1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #include <linux/module.h> 40 #include <linux/types.h> 41 #include <linux/kernel.h> 42 #include <linux/mm.h> 43 #include <linux/interrupt.h> 44 #include <linux/in.h> 45 #include <linux/inet.h> 46 #include <linux/slab.h> 47 #include <linux/netdevice.h> 48 #ifdef CONFIG_NET_CLS_ACT 49 #include <net/pkt_sched.h> 50 #endif 51 #include <linux/string.h> 52 #include <linux/skbuff.h> 53 #include <linux/splice.h> 54 #include <linux/cache.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/init.h> 57 #include <linux/scatterlist.h> 58 59 #include <net/protocol.h> 60 #include <net/dst.h> 61 #include <net/sock.h> 62 #include <net/checksum.h> 63 #include <net/xfrm.h> 64 65 #include <asm/uaccess.h> 66 #include <asm/system.h> 67 68 #include "kmap_skb.h" 69 70 static struct kmem_cache *skbuff_head_cache __read_mostly; 71 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 72 73 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 74 struct pipe_buffer *buf) 75 { 76 struct sk_buff *skb = (struct sk_buff *) buf->private; 77 78 kfree_skb(skb); 79 } 80 81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 82 struct pipe_buffer *buf) 83 { 84 struct sk_buff *skb = (struct sk_buff *) buf->private; 85 86 skb_get(skb); 87 } 88 89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 90 struct pipe_buffer *buf) 91 { 92 return 1; 93 } 94 95 96 /* Pipe buffer operations for a socket. */ 97 static struct pipe_buf_operations sock_pipe_buf_ops = { 98 .can_merge = 0, 99 .map = generic_pipe_buf_map, 100 .unmap = generic_pipe_buf_unmap, 101 .confirm = generic_pipe_buf_confirm, 102 .release = sock_pipe_buf_release, 103 .steal = sock_pipe_buf_steal, 104 .get = sock_pipe_buf_get, 105 }; 106 107 /* 108 * Keep out-of-line to prevent kernel bloat. 109 * __builtin_return_address is not used because it is not always 110 * reliable. 111 */ 112 113 /** 114 * skb_over_panic - private function 115 * @skb: buffer 116 * @sz: size 117 * @here: address 118 * 119 * Out of line support code for skb_put(). Not user callable. 120 */ 121 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 122 { 123 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 124 "data:%p tail:%#lx end:%#lx dev:%s\n", 125 here, skb->len, sz, skb->head, skb->data, 126 (unsigned long)skb->tail, (unsigned long)skb->end, 127 skb->dev ? skb->dev->name : "<NULL>"); 128 BUG(); 129 } 130 131 /** 132 * skb_under_panic - private function 133 * @skb: buffer 134 * @sz: size 135 * @here: address 136 * 137 * Out of line support code for skb_push(). Not user callable. 138 */ 139 140 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 141 { 142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 143 "data:%p tail:%#lx end:%#lx dev:%s\n", 144 here, skb->len, sz, skb->head, skb->data, 145 (unsigned long)skb->tail, (unsigned long)skb->end, 146 skb->dev ? skb->dev->name : "<NULL>"); 147 BUG(); 148 } 149 150 void skb_truesize_bug(struct sk_buff *skb) 151 { 152 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 153 "len=%u, sizeof(sk_buff)=%Zd\n", 154 skb->truesize, skb->len, sizeof(struct sk_buff)); 155 } 156 EXPORT_SYMBOL(skb_truesize_bug); 157 158 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 159 * 'private' fields and also do memory statistics to find all the 160 * [BEEP] leaks. 161 * 162 */ 163 164 /** 165 * __alloc_skb - allocate a network buffer 166 * @size: size to allocate 167 * @gfp_mask: allocation mask 168 * @fclone: allocate from fclone cache instead of head cache 169 * and allocate a cloned (child) skb 170 * @node: numa node to allocate memory on 171 * 172 * Allocate a new &sk_buff. The returned buffer has no headroom and a 173 * tail room of size bytes. The object has a reference count of one. 174 * The return is the buffer. On a failure the return is %NULL. 175 * 176 * Buffers may only be allocated from interrupts using a @gfp_mask of 177 * %GFP_ATOMIC. 178 */ 179 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 180 int fclone, int node) 181 { 182 struct kmem_cache *cache; 183 struct skb_shared_info *shinfo; 184 struct sk_buff *skb; 185 u8 *data; 186 187 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 188 189 /* Get the HEAD */ 190 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 191 if (!skb) 192 goto out; 193 194 size = SKB_DATA_ALIGN(size); 195 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 196 gfp_mask, node); 197 if (!data) 198 goto nodata; 199 200 /* 201 * Only clear those fields we need to clear, not those that we will 202 * actually initialise below. Hence, don't put any more fields after 203 * the tail pointer in struct sk_buff! 204 */ 205 memset(skb, 0, offsetof(struct sk_buff, tail)); 206 skb->truesize = size + sizeof(struct sk_buff); 207 atomic_set(&skb->users, 1); 208 skb->head = data; 209 skb->data = data; 210 skb_reset_tail_pointer(skb); 211 skb->end = skb->tail + size; 212 /* make sure we initialize shinfo sequentially */ 213 shinfo = skb_shinfo(skb); 214 atomic_set(&shinfo->dataref, 1); 215 shinfo->nr_frags = 0; 216 shinfo->gso_size = 0; 217 shinfo->gso_segs = 0; 218 shinfo->gso_type = 0; 219 shinfo->ip6_frag_id = 0; 220 shinfo->frag_list = NULL; 221 222 if (fclone) { 223 struct sk_buff *child = skb + 1; 224 atomic_t *fclone_ref = (atomic_t *) (child + 1); 225 226 skb->fclone = SKB_FCLONE_ORIG; 227 atomic_set(fclone_ref, 1); 228 229 child->fclone = SKB_FCLONE_UNAVAILABLE; 230 } 231 out: 232 return skb; 233 nodata: 234 kmem_cache_free(cache, skb); 235 skb = NULL; 236 goto out; 237 } 238 239 /** 240 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 241 * @dev: network device to receive on 242 * @length: length to allocate 243 * @gfp_mask: get_free_pages mask, passed to alloc_skb 244 * 245 * Allocate a new &sk_buff and assign it a usage count of one. The 246 * buffer has unspecified headroom built in. Users should allocate 247 * the headroom they think they need without accounting for the 248 * built in space. The built in space is used for optimisations. 249 * 250 * %NULL is returned if there is no free memory. 251 */ 252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 253 unsigned int length, gfp_t gfp_mask) 254 { 255 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 256 struct sk_buff *skb; 257 258 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 259 if (likely(skb)) { 260 skb_reserve(skb, NET_SKB_PAD); 261 skb->dev = dev; 262 } 263 return skb; 264 } 265 266 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask) 267 { 268 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 269 struct page *page; 270 271 page = alloc_pages_node(node, gfp_mask, 0); 272 return page; 273 } 274 EXPORT_SYMBOL(__netdev_alloc_page); 275 276 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 277 int size) 278 { 279 skb_fill_page_desc(skb, i, page, off, size); 280 skb->len += size; 281 skb->data_len += size; 282 skb->truesize += size; 283 } 284 EXPORT_SYMBOL(skb_add_rx_frag); 285 286 /** 287 * dev_alloc_skb - allocate an skbuff for receiving 288 * @length: length to allocate 289 * 290 * Allocate a new &sk_buff and assign it a usage count of one. The 291 * buffer has unspecified headroom built in. Users should allocate 292 * the headroom they think they need without accounting for the 293 * built in space. The built in space is used for optimisations. 294 * 295 * %NULL is returned if there is no free memory. Although this function 296 * allocates memory it can be called from an interrupt. 297 */ 298 struct sk_buff *dev_alloc_skb(unsigned int length) 299 { 300 /* 301 * There is more code here than it seems: 302 * __dev_alloc_skb is an inline 303 */ 304 return __dev_alloc_skb(length, GFP_ATOMIC); 305 } 306 EXPORT_SYMBOL(dev_alloc_skb); 307 308 static void skb_drop_list(struct sk_buff **listp) 309 { 310 struct sk_buff *list = *listp; 311 312 *listp = NULL; 313 314 do { 315 struct sk_buff *this = list; 316 list = list->next; 317 kfree_skb(this); 318 } while (list); 319 } 320 321 static inline void skb_drop_fraglist(struct sk_buff *skb) 322 { 323 skb_drop_list(&skb_shinfo(skb)->frag_list); 324 } 325 326 static void skb_clone_fraglist(struct sk_buff *skb) 327 { 328 struct sk_buff *list; 329 330 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 331 skb_get(list); 332 } 333 334 static void skb_release_data(struct sk_buff *skb) 335 { 336 if (!skb->cloned || 337 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 338 &skb_shinfo(skb)->dataref)) { 339 if (skb_shinfo(skb)->nr_frags) { 340 int i; 341 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 342 put_page(skb_shinfo(skb)->frags[i].page); 343 } 344 345 if (skb_shinfo(skb)->frag_list) 346 skb_drop_fraglist(skb); 347 348 kfree(skb->head); 349 } 350 } 351 352 /* 353 * Free an skbuff by memory without cleaning the state. 354 */ 355 static void kfree_skbmem(struct sk_buff *skb) 356 { 357 struct sk_buff *other; 358 atomic_t *fclone_ref; 359 360 switch (skb->fclone) { 361 case SKB_FCLONE_UNAVAILABLE: 362 kmem_cache_free(skbuff_head_cache, skb); 363 break; 364 365 case SKB_FCLONE_ORIG: 366 fclone_ref = (atomic_t *) (skb + 2); 367 if (atomic_dec_and_test(fclone_ref)) 368 kmem_cache_free(skbuff_fclone_cache, skb); 369 break; 370 371 case SKB_FCLONE_CLONE: 372 fclone_ref = (atomic_t *) (skb + 1); 373 other = skb - 1; 374 375 /* The clone portion is available for 376 * fast-cloning again. 