MAX_IPV6_HDR_LEN);
4961 			if (err < 0)
4962 				goto out;
4963 
4964 			hp = OPT_HDR(struct frag_hdr, skb, off);
4965 
4966 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4967 				fragment = true;
4968 
4969 			nexthdr = hp->nexthdr;
4970 			off += sizeof(struct frag_hdr);
4971 			break;
4972 		}
4973 		default:
4974 			done = true;
4975 			break;
4976 		}
4977 	}
4978 
4979 	err = -EPROTO;
4980 
4981 	if (!done || fragment)
4982 		goto out;
4983 
4984 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4985 	if (IS_ERR(csum))
4986 		return PTR_ERR(csum);
4987 
4988 	if (recalculate)
4989 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4990 					 &ipv6_hdr(skb)->daddr,
4991 					 skb->len - off, nexthdr, 0);
4992 	err = 0;
4993 
4994 out:
4995 	return err;
4996 }
4997 
4998 /**
4999  * skb_checksum_setup - set up partial checksum offset
5000  * @skb: the skb to set up
5001  * @recalculate: if true the pseudo-header checksum will be recalculated
5002  */
5003 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5004 {
5005 	int err;
5006 
5007 	switch (skb->protocol) {
5008 	case htons(ETH_P_IP):
5009 		err = skb_checksum_setup_ipv4(skb, recalculate);
5010 		break;
5011 
5012 	case htons(ETH_P_IPV6):
5013 		err = skb_checksum_setup_ipv6(skb, recalculate);
5014 		break;
5015 
5016 	default:
5017 		err = -EPROTO;
5018 		break;
5019 	}
5020 
5021 	return err;
5022 }
5023 EXPORT_SYMBOL(skb_checksum_setup);
5024 
5025 /**
5026  * skb_checksum_maybe_trim - maybe trims the given skb
5027  * @skb: the skb to check
5028  * @transport_len: the data length beyond the network header
5029  *
5030  * Checks whether the given skb has data beyond the given transport length.
5031  * If so, returns a cloned skb trimmed to this transport length.
5032  * Otherwise returns the provided skb. Returns NULL in error cases
5033  * (e.g. transport_len exceeds skb length or out-of-memory).
5034  *
5035  * Caller needs to set the skb transport header and free any returned skb if it
5036  * differs from the provided skb.
5037  */
5038 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5039 					       unsigned int transport_len)
5040 {
5041 	struct sk_buff *skb_chk;
5042 	unsigned int len = skb_transport_offset(skb) + transport_len;
5043 	int ret;
5044 
5045 	if (skb->len < len)
5046 		return NULL;
5047 	else if (skb->len == len)
5048 		return skb;
5049 
5050 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5051 	if (!skb_chk)
5052 		return NULL;
5053 
5054 	ret = pskb_trim_rcsum(skb_chk, len);
5055 	if (ret) {
5056 		kfree_skb(skb_chk);
5057 		return NULL;
5058 	}
5059 
5060 	return skb_chk;
5061 }
5062 
5063 /**
5064  * skb_checksum_trimmed - validate checksum of an skb
5065  * @skb: the skb to check
5066  * @transport_len: the data length beyond the network header
5067  * @skb_chkf: checksum function to use
5068  *
5069  * Applies the given checksum function skb_chkf to the provided skb.
5070  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5071  *
5072  * If the skb has data beyond the given transport length, then a
5073  * trimmed & cloned skb is checked and returned.
5074  *
5075  * Caller needs to set the skb transport header and free any returned skb if it
5076  * differs from the provided skb.
5077  */
5078 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5079 				     unsigned int transport_len,
5080 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5081 {
5082 	struct sk_buff *skb_chk;
5083 	unsigned int offset = skb_transport_offset(skb);
5084 	__sum16 ret;
5085 
5086 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5087 	if (!skb_chk)
5088 		goto err;
5089 
5090 	if (!pskb_may_pull(skb_chk, offset))
5091 		goto err;
5092 
5093 	skb_pull_rcsum(skb_chk, offset);
5094 	ret = skb_chkf(skb_chk);
5095 	skb_push_rcsum(skb_chk, offset);
5096 
5097 	if (ret)
5098 		goto err;
5099 
5100 	return skb_chk;
5101 
5102 err:
5103 	if (skb_chk && skb_chk != skb)
5104 		kfree_skb(skb_chk);
5105 
5106 	return NULL;
5107 
5108 }
5109 EXPORT_SYMBOL(skb_checksum_trimmed);
5110 
5111 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5112 {
5113 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5114 			     skb->dev->name);
5115 }
5116 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5117 
5118 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5119 {
5120 	if (head_stolen) {
5121 		skb_release_head_state(skb);
5122 		kmem_cache_free(skbuff_head_cache, skb);
5123 	} else {
5124 		__kfree_skb(skb);
5125 	}
5126 }
5127 EXPORT_SYMBOL(kfree_skb_partial);
5128 
5129 /**
5130  * skb_try_coalesce - try to merge skb to prior one
5131  * @to: prior buffer
5132  * @from: buffer to add
5133  * @fragstolen: pointer to boolean
5134  * @delta_truesize: how much more was allocated than was requested
5135  */
5136 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5137 		      bool *fragstolen, int *delta_truesize)
5138 {
5139 	struct skb_shared_info *to_shinfo, *from_shinfo;
5140 	int i, delta, len = from->len;
5141 
5142 	*fragstolen = false;
