1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/ip6_checksum.h> 69 #include <net/xfrm.h> 70 #include <net/mpls.h> 71 #include <net/mptcp.h> 72 73 #include <linux/uaccess.h> 74 #include <trace/events/skb.h> 75 #include <linux/highmem.h> 76 #include <linux/capability.h> 77 #include <linux/user_namespace.h> 78 #include <linux/indirect_call_wrapper.h> 79 80 #include "datagram.h" 81 82 struct kmem_cache *skbuff_head_cache __ro_after_init; 83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 84 #ifdef CONFIG_SKB_EXTENSIONS 85 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 86 #endif 87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 88 EXPORT_SYMBOL(sysctl_max_skb_frags); 89 90 /** 91 * skb_panic - private function for out-of-line support 92 * @skb: buffer 93 * @sz: size 94 * @addr: address 95 * @msg: skb_over_panic or skb_under_panic 96 * 97 * Out-of-line support for skb_put() and skb_push(). 98 * Called via the wrapper skb_over_panic() or skb_under_panic(). 99 * Keep out of line to prevent kernel bloat. 100 * __builtin_return_address is not used because it is not always reliable. 101 */ 102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 103 const char msg[]) 104 { 105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 106 msg, addr, skb->len, sz, skb->head, skb->data, 107 (unsigned long)skb->tail, (unsigned long)skb->end, 108 skb->dev ? skb->dev->name : "<NULL>"); 109 BUG(); 110 } 111 112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 118 { 119 skb_panic(skb, sz, addr, __func__); 120 } 121 122 /* 123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 124 * the caller if emergency pfmemalloc reserves are being used. If it is and 125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 126 * may be used. Otherwise, the packet data may be discarded until enough 127 * memory is free 128 */ 129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 131 132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 133 unsigned long ip, bool *pfmemalloc) 134 { 135 void *obj; 136 bool ret_pfmemalloc = false; 137 138 /* 139 * Try a regular allocation, when that fails and we're not entitled 140 * to the reserves, fail. 141 */ 142 obj = kmalloc_node_track_caller(size, 143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 144 node); 145 if (obj || !(gfp_pfmemalloc_allowed(flags))) 146 goto out; 147 148 /* Try again but now we are using pfmemalloc reserves */ 149 ret_pfmemalloc = true; 150 obj = kmalloc_node_track_caller(size, flags, node); 151 152 out: 153 if (pfmemalloc) 154 *pfmemalloc = ret_pfmemalloc; 155 156 return obj; 157 } 158 159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 160 * 'private' fields and also do memory statistics to find all the 161 * [BEEP] leaks. 162 * 163 */ 164 165 /** 166 * __alloc_skb - allocate a network buffer 167 * @size: size to allocate 168 * @gfp_mask: allocation mask 169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 170 * instead of head cache and allocate a cloned (child) skb. 171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 172 * allocations in case the data is required for writeback 173 * @node: numa node to allocate memory on 174 * 175 * Allocate a new &sk_buff. The returned buffer has no headroom and a 176 * tail room of at least size bytes. The object has a reference count 177 * of one. The return is the buffer. On a failure the return is %NULL. 178 * 179 * Buffers may only be allocated from interrupts using a @gfp_mask of 180 * %GFP_ATOMIC. 181 */ 182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 183 int flags, int node) 184 { 185 struct kmem_cache *cache; 186 struct skb_shared_info *shinfo; 187 struct sk_buff *skb; 188 u8 *data; 189 bool pfmemalloc; 190 191 cache = (flags & SKB_ALLOC_FCLONE) 192 ? skbuff_fclone_cache : skbuff_head_cache; 193 194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 195 gfp_mask |= __GFP_MEMALLOC; 196 197 /* Get the HEAD */ 198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 199 if (!skb) 200 goto out; 201 prefetchw(skb); 202 203 /* We do our best to align skb_shared_info on a separate cache 204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 205 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 206 * Both skb->head and skb_shared_info are cache line aligned. 207 */ 208 size = SKB_DATA_ALIGN(size); 209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 211 if (!data) 212 goto nodata; 213 /* kmalloc(size) might give us more room than requested. 214 * Put skb_shared_info exactly at the end of allocated zone, 215 * to allow max possible filling before reallocation. 216 */ 217 size = SKB_WITH_OVERHEAD(ksize(data)); 218 prefetchw(data + size); 219 220 /* 221 * Only clear those fields we need to clear, not those that we will 222 * actually initialise below. Hence, don't put any more fields after 223 * the tail pointer in struct sk_buff! 224 */ 225 memset(skb, 0, offsetof(struct sk_buff, tail)); 226 /* Account for allocated memory : skb + skb->head */ 227 skb->truesize = SKB_TRUESIZE(size); 228 skb->pfmemalloc = pfmemalloc; 229 refcount_set(&skb->users, 1); 230 skb->head = data; 231 skb->data = data; 232 skb_reset_tail_pointer(skb); 233 skb->end = skb->tail + size; 234 skb->mac_header = (typeof(skb->mac_header))~0U; 235 skb->transport_header = (typeof(skb->transport_header))~0U; 236 237 /* make sure we initialize shinfo sequentially */ 238 shinfo = skb_shinfo(skb); 239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 240 atomic_set(&shinfo->dataref, 1); 241 242 if (flags & SKB_ALLOC_FCLONE) { 243 struct sk_buff_fclones *fclones; 244 245 fclones = container_of(skb, struct sk_buff_fclones, skb1); 246 247 skb->fclone = SKB_FCLONE_ORIG; 248 refcount_set(&fclones->fclone_ref, 1); 249 250 fclones->skb2.fclone = SKB_FCLONE_CLONE; 251 } 252 253 skb_set_kcov_handle(skb, kcov_common_handle()); 254 255 out: 256 return skb; 257 nodata: 258 kmem_cache_free(cache, skb); 259 skb = NULL; 260 goto out; 261 } 262 EXPORT_SYMBOL(__alloc_skb); 263 264 /* Caller must provide SKB that is memset cleared */ 265 static struct sk_buff *__build_skb_around(struct sk_buff *skb, 266 void *data, unsigned int frag_size) 267 { 268 struct skb_shared_info *shinfo; 269 unsigned int size = frag_size ? : ksize(data); 270 271 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 272 273 /* Assumes caller memset cleared SKB */ 274 skb->truesize = SKB_TRUESIZE(size); 275 refcount_set(&skb->users, 1); 276 skb->head = data; 277 skb->data = data; 278 skb_reset_tail_pointer(skb); 279 skb->end = skb->tail + size; 280 skb->mac_header = (typeof(skb->mac_header))~0U; 281 skb->transport_header = (typeof(skb->transport_header))~0U; 282 283 /* make sure we initialize shinfo sequentially */ 284 shinfo = skb_shinfo(skb); 285 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 286 atomic_set(&shinfo->dataref, 1); 287 288 skb_set_kcov_handle(skb, kcov_common_handle()); 289 290 return skb; 291 } 292 293 /** 294 * __build_skb - build a network buffer 295 * @data: data buffer provided by caller 296 * @frag_size: size of data, or 0 if head was kmalloced 297 * 298 * Allocate a new &sk_buff. Caller provides space holding head and 299 * skb_shared_info. @data must have been allocated by kmalloc() only if 300 * @frag_size is 0, otherwise data should come from the page allocator 301 * or vmalloc() 302 * The return is the new skb buffer. 303 * On a failure the return is %NULL, and @data is not freed. 304 * Notes : 305 * Before IO, driver allocates only data buffer where NIC put incoming frame 306 * Driver should add room at head (NET_SKB_PAD) and 307 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 308 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 309 * before giving packet to stack. 310 * RX rings only contains data buffers, not full skbs. 311 */ 312 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 313 { 314 struct sk_buff *skb; 315 316 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 317 if (unlikely(!skb)) 318 return NULL; 319 320 memset(skb, 0, offsetof(struct sk_buff, tail)); 321 322 return __build_skb_around(skb, data, frag_size); 323 } 324 325 /* build_skb() is wrapper over __build_skb(), that specifically 326 * takes care of skb->head and skb->pfmemalloc 327 * This means that if @frag_size is not zero, then @data must be backed 328 * by a page fragment, not kmalloc() or vmalloc() 329 */ 330 struct sk_buff *build_skb(void *data, unsigned int frag_size) 331 { 332 struct sk_buff *skb = __build_skb(data, frag_size); 333 334 if (skb && frag_size) { 335 skb->head_frag = 1; 336 if (page_is_pfmemalloc(virt_to_head_page(data))) 337 skb->pfmemalloc = 1; 338 } 339 return skb; 340 } 341 EXPORT_SYMBOL(build_skb); 342 343 /** 344 * build_skb_around - build a network buffer around provided skb 345 * @skb: sk_buff provide by caller, must be memset cleared 346 * @data: data buffer provided by caller 347 * @frag_size: size of data, or 0 if head was kmalloced 348 */ 349 struct sk_buff *build_skb_around(struct sk_buff *skb, 350 void *data, unsigned int frag_size) 351 { 352 if (unlikely(!skb)) 353 return NULL; 354 355 skb = __build_skb_around(skb, data, frag_size); 356 357 if (skb && frag_size) { 358 skb->head_frag = 1; 359 if (page_is_pfmemalloc(virt_to_head_page(data))) 360 skb->pfmemalloc = 1; 361 } 362 return skb; 363 } 364 EXPORT_SYMBOL(build_skb_around); 365 366 #define NAPI_SKB_CACHE_SIZE 64 367 368 struct napi_alloc_cache { 369 struct page_frag_cache page; 370 unsigned int skb_count; 371 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 372 }; 373 374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 376 377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 378 { 379 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 380 381 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 382 } 383 384 void *napi_alloc_frag(unsigned int fragsz) 385 { 386 fragsz = SKB_DATA_ALIGN(fragsz); 387 388 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 389 } 390 EXPORT_SYMBOL(napi_alloc_frag); 391 392 /** 393 * netdev_alloc_frag - allocate a page fragment 394 * @fragsz: fragment size 395 * 396 * Allocates a frag from a page for receive buffer. 397 * Uses GFP_ATOMIC allocations. 398 */ 399 void *netdev_alloc_frag(unsigned int fragsz) 400 { 401 struct page_frag_cache *nc; 402 void *data; 403 404 fragsz = SKB_DATA_ALIGN(fragsz); 405 if (in_irq() || irqs_disabled()) { 406 nc = this_cpu_ptr(&netdev_alloc_cache); 407 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC); 408 } else { 409 local_bh_disable(); 410 data = __napi_alloc_frag(fragsz, GFP_ATOMIC); 411 local_bh_enable(); 412 } 413 return data; 414 } 415 EXPORT_SYMBOL(netdev_alloc_frag); 416 417 /** 418 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 419 * @dev: network device to receive on 420 * @len: length to allocate 421 * @gfp_mask: get_free_pages mask, passed to alloc_skb 422 * 423 * Allocate a new &sk_buff and assign it a usage count of one. The 424 * buffer has NET_SKB_PAD headroom built in. Users should allocate 425 * the headroom they think they need without accounting for the 426 * built in space. The built in space is used for optimisations. 427 * 428 * %NULL is returned if there is no free memory. 429 */ 430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 431 gfp_t gfp_mask) 432 { 433 struct page_frag_cache *nc; 434 struct sk_buff *skb; 435 bool pfmemalloc; 436 void *data; 437 438 len += NET_SKB_PAD; 439 440 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 441 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 442 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 443 if (!skb) 444 goto skb_fail; 445 goto skb_success; 446 } 447 448 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 449 len = SKB_DATA_ALIGN(len); 450 451 if (sk_memalloc_socks()) 452 gfp_mask |= __GFP_MEMALLOC; 453 454 if (in_irq() || irqs_disabled()) { 455 nc = this_cpu_ptr(&netdev_alloc_cache); 456 data = page_frag_alloc(nc, len, gfp_mask); 457 pfmemalloc = nc->pfmemalloc; 458 } else { 459 local_bh_disable(); 460 nc = this_cpu_ptr(&napi_alloc_cache.page); 461 data = page_frag_alloc(nc, len, gfp_mask); 462 pfmemalloc = nc->pfmemalloc; 463 local_bh_enable(); 464 } 465 466 if (unlikely(!data)) 467 return NULL; 468 469 skb = __build_skb(data, len); 470 if (unlikely(!skb)) { 471 skb_free_frag(data); 472 return NULL; 473 } 474 475 if (pfmemalloc) 476 skb->pfmemalloc = 1; 477 skb->head_frag = 1; 478 479 skb_success: 480 skb_reserve(skb, NET_SKB_PAD); 481 skb->dev = dev; 482 483 skb_fail: 484 return skb; 485 } 486 EXPORT_SYMBOL(__netdev_alloc_skb); 487 488 /** 489 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 490 * @napi: napi instance this buffer was allocated for 491 * @len: length to allocate 492 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 493 * 494 * Allocate a new sk_buff for use in NAPI receive. This buffer will 495 * attempt to allocate the head from a special reserved region used 496 * only for NAPI Rx allocation. By doing this we can save several 497 * CPU cycles by avoiding having to disable and re-enable IRQs. 498 * 499 * %NULL is returned if there is no free memory. 500 */ 501 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 502 gfp_t gfp_mask) 503 { 504 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 505 struct sk_buff *skb; 506 void *data; 507 508 len += NET_SKB_PAD + NET_IP_ALIGN; 509 510 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 511 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 512 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 513 if (!skb) 514 goto skb_fail; 515 goto skb_success; 516 } 517 518 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 519 len = SKB_DATA_ALIGN(len); 520 521 if (sk_memalloc_socks()) 522 gfp_mask |= __GFP_MEMALLOC; 523 524 data = page_frag_alloc(&nc->page, len, gfp_mask); 525 if (unlikely(!data)) 526 return NULL; 527 528 skb = __build_skb(data, len); 529 if (unlikely(!skb)) { 530 skb_free_frag(data); 531 return NULL; 532 } 533 534 if (nc->page.pfmemalloc) 535 skb->pfmemalloc = 1; 536 skb->head_frag = 1; 537 538 skb_success: 539 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 540 skb->dev = napi->dev; 541 542 skb_fail: 543 return skb; 544 } 545 EXPORT_SYMBOL(__napi_alloc_skb); 546 547 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 548 int size, unsigned int truesize) 549 { 550 skb_fill_page_desc(skb, i, page, off, size); 551 skb->len += size; 552 skb->data_len += size; 553 skb->truesize += truesize; 554 } 555 EXPORT_SYMBOL(skb_add_rx_frag); 556 557 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 558 unsigned int truesize) 559 { 560 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 561 562 skb_frag_size_add(frag, size); 563 skb->len += size; 564 skb->data_len += size; 565 skb->truesize += truesize; 566 } 567 EXPORT_SYMBOL(skb_coalesce_rx_frag); 568 569 static void skb_drop_list(struct sk_buff **listp) 570 { 571 kfree_skb_list(*listp); 572 *listp = NULL; 573 } 574 575 static inline void skb_drop_fraglist(struct sk_buff *skb) 576 { 577 skb_drop_list(&skb_shinfo(skb)->frag_list); 578 } 579 580 static void skb_clone_fraglist(struct sk_buff *skb) 581 { 582 struct sk_buff *list; 583 584 skb_walk_frags(skb, list) 585 skb_get(list); 586 } 587 588 static void skb_free_head(struct sk_buff *skb) 589 { 590 unsigned char *head = skb->head; 591 592 if (skb->head_frag) 593 skb_free_frag(head); 594 else 595 kfree(head); 596 } 597 598 static void skb_release_data(struct sk_buff *skb) 599 { 600 struct skb_shared_info *shinfo = skb_shinfo(skb); 601 int i; 602 603 if (skb->cloned && 604 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 605 &shinfo->dataref)) 606 return; 607 608 for (i = 0; i < shinfo->nr_frags; i++) 609 __skb_frag_unref(&shinfo->frags[i]); 610 611 if (shinfo->frag_list) 612 kfree_skb_list(shinfo->frag_list); 613 614 skb_zcopy_clear(skb, true); 615 skb_free_head(skb); 616 } 617 618 /* 619 * Free an skbuff by memory without cleaning the state. 620 */ 621 static void kfree_skbmem(struct sk_buff *skb) 622 { 623 struct sk_buff_fclones *fclones; 624 625 switch (skb->fclone) { 626 case SKB_FCLONE_UNAVAILABLE: 627 kmem_cache_free(skbuff_head_cache, skb); 628 return; 629 630 case SKB_FCLONE_ORIG: 631 fclones = container_of(skb, struct sk_buff_fclones, skb1); 632 633 /* We usually free the clone (TX completion) before original skb 634 * This test would have no chance to be true for the clone, 635 * while here, branch prediction will be good. 636 */ 637 if (refcount_read(&fclones->fclone_ref) == 1) 638 goto fastpath; 639 break; 640 641 default: /* SKB_FCLONE_CLONE */ 642 fclones = container_of(skb, struct sk_buff_fclones, skb2); 643 break; 644 } 645 if (!refcount_dec_and_test(&fclones->fclone_ref)) 646 return; 647 fastpath: 648 kmem_cache_free(skbuff_fclone_cache, fclones); 649 } 650 651 void skb_release_head_state(struct sk_buff *skb) 652 { 653 skb_dst_drop(skb); 654 if (skb->destructor) { 655 WARN_ON(in_irq()); 656 skb->destructor(skb); 657 } 658 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 659 nf_conntrack_put(skb_nfct(skb)); 660 #endif 661 skb_ext_put(skb); 662 } 663 664 /* Free everything but the sk_buff shell. */ 665 static void skb_release_all(struct sk_buff *skb) 666 { 667 skb_release_head_state(skb); 668 if (likely(skb->head)) 669 skb_release_data(skb); 670 } 671 672 /** 673 * __kfree_skb - private function 674 * @skb: buffer 675 * 676 * Free an sk_buff. Release anything attached to the buffer. 677 * Clean the state. This is an internal helper function. Users should 678 * always call kfree_skb 679 */ 680 681 void __kfree_skb(struct sk_buff *skb) 682 { 683 skb_release_all(skb); 684 kfree_skbmem(skb); 685 } 686 EXPORT_SYMBOL(__kfree_skb); 687 688 /** 689 * kfree_skb - free an sk_buff 690 * @skb: buffer to free 691 * 692 * Drop a reference to the buffer and free it if the usage count has 693 * hit zero. 694 */ 695 void kfree_skb(struct sk_buff *skb) 696 { 697 if (!skb_unref(skb)) 698 return; 699 700 trace_kfree_skb(skb, __builtin_return_address(0)); 701 __kfree_skb(skb); 702 } 703 EXPORT_SYMBOL(kfree_skb); 704 705 void kfree_skb_list(struct sk_buff *segs) 706 { 707 while (segs) { 708 struct sk_buff *next = segs->next; 709 710 kfree_skb(segs); 711 segs = next; 712 } 713 } 714 EXPORT_SYMBOL(kfree_skb_list); 715 716 /* Dump skb information and contents. 717 * 718 * Must only be called from net_ratelimit()-ed paths. 719 * 720 * Dumps whole packets if full_pkt, only headers otherwise. 721 */ 722 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 723 { 724 struct skb_shared_info *sh = skb_shinfo(skb); 725 struct net_device *dev = skb->dev; 726 struct sock *sk = skb->sk; 727 struct sk_buff *list_skb; 728 bool has_mac, has_trans; 729 int headroom, tailroom; 730 int i, len, seg_len; 731 732 if (full_pkt) 733 len = skb->len; 734 else 735 len = min_t(int, skb->len, MAX_HEADER + 128); 736 737 headroom = skb_headroom(skb); 738 tailroom = skb_tailroom(skb); 739 740 has_mac = skb_mac_header_was_set(skb); 741 has_trans = skb_transport_header_was_set(skb); 742 743 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 744 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 745 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 746 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 747 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 748 level, skb->len, headroom, skb_headlen(skb), tailroom, 749 has_mac ? skb->mac_header : -1, 750 has_mac ? skb_mac_header_len(skb) : -1, 751 skb->network_header, 752 has_trans ? skb_network_header_len(skb) : -1, 753 has_trans ? skb->transport_header : -1, 754 sh->tx_flags, sh->nr_frags, 755 sh->gso_size, sh->gso_type, sh->gso_segs, 756 skb->csum, skb->ip_summed, skb->csum_complete_sw, 757 skb->csum_valid, skb->csum_level, 758 skb->hash, skb->sw_hash, skb->l4_hash, 759 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 760 761 if (dev) 762 printk("%sdev name=%s feat=0x%pNF\n", 763 level, dev->name, &dev->features); 764 if (sk) 765 printk("%ssk family=%hu type=%u proto=%u\n", 766 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 767 768 if (full_pkt && headroom) 769 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 770 16, 1, skb->head, headroom, false); 771 772 seg_len = min_t(int, skb_headlen(skb), len); 773 if (seg_len) 774 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 775 16, 1, skb->data, seg_len, false); 776 len -= seg_len; 777 778 if (full_pkt && tailroom) 779 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 780 16, 1, skb_tail_pointer(skb), tailroom, false); 781 782 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 783 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 784 u32 p_off, p_len, copied; 785 struct page *p; 786 u8 *vaddr; 787 788 skb_frag_foreach_page(frag, skb_frag_off(frag), 789 skb_frag_size(frag), p, p_off, p_len, 790 copied) { 791 seg_len = min_t(int, p_len, len); 792 vaddr = kmap_atomic(p); 793 print_hex_dump(level, "skb frag: ", 794 DUMP_PREFIX_OFFSET, 795 16, 1, vaddr + p_off, seg_len, false); 796 kunmap_atomic(vaddr); 797 len -= seg_len; 798 if (!len) 799 break; 800 } 801 } 802 803 if (full_pkt && skb_has_frag_list(skb)) { 804 printk("skb fraglist:\n"); 805 skb_walk_frags(skb, list_skb) 806 skb_dump(level, list_skb, true); 807 } 808 } 809 EXPORT_SYMBOL(skb_dump); 810 811 /** 812 * skb_tx_error - report an sk_buff xmit error 813 * @skb: buffer that triggered an error 814 * 815 * Report xmit error if a device callback is tracking this skb. 816 * skb must be freed afterwards. 