377 */ 378 skb->fclone = SKB_FCLONE_UNAVAILABLE; 379 380 if (atomic_dec_and_test(fclone_ref)) 381 kmem_cache_free(skbuff_fclone_cache, other); 382 break; 383 } 384 } 385 386 static void skb_release_head_state(struct sk_buff *skb) 387 { 388 dst_release(skb->dst); 389 #ifdef CONFIG_XFRM 390 secpath_put(skb->sp); 391 #endif 392 if (skb->destructor) { 393 WARN_ON(in_irq()); 394 skb->destructor(skb); 395 } 396 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 397 nf_conntrack_put(skb->nfct); 398 nf_conntrack_put_reasm(skb->nfct_reasm); 399 #endif 400 #ifdef CONFIG_BRIDGE_NETFILTER 401 nf_bridge_put(skb->nf_bridge); 402 #endif 403 /* XXX: IS this still necessary? - JHS */ 404 #ifdef CONFIG_NET_SCHED 405 skb->tc_index = 0; 406 #ifdef CONFIG_NET_CLS_ACT 407 skb->tc_verd = 0; 408 #endif 409 #endif 410 } 411 412 /* Free everything but the sk_buff shell. */ 413 static void skb_release_all(struct sk_buff *skb) 414 { 415 skb_release_head_state(skb); 416 skb_release_data(skb); 417 } 418 419 /** 420 * __kfree_skb - private function 421 * @skb: buffer 422 * 423 * Free an sk_buff. Release anything attached to the buffer. 424 * Clean the state. This is an internal helper function. Users should 425 * always call kfree_skb 426 */ 427 428 void __kfree_skb(struct sk_buff *skb) 429 { 430 skb_release_all(skb); 431 kfree_skbmem(skb); 432 } 433 434 /** 435 * kfree_skb - free an sk_buff 436 * @skb: buffer to free 437 * 438 * Drop a reference to the buffer and free it if the usage count has 439 * hit zero. 440 */ 441 void kfree_skb(struct sk_buff *skb) 442 { 443 if (unlikely(!skb)) 444 return; 445 if (likely(atomic_read(&skb->users) == 1)) 446 smp_rmb(); 447 else if (likely(!atomic_dec_and_test(&skb->users))) 448 return; 449 __kfree_skb(skb); 450 } 451 452 /** 453 * skb_recycle_check - check if skb can be reused for receive 454 * @skb: buffer 455 * @skb_size: minimum receive buffer size 456 * 457 * Checks that the skb passed in is not shared or cloned, and 458 * that it is linear and its head portion at least as large as 459 * skb_size so that it can be recycled as a receive buffer. 460 * If these conditions are met, this function does any necessary 461 * reference count dropping and cleans up the skbuff as if it 462 * just came from __alloc_skb(). 463 */ 464 int skb_recycle_check(struct sk_buff *skb, int skb_size) 465 { 466 struct skb_shared_info *shinfo; 467 468 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE) 469 return 0; 470 471 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD); 472 if (skb_end_pointer(skb) - skb->head < skb_size) 473 return 0; 474 475 if (skb_shared(skb) || skb_cloned(skb)) 476 return 0; 477 478 skb_release_head_state(skb); 479 shinfo = skb_shinfo(skb); 480 atomic_set(&shinfo->dataref, 1); 481 shinfo->nr_frags = 0; 482 shinfo->gso_size = 0; 483 shinfo->gso_segs = 0; 484 shinfo->gso_type = 0; 485 shinfo->ip6_frag_id = 0; 486 shinfo->frag_list = NULL; 487 488 memset(skb, 0, offsetof(struct sk_buff, tail)); 489 skb_reset_tail_pointer(skb); 490 skb->data = skb->head + NET_SKB_PAD; 491 492 return 1; 493 } 494 EXPORT_SYMBOL(skb_recycle_check); 495 496 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 497 { 498 new->tstamp = old->tstamp; 499 new->dev = old->dev; 500 new->transport_header = old->transport_header; 501 new->network_header = old->network_header; 502 new->mac_header = old->mac_header; 503 new->dst = dst_clone(old->dst); 504 #ifdef CONFIG_INET 505 new->sp = secpath_get(old->sp); 506 #endif 507 memcpy(new->cb, old->cb, sizeof(old->cb)); 508 new->csum_start = old->csum_start; 509 new->csum_offset = old->csum_offset; 510 new->local_df = old->local_df; 511 new->pkt_type = old->pkt_type; 512 new->ip_summed = old->ip_summed; 513 skb_copy_queue_mapping(new, old); 514 new->priority = old->priority; 515 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 516 new->ipvs_property = old->ipvs_property; 517 #endif 518 new->protocol = old->protocol; 519 new->mark = old->mark; 520 __nf_copy(new, old); 521 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 522 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 523 new->nf_trace = old->nf_trace; 524 #endif 525 #ifdef CONFIG_NET_SCHED 526 new->tc_index = old->tc_index; 527 #ifdef CONFIG_NET_CLS_ACT 528 new->tc_verd = old->tc_verd; 529 #endif 530 #endif 531 new->vlan_tci = old->vlan_tci; 532 533 skb_copy_secmark(new, old); 534 } 535 536 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 537 { 538 #define C(x) n->x = skb->x 539 540 n->next = n->prev = NULL; 541 n->sk = NULL; 542 __copy_skb_header(n, skb); 543 544 C(len); 545 C(data_len); 546 C(mac_len); 547 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 548 n->cloned = 1; 549 n->nohdr = 0; 550 n->destructor = NULL; 551 C(iif); 552 C(tail); 553 C(end); 554 C(head); 555 C(data); 556 C(truesize); 557 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE) 558 C(do_not_encrypt); 559 #endif 560 atomic_set(&n->users, 1); 561 562 atomic_inc(&(skb_shinfo(skb)->dataref)); 563 skb->cloned = 1; 564 565 return n; 566 #undef C 567 } 568 569 /** 570 * skb_morph - morph one skb into another 571 * @dst: the skb to receive the contents 572 * @src: the skb to supply the contents 573 * 574 * This is identical to skb_clone except that the target skb is 575 * supplied by the user. 576 * 577 * The target skb is returned upon exit. 578 */ 579 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 580 { 581 skb_release_all(dst); 582 return __skb_clone(dst, src); 583 } 584 EXPORT_SYMBOL_GPL(skb_morph); 585 586 /** 587 * skb_clone - duplicate an sk_buff 588 * @skb: buffer to clone 589 * @gfp_mask: allocation priority 590 * 591 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 592 * copies share the same packet data but not structure. The new 593 * buffer has a reference count of 1. If the allocation fails the 594 * function returns %NULL otherwise the new buffer is returned. 595 * 596 * If this function is called from an interrupt gfp_mask() must be 597 * %GFP_ATOMIC. 598 */ 599 600 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 601 { 602 struct sk_buff *n; 603 604 n = skb + 1; 605 if (skb->fclone == SKB_FCLONE_ORIG && 606 n->fclone == SKB_FCLONE_UNAVAILABLE) { 607 atomic_t *fclone_ref = (atomic_t *) (n + 1); 608 n->fclone = SKB_FCLONE_CLONE; 609 atomic_inc(fclone_ref); 610 } else { 611 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 612 if (!n) 613 return NULL; 614 n->fclone = SKB_FCLONE_UNAVAILABLE; 615 } 616 617 return __skb_clone(n, skb); 618 } 619 620 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 621 { 622 #ifndef NET_SKBUFF_DATA_USES_OFFSET 623 /* 624 * Shift between the two data areas in bytes 625 */ 626 unsigned long offset = new->data - old->data; 627 #endif 628 629 __copy_skb_header(new, old); 630 631 #ifndef NET_SKBUFF_DATA_USES_OFFSET 632 /* {transport,network,mac}_header are relative to skb->head */ 633 new->transport_header += offset; 634 new->network_header += offset; 635 new->mac_header += offset; 636 #endif 637 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 638 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 639 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 640 } 641 642 /** 643 * skb_copy - create private copy of an sk_buff 644 * @skb: buffer to copy 645 * @gfp_mask: allocation priority 646 * 647 * Make a copy of both an &sk_buff and its data. This is used when the 648 * caller wishes to modify the data and needs a private copy of the 649 * data to alter. Returns %NULL on failure or the pointer to the buffer 650 * on success. The returned buffer has a reference count of 1. 651 * 652 * As by-product this function converts non-linear &sk_buff to linear 653 * one, so that &sk_buff becomes completely private and caller is allowed 654 * to modify all the data of returned buffer. This means that this 655 * function is not recommended for use in circumstances when only 656 * header is going to be modified. Use pskb_copy() instead. 657 */ 658 659 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 660 { 661 int headerlen = skb->data - skb->head; 662 /* 663 * Allocate the copy buffer 664 */ 665 struct sk_buff *n; 666 #ifdef NET_SKBUFF_DATA_USES_OFFSET 667 n = alloc_skb(skb->end + skb->data_len, gfp_mask); 668 #else 669 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); 670 #endif 671 if (!n) 672 return NULL; 673 674 /* Set the data pointer */ 675 skb_reserve(n, headerlen); 676 /* Set the tail pointer and length */ 677 skb_put(n, skb->len); 678 679 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 680 BUG(); 681 682 copy_skb_header(n, skb); 683 return n; 684 } 685 686 687 /** 688 * pskb_copy - create copy of an sk_buff with private head. 689 * @skb: buffer to copy 690 * @gfp_mask: allocation priority 691 * 692 * Make a copy of both an &sk_buff and part of its data, located 693 * in header. Fragmented data remain shared. This is used when 694 * the caller wishes to modify only header of &sk_buff and needs 695 * private copy of the header to alter. Returns %NULL on failure 696 * or the pointer to the buffer on success. 