1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/page_pool.h> 74 75 #include <linux/uaccess.h> 76 #include <trace/events/skb.h> 77 #include <linux/highmem.h> 78 #include <linux/capability.h> 79 #include <linux/user_namespace.h> 80 #include <linux/indirect_call_wrapper.h> 81 82 #include "datagram.h" 83 84 struct kmem_cache *skbuff_head_cache __ro_after_init; 85 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 86 #ifdef CONFIG_SKB_EXTENSIONS 87 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 88 #endif 89 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 90 EXPORT_SYMBOL(sysctl_max_skb_frags); 91 92 /** 93 * skb_panic - private function for out-of-line support 94 * @skb: buffer 95 * @sz: size 96 * @addr: address 97 * @msg: skb_over_panic or skb_under_panic 98 * 99 * Out-of-line support for skb_put() and skb_push(). 100 * Called via the wrapper skb_over_panic() or skb_under_panic(). 101 * Keep out of line to prevent kernel bloat. 102 * __builtin_return_address is not used because it is not always reliable. 103 */ 104 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 105 const char msg[]) 106 { 107 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 108 msg, addr, skb->len, sz, skb->head, skb->data, 109 (unsigned long)skb->tail, (unsigned long)skb->end, 110 skb->dev ? skb->dev->name : "<NULL>"); 111 BUG(); 112 } 113 114 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 115 { 116 skb_panic(skb, sz, addr, __func__); 117 } 118 119 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 120 { 121 skb_panic(skb, sz, addr, __func__); 122 } 123 124 #define NAPI_SKB_CACHE_SIZE 64 125 #define NAPI_SKB_CACHE_BULK 16 126 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 127 128 struct napi_alloc_cache { 129 struct page_frag_cache page; 130 unsigned int skb_count; 131 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 132 }; 133 134 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 135 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 136 137 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask, 138 unsigned int align_mask) 139 { 140 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 141 142 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask); 143 } 144 145 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 146 { 147 fragsz = SKB_DATA_ALIGN(fragsz); 148 149 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 150 } 151 EXPORT_SYMBOL(__napi_alloc_frag_align); 152 153 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 154 { 155 struct page_frag_cache *nc; 156 void *data; 157 158 fragsz = SKB_DATA_ALIGN(fragsz); 159 if (in_irq() || irqs_disabled()) { 160 nc = this_cpu_ptr(&netdev_alloc_cache); 161 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 162 } else { 163 local_bh_disable(); 164 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); 165 local_bh_enable(); 166 } 167 return data; 168 } 169 EXPORT_SYMBOL(__netdev_alloc_frag_align); 170 171 static struct sk_buff *napi_skb_cache_get(void) 172 { 173 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 174 struct sk_buff *skb; 175 176 if (unlikely(!nc->skb_count)) 177 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 178 GFP_ATOMIC, 179 NAPI_SKB_CACHE_BULK, 180 nc->skb_cache); 181 if (unlikely(!nc->skb_count)) 182 return NULL; 183 184 skb = nc->skb_cache[--nc->skb_count]; 185 kasan_unpoison_object_data(skbuff_head_cache, skb); 186 187 return skb; 188 } 189 190 /* Caller must provide SKB that is memset cleared */ 191 static void __build_skb_around(struct sk_buff *skb, void *data, 192 unsigned int frag_size) 193 { 194 struct skb_shared_info *shinfo; 195 unsigned int size = frag_size ? : ksize(data); 196 197 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 198 199 /* Assumes caller memset cleared SKB */ 200 skb->truesize = SKB_TRUESIZE(size); 201 refcount_set(&skb->users, 1); 202 skb->head = data; 203 skb->data = data; 204 skb_reset_tail_pointer(skb); 205 skb->end = skb->tail + size; 206 skb->mac_header = (typeof(skb->mac_header))~0U; 207 skb->transport_header = (typeof(skb->transport_header))~0U; 208 209 /* make sure we initialize shinfo sequentially */ 210 shinfo = skb_shinfo(skb); 211 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 212 atomic_set(&shinfo->dataref, 1); 213 214 skb_set_kcov_handle(skb, kcov_common_handle()); 215 } 216 217 /** 218 * __build_skb - build a network buffer 219 * @data: data buffer provided by caller 220 * @frag_size: size of data, or 0 if head was kmalloced 221 * 222 * Allocate a new &sk_buff. Caller provides space holding head and 223 * skb_shared_info. @data must have been allocated by kmalloc() only if 224 * @frag_size is 0, otherwise data should come from the page allocator 225 * or vmalloc() 226 * The return is the new skb buffer. 227 * On a failure the return is %NULL, and @data is not freed. 228 * Notes : 229 * Before IO, driver allocates only data buffer where NIC put incoming frame 230 * Driver should add room at head (NET_SKB_PAD) and 231 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 232 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 233 * before giving packet to stack. 234 * RX rings only contains data buffers, not full skbs. 235 */ 236 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 237 { 238 struct sk_buff *skb; 239 240 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 241 if (unlikely(!skb)) 242 return NULL; 243 244 memset(skb, 0, offsetof(struct sk_buff, tail)); 245 __build_skb_around(skb, data, frag_size); 246 247 return skb; 248 } 249 250 /* build_skb() is wrapper over __build_skb(), that specifically 251 * takes care of skb->head and skb->pfmemalloc 252 * This means that if @frag_size is not zero, then @data must be backed 253 * by a page fragment, not kmalloc() or vmalloc() 254 */ 255 struct sk_buff *build_skb(void *data, unsigned int frag_size) 256 { 257 struct sk_buff *skb = __build_skb(data, frag_size); 258 259 if (skb && frag_size) { 260 skb->head_frag = 1; 261 if (page_is_pfmemalloc(virt_to_head_page(data))) 262 skb->pfmemalloc = 1; 263 } 264 return skb; 265 } 266 EXPORT_SYMBOL(build_skb); 267 268 /** 269 * build_skb_around - build a network buffer around provided skb 270 * @skb: sk_buff provide by caller, must be memset cleared 271 * @data: data buffer provided by caller 272 * @frag_size: size of data, or 0 if head was kmalloced 273 */ 274 struct sk_buff *build_skb_around(struct sk_buff *skb, 275 void *data, unsigned int frag_size) 276 { 277 if (unlikely(!skb)) 278 return NULL; 279 280 __build_skb_around(skb, data, frag_size); 281 282 if (frag_size) { 283 skb->head_frag = 1; 284 if (page_is_pfmemalloc(virt_to_head_page(data))) 285 skb->pfmemalloc = 1; 286 } 287 return skb; 288 } 289 EXPORT_SYMBOL(build_skb_around); 290 291 /** 292 * __napi_build_skb - build a network buffer 293 * @data: data buffer provided by caller 294 * @frag_size: size of data, or 0 if head was kmalloced 295 * 296 * Version of __build_skb() that uses NAPI percpu caches to obtain 297 * skbuff_head instead of inplace allocation. 298 * 299 * Returns a new &sk_buff on success, %NULL on allocation failure. 300 */ 301 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 302 { 303 struct sk_buff *skb; 304 305 skb = napi_skb_cache_get(); 306 if (unlikely(!skb)) 307 return NULL; 308 309 memset(skb, 0, offsetof(struct sk_buff, tail)); 310 __build_skb_around(skb, data, frag_size); 311 312 return skb; 313 } 314 315 /** 316 * napi_build_skb - build a network buffer 317 * @data: data buffer provided by caller 318 * @frag_size: size of data, or 0 if head was kmalloced 319 * 320 * Version of __napi_build_skb() that takes care of skb->head_frag 321 * and skb->pfmemalloc when the data is a page or page fragment. 322 * 323 * Returns a new &sk_buff on success, %NULL on allocation failure. 