817 */ 818 void skb_tx_error(struct sk_buff *skb) 819 { 820 skb_zcopy_clear(skb, true); 821 } 822 EXPORT_SYMBOL(skb_tx_error); 823 824 #ifdef CONFIG_TRACEPOINTS 825 /** 826 * consume_skb - free an skbuff 827 * @skb: buffer to free 828 * 829 * Drop a ref to the buffer and free it if the usage count has hit zero 830 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 831 * is being dropped after a failure and notes that 832 */ 833 void consume_skb(struct sk_buff *skb) 834 { 835 if (!skb_unref(skb)) 836 return; 837 838 trace_consume_skb(skb); 839 __kfree_skb(skb); 840 } 841 EXPORT_SYMBOL(consume_skb); 842 #endif 843 844 /** 845 * __consume_stateless_skb - free an skbuff, assuming it is stateless 846 * @skb: buffer to free 847 * 848 * Alike consume_skb(), but this variant assumes that this is the last 849 * skb reference and all the head states have been already dropped 850 */ 851 void __consume_stateless_skb(struct sk_buff *skb) 852 { 853 trace_consume_skb(skb); 854 skb_release_data(skb); 855 kfree_skbmem(skb); 856 } 857 858 void __kfree_skb_flush(void) 859 { 860 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 861 862 /* flush skb_cache if containing objects */ 863 if (nc->skb_count) { 864 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 865 nc->skb_cache); 866 nc->skb_count = 0; 867 } 868 } 869 870 static inline void _kfree_skb_defer(struct sk_buff *skb) 871 { 872 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 873 874 /* drop skb->head and call any destructors for packet */ 875 skb_release_all(skb); 876 877 /* record skb to CPU local list */ 878 nc->skb_cache[nc->skb_count++] = skb; 879 880 #ifdef CONFIG_SLUB 881 /* SLUB writes into objects when freeing */ 882 prefetchw(skb); 883 #endif 884 885 /* flush skb_cache if it is filled */ 886 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 887 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 888 nc->skb_cache); 889 nc->skb_count = 0; 890 } 891 } 892 void __kfree_skb_defer(struct sk_buff *skb) 893 { 894 _kfree_skb_defer(skb); 895 } 896 897 void napi_consume_skb(struct sk_buff *skb, int budget) 898 { 899 /* Zero budget indicate non-NAPI context called us, like netpoll */ 900 if (unlikely(!budget)) { 901 dev_consume_skb_any(skb); 902 return; 903 } 904 905 lockdep_assert_in_softirq(); 906 907 if (!skb_unref(skb)) 908 return; 909 910 /* if reaching here SKB is ready to free */ 911 trace_consume_skb(skb); 912 913 /* if SKB is a clone, don't handle this case */ 914 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 915 __kfree_skb(skb); 916 return; 917 } 918 919 _kfree_skb_defer(skb); 920 } 921 EXPORT_SYMBOL(napi_consume_skb); 922 923 /* Make sure a field is enclosed inside headers_start/headers_end section */ 924 #define CHECK_SKB_FIELD(field) \ 925 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 926 offsetof(struct sk_buff, headers_start)); \ 927 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 928 offsetof(struct sk_buff, headers_end)); \ 929 930 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 931 { 932 new->tstamp = old->tstamp; 933 /* We do not copy old->sk */ 934 new->dev = old->dev; 935 memcpy(new->cb, old->cb, sizeof(old->cb)); 936 skb_dst_copy(new, old); 937 __skb_ext_copy(new, old); 938 __nf_copy(new, old, false); 939 940 /* Note : this field could be in headers_start/headers_end section 941 * It is not yet because we do not want to have a 16 bit hole 942 */ 943 new->queue_mapping = old->queue_mapping; 944 945 memcpy(&new->headers_start, &old->headers_start, 946 offsetof(struct sk_buff, headers_end) - 947 offsetof(struct sk_buff, headers_start)); 948 CHECK_SKB_FIELD(protocol); 949 CHECK_SKB_FIELD(csum); 950 CHECK_SKB_FIELD(hash); 951 CHECK_SKB_FIELD(priority); 952 CHECK_SKB_FIELD(skb_iif); 953 CHECK_SKB_FIELD(vlan_proto); 954 CHECK_SKB_FIELD(vlan_tci); 955 CHECK_SKB_FIELD(transport_header); 956 CHECK_SKB_FIELD(network_header); 957 CHECK_SKB_FIELD(mac_header); 958 CHECK_SKB_FIELD(inner_protocol); 959 CHECK_SKB_FIELD(inner_transport_header); 960 CHECK_SKB_FIELD(inner_network_header); 961 CHECK_SKB_FIELD(inner_mac_header); 962 CHECK_SKB_FIELD(mark); 963 #ifdef CONFIG_NETWORK_SECMARK 964 CHECK_SKB_FIELD(secmark); 965 #endif 966 #ifdef CONFIG_NET_RX_BUSY_POLL 967 CHECK_SKB_FIELD(napi_id); 968 #endif 969 #ifdef CONFIG_XPS 970 CHECK_SKB_FIELD(sender_cpu); 971 #endif 972 #ifdef CONFIG_NET_SCHED 973 CHECK_SKB_FIELD(tc_index); 974 #endif 975 976 } 977 978 /* 979 * You should not add any new code to this function. Add it to 980 * __copy_skb_header above instead. 981 */ 982 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 983 { 984 #define C(x) n->x = skb->x 985 986 n->next = n->prev = NULL; 987 n->sk = NULL; 988 __copy_skb_header(n, skb); 989 990 C(len); 991 C(data_len); 992 C(mac_len); 993 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 994 n->cloned = 1; 995 n->nohdr = 0; 996 n->peeked = 0; 997 C(pfmemalloc); 998 n->destructor = NULL; 999 C(tail); 1000 C(end); 1001 C(head); 1002 C(head_frag); 1003 C(data); 1004 C(truesize); 1005 refcount_set(&n->users, 1); 1006 1007 atomic_inc(&(skb_shinfo(skb)->dataref)); 1008 skb->cloned = 1; 1009 1010 return n; 1011 #undef C 1012 } 1013 1014 /** 1015 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1016 * @first: first sk_buff of the msg 1017 */ 1018 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1019 { 1020 struct sk_buff *n; 1021 1022 n = alloc_skb(0, GFP_ATOMIC); 1023 if (!n) 1024 return NULL; 1025 1026 n->len = first->len; 1027 n->data_len = first->len; 1028 n->truesize = first->truesize; 1029 1030 skb_shinfo(n)->frag_list = first; 1031 1032 __copy_skb_header(n, first); 1033 n->destructor = NULL; 1034 1035 return n; 1036 } 1037 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1038 1039 /** 1040 * skb_morph - morph one skb into another 1041 * @dst: the skb to receive the contents 1042 * @src: the skb to supply the contents 1043 * 1044 * This is identical to skb_clone except that the target skb is 1045 * supplied by the user. 1046 * 1047 * The target skb is returned upon exit. 1048 */ 1049 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1050 { 1051 skb_release_all(dst); 1052 return __skb_clone(dst, src); 1053 } 1054 EXPORT_SYMBOL_GPL(skb_morph); 1055 1056 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1057 { 1058 unsigned long max_pg, num_pg, new_pg, old_pg; 1059 struct user_struct *user; 1060 1061 if (capable(CAP_IPC_LOCK) || !size) 1062 return 0; 1063 1064 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1065 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1066 user = mmp->user ? : current_user(); 1067 1068 do { 1069 old_pg = atomic_long_read(&user->locked_vm); 1070 new_pg = old_pg + num_pg; 1071 if (new_pg > max_pg) 1072 return -ENOBUFS; 1073 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1074 old_pg); 1075 1076 if (!mmp->user) { 1077 mmp->user = get_uid(user); 1078 mmp->num_pg = num_pg; 1079 } else { 1080 mmp->num_pg += num_pg; 1081 } 1082 1083 return 0; 1084 } 1085 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1086 1087 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1088 { 1089 if (mmp->user) { 1090 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1091 free_uid(mmp->user); 1092 } 1093 } 1094 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1095 1096 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 1097 { 1098 struct ubuf_info *uarg; 1099 struct sk_buff *skb; 1100 1101 WARN_ON_ONCE(!in_task()); 1102 1103 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1104 if (!skb) 1105 return NULL; 1106 1107 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1108 uarg = (void *)skb->cb; 1109 uarg->mmp.user = NULL; 1110 1111 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1112 kfree_skb(skb); 1113 return NULL; 1114 } 1115 1116 uarg->callback = sock_zerocopy_callback; 1117 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1118 uarg->len = 1; 1119 uarg->bytelen = size; 1120 uarg->zerocopy = 1; 1121 refcount_set(&uarg->refcnt, 1); 1122 sock_hold(sk); 1123 1124 return uarg; 1125 } 1126 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 1127 1128 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1129 { 1130 return container_of((void *)uarg, struct sk_buff, cb); 1131 } 1132 1133 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 1134 struct ubuf_info *uarg) 1135 { 1136 if (uarg) { 1137 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1138 u32 bytelen, next; 1139 1140 /* realloc only when socket is locked (TCP, UDP cork), 1141 * so uarg->len and sk_zckey access is serialized 1142 */ 1143 if (!sock_owned_by_user(sk)) { 1144 WARN_ON_ONCE(1); 1145 return NULL; 1146 } 1147 1148 bytelen = uarg->bytelen + size; 1149 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1150 /* TCP can create new skb to attach new uarg */ 1151 if (sk->sk_type == SOCK_STREAM) 1152 goto new_alloc; 1153 return NULL; 1154 } 1155 1156 next = (u32)atomic_read(&sk->sk_zckey); 1157 if ((u32)(uarg->id + uarg->len) == next) { 1158 if (mm_account_pinned_pages(&uarg->mmp, size)) 1159 return NULL; 1160 uarg->len++; 1161 uarg->bytelen = bytelen; 1162 atomic_set(&sk->sk_zckey, ++next); 1163 1164 /* no extra ref when appending to datagram (MSG_MORE) */ 1165 if (sk->sk_type == SOCK_STREAM) 1166 sock_zerocopy_get(uarg); 1167 1168 return uarg; 1169 } 1170 } 1171 1172 new_alloc: 1173 return sock_zerocopy_alloc(sk, size); 1174 } 1175 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1176 1177 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1178 { 1179 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1180 u32 old_lo, old_hi; 1181 u64 sum_len; 1182 1183 old_lo = serr->ee.ee_info; 1184 old_hi = serr->ee.ee_data; 1185 sum_len = old_hi - old_lo + 1ULL + len; 1186 1187 if (sum_len >= (1ULL << 32)) 1188 return false; 1189 1190 if (lo != old_hi + 1) 1191 return false; 1192 1193 serr->ee.ee_data += len; 1194 return true; 1195 } 1196 1197 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1198 { 1199 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1200 struct sock_exterr_skb *serr; 1201 struct sock *sk = skb->sk; 1202 struct sk_buff_head *q; 1203 unsigned long flags; 1204 u32 lo, hi; 1205 u16 len; 1206 1207 mm_unaccount_pinned_pages(&uarg->mmp); 1208 1209 /* if !len, there was only 1 call, and it was aborted 1210 * so do not queue a completion notification 1211 */ 1212 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1213 goto release; 1214 1215 len = uarg->len; 1216 lo = uarg->id; 1217 hi = uarg->id + len - 1; 1218 1219 serr = SKB_EXT_ERR(skb); 1220 memset(serr, 0, sizeof(*serr)); 1221 serr->ee.ee_errno = 0; 1222 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1223 serr->ee.ee_data = hi; 1224 serr->ee.ee_info = lo; 1225 if (!success) 1226 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1227 1228 q = &sk->sk_error_queue; 1229 spin_lock_irqsave(&q->lock, flags); 1230 tail = skb_peek_tail(q); 1231 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1232 !skb_zerocopy_notify_extend(tail, lo, len)) { 1233 __skb_queue_tail(q, skb); 1234 skb = NULL; 1235 } 1236 spin_unlock_irqrestore(&q->lock, flags); 1237 1238 sk->sk_error_report(sk); 1239 1240 release: 1241 consume_skb(skb); 1242 sock_put(sk); 1243 } 1244 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1245 1246 void sock_zerocopy_put(struct ubuf_info *uarg) 1247 { 1248 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1249 if (uarg->callback) 1250 uarg->callback(uarg, uarg->zerocopy); 1251 else 1252 consume_skb(skb_from_uarg(uarg)); 1253 } 1254 } 1255 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1256 1257 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1258 { 1259 if (uarg) { 1260 struct sock *sk = skb_from_uarg(uarg)->sk; 1261 1262 atomic_dec(&sk->sk_zckey); 1263 uarg->len--; 1264 1265 if (have_uref) 1266 sock_zerocopy_put(uarg); 1267 } 1268 } 1269 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1270 1271 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1272 { 1273 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1274 } 1275 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1276 1277 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1278 struct msghdr *msg, int len, 1279 struct ubuf_info *uarg) 1280 { 1281 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1282 struct iov_iter orig_iter = msg->msg_iter; 1283 int err, orig_len = skb->len; 1284 1285 /* An skb can only point to one uarg. This edge case happens when 1286 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1287 */ 1288 if (orig_uarg && uarg != orig_uarg) 1289 return -EEXIST; 1290 1291 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1292 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1293 struct sock *save_sk = skb->sk; 1294 1295 /* Streams do not free skb on error. Reset to prev state. */ 1296 msg->msg_iter = orig_iter; 1297 skb->sk = sk; 1298 ___pskb_trim(skb, orig_len); 1299 skb->sk = save_sk; 1300 return err; 1301 } 1302 1303 skb_zcopy_set(skb, uarg, NULL); 1304 return skb->len - orig_len; 1305 } 1306 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1307 1308 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1309 gfp_t gfp_mask) 1310 { 1311 if (skb_zcopy(orig)) { 1312 if (skb_zcopy(nskb)) { 1313 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1314 if (!gfp_mask) { 1315 WARN_ON_ONCE(1); 1316 return -ENOMEM; 1317 } 1318 if (skb_uarg(nskb) == skb_uarg(orig)) 1319 return 0; 1320 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1321 return -EIO; 1322 } 1323 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1324 } 1325 return 0; 1326 } 1327 1328 /** 1329 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1330 * @skb: the skb to modify 1331 * @gfp_mask: allocation priority 1332 * 1333 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1334 * It will copy all frags into kernel and drop the reference 1335 * to userspace pages. 1336 * 1337 * If this function is called from an interrupt gfp_mask() must be 1338 * %GFP_ATOMIC. 1339 * 1340 * Returns 0 on success or a negative error code on failure 1341 * to allocate kernel memory to copy to. 1342 */ 1343 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1344 { 1345 int num_frags = skb_shinfo(skb)->nr_frags; 1346 struct page *page, *head = NULL; 1347 int i, new_frags; 1348 u32 d_off; 1349 1350 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1351 return -EINVAL; 1352 1353 if (!num_frags) 1354 goto release; 1355 1356 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1357 for (i = 0; i < new_frags; i++) { 1358 page = alloc_page(gfp_mask); 1359 if (!page) { 1360 while (head) { 1361 struct page *next = (struct page *)page_private(head); 1362 put_page(head); 1363 head = next; 1364 } 1365 return -ENOMEM; 1366 } 1367 set_page_private(page, (unsigned long)head); 1368 head = page; 1369 } 1370 1371 page = head; 1372 d_off = 0; 1373 for (i = 0; i < num_frags; i++) { 1374 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1375 u32 p_off, p_len, copied; 1376 struct page *p; 1377 u8 *vaddr; 1378 1379 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1380 p, p_off, p_len, copied) { 1381 u32 copy, done = 0; 1382 vaddr = kmap_atomic(p); 1383 1384 while (done < p_len) { 1385 if (d_off == PAGE_SIZE) { 1386 d_off = 0; 1387 page = (struct page *)page_private(page); 1388 } 1389 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1390 memcpy(page_address(page) + d_off, 1391 vaddr + p_off + done, copy); 1392 done += copy; 1393 d_off += copy; 1394 } 1395 kunmap_atomic(vaddr); 1396 } 1397 } 1398 1399 /* skb frags release userspace buffers */ 1400 for (i = 0; i < num_frags; i++) 1401 skb_frag_unref(skb, i); 1402 1403 /* skb frags point to kernel buffers */ 1404 for (i = 0; i < new_frags - 1; i++) { 1405 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1406 head = (struct page *)page_private(head); 1407 } 1408 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1409 skb_shinfo(skb)->nr_frags = new_frags; 1410 1411 release: 1412 skb_zcopy_clear(skb, false); 1413 return 0; 1414 } 1415 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1416 1417 /** 1418 * skb_clone - duplicate an sk_buff 1419 * @skb: buffer to clone 1420 * @gfp_mask: allocation priority 1421 * 1422 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1423 * copies share the same packet data but not structure. The new 1424 * buffer has a reference count of 1. If the allocation fails the 1425 * function returns %NULL otherwise the new buffer is returned. 1426 * 1427 * If this function is called from an interrupt gfp_mask() must be 1428 * %GFP_ATOMIC. 1429 */ 1430 1431 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1432 { 1433 struct sk_buff_fclones *fclones = container_of(skb, 1434 struct sk_buff_fclones, 1435 skb1); 1436 struct sk_buff *n; 1437 1438 if (skb_orphan_frags(skb, gfp_mask)) 1439 return NULL; 1440 1441 if (skb->fclone == SKB_FCLONE_ORIG && 1442 refcount_read(&fclones->fclone_ref) == 1) { 1443 n = &fclones->skb2; 1444 refcount_set(&fclones->fclone_ref, 2); 1445 } else { 1446 if (skb_pfmemalloc(skb)) 1447 gfp_mask |= __GFP_MEMALLOC; 1448 1449 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1450 if (!n) 1451 return NULL; 1452 1453 n->fclone = SKB_FCLONE_UNAVAILABLE; 1454 } 1455 1456 return __skb_clone(n, skb); 1457 } 1458 EXPORT_SYMBOL(skb_clone); 1459 1460 void skb_headers_offset_update(struct sk_buff *skb, int off) 1461 { 1462 /* Only adjust this if it actually is csum_start rather than csum */ 1463 if (skb->ip_summed == CHECKSUM_PARTIAL) 1464 skb->csum_start += off; 1465 /* {transport,network,mac}_header and tail are relative to skb->head */ 1466 skb->transport_header += off; 1467 skb->network_header += off; 1468 if (skb_mac_header_was_set(skb)) 1469 skb->mac_header += off; 1470 skb->inner_transport_header += off; 1471 skb->inner_network_header += off; 1472 skb->inner_mac_header += off; 1473 } 1474 EXPORT_SYMBOL(skb_headers_offset_update); 1475 1476 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1477 { 1478 __copy_skb_header(new, old); 1479 1480 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1481 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1482 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1483 } 1484 EXPORT_SYMBOL(skb_copy_header); 1485 1486 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1487 { 1488 if (skb_pfmemalloc(skb)) 1489 return SKB_ALLOC_RX; 1490 return 0; 1491 } 1492 1493 /** 1494 * skb_copy - create private copy of an sk_buff 1495 * @skb: buffer to copy 1496 * @gfp_mask: allocation priority 1497 * 1498 * Make a copy of both an &sk_buff and its data. This is used when the 1499 * caller wishes to modify the data and needs a private copy of the 1500 * data to alter. Returns %NULL on failure or the pointer to the buffer 1501 * on success. The returned buffer has a reference count of 1. 1502 * 1503 * As by-product this function converts non-linear &sk_buff to linear 1504 * one, so that &sk_buff becomes completely private and caller is allowed 1505 * to modify all the data of returned buffer. This means that this 1506 * function is not recommended for use in circumstances when only 1507 * header is going to be modified. Use pskb_copy() instead. 1508 */ 1509 1510 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1511 { 1512 int headerlen = skb_headroom(skb); 1513 unsigned int size = skb_end_offset(skb) + skb->data_len; 1514 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1515 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1516 1517 if (!n) 1518 return NULL; 1519 1520 /* Set the data pointer */ 1521 skb_reserve(n, headerlen); 1522 /* Set the tail pointer and length */ 1523 skb_put(n, skb->len); 1524 1525 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1526 1527 skb_copy_header(n, skb); 1528 return n; 1529 } 1530 EXPORT_SYMBOL(skb_copy); 1531 1532 /** 1533 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1534 * @skb: buffer to copy 1535 * @headroom: headroom of new skb 1536 * @gfp_mask: allocation priority 1537 * @fclone: if true allocate the copy of the skb from the fclone 1538 * cache instead of the head cache; it is recommended to set this 1539 * to true for the cases where the copy will likely be cloned 1540 * 1541 * Make a copy of both an &sk_buff and part of its data, located 1542 * in header. Fragmented data remain shared. This is used when 1543 * the caller wishes to modify only header of &sk_buff and needs 1544 * private copy of the header to alter. Returns %NULL on failure 1545 * or the pointer to the buffer on success. 1546 * The returned buffer has a reference count of 1. 1547 */ 1548 1549 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1550 gfp_t gfp_mask, bool fclone) 1551 { 1552 unsigned int size = skb_headlen(skb) + headroom; 1553 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1554 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1555 1556 if (!n) 1557 goto out; 1558 1559 /* Set the data pointer */ 1560 skb_reserve(n, headroom); 1561 /* Set the tail pointer and length */ 1562 skb_put(n, skb_headlen(skb)); 1563 /* Copy the bytes */ 1564 skb_copy_from_linear_data(skb, n->data, n->len); 1565 1566 n->truesize += skb->data_len; 1567 n->data_len = skb->data_len; 1568 n->len = skb->len; 1569 1570 if (skb_shinfo(skb)->nr_frags) { 1571 int i; 1572 1573 if (skb_orphan_frags(skb, gfp_mask) || 1574 skb_zerocopy_clone(n, skb, gfp_mask)) { 1575 kfree_skb(n); 1576 n = NULL; 1577 goto out; 1578 } 1579 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1580 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1581 skb_frag_ref(skb, i); 1582 } 1583 skb_shinfo(n)->nr_frags = i; 1584 } 1585 1586 if (skb_has_frag_list(skb)) { 1587 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1588 skb_clone_fraglist(n); 1589 } 1590 1591 skb_copy_header(n, skb); 1592 out: 1593 return n; 1594 } 1595 EXPORT_SYMBOL(__pskb_copy_fclone); 1596 1597 /** 1598 * pskb_expand_head - reallocate header of &sk_buff 1599 * @skb: buffer to reallocate 1600 * @nhead: room to add at head 1601 * @ntail: room to add at tail 1602 * @gfp_mask: allocation priority 1603 * 1604 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1605 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1606 * reference count of 1. Returns zero in the case of success or error, 1607 * if expansion failed. In the last case, &sk_buff is not changed. 