697 * The returned buffer has a reference count of 1. 698 */ 699 700 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 701 { 702 /* 703 * Allocate the copy buffer 704 */ 705 struct sk_buff *n; 706 #ifdef NET_SKBUFF_DATA_USES_OFFSET 707 n = alloc_skb(skb->end, gfp_mask); 708 #else 709 n = alloc_skb(skb->end - skb->head, gfp_mask); 710 #endif 711 if (!n) 712 goto out; 713 714 /* Set the data pointer */ 715 skb_reserve(n, skb->data - skb->head); 716 /* Set the tail pointer and length */ 717 skb_put(n, skb_headlen(skb)); 718 /* Copy the bytes */ 719 skb_copy_from_linear_data(skb, n->data, n->len); 720 721 n->truesize += skb->data_len; 722 n->data_len = skb->data_len; 723 n->len = skb->len; 724 725 if (skb_shinfo(skb)->nr_frags) { 726 int i; 727 728 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 729 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 730 get_page(skb_shinfo(n)->frags[i].page); 731 } 732 skb_shinfo(n)->nr_frags = i; 733 } 734 735 if (skb_shinfo(skb)->frag_list) { 736 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 737 skb_clone_fraglist(n); 738 } 739 740 copy_skb_header(n, skb); 741 out: 742 return n; 743 } 744 745 /** 746 * pskb_expand_head - reallocate header of &sk_buff 747 * @skb: buffer to reallocate 748 * @nhead: room to add at head 749 * @ntail: room to add at tail 750 * @gfp_mask: allocation priority 751 * 752 * Expands (or creates identical copy, if &nhead and &ntail are zero) 753 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 754 * reference count of 1. Returns zero in the case of success or error, 755 * if expansion failed. In the last case, &sk_buff is not changed. 756 * 757 * All the pointers pointing into skb header may change and must be 758 * reloaded after call to this function. 759 */ 760 761 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 762 gfp_t gfp_mask) 763 { 764 int i; 765 u8 *data; 766 #ifdef NET_SKBUFF_DATA_USES_OFFSET 767 int size = nhead + skb->end + ntail; 768 #else 769 int size = nhead + (skb->end - skb->head) + ntail; 770 #endif 771 long off; 772 773 BUG_ON(nhead < 0); 774 775 if (skb_shared(skb)) 776 BUG(); 777 778 size = SKB_DATA_ALIGN(size); 779 780 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 781 if (!data) 782 goto nodata; 783 784 /* Copy only real data... and, alas, header. This should be 785 * optimized for the cases when header is void. */ 786 #ifdef NET_SKBUFF_DATA_USES_OFFSET 787 memcpy(data + nhead, skb->head, skb->tail); 788 #else 789 memcpy(data + nhead, skb->head, skb->tail - skb->head); 790 #endif 791 memcpy(data + size, skb_end_pointer(skb), 792 sizeof(struct skb_shared_info)); 793 794 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 795 get_page(skb_shinfo(skb)->frags[i].page); 796 797 if (skb_shinfo(skb)->frag_list) 798 skb_clone_fraglist(skb); 799 800 skb_release_data(skb); 801 802 off = (data + nhead) - skb->head; 803 804 skb->head = data; 805 skb->data += off; 806 #ifdef NET_SKBUFF_DATA_USES_OFFSET 807 skb->end = size; 808 off = nhead; 809 #else 810 skb->end = skb->head + size; 811 #endif 812 /* {transport,network,mac}_header and tail are relative to skb->head */ 813 skb->tail += off; 814 skb->transport_header += off; 815 skb->network_header += off; 816 skb->mac_header += off; 817 skb->csum_start += nhead; 818 skb->cloned = 0; 819 skb->hdr_len = 0; 820 skb->nohdr = 0; 821 atomic_set(&skb_shinfo(skb)->dataref, 1); 822 return 0; 823 824 nodata: 825 return -ENOMEM; 826 } 827 828 /* Make private copy of skb with writable head and some headroom */ 829 830 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 831 { 832 struct sk_buff *skb2; 833 int delta = headroom - skb_headroom(skb); 834 835 if (delta <= 0) 836 skb2 = pskb_copy(skb, GFP_ATOMIC); 837 else { 838 skb2 = skb_clone(skb, GFP_ATOMIC); 839 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 840 GFP_ATOMIC)) { 841 kfree_skb(skb2); 842 skb2 = NULL; 843 } 844 } 845 return skb2; 846 } 847 848 849 /** 850 * skb_copy_expand - copy and expand sk_buff 851 * @skb: buffer to copy 852 * @newheadroom: new free bytes at head 853 * @newtailroom: new free bytes at tail 854 * @gfp_mask: allocation priority 855 * 856 * Make a copy of both an &sk_buff and its data and while doing so 857 * allocate additional space. 858 * 859 * This is used when the caller wishes to modify the data and needs a 860 * private copy of the data to alter as well as more space for new fields. 861 * Returns %NULL on failure or the pointer to the buffer 862 * on success. The returned buffer has a reference count of 1. 863 * 864 * You must pass %GFP_ATOMIC as the allocation priority if this function 865 * is called from an interrupt. 866 */ 867 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 868 int newheadroom, int newtailroom, 869 gfp_t gfp_mask) 870 { 871 /* 872 * Allocate the copy buffer 873 */ 874 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 875 gfp_mask); 876 int oldheadroom = skb_headroom(skb); 877 int head_copy_len, head_copy_off; 878 int off; 879 880 if (!n) 881 return NULL; 882 883 skb_reserve(n, newheadroom); 884 885 /* Set the tail pointer and length */ 886 skb_put(n, skb->len); 887 888 head_copy_len = oldheadroom; 889 head_copy_off = 0; 890 if (newheadroom <= head_copy_len) 891 head_copy_len = newheadroom; 892 else 893 head_copy_off = newheadroom - head_copy_len; 894 895 /* Copy the linear header and data. */ 896 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 897 skb->len + head_copy_len)) 898 BUG(); 899 900 copy_skb_header(n, skb); 901 902 off = newheadroom - oldheadroom; 903 n->csum_start += off; 904 #ifdef NET_SKBUFF_DATA_USES_OFFSET 905 n->transport_header += off; 906 n->network_header += off; 907 n->mac_header += off; 908 #endif 909 910 return n; 911 } 912 913 /** 914 * skb_pad - zero pad the tail of an skb 915 * @skb: buffer to pad 916 * @pad: space to pad 917 * 918 * Ensure that a buffer is followed by a padding area that is zero 919 * filled. Used by network drivers which may DMA or transfer data 920 * beyond the buffer end onto the wire. 921 * 922 * May return error in out of memory cases. The skb is freed on error. 923 */ 924 925 int skb_pad(struct sk_buff *skb, int pad) 926 { 927 int err; 928 int ntail; 929 930 /* If the skbuff is non linear tailroom is always zero.. */ 931 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 932 memset(skb->data+skb->len, 0, pad); 933 return 0; 934 } 935 936 ntail = skb->data_len + pad - (skb->end - skb->tail); 937 if (likely(skb_cloned(skb) || ntail > 0)) { 938 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 939 if (unlikely(err)) 940 goto free_skb; 941 } 942 943 /* FIXME: The use of this function with non-linear skb's really needs 944 * to be audited. 945 */ 946 err = skb_linearize(skb); 947 if (unlikely(err)) 948 goto free_skb; 949 950 memset(skb->data + skb->len, 0, pad); 951 return 0; 952 953 free_skb: 954 kfree_skb(skb); 955 return err; 956 } 957 958 /** 959 * skb_put - add data to a buffer 960 * @skb: buffer to use 961 * @len: amount of data to add 962 * 963 * This function extends the used data area of the buffer. If this would 964 * exceed the total buffer size the kernel will panic. A pointer to the 965 * first byte of the extra data is returned. 966 */ 967 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 968 { 969 unsigned char *tmp = skb_tail_pointer(skb); 970 SKB_LINEAR_ASSERT(skb); 971 skb->tail += len; 972 skb->len += len; 973 if (unlikely(skb->tail > skb->end)) 974 skb_over_panic(skb, len, __builtin_return_address(0)); 975 return tmp; 976 } 977 EXPORT_SYMBOL(skb_put); 978 979 /** 980 * skb_push - add data to the start of a buffer 981 * @skb: buffer to use 982 * @len: amount of data to add 983 * 984 * This function extends the used data area of the buffer at the buffer 985 * start. If this would exceed the total buffer headroom the kernel will 986 * panic. A pointer to the first byte of the extra data is returned. 987 */ 988 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 989 { 990 skb->data -= len; 991 skb->len += len; 992 if (unlikely(skb->data<skb->head)) 993 skb_under_panic(skb, len, __builtin_return_address(0)); 994 return skb->data; 995 } 996 EXPORT_SYMBOL(skb_push); 997 998 /** 999 * skb_pull - remove data from the start of a buffer 1000 * @skb: buffer to use 1001 * @len: amount of data to remove 1002 * 1003 * This function removes data from the start of a buffer, returning 1004 * the memory to the headroom. A pointer to the next data in the buffer 1005 * is returned. Once the data has been pulled future pushes will overwrite 1006 * the old data. 1007 */ 1008 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1009 { 1010 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1011 } 1012 EXPORT_SYMBOL(skb_pull); 1013 1014 /** 1015 * skb_trim - remove end from a buffer 1016 * @skb: buffer to alter 1017 * @len: new length 1018 * 1019 * Cut the length of a buffer down by removing data from the tail. If 1020 * the buffer is already under the length specified it is not modified. 