5143 
5144 	if (skb_cloned(to))
5145 		return false;
5146 
5147 	if (len <= skb_tailroom(to)) {
5148 		if (len)
5149 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5150 		*delta_truesize = 0;
5151 		return true;
5152 	}
5153 
5154 	to_shinfo = skb_shinfo(to);
5155 	from_shinfo = skb_shinfo(from);
5156 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5157 		return false;
5158 	if (skb_zcopy(to) || skb_zcopy(from))
5159 		return false;
5160 
5161 	if (skb_headlen(from) != 0) {
5162 		struct page *page;
5163 		unsigned int offset;
5164 
5165 		if (to_shinfo->nr_frags +
5166 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5167 			return false;
5168 
5169 		if (skb_head_is_locked(from))
5170 			return false;
5171 
5172 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5173 
5174 		page = virt_to_head_page(from->head);
5175 		offset = from->data - (unsigned char *)page_address(page);
5176 
5177 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5178 				   page, offset, skb_headlen(from));
5179 		*fragstolen = true;
5180 	} else {
5181 		if (to_shinfo->nr_frags +
5182 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5183 			return false;
5184 
5185 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5186 	}
5187 
5188 	WARN_ON_ONCE(delta < len);
5189 
5190 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5191 	       from_shinfo->frags,
5192 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5193 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5194 
5195 	if (!skb_cloned(from))
5196 		from_shinfo->nr_frags = 0;
5197 
5198 	/* if the skb is not cloned this does nothing
5199 	 * since we set nr_frags to 0.
5200 	 */
5201 	for (i = 0; i < from_shinfo->nr_frags; i++)
5202 		__skb_frag_ref(&from_shinfo->frags[i]);
5203 
5204 	to->truesize += delta;
5205 	to->len += len;
5206 	to->data_len += len;
5207 
5208 	*delta_truesize = delta;
5209 	return true;
5210 }
5211 EXPORT_SYMBOL(skb_try_coalesce);
5212 
5213 /**
5214  * skb_scrub_packet - scrub an skb
5215  *
5216  * @skb: buffer to clean
5217  * @xnet: packet is crossing netns
5218  *
5219  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5220  * into/from a tunnel. Some information have to be cleared during these
5221  * operations.
5222  * skb_scrub_packet can also be used to clean a skb before injecting it in
5223  * another namespace (@xnet == true). We have to clear all information in the
5224  * skb that could impact namespace isolation.
5225  */
5226 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5227 {
5228 	skb->pkt_type = PACKET_HOST;
5229 	skb->skb_iif = 0;
5230 	skb->ignore_df = 0;
5231 	skb_dst_drop(skb);
5232 	skb_ext_reset(skb);
5233 	nf_reset_ct(skb);
5234 	nf_reset_trace(skb);
5235 
5236 #ifdef CONFIG_NET_SWITCHDEV
5237 	skb->offload_fwd_mark = 0;
5238 	skb->offload_l3_fwd_mark = 0;
5239 #endif
5240 
5241 	if (!xnet)
5242 		return;
5243 
5244 	ipvs_reset(skb);
5245 	skb->mark = 0;
5246 	skb->tstamp = 0;
5247 }
5248 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5249 
5250 /**
5251  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5252  *
5253  * @skb: GSO skb
5254  *
5255  * skb_gso_transport_seglen is used to determine the real size of the
5256  * individual segments, including Layer4 headers (TCP/UDP).
5257  *
5258  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5259  */
5260 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5261 {
5262 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5263 	unsigned int thlen = 0;
5264 
5265 	if (skb->encapsulation) {
5266 		thlen = skb_inner_transport_header(skb) -
5267 			skb_transport_header(skb);
5268 
5269 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5270 			thlen += inner_tcp_hdrlen(skb);
5271 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5272 		thlen = tcp_hdrlen(skb);
5273 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5274 		thlen = sizeof(struct sctphdr);
5275 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5276 		thlen = sizeof(struct udphdr);
5277 	}
5278 	/* UFO sets gso_size to the size of the fragmentation
5279 	 * payload, i.e. the size of the L4 (UDP) header is already
5280 	 * accounted for.
5281 	 */
5282 	return thlen + shinfo->gso_size;
5283 }
5284 
5285 /**
5286  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5287  *
5288  * @skb: GSO skb
5289  *
5290  * skb_gso_network_seglen is used to determine the real size of the
5291  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5292  *
5293  * The MAC/L2 header is not accounted for.
5294  */
5295 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5296 {
5297 	unsigned int hdr_len = skb_transport_header(skb) -
5298 			       skb_network_header(skb);
5299 
5300 	return hdr_len + skb_gso_transport_seglen(skb);
5301 }
5302 
5303 /**
5304  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5305  *
5306  * @skb: GSO skb
5307  *
5308  * skb_gso_mac_seglen is used to determine the real size of the
5309  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5310  * headers (TCP/UDP).