1608 * 1609 * All the pointers pointing into skb header may change and must be 1610 * reloaded after call to this function. 1611 */ 1612 1613 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1614 gfp_t gfp_mask) 1615 { 1616 int i, osize = skb_end_offset(skb); 1617 int size = osize + nhead + ntail; 1618 long off; 1619 u8 *data; 1620 1621 BUG_ON(nhead < 0); 1622 1623 BUG_ON(skb_shared(skb)); 1624 1625 size = SKB_DATA_ALIGN(size); 1626 1627 if (skb_pfmemalloc(skb)) 1628 gfp_mask |= __GFP_MEMALLOC; 1629 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1630 gfp_mask, NUMA_NO_NODE, NULL); 1631 if (!data) 1632 goto nodata; 1633 size = SKB_WITH_OVERHEAD(ksize(data)); 1634 1635 /* Copy only real data... and, alas, header. This should be 1636 * optimized for the cases when header is void. 1637 */ 1638 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1639 1640 memcpy((struct skb_shared_info *)(data + size), 1641 skb_shinfo(skb), 1642 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1643 1644 /* 1645 * if shinfo is shared we must drop the old head gracefully, but if it 1646 * is not we can just drop the old head and let the existing refcount 1647 * be since all we did is relocate the values 1648 */ 1649 if (skb_cloned(skb)) { 1650 if (skb_orphan_frags(skb, gfp_mask)) 1651 goto nofrags; 1652 if (skb_zcopy(skb)) 1653 refcount_inc(&skb_uarg(skb)->refcnt); 1654 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1655 skb_frag_ref(skb, i); 1656 1657 if (skb_has_frag_list(skb)) 1658 skb_clone_fraglist(skb); 1659 1660 skb_release_data(skb); 1661 } else { 1662 skb_free_head(skb); 1663 } 1664 off = (data + nhead) - skb->head; 1665 1666 skb->head = data; 1667 skb->head_frag = 0; 1668 skb->data += off; 1669 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1670 skb->end = size; 1671 off = nhead; 1672 #else 1673 skb->end = skb->head + size; 1674 #endif 1675 skb->tail += off; 1676 skb_headers_offset_update(skb, nhead); 1677 skb->cloned = 0; 1678 skb->hdr_len = 0; 1679 skb->nohdr = 0; 1680 atomic_set(&skb_shinfo(skb)->dataref, 1); 1681 1682 skb_metadata_clear(skb); 1683 1684 /* It is not generally safe to change skb->truesize. 1685 * For the moment, we really care of rx path, or 1686 * when skb is orphaned (not attached to a socket). 1687 */ 1688 if (!skb->sk || skb->destructor == sock_edemux) 1689 skb->truesize += size - osize; 1690 1691 return 0; 1692 1693 nofrags: 1694 kfree(data); 1695 nodata: 1696 return -ENOMEM; 1697 } 1698 EXPORT_SYMBOL(pskb_expand_head); 1699 1700 /* Make private copy of skb with writable head and some headroom */ 1701 1702 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1703 { 1704 struct sk_buff *skb2; 1705 int delta = headroom - skb_headroom(skb); 1706 1707 if (delta <= 0) 1708 skb2 = pskb_copy(skb, GFP_ATOMIC); 1709 else { 1710 skb2 = skb_clone(skb, GFP_ATOMIC); 1711 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1712 GFP_ATOMIC)) { 1713 kfree_skb(skb2); 1714 skb2 = NULL; 1715 } 1716 } 1717 return skb2; 1718 } 1719 EXPORT_SYMBOL(skb_realloc_headroom); 1720 1721 /** 1722 * skb_copy_expand - copy and expand sk_buff 1723 * @skb: buffer to copy 1724 * @newheadroom: new free bytes at head 1725 * @newtailroom: new free bytes at tail 1726 * @gfp_mask: allocation priority 1727 * 1728 * Make a copy of both an &sk_buff and its data and while doing so 1729 * allocate additional space. 1730 * 1731 * This is used when the caller wishes to modify the data and needs a 1732 * private copy of the data to alter as well as more space for new fields. 1733 * Returns %NULL on failure or the pointer to the buffer 1734 * on success. The returned buffer has a reference count of 1. 1735 * 1736 * You must pass %GFP_ATOMIC as the allocation priority if this function 1737 * is called from an interrupt. 1738 */ 1739 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1740 int newheadroom, int newtailroom, 1741 gfp_t gfp_mask) 1742 { 1743 /* 1744 * Allocate the copy buffer 1745 */ 1746 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1747 gfp_mask, skb_alloc_rx_flag(skb), 1748 NUMA_NO_NODE); 1749 int oldheadroom = skb_headroom(skb); 1750 int head_copy_len, head_copy_off; 1751 1752 if (!n) 1753 return NULL; 1754 1755 skb_reserve(n, newheadroom); 1756 1757 /* Set the tail pointer and length */ 1758 skb_put(n, skb->len); 1759 1760 head_copy_len = oldheadroom; 1761 head_copy_off = 0; 1762 if (newheadroom <= head_copy_len) 1763 head_copy_len = newheadroom; 1764 else 1765 head_copy_off = newheadroom - head_copy_len; 1766 1767 /* Copy the linear header and data. */ 1768 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1769 skb->len + head_copy_len)); 1770 1771 skb_copy_header(n, skb); 1772 1773 skb_headers_offset_update(n, newheadroom - oldheadroom); 1774 1775 return n; 1776 } 1777 EXPORT_SYMBOL(skb_copy_expand); 1778 1779 /** 1780 * __skb_pad - zero pad the tail of an skb 1781 * @skb: buffer to pad 1782 * @pad: space to pad 1783 * @free_on_error: free buffer on error 1784 * 1785 * Ensure that a buffer is followed by a padding area that is zero 1786 * filled. Used by network drivers which may DMA or transfer data 1787 * beyond the buffer end onto the wire. 1788 * 1789 * May return error in out of memory cases. The skb is freed on error 1790 * if @free_on_error is true. 1791 */ 1792 1793 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1794 { 1795 int err; 1796 int ntail; 1797 1798 /* If the skbuff is non linear tailroom is always zero.. */ 1799 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1800 memset(skb->data+skb->len, 0, pad); 1801 return 0; 1802 } 1803 1804 ntail = skb->data_len + pad - (skb->end - skb->tail); 1805 if (likely(skb_cloned(skb) || ntail > 0)) { 1806 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1807 if (unlikely(err)) 1808 goto free_skb; 1809 } 1810 1811 /* FIXME: The use of this function with non-linear skb's really needs 1812 * to be audited. 1813 */ 1814 err = skb_linearize(skb); 1815 if (unlikely(err)) 1816 goto free_skb; 1817 1818 memset(skb->data + skb->len, 0, pad); 1819 return 0; 1820 1821 free_skb: 1822 if (free_on_error) 1823 kfree_skb(skb); 1824 return err; 1825 } 1826 EXPORT_SYMBOL(__skb_pad); 1827 1828 /** 1829 * pskb_put - add data to the tail of a potentially fragmented buffer 1830 * @skb: start of the buffer to use 1831 * @tail: tail fragment of the buffer to use 1832 * @len: amount of data to add 1833 * 1834 * This function extends the used data area of the potentially 1835 * fragmented buffer. @tail must be the last fragment of @skb -- or 1836 * @skb itself. If this would exceed the total buffer size the kernel 1837 * will panic. A pointer to the first byte of the extra data is 1838 * returned. 1839 */ 1840 1841 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1842 { 1843 if (tail != skb) { 1844 skb->data_len += len; 1845 skb->len += len; 1846 } 1847 return skb_put(tail, len); 1848 } 1849 EXPORT_SYMBOL_GPL(pskb_put); 1850 1851 /** 1852 * skb_put - add data to a buffer 1853 * @skb: buffer to use 1854 * @len: amount of data to add 1855 * 1856 * This function extends the used data area of the buffer. If this would 1857 * exceed the total buffer size the kernel will panic. A pointer to the 1858 * first byte of the extra data is returned. 1859 */ 1860 void *skb_put(struct sk_buff *skb, unsigned int len) 1861 { 1862 void *tmp = skb_tail_pointer(skb); 1863 SKB_LINEAR_ASSERT(skb); 1864 skb->tail += len; 1865 skb->len += len; 1866 if (unlikely(skb->tail > skb->end)) 1867 skb_over_panic(skb, len, __builtin_return_address(0)); 1868 return tmp; 1869 } 1870 EXPORT_SYMBOL(skb_put); 1871 1872 /** 1873 * skb_push - add data to the start of a buffer 1874 * @skb: buffer to use 1875 * @len: amount of data to add 1876 * 1877 * This function extends the used data area of the buffer at the buffer 1878 * start. If this would exceed the total buffer headroom the kernel will 1879 * panic. A pointer to the first byte of the extra data is returned. 1880 */ 1881 void *skb_push(struct sk_buff *skb, unsigned int len) 1882 { 1883 skb->data -= len; 1884 skb->len += len; 1885 if (unlikely(skb->data < skb->head)) 1886 skb_under_panic(skb, len, __builtin_return_address(0)); 1887 return skb->data; 1888 } 1889 EXPORT_SYMBOL(skb_push); 1890 1891 /** 1892 * skb_pull - remove data from the start of a buffer 1893 * @skb: buffer to use 1894 * @len: amount of data to remove 1895 * 1896 * This function removes data from the start of a buffer, returning 1897 * the memory to the headroom. A pointer to the next data in the buffer 1898 * is returned. Once the data has been pulled future pushes will overwrite 1899 * the old data. 1900 */ 1901 void *skb_pull(struct sk_buff *skb, unsigned int len) 1902 { 1903 return skb_pull_inline(skb, len); 1904 } 1905 EXPORT_SYMBOL(skb_pull); 1906 1907 /** 1908 * skb_trim - remove end from a buffer 1909 * @skb: buffer to alter 1910 * @len: new length 1911 * 1912 * Cut the length of a buffer down by removing data from the tail. If 1913 * the buffer is already under the length specified it is not modified. 1914 * The skb must be linear. 1915 */ 1916 void skb_trim(struct sk_buff *skb, unsigned int len) 1917 { 1918 if (skb->len > len) 1919 __skb_trim(skb, len); 1920 } 1921 EXPORT_SYMBOL(skb_trim); 1922 1923 /* Trims skb to length len. It can change skb pointers. 1924 */ 1925 1926 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1927 { 1928 struct sk_buff **fragp; 1929 struct sk_buff *frag; 1930 int offset = skb_headlen(skb); 1931 int nfrags = skb_shinfo(skb)->nr_frags; 1932 int i; 1933 int err; 1934 1935 if (skb_cloned(skb) && 1936 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1937 return err; 1938 1939 i = 0; 1940 if (offset >= len) 1941 goto drop_pages; 1942 1943 for (; i < nfrags; i++) { 1944 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1945 1946 if (end < len) { 1947 offset = end; 1948 continue; 1949 } 1950 1951 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1952 1953 drop_pages: 1954 skb_shinfo(skb)->nr_frags = i; 1955 1956 for (; i < nfrags; i++) 1957 skb_frag_unref(skb, i); 1958 1959 if (skb_has_frag_list(skb)) 1960 skb_drop_fraglist(skb); 1961 goto done; 1962 } 1963 1964 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1965 fragp = &frag->next) { 1966 int end = offset + frag->len; 1967 1968 if (skb_shared(frag)) { 1969 struct sk_buff *nfrag; 1970 1971 nfrag = skb_clone(frag, GFP_ATOMIC); 1972 if (unlikely(!nfrag)) 1973 return -ENOMEM; 1974 1975 nfrag->next = frag->next; 1976 consume_skb(frag); 1977 frag = nfrag; 1978 *fragp = frag; 1979 } 1980 1981 if (end < len) { 1982 offset = end; 1983 continue; 1984 } 1985 1986 if (end > len && 1987 unlikely((err = pskb_trim(frag, len - offset)))) 1988 return err; 1989 1990 if (frag->next) 1991 skb_drop_list(&frag->next); 1992 break; 1993 } 1994 1995 done: 1996 if (len > skb_headlen(skb)) { 1997 skb->data_len -= skb->len - len; 1998 skb->len = len; 1999 } else { 2000 skb->len = len; 2001 skb->data_len = 0; 2002 skb_set_tail_pointer(skb, len); 2003 } 2004 2005 if (!skb->sk || skb->destructor == sock_edemux) 2006 skb_condense(skb); 2007 return 0; 2008 } 2009 EXPORT_SYMBOL(___pskb_trim); 2010 2011 /* Note : use pskb_trim_rcsum() instead of calling this directly 2012 */ 2013 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2014 { 2015 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2016 int delta = skb->len - len; 2017 2018 skb->csum = csum_block_sub(skb->csum, 2019 skb_checksum(skb, len, delta, 0), 2020 len); 2021 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2022 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2023 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2024 2025 if (offset + sizeof(__sum16) > hdlen) 2026 return -EINVAL; 2027 } 2028 return __pskb_trim(skb, len); 2029 } 2030 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2031 2032 /** 2033 * __pskb_pull_tail - advance tail of skb header 2034 * @skb: buffer to reallocate 2035 * @delta: number of bytes to advance tail 2036 * 2037 * The function makes a sense only on a fragmented &sk_buff, 2038 * it expands header moving its tail forward and copying necessary 2039 * data from fragmented part. 2040 * 2041 * &sk_buff MUST have reference count of 1. 2042 * 2043 * Returns %NULL (and &sk_buff does not change) if pull failed 2044 * or value of new tail of skb in the case of success. 2045 * 2046 * All the pointers pointing into skb header may change and must be 2047 * reloaded after call to this function. 2048 */ 2049 2050 /* Moves tail of skb head forward, copying data from fragmented part, 2051 * when it is necessary. 2052 * 1. It may fail due to malloc failure. 2053 * 2. It may change skb pointers. 2054 * 2055 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2056 */ 2057 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2058 { 2059 /* If skb has not enough free space at tail, get new one 2060 * plus 128 bytes for future expansions. If we have enough 2061 * room at tail, reallocate without expansion only if skb is cloned. 2062 */ 2063 int i, k, eat = (skb->tail + delta) - skb->end; 2064 2065 if (eat > 0 || skb_cloned(skb)) { 2066 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2067 GFP_ATOMIC)) 2068 return NULL; 2069 } 2070 2071 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2072 skb_tail_pointer(skb), delta)); 2073 2074 /* Optimization: no fragments, no reasons to preestimate 2075 * size of pulled pages. Superb. 2076 */ 2077 if (!skb_has_frag_list(skb)) 2078 goto pull_pages; 2079 2080 /* Estimate size of pulled pages. */ 2081 eat = delta; 2082 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2083 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2084 2085 if (size >= eat) 2086 goto pull_pages; 2087 eat -= size; 2088 } 2089 2090 /* If we need update frag list, we are in troubles. 2091 * Certainly, it is possible to add an offset to skb data, 2092 * but taking into account that pulling is expected to 2093 * be very rare operation, it is worth to fight against 2094 * further bloating skb head and crucify ourselves here instead. 2095 * Pure masohism, indeed. 8)8) 2096 */ 2097 if (eat) { 2098 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2099 struct sk_buff *clone = NULL; 2100 struct sk_buff *insp = NULL; 2101 2102 do { 2103 if (list->len <= eat) { 2104 /* Eaten as whole. */ 2105 eat -= list->len; 2106 list = list->next; 2107 insp = list; 2108 } else { 2109 /* Eaten partially. */ 2110 2111 if (skb_shared(list)) { 2112 /* Sucks! We need to fork list. :-( */ 2113 clone = skb_clone(list, GFP_ATOMIC); 2114 if (!clone) 2115 return NULL; 2116 insp = list->next; 2117 list = clone; 2118 } else { 2119 /* This may be pulled without 2120 * problems. */ 2121 insp = list; 2122 } 2123 if (!pskb_pull(list, eat)) { 2124 kfree_skb(clone); 2125 return NULL; 2126 } 2127 break; 2128 } 2129 } while (eat); 2130 2131 /* Free pulled out fragments. */ 2132 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2133 skb_shinfo(skb)->frag_list = list->next; 2134 kfree_skb(list); 2135 } 2136 /* And insert new clone at head. */ 2137 if (clone) { 2138 clone->next = list; 2139 skb_shinfo(skb)->frag_list = clone; 2140 } 2141 } 2142 /* Success! Now we may commit changes to skb data. */ 2143 2144 pull_pages: 2145 eat = delta; 2146 k = 0; 2147 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2148 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2149 2150 if (size <= eat) { 2151 skb_frag_unref(skb, i); 2152 eat -= size; 2153 } else { 2154 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2155 2156 *frag = skb_shinfo(skb)->frags[i]; 2157 if (eat) { 2158 skb_frag_off_add(frag, eat); 2159 skb_frag_size_sub(frag, eat); 2160 if (!i) 2161 goto end; 2162 eat = 0; 2163 } 2164 k++; 2165 } 2166 } 2167 skb_shinfo(skb)->nr_frags = k; 2168 2169 end: 2170 skb->tail += delta; 2171 skb->data_len -= delta; 2172 2173 if (!skb->data_len) 2174 skb_zcopy_clear(skb, false); 2175 2176 return skb_tail_pointer(skb); 2177 } 2178 EXPORT_SYMBOL(__pskb_pull_tail); 2179 2180 /** 2181 * skb_copy_bits - copy bits from skb to kernel buffer 2182 * @skb: source skb 2183 * @offset: offset in source 2184 * @to: destination buffer 2185 * @len: number of bytes to copy 2186 * 2187 * Copy the specified number of bytes from the source skb to the 2188 * destination buffer. 2189 * 2190 * CAUTION ! : 2191 * If its prototype is ever changed, 2192 * check arch/{*}/net/{*}.S files, 2193 * since it is called from BPF assembly code. 2194 */ 2195 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2196 { 2197 int start = skb_headlen(skb); 2198 struct sk_buff *frag_iter; 2199 int i, copy; 2200 2201 if (offset > (int)skb->len - len) 2202 goto fault; 2203 2204 /* Copy header. */ 2205 if ((copy = start - offset) > 0) { 2206 if (copy > len) 2207 copy = len; 2208 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2209 if ((len -= copy) == 0) 2210 return 0; 2211 offset += copy; 2212 to += copy; 2213 } 2214 2215 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2216 int end; 2217 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2218 2219 WARN_ON(start > offset + len); 2220 2221 end = start + skb_frag_size(f); 2222 if ((copy = end - offset) > 0) { 2223 u32 p_off, p_len, copied; 2224 struct page *p; 2225 u8 *vaddr; 2226 2227 if (copy > len) 2228 copy = len; 2229 2230 skb_frag_foreach_page(f, 2231 skb_frag_off(f) + offset - start, 2232 copy, p, p_off, p_len, copied) { 2233 vaddr = kmap_atomic(p); 2234 memcpy(to + copied, vaddr + p_off, p_len); 2235 kunmap_atomic(vaddr); 2236 } 2237 2238 if ((len -= copy) == 0) 2239 return 0; 2240 offset += copy; 2241 to += copy; 2242 } 2243 start = end; 2244 } 2245 2246 skb_walk_frags(skb, frag_iter) { 2247 int end; 2248 2249 WARN_ON(start > offset + len); 2250 2251 end = start + frag_iter->len; 2252 if ((copy = end - offset) > 0) { 2253 if (copy > len) 2254 copy = len; 2255 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2256 goto fault; 2257 if ((len -= copy) == 0) 2258 return 0; 2259 offset += copy; 2260 to += copy; 2261 } 2262 start = end; 2263 } 2264 2265 if (!len) 2266 return 0; 2267 2268 fault: 2269 return -EFAULT; 2270 } 2271 EXPORT_SYMBOL(skb_copy_bits); 2272 2273 /* 2274 * Callback from splice_to_pipe(), if we need to release some pages 2275 * at the end of the spd in case we error'ed out in filling the pipe. 2276 */ 2277 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2278 { 2279 put_page(spd->pages[i]); 2280 } 2281 2282 static struct page *linear_to_page(struct page *page, unsigned int *len, 2283 unsigned int *offset, 2284 struct sock *sk) 2285 { 2286 struct page_frag *pfrag = sk_page_frag(sk); 2287 2288 if (!sk_page_frag_refill(sk, pfrag)) 2289 return NULL; 2290 2291 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2292 2293 memcpy(page_address(pfrag->page) + pfrag->offset, 2294 page_address(page) + *offset, *len); 2295 *offset = pfrag->offset; 2296 pfrag->offset += *len; 2297 2298 return pfrag->page; 2299 } 2300 2301 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2302 struct page *page, 2303 unsigned int offset) 2304 { 2305 return spd->nr_pages && 2306 spd->pages[spd->nr_pages - 1] == page && 2307 (spd->partial[spd->nr_pages - 1].offset + 2308 spd->partial[spd->nr_pages - 1].len == offset); 2309 } 2310 2311 /* 2312 * Fill page/offset/length into spd, if it can hold more pages. 2313 */ 2314 static bool spd_fill_page(struct splice_pipe_desc *spd, 2315 struct pipe_inode_info *pipe, struct page *page, 2316 unsigned int *len, unsigned int offset, 2317 bool linear, 2318 struct sock *sk) 2319 { 2320 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2321 return true; 2322 2323 if (linear) { 2324 page = linear_to_page(page, len, &offset, sk); 2325 if (!page) 2326 return true; 2327 } 2328 if (spd_can_coalesce(spd, page, offset)) { 2329 spd->partial[spd->nr_pages - 1].len += *len; 2330 return false; 2331 } 2332 get_page(page); 2333 spd->pages[spd->nr_pages] = page; 2334 spd->partial[spd->nr_pages].len = *len; 2335 spd->partial[spd->nr_pages].offset = offset; 2336 spd->nr_pages++; 2337 2338 return false; 2339 } 2340 2341 static bool __splice_segment(struct page *page, unsigned int poff, 2342 unsigned int plen, unsigned int *off, 2343 unsigned int *len, 2344 struct splice_pipe_desc *spd, bool linear, 2345 struct sock *sk, 2346 struct pipe_inode_info *pipe) 2347 { 2348 if (!*len) 2349 return true; 2350 2351 /* skip this segment if already processed */ 2352 if (*off >= plen) { 2353 *off -= plen; 2354 return false; 2355 } 2356 2357 /* ignore any bits we already processed */ 2358 poff += *off; 2359 plen -= *off; 2360 *off = 0; 2361 2362 do { 2363 unsigned int flen = min(*len, plen); 2364 2365 if (spd_fill_page(spd, pipe, page, &flen, poff, 2366 linear, sk)) 2367 return true; 2368 poff += flen; 2369 plen -= flen; 2370 *len -= flen; 2371 } while (*len && plen); 2372 2373 return false; 2374 } 2375 2376 /* 2377 * Map linear and fragment data from the skb to spd. It reports true if the 2378 * pipe is full or if we already spliced the requested length. 