1021 * The skb must be linear. 1022 */ 1023 void skb_trim(struct sk_buff *skb, unsigned int len) 1024 { 1025 if (skb->len > len) 1026 __skb_trim(skb, len); 1027 } 1028 EXPORT_SYMBOL(skb_trim); 1029 1030 /* Trims skb to length len. It can change skb pointers. 1031 */ 1032 1033 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1034 { 1035 struct sk_buff **fragp; 1036 struct sk_buff *frag; 1037 int offset = skb_headlen(skb); 1038 int nfrags = skb_shinfo(skb)->nr_frags; 1039 int i; 1040 int err; 1041 1042 if (skb_cloned(skb) && 1043 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1044 return err; 1045 1046 i = 0; 1047 if (offset >= len) 1048 goto drop_pages; 1049 1050 for (; i < nfrags; i++) { 1051 int end = offset + skb_shinfo(skb)->frags[i].size; 1052 1053 if (end < len) { 1054 offset = end; 1055 continue; 1056 } 1057 1058 skb_shinfo(skb)->frags[i++].size = len - offset; 1059 1060 drop_pages: 1061 skb_shinfo(skb)->nr_frags = i; 1062 1063 for (; i < nfrags; i++) 1064 put_page(skb_shinfo(skb)->frags[i].page); 1065 1066 if (skb_shinfo(skb)->frag_list) 1067 skb_drop_fraglist(skb); 1068 goto done; 1069 } 1070 1071 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1072 fragp = &frag->next) { 1073 int end = offset + frag->len; 1074 1075 if (skb_shared(frag)) { 1076 struct sk_buff *nfrag; 1077 1078 nfrag = skb_clone(frag, GFP_ATOMIC); 1079 if (unlikely(!nfrag)) 1080 return -ENOMEM; 1081 1082 nfrag->next = frag->next; 1083 kfree_skb(frag); 1084 frag = nfrag; 1085 *fragp = frag; 1086 } 1087 1088 if (end < len) { 1089 offset = end; 1090 continue; 1091 } 1092 1093 if (end > len && 1094 unlikely((err = pskb_trim(frag, len - offset)))) 1095 return err; 1096 1097 if (frag->next) 1098 skb_drop_list(&frag->next); 1099 break; 1100 } 1101 1102 done: 1103 if (len > skb_headlen(skb)) { 1104 skb->data_len -= skb->len - len; 1105 skb->len = len; 1106 } else { 1107 skb->len = len; 1108 skb->data_len = 0; 1109 skb_set_tail_pointer(skb, len); 1110 } 1111 1112 return 0; 1113 } 1114 1115 /** 1116 * __pskb_pull_tail - advance tail of skb header 1117 * @skb: buffer to reallocate 1118 * @delta: number of bytes to advance tail 1119 * 1120 * The function makes a sense only on a fragmented &sk_buff, 1121 * it expands header moving its tail forward and copying necessary 1122 * data from fragmented part. 1123 * 1124 * &sk_buff MUST have reference count of 1. 1125 * 1126 * Returns %NULL (and &sk_buff does not change) if pull failed 1127 * or value of new tail of skb in the case of success. 1128 * 1129 * All the pointers pointing into skb header may change and must be 1130 * reloaded after call to this function. 1131 */ 1132 1133 /* Moves tail of skb head forward, copying data from fragmented part, 1134 * when it is necessary. 1135 * 1. It may fail due to malloc failure. 1136 * 2. It may change skb pointers. 1137 * 1138 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1139 */ 1140 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1141 { 1142 /* If skb has not enough free space at tail, get new one 1143 * plus 128 bytes for future expansions. If we have enough 1144 * room at tail, reallocate without expansion only if skb is cloned. 1145 */ 1146 int i, k, eat = (skb->tail + delta) - skb->end; 1147 1148 if (eat > 0 || skb_cloned(skb)) { 1149 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1150 GFP_ATOMIC)) 1151 return NULL; 1152 } 1153 1154 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1155 BUG(); 1156 1157 /* Optimization: no fragments, no reasons to preestimate 1158 * size of pulled pages. Superb. 1159 */ 1160 if (!skb_shinfo(skb)->frag_list) 1161 goto pull_pages; 1162 1163 /* Estimate size of pulled pages. */ 1164 eat = delta; 1165 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1166 if (skb_shinfo(skb)->frags[i].size >= eat) 1167 goto pull_pages; 1168 eat -= skb_shinfo(skb)->frags[i].size; 1169 } 1170 1171 /* If we need update frag list, we are in troubles. 1172 * Certainly, it possible to add an offset to skb data, 1173 * but taking into account that pulling is expected to 1174 * be very rare operation, it is worth to fight against 1175 * further bloating skb head and crucify ourselves here instead. 1176 * Pure masohism, indeed. 8)8) 1177 */ 1178 if (eat) { 1179 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1180 struct sk_buff *clone = NULL; 1181 struct sk_buff *insp = NULL; 1182 1183 do { 1184 BUG_ON(!list); 1185 1186 if (list->len <= eat) { 1187 /* Eaten as whole. */ 1188 eat -= list->len; 1189 list = list->next; 1190 insp = list; 1191 } else { 1192 /* Eaten partially. */ 1193 1194 if (skb_shared(list)) { 1195 /* Sucks! We need to fork list. :-( */ 1196 clone = skb_clone(list, GFP_ATOMIC); 1197 if (!clone) 1198 return NULL; 1199 insp = list->next; 1200 list = clone; 1201 } else { 1202 /* This may be pulled without 1203 * problems. */ 1204 insp = list; 1205 } 1206 if (!pskb_pull(list, eat)) { 1207 if (clone) 1208 kfree_skb(clone); 1209 return NULL; 1210 } 1211 break; 1212 } 1213 } while (eat); 1214 1215 /* Free pulled out fragments. */ 1216 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1217 skb_shinfo(skb)->frag_list = list->next; 1218 kfree_skb(list); 1219 } 1220 /* And insert new clone at head. */ 1221 if (clone) { 1222 clone->next = list; 1223 skb_shinfo(skb)->frag_list = clone; 1224 } 1225 } 1226 /* Success! Now we may commit changes to skb data. */ 1227 1228 pull_pages: 1229 eat = delta; 1230 k = 0; 1231 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1232 if (skb_shinfo(skb)->frags[i].size <= eat) { 1233 put_page(skb_shinfo(skb)->frags[i].page); 1234 eat -= skb_shinfo(skb)->frags[i].size; 1235 } else { 1236 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1237 if (eat) { 1238 skb_shinfo(skb)->frags[k].page_offset += eat; 1239 skb_shinfo(skb)->frags[k].size -= eat; 1240 eat = 0; 1241 } 1242 k++; 1243 } 1244 } 1245 skb_shinfo(skb)->nr_frags = k; 1246 1247 skb->tail += delta; 1248 skb->data_len -= delta; 1249 1250 return skb_tail_pointer(skb); 1251 } 1252 1253 /* Copy some data bits from skb to kernel buffer. */ 1254 1255 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1256 { 1257 int i, copy; 1258 int start = skb_headlen(skb); 1259 1260 if (offset > (int)skb->len - len) 1261 goto fault; 1262 1263 /* Copy header. */ 1264 if ((copy = start - offset) > 0) { 1265 if (copy > len) 1266 copy = len; 1267 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1268 if ((len -= copy) == 0) 1269 return 0; 1270 offset += copy; 1271 to += copy; 1272 } 1273 1274 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1275 int end; 1276 1277 WARN_ON(start > offset + len); 1278 1279 end = start + skb_shinfo(skb)->frags[i].size; 1280 if ((copy = end - offset) > 0) { 1281 u8 *vaddr; 1282 1283 if (copy > len) 1284 copy = len; 1285 1286 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1287 memcpy(to, 1288 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1289 offset - start, copy); 1290 kunmap_skb_frag(vaddr); 1291 1292 if ((len -= copy) == 0) 1293 return 0; 1294 offset += copy; 1295 to += copy; 1296 } 1297 start = end; 1298 } 1299 1300 if (skb_shinfo(skb)->frag_list) { 1301 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1302 1303 for (; list; list = list->next) { 1304 int end; 1305 1306 WARN_ON(start > offset + len); 1307 1308 end = start + list->len; 1309 if ((copy = end - offset) > 0) { 1310 if (copy > len) 1311 copy = len; 1312 if (skb_copy_bits(list, offset - start, 1313 to, copy)) 1314 goto fault; 1315 if ((len -= copy) == 0) 1316 return 0; 1317 offset += copy; 1318 to += copy; 1319 } 1320 start = end; 1321 } 1322 } 1323 if (!len) 1324 return 0; 1325 1326 fault: 1327 return -EFAULT; 1328 } 1329 1330 /* 1331 * Callback from splice_to_pipe(), if we need to release some pages 1332 * at the end of the spd in case we error'ed out in filling the pipe. 1333 */ 1334 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1335 { 1336 struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private; 1337 1338 kfree_skb(skb); 1339 } 1340 1341 /* 1342 * Fill page/offset/length into spd, if it can hold more pages. 1343 */ 1344 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 1345 unsigned int len, unsigned int offset, 1346 struct sk_buff *skb) 1347 { 1348 if (unlikely(spd->nr_pages == PIPE_BUFFERS)) 1349 return 1; 1350 1351 spd->pages[spd->nr_pages] = page; 1352 spd->partial[spd->nr_pages].len = len; 1353 spd->partial[spd->nr_pages].offset = offset; 1354 spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb); 1355 spd->nr_pages++; 1356 return 0; 1357 } 1358 1359 static inline void __segment_seek(struct page **page, unsigned int *poff, 1360 unsigned int *plen, unsigned int off) 1361 { 1362 *poff += off; 1363 *page += *poff / PAGE_SIZE; 1364 *poff = *poff % PAGE_SIZE; 1365 *plen -= off; 1366 } 1367 1368 static inline int __splice_segment(struct page *page, unsigned int poff, 1369 unsigned int plen, unsigned int *off, 1370 unsigned int *len, struct sk_buff *skb, 1371 struct splice_pipe_desc *spd) 1372 { 1373 if (!