5311  */
5312 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5313 {
5314 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5315 
5316 	return hdr_len + skb_gso_transport_seglen(skb);
5317 }
5318 
5319 /**
5320  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5321  *
5322  * There are a couple of instances where we have a GSO skb, and we
5323  * want to determine what size it would be after it is segmented.
5324  *
5325  * We might want to check:
5326  * -    L3+L4+payload size (e.g. IP forwarding)
5327  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5328  *
5329  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5330  *
5331  * @skb: GSO skb
5332  *
5333  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5334  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5335  *
5336  * @max_len: The maximum permissible length.
5337  *
5338  * Returns true if the segmented length <= max length.
5339  */
5340 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5341 				      unsigned int seg_len,
5342 				      unsigned int max_len) {
5343 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5344 	const struct sk_buff *iter;
5345 
5346 	if (shinfo->gso_size != GSO_BY_FRAGS)
5347 		return seg_len <= max_len;
5348 
5349 	/* Undo this so we can re-use header sizes */
5350 	seg_len -= GSO_BY_FRAGS;
5351 
5352 	skb_walk_frags(skb, iter) {
5353 		if (seg_len + skb_headlen(iter) > max_len)
5354 			return false;
5355 	}
5356 
5357 	return true;
5358 }
5359 
5360 /**
5361  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5362  *
5363  * @skb: GSO skb
5364  * @mtu: MTU to validate against
5365  *
5366  * skb_gso_validate_network_len validates if a given skb will fit a
5367  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5368  * payload.
5369  */
5370 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5371 {
5372 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5373 }
5374 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5375 
5376 /**
5377  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5378  *
5379  * @skb: GSO skb
5380  * @len: length to validate against
5381  *
5382  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5383  * length once split, including L2, L3 and L4 headers and the payload.
5384  */
5385 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5386 {
5387 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5388 }
5389 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5390 
5391 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5392 {
5393 	int mac_len, meta_len;
5394 	void *meta;
5395 
5396 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5397 		kfree_skb(skb);
5398 		return NULL;
5399 	}
5400 
5401 	mac_len = skb->data - skb_mac_header(skb);
5402 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5403 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5404 			mac_len - VLAN_HLEN - ETH_TLEN);
5405 	}
5406 
5407 	meta_len = skb_metadata_len(skb);
5408 	if (meta_len) {
5409 		meta = skb_metadata_end(skb) - meta_len;
5410 		memmove(meta + VLAN_HLEN, meta, meta_len);
5411 	}
5412 
5413 	skb->mac_header += VLAN_HLEN;
5414 	return skb;
5415 }
5416 
5417 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5418 {
5419 	struct vlan_hdr *vhdr;
5420 	u16 vlan_tci;
5421 
5422 	if (unlikely(skb_vlan_tag_present(skb))) {
5423 		/* vlan_tci is already set-up so leave this for another time */
5424 		return skb;
5425 	}
5426 
5427 	skb = skb_share_check(skb, GFP_ATOMIC);
5428 	if (unlikely(!skb))
5429 		goto err_free;
5430 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5431 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5432 		goto err_free;
5433 
5434 	vhdr = (struct vlan_hdr *)skb->data;
5435 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5436 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5437 
5438 	skb_pull_rcsum(skb, VLAN_HLEN);
5439 	vlan_set_encap_proto(skb, vhdr);
5440 
5441 	skb = skb_reorder_vlan_header(skb);
5442 	if (unlikely(!skb))
5443 		goto err_free;
5444 
5445 	skb_reset_network_header(skb);
5446 	if (!skb_transport_header_was_set(skb))
5447 		skb_reset_transport_header(skb);
5448 	skb_reset_mac_len(skb);
5449 
5450 	return skb;
5451 
5452 err_free:
5453 	kfree_skb(skb);
5454 	return NULL;
5455 }
5456 EXPORT_SYMBOL(skb_vlan_untag);
5457 
5458 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5459 {
5460 	if (!pskb_may_pull(skb, write_len))
5461 		return -ENOMEM;
5462 
5463 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5464 		return 0;
5465 
5466 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5467 }
5468 EXPORT_SYMBOL(skb_ensure_writable);
5469 
5470 /* remove VLAN header from packet and update csum accordingly.
5471  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5472  */
5473 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5474 {
5475 	struct vlan_hdr *vhdr;
5476 	int offset = skb->data - skb_mac_header(skb);
5477 	int err;
5478 
5479 	if (WARN_ONCE(offset,
5480 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5481 		      offset)) {
5482 		return -EINVAL;
5483 	}
5484 
5485 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5486 	if (unlikely(err))
5487 		return err;
5488 
5489 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5490 
5491 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5492 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5493 
5494 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5495 	__skb_pull(skb, VLAN_HLEN);
5496 
5497 	vlan_set_encap_proto(skb, vhdr);
5498 	skb->mac_header += VLAN_HLEN;
5499 
5500 	if (skb_network_offset(skb) < ETH_HLEN)
5501 		skb_set_network_header(skb, ETH_HLEN);
5502 
5503 	skb_reset_mac_len(skb);
5504 
5505 	return err;
5506 }
5507 EXPORT_SYMBOL(__skb_vlan_pop);
5508 
5509 /* Pop a vlan tag either from hwaccel or from payload.