2379 */ 2380 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2381 unsigned int *offset, unsigned int *len, 2382 struct splice_pipe_desc *spd, struct sock *sk) 2383 { 2384 int seg; 2385 struct sk_buff *iter; 2386 2387 /* map the linear part : 2388 * If skb->head_frag is set, this 'linear' part is backed by a 2389 * fragment, and if the head is not shared with any clones then 2390 * we can avoid a copy since we own the head portion of this page. 2391 */ 2392 if (__splice_segment(virt_to_page(skb->data), 2393 (unsigned long) skb->data & (PAGE_SIZE - 1), 2394 skb_headlen(skb), 2395 offset, len, spd, 2396 skb_head_is_locked(skb), 2397 sk, pipe)) 2398 return true; 2399 2400 /* 2401 * then map the fragments 2402 */ 2403 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2404 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2405 2406 if (__splice_segment(skb_frag_page(f), 2407 skb_frag_off(f), skb_frag_size(f), 2408 offset, len, spd, false, sk, pipe)) 2409 return true; 2410 } 2411 2412 skb_walk_frags(skb, iter) { 2413 if (*offset >= iter->len) { 2414 *offset -= iter->len; 2415 continue; 2416 } 2417 /* __skb_splice_bits() only fails if the output has no room 2418 * left, so no point in going over the frag_list for the error 2419 * case. 2420 */ 2421 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2422 return true; 2423 } 2424 2425 return false; 2426 } 2427 2428 /* 2429 * Map data from the skb to a pipe. Should handle both the linear part, 2430 * the fragments, and the frag list. 2431 */ 2432 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2433 struct pipe_inode_info *pipe, unsigned int tlen, 2434 unsigned int flags) 2435 { 2436 struct partial_page partial[MAX_SKB_FRAGS]; 2437 struct page *pages[MAX_SKB_FRAGS]; 2438 struct splice_pipe_desc spd = { 2439 .pages = pages, 2440 .partial = partial, 2441 .nr_pages_max = MAX_SKB_FRAGS, 2442 .ops = &nosteal_pipe_buf_ops, 2443 .spd_release = sock_spd_release, 2444 }; 2445 int ret = 0; 2446 2447 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2448 2449 if (spd.nr_pages) 2450 ret = splice_to_pipe(pipe, &spd); 2451 2452 return ret; 2453 } 2454 EXPORT_SYMBOL_GPL(skb_splice_bits); 2455 2456 /* Send skb data on a socket. Socket must be locked. */ 2457 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2458 int len) 2459 { 2460 unsigned int orig_len = len; 2461 struct sk_buff *head = skb; 2462 unsigned short fragidx; 2463 int slen, ret; 2464 2465 do_frag_list: 2466 2467 /* Deal with head data */ 2468 while (offset < skb_headlen(skb) && len) { 2469 struct kvec kv; 2470 struct msghdr msg; 2471 2472 slen = min_t(int, len, skb_headlen(skb) - offset); 2473 kv.iov_base = skb->data + offset; 2474 kv.iov_len = slen; 2475 memset(&msg, 0, sizeof(msg)); 2476 msg.msg_flags = MSG_DONTWAIT; 2477 2478 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2479 if (ret <= 0) 2480 goto error; 2481 2482 offset += ret; 2483 len -= ret; 2484 } 2485 2486 /* All the data was skb head? */ 2487 if (!len) 2488 goto out; 2489 2490 /* Make offset relative to start of frags */ 2491 offset -= skb_headlen(skb); 2492 2493 /* Find where we are in frag list */ 2494 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2495 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2496 2497 if (offset < skb_frag_size(frag)) 2498 break; 2499 2500 offset -= skb_frag_size(frag); 2501 } 2502 2503 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2504 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2505 2506 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2507 2508 while (slen) { 2509 ret = kernel_sendpage_locked(sk, skb_frag_page(frag), 2510 skb_frag_off(frag) + offset, 2511 slen, MSG_DONTWAIT); 2512 if (ret <= 0) 2513 goto error; 2514 2515 len -= ret; 2516 offset += ret; 2517 slen -= ret; 2518 } 2519 2520 offset = 0; 2521 } 2522 2523 if (len) { 2524 /* Process any frag lists */ 2525 2526 if (skb == head) { 2527 if (skb_has_frag_list(skb)) { 2528 skb = skb_shinfo(skb)->frag_list; 2529 goto do_frag_list; 2530 } 2531 } else if (skb->next) { 2532 skb = skb->next; 2533 goto do_frag_list; 2534 } 2535 } 2536 2537 out: 2538 return orig_len - len; 2539 2540 error: 2541 return orig_len == len ? ret : orig_len - len; 2542 } 2543 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2544 2545 /** 2546 * skb_store_bits - store bits from kernel buffer to skb 2547 * @skb: destination buffer 2548 * @offset: offset in destination 2549 * @from: source buffer 2550 * @len: number of bytes to copy 2551 * 2552 * Copy the specified number of bytes from the source buffer to the 2553 * destination skb. This function handles all the messy bits of 2554 * traversing fragment lists and such. 2555 */ 2556 2557 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2558 { 2559 int start = skb_headlen(skb); 2560 struct sk_buff *frag_iter; 2561 int i, copy; 2562 2563 if (offset > (int)skb->len - len) 2564 goto fault; 2565 2566 if ((copy = start - offset) > 0) { 2567 if (copy > len) 2568 copy = len; 2569 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2570 if ((len -= copy) == 0) 2571 return 0; 2572 offset += copy; 2573 from += copy; 2574 } 2575 2576 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2577 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2578 int end; 2579 2580 WARN_ON(start > offset + len); 2581 2582 end = start + skb_frag_size(frag); 2583 if ((copy = end - offset) > 0) { 2584 u32 p_off, p_len, copied; 2585 struct page *p; 2586 u8 *vaddr; 2587 2588 if (copy > len) 2589 copy = len; 2590 2591 skb_frag_foreach_page(frag, 2592 skb_frag_off(frag) + offset - start, 2593 copy, p, p_off, p_len, copied) { 2594 vaddr = kmap_atomic(p); 2595 memcpy(vaddr + p_off, from + copied, p_len); 2596 kunmap_atomic(vaddr); 2597 } 2598 2599 if ((len -= copy) == 0) 2600 return 0; 2601 offset += copy; 2602 from += copy; 2603 } 2604 start = end; 2605 } 2606 2607 skb_walk_frags(skb, frag_iter) { 2608 int end; 2609 2610 WARN_ON(start > offset + len); 2611 2612 end = start + frag_iter->len; 2613 if ((copy = end - offset) > 0) { 2614 if (copy > len) 2615 copy = len; 2616 if (skb_store_bits(frag_iter, offset - start, 2617 from, copy)) 2618 goto fault; 2619 if ((len -= copy) == 0) 2620 return 0; 2621 offset += copy; 2622 from += copy; 2623 } 2624 start = end; 2625 } 2626 if (!len) 2627 return 0; 2628 2629 fault: 2630 return -EFAULT; 2631 } 2632 EXPORT_SYMBOL(skb_store_bits); 2633 2634 /* Checksum skb data. */ 2635 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2636 __wsum csum, const struct skb_checksum_ops *ops) 2637 { 2638 int start = skb_headlen(skb); 2639 int i, copy = start - offset; 2640 struct sk_buff *frag_iter; 2641 int pos = 0; 2642 2643 /* Checksum header. */ 2644 if (copy > 0) { 2645 if (copy > len) 2646 copy = len; 2647 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2648 skb->data + offset, copy, csum); 2649 if ((len -= copy) == 0) 2650 return csum; 2651 offset += copy; 2652 pos = copy; 2653 } 2654 2655 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2656 int end; 2657 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2658 2659 WARN_ON(start > offset + len); 2660 2661 end = start + skb_frag_size(frag); 2662 if ((copy = end - offset) > 0) { 2663 u32 p_off, p_len, copied; 2664 struct page *p; 2665 __wsum csum2; 2666 u8 *vaddr; 2667 2668 if (copy > len) 2669 copy = len; 2670 2671 skb_frag_foreach_page(frag, 2672 skb_frag_off(frag) + offset - start, 2673 copy, p, p_off, p_len, copied) { 2674 vaddr = kmap_atomic(p); 2675 csum2 = INDIRECT_CALL_1(ops->update, 2676 csum_partial_ext, 2677 vaddr + p_off, p_len, 0); 2678 kunmap_atomic(vaddr); 2679 csum = INDIRECT_CALL_1(ops->combine, 2680 csum_block_add_ext, csum, 2681 csum2, pos, p_len); 2682 pos += p_len; 2683 } 2684 2685 if (!(len -= copy)) 2686 return csum; 2687 offset += copy; 2688 } 2689 start = end; 2690 } 2691 2692 skb_walk_frags(skb, frag_iter) { 2693 int end; 2694 2695 WARN_ON(start > offset + len); 2696 2697 end = start + frag_iter->len; 2698 if ((copy = end - offset) > 0) { 2699 __wsum csum2; 2700 if (copy > len) 2701 copy = len; 2702 csum2 = __skb_checksum(frag_iter, offset - start, 2703 copy, 0, ops); 2704 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2705 csum, csum2, pos, copy); 2706 if ((len -= copy) == 0) 2707 return csum; 2708 offset += copy; 2709 pos += copy; 2710 } 2711 start = end; 2712 } 2713 BUG_ON(len); 2714 2715 return csum; 2716 } 2717 EXPORT_SYMBOL(__skb_checksum); 2718 2719 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2720 int len, __wsum csum) 2721 { 2722 const struct skb_checksum_ops ops = { 2723 .update = csum_partial_ext, 2724 .combine = csum_block_add_ext, 2725 }; 2726 2727 return __skb_checksum(skb, offset, len, csum, &ops); 2728 } 2729 EXPORT_SYMBOL(skb_checksum); 2730 2731 /* Both of above in one bottle. */ 2732 2733 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2734 u8 *to, int len) 2735 { 2736 int start = skb_headlen(skb); 2737 int i, copy = start - offset; 2738 struct sk_buff *frag_iter; 2739 int pos = 0; 2740 __wsum csum = 0; 2741 2742 /* Copy header. */ 2743 if (copy > 0) { 2744 if (copy > len) 2745 copy = len; 2746 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2747 copy); 2748 if ((len -= copy) == 0) 2749 return csum; 2750 offset += copy; 2751 to += copy; 2752 pos = copy; 2753 } 2754 2755 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2756 int end; 2757 2758 WARN_ON(start > offset + len); 2759 2760 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2761 if ((copy = end - offset) > 0) { 2762 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2763 u32 p_off, p_len, copied; 2764 struct page *p; 2765 __wsum csum2; 2766 u8 *vaddr; 2767 2768 if (copy > len) 2769 copy = len; 2770 2771 skb_frag_foreach_page(frag, 2772 skb_frag_off(frag) + offset - start, 2773 copy, p, p_off, p_len, copied) { 2774 vaddr = kmap_atomic(p); 2775 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2776 to + copied, 2777 p_len); 2778 kunmap_atomic(vaddr); 2779 csum = csum_block_add(csum, csum2, pos); 2780 pos += p_len; 2781 } 2782 2783 if (!(len -= copy)) 2784 return csum; 2785 offset += copy; 2786 to += copy; 2787 } 2788 start = end; 2789 } 2790 2791 skb_walk_frags(skb, frag_iter) { 2792 __wsum csum2; 2793 int end; 2794 2795 WARN_ON(start > offset + len); 2796 2797 end = start + frag_iter->len; 2798 if ((copy = end - offset) > 0) { 2799 if (copy > len) 2800 copy = len; 2801 csum2 = skb_copy_and_csum_bits(frag_iter, 2802 offset - start, 2803 to, copy); 2804 csum = csum_block_add(csum, csum2, pos); 2805 if ((len -= copy) == 0) 2806 return csum; 2807 offset += copy; 2808 to += copy; 2809 pos += copy; 2810 } 2811 start = end; 2812 } 2813 BUG_ON(len); 2814 return csum; 2815 } 2816 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2817 2818 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2819 { 2820 __sum16 sum; 2821 2822 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2823 /* See comments in __skb_checksum_complete(). */ 2824 if (likely(!sum)) { 2825 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2826 !skb->csum_complete_sw) 2827 netdev_rx_csum_fault(skb->dev, skb); 2828 } 2829 if (!skb_shared(skb)) 2830 skb->csum_valid = !sum; 2831 return sum; 2832 } 2833 EXPORT_SYMBOL(__skb_checksum_complete_head); 2834 2835 /* This function assumes skb->csum already holds pseudo header's checksum, 2836 * which has been changed from the hardware checksum, for example, by 2837 * __skb_checksum_validate_complete(). And, the original skb->csum must 2838 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2839 * 2840 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2841 * zero. The new checksum is stored back into skb->csum unless the skb is 2842 * shared. 2843 */ 2844 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2845 { 2846 __wsum csum; 2847 __sum16 sum; 2848 2849 csum = skb_checksum(skb, 0, skb->len, 0); 2850 2851 sum = csum_fold(csum_add(skb->csum, csum)); 2852 /* This check is inverted, because we already knew the hardware 2853 * checksum is invalid before calling this function. So, if the 2854 * re-computed checksum is valid instead, then we have a mismatch 2855 * between the original skb->csum and skb_checksum(). This means either 2856 * the original hardware checksum is incorrect or we screw up skb->csum 2857 * when moving skb->data around. 2858 */ 2859 if (likely(!sum)) { 2860 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2861 !skb->csum_complete_sw) 2862 netdev_rx_csum_fault(skb->dev, skb); 2863 } 2864 2865 if (!skb_shared(skb)) { 2866 /* Save full packet checksum */ 2867 skb->csum = csum; 2868 skb->ip_summed = CHECKSUM_COMPLETE; 2869 skb->csum_complete_sw = 1; 2870 skb->csum_valid = !sum; 2871 } 2872 2873 return sum; 2874 } 2875 EXPORT_SYMBOL(__skb_checksum_complete); 2876 2877 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2878 { 2879 net_warn_ratelimited( 2880 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2881 __func__); 2882 return 0; 2883 } 2884 2885 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2886 int offset, int len) 2887 { 2888 net_warn_ratelimited( 2889 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2890 __func__); 2891 return 0; 2892 } 2893 2894 static const struct skb_checksum_ops default_crc32c_ops = { 2895 .update = warn_crc32c_csum_update, 2896 .combine = warn_crc32c_csum_combine, 2897 }; 2898 2899 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2900 &default_crc32c_ops; 2901 EXPORT_SYMBOL(crc32c_csum_stub); 2902 2903 /** 2904 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2905 * @from: source buffer 2906 * 2907 * Calculates the amount of linear headroom needed in the 'to' skb passed 2908 * into skb_zerocopy(). 2909 */ 2910 unsigned int 2911 skb_zerocopy_headlen(const struct sk_buff *from) 2912 { 2913 unsigned int hlen = 0; 2914 2915 if (!from->head_frag || 2916 skb_headlen(from) < L1_CACHE_BYTES || 2917 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2918 hlen = skb_headlen(from); 2919 2920 if (skb_has_frag_list(from)) 2921 hlen = from->len; 2922 2923 return hlen; 2924 } 2925 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2926 2927 /** 2928 * skb_zerocopy - Zero copy skb to skb 2929 * @to: destination buffer 2930 * @from: source buffer 2931 * @len: number of bytes to copy from source buffer 2932 * @hlen: size of linear headroom in destination buffer 2933 * 2934 * Copies up to `len` bytes from `from` to `to` by creating references 2935 * to the frags in the source buffer. 2936 * 2937 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2938 * headroom in the `to` buffer. 2939 * 2940 * Return value: 2941 * 0: everything is OK 2942 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2943 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2944 */ 2945 int 2946 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2947 { 2948 int i, j = 0; 2949 int plen = 0; /* length of skb->head fragment */ 2950 int ret; 2951 struct page *page; 2952 unsigned int offset; 2953 2954 BUG_ON(!from->head_frag && !hlen); 2955 2956 /* dont bother with small payloads */ 2957 if (len <= skb_tailroom(to)) 2958 return skb_copy_bits(from, 0, skb_put(to, len), len); 2959 2960 if (hlen) { 2961 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2962 if (unlikely(ret)) 2963 return ret; 2964 len -= hlen; 2965 } else { 2966 plen = min_t(int, skb_headlen(from), len); 2967 if (plen) { 2968 page = virt_to_head_page(from->head); 2969 offset = from->data - (unsigned char *)page_address(page); 2970 __skb_fill_page_desc(to, 0, page, offset, plen); 2971 get_page(page); 2972 j = 1; 2973 len -= plen; 2974 } 2975 } 2976 2977 to->truesize += len + plen; 2978 to->len += len + plen; 2979 to->data_len += len + plen; 2980 2981 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2982 skb_tx_error(from); 2983 return -ENOMEM; 2984 } 2985 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2986 2987 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2988 int size; 2989 2990 if (!len) 2991 break; 2992 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2993 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 2994 len); 2995 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 2996 len -= size; 2997 skb_frag_ref(to, j); 2998 j++; 2999 } 3000 skb_shinfo(to)->nr_frags = j; 3001 3002 return 0; 3003 } 3004 EXPORT_SYMBOL_GPL(skb_zerocopy); 3005 3006 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3007 { 3008 __wsum csum; 3009 long csstart; 3010 3011 if (skb->ip_summed == CHECKSUM_PARTIAL) 3012 csstart = skb_checksum_start_offset(skb); 3013 else 3014 csstart = skb_headlen(skb); 3015 3016 BUG_ON(csstart > skb_headlen(skb)); 3017 3018 skb_copy_from_linear_data(skb, to, csstart); 3019 3020 csum = 0; 3021 if (csstart != skb->len) 3022 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3023 skb->len - csstart); 3024 3025 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3026 long csstuff = csstart + skb->csum_offset; 3027 3028 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3029 } 3030 } 3031 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3032 3033 /** 3034 * skb_dequeue - remove from the head of the queue 3035 * @list: list to dequeue from 3036 * 3037 * Remove the head of the list. The list lock is taken so the function 3038 * may be used safely with other locking list functions. The head item is 3039 * returned or %NULL if the list is empty. 3040 */ 3041 3042 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3043 { 3044 unsigned long flags; 3045 struct sk_buff *result; 3046 3047 spin_lock_irqsave(&list->lock, flags); 3048 result = __skb_dequeue(list); 3049 spin_unlock_irqrestore(&list->lock, flags); 3050 return result; 3051 } 3052 EXPORT_SYMBOL(skb_dequeue); 3053 3054 /** 3055 * skb_dequeue_tail - remove from the tail of the queue 3056 * @list: list to dequeue from 3057 * 3058 * Remove the tail of the list. The list lock is taken so the function 3059 * may be used safely with other locking list functions. The tail item is 3060 * returned or %NULL if the list is empty. 3061 */ 3062 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3063 { 3064 unsigned long flags; 3065 struct sk_buff *result; 3066 3067 spin_lock_irqsave(&list->lock, flags); 3068 result = __skb_dequeue_tail(list); 3069 spin_unlock_irqrestore(&list->lock, flags); 3070 return result; 3071 } 3072 EXPORT_SYMBOL(skb_dequeue_tail); 3073 3074 /** 3075 * skb_queue_purge - empty a list 3076 * @list: list to empty 3077 * 3078 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3079 * the list and one reference dropped. This function takes the list 3080 * lock and is atomic with respect to other list locking functions. 3081 */ 3082 void skb_queue_purge(struct sk_buff_head *list) 3083 { 3084 struct sk_buff *skb; 3085 while ((skb = skb_dequeue(list)) != NULL) 3086 kfree_skb(skb); 3087 } 3088 EXPORT_SYMBOL(skb_queue_purge); 3089 3090 /** 3091 * skb_rbtree_purge - empty a skb rbtree 3092 * @root: root of the rbtree to empty 3093 * Return value: the sum of truesizes of all purged skbs. 3094 * 3095 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3096 * the list and one reference dropped. This function does not take 3097 * any lock. Synchronization should be handled by the caller (e.g., TCP 3098 * out-of-order queue is protected by the socket lock). 3099 */ 3100 unsigned int skb_rbtree_purge(struct rb_root *root) 3101 { 3102 struct rb_node *p = rb_first(root); 3103 unsigned int sum = 0; 3104 3105 while (p) { 3106 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3107 3108 p = rb_next(p); 3109 rb_erase(&skb->rbnode, root); 3110 sum += skb->truesize; 3111 kfree_skb(skb); 3112 } 3113 return sum; 3114 } 3115 3116 /** 3117 * skb_queue_head - queue a buffer at the list head 3118 * @list: list to use 3119 * @newsk: buffer to queue 3120 * 3121 * Queue a buffer at the start of the list. This function takes the 3122 * list lock and can be used safely with other locking &sk_buff functions 3123 * safely. 3124 * 3125 * A buffer cannot be placed on two lists at the same time. 3126 */ 3127 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3128 { 3129 unsigned long flags; 3130 3131 spin_lock_irqsave(&list->lock, flags); 3132 __skb_queue_head(list, newsk); 3133 spin_unlock_irqrestore(&list->lock, flags); 3134 } 3135 EXPORT_SYMBOL(skb_queue_head); 3136 3137 /** 3138 * skb_queue_tail - queue a buffer at the list tail 3139 * @list: list to use 3140 * @newsk: buffer to queue 3141 * 3142 * Queue a buffer at the tail of the list. This function takes the 3143 * list lock and can be used safely with other locking &sk_buff functions 3144 * safely. 3145 * 3146 * A buffer cannot be placed on two lists at the same time. 3147 */ 3148 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3149 { 3150 unsigned long flags; 3151 3152 spin_lock_irqsave(&list->lock, flags); 3153 __skb_queue_tail(list, newsk); 3154 spin_unlock_irqrestore(&list->lock, flags); 3155 } 3156 EXPORT_SYMBOL(skb_queue_tail); 3157 3158 /** 3159 * skb_unlink - remove a buffer from a list 3160 * @skb: buffer to remove 3161 * @list: list to use 3162 * 3163 * Remove a packet from a list. The list locks are taken and this 3164 * function is atomic with respect to other list locked calls 3165 * 3166 * You must know what list the SKB is on. 3167 */ 3168 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3169 { 3170 unsigned long flags; 3171 3172 spin_lock_irqsave(&list->lock, flags); 3173 __skb_unlink(skb, list); 3174 spin_unlock_irqrestore(&list->lock, flags); 3175 } 3176 EXPORT_SYMBOL(skb_unlink); 3177 3178 /** 3179 * skb_append - append a buffer 3180 * @old: buffer to insert after 3181 * @newsk: buffer to insert 3182 * @list: list to use 3183 * 3184 * Place a packet after a given packet in a list. The list locks are taken 3185 * and this function is atomic with respect to other list locked calls. 3186 * A buffer cannot be placed on two lists at the same time. 3187 */ 3188 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3189 { 3190 unsigned long flags; 3191 3192 spin_lock_irqsave(&list->lock, flags); 3193 __skb_queue_after(list, old, newsk); 3194 spin_unlock_irqrestore(&list->lock, flags); 3195 } 3196 EXPORT_SYMBOL(skb_append); 3197 3198 static inline void skb_split_inside_header(struct sk_buff *skb, 3199 struct sk_buff* skb1, 3200 const u32 len, const int pos) 3201 { 3202 int i; 3203 3204 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3205 pos - len); 3206 /* And move data appendix as is. */ 3207 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3208 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3209 3210 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3211 skb_shinfo(skb)->nr_frags = 0; 3212 skb1->data_len = skb->data_len; 3213 skb1->len += skb1->data_len; 3214 skb->data_len = 0; 3215 skb->len = len; 3216 skb_set_tail_pointer(skb, len); 3217 } 3218 3219 static inline void skb_split_no_header(struct sk_buff *skb, 3220 struct sk_buff* skb1, 3221 const u32 len, int pos) 3222 { 3223 int i, k = 0; 3224 const int nfrags = skb_shinfo(skb)->nr_frags; 3225 3226 skb_shinfo(skb)->nr_frags = 0; 3227 skb1->len = skb1->data_len = skb->len - len; 3228 skb->len = len; 3229 skb->data_len = len - pos; 3230 3231 for (i = 0; i < nfrags; i++) { 3232 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3233 3234 if (pos + size > len) { 3235 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3236 3237 if (pos < len) { 3238 /* Split frag. 3239 * We have two variants in this case: 3240 * 1. Move all the frag to the second 3241 * part, if it is possible. F.e. 3242 * this approach is mandatory for TUX, 3243 * where splitting is expensive. 