*len) 1374 return 1; 1375 1376 /* skip this segment if already processed */ 1377 if (*off >= plen) { 1378 *off -= plen; 1379 return 0; 1380 } 1381 1382 /* ignore any bits we already processed */ 1383 if (*off) { 1384 __segment_seek(&page, &poff, &plen, *off); 1385 *off = 0; 1386 } 1387 1388 do { 1389 unsigned int flen = min(*len, plen); 1390 1391 /* the linear region may spread across several pages */ 1392 flen = min_t(unsigned int, flen, PAGE_SIZE - poff); 1393 1394 if (spd_fill_page(spd, page, flen, poff, skb)) 1395 return 1; 1396 1397 __segment_seek(&page, &poff, &plen, flen); 1398 *len -= flen; 1399 1400 } while (*len && plen); 1401 1402 return 0; 1403 } 1404 1405 /* 1406 * Map linear and fragment data from the skb to spd. It reports failure if the 1407 * pipe is full or if we already spliced the requested length. 1408 */ 1409 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset, 1410 unsigned int *len, 1411 struct splice_pipe_desc *spd) 1412 { 1413 int seg; 1414 1415 /* 1416 * map the linear part 1417 */ 1418 if (__splice_segment(virt_to_page(skb->data), 1419 (unsigned long) skb->data & (PAGE_SIZE - 1), 1420 skb_headlen(skb), 1421 offset, len, skb, spd)) 1422 return 1; 1423 1424 /* 1425 * then map the fragments 1426 */ 1427 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1428 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1429 1430 if (__splice_segment(f->page, f->page_offset, f->size, 1431 offset, len, skb, spd)) 1432 return 1; 1433 } 1434 1435 return 0; 1436 } 1437 1438 /* 1439 * Map data from the skb to a pipe. Should handle both the linear part, 1440 * the fragments, and the frag list. It does NOT handle frag lists within 1441 * the frag list, if such a thing exists. We'd probably need to recurse to 1442 * handle that cleanly. 1443 */ 1444 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset, 1445 struct pipe_inode_info *pipe, unsigned int tlen, 1446 unsigned int flags) 1447 { 1448 struct partial_page partial[PIPE_BUFFERS]; 1449 struct page *pages[PIPE_BUFFERS]; 1450 struct splice_pipe_desc spd = { 1451 .pages = pages, 1452 .partial = partial, 1453 .flags = flags, 1454 .ops = &sock_pipe_buf_ops, 1455 .spd_release = sock_spd_release, 1456 }; 1457 struct sk_buff *skb; 1458 1459 /* 1460 * I'd love to avoid the clone here, but tcp_read_sock() 1461 * ignores reference counts and unconditonally kills the sk_buff 1462 * on return from the actor. 1463 */ 1464 skb = skb_clone(__skb, GFP_KERNEL); 1465 if (unlikely(!skb)) 1466 return -ENOMEM; 1467 1468 /* 1469 * __skb_splice_bits() only fails if the output has no room left, 1470 * so no point in going over the frag_list for the error case. 1471 */ 1472 if (__skb_splice_bits(skb, &offset, &tlen, &spd)) 1473 goto done; 1474 else if (!tlen) 1475 goto done; 1476 1477 /* 1478 * now see if we have a frag_list to map 1479 */ 1480 if (skb_shinfo(skb)->frag_list) { 1481 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1482 1483 for (; list && tlen; list = list->next) { 1484 if (__skb_splice_bits(list, &offset, &tlen, &spd)) 1485 break; 1486 } 1487 } 1488 1489 done: 1490 /* 1491 * drop our reference to the clone, the pipe consumption will 1492 * drop the rest. 1493 */ 1494 kfree_skb(skb); 1495 1496 if (spd.nr_pages) { 1497 int ret; 1498 struct sock *sk = __skb->sk; 1499 1500 /* 1501 * Drop the socket lock, otherwise we have reverse 1502 * locking dependencies between sk_lock and i_mutex 1503 * here as compared to sendfile(). We enter here 1504 * with the socket lock held, and splice_to_pipe() will 1505 * grab the pipe inode lock. For sendfile() emulation, 1506 * we call into ->sendpage() with the i_mutex lock held 1507 * and networking will grab the socket lock. 1508 */ 1509 release_sock(sk); 1510 ret = splice_to_pipe(pipe, &spd); 1511 lock_sock(sk); 1512 return ret; 1513 } 1514 1515 return 0; 1516 } 1517 1518 /** 1519 * skb_store_bits - store bits from kernel buffer to skb 1520 * @skb: destination buffer 1521 * @offset: offset in destination 1522 * @from: source buffer 1523 * @len: number of bytes to copy 1524 * 1525 * Copy the specified number of bytes from the source buffer to the 1526 * destination skb. This function handles all the messy bits of 1527 * traversing fragment lists and such. 1528 */ 1529 1530 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1531 { 1532 int i, copy; 1533 int start = skb_headlen(skb); 1534 1535 if (offset > (int)skb->len - len) 1536 goto fault; 1537 1538 if ((copy = start - offset) > 0) { 1539 if (copy > len) 1540 copy = len; 1541 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1542 if ((len -= copy) == 0) 1543 return 0; 1544 offset += copy; 1545 from += copy; 1546 } 1547 1548 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1549 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1550 int end; 1551 1552 WARN_ON(start > offset + len); 1553 1554 end = start + frag->size; 1555 if ((copy = end - offset) > 0) { 1556 u8 *vaddr; 1557 1558 if (copy > len) 1559 copy = len; 1560 1561 vaddr = kmap_skb_frag(frag); 1562 memcpy(vaddr + frag->page_offset + offset - start, 1563 from, copy); 1564 kunmap_skb_frag(vaddr); 1565 1566 if ((len -= copy) == 0) 1567 return 0; 1568 offset += copy; 1569 from += copy; 1570 } 1571 start = end; 1572 } 1573 1574 if (skb_shinfo(skb)->frag_list) { 1575 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1576 1577 for (; list; list = list->next) { 1578 int end; 1579 1580 WARN_ON(start > offset + len); 1581 1582 end = start + list->len; 1583 if ((copy = end - offset) > 0) { 1584 if (copy > len) 1585 copy = len; 1586 if (skb_store_bits(list, offset - start, 1587 from, copy)) 1588 goto fault; 1589 if ((len -= copy) == 0) 1590 return 0; 1591 offset += copy; 1592 from += copy; 1593 } 1594 start = end; 1595 } 1596 } 1597 if (!len) 1598 return 0; 1599 1600 fault: 1601 return -EFAULT; 1602 } 1603 1604 EXPORT_SYMBOL(skb_store_bits); 1605 1606 /* Checksum skb data. */ 1607 1608 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1609 int len, __wsum csum) 1610 { 1611 int start = skb_headlen(skb); 1612 int i, copy = start - offset; 1613 int pos = 0; 1614 1615 /* Checksum header. */ 1616 if (copy > 0) { 1617 if (copy > len) 1618 copy = len; 1619 csum = csum_partial(skb->data + offset, copy, csum); 1620 if ((len -= copy) == 0) 1621 return csum; 1622 offset += copy; 1623 pos = copy; 1624 } 1625 1626 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1627 int end; 1628 1629 WARN_ON(start > offset + len); 1630 1631 end = start + skb_shinfo(skb)->frags[i].size; 1632 if ((copy = end - offset) > 0) { 1633 __wsum csum2; 1634 u8 *vaddr; 1635 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1636 1637 if (copy > len) 1638 copy = len; 1639 vaddr = kmap_skb_frag(frag); 1640 csum2 = csum_partial(vaddr + frag->page_offset + 1641 offset - start, copy, 0); 1642 kunmap_skb_frag(vaddr); 1643 csum = csum_block_add(csum, csum2, pos); 1644 if (!(len -= copy)) 1645 return csum; 1646 offset += copy; 1647 pos += copy; 1648 } 1649 start = end; 1650 } 1651 1652 if (skb_shinfo(skb)->frag_list) { 1653 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1654 1655 for (; list; list = list->next) { 1656 int end; 1657 1658 WARN_ON(start > offset + len); 1659 1660 end = start + list->len; 1661 if ((copy = end - offset) > 0) { 1662 __wsum csum2; 1663 if (copy > len) 1664 copy = len; 1665 csum2 = skb_checksum(list, offset - start, 1666 copy, 0); 1667 csum = csum_block_add(csum, csum2, pos); 1668 if ((len -= copy) == 0) 1669 return csum; 1670 offset += copy; 1671 pos += copy; 1672 } 1673 start = end; 1674 } 1675 } 1676 BUG_ON(len); 1677 1678 return csum; 1679 } 1680 1681 /* Both of above in one bottle. */ 1682 1683 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1684 u8 *to, int len, __wsum csum) 1685 { 1686 int start = skb_headlen(skb); 1687 int i, copy = start - offset; 1688 int pos = 0; 1689 1690 /* Copy header. */ 1691 if (copy > 0) { 1692 if (copy > len) 1693 copy = len; 1694 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1695 copy, csum); 1696 if ((len -= copy) == 0) 1697 return csum; 1698 offset += copy; 1699 to += copy; 1700 pos = copy; 1701 } 1702 1703 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1704 int end; 1705 1706 WARN_ON(start > offset + len); 1707 1708 end = start + skb_shinfo(skb)->frags[i].size; 1709 if ((copy = end - offset) > 0) { 1710 __wsum csum2; 1711 u8 *vaddr; 1712 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1713 1714 if (copy > len) 1715 copy = len; 1716 vaddr = kmap_skb_frag(frag); 1717 csum2 = csum_partial_copy_nocheck(vaddr + 1718 frag->page_offset + 1719 offset - start, to, 1720 copy, 0); 1721 kunmap_skb_frag(vaddr); 1722 csum = csum_block_add(csum, csum2, pos); 1723 if (!