324 */ 325 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 326 { 327 struct sk_buff *skb = __napi_build_skb(data, frag_size); 328 329 if (likely(skb) && frag_size) { 330 skb->head_frag = 1; 331 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 332 } 333 334 return skb; 335 } 336 EXPORT_SYMBOL(napi_build_skb); 337 338 /* 339 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 340 * the caller if emergency pfmemalloc reserves are being used. If it is and 341 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 342 * may be used. Otherwise, the packet data may be discarded until enough 343 * memory is free 344 */ 345 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 346 bool *pfmemalloc) 347 { 348 void *obj; 349 bool ret_pfmemalloc = false; 350 351 /* 352 * Try a regular allocation, when that fails and we're not entitled 353 * to the reserves, fail. 354 */ 355 obj = kmalloc_node_track_caller(size, 356 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 357 node); 358 if (obj || !(gfp_pfmemalloc_allowed(flags))) 359 goto out; 360 361 /* Try again but now we are using pfmemalloc reserves */ 362 ret_pfmemalloc = true; 363 obj = kmalloc_node_track_caller(size, flags, node); 364 365 out: 366 if (pfmemalloc) 367 *pfmemalloc = ret_pfmemalloc; 368 369 return obj; 370 } 371 372 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 373 * 'private' fields and also do memory statistics to find all the 374 * [BEEP] leaks. 375 * 376 */ 377 378 /** 379 * __alloc_skb - allocate a network buffer 380 * @size: size to allocate 381 * @gfp_mask: allocation mask 382 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 383 * instead of head cache and allocate a cloned (child) skb. 384 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 385 * allocations in case the data is required for writeback 386 * @node: numa node to allocate memory on 387 * 388 * Allocate a new &sk_buff. The returned buffer has no headroom and a 389 * tail room of at least size bytes. The object has a reference count 390 * of one. The return is the buffer. On a failure the return is %NULL. 391 * 392 * Buffers may only be allocated from interrupts using a @gfp_mask of 393 * %GFP_ATOMIC. 394 */ 395 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 396 int flags, int node) 397 { 398 struct kmem_cache *cache; 399 struct sk_buff *skb; 400 u8 *data; 401 bool pfmemalloc; 402 403 cache = (flags & SKB_ALLOC_FCLONE) 404 ? skbuff_fclone_cache : skbuff_head_cache; 405 406 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 407 gfp_mask |= __GFP_MEMALLOC; 408 409 /* Get the HEAD */ 410 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 411 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 412 skb = napi_skb_cache_get(); 413 else 414 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 415 if (unlikely(!skb)) 416 return NULL; 417 prefetchw(skb); 418 419 /* We do our best to align skb_shared_info on a separate cache 420 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 421 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 422 * Both skb->head and skb_shared_info are cache line aligned. 423 */ 424 size = SKB_DATA_ALIGN(size); 425 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 426 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 427 if (unlikely(!data)) 428 goto nodata; 429 /* kmalloc(size) might give us more room than requested. 430 * Put skb_shared_info exactly at the end of allocated zone, 431 * to allow max possible filling before reallocation. 432 */ 433 size = SKB_WITH_OVERHEAD(ksize(data)); 434 prefetchw(data + size); 435 436 /* 437 * Only clear those fields we need to clear, not those that we will 438 * actually initialise below. Hence, don't put any more fields after 439 * the tail pointer in struct sk_buff! 440 */ 441 memset(skb, 0, offsetof(struct sk_buff, tail)); 442 __build_skb_around(skb, data, 0); 443 skb->pfmemalloc = pfmemalloc; 444 445 if (flags & SKB_ALLOC_FCLONE) { 446 struct sk_buff_fclones *fclones; 447 448 fclones = container_of(skb, struct sk_buff_fclones, skb1); 449 450 skb->fclone = SKB_FCLONE_ORIG; 451 refcount_set(&fclones->fclone_ref, 1); 452 453 fclones->skb2.fclone = SKB_FCLONE_CLONE; 454 } 455 456 return skb; 457 458 nodata: 459 kmem_cache_free(cache, skb); 460 return NULL; 461 } 462 EXPORT_SYMBOL(__alloc_skb); 463 464 /** 465 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 466 * @dev: network device to receive on 467 * @len: length to allocate 468 * @gfp_mask: get_free_pages mask, passed to alloc_skb 469 * 470 * Allocate a new &sk_buff and assign it a usage count of one. The 471 * buffer has NET_SKB_PAD headroom built in. Users should allocate 472 * the headroom they think they need without accounting for the 473 * built in space. The built in space is used for optimisations. 