3244 * 2. Split is accurately. We make this. 3245 */ 3246 skb_frag_ref(skb, i); 3247 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3248 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3249 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3250 skb_shinfo(skb)->nr_frags++; 3251 } 3252 k++; 3253 } else 3254 skb_shinfo(skb)->nr_frags++; 3255 pos += size; 3256 } 3257 skb_shinfo(skb1)->nr_frags = k; 3258 } 3259 3260 /** 3261 * skb_split - Split fragmented skb to two parts at length len. 3262 * @skb: the buffer to split 3263 * @skb1: the buffer to receive the second part 3264 * @len: new length for skb 3265 */ 3266 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3267 { 3268 int pos = skb_headlen(skb); 3269 3270 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3271 SKBTX_SHARED_FRAG; 3272 skb_zerocopy_clone(skb1, skb, 0); 3273 if (len < pos) /* Split line is inside header. */ 3274 skb_split_inside_header(skb, skb1, len, pos); 3275 else /* Second chunk has no header, nothing to copy. */ 3276 skb_split_no_header(skb, skb1, len, pos); 3277 } 3278 EXPORT_SYMBOL(skb_split); 3279 3280 /* Shifting from/to a cloned skb is a no-go. 3281 * 3282 * Caller cannot keep skb_shinfo related pointers past calling here! 3283 */ 3284 static int skb_prepare_for_shift(struct sk_buff *skb) 3285 { 3286 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3287 } 3288 3289 /** 3290 * skb_shift - Shifts paged data partially from skb to another 3291 * @tgt: buffer into which tail data gets added 3292 * @skb: buffer from which the paged data comes from 3293 * @shiftlen: shift up to this many bytes 3294 * 3295 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3296 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3297 * It's up to caller to free skb if everything was shifted. 3298 * 3299 * If @tgt runs out of frags, the whole operation is aborted. 3300 * 3301 * Skb cannot include anything else but paged data while tgt is allowed 3302 * to have non-paged data as well. 3303 * 3304 * TODO: full sized shift could be optimized but that would need 3305 * specialized skb free'er to handle frags without up-to-date nr_frags. 3306 */ 3307 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3308 { 3309 int from, to, merge, todo; 3310 skb_frag_t *fragfrom, *fragto; 3311 3312 BUG_ON(shiftlen > skb->len); 3313 3314 if (skb_headlen(skb)) 3315 return 0; 3316 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3317 return 0; 3318 3319 todo = shiftlen; 3320 from = 0; 3321 to = skb_shinfo(tgt)->nr_frags; 3322 fragfrom = &skb_shinfo(skb)->frags[from]; 3323 3324 /* Actual merge is delayed until the point when we know we can 3325 * commit all, so that we don't have to undo partial changes 3326 */ 3327 if (!to || 3328 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3329 skb_frag_off(fragfrom))) { 3330 merge = -1; 3331 } else { 3332 merge = to - 1; 3333 3334 todo -= skb_frag_size(fragfrom); 3335 if (todo < 0) { 3336 if (skb_prepare_for_shift(skb) || 3337 skb_prepare_for_shift(tgt)) 3338 return 0; 3339 3340 /* All previous frag pointers might be stale! */ 3341 fragfrom = &skb_shinfo(skb)->frags[from]; 3342 fragto = &skb_shinfo(tgt)->frags[merge]; 3343 3344 skb_frag_size_add(fragto, shiftlen); 3345 skb_frag_size_sub(fragfrom, shiftlen); 3346 skb_frag_off_add(fragfrom, shiftlen); 3347 3348 goto onlymerged; 3349 } 3350 3351 from++; 3352 } 3353 3354 /* Skip full, not-fitting skb to avoid expensive operations */ 3355 if ((shiftlen == skb->len) && 3356 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3357 return 0; 3358 3359 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3360 return 0; 3361 3362 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3363 if (to == MAX_SKB_FRAGS) 3364 return 0; 3365 3366 fragfrom = &skb_shinfo(skb)->frags[from]; 3367 fragto = &skb_shinfo(tgt)->frags[to]; 3368 3369 if (todo >= skb_frag_size(fragfrom)) { 3370 *fragto = *fragfrom; 3371 todo -= skb_frag_size(fragfrom); 3372 from++; 3373 to++; 3374 3375 } else { 3376 __skb_frag_ref(fragfrom); 3377 skb_frag_page_copy(fragto, fragfrom); 3378 skb_frag_off_copy(fragto, fragfrom); 3379 skb_frag_size_set(fragto, todo); 3380 3381 skb_frag_off_add(fragfrom, todo); 3382 skb_frag_size_sub(fragfrom, todo); 3383 todo = 0; 3384 3385 to++; 3386 break; 3387 } 3388 } 3389 3390 /* Ready to "commit" this state change to tgt */ 3391 skb_shinfo(tgt)->nr_frags = to; 3392 3393 if (merge >= 0) { 3394 fragfrom = &skb_shinfo(skb)->frags[0]; 3395 fragto = &skb_shinfo(tgt)->frags[merge]; 3396 3397 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3398 __skb_frag_unref(fragfrom); 3399 } 3400 3401 /* Reposition in the original skb */ 3402 to = 0; 3403 while (from < skb_shinfo(skb)->nr_frags) 3404 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3405 skb_shinfo(skb)->nr_frags = to; 3406 3407 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3408 3409 onlymerged: 3410 /* Most likely the tgt won't ever need its checksum anymore, skb on 3411 * the other hand might need it if it needs to be resent 3412 */ 3413 tgt->ip_summed = CHECKSUM_PARTIAL; 3414 skb->ip_summed = CHECKSUM_PARTIAL; 3415 3416 /* Yak, is it really working this way? Some helper please? */ 3417 skb->len -= shiftlen; 3418 skb->data_len -= shiftlen; 3419 skb->truesize -= shiftlen; 3420 tgt->len += shiftlen; 3421 tgt->data_len += shiftlen; 3422 tgt->truesize += shiftlen; 3423 3424 return shiftlen; 3425 } 3426 3427 /** 3428 * skb_prepare_seq_read - Prepare a sequential read of skb data 3429 * @skb: the buffer to read 3430 * @from: lower offset of data to be read 3431 * @to: upper offset of data to be read 3432 * @st: state variable 3433 * 3434 * Initializes the specified state variable. Must be called before 3435 * invoking skb_seq_read() for the first time. 3436 */ 3437 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3438 unsigned int to, struct skb_seq_state *st) 3439 { 3440 st->lower_offset = from; 3441 st->upper_offset = to; 3442 st->root_skb = st->cur_skb = skb; 3443 st->frag_idx = st->stepped_offset = 0; 3444 st->frag_data = NULL; 3445 } 3446 EXPORT_SYMBOL(skb_prepare_seq_read); 3447 3448 /** 3449 * skb_seq_read - Sequentially read skb data 3450 * @consumed: number of bytes consumed by the caller so far 3451 * @data: destination pointer for data to be returned 3452 * @st: state variable 3453 * 3454 * Reads a block of skb data at @consumed relative to the 3455 * lower offset specified to skb_prepare_seq_read(). Assigns 3456 * the head of the data block to @data and returns the length 3457 * of the block or 0 if the end of the skb data or the upper 3458 * offset has been reached. 3459 * 3460 * The caller is not required to consume all of the data 3461 * returned, i.e. @consumed is typically set to the number 3462 * of bytes already consumed and the next call to 3463 * skb_seq_read() will return the remaining part of the block. 3464 * 3465 * Note 1: The size of each block of data returned can be arbitrary, 3466 * this limitation is the cost for zerocopy sequential 3467 * reads of potentially non linear data. 3468 * 3469 * Note 2: Fragment lists within fragments are not implemented 3470 * at the moment, state->root_skb could be replaced with 3471 * a stack for this purpose. 3472 */ 3473 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3474 struct skb_seq_state *st) 3475 { 3476 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3477 skb_frag_t *frag; 3478 3479 if (unlikely(abs_offset >= st->upper_offset)) { 3480 if (st->frag_data) { 3481 kunmap_atomic(st->frag_data); 3482 st->frag_data = NULL; 3483 } 3484 return 0; 3485 } 3486 3487 next_skb: 3488 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3489 3490 if (abs_offset < block_limit && !st->frag_data) { 3491 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3492 return block_limit - abs_offset; 3493 } 3494 3495 if (st->frag_idx == 0 && !st->frag_data) 3496 st->stepped_offset += skb_headlen(st->cur_skb); 3497 3498 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3499 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3500 block_limit = skb_frag_size(frag) + st->stepped_offset; 3501 3502 if (abs_offset < block_limit) { 3503 if (!st->frag_data) 3504 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3505 3506 *data = (u8 *) st->frag_data + skb_frag_off(frag) + 3507 (abs_offset - st->stepped_offset); 3508 3509 return block_limit - abs_offset; 3510 } 3511 3512 if (st->frag_data) { 3513 kunmap_atomic(st->frag_data); 3514 st->frag_data = NULL; 3515 } 3516 3517 st->frag_idx++; 3518 st->stepped_offset += skb_frag_size(frag); 3519 } 3520 3521 if (st->frag_data) { 3522 kunmap_atomic(st->frag_data); 3523 st->frag_data = NULL; 3524 } 3525 3526 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3527 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3528 st->frag_idx = 0; 3529 goto next_skb; 3530 } else if (st->cur_skb->next) { 3531 st->cur_skb = st->cur_skb->next; 3532 st->frag_idx = 0; 3533 goto next_skb; 3534 } 3535 3536 return 0; 3537 } 3538 EXPORT_SYMBOL(skb_seq_read); 3539 3540 /** 3541 * skb_abort_seq_read - Abort a sequential read of skb data 3542 * @st: state variable 3543 * 3544 * Must be called if skb_seq_read() was not called until it 3545 * returned 0. 3546 */ 3547 void skb_abort_seq_read(struct skb_seq_state *st) 3548 { 3549 if (st->frag_data) 3550 kunmap_atomic(st->frag_data); 3551 } 3552 EXPORT_SYMBOL(skb_abort_seq_read); 3553 3554 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3555 3556 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3557 struct ts_config *conf, 3558 struct ts_state *state) 3559 { 3560 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3561 } 3562 3563 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3564 { 3565 skb_abort_seq_read(TS_SKB_CB(state)); 3566 } 3567 3568 /** 3569 * skb_find_text - Find a text pattern in skb data 3570 * @skb: the buffer to look in 3571 * @from: search offset 3572 * @to: search limit 3573 * @config: textsearch configuration 3574 * 3575 * Finds a pattern in the skb data according to the specified 3576 * textsearch configuration. Use textsearch_next() to retrieve 3577 * subsequent occurrences of the pattern. Returns the offset 3578 * to the first occurrence or UINT_MAX if no match was found. 3579 */ 3580 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3581 unsigned int to, struct ts_config *config) 3582 { 3583 struct ts_state state; 3584 unsigned int ret; 3585 3586 config->get_next_block = skb_ts_get_next_block; 3587 config->finish = skb_ts_finish; 3588 3589 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3590 3591 ret = textsearch_find(config, &state); 3592 return (ret <= to - from ? ret : UINT_MAX); 3593 } 3594 EXPORT_SYMBOL(skb_find_text); 3595 3596 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3597 int offset, size_t size) 3598 { 3599 int i = skb_shinfo(skb)->nr_frags; 3600 3601 if (skb_can_coalesce(skb, i, page, offset)) { 3602 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3603 } else if (i < MAX_SKB_FRAGS) { 3604 get_page(page); 3605 skb_fill_page_desc(skb, i, page, offset, size); 3606 } else { 3607 return -EMSGSIZE; 3608 } 3609 3610 return 0; 3611 } 3612 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3613 3614 /** 3615 * skb_pull_rcsum - pull skb and update receive checksum 3616 * @skb: buffer to update 3617 * @len: length of data pulled 3618 * 3619 * This function performs an skb_pull on the packet and updates 3620 * the CHECKSUM_COMPLETE checksum. It should be used on 3621 * receive path processing instead of skb_pull unless you know 3622 * that the checksum difference is zero (e.g., a valid IP header) 3623 * or you are setting ip_summed to CHECKSUM_NONE. 3624 */ 3625 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3626 { 3627 unsigned char *data = skb->data; 3628 3629 BUG_ON(len > skb->len); 3630 __skb_pull(skb, len); 3631 skb_postpull_rcsum(skb, data, len); 3632 return skb->data; 3633 } 3634 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3635 3636 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3637 { 3638 skb_frag_t head_frag; 3639 struct page *page; 3640 3641 page = virt_to_head_page(frag_skb->head); 3642 __skb_frag_set_page(&head_frag, page); 3643 skb_frag_off_set(&head_frag, frag_skb->data - 3644 (unsigned char *)page_address(page)); 3645 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3646 return head_frag; 3647 } 3648 3649 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3650 netdev_features_t features, 3651 unsigned int offset) 3652 { 3653 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3654 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3655 unsigned int delta_truesize = 0; 3656 unsigned int delta_len = 0; 3657 struct sk_buff *tail = NULL; 3658 struct sk_buff *nskb; 3659 3660 skb_push(skb, -skb_network_offset(skb) + offset); 3661 3662 skb_shinfo(skb)->frag_list = NULL; 3663 3664 do { 3665 nskb = list_skb; 3666 list_skb = list_skb->next; 3667 3668 if (!tail) 3669 skb->next = nskb; 3670 else 3671 tail->next = nskb; 3672 3673 tail = nskb; 3674 3675 delta_len += nskb->len; 3676 delta_truesize += nskb->truesize; 3677 3678 skb_push(nskb, -skb_network_offset(nskb) + offset); 3679 3680 skb_release_head_state(nskb); 3681 __copy_skb_header(nskb, skb); 3682 3683 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3684 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3685 nskb->data - tnl_hlen, 3686 offset + tnl_hlen); 3687 3688 if (skb_needs_linearize(nskb, features) && 3689 __skb_linearize(nskb)) 3690 goto err_linearize; 3691 3692 } while (list_skb); 3693 3694 skb->truesize = skb->truesize - delta_truesize; 3695 skb->data_len = skb->data_len - delta_len; 3696 skb->len = skb->len - delta_len; 3697 3698 skb_gso_reset(skb); 3699 3700 skb->prev = tail; 3701 3702 if (skb_needs_linearize(skb, features) && 3703 __skb_linearize(skb)) 3704 goto err_linearize; 3705 3706 skb_get(skb); 3707 3708 return skb; 3709 3710 err_linearize: 3711 kfree_skb_list(skb->next); 3712 skb->next = NULL; 3713 return ERR_PTR(-ENOMEM); 3714 } 3715 EXPORT_SYMBOL_GPL(skb_segment_list); 3716 3717 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3718 { 3719 if (unlikely(p->len + skb->len >= 65536)) 3720 return -E2BIG; 3721 3722 if (NAPI_GRO_CB(p)->last == p) 3723 skb_shinfo(p)->frag_list = skb; 3724 else 3725 NAPI_GRO_CB(p)->last->next = skb; 3726 3727 skb_pull(skb, skb_gro_offset(skb)); 3728 3729 NAPI_GRO_CB(p)->last = skb; 3730 NAPI_GRO_CB(p)->count++; 3731 p->data_len += skb->len; 3732 p->truesize += skb->truesize; 3733 p->len += skb->len; 3734 3735 NAPI_GRO_CB(skb)->same_flow = 1; 3736 3737 return 0; 3738 } 3739 3740 /** 3741 * skb_segment - Perform protocol segmentation on skb. 3742 * @head_skb: buffer to segment 3743 * @features: features for the output path (see dev->features) 3744 * 3745 * This function performs segmentation on the given skb. It returns 3746 * a pointer to the first in a list of new skbs for the segments. 3747 * In case of error it returns ERR_PTR(err). 3748 */ 3749 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3750 netdev_features_t features) 3751 { 3752 struct sk_buff *segs = NULL; 3753 struct sk_buff *tail = NULL; 3754 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3755 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3756 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3757 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3758 struct sk_buff *frag_skb = head_skb; 3759 unsigned int offset = doffset; 3760 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3761 unsigned int partial_segs = 0; 3762 unsigned int headroom; 3763 unsigned int len = head_skb->len; 3764 __be16 proto; 3765 bool csum, sg; 3766 int nfrags = skb_shinfo(head_skb)->nr_frags; 3767 int err = -ENOMEM; 3768 int i = 0; 3769 int pos; 3770 3771 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3772 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3773 /* gso_size is untrusted, and we have a frag_list with a linear 3774 * non head_frag head. 3775 * 3776 * (we assume checking the first list_skb member suffices; 3777 * i.e if either of the list_skb members have non head_frag 3778 * head, then the first one has too). 3779 * 3780 * If head_skb's headlen does not fit requested gso_size, it 3781 * means that the frag_list members do NOT terminate on exact 3782 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3783 * sharing. Therefore we must fallback to copying the frag_list 3784 * skbs; we do so by disabling SG. 3785 */ 3786 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3787 features &= ~NETIF_F_SG; 3788 } 3789 3790 __skb_push(head_skb, doffset); 3791 proto = skb_network_protocol(head_skb, NULL); 3792 if (unlikely(!proto)) 3793 return ERR_PTR(-EINVAL); 3794 3795 sg = !!(features & NETIF_F_SG); 3796 csum = !!can_checksum_protocol(features, proto); 3797 3798 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3799 if (!(features & NETIF_F_GSO_PARTIAL)) { 3800 struct sk_buff *iter; 3801 unsigned int frag_len; 3802 3803 if (!list_skb || 3804 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3805 goto normal; 3806 3807 /* If we get here then all the required 3808 * GSO features except frag_list are supported. 3809 * Try to split the SKB to multiple GSO SKBs 3810 * with no frag_list. 3811 * Currently we can do that only when the buffers don't 3812 * have a linear part and all the buffers except 3813 * the last are of the same length. 3814 */ 3815 frag_len = list_skb->len; 3816 skb_walk_frags(head_skb, iter) { 3817 if (frag_len != iter->len && iter->next) 3818 goto normal; 3819 if (skb_headlen(iter) && !iter->head_frag) 3820 goto normal; 3821 3822 len -= iter->len; 3823 } 3824 3825 if (len != frag_len) 3826 goto normal; 3827 } 3828 3829 /* GSO partial only requires that we trim off any excess that 3830 * doesn't fit into an MSS sized block, so take care of that 3831 * now. 3832 */ 3833 partial_segs = len / mss; 3834 if (partial_segs > 1) 3835 mss *= partial_segs; 3836 else 3837 partial_segs = 0; 3838 } 3839 3840 normal: 3841 headroom = skb_headroom(head_skb); 3842 pos = skb_headlen(head_skb); 3843 3844 do { 3845 struct sk_buff *nskb; 3846 skb_frag_t *nskb_frag; 3847 int hsize; 3848 int size; 3849 3850 if (unlikely(mss == GSO_BY_FRAGS)) { 3851 len = list_skb->len; 3852 } else { 3853 len = head_skb->len - offset; 3854 if (len > mss) 3855 len = mss; 3856 } 3857 3858 hsize = skb_headlen(head_skb) - offset; 3859 if (hsize < 0) 3860 hsize = 0; 3861 if (hsize > len || !sg) 3862 hsize = len; 3863 3864 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3865 (skb_headlen(list_skb) == len || sg)) { 3866 BUG_ON(skb_headlen(list_skb) > len); 3867 3868 i = 0; 3869 nfrags = skb_shinfo(list_skb)->nr_frags; 3870 frag = skb_shinfo(list_skb)->frags; 3871 frag_skb = list_skb; 3872 pos += skb_headlen(list_skb); 3873 3874 while (pos < offset + len) { 3875 BUG_ON(i >= nfrags); 3876 3877 size = skb_frag_size(frag); 3878 if (pos + size > offset + len) 3879 break; 3880 3881 i++; 3882 pos += size; 3883 frag++; 3884 } 3885 3886 nskb = skb_clone(list_skb, GFP_ATOMIC); 3887 list_skb = list_skb->next; 3888 3889 if (unlikely(!nskb)) 3890 goto err; 3891 3892 if (unlikely(pskb_trim(nskb, len))) { 3893 kfree_skb(nskb); 3894 goto err; 3895 } 3896 3897 hsize = skb_end_offset(nskb); 3898 if (skb_cow_head(nskb, doffset + headroom)) { 3899 kfree_skb(nskb); 3900 goto err; 3901 } 3902 3903 nskb->truesize += skb_end_offset(nskb) - hsize; 3904 skb_release_head_state(nskb); 3905 __skb_push(nskb, doffset); 3906 } else { 3907 nskb = __alloc_skb(hsize + doffset + headroom, 3908 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3909 NUMA_NO_NODE); 3910 3911 if (unlikely(!nskb)) 3912 goto err; 3913 3914 skb_reserve(nskb, headroom); 3915 __skb_put(nskb, doffset); 3916 } 3917 3918 if (segs) 3919 tail->next = nskb; 3920 else 3921 segs = nskb; 3922 tail = nskb; 3923 3924 __copy_skb_header(nskb, head_skb); 3925 3926 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3927 skb_reset_mac_len(nskb); 3928 3929 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3930 nskb->data - tnl_hlen, 3931 doffset + tnl_hlen); 3932 3933 if (nskb->len == len + doffset) 3934 goto perform_csum_check; 3935 3936 if (!sg) { 3937 if (!csum) { 3938 if (!nskb->remcsum_offload) 3939 nskb->ip_summed = CHECKSUM_NONE; 3940 SKB_GSO_CB(nskb)->csum = 3941 skb_copy_and_csum_bits(head_skb, offset, 3942 skb_put(nskb, 3943 len), 3944 len); 3945 SKB_GSO_CB(nskb)->csum_start = 3946 skb_headroom(nskb) + doffset; 3947 } else { 3948 skb_copy_bits(head_skb, offset, 3949 skb_put(nskb, len), 3950 len); 3951 } 3952 continue; 3953 } 3954 3955 nskb_frag = skb_shinfo(nskb)->frags; 3956 3957 skb_copy_from_linear_data_offset(head_skb, offset, 3958 skb_put(nskb, hsize), hsize); 3959 3960 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3961 SKBTX_SHARED_FRAG; 3962 3963 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3964 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3965 goto err; 3966 3967 while (pos < offset + len) { 3968 if (i >= nfrags) { 3969 i = 0; 3970 nfrags = skb_shinfo(list_skb)->nr_frags; 3971 frag = skb_shinfo(list_skb)->frags; 3972 frag_skb = list_skb; 3973 if (!skb_headlen(list_skb)) { 3974 BUG_ON(!nfrags); 3975 } else { 3976 BUG_ON(!list_skb->head_frag); 3977 3978 /* to make room for head_frag. */ 3979 i--; 3980 frag--; 3981 } 3982 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3983 skb_zerocopy_clone(nskb, frag_skb, 3984 GFP_ATOMIC)) 3985 goto err; 3986 3987 list_skb = list_skb->next; 3988 } 3989 3990 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3991 MAX_SKB_FRAGS)) { 3992 net_warn_ratelimited( 3993 "skb_segment: too many frags: %u %u\n", 3994 pos, mss); 3995 err = -EINVAL; 3996 goto err; 3997 } 3998 3999 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4000 __skb_frag_ref(nskb_frag); 4001 size = skb_frag_size(nskb_frag); 4002 4003 if (pos < offset) { 4004 skb_frag_off_add(nskb_frag, offset - pos); 4005 skb_frag_size_sub(nskb_frag, offset - pos); 4006 } 4007 4008 skb_shinfo(nskb)->nr_frags++; 4009 4010 if (pos + size <= offset + len) { 4011 i++; 4012 frag++; 4013 pos += size; 4014 } else { 4015 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4016 goto skip_fraglist; 4017 } 4018 4019 nskb_frag++; 4020 } 4021 4022 skip_fraglist: 4023 nskb->data_len = len - hsize; 4024 nskb->len += nskb->data_len; 4025 nskb->truesize += nskb->data_len; 4026 4027 perform_csum_check: 4028 if (!csum) { 4029 if (skb_has_shared_frag(nskb) && 4030 __skb_linearize(nskb)) 4031 goto err; 4032 4033 if (!nskb->remcsum_offload) 4034 nskb->ip_summed = CHECKSUM_NONE; 4035 SKB_GSO_CB(nskb)->csum = 4036 skb_checksum(nskb, doffset, 4037 nskb->len - doffset, 0); 4038 SKB_GSO_CB(nskb)->csum_start = 4039 skb_headroom(nskb) + doffset; 4040 } 4041 } while ((offset += len) < head_skb->len); 4042 4043 /* Some callers want to get the end of the list. 4044 * Put it in segs->prev to avoid walking the list. 4045 * (see validate_xmit_skb_list() for example) 4046 */ 4047 segs->prev = tail; 4048 4049 if (partial_segs) { 4050 struct sk_buff *iter; 4051 int type = skb_shinfo(head_skb)->gso_type; 4052 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4053 4054 /* Update type to add partial and then remove dodgy if set */ 4055 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4056 type &= ~SKB_GSO_DODGY; 4057 4058 /* Update GSO info and prepare to start updating headers on 4059 * our way back down the stack of protocols. 