(len -= copy)) 1724 return csum; 1725 offset += copy; 1726 to += copy; 1727 pos += copy; 1728 } 1729 start = end; 1730 } 1731 1732 if (skb_shinfo(skb)->frag_list) { 1733 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1734 1735 for (; list; list = list->next) { 1736 __wsum csum2; 1737 int end; 1738 1739 WARN_ON(start > offset + len); 1740 1741 end = start + list->len; 1742 if ((copy = end - offset) > 0) { 1743 if (copy > len) 1744 copy = len; 1745 csum2 = skb_copy_and_csum_bits(list, 1746 offset - start, 1747 to, copy, 0); 1748 csum = csum_block_add(csum, csum2, pos); 1749 if ((len -= copy) == 0) 1750 return csum; 1751 offset += copy; 1752 to += copy; 1753 pos += copy; 1754 } 1755 start = end; 1756 } 1757 } 1758 BUG_ON(len); 1759 return csum; 1760 } 1761 1762 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1763 { 1764 __wsum csum; 1765 long csstart; 1766 1767 if (skb->ip_summed == CHECKSUM_PARTIAL) 1768 csstart = skb->csum_start - skb_headroom(skb); 1769 else 1770 csstart = skb_headlen(skb); 1771 1772 BUG_ON(csstart > skb_headlen(skb)); 1773 1774 skb_copy_from_linear_data(skb, to, csstart); 1775 1776 csum = 0; 1777 if (csstart != skb->len) 1778 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1779 skb->len - csstart, 0); 1780 1781 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1782 long csstuff = csstart + skb->csum_offset; 1783 1784 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1785 } 1786 } 1787 1788 /** 1789 * skb_dequeue - remove from the head of the queue 1790 * @list: list to dequeue from 1791 * 1792 * Remove the head of the list. The list lock is taken so the function 1793 * may be used safely with other locking list functions. The head item is 1794 * returned or %NULL if the list is empty. 1795 */ 1796 1797 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1798 { 1799 unsigned long flags; 1800 struct sk_buff *result; 1801 1802 spin_lock_irqsave(&list->lock, flags); 1803 result = __skb_dequeue(list); 1804 spin_unlock_irqrestore(&list->lock, flags); 1805 return result; 1806 } 1807 1808 /** 1809 * skb_dequeue_tail - remove from the tail of the queue 1810 * @list: list to dequeue from 1811 * 1812 * Remove the tail of the list. The list lock is taken so the function 1813 * may be used safely with other locking list functions. The tail item is 1814 * returned or %NULL if the list is empty. 1815 */ 1816 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1817 { 1818 unsigned long flags; 1819 struct sk_buff *result; 1820 1821 spin_lock_irqsave(&list->lock, flags); 1822 result = __skb_dequeue_tail(list); 1823 spin_unlock_irqrestore(&list->lock, flags); 1824 return result; 1825 } 1826 1827 /** 1828 * skb_queue_purge - empty a list 1829 * @list: list to empty 1830 * 1831 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1832 * the list and one reference dropped. This function takes the list 1833 * lock and is atomic with respect to other list locking functions. 1834 */ 1835 void skb_queue_purge(struct sk_buff_head *list) 1836 { 1837 struct sk_buff *skb; 1838 while ((skb = skb_dequeue(list)) != NULL) 1839 kfree_skb(skb); 1840 } 1841 1842 /** 1843 * skb_queue_head - queue a buffer at the list head 1844 * @list: list to use 1845 * @newsk: buffer to queue 1846 * 1847 * Queue a buffer at the start of the list. This function takes the 1848 * list lock and can be used safely with other locking &sk_buff functions 1849 * safely. 1850 * 1851 * A buffer cannot be placed on two lists at the same time. 1852 */ 1853 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1854 { 1855 unsigned long flags; 1856 1857 spin_lock_irqsave(&list->lock, flags); 1858 __skb_queue_head(list, newsk); 1859 spin_unlock_irqrestore(&list->lock, flags); 1860 } 1861 1862 /** 1863 * skb_queue_tail - queue a buffer at the list tail 1864 * @list: list to use 1865 * @newsk: buffer to queue 1866 * 1867 * Queue a buffer at the tail of the list. This function takes the 1868 * list lock and can be used safely with other locking &sk_buff functions 1869 * safely. 1870 * 1871 * A buffer cannot be placed on two lists at the same time. 1872 */ 1873 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1874 { 1875 unsigned long flags; 1876 1877 spin_lock_irqsave(&list->lock, flags); 1878 __skb_queue_tail(list, newsk); 1879 spin_unlock_irqrestore(&list->lock, flags); 1880 } 1881 1882 /** 1883 * skb_unlink - remove a buffer from a list 1884 * @skb: buffer to remove 1885 * @list: list to use 1886 * 1887 * Remove a packet from a list. The list locks are taken and this 1888 * function is atomic with respect to other list locked calls 1889 * 1890 * You must know what list the SKB is on. 1891 */ 1892 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1893 { 1894 unsigned long flags; 1895 1896 spin_lock_irqsave(&list->lock, flags); 1897 __skb_unlink(skb, list); 1898 spin_unlock_irqrestore(&list->lock, flags); 1899 } 1900 1901 /** 1902 * skb_append - append a buffer 1903 * @old: buffer to insert after 1904 * @newsk: buffer to insert 1905 * @list: list to use 1906 * 1907 * Place a packet after a given packet in a list. The list locks are taken 1908 * and this function is atomic with respect to other list locked calls. 1909 * A buffer cannot be placed on two lists at the same time. 1910 */ 1911 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1912 { 1913 unsigned long flags; 1914 1915 spin_lock_irqsave(&list->lock, flags); 1916 __skb_queue_after(list, old, newsk); 1917 spin_unlock_irqrestore(&list->lock, flags); 1918 } 1919 1920 1921 /** 1922 * skb_insert - insert a buffer 1923 * @old: buffer to insert before 1924 * @newsk: buffer to insert 1925 * @list: list to use 1926 * 1927 * Place a packet before a given packet in a list. The list locks are 1928 * taken and this function is atomic with respect to other list locked 1929 * calls. 1930 * 1931 * A buffer cannot be placed on two lists at the same time. 1932 */ 1933 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1934 { 1935 unsigned long flags; 1936 1937 spin_lock_irqsave(&list->lock, flags); 1938 __skb_insert(newsk, old->prev, old, list); 1939 spin_unlock_irqrestore(&list->lock, flags); 1940 } 1941 1942 static inline void skb_split_inside_header(struct sk_buff *skb, 1943 struct sk_buff* skb1, 1944 const u32 len, const int pos) 1945 { 1946 int i; 1947 1948 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 1949 pos - len); 1950 /* And move data appendix as is. */ 1951 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1952 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1953 1954 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1955 skb_shinfo(skb)->nr_frags = 0; 1956 skb1->data_len = skb->data_len; 1957 skb1->len += skb1->data_len; 1958 skb->data_len = 0; 1959 skb->len = len; 1960 skb_set_tail_pointer(skb, len); 1961 } 1962 1963 static inline void skb_split_no_header(struct sk_buff *skb, 1964 struct sk_buff* skb1, 1965 const u32 len, int pos) 1966 { 1967 int i, k = 0; 1968 const int nfrags = skb_shinfo(skb)->nr_frags; 1969 1970 skb_shinfo(skb)->nr_frags = 0; 1971 skb1->len = skb1->data_len = skb->len - len; 1972 skb->len = len; 1973 skb->data_len = len - pos; 1974 1975 for (i = 0; i < nfrags; i++) { 1976 int size = skb_shinfo(skb)->frags[i].size; 1977 1978 if (pos + size > len) { 1979 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1980 1981 if (pos < len) { 1982 /* Split frag. 1983 * We have two variants in this case: 1984 * 1. Move all the frag to the second 1985 * part, if it is possible. F.e. 1986 * this approach is mandatory for TUX, 1987 * where splitting is expensive. 1988 * 2. Split is accurately. We make this. 1989 */ 1990 get_page(skb_shinfo(skb)->frags[i].page); 1991 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1992 skb_shinfo(skb1)->frags[0].size -= len - pos; 1993 skb_shinfo(skb)->frags[i].size = len - pos; 1994 skb_shinfo(skb)->nr_frags++; 1995 } 1996 k++; 1997 } else 1998 skb_shinfo(skb)->nr_frags++; 1999 pos += size; 2000 } 2001 skb_shinfo(skb1)->nr_frags = k; 2002 } 2003 2004 /** 2005 * skb_split - Split fragmented skb to two parts at length len. 2006 * @skb: the buffer to split 2007 * @skb1: the buffer to receive the second part 2008 * @len: new length for skb 2009 */ 2010 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2011 { 2012 int pos = skb_headlen(skb); 2013 2014 if (len < pos) /* Split line is inside header. */ 2015 skb_split_inside_header(skb, skb1, len, pos); 2016 else /* Second chunk has no header, nothing to copy. */ 2017 skb_split_no_header(skb, skb1, len, pos); 2018 } 2019 2020 /** 2021 * skb_prepare_seq_read - Prepare a sequential read of skb data 2022 * @skb: the buffer to read 2023 * @from: lower offset of data to be read 2024 * @to: upper offset of data to be read 2025 * @st: state variable 2026 * 2027 * Initializes the specified state variable. Must be called before 2028 * invoking skb_seq_read() for the first time. 2029 */ 2030 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2031 unsigned int to, struct skb_seq_state *st) 2032 { 2033 st->lower_offset = from; 2034 st->upper_offset = to; 2035 st->root_skb = st->cur_skb = skb; 2036 st->frag_idx = st->stepped_offset = 0; 2037 st->frag_data = NULL; 2038 } 2039 2040 /** 2041 * skb_seq_read - Sequentially read skb data 2042 * @consumed: number of bytes consumed by the caller so far 2043 * @data: destination pointer for data to be returned 2044 * @st: state variable 2045 * 2046 * Reads a block of skb data at &consumed relative to the 2047 * lower offset specified to skb_prepare_seq_read(). Assigns 2048 * the head of the data block to &data and returns the length 2049 * of the block or 0 if the end of the skb data or the upper 2050 * offset has been reached. 