474 * 475 * %NULL is returned if there is no free memory. 476 */ 477 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 478 gfp_t gfp_mask) 479 { 480 struct page_frag_cache *nc; 481 struct sk_buff *skb; 482 bool pfmemalloc; 483 void *data; 484 485 len += NET_SKB_PAD; 486 487 /* If requested length is either too small or too big, 488 * we use kmalloc() for skb->head allocation. 489 */ 490 if (len <= SKB_WITH_OVERHEAD(1024) || 491 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 492 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 493 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 494 if (!skb) 495 goto skb_fail; 496 goto skb_success; 497 } 498 499 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 500 len = SKB_DATA_ALIGN(len); 501 502 if (sk_memalloc_socks()) 503 gfp_mask |= __GFP_MEMALLOC; 504 505 if (in_irq() || irqs_disabled()) { 506 nc = this_cpu_ptr(&netdev_alloc_cache); 507 data = page_frag_alloc(nc, len, gfp_mask); 508 pfmemalloc = nc->pfmemalloc; 509 } else { 510 local_bh_disable(); 511 nc = this_cpu_ptr(&napi_alloc_cache.page); 512 data = page_frag_alloc(nc, len, gfp_mask); 513 pfmemalloc = nc->pfmemalloc; 514 local_bh_enable(); 515 } 516 517 if (unlikely(!data)) 518 return NULL; 519 520 skb = __build_skb(data, len); 521 if (unlikely(!skb)) { 522 skb_free_frag(data); 523 return NULL; 524 } 525 526 if (pfmemalloc) 527 skb->pfmemalloc = 1; 528 skb->head_frag = 1; 529 530 skb_success: 531 skb_reserve(skb, NET_SKB_PAD); 532 skb->dev = dev; 533 534 skb_fail: 535 return skb; 536 } 537 EXPORT_SYMBOL(__netdev_alloc_skb); 538 539 /** 540 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 541 * @napi: napi instance this buffer was allocated for 542 * @len: length to allocate 543 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 544 * 545 * Allocate a new sk_buff for use in NAPI receive. This buffer will 546 * attempt to allocate the head from a special reserved region used 547 * only for NAPI Rx allocation. By doing this we can save several 548 * CPU cycles by avoiding having to disable and re-enable IRQs. 549 * 550 * %NULL is returned if there is no free memory. 551 */ 552 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 553 gfp_t gfp_mask) 554 { 555 struct napi_alloc_cache *nc; 556 struct sk_buff *skb; 557 void *data; 558 559 len += NET_SKB_PAD + NET_IP_ALIGN; 560 561 /* If requested length is either too small or too big, 562 * we use kmalloc() for skb->head allocation. 563 */ 564 if (len <= SKB_WITH_OVERHEAD(1024) || 565 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 566 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 567 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 568 NUMA_NO_NODE); 569 if (!skb) 570 goto skb_fail; 571 goto skb_success; 572 } 573 574 nc = this_cpu_ptr(&napi_alloc_cache); 575 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 576 len = SKB_DATA_ALIGN(len); 577 578 if (sk_memalloc_socks()) 579 gfp_mask |= __GFP_MEMALLOC; 580 581 data = page_frag_alloc(&nc->page, len, gfp_mask); 582 if (unlikely(!data)) 583 return NULL; 584 585 skb = __napi_build_skb(data, len); 586 if (unlikely(!skb)) { 587 skb_free_frag(data); 588 return NULL; 589 } 590 591 if (nc->page.pfmemalloc) 592 skb->pfmemalloc = 1; 593 skb->head_frag = 1; 594 595 skb_success: 596 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 597 skb->dev = napi->dev; 598 599 skb_fail: 600 return skb; 601 } 602 EXPORT_SYMBOL(__napi_alloc_skb); 603 604 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 605 int size, unsigned int truesize) 606 { 607 skb_fill_page_desc(skb, i, page, off, size); 608 skb->len += size; 609 