5510  * Expects skb->data at mac header.
5511  */
5512 int skb_vlan_pop(struct sk_buff *skb)
5513 {
5514 	u16 vlan_tci;
5515 	__be16 vlan_proto;
5516 	int err;
5517 
5518 	if (likely(skb_vlan_tag_present(skb))) {
5519 		__vlan_hwaccel_clear_tag(skb);
5520 	} else {
5521 		if (unlikely(!eth_type_vlan(skb->protocol)))
5522 			return 0;
5523 
5524 		err = __skb_vlan_pop(skb, &vlan_tci);
5525 		if (err)
5526 			return err;
5527 	}
5528 	/* move next vlan tag to hw accel tag */
5529 	if (likely(!eth_type_vlan(skb->protocol)))
5530 		return 0;
5531 
5532 	vlan_proto = skb->protocol;
5533 	err = __skb_vlan_pop(skb, &vlan_tci);
5534 	if (unlikely(err))
5535 		return err;
5536 
5537 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5538 	return 0;
5539 }
5540 EXPORT_SYMBOL(skb_vlan_pop);
5541 
5542 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5543  * Expects skb->data at mac header.
5544  */
5545 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5546 {
5547 	if (skb_vlan_tag_present(skb)) {
5548 		int offset = skb->data - skb_mac_header(skb);
5549 		int err;
5550 
5551 		if (WARN_ONCE(offset,
5552 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5553 			      offset)) {
5554 			return -EINVAL;
5555 		}
5556 
5557 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5558 					skb_vlan_tag_get(skb));
5559 		if (err)
5560 			return err;
5561 
5562 		skb->protocol = skb->vlan_proto;
5563 		skb->mac_len += VLAN_HLEN;
5564 
5565 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5566 	}
5567 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5568 	return 0;
5569 }
5570 EXPORT_SYMBOL(skb_vlan_push);
5571 
5572 /**
5573  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5574  *
5575  * @skb: Socket buffer to modify
5576  *
5577  * Drop the Ethernet header of @skb.
5578  *
5579  * Expects that skb->data points to the mac header and that no VLAN tags are
5580  * present.
5581  *
5582  * Returns 0 on success, -errno otherwise.
5583  */
5584 int skb_eth_pop(struct sk_buff *skb)
5585 {
5586 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5587 	    skb_network_offset(skb) < ETH_HLEN)
5588 		return -EPROTO;
5589 
5590 	skb_pull_rcsum(skb, ETH_HLEN);
5591 	skb_reset_mac_header(skb);
5592 	skb_reset_mac_len(skb);
5593 
5594 	return 0;
5595 }
5596 EXPORT_SYMBOL(skb_eth_pop);
5597 
5598 /**
5599  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5600  *
5601  * @skb: Socket buffer to modify
5602  * @dst: Destination MAC address of the new header
5603  * @src: Source MAC address of the new header
5604  *
5605  * Prepend @skb with a new Ethernet header.
5606  *
5607  * Expects that skb->data points to the mac header, which must be empty.
5608  *
5609  * Returns 0 on success, -errno otherwise.
5610  */
5611 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5612 		 const unsigned char *src)
5613 {
5614 	struct ethhdr *eth;
5615 	int err;
5616 
5617 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5618 		return -EPROTO;
5619 
5620 	err = skb_cow_head(skb, sizeof(*eth));
5621 	if (err < 0)
5622 		return err;
5623 
5624 	skb_push(skb, sizeof(*eth));
5625 	skb_reset_mac_header(skb);
5626 	skb_reset_mac_len(skb);
5627 
5628 	eth = eth_hdr(skb);
5629 	ether_addr_copy(eth->h_dest, dst);
5630 	ether_addr_copy(eth->h_source, src);
5631 	eth->h_proto = skb->protocol;
5632 
5633 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5634 
5635 	return 0;
5636 }
5637 EXPORT_SYMBOL(skb_eth_push);
5638 
5639 /* Update the ethertype of hdr and the skb csum value if required. */
5640 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5641 			     __be16 ethertype)
5642 {
5643 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5644 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5645 
5646 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5647 	}
5648 
5649 	hdr->h_proto = ethertype;
5650 }
5651 
5652 /**
5653  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5654  *                   the packet
5655  *
5656  * @skb: buffer
5657  * @mpls_lse: MPLS label stack entry to push
5658  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5659  * @mac_len: length of the MAC header
5660  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5661  *            ethernet
5662  *
5663  * Expects skb->data at mac header.
5664  *
5665  * Returns 0 on success, -errno otherwise.