2051 * 2052 * The caller is not required to consume all of the data 2053 * returned, i.e. &consumed is typically set to the number 2054 * of bytes already consumed and the next call to 2055 * skb_seq_read() will return the remaining part of the block. 2056 * 2057 * Note 1: The size of each block of data returned can be arbitary, 2058 * this limitation is the cost for zerocopy seqeuental 2059 * reads of potentially non linear data. 2060 * 2061 * Note 2: Fragment lists within fragments are not implemented 2062 * at the moment, state->root_skb could be replaced with 2063 * a stack for this purpose. 2064 */ 2065 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2066 struct skb_seq_state *st) 2067 { 2068 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2069 skb_frag_t *frag; 2070 2071 if (unlikely(abs_offset >= st->upper_offset)) 2072 return 0; 2073 2074 next_skb: 2075 block_limit = skb_headlen(st->cur_skb); 2076 2077 if (abs_offset < block_limit) { 2078 *data = st->cur_skb->data + abs_offset; 2079 return block_limit - abs_offset; 2080 } 2081 2082 if (st->frag_idx == 0 && !st->frag_data) 2083 st->stepped_offset += skb_headlen(st->cur_skb); 2084 2085 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2086 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2087 block_limit = frag->size + st->stepped_offset; 2088 2089 if (abs_offset < block_limit) { 2090 if (!st->frag_data) 2091 st->frag_data = kmap_skb_frag(frag); 2092 2093 *data = (u8 *) st->frag_data + frag->page_offset + 2094 (abs_offset - st->stepped_offset); 2095 2096 return block_limit - abs_offset; 2097 } 2098 2099 if (st->frag_data) { 2100 kunmap_skb_frag(st->frag_data); 2101 st->frag_data = NULL; 2102 } 2103 2104 st->frag_idx++; 2105 st->stepped_offset += frag->size; 2106 } 2107 2108 if (st->frag_data) { 2109 kunmap_skb_frag(st->frag_data); 2110 st->frag_data = NULL; 2111 } 2112 2113 if (st->cur_skb->next) { 2114 st->cur_skb = st->cur_skb->next; 2115 st->frag_idx = 0; 2116 goto next_skb; 2117 } else if (st->root_skb == st->cur_skb && 2118 skb_shinfo(st->root_skb)->frag_list) { 2119 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2120 goto next_skb; 2121 } 2122 2123 return 0; 2124 } 2125 2126 /** 2127 * skb_abort_seq_read - Abort a sequential read of skb data 2128 * @st: state variable 2129 * 2130 * Must be called if skb_seq_read() was not called until it 2131 * returned 0. 2132 */ 2133 void skb_abort_seq_read(struct skb_seq_state *st) 2134 { 2135 if (st->frag_data) 2136 kunmap_skb_frag(st->frag_data); 2137 } 2138 2139 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2140 2141 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2142 struct ts_config *conf, 2143 struct ts_state *state) 2144 { 2145 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2146 } 2147 2148 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2149 { 2150 skb_abort_seq_read(TS_SKB_CB(state)); 2151 } 2152 2153 /** 2154 * skb_find_text - Find a text pattern in skb data 2155 * @skb: the buffer to look in 2156 * @from: search offset 2157 * @to: search limit 2158 * @config: textsearch configuration 2159 * @state: uninitialized textsearch state variable 2160 * 2161 * Finds a pattern in the skb data according to the specified 2162 * textsearch configuration. Use textsearch_next() to retrieve 2163 * subsequent occurrences of the pattern. Returns the offset 2164 * to the first occurrence or UINT_MAX if no match was found. 2165 */ 2166 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2167 unsigned int to, struct ts_config *config, 2168 struct ts_state *state) 2169 { 2170 unsigned int ret; 2171 2172 config->get_next_block = skb_ts_get_next_block; 2173 config->finish = skb_ts_finish; 2174 2175 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2176 2177 ret = textsearch_find(config, state); 2178 return (ret <= to - from ? ret : UINT_MAX); 2179 } 2180 2181 /** 2182 * skb_append_datato_frags: - append the user data to a skb 2183 * @sk: sock structure 2184 * @skb: skb structure to be appened with user data. 2185 * @getfrag: call back function to be used for getting the user data 2186 * @from: pointer to user message iov 2187 * @length: length of the iov message 2188 * 2189 * Description: This procedure append the user data in the fragment part 2190 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2191 */ 2192 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2193 int (*getfrag)(void *from, char *to, int offset, 2194 int len, int odd, struct sk_buff *skb), 2195 void *from, int length) 2196 { 2197 int frg_cnt = 0; 2198 skb_frag_t *frag = NULL; 2199 struct page *page = NULL; 2200 int copy, left; 2201 int offset = 0; 2202 int ret; 2203 2204 do { 2205 /* Return error if we don't have space for new frag */ 2206 frg_cnt = skb_shinfo(skb)->nr_frags; 2207 if (frg_cnt >= MAX_SKB_FRAGS) 2208 return -EFAULT; 2209 2210 /* allocate a new page for next frag */ 2211 page = alloc_pages(sk->sk_allocation, 0); 2212 2213 /* If alloc_page fails just return failure and caller will 2214 * free previous allocated pages by doing kfree_skb() 2215 */ 2216 if (page == NULL) 2217 return -ENOMEM; 2218 2219 /* initialize the next frag */ 2220 sk->sk_sndmsg_page = page; 2221 sk->sk_sndmsg_off = 0; 2222 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 2223 skb->truesize += PAGE_SIZE; 2224 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 2225 2226 /* get the new initialized frag */ 2227 frg_cnt = skb_shinfo(skb)->nr_frags; 2228 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 2229 2230 /* copy the user data to page */ 2231 left = PAGE_SIZE - frag->page_offset; 2232 copy = (length > left)? left : length; 2233 2234 ret = getfrag(from, (page_address(frag->page) + 2235 frag->page_offset + frag->size), 2236 offset, copy, 0, skb); 2237 if (ret < 0) 2238 return -EFAULT; 2239 2240 /* copy was successful so update the size parameters */ 2241 sk->sk_sndmsg_off += copy; 2242 frag->size += copy; 2243 skb->len += copy; 2244 skb->data_len += copy; 2245 offset += copy; 2246 length -= copy; 2247 2248 } while (length > 0); 2249 2250 return 0; 2251 } 2252 2253 /** 2254 * skb_pull_rcsum - pull skb and update receive checksum 2255 * @skb: buffer to update 2256 * @len: length of data pulled 2257 * 2258 * This function performs an skb_pull on the packet and updates 2259 * the CHECKSUM_COMPLETE checksum. It should be used on 2260 * receive path processing instead of skb_pull unless you know 2261 * that the checksum difference is zero (e.g., a valid IP header) 2262 * or you are setting ip_summed to CHECKSUM_NONE. 2263 */ 2264 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2265 { 2266 BUG_ON(len > skb->len); 2267 skb->len -= len; 2268 BUG_ON(skb->len < skb->data_len); 2269 skb_postpull_rcsum(skb, skb->data, len); 2270 return skb->data += len; 2271 } 2272 2273 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2274 2275 /** 2276 * skb_segment - Perform protocol segmentation on skb. 2277 * @skb: buffer to segment 2278 * @features: features for the output path (see dev->features) 2279 * 2280 * This function performs segmentation on the given skb. It returns 2281 * a pointer to the first in a list of new skbs for the segments. 2282 * In case of error it returns ERR_PTR(err). 2283 */ 2284 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 2285 { 2286 struct sk_buff *segs = NULL; 2287 struct sk_buff *tail = NULL; 2288 unsigned int mss = skb_shinfo(skb)->gso_size; 2289 unsigned int doffset = skb->data - skb_mac_header(skb); 2290 unsigned int offset = doffset; 2291 unsigned int headroom; 2292 unsigned int len; 2293 int sg = features & NETIF_F_SG; 2294 int nfrags = skb_shinfo(skb)->nr_frags; 2295 int err = -ENOMEM; 2296 int i = 0; 2297 int pos; 2298 2299 __skb_push(skb, doffset); 2300 headroom = skb_headroom(skb); 2301 pos = skb_headlen(skb); 2302 2303 do { 2304 struct sk_buff *nskb; 2305 skb_frag_t *frag; 2306 int hsize; 2307 int k; 2308 int size; 2309 2310 len = skb->len - offset; 2311 if (len > mss) 2312 len = mss; 2313 2314 hsize = skb_headlen(skb) - offset; 2315 if (hsize < 0) 2316 hsize = 0; 2317 if (hsize > len || !sg) 2318 hsize = len; 2319 2320 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC); 2321 if (unlikely(!nskb)) 2322 goto err; 2323 2324 if (segs) 2325 tail->next = nskb; 2326 else 2327 segs = nskb; 2328 tail = nskb; 2329 2330 __copy_skb_header(nskb, skb); 2331 nskb->mac_len = skb->mac_len; 2332 2333 skb_reserve(nskb, headroom); 2334 skb_reset_mac_header(nskb); 2335 skb_set_network_header(nskb, skb->mac_len); 2336 nskb->transport_header = (nskb->network_header + 2337 skb_network_header_len(skb)); 2338 skb_copy_from_linear_data(skb, skb_put(nskb, doffset), 2339 doffset); 2340 if (!sg) { 2341 nskb->ip_summed = CHECKSUM_NONE; 2342 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2343 skb_put(nskb, len), 2344 len, 0); 2345 continue; 2346 } 2347 2348 frag = skb_shinfo(nskb)->frags; 2349 k = 0; 2350 2351 skb_copy_from_linear_data_offset(skb, offset, 2352 skb_put(nskb, hsize), hsize); 2353 2354 while (pos < offset + len) { 2355 BUG_ON(i >= nfrags); 2356 2357 *frag = skb_shinfo(skb)->frags[i]; 