4060 */ 4061 for (iter = segs; iter; iter = iter->next) { 4062 skb_shinfo(iter)->gso_size = gso_size; 4063 skb_shinfo(iter)->gso_segs = partial_segs; 4064 skb_shinfo(iter)->gso_type = type; 4065 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4066 } 4067 4068 if (tail->len - doffset <= gso_size) 4069 skb_shinfo(tail)->gso_size = 0; 4070 else if (tail != segs) 4071 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4072 } 4073 4074 /* Following permits correct backpressure, for protocols 4075 * using skb_set_owner_w(). 4076 * Idea is to tranfert ownership from head_skb to last segment. 4077 */ 4078 if (head_skb->destructor == sock_wfree) { 4079 swap(tail->truesize, head_skb->truesize); 4080 swap(tail->destructor, head_skb->destructor); 4081 swap(tail->sk, head_skb->sk); 4082 } 4083 return segs; 4084 4085 err: 4086 kfree_skb_list(segs); 4087 return ERR_PTR(err); 4088 } 4089 EXPORT_SYMBOL_GPL(skb_segment); 4090 4091 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4092 { 4093 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4094 unsigned int offset = skb_gro_offset(skb); 4095 unsigned int headlen = skb_headlen(skb); 4096 unsigned int len = skb_gro_len(skb); 4097 unsigned int delta_truesize; 4098 struct sk_buff *lp; 4099 4100 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4101 return -E2BIG; 4102 4103 lp = NAPI_GRO_CB(p)->last; 4104 pinfo = skb_shinfo(lp); 4105 4106 if (headlen <= offset) { 4107 skb_frag_t *frag; 4108 skb_frag_t *frag2; 4109 int i = skbinfo->nr_frags; 4110 int nr_frags = pinfo->nr_frags + i; 4111 4112 if (nr_frags > MAX_SKB_FRAGS) 4113 goto merge; 4114 4115 offset -= headlen; 4116 pinfo->nr_frags = nr_frags; 4117 skbinfo->nr_frags = 0; 4118 4119 frag = pinfo->frags + nr_frags; 4120 frag2 = skbinfo->frags + i; 4121 do { 4122 *--frag = *--frag2; 4123 } while (--i); 4124 4125 skb_frag_off_add(frag, offset); 4126 skb_frag_size_sub(frag, offset); 4127 4128 /* all fragments truesize : remove (head size + sk_buff) */ 4129 delta_truesize = skb->truesize - 4130 SKB_TRUESIZE(skb_end_offset(skb)); 4131 4132 skb->truesize -= skb->data_len; 4133 skb->len -= skb->data_len; 4134 skb->data_len = 0; 4135 4136 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4137 goto done; 4138 } else if (skb->head_frag) { 4139 int nr_frags = pinfo->nr_frags; 4140 skb_frag_t *frag = pinfo->frags + nr_frags; 4141 struct page *page = virt_to_head_page(skb->head); 4142 unsigned int first_size = headlen - offset; 4143 unsigned int first_offset; 4144 4145 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4146 goto merge; 4147 4148 first_offset = skb->data - 4149 (unsigned char *)page_address(page) + 4150 offset; 4151 4152 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4153 4154 __skb_frag_set_page(frag, page); 4155 skb_frag_off_set(frag, first_offset); 4156 skb_frag_size_set(frag, first_size); 4157 4158 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4159 /* We dont need to clear skbinfo->nr_frags here */ 4160 4161 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4162 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4163 goto done; 4164 } 4165 4166 merge: 4167 delta_truesize = skb->truesize; 4168 if (offset > headlen) { 4169 unsigned int eat = offset - headlen; 4170 4171 skb_frag_off_add(&skbinfo->frags[0], eat); 4172 skb_frag_size_sub(&skbinfo->frags[0], eat); 4173 skb->data_len -= eat; 4174 skb->len -= eat; 4175 offset = headlen; 4176 } 4177 4178 __skb_pull(skb, offset); 4179 4180 if (NAPI_GRO_CB(p)->last == p) 4181 skb_shinfo(p)->frag_list = skb; 4182 else 4183 NAPI_GRO_CB(p)->last->next = skb; 4184 NAPI_GRO_CB(p)->last = skb; 4185 __skb_header_release(skb); 4186 lp = p; 4187 4188 done: 4189 NAPI_GRO_CB(p)->count++; 4190 p->data_len += len; 4191 p->truesize += delta_truesize; 4192 p->len += len; 4193 if (lp != p) { 4194 lp->data_len += len; 4195 lp->truesize += delta_truesize; 4196 lp->len += len; 4197 } 4198 NAPI_GRO_CB(skb)->same_flow = 1; 4199 return 0; 4200 } 4201 4202 #ifdef CONFIG_SKB_EXTENSIONS 4203 #define SKB_EXT_ALIGN_VALUE 8 4204 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4205 4206 static const u8 skb_ext_type_len[] = { 4207 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4208 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4209 #endif 4210 #ifdef CONFIG_XFRM 4211 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4212 #endif 4213 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4214 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4215 #endif 4216 #if IS_ENABLED(CONFIG_MPTCP) 4217 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4218 #endif 4219 }; 4220 4221 static __always_inline unsigned int skb_ext_total_length(void) 4222 { 4223 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4224 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4225 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4226 #endif 4227 #ifdef CONFIG_XFRM 4228 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4229 #endif 4230 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4231 skb_ext_type_len[TC_SKB_EXT] + 4232 #endif 4233 #if IS_ENABLED(CONFIG_MPTCP) 4234 skb_ext_type_len[SKB_EXT_MPTCP] + 4235 #endif 4236 0; 4237 } 4238 4239 static void skb_extensions_init(void) 4240 { 4241 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4242 BUILD_BUG_ON(skb_ext_total_length() > 255); 4243 4244 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4245 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4246 0, 4247 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4248 NULL); 4249 } 4250 #else 4251 static void skb_extensions_init(void) {} 4252 #endif 4253 4254 void __init skb_init(void) 4255 { 4256 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4257 sizeof(struct sk_buff), 4258 0, 4259 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4260 offsetof(struct sk_buff, cb), 4261 sizeof_field(struct sk_buff, cb), 4262 NULL); 4263 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4264 sizeof(struct sk_buff_fclones), 4265 0, 4266 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4267 NULL); 4268 skb_extensions_init(); 4269 } 4270 4271 static int 4272 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4273 unsigned int recursion_level) 4274 { 4275 int start = skb_headlen(skb); 4276 int i, copy = start - offset; 4277 struct sk_buff *frag_iter; 4278 int elt = 0; 4279 4280 if (unlikely(recursion_level >= 24)) 4281 return -EMSGSIZE; 4282 4283 if (copy > 0) { 4284 if (copy > len) 4285 copy = len; 4286 sg_set_buf(sg, skb->data + offset, copy); 4287 elt++; 4288 if ((len -= copy) == 0) 4289 return elt; 4290 offset += copy; 4291 } 4292 4293 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4294 int end; 4295 4296 WARN_ON(start > offset + len); 4297 4298 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4299 if ((copy = end - offset) > 0) { 4300 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4301 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4302 return -EMSGSIZE; 4303 4304 if (copy > len) 4305 copy = len; 4306 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4307 skb_frag_off(frag) + offset - start); 4308 elt++; 4309 if (!(len -= copy)) 4310 return elt; 4311 offset += copy; 4312 } 4313 start = end; 4314 } 4315 4316 skb_walk_frags(skb, frag_iter) { 4317 int end, ret; 4318 4319 WARN_ON(start > offset + len); 4320 4321 end = start + frag_iter->len; 4322 if ((copy = end - offset) > 0) { 4323 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4324 return -EMSGSIZE; 4325 4326 if (copy > len) 4327 copy = len; 4328 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4329 copy, recursion_level + 1); 4330 if (unlikely(ret < 0)) 4331 return ret; 4332 elt += ret; 4333 if ((len -= copy) == 0) 4334 return elt; 4335 offset += copy; 4336 } 4337 start = end; 4338 } 4339 BUG_ON(len); 4340 return elt; 4341 } 4342 4343 /** 4344 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4345 * @skb: Socket buffer containing the buffers to be mapped 4346 * @sg: The scatter-gather list to map into 4347 * @offset: The offset into the buffer's contents to start mapping 4348 * @len: Length of buffer space to be mapped 4349 * 4350 * Fill the specified scatter-gather list with mappings/pointers into a 4351 * region of the buffer space attached to a socket buffer. Returns either 4352 * the number of scatterlist items used, or -EMSGSIZE if the contents 4353 * could not fit. 4354 */ 4355 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4356 { 4357 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4358 4359 if (nsg <= 0) 4360 return nsg; 4361 4362 sg_mark_end(&sg[nsg - 1]); 4363 4364 return nsg; 4365 } 4366 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4367 4368 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4369 * sglist without mark the sg which contain last skb data as the end. 4370 * So the caller can mannipulate sg list as will when padding new data after 4371 * the first call without calling sg_unmark_end to expend sg list. 4372 * 4373 * Scenario to use skb_to_sgvec_nomark: 4374 * 1. sg_init_table 4375 * 2. skb_to_sgvec_nomark(payload1) 4376 * 3. skb_to_sgvec_nomark(payload2) 4377 * 4378 * This is equivalent to: 4379 * 1. sg_init_table 4380 * 2. skb_to_sgvec(payload1) 4381 * 3. sg_unmark_end 4382 * 4. skb_to_sgvec(payload2) 4383 * 4384 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4385 * is more preferable. 4386 */ 4387 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4388 int offset, int len) 4389 { 4390 return __skb_to_sgvec(skb, sg, offset, len, 0); 4391 } 4392 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4393 4394 4395 4396 /** 4397 * skb_cow_data - Check that a socket buffer's data buffers are writable 4398 * @skb: The socket buffer to check. 4399 * @tailbits: Amount of trailing space to be added 4400 * @trailer: Returned pointer to the skb where the @tailbits space begins 4401 * 4402 * Make sure that the data buffers attached to a socket buffer are 4403 * writable. If they are not, private copies are made of the data buffers 4404 * and the socket buffer is set to use these instead. 4405 * 4406 * If @tailbits is given, make sure that there is space to write @tailbits 4407 * bytes of data beyond current end of socket buffer. @trailer will be 4408 * set to point to the skb in which this space begins. 4409 * 4410 * The number of scatterlist elements required to completely map the 4411 * COW'd and extended socket buffer will be returned. 4412 */ 4413 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4414 { 4415 int copyflag; 4416 int elt; 4417 struct sk_buff *skb1, **skb_p; 4418 4419 /* If skb is cloned or its head is paged, reallocate 4420 * head pulling out all the pages (pages are considered not writable 4421 * at the moment even if they are anonymous). 4422 */ 4423 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4424 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4425 return -ENOMEM; 4426 4427 /* Easy case. Most of packets will go this way. */ 4428 if (!skb_has_frag_list(skb)) { 4429 /* A little of trouble, not enough of space for trailer. 4430 * This should not happen, when stack is tuned to generate 4431 * good frames. OK, on miss we reallocate and reserve even more 4432 * space, 128 bytes is fair. */ 4433 4434 if (skb_tailroom(skb) < tailbits && 4435 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4436 return -ENOMEM; 4437 4438 /* Voila! */ 4439 *trailer = skb; 4440 return 1; 4441 } 4442 4443 /* Misery. We are in troubles, going to mincer fragments... */ 4444 4445 elt = 1; 4446 skb_p = &skb_shinfo(skb)->frag_list; 4447 copyflag = 0; 4448 4449 while ((skb1 = *skb_p) != NULL) { 4450 int ntail = 0; 4451 4452 /* The fragment is partially pulled by someone, 4453 * this can happen on input. Copy it and everything 4454 * after it. */ 4455 4456 if (skb_shared(skb1)) 4457 copyflag = 1; 4458 4459 /* If the skb is the last, worry about trailer. */ 4460 4461 if (skb1->next == NULL && tailbits) { 4462 if (skb_shinfo(skb1)->nr_frags || 4463 skb_has_frag_list(skb1) || 4464 skb_tailroom(skb1) < tailbits) 4465 ntail = tailbits + 128; 4466 } 4467 4468 if (copyflag || 4469 skb_cloned(skb1) || 4470 ntail || 4471 skb_shinfo(skb1)->nr_frags || 4472 skb_has_frag_list(skb1)) { 4473 struct sk_buff *skb2; 4474 4475 /* Fuck, we are miserable poor guys... */ 4476 if (ntail == 0) 4477 skb2 = skb_copy(skb1, GFP_ATOMIC); 4478 else 4479 skb2 = skb_copy_expand(skb1, 4480 skb_headroom(skb1), 4481 ntail, 4482 GFP_ATOMIC); 4483 if (unlikely(skb2 == NULL)) 4484 return -ENOMEM; 4485 4486 if (skb1->sk) 4487 skb_set_owner_w(skb2, skb1->sk); 4488 4489 /* Looking around. Are we still alive? 4490 * OK, link new skb, drop old one */ 4491 4492 skb2->next = skb1->next; 4493 *skb_p = skb2; 4494 kfree_skb(skb1); 4495 skb1 = skb2; 4496 } 4497 elt++; 4498 *trailer = skb1; 4499 skb_p = &skb1->next; 4500 } 4501 4502 return elt; 4503 } 4504 EXPORT_SYMBOL_GPL(skb_cow_data); 4505 4506 static void sock_rmem_free(struct sk_buff *skb) 4507 { 4508 struct sock *sk = skb->sk; 4509 4510 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4511 } 4512 4513 static void skb_set_err_queue(struct sk_buff *skb) 4514 { 4515 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4516 * So, it is safe to (mis)use it to mark skbs on the error queue. 4517 */ 4518 skb->pkt_type = PACKET_OUTGOING; 4519 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4520 } 4521 4522 /* 4523 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4524 */ 4525 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4526 { 4527 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4528 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4529 return -ENOMEM; 4530 4531 skb_orphan(skb); 4532 skb->sk = sk; 4533 skb->destructor = sock_rmem_free; 4534 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4535 skb_set_err_queue(skb); 4536 4537 /* before exiting rcu section, make sure dst is refcounted */ 4538 skb_dst_force(skb); 4539 4540 skb_queue_tail(&sk->sk_error_queue, skb); 4541 if (!sock_flag(sk, SOCK_DEAD)) 4542 sk->sk_error_report(sk); 4543 return 0; 4544 } 4545 EXPORT_SYMBOL(sock_queue_err_skb); 4546 4547 static bool is_icmp_err_skb(const struct sk_buff *skb) 4548 { 4549 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4550 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4551 } 4552 4553 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4554 { 4555 struct sk_buff_head *q = &sk->sk_error_queue; 4556 struct sk_buff *skb, *skb_next = NULL; 4557 bool icmp_next = false; 4558 unsigned long flags; 4559 4560 spin_lock_irqsave(&q->lock, flags); 4561 skb = __skb_dequeue(q); 4562 if (skb && (skb_next = skb_peek(q))) { 4563 icmp_next = is_icmp_err_skb(skb_next); 4564 if (icmp_next) 4565 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4566 } 4567 spin_unlock_irqrestore(&q->lock, flags); 4568 4569 if (is_icmp_err_skb(skb) && !icmp_next) 4570 sk->sk_err = 0; 4571 4572 if (skb_next) 4573 sk->sk_error_report(sk); 4574 4575 return skb; 4576 } 4577 EXPORT_SYMBOL(sock_dequeue_err_skb); 4578 4579 /** 4580 * skb_clone_sk - create clone of skb, and take reference to socket 4581 * @skb: the skb to clone 4582 * 4583 * This function creates a clone of a buffer that holds a reference on 4584 * sk_refcnt. Buffers created via this function are meant to be 4585 * returned using sock_queue_err_skb, or free via kfree_skb. 4586 * 4587 * When passing buffers allocated with this function to sock_queue_err_skb 4588 * it is necessary to wrap the call with sock_hold/sock_put in order to 4589 * prevent the socket from being released prior to being enqueued on 4590 * the sk_error_queue. 4591 */ 4592 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4593 { 4594 struct sock *sk = skb->sk; 4595 struct sk_buff *clone; 4596 4597 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4598 return NULL; 4599 4600 clone = skb_clone(skb, GFP_ATOMIC); 4601 if (!clone) { 4602 sock_put(sk); 4603 return NULL; 4604 } 4605 4606 clone->sk = sk; 4607 clone->destructor = sock_efree; 4608 4609 return clone; 4610 } 4611 EXPORT_SYMBOL(skb_clone_sk); 4612 4613 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4614 struct sock *sk, 4615 int tstype, 4616 bool opt_stats) 4617 { 4618 struct sock_exterr_skb *serr; 4619 int err; 4620 4621 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4622 4623 serr = SKB_EXT_ERR(skb); 4624 memset(serr, 0, sizeof(*serr)); 4625 serr->ee.ee_errno = ENOMSG; 4626 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4627 serr->ee.ee_info = tstype; 4628 serr->opt_stats = opt_stats; 4629 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4630 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4631 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4632 if (sk->sk_protocol == IPPROTO_TCP && 4633 sk->sk_type == SOCK_STREAM) 4634 serr->ee.ee_data -= sk->sk_tskey; 4635 } 4636 4637 err = sock_queue_err_skb(sk, skb); 4638 4639 if (err) 4640 kfree_skb(skb); 4641 } 4642 4643 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4644 { 4645 bool ret; 4646 4647 if (likely(sysctl_tstamp_allow_data || tsonly)) 4648 return true; 4649 4650 read_lock_bh(&sk->sk_callback_lock); 4651 ret = sk->sk_socket && sk->sk_socket->file && 4652 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4653 read_unlock_bh(&sk->sk_callback_lock); 4654 return ret; 4655 } 4656 4657 void skb_complete_tx_timestamp(struct sk_buff *skb, 4658 struct skb_shared_hwtstamps *hwtstamps) 4659 { 4660 struct sock *sk = skb->sk; 4661 4662 if (!skb_may_tx_timestamp(sk, false)) 4663 goto err; 4664 4665 /* Take a reference to prevent skb_orphan() from freeing the socket, 4666 * but only if the socket refcount is not zero. 4667 */ 4668 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4669 *skb_hwtstamps(skb) = *hwtstamps; 4670 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4671 sock_put(sk); 4672 return; 4673 } 4674 4675 err: 4676 kfree_skb(skb); 4677 } 4678 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4679 4680 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4681 struct skb_shared_hwtstamps *hwtstamps, 4682 struct sock *sk, int tstype) 4683 { 4684 struct sk_buff *skb; 4685 bool tsonly, opt_stats = false; 4686 4687 if (!sk) 4688 return; 4689 4690 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4691 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4692 return; 4693 4694 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4695 if (!skb_may_tx_timestamp(sk, tsonly)) 4696 return; 4697 4698 if (tsonly) { 4699 #ifdef CONFIG_INET 4700 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4701 sk->sk_protocol == IPPROTO_TCP && 4702 sk->sk_type == SOCK_STREAM) { 4703 skb = tcp_get_timestamping_opt_stats(sk, orig_skb); 4704 opt_stats = true; 4705 } else 4706 #endif 4707 skb = alloc_skb(0, GFP_ATOMIC); 4708 } else { 4709 skb = skb_clone(orig_skb, GFP_ATOMIC); 4710 } 4711 if (!skb) 4712 return; 4713 4714 if (tsonly) { 4715 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4716 SKBTX_ANY_TSTAMP; 4717 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4718 } 4719 4720 if (hwtstamps) 4721 *skb_hwtstamps(skb) = *hwtstamps; 4722 else 4723 skb->tstamp = ktime_get_real(); 4724 4725 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4726 } 4727 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4728 4729 void skb_tstamp_tx(struct sk_buff *orig_skb, 4730 struct skb_shared_hwtstamps *hwtstamps) 4731 { 4732 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4733 SCM_TSTAMP_SND); 4734 } 4735 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4736 4737 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4738 { 4739 struct sock *sk = skb->sk; 4740 struct sock_exterr_skb *serr; 4741 int err = 1; 4742 4743 skb->wifi_acked_valid = 1; 4744 skb->wifi_acked = acked; 4745 4746 serr = SKB_EXT_ERR(skb); 4747 memset(serr, 0, sizeof(*serr)); 4748 serr->ee.ee_errno = ENOMSG; 4749 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4750 4751 /* Take a reference to prevent skb_orphan() from freeing the socket, 4752 * but only if the socket refcount is not zero. 4753 */ 4754 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4755 err = sock_queue_err_skb(sk, skb); 4756 sock_put(sk); 4757 } 4758 if (err) 4759 kfree_skb(skb); 4760 } 4761 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4762 4763 /** 4764 * skb_partial_csum_set - set up and verify partial csum values for packet 4765 * @skb: the skb to set 4766 * @start: the number of bytes after skb->data to start checksumming. 