5666  */
5667 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5668 		  int mac_len, bool ethernet)
5669 {
5670 	struct mpls_shim_hdr *lse;
5671 	int err;
5672 
5673 	if (unlikely(!eth_p_mpls(mpls_proto)))
5674 		return -EINVAL;
5675 
5676 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5677 	if (skb->encapsulation)
5678 		return -EINVAL;
5679 
5680 	err = skb_cow_head(skb, MPLS_HLEN);
5681 	if (unlikely(err))
5682 		return err;
5683 
5684 	if (!skb->inner_protocol) {
5685 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5686 		skb_set_inner_protocol(skb, skb->protocol);
5687 	}
5688 
5689 	skb_push(skb, MPLS_HLEN);
5690 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5691 		mac_len);
5692 	skb_reset_mac_header(skb);
5693 	skb_set_network_header(skb, mac_len);
5694 	skb_reset_mac_len(skb);
5695 
5696 	lse = mpls_hdr(skb);
5697 	lse->label_stack_entry = mpls_lse;
5698 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5699 
5700 	if (ethernet && mac_len >= ETH_HLEN)
5701 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5702 	skb->protocol = mpls_proto;
5703 
5704 	return 0;
5705 }
5706 EXPORT_SYMBOL_GPL(skb_mpls_push);
5707 
5708 /**
5709  * skb_mpls_pop() - pop the outermost MPLS header
5710  *
5711  * @skb: buffer
5712  * @next_proto: ethertype of header after popped MPLS header
5713  * @mac_len: length of the MAC header
5714  * @ethernet: flag to indicate if the packet is ethernet
5715  *
5716  * Expects skb->data at mac header.
5717  *
5718  * Returns 0 on success, -errno otherwise.
5719  */
5720 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5721 		 bool ethernet)
5722 {
5723 	int err;
5724 
5725 	if (unlikely(!eth_p_mpls(skb->protocol)))
5726 		return 0;
5727 
5728 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5729 	if (unlikely(err))
5730 		return err;
5731 
5732 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5733 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5734 		mac_len);
5735 
5736 	__skb_pull(skb, MPLS_HLEN);
5737 	skb_reset_mac_header(skb);
5738 	skb_set_network_header(skb, mac_len);
5739 
5740 	if (ethernet && mac_len >= ETH_HLEN) {
5741 		struct ethhdr *hdr;
5742 
5743 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5744 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5745 		skb_mod_eth_type(skb, hdr, next_proto);
5746 	}
5747 	skb->protocol = next_proto;
5748 
5749 	return 0;
5750 }
5751 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5752 
5753 /**
5754  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5755  *
5756  * @skb: buffer
5757  * @mpls_lse: new MPLS label stack entry to update to
5758  *
5759  * Expects skb->data at mac header.
5760  *
5761  * Returns 0 on success, -errno otherwise.
5762  */
5763 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5764 {
5765 	int err;
5766 
5767 	if (unlikely(!eth_p_mpls(skb->protocol)))
5768 		return -EINVAL;
5769 
5770 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5771 	if (unlikely(err))
5772 		return err;
5773 
5774 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5775 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5776 
5777 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5778 	}
5779 
5780 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5781 
5782 	return 0;
5783 }
5784 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5785 
5786 /**
5787  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5788  *
5789  * @skb: buffer
5790  *
5791  * Expects skb->data at mac header.
5792  *
5793  * Returns 0 on success, -errno otherwise.
5794  */
5795 int skb_mpls_dec_ttl(struct sk_buff *skb)
5796 {
5797 	u32 lse;
5798 	u8 ttl;
5799 
5800 	if (unlikely(!eth_p_mpls(skb->protocol)))
5801 		return -EINVAL;
5802 
5803 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5804 		return -ENOMEM;
5805 
5806 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5807 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5808 	if (!--ttl)
5809 		return -EINVAL;
5810 
5811 	lse &= ~MPLS_LS_TTL_MASK;
5812 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5813 
5814 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5815 }
5816 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5817 
5818 /**
5819  * alloc_skb_with_frags - allocate skb with page frags
5820  *
5821  * @header_len: size of linear part
5822  * @data_len: needed length in frags
5823  * @max_page_order: max page order desired.
5824  * @errcode: pointer to error code if any
5825  * @gfp_mask: allocation mask
5826  *
5827  * This can be used to allocate a paged skb, given a maximal order for frags.
5828  */
5829 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5830 				     unsigned long data_len,
5831 				     int max_page_order,
5832 				     int *errcode,
5833 				     gfp_t gfp_mask)
5834 {
5835 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5836 	unsigned long chunk;
5837 	struct sk_buff *skb;
5838 	struct page *page;
5839 	int i;
5840 
5841 	*errcode = -EMSGSIZE;
5842 	/* Note this test could be relaxed, if we succeed to allocate
5843 	 * high order pages...