2358 get_page(frag->page); 2359 size = frag->size; 2360 2361 if (pos < offset) { 2362 frag->page_offset += offset - pos; 2363 frag->size -= offset - pos; 2364 } 2365 2366 k++; 2367 2368 if (pos + size <= offset + len) { 2369 i++; 2370 pos += size; 2371 } else { 2372 frag->size -= pos + size - (offset + len); 2373 break; 2374 } 2375 2376 frag++; 2377 } 2378 2379 skb_shinfo(nskb)->nr_frags = k; 2380 nskb->data_len = len - hsize; 2381 nskb->len += nskb->data_len; 2382 nskb->truesize += nskb->data_len; 2383 } while ((offset += len) < skb->len); 2384 2385 return segs; 2386 2387 err: 2388 while ((skb = segs)) { 2389 segs = skb->next; 2390 kfree_skb(skb); 2391 } 2392 return ERR_PTR(err); 2393 } 2394 2395 EXPORT_SYMBOL_GPL(skb_segment); 2396 2397 void __init skb_init(void) 2398 { 2399 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2400 sizeof(struct sk_buff), 2401 0, 2402 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2403 NULL); 2404 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2405 (2*sizeof(struct sk_buff)) + 2406 sizeof(atomic_t), 2407 0, 2408 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2409 NULL); 2410 } 2411 2412 /** 2413 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2414 * @skb: Socket buffer containing the buffers to be mapped 2415 * @sg: The scatter-gather list to map into 2416 * @offset: The offset into the buffer's contents to start mapping 2417 * @len: Length of buffer space to be mapped 2418 * 2419 * Fill the specified scatter-gather list with mappings/pointers into a 2420 * region of the buffer space attached to a socket buffer. 2421 */ 2422 static int 2423 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2424 { 2425 int start = skb_headlen(skb); 2426 int i, copy = start - offset; 2427 int elt = 0; 2428 2429 if (copy > 0) { 2430 if (copy > len) 2431 copy = len; 2432 sg_set_buf(sg, skb->data + offset, copy); 2433 elt++; 2434 if ((len -= copy) == 0) 2435 return elt; 2436 offset += copy; 2437 } 2438 2439 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2440 int end; 2441 2442 WARN_ON(start > offset + len); 2443 2444 end = start + skb_shinfo(skb)->frags[i].size; 2445 if ((copy = end - offset) > 0) { 2446 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2447 2448 if (copy > len) 2449 copy = len; 2450 sg_set_page(&sg[elt], frag->page, copy, 2451 frag->page_offset+offset-start); 2452 elt++; 2453 if (!(len -= copy)) 2454 return elt; 2455 offset += copy; 2456 } 2457 start = end; 2458 } 2459 2460 if (skb_shinfo(skb)->frag_list) { 2461 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2462 2463 for (; list; list = list->next) { 2464 int end; 2465 2466 WARN_ON(start > offset + len); 2467 2468 end = start + list->len; 2469 if ((copy = end - offset) > 0) { 2470 if (copy > len) 2471 copy = len; 2472 elt += __skb_to_sgvec(list, sg+elt, offset - start, 2473 copy); 2474 if ((len -= copy) == 0) 2475 return elt; 2476 offset += copy; 2477 } 2478 start = end; 2479 } 2480 } 2481 BUG_ON(len); 2482 return elt; 2483 } 2484 2485 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2486 { 2487 int nsg = __skb_to_sgvec(skb, sg, offset, len); 2488 2489 sg_mark_end(&sg[nsg - 1]); 2490 2491 return nsg; 2492 } 2493 2494 /** 2495 * skb_cow_data - Check that a socket buffer's data buffers are writable 2496 * @skb: The socket buffer to check. 2497 * @tailbits: Amount of trailing space to be added 2498 * @trailer: Returned pointer to the skb where the @tailbits space begins 2499 * 2500 * Make sure that the data buffers attached to a socket buffer are 2501 * writable. If they are not, private copies are made of the data buffers 2502 * and the socket buffer is set to use these instead. 2503 * 2504 * If @tailbits is given, make sure that there is space to write @tailbits 2505 * bytes of data beyond current end of socket buffer. @trailer will be 2506 * set to point to the skb in which this space begins. 2507 * 2508 * The number of scatterlist elements required to completely map the 2509 * COW'd and extended socket buffer will be returned. 2510 */ 2511 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2512 { 2513 int copyflag; 2514 int elt; 2515 struct sk_buff *skb1, **skb_p; 2516 2517 /* If skb is cloned or its head is paged, reallocate 2518 * head pulling out all the pages (pages are considered not writable 2519 * at the moment even if they are anonymous). 2520 */ 2521 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2522 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2523 return -ENOMEM; 2524 2525 /* Easy case. Most of packets will go this way. */ 2526 if (!skb_shinfo(skb)->frag_list) { 2527 /* A little of trouble, not enough of space for trailer. 2528 * This should not happen, when stack is tuned to generate 2529 * good frames. OK, on miss we reallocate and reserve even more 2530 * space, 128 bytes is fair. */ 2531 2532 if (skb_tailroom(skb) < tailbits && 2533 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2534 return -ENOMEM; 2535 2536 /* Voila! */ 2537 *trailer = skb; 2538 return 1; 2539 } 2540 2541 /* Misery. We are in troubles, going to mincer fragments... */ 2542 2543 elt = 1; 2544 skb_p = &skb_shinfo(skb)->frag_list; 2545 copyflag = 0; 2546 2547 while ((skb1 = *skb_p) != NULL) { 2548 int ntail = 0; 2549 2550 /* The fragment is partially pulled by someone, 2551 * this can happen on input. Copy it and everything 2552 * after it. */ 2553 2554 if (skb_shared(skb1)) 2555 copyflag = 1; 2556 2557 /* If the skb is the last, worry about trailer. */ 2558 2559 if (skb1->next == NULL && tailbits) { 2560 if (skb_shinfo(skb1)->nr_frags || 2561 skb_shinfo(skb1)->frag_list || 2562 skb_tailroom(skb1) < tailbits) 2563 ntail = tailbits + 128; 2564 } 2565 2566 if (copyflag || 2567 skb_cloned(skb1) || 2568 ntail || 2569 skb_shinfo(skb1)->nr_frags || 2570 skb_shinfo(skb1)->frag_list) { 2571 struct sk_buff *skb2; 2572 2573 /* Fuck, we are miserable poor guys... */ 2574 if (ntail == 0) 2575 skb2 = skb_copy(skb1, GFP_ATOMIC); 2576 else 2577 skb2 = skb_copy_expand(skb1, 2578 skb_headroom(skb1), 2579 ntail, 2580 GFP_ATOMIC); 2581 if (unlikely(skb2 == NULL)) 2582 return -ENOMEM; 2583 2584 if (skb1->sk) 2585 skb_set_owner_w(skb2, skb1->sk); 2586 2587 /* Looking around. Are we still alive? 2588 * OK, link new skb, drop old one */ 2589 2590 skb2->next = skb1->next; 2591 *skb_p = skb2; 2592 kfree_skb(skb1); 2593 skb1 = skb2; 2594 } 2595 elt++; 2596 *trailer = skb1; 2597 skb_p = &skb1->next; 2598 } 2599 2600 return elt; 2601 } 2602 2603 /** 2604 * skb_partial_csum_set - set up and verify partial csum values for packet 2605 * @skb: the skb to set 2606 * @start: the number of bytes after skb->data to start checksumming. 2607 * @off: the offset from start to place the checksum. 2608 * 2609 * For untrusted partially-checksummed packets, we need to make sure the values 2610 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 2611 * 2612 * This function checks and sets those values and skb->ip_summed: if this 2613 * returns false you should drop the packet. 2614 */ 2615 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 2616 { 2617 if (unlikely(start > skb->len - 2) || 2618 unlikely((int)start + off > skb->len - 2)) { 2619 if (net_ratelimit()) 2620 printk(KERN_WARNING 2621 "bad partial csum: csum=%u/%u len=%u\n", 2622 start, off, skb->len); 2623 return false; 2624 } 2625 skb->ip_summed = CHECKSUM_PARTIAL; 2626 skb->csum_start = skb_headroom(skb) + start; 2627 skb->csum_offset = off; 2628 return true; 2629 } 2630 2631 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 2632 { 2633 if (net_ratelimit()) 2634 pr_warning("%s: received packets cannot be forwarded" 2635 " while LRO is enabled\n", skb->dev->name); 2636 } 2637 2638 EXPORT_SYMBOL(___pskb_trim); 2639 EXPORT_SYMBOL(__kfree_skb); 2640 EXPORT_SYMBOL(kfree_skb); 2641 EXPORT_SYMBOL(__pskb_pull_tail); 2642 EXPORT_SYMBOL(__alloc_skb); 2643 EXPORT_SYMBOL(__netdev_alloc_skb); 2644 EXPORT_SYMBOL(pskb_copy); 2645 EXPORT_SYMBOL(pskb_expand_head); 2646 EXPORT_SYMBOL(skb_checksum); 2647 EXPORT_SYMBOL(skb_clone); 2648 EXPORT_SYMBOL(skb_copy); 2649 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2650 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2651 EXPORT_SYMBOL(skb_copy_bits); 2652 EXPORT_SYMBOL(skb_copy_expand); 2653 EXPORT_SYMBOL(skb_over_panic); 2654 EXPORT_SYMBOL(skb_pad); 2655 EXPORT_SYMBOL(skb_realloc_headroom); 2656 EXPORT_SYMBOL(skb_under_panic); 2657 EXPORT_SYMBOL(skb_dequeue); 2658 EXPORT_SYMBOL(skb_dequeue_tail); 2659 EXPORT_SYMBOL(skb_insert); 2660 EXPORT_SYMBOL(skb_queue_purge); 2661 EXPORT_SYMBOL(skb_queue_head); 2662 EXPORT_SYMBOL(skb_queue_tail); 2663 EXPORT_SYMBOL(skb_unlink); 2664 EXPORT_SYMBOL(skb_append); 2665 EXPORT_SYMBOL(skb_split); 2666 EXPORT_SYMBOL(skb_prepare_seq_read); 2667 EXPORT_SYMBOL(skb_seq_read); 2668 EXPORT_SYMBOL(skb_abort_seq_read); 2669 EXPORT_SYMBOL(skb_find_text); 2670 EXPORT_SYMBOL(skb_append_datato_frags); 2671 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 2672 2673 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2674 EXPORT_SYMBOL_GPL(skb_cow_data); 2675 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 2676