4767 * @off: the offset from start to place the checksum. 4768 * 4769 * For untrusted partially-checksummed packets, we need to make sure the values 4770 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4771 * 4772 * This function checks and sets those values and skb->ip_summed: if this 4773 * returns false you should drop the packet. 4774 */ 4775 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4776 { 4777 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4778 u32 csum_start = skb_headroom(skb) + (u32)start; 4779 4780 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4781 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4782 start, off, skb_headroom(skb), skb_headlen(skb)); 4783 return false; 4784 } 4785 skb->ip_summed = CHECKSUM_PARTIAL; 4786 skb->csum_start = csum_start; 4787 skb->csum_offset = off; 4788 skb_set_transport_header(skb, start); 4789 return true; 4790 } 4791 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4792 4793 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4794 unsigned int max) 4795 { 4796 if (skb_headlen(skb) >= len) 4797 return 0; 4798 4799 /* If we need to pullup then pullup to the max, so we 4800 * won't need to do it again. 4801 */ 4802 if (max > skb->len) 4803 max = skb->len; 4804 4805 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4806 return -ENOMEM; 4807 4808 if (skb_headlen(skb) < len) 4809 return -EPROTO; 4810 4811 return 0; 4812 } 4813 4814 #define MAX_TCP_HDR_LEN (15 * 4) 4815 4816 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4817 typeof(IPPROTO_IP) proto, 4818 unsigned int off) 4819 { 4820 int err; 4821 4822 switch (proto) { 4823 case IPPROTO_TCP: 4824 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4825 off + MAX_TCP_HDR_LEN); 4826 if (!err && !skb_partial_csum_set(skb, off, 4827 offsetof(struct tcphdr, 4828 check))) 4829 err = -EPROTO; 4830 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4831 4832 case IPPROTO_UDP: 4833 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4834 off + sizeof(struct udphdr)); 4835 if (!err && !skb_partial_csum_set(skb, off, 4836 offsetof(struct udphdr, 4837 check))) 4838 err = -EPROTO; 4839 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4840 } 4841 4842 return ERR_PTR(-EPROTO); 4843 } 4844 4845 /* This value should be large enough to cover a tagged ethernet header plus 4846 * maximally sized IP and TCP or UDP headers. 4847 */ 4848 #define MAX_IP_HDR_LEN 128 4849 4850 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4851 { 4852 unsigned int off; 4853 bool fragment; 4854 __sum16 *csum; 4855 int err; 4856 4857 fragment = false; 4858 4859 err = skb_maybe_pull_tail(skb, 4860 sizeof(struct iphdr), 4861 MAX_IP_HDR_LEN); 4862 if (err < 0) 4863 goto out; 4864 4865 if (ip_is_fragment(ip_hdr(skb))) 4866 fragment = true; 4867 4868 off = ip_hdrlen(skb); 4869 4870 err = -EPROTO; 4871 4872 if (fragment) 4873 goto out; 4874 4875 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4876 if (IS_ERR(csum)) 4877 return PTR_ERR(csum); 4878 4879 if (recalculate) 4880 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4881 ip_hdr(skb)->daddr, 4882 skb->len - off, 4883 ip_hdr(skb)->protocol, 0); 4884 err = 0; 4885 4886 out: 4887 return err; 4888 } 4889 4890 /* This value should be large enough to cover a tagged ethernet header plus 4891 * an IPv6 header, all options, and a maximal TCP or UDP header. 4892 */ 4893 #define MAX_IPV6_HDR_LEN 256 4894 4895 #define OPT_HDR(type, skb, off) \ 4896 (type *)(skb_network_header(skb) + (off)) 4897 4898 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4899 { 4900 int err; 4901 u8 nexthdr; 4902 unsigned int off; 4903 unsigned int len; 4904 bool fragment; 4905 bool done; 4906 __sum16 *csum; 4907 4908 fragment = false; 4909 done = false; 4910 4911 off = sizeof(struct ipv6hdr); 4912 4913 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4914 if (err < 0) 4915 goto out; 4916 4917 nexthdr = ipv6_hdr(skb)->nexthdr; 4918 4919 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4920 while (off <= len && !done) { 4921 switch (nexthdr) { 4922 case IPPROTO_DSTOPTS: 4923 case IPPROTO_HOPOPTS: 4924 case IPPROTO_ROUTING: { 4925 struct ipv6_opt_hdr *hp; 4926 4927 err = skb_maybe_pull_tail(skb, 4928 off + 4929 sizeof(struct ipv6_opt_hdr), 4930 MAX_IPV6_HDR_LEN); 4931 if (err < 0) 4932 goto out; 4933 4934 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4935 nexthdr = hp->nexthdr; 4936 off += ipv6_optlen(hp); 4937 break; 4938 } 4939 case IPPROTO_AH: { 4940 struct ip_auth_hdr *hp; 4941 4942 err = skb_maybe_pull_tail(skb, 4943 off + 4944 sizeof(struct ip_auth_hdr), 4945 MAX_IPV6_HDR_LEN); 4946 if (err < 0) 4947 goto out; 4948 4949 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4950 nexthdr = hp->nexthdr; 4951 off += ipv6_authlen(hp); 4952 break; 4953 } 4954 case IPPROTO_FRAGMENT: { 4955 struct frag_hdr *hp; 4956 4957 err = skb_maybe_pull_tail(skb, 4958 off + 4959 sizeof(struct frag_hdr), 4960 MAX_IPV6_HDR_LEN); 4961 if (err < 0) 4962 goto out; 4963 4964 hp = OPT_HDR(struct frag_hdr, skb, off); 4965 4966 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4967 fragment = true; 4968 4969 nexthdr = hp->nexthdr; 4970 off += sizeof(struct frag_hdr); 4971 break; 4972 } 4973 default: 4974 done = true; 4975 break; 4976 } 4977 } 4978 4979 err = -EPROTO; 4980 4981 if (!done || fragment) 4982 goto out; 4983 4984 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4985 if (IS_ERR(csum)) 4986 return PTR_ERR(csum); 4987 4988 if (recalculate) 4989 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4990 &ipv6_hdr(skb)->daddr, 4991 skb->len - off, nexthdr, 0); 4992 err = 0; 4993 4994 out: 4995 return err; 4996 } 4997 4998 /** 4999 * skb_checksum_setup - set up partial checksum offset 5000 * @skb: the skb to set up 5001 * @recalculate: if true the pseudo-header checksum will be recalculated 5002 */ 5003 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5004 { 5005 int err; 5006 5007 switch (skb->protocol) { 5008 case htons(ETH_P_IP): 5009 err = skb_checksum_setup_ipv4(skb, recalculate); 5010 break; 5011 5012 case htons(ETH_P_IPV6): 5013 err = skb_checksum_setup_ipv6(skb, recalculate); 5014 break; 5015 5016 default: 5017 err = -EPROTO; 5018 break; 5019 } 5020 5021 return err; 5022 } 5023 EXPORT_SYMBOL(skb_checksum_setup); 5024 5025 /** 5026 * skb_checksum_maybe_trim - maybe trims the given skb 5027 * @skb: the skb to check 5028 * @transport_len: the data length beyond the network header 5029 * 5030 * Checks whether the given skb has data beyond the given transport length. 5031 * If so, returns a cloned skb trimmed to this transport length. 5032 * Otherwise returns the provided skb. Returns NULL in error cases 5033 * (e.g. transport_len exceeds skb length or out-of-memory). 5034 * 5035 * Caller needs to set the skb transport header and free any returned skb if it 5036 * differs from the provided skb. 5037 */ 5038 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5039 unsigned int transport_len) 5040 { 5041 struct sk_buff *skb_chk; 5042 unsigned int len = skb_transport_offset(skb) + transport_len; 5043 int ret; 5044 5045 if (skb->len < len) 5046 return NULL; 5047 else if (skb->len == len) 5048 return skb; 5049 5050 skb_chk = skb_clone(skb, GFP_ATOMIC); 5051 if (!skb_chk) 5052 return NULL; 5053 5054 ret = pskb_trim_rcsum(skb_chk, len); 5055 if (ret) { 5056 kfree_skb(skb_chk); 5057 return NULL; 5058 } 5059 5060 return skb_chk; 5061 } 5062 5063 /** 5064 * skb_checksum_trimmed - validate checksum of an skb 5065 * @skb: the skb to check 5066 * @transport_len: the data length beyond the network header 5067 * @skb_chkf: checksum function to use 5068 * 5069 * Applies the given checksum function skb_chkf to the provided skb. 5070 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5071 * 5072 * If the skb has data beyond the given transport length, then a 5073 * trimmed & cloned skb is checked and returned. 5074 * 5075 * Caller needs to set the skb transport header and free any returned skb if it 5076 * differs from the provided skb. 5077 */ 5078 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5079 unsigned int transport_len, 5080 __sum16(*skb_chkf)(struct sk_buff *skb)) 5081 { 5082 struct sk_buff *skb_chk; 5083 unsigned int offset = skb_transport_offset(skb); 5084 __sum16 ret; 5085 5086 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5087 if (!skb_chk) 5088 goto err; 5089 5090 if (!pskb_may_pull(skb_chk, offset)) 5091 goto err; 5092 5093 skb_pull_rcsum(skb_chk, offset); 5094 ret = skb_chkf(skb_chk); 5095 skb_push_rcsum(skb_chk, offset); 5096 5097 if (ret) 5098 goto err; 5099 5100 return skb_chk; 5101 5102 err: 5103 if (skb_chk && skb_chk != skb) 5104 kfree_skb(skb_chk); 5105 5106 return NULL; 5107 5108 } 5109 EXPORT_SYMBOL(skb_checksum_trimmed); 5110 5111 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5112 { 5113 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5114 skb->dev->name); 5115 } 5116 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5117 5118 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5119 { 5120 if (head_stolen) { 5121 skb_release_head_state(skb); 5122 kmem_cache_free(skbuff_head_cache, skb); 5123 } else { 5124 __kfree_skb(skb); 5125 } 5126 } 5127 EXPORT_SYMBOL(kfree_skb_partial); 5128 5129 /** 5130 * skb_try_coalesce - try to merge skb to prior one 5131 * @to: prior buffer 5132 * @from: buffer to add 5133 * @fragstolen: pointer to boolean 5134 * @delta_truesize: how much more was allocated than was requested 5135 */ 5136 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5137 bool *fragstolen, int *delta_truesize) 5138 { 5139 struct skb_shared_info *to_shinfo, *from_shinfo; 5140 int i, delta, len = from->len; 5141 5142 *fragstolen = false; 5143 5144 if (skb_cloned(to)) 5145 return false; 5146 5147 if (len <= skb_tailroom(to)) { 5148 if (len) 5149 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5150 *delta_truesize = 0; 5151 return true; 5152 } 5153 5154 to_shinfo = skb_shinfo(to); 5155 from_shinfo = skb_shinfo(from); 5156 if (to_shinfo->frag_list || from_shinfo->frag_list) 5157 return false; 5158 if (skb_zcopy(to) || skb_zcopy(from)) 5159 return false; 5160 5161 if (skb_headlen(from) != 0) { 5162 struct page *page; 5163 unsigned int offset; 5164 5165 if (to_shinfo->nr_frags + 5166 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5167 return false; 5168 5169 if (skb_head_is_locked(from)) 5170 return false; 5171 5172 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5173 5174 page = virt_to_head_page(from->head); 5175 offset = from->data - (unsigned char *)page_address(page); 5176 5177 skb_fill_page_desc(to, to_shinfo->nr_frags, 5178 page, offset, skb_headlen(from)); 5179 *fragstolen = true; 5180 } else { 5181 if (to_shinfo->nr_frags + 5182 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5183 return false; 5184 5185 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5186 } 5187 5188 WARN_ON_ONCE(delta < len); 5189 5190 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5191 from_shinfo->frags, 5192 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5193 to_shinfo->nr_frags += from_shinfo->nr_frags; 5194 5195 if (!skb_cloned(from)) 5196 from_shinfo->nr_frags = 0; 5197 5198 /* if the skb is not cloned this does nothing 5199 * since we set nr_frags to 0. 5200 */ 5201 for (i = 0; i < from_shinfo->nr_frags; i++) 5202 __skb_frag_ref(&from_shinfo->frags[i]); 5203 5204 to->truesize += delta; 5205 to->len += len; 5206 to->data_len += len; 5207 5208 *delta_truesize = delta; 5209 return true; 5210 } 5211 EXPORT_SYMBOL(skb_try_coalesce); 5212 5213 /** 5214 * skb_scrub_packet - scrub an skb 5215 * 5216 * @skb: buffer to clean 5217 * @xnet: packet is crossing netns 5218 * 5219 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5220 * into/from a tunnel. Some information have to be cleared during these 5221 * operations. 5222 * skb_scrub_packet can also be used to clean a skb before injecting it in 5223 * another namespace (@xnet == true). We have to clear all information in the 5224 * skb that could impact namespace isolation. 5225 */ 5226 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5227 { 5228 skb->pkt_type = PACKET_HOST; 5229 skb->skb_iif = 0; 5230 skb->ignore_df = 0; 5231 skb_dst_drop(skb); 5232 skb_ext_reset(skb); 5233 nf_reset_ct(skb); 5234 nf_reset_trace(skb); 5235 5236 #ifdef CONFIG_NET_SWITCHDEV 5237 skb->offload_fwd_mark = 0; 5238 skb->offload_l3_fwd_mark = 0; 5239 #endif 5240 5241 if (!xnet) 5242 return; 5243 5244 ipvs_reset(skb); 5245 skb->mark = 0; 5246 skb->tstamp = 0; 5247 } 5248 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5249 5250 /** 5251 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5252 * 5253 * @skb: GSO skb 5254 * 5255 * skb_gso_transport_seglen is used to determine the real size of the 5256 * individual segments, including Layer4 headers (TCP/UDP). 5257 * 5258 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5259 */ 5260 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5261 { 5262 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5263 unsigned int thlen = 0; 5264 5265 if (skb->encapsulation) { 5266 thlen = skb_inner_transport_header(skb) - 5267 skb_transport_header(skb); 5268 5269 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5270 thlen += inner_tcp_hdrlen(skb); 5271 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5272 thlen = tcp_hdrlen(skb); 5273 } else if (unlikely(skb_is_gso_sctp(skb))) { 5274 thlen = sizeof(struct sctphdr); 5275 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5276 thlen = sizeof(struct udphdr); 5277 } 5278 /* UFO sets gso_size to the size of the fragmentation 5279 * payload, i.e. the size of the L4 (UDP) header is already 5280 * accounted for. 5281 */ 5282 return thlen + shinfo->gso_size; 5283 } 5284 5285 /** 5286 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5287 * 5288 * @skb: GSO skb 5289 * 5290 * skb_gso_network_seglen is used to determine the real size of the 5291 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5292 * 5293 * The MAC/L2 header is not accounted for. 5294 */ 5295 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5296 { 5297 unsigned int hdr_len = skb_transport_header(skb) - 5298 skb_network_header(skb); 5299 5300 return hdr_len + skb_gso_transport_seglen(skb); 5301 } 5302 5303 /** 5304 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5305 * 5306 * @skb: GSO skb 5307 * 5308 * skb_gso_mac_seglen is used to determine the real size of the 5309 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5310 * headers (TCP/UDP). 5311 */ 5312 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5313 { 5314 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5315 5316 return hdr_len + skb_gso_transport_seglen(skb); 5317 } 5318 5319 /** 5320 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5321 * 5322 * There are a couple of instances where we have a GSO skb, and we 5323 * want to determine what size it would be after it is segmented. 5324 * 5325 * We might want to check: 5326 * - L3+L4+payload size (e.g. IP forwarding) 5327 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5328 * 5329 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5330 * 5331 * @skb: GSO skb 5332 * 5333 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5334 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5335 * 5336 * @max_len: The maximum permissible length. 5337 * 5338 * Returns true if the segmented length <= max length. 5339 */ 5340 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5341 unsigned int seg_len, 5342 unsigned int max_len) { 5343 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5344 const struct sk_buff *iter; 5345 5346 if (shinfo->gso_size != GSO_BY_FRAGS) 5347 return seg_len <= max_len; 5348 5349 /* Undo this so we can re-use header sizes */ 5350 seg_len -= GSO_BY_FRAGS; 5351 5352 skb_walk_frags(skb, iter) { 5353 if (seg_len + skb_headlen(iter) > max_len) 5354 return false; 5355 } 5356 5357 return true; 5358 } 5359 5360 /** 5361 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5362 * 5363 * @skb: GSO skb 5364 * @mtu: MTU to validate against 5365 * 5366 * skb_gso_validate_network_len validates if a given skb will fit a 5367 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5368 * payload. 5369 */ 5370 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5371 { 5372 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5373 } 5374 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5375 5376 /** 5377 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5378 * 5379 * @skb: GSO skb 5380 * @len: length to validate against 5381 * 5382 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5383 * length once split, including L2, L3 and L4 headers and the payload. 5384 */ 5385 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5386 { 5387 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5388 } 5389 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5390 5391 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5392 { 5393 int mac_len, meta_len; 5394 void *meta; 5395 5396 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5397 kfree_skb(skb); 5398 return NULL; 5399 } 5400 5401 mac_len = skb->data - skb_mac_header(skb); 5402 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5403 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5404 mac_len - VLAN_HLEN - ETH_TLEN); 5405 } 5406 5407 meta_len = skb_metadata_len(skb); 5408 if (meta_len) { 5409 meta = skb_metadata_end(skb) - meta_len; 5410 memmove(meta + VLAN_HLEN, meta, meta_len); 5411 } 5412 5413 skb->mac_header += VLAN_HLEN; 5414 return skb; 5415 } 5416 5417 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5418 { 5419 struct vlan_hdr *vhdr; 5420 u16 vlan_tci; 5421 5422 if (unlikely(skb_vlan_tag_present(skb))) { 5423 /* vlan_tci is already set-up so leave this for another time */ 5424 return skb; 5425 } 5426 5427 skb = skb_share_check(skb, GFP_ATOMIC); 5428 if (unlikely(!skb)) 5429 goto err_free; 5430 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5431 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5432 goto err_free; 5433 5434 vhdr = (struct vlan_hdr *)skb->data; 5435 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5436 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5437 5438 skb_pull_rcsum(skb, VLAN_HLEN); 5439 vlan_set_encap_proto(skb, vhdr); 5440 5441 skb = skb_reorder_vlan_header(skb); 5442 if (unlikely(!skb)) 5443 goto err_free; 5444 5445 skb_reset_network_header(skb); 5446 if (!skb_transport_header_was_set(skb)) 5447 skb_reset_transport_header(skb); 5448 skb_reset_mac_len(skb); 5449 5450 return skb; 5451 5452 err_free: 5453 kfree_skb(skb); 5454 return NULL; 5455 } 5456 EXPORT_SYMBOL(skb_vlan_untag); 5457 5458 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5459 { 5460 if (!pskb_may_pull(skb, write_len)) 5461 return -ENOMEM; 5462 5463 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5464 return 0; 5465 5466 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5467 } 5468 EXPORT_SYMBOL(skb_ensure_writable); 5469 5470 /* remove VLAN header from packet and update csum accordingly. 5471 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5472 */ 5473 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5474 { 5475 struct vlan_hdr *vhdr; 5476 int offset = skb->data - skb_mac_header(skb); 5477 int err; 5478 5479 if (WARN_ONCE(offset, 5480 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5481 offset)) { 5482 return -EINVAL; 5483 } 5484 5485 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5486 if (unlikely(err)) 5487 return err; 5488 5489 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5490 5491 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5492 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5493 5494 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5495 __skb_pull(skb, VLAN_HLEN); 5496 5497 vlan_set_encap_proto(skb, vhdr); 5498 skb->mac_header += VLAN_HLEN; 5499 5500 if (skb_network_offset(skb) < ETH_HLEN) 5501 skb_set_network_header(skb, ETH_HLEN); 5502 5503 skb_reset_mac_len(skb); 5504 5505 return err; 5506 } 5507 EXPORT_SYMBOL(__skb_vlan_pop); 5508 5509 /* Pop a vlan tag either from hwaccel or from payload. 5510 * Expects skb->data at mac header. 5511 */ 5512 int skb_vlan_pop(struct sk_buff *skb) 5513 { 5514 u16 vlan_tci; 5515 __be16 vlan_proto; 5516 int err; 5517 5518 if (likely(skb_vlan_tag_present(skb))) { 5519 __vlan_hwaccel_clear_tag(skb); 5520 } else { 5521 if (unlikely(!eth_type_vlan(skb->protocol))) 5522 return 0; 5523 5524 err = __skb_vlan_pop(skb, &vlan_tci); 5525 if (err) 5526 return err; 5527 } 5528 /* move next vlan tag to hw accel tag */ 5529 if (likely(!eth_type_vlan(skb->protocol))) 5530 return 0; 5531 5532 vlan_proto = skb->protocol; 5533 err = __skb_vlan_pop(skb, &vlan_tci); 5534 if (unlikely(err)) 5535 return err; 5536 5537 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5538 return 0; 5539 } 5540 EXPORT_SYMBOL(skb_vlan_pop); 5541 5542 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5543 * Expects skb->data at mac header. 