5844 	 */
5845 	if (npages > MAX_SKB_FRAGS)
5846 		return NULL;
5847 
5848 	*errcode = -ENOBUFS;
5849 	skb = alloc_skb(header_len, gfp_mask);
5850 	if (!skb)
5851 		return NULL;
5852 
5853 	skb->truesize += npages << PAGE_SHIFT;
5854 
5855 	for (i = 0; npages > 0; i++) {
5856 		int order = max_page_order;
5857 
5858 		while (order) {
5859 			if (npages >= 1 << order) {
5860 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5861 						   __GFP_COMP |
5862 						   __GFP_NOWARN,
5863 						   order);
5864 				if (page)
5865 					goto fill_page;
5866 				/* Do not retry other high order allocations */
5867 				order = 1;
5868 				max_page_order = 0;
5869 			}
5870 			order--;
5871 		}
5872 		page = alloc_page(gfp_mask);
5873 		if (!page)
5874 			goto failure;
5875 fill_page:
5876 		chunk = min_t(unsigned long, data_len,
5877 			      PAGE_SIZE << order);
5878 		skb_fill_page_desc(skb, i, page, 0, chunk);
5879 		data_len -= chunk;
5880 		npages -= 1 << order;
5881 	}
5882 	return skb;
5883 
5884 failure:
5885 	kfree_skb(skb);
5886 	return NULL;
5887 }
5888 EXPORT_SYMBOL(alloc_skb_with_frags);
5889 
5890 /* carve out the first off bytes from skb when off < headlen */
5891 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5892 				    const int headlen, gfp_t gfp_mask)
5893 {
5894 	int i;
5895 	int size = skb_end_offset(skb);
5896 	int new_hlen = headlen - off;
5897 	u8 *data;
5898 
5899 	size = SKB_DATA_ALIGN(size);
5900 
5901 	if (skb_pfmemalloc(skb))
5902 		gfp_mask |= __GFP_MEMALLOC;
5903 	data = kmalloc_reserve(size +
5904 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5905 			       gfp_mask, NUMA_NO_NODE, NULL);
5906 	if (!data)
5907 		return -ENOMEM;
5908 
5909 	size = SKB_WITH_OVERHEAD(ksize(data));
5910 
5911 	/* Copy real data, and all frags */
5912 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5913 	skb->len -= off;
5914 
5915 	memcpy((struct skb_shared_info *)(data + size),
5916 	       skb_shinfo(skb),
5917 	       offsetof(struct skb_shared_info,
5918 			frags[skb_shinfo(skb)->nr_frags]));
5919 	if (skb_cloned(skb)) {
5920 		/* drop the old head gracefully */
5921 		if (skb_orphan_frags(skb, gfp_mask)) {
5922 			kfree(data);
5923 			return -ENOMEM;
5924 		}
5925 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5926 			skb_frag_ref(skb, i);
5927 		if (skb_has_frag_list(skb))
5928 			skb_clone_fraglist(skb);
5929 		skb_release_data(skb);
5930 	} else {
5931 		/* we can reuse existing recount- all we did was
5932 		 * relocate values
5933 		 */
5934 		skb_free_head(skb);
5935 	}
5936 
5937 	skb->head = data;
5938 	skb->data = data;
5939 	skb->head_frag = 0;
5940 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5941 	skb->end = size;
5942 #else
5943 	skb->end = skb->head + size;
5944 #endif
5945 	skb_set_tail_pointer(skb, skb_headlen(skb));
5946 	skb_headers_offset_update(skb, 0);
5947 	skb->cloned = 0;
5948 	skb->hdr_len = 0;
5949 	skb->nohdr = 0;
5950 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5951 
5952 	return 0;
5953 }
5954 
5955 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5956 
5957 /* carve out the first eat bytes from skb's frag_list. May recurse into
5958  * pskb_carve()
5959  */
5960 static int pskb_carve_frag_list(struct sk_buff *skb,
5961 				struct skb_shared_info *shinfo, int eat,
5962 				gfp_t gfp_mask)
5963 {
5964 	struct sk_buff *list = shinfo->frag_list;
5965 	struct sk_buff *clone = NULL;
5966 	struct sk_buff *insp = NULL;
5967 
5968 	do {
5969 		if (!list) {
5970 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5971 			return -EFAULT;
5972 		}
5973 		if (list->len <= eat) {
5974 			/* Eaten as whole. */
5975 			eat -= list->len;
5976 			list = list->next;
5977 			insp = list;
5978 		} else {
5979 			/* Eaten partially. */
5980 			if (skb_shared(list)) {
5981 				clone = skb_clone(list, gfp_mask);
5982 				if (!clone)
5983 					return -ENOMEM;
5984 				insp = list->next;
5985 				list = clone;
5986 			} else {
5987 				/* This may be pulled without problems. */
5988 				insp = list;
5989 			}
5990 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5991 				kfree_skb(clone);
5992 				return -ENOMEM;
5993 			}
5994 			break;
5995 		}
5996 	} while (eat);
5997 
5998 	/* Free pulled out fragments. */
5999 	while ((list = shinfo->frag_list) != insp) {
6000 		shinfo->frag_list = list->next;
6001 		kfree_skb(list);
6002 	}
6003 	/* And insert new clone at head. */
6004 	if (clone) {
6005 		clone->next = list;
6006 		shinfo->frag_list = clone;
6007 	}
6008 	return 0;
6009 }
6010 
6011 /* carve off first len bytes from skb. Split line (off) is in the
6012  * non-linear part of skb
6013  */
6014 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6015 				       int pos, gfp_t gfp_mask)
6016 {
6017 	int i, k = 0;
6018 	int size = skb_end_offset(skb);
6019 	u8 *data;
6020 	const int nfrags = skb_shinfo(skb)->nr_frags;
6021 	struct skb_shared_info *shinfo;
6022 
6023 	size = SKB_DATA_ALIGN(size);
6024 
6025 	if (skb_pfmemalloc(skb))
6026 		gfp_mask |= __GFP_MEMALLOC;
6027 	data = kmalloc_reserve(size +
6028 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6029 			       gfp_mask, NUMA_NO_NODE, NULL);
6030 	if (!data)
6031 		return -ENOMEM;
6032 
6033 	size = SKB_WITH_OVERHEAD(ksize(data));
6034 
6035 	memcpy((struct skb_shared_info *)(data + size),
6036 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6037 	if (skb_orphan_frags(skb, gfp_mask)) {
6038 		kfree(data);
6039 		return -ENOMEM;
6040 	}
6041 	shinfo = (struct skb_shared_info *)(data + size);
6042 	for (i = 0; i < nfrags; i++) {
6043 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6044 
6045 		if (pos + fsize > off) {
6046 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6047 
6048 			if (pos < off) {
6049 				/* Split frag.
6050 				 * We have two variants in this case:
6051 				 * 1. Move all the frag to the second
6052 				 *    part, if it is possible. F.e.
6053 				 *    this approach is mandatory for TUX,
6054 				 *    where splitting is expensive.
6055 				 * 2. Split is accurately. We make this.
6056 				 */
6057 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6058 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6059 			}
6060 			skb_frag_ref(skb, i);
6061 			k++;
6062 		}
6063 		pos += fsize;
6064 	}
6065 	shinfo->nr_frags = k;
6066 	if (skb_has_frag_list(skb))
6067 		skb_clone_fraglist(skb);
6068 
6069 	/* split line is in frag list */
6070 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6071 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6072 		if (skb_has_frag_list(skb))
6073 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6074 		kfree(data);
6075 		return -ENOMEM;
6076 	}
6077 	skb_release_data(skb);
6078 
6079 	skb->head = data;
6080 	skb->head_frag = 0;
6081 	skb->data = data;
6082 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6083 	skb->end = size;
6084 #else
6085 	skb->end = skb->head + size;
6086 #endif
6087 	skb_reset_tail_pointer(skb);
6088 	skb_headers_offset_update(skb, 0);
6089 	skb->cloned   = 0;
6090 	skb->hdr_len  = 0;
6091 	skb->nohdr    = 0;
6092 	skb->len -= off;
6093 	skb->data_len = skb->len;
6094 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6095 	return 0;
6096 }
6097 
6098 /* remove len bytes from the beginning of the skb */
6099 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6100 {
6101 	int headlen = skb_headlen(skb);
6102 
6103 	if (len < headlen)
6104 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6105 	else
6106 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6107 }
6108 
6109 /* Extract to_copy bytes starting at off from skb, and return this in
6110  * a new skb
6111  */
6112 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6113 			     int to_copy, gfp_t gfp)
6114 {
6115 	struct sk_buff  *clone = skb_clone(skb, gfp);
6116 
6117 	if (!clone)
6118 		return NULL;
6119 
6120 	if (pskb_carve(clone, off, gfp) < 0 ||
6121 	    pskb_trim(clone, to_copy)) {
6122 		kfree_skb(clone);
6123 		return NULL;
6124 	}
6125 	return clone;
6126 }
6127 EXPORT_SYMBOL(pskb_extract);
6128 
6129 /**
6130  * skb_condense - try to get rid of fragments/frag_list if possible
6131  * @skb: buffer
6132  *
6133  * Can be used to save memory before skb is added to a busy queue.
6134  * If packet has bytes in frags and enough tail room in skb->head,
6135  * pull all of them, so that we can free the frags right now and adjust
6136  * truesize.
6137  * Notes:
6138  *	We do not reallocate skb->head thus can not fail.
6139  *	Caller must re-evaluate skb->truesize if needed.
6140  */
6141 void skb_condense(struct sk_buff *skb)
6142 {
6143 	if (skb->data_len) {
6144 		if (skb->data_len > skb->end - skb->tail ||
6145 		    skb_cloned(skb))
6146 			return;
6147 
6148 		/* Nice, we can free page frag(s) right now */
6149 		__pskb_pull_tail(skb, skb->data_len);
6150 	}
6151 	/* At this point, skb->truesize might be over estimated,
6152 	 * because skb had a fragment, and fragments do not tell
6153 	 * their truesize.
6154 	 * When we pulled its content into skb->head, fragment
6155 	 * was freed, but __pskb_pull_tail() could not possibly
6156 	 * adjust skb->truesize, not knowing the frag truesize.
6157 	 */
6158 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6159 }
6160 
6161 #ifdef CONFIG_SKB_EXTENSIONS
6162 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6163 {
6164 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6165 }
6166 
6167 /**
6168  * __skb_ext_alloc - allocate a new skb extensions storage
6169  *
6170  * @flags: See kmalloc().
6171  *
6172  * Returns the newly allocated pointer. The pointer can later attached to a
6173  * skb via __skb_ext_set().