5544 */ 5545 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5546 { 5547 if (skb_vlan_tag_present(skb)) { 5548 int offset = skb->data - skb_mac_header(skb); 5549 int err; 5550 5551 if (WARN_ONCE(offset, 5552 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5553 offset)) { 5554 return -EINVAL; 5555 } 5556 5557 err = __vlan_insert_tag(skb, skb->vlan_proto, 5558 skb_vlan_tag_get(skb)); 5559 if (err) 5560 return err; 5561 5562 skb->protocol = skb->vlan_proto; 5563 skb->mac_len += VLAN_HLEN; 5564 5565 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5566 } 5567 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5568 return 0; 5569 } 5570 EXPORT_SYMBOL(skb_vlan_push); 5571 5572 /** 5573 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5574 * 5575 * @skb: Socket buffer to modify 5576 * 5577 * Drop the Ethernet header of @skb. 5578 * 5579 * Expects that skb->data points to the mac header and that no VLAN tags are 5580 * present. 5581 * 5582 * Returns 0 on success, -errno otherwise. 5583 */ 5584 int skb_eth_pop(struct sk_buff *skb) 5585 { 5586 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5587 skb_network_offset(skb) < ETH_HLEN) 5588 return -EPROTO; 5589 5590 skb_pull_rcsum(skb, ETH_HLEN); 5591 skb_reset_mac_header(skb); 5592 skb_reset_mac_len(skb); 5593 5594 return 0; 5595 } 5596 EXPORT_SYMBOL(skb_eth_pop); 5597 5598 /** 5599 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5600 * 5601 * @skb: Socket buffer to modify 5602 * @dst: Destination MAC address of the new header 5603 * @src: Source MAC address of the new header 5604 * 5605 * Prepend @skb with a new Ethernet header. 5606 * 5607 * Expects that skb->data points to the mac header, which must be empty. 5608 * 5609 * Returns 0 on success, -errno otherwise. 5610 */ 5611 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5612 const unsigned char *src) 5613 { 5614 struct ethhdr *eth; 5615 int err; 5616 5617 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5618 return -EPROTO; 5619 5620 err = skb_cow_head(skb, sizeof(*eth)); 5621 if (err < 0) 5622 return err; 5623 5624 skb_push(skb, sizeof(*eth)); 5625 skb_reset_mac_header(skb); 5626 skb_reset_mac_len(skb); 5627 5628 eth = eth_hdr(skb); 5629 ether_addr_copy(eth->h_dest, dst); 5630 ether_addr_copy(eth->h_source, src); 5631 eth->h_proto = skb->protocol; 5632 5633 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5634 5635 return 0; 5636 } 5637 EXPORT_SYMBOL(skb_eth_push); 5638 5639 /* Update the ethertype of hdr and the skb csum value if required. */ 5640 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5641 __be16 ethertype) 5642 { 5643 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5644 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5645 5646 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5647 } 5648 5649 hdr->h_proto = ethertype; 5650 } 5651 5652 /** 5653 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5654 * the packet 5655 * 5656 * @skb: buffer 5657 * @mpls_lse: MPLS label stack entry to push 5658 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5659 * @mac_len: length of the MAC header 5660 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5661 * ethernet 5662 * 5663 * Expects skb->data at mac header. 5664 * 5665 * Returns 0 on success, -errno otherwise. 5666 */ 5667 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5668 int mac_len, bool ethernet) 5669 { 5670 struct mpls_shim_hdr *lse; 5671 int err; 5672 5673 if (unlikely(!eth_p_mpls(mpls_proto))) 5674 return -EINVAL; 5675 5676 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5677 if (skb->encapsulation) 5678 return -EINVAL; 5679 5680 err = skb_cow_head(skb, MPLS_HLEN); 5681 if (unlikely(err)) 5682 return err; 5683 5684 if (!skb->inner_protocol) { 5685 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5686 skb_set_inner_protocol(skb, skb->protocol); 5687 } 5688 5689 skb_push(skb, MPLS_HLEN); 5690 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5691 mac_len); 5692 skb_reset_mac_header(skb); 5693 skb_set_network_header(skb, mac_len); 5694 skb_reset_mac_len(skb); 5695 5696 lse = mpls_hdr(skb); 5697 lse->label_stack_entry = mpls_lse; 5698 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5699 5700 if (ethernet && mac_len >= ETH_HLEN) 5701 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5702 skb->protocol = mpls_proto; 5703 5704 return 0; 5705 } 5706 EXPORT_SYMBOL_GPL(skb_mpls_push); 5707 5708 /** 5709 * skb_mpls_pop() - pop the outermost MPLS header 5710 * 5711 * @skb: buffer 5712 * @next_proto: ethertype of header after popped MPLS header 5713 * @mac_len: length of the MAC header 5714 * @ethernet: flag to indicate if the packet is ethernet 5715 * 5716 * Expects skb->data at mac header. 5717 * 5718 * Returns 0 on success, -errno otherwise. 5719 */ 5720 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5721 bool ethernet) 5722 { 5723 int err; 5724 5725 if (unlikely(!eth_p_mpls(skb->protocol))) 5726 return 0; 5727 5728 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5729 if (unlikely(err)) 5730 return err; 5731 5732 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5733 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5734 mac_len); 5735 5736 __skb_pull(skb, MPLS_HLEN); 5737 skb_reset_mac_header(skb); 5738 skb_set_network_header(skb, mac_len); 5739 5740 if (ethernet && mac_len >= ETH_HLEN) { 5741 struct ethhdr *hdr; 5742 5743 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5744 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5745 skb_mod_eth_type(skb, hdr, next_proto); 5746 } 5747 skb->protocol = next_proto; 5748 5749 return 0; 5750 } 5751 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5752 5753 /** 5754 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5755 * 5756 * @skb: buffer 5757 * @mpls_lse: new MPLS label stack entry to update to 5758 * 5759 * Expects skb->data at mac header. 5760 * 5761 * Returns 0 on success, -errno otherwise. 5762 */ 5763 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5764 { 5765 int err; 5766 5767 if (unlikely(!eth_p_mpls(skb->protocol))) 5768 return -EINVAL; 5769 5770 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5771 if (unlikely(err)) 5772 return err; 5773 5774 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5775 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5776 5777 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5778 } 5779 5780 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5781 5782 return 0; 5783 } 5784 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5785 5786 /** 5787 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5788 * 5789 * @skb: buffer 5790 * 5791 * Expects skb->data at mac header. 5792 * 5793 * Returns 0 on success, -errno otherwise. 5794 */ 5795 int skb_mpls_dec_ttl(struct sk_buff *skb) 5796 { 5797 u32 lse; 5798 u8 ttl; 5799 5800 if (unlikely(!eth_p_mpls(skb->protocol))) 5801 return -EINVAL; 5802 5803 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5804 return -ENOMEM; 5805 5806 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5807 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5808 if (!--ttl) 5809 return -EINVAL; 5810 5811 lse &= ~MPLS_LS_TTL_MASK; 5812 lse |= ttl << MPLS_LS_TTL_SHIFT; 5813 5814 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5815 } 5816 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5817 5818 /** 5819 * alloc_skb_with_frags - allocate skb with page frags 5820 * 5821 * @header_len: size of linear part 5822 * @data_len: needed length in frags 5823 * @max_page_order: max page order desired. 5824 * @errcode: pointer to error code if any 5825 * @gfp_mask: allocation mask 5826 * 5827 * This can be used to allocate a paged skb, given a maximal order for frags. 5828 */ 5829 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5830 unsigned long data_len, 5831 int max_page_order, 5832 int *errcode, 5833 gfp_t gfp_mask) 5834 { 5835 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5836 unsigned long chunk; 5837 struct sk_buff *skb; 5838 struct page *page; 5839 int i; 5840 5841 *errcode = -EMSGSIZE; 5842 /* Note this test could be relaxed, if we succeed to allocate 5843 * high order pages... 5844 */ 5845 if (npages > MAX_SKB_FRAGS) 5846 return NULL; 5847 5848 *errcode = -ENOBUFS; 5849 skb = alloc_skb(header_len, gfp_mask); 5850 if (!skb) 5851 return NULL; 5852 5853 skb->truesize += npages << PAGE_SHIFT; 5854 5855 for (i = 0; npages > 0; i++) { 5856 int order = max_page_order; 5857 5858 while (order) { 5859 if (npages >= 1 << order) { 5860 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5861 __GFP_COMP | 5862 __GFP_NOWARN, 5863 order); 5864 if (page) 5865 goto fill_page; 5866 /* Do not retry other high order allocations */ 5867 order = 1; 5868 max_page_order = 0; 5869 } 5870 order--; 5871 } 5872 page = alloc_page(gfp_mask); 5873 if (!page) 5874 goto failure; 5875 fill_page: 5876 chunk = min_t(unsigned long, data_len, 5877 PAGE_SIZE << order); 5878 skb_fill_page_desc(skb, i, page, 0, chunk); 5879 data_len -= chunk; 5880 npages -= 1 << order; 5881 } 5882 return skb; 5883 5884 failure: 5885 kfree_skb(skb); 5886 return NULL; 5887 } 5888 EXPORT_SYMBOL(alloc_skb_with_frags); 5889 5890 /* carve out the first off bytes from skb when off < headlen */ 5891 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5892 const int headlen, gfp_t gfp_mask) 5893 { 5894 int i; 5895 int size = skb_end_offset(skb); 5896 int new_hlen = headlen - off; 5897 u8 *data; 5898 5899 size = SKB_DATA_ALIGN(size); 5900 5901 if (skb_pfmemalloc(skb)) 5902 gfp_mask |= __GFP_MEMALLOC; 5903 data = kmalloc_reserve(size + 5904 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5905 gfp_mask, NUMA_NO_NODE, NULL); 5906 if (!data) 5907 return -ENOMEM; 5908 5909 size = SKB_WITH_OVERHEAD(ksize(data)); 5910 5911 /* Copy real data, and all frags */ 5912 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5913 skb->len -= off; 5914 5915 memcpy((struct skb_shared_info *)(data + size), 5916 skb_shinfo(skb), 5917 offsetof(struct skb_shared_info, 5918 frags[skb_shinfo(skb)->nr_frags])); 5919 if (skb_cloned(skb)) { 5920 /* drop the old head gracefully */ 5921 if (skb_orphan_frags(skb, gfp_mask)) { 5922 kfree(data); 5923 return -ENOMEM; 5924 } 5925 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5926 skb_frag_ref(skb, i); 5927 if (skb_has_frag_list(skb)) 5928 skb_clone_fraglist(skb); 5929 skb_release_data(skb); 5930 } else { 5931 /* we can reuse existing recount- all we did was 5932 * relocate values 5933 */ 5934 skb_free_head(skb); 5935 } 5936 5937 skb->head = data; 5938 skb->data = data; 5939 skb->head_frag = 0; 5940 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5941 skb->end = size; 5942 #else 5943 skb->end = skb->head + size; 5944 #endif 5945 skb_set_tail_pointer(skb, skb_headlen(skb)); 5946 skb_headers_offset_update(skb, 0); 5947 skb->cloned = 0; 5948 skb->hdr_len = 0; 5949 skb->nohdr = 0; 5950 atomic_set(&skb_shinfo(skb)->dataref, 1); 5951 5952 return 0; 5953 } 5954 5955 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5956 5957 /* carve out the first eat bytes from skb's frag_list. May recurse into 5958 * pskb_carve() 5959 */ 5960 static int pskb_carve_frag_list(struct sk_buff *skb, 5961 struct skb_shared_info *shinfo, int eat, 5962 gfp_t gfp_mask) 5963 { 5964 struct sk_buff *list = shinfo->frag_list; 5965 struct sk_buff *clone = NULL; 5966 struct sk_buff *insp = NULL; 5967 5968 do { 5969 if (!list) { 5970 pr_err("Not enough bytes to eat. Want %d\n", eat); 5971 return -EFAULT; 5972 } 5973 if (list->len <= eat) { 5974 /* Eaten as whole. */ 5975 eat -= list->len; 5976 list = list->next; 5977 insp = list; 5978 } else { 5979 /* Eaten partially. */ 5980 if (skb_shared(list)) { 5981 clone = skb_clone(list, gfp_mask); 5982 if (!clone) 5983 return -ENOMEM; 5984 insp = list->next; 5985 list = clone; 5986 } else { 5987 /* This may be pulled without problems. */ 5988 insp = list; 5989 } 5990 if (pskb_carve(list, eat, gfp_mask) < 0) { 5991 kfree_skb(clone); 5992 return -ENOMEM; 5993 } 5994 break; 5995 } 5996 } while (eat); 5997 5998 /* Free pulled out fragments. */ 5999 while ((list = shinfo->frag_list) != insp) { 6000 shinfo->frag_list = list->next; 6001 kfree_skb(list); 6002 } 6003 /* And insert new clone at head. */ 6004 if (clone) { 6005 clone->next = list; 6006 shinfo->frag_list = clone; 6007 } 6008 return 0; 6009 } 6010 6011 /* carve off first len bytes from skb. Split line (off) is in the 6012 * non-linear part of skb 6013 */ 6014 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6015 int pos, gfp_t gfp_mask) 6016 { 6017 int i, k = 0; 6018 int size = skb_end_offset(skb); 6019 u8 *data; 6020 const int nfrags = skb_shinfo(skb)->nr_frags; 6021 struct skb_shared_info *shinfo; 6022 6023 size = SKB_DATA_ALIGN(size); 6024 6025 if (skb_pfmemalloc(skb)) 6026 gfp_mask |= __GFP_MEMALLOC; 6027 data = kmalloc_reserve(size + 6028 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6029 gfp_mask, NUMA_NO_NODE, NULL); 6030 if (!data) 6031 return -ENOMEM; 6032 6033 size = SKB_WITH_OVERHEAD(ksize(data)); 6034 6035 memcpy((struct skb_shared_info *)(data + size), 6036 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6037 if (skb_orphan_frags(skb, gfp_mask)) { 6038 kfree(data); 6039 return -ENOMEM; 6040 } 6041 shinfo = (struct skb_shared_info *)(data + size); 6042 for (i = 0; i < nfrags; i++) { 6043 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6044 6045 if (pos + fsize > off) { 6046 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6047 6048 if (pos < off) { 6049 /* Split frag. 6050 * We have two variants in this case: 6051 * 1. Move all the frag to the second 6052 * part, if it is possible. F.e. 6053 * this approach is mandatory for TUX, 6054 * where splitting is expensive. 6055 * 2. Split is accurately. We make this. 6056 */ 6057 skb_frag_off_add(&shinfo->frags[0], off - pos); 6058 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6059 } 6060 skb_frag_ref(skb, i); 6061 k++; 6062 } 6063 pos += fsize; 6064 } 6065 shinfo->nr_frags = k; 6066 if (skb_has_frag_list(skb)) 6067 skb_clone_fraglist(skb); 6068 6069 /* split line is in frag list */ 6070 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6071 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6072 if (skb_has_frag_list(skb)) 6073 kfree_skb_list(skb_shinfo(skb)->frag_list); 6074 kfree(data); 6075 return -ENOMEM; 6076 } 6077 skb_release_data(skb); 6078 6079 skb->head = data; 6080 skb->head_frag = 0; 6081 skb->data = data; 6082 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6083 skb->end = size; 6084 #else 6085 skb->end = skb->head + size; 6086 #endif 6087 skb_reset_tail_pointer(skb); 6088 skb_headers_offset_update(skb, 0); 6089 skb->cloned = 0; 6090 skb->hdr_len = 0; 6091 skb->nohdr = 0; 6092 skb->len -= off; 6093 skb->data_len = skb->len; 6094 atomic_set(&skb_shinfo(skb)->dataref, 1); 6095 return 0; 6096 } 6097 6098 /* remove len bytes from the beginning of the skb */ 6099 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6100 { 6101 int headlen = skb_headlen(skb); 6102 6103 if (len < headlen) 6104 return pskb_carve_inside_header(skb, len, headlen, gfp); 6105 else 6106 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6107 } 6108 6109 /* Extract to_copy bytes starting at off from skb, and return this in 6110 * a new skb 6111 */ 6112 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6113 int to_copy, gfp_t gfp) 6114 { 6115 struct sk_buff *clone = skb_clone(skb, gfp); 6116 6117 if (!clone) 6118 return NULL; 6119 6120 if (pskb_carve(clone, off, gfp) < 0 || 6121 pskb_trim(clone, to_copy)) { 6122 kfree_skb(clone); 6123 return NULL; 6124 } 6125 return clone; 6126 } 6127 EXPORT_SYMBOL(pskb_extract); 6128 6129 /** 6130 * skb_condense - try to get rid of fragments/frag_list if possible 6131 * @skb: buffer 6132 * 6133 * Can be used to save memory before skb is added to a busy queue. 6134 * If packet has bytes in frags and enough tail room in skb->head, 6135 * pull all of them, so that we can free the frags right now and adjust 6136 * truesize. 6137 * Notes: 6138 * We do not reallocate skb->head thus can not fail. 6139 * Caller must re-evaluate skb->truesize if needed. 6140 */ 6141 void skb_condense(struct sk_buff *skb) 6142 { 6143 if (skb->data_len) { 6144 if (skb->data_len > skb->end - skb->tail || 6145 skb_cloned(skb)) 6146 return; 6147 6148 /* Nice, we can free page frag(s) right now */ 6149 __pskb_pull_tail(skb, skb->data_len); 6150 } 6151 /* At this point, skb->truesize might be over estimated, 6152 * because skb had a fragment, and fragments do not tell 6153 * their truesize. 6154 * When we pulled its content into skb->head, fragment 6155 * was freed, but __pskb_pull_tail() could not possibly 6156 * adjust skb->truesize, not knowing the frag truesize. 6157 */ 6158 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6159 } 6160 6161 #ifdef CONFIG_SKB_EXTENSIONS 6162 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6163 { 6164 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6165 } 6166 6167 /** 6168 * __skb_ext_alloc - allocate a new skb extensions storage 6169 * 6170 * @flags: See kmalloc(). 6171 * 6172 * Returns the newly allocated pointer. The pointer can later attached to a 6173 * skb via __skb_ext_set(). 6174 * Note: caller must handle the skb_ext as an opaque data. 6175 */ 6176 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6177 { 6178 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6179 6180 if (new) { 6181 memset(new->offset, 0, sizeof(new->offset)); 6182 refcount_set(&new->refcnt, 1); 6183 } 6184 6185 return new; 6186 } 6187 6188 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6189 unsigned int old_active) 6190 { 6191 struct skb_ext *new; 6192 6193 if (refcount_read(&old->refcnt) == 1) 6194 return old; 6195 6196 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6197 if (!new) 6198 return NULL; 6199 6200 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6201 refcount_set(&new->refcnt, 1); 6202 6203 #ifdef CONFIG_XFRM 6204 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6205 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6206 unsigned int i; 6207 6208 for (i = 0; i < sp->len; i++) 6209 xfrm_state_hold(sp->xvec[i]); 6210 } 6211 #endif 6212 __skb_ext_put(old); 6213 return new; 6214 } 6215 6216 /** 6217 * __skb_ext_set - attach the specified extension storage to this skb 6218 * @skb: buffer 6219 * @id: extension id 6220 * @ext: extension storage previously allocated via __skb_ext_alloc() 6221 * 6222 * Existing extensions, if any, are cleared. 6223 * 6224 * Returns the pointer to the extension. 6225 */ 6226 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6227 struct skb_ext *ext) 6228 { 6229 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6230 6231 skb_ext_put(skb); 6232 newlen = newoff + skb_ext_type_len[id]; 6233 ext->chunks = newlen; 6234 ext->offset[id] = newoff; 6235 skb->extensions = ext; 6236 skb->active_extensions = 1 << id; 6237 return skb_ext_get_ptr(ext, id); 6238 } 6239 6240 /** 6241 * skb_ext_add - allocate space for given extension, COW if needed 6242 * @skb: buffer 6243 * @id: extension to allocate space for 6244 * 6245 * Allocates enough space for the given extension. 6246 * If the extension is already present, a pointer to that extension 6247 * is returned. 6248 * 6249 * If the skb was cloned, COW applies and the returned memory can be 6250 * modified without changing the extension space of clones buffers. 6251 * 6252 * Returns pointer to the extension or NULL on allocation failure. 6253 */ 6254 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6255 { 6256 struct skb_ext *new, *old = NULL; 6257 unsigned int newlen, newoff; 6258 6259 if (skb->active_extensions) { 6260 old = skb->extensions; 6261 6262 new = skb_ext_maybe_cow(old, skb->active_extensions); 6263 if (!new) 6264 return NULL; 6265 6266 if (__skb_ext_exist(new, id)) 6267 goto set_active; 6268 6269 newoff = new->chunks; 6270 } else { 6271 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6272 6273 new = __skb_ext_alloc(GFP_ATOMIC); 6274 if (!new) 6275 return NULL; 6276 } 6277 6278 newlen = newoff + skb_ext_type_len[id]; 6279 new->chunks = newlen; 6280 new->offset[id] = newoff; 6281 set_active: 6282 skb->extensions = new; 6283 skb->active_extensions |= 1 << id; 6284 return skb_ext_get_ptr(new, id); 6285 } 6286 EXPORT_SYMBOL(skb_ext_add); 6287 6288 #ifdef CONFIG_XFRM 6289 static void skb_ext_put_sp(struct sec_path *sp) 6290 { 6291 unsigned int i; 6292 6293 for (i = 0; i < sp->len; i++) 6294 xfrm_state_put(sp->xvec[i]); 6295 } 6296 #endif 6297 6298 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6299 { 6300 struct skb_ext *ext = skb->extensions; 6301 6302 skb->active_extensions &= ~(1 << id); 6303 if (skb->active_extensions == 0) { 6304 skb->extensions = NULL; 6305 __skb_ext_put(ext); 6306 #ifdef CONFIG_XFRM 6307 } else if (id == SKB_EXT_SEC_PATH && 6308 refcount_read(&ext->refcnt) == 1) { 6309 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6310 6311 skb_ext_put_sp(sp); 6312 sp->len = 0; 6313 #endif 6314 } 6315 } 6316 EXPORT_SYMBOL(__skb_ext_del); 6317 6318 void __skb_ext_put(struct skb_ext *ext) 6319 { 6320 /* If this is last clone, nothing can increment 6321 * it after check passes. Avoids one atomic op. 6322 */ 6323 if (refcount_read(&ext->refcnt) == 1) 6324 goto free_now; 6325 6326 if (!refcount_dec_and_test(&ext->refcnt)) 6327 return; 6328 free_now: 6329 #ifdef CONFIG_XFRM 6330 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6331 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6332 #endif 6333 6334 kmem_cache_free(skbuff_ext_cache, ext); 6335 } 6336 EXPORT_SYMBOL(__skb_ext_put); 6337 #endif /* CONFIG_SKB_EXTENSIONS */ 6338