6174  * Note: caller must handle the skb_ext as an opaque data.
6175  */
6176 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6177 {
6178 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6179 
6180 	if (new) {
6181 		memset(new->offset, 0, sizeof(new->offset));
6182 		refcount_set(&new->refcnt, 1);
6183 	}
6184 
6185 	return new;
6186 }
6187 
6188 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6189 					 unsigned int old_active)
6190 {
6191 	struct skb_ext *new;
6192 
6193 	if (refcount_read(&old->refcnt) == 1)
6194 		return old;
6195 
6196 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6197 	if (!new)
6198 		return NULL;
6199 
6200 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6201 	refcount_set(&new->refcnt, 1);
6202 
6203 #ifdef CONFIG_XFRM
6204 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6205 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6206 		unsigned int i;
6207 
6208 		for (i = 0; i < sp->len; i++)
6209 			xfrm_state_hold(sp->xvec[i]);
6210 	}
6211 #endif
6212 	__skb_ext_put(old);
6213 	return new;
6214 }
6215 
6216 /**
6217  * __skb_ext_set - attach the specified extension storage to this skb
6218  * @skb: buffer
6219  * @id: extension id
6220  * @ext: extension storage previously allocated via __skb_ext_alloc()
6221  *
6222  * Existing extensions, if any, are cleared.
6223  *
6224  * Returns the pointer to the extension.
6225  */
6226 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6227 		    struct skb_ext *ext)
6228 {
6229 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6230 
6231 	skb_ext_put(skb);
6232 	newlen = newoff + skb_ext_type_len[id];
6233 	ext->chunks = newlen;
6234 	ext->offset[id] = newoff;
6235 	skb->extensions = ext;
6236 	skb->active_extensions = 1 << id;
6237 	return skb_ext_get_ptr(ext, id);
6238 }
6239 
6240 /**
6241  * skb_ext_add - allocate space for given extension, COW if needed
6242  * @skb: buffer
6243  * @id: extension to allocate space for
6244  *
6245  * Allocates enough space for the given extension.
6246  * If the extension is already present, a pointer to that extension
6247  * is returned.
6248  *
6249  * If the skb was cloned, COW applies and the returned memory can be
6250  * modified without changing the extension space of clones buffers.
6251  *
6252  * Returns pointer to the extension or NULL on allocation failure.
6253  */
6254 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6255 {
6256 	struct skb_ext *new, *old = NULL;
6257 	unsigned int newlen, newoff;
6258 
6259 	if (skb->active_extensions) {
6260 		old = skb->extensions;
6261 
6262 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6263 		if (!new)
6264 			return NULL;
6265 
6266 		if (__skb_ext_exist(new, id))
6267 			goto set_active;
6268 
6269 		newoff = new->chunks;
6270 	} else {
6271 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6272 
6273 		new = __skb_ext_alloc(GFP_ATOMIC);
6274 		if (!new)
6275 			return NULL;
6276 	}
6277 
6278 	newlen = newoff + skb_ext_type_len[id];
6279 	new->chunks = newlen;
6280 	new->offset[id] = newoff;
6281 set_active:
6282 	skb->extensions = new;
6283 	skb->active_extensions |= 1 << id;
6284 	return skb_ext_get_ptr(new, id);
6285 }
6286 EXPORT_SYMBOL(skb_ext_add);
6287 
6288 #ifdef CONFIG_XFRM
6289 static void skb_ext_put_sp(struct sec_path *sp)
6290 {
6291 	unsigned int i;
6292 
6293 	for (i = 0; i < sp->len; i++)
6294 		xfrm_state_put(sp->xvec[i]);
6295 }
6296 #endif
6297 
6298 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6299 {
6300 	struct skb_ext *ext = skb->extensions;
6301 
6302 	skb->active_extensions &= ~(1 << id);
6303 	if (skb->active_extensions == 0) {
6304 		skb->extensions = NULL;
6305 		__skb_ext_put(ext);
6306 #ifdef CONFIG_XFRM
6307 	} else if (id == SKB_EXT_SEC_PATH &&
6308 		   refcount_read(&ext->refcnt) == 1) {
6309 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6310 
6311 		skb_ext_put_sp(sp);
6312 		sp->len = 0;
6313 #endif
6314 	}
6315 }
6316 EXPORT_SYMBOL(__skb_ext_del);
6317 
6318 void __skb_ext_put(struct skb_ext *ext)
6319 {
6320 	/* If this is last clone, nothing can increment
6321 	 * it after check passes.  Avoids one atomic op.
6322 	 */
6323 	if (refcount_read(&ext->refcnt) == 1)
6324 		goto free_now;
6325 
6326 	if (!refcount_dec_and_test(&ext->refcnt))
6327 		return;
6328 free_now:
6329 #ifdef CONFIG_XFRM
6330 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6331 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6332 #endif
6333 
6334 	kmem_cache_free(skbuff_ext_cache, ext);
6335 }
6336 EXPORT_SYMBOL(__skb_ext_put);
6337 #endif /* CONFIG_SKB_EXTENSIONS */
6338