skb->data_len += size; 610 skb->truesize += truesize; 611 } 612 EXPORT_SYMBOL(skb_add_rx_frag); 613 614 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 615 unsigned int truesize) 616 { 617 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 618 619 skb_frag_size_add(frag, size); 620 skb->len += size; 621 skb->data_len += size; 622 skb->truesize += truesize; 623 } 624 EXPORT_SYMBOL(skb_coalesce_rx_frag); 625 626 static void skb_drop_list(struct sk_buff **listp) 627 { 628 kfree_skb_list(*listp); 629 *listp = NULL; 630 } 631 632 static inline void skb_drop_fraglist(struct sk_buff *skb) 633 { 634 skb_drop_list(&skb_shinfo(skb)->frag_list); 635 } 636 637 static void skb_clone_fraglist(struct sk_buff *skb) 638 { 639 struct sk_buff *list; 640 641 skb_walk_frags(skb, list) 642 skb_get(list); 643 } 644 645 static void skb_free_head(struct sk_buff *skb) 646 { 647 unsigned char *head = skb->head; 648 649 if (skb->head_frag) { 650 if (skb_pp_recycle(skb, head)) 651 return; 652 skb_free_frag(head); 653 } else { 654 kfree(head); 655 } 656 } 657 658 static void skb_release_data(struct sk_buff *skb) 659 { 660 struct skb_shared_info *shinfo = skb_shinfo(skb); 661 int i; 662 663 if (skb->cloned && 664 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 665 &shinfo->dataref)) 666 goto exit; 667 668 skb_zcopy_clear(skb, true); 669 670 for (i = 0; i < shinfo->nr_frags; i++) 671 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 672 673 if (shinfo->frag_list) 674 kfree_skb_list(shinfo->frag_list); 675 676 skb_free_head(skb); 677 exit: 678 /* When we clone an SKB we copy the reycling bit. The pp_recycle 679 * bit is only set on the head though, so in order to avoid races 680 * while trying to recycle fragments on __skb_frag_unref() we need 681 * to make one SKB responsible for triggering the recycle path. 682 * So disable the recycling bit if an SKB is cloned and we have 683 * additional references to to the fragmented part of the SKB. 684 * Eventually the last SKB will have the recycling bit set and it's 685 * dataref set to 0, which will trigger the recycling 686 */ 687 skb->pp_recycle = 0; 688 } 689 690 /* 691 * Free an skbuff by memory without cleaning the state. 692 */ 693 static void kfree_skbmem(struct sk_buff *skb) 694 { 695 struct sk_buff_fclones *fclones; 696 697 switch (skb->fclone) { 698 case SKB_FCLONE_UNAVAILABLE: 699 kmem_cache_free(skbuff_head_cache, skb); 700 return; 701 702 case SKB_FCLONE_ORIG: 703 fclones = container_of(skb, struct sk_buff_fclones, skb1); 704 705 /* We usually free the clone (TX completion) before original skb 706 * This test would have no chance to be true for the clone, 707 * while here, branch prediction will be good. 708 */ 709 if (refcount_read(&fclones->fclone_ref) == 1) 710 goto fastpath; 711 break; 712 713 default: /* SKB_FCLONE_CLONE */ 714 fclones = container_of(skb, struct sk_buff_fclones, skb2); 715 break; 716 } 717 if (!refcount_dec_and_test(&fclones->fclone_ref)) 718 return; 719 fastpath: 720 kmem_cache_free(skbuff_fclone_cache, fclones); 721 } 722 723 void skb_release_head_state(struct sk_buff *skb) 724 { 725 skb_dst_drop(skb); 726 if (skb->destructor) { 727 WARN_ON(in_irq()); 728 skb->destructor(skb); 729 } 730 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 731 nf_conntrack_put(skb_nfct(skb)); 732 #endif 733 skb_ext_put(skb); 734 } 735 736 /* Free everything but the sk_buff shell. */ 737 static void skb_release_all(struct sk_buff *skb) 738 { 739 skb_release_head_state(skb); 740 if (likely(skb->head)) 741 skb_release_data(skb); 742 } 743 744 /** 745 * __kfree_skb - private function 746 * @skb: buffer 747 * 748 * Free an sk_buff. Release anything attached to the buffer. 749 * Clean the state. This is an internal helper function. Users should 750 * always call kfree_skb 751 */ 752 753 void __kfree_skb(struct sk_buff *skb) 754 { 755 skb_release_all(skb); 756 kfree_skbmem(skb); 757 } 758 EXPORT_SYMBOL(__kfree_skb); 759 760 /** 761 * kfree_skb - free an sk_buff 762 * @skb: buffer to free 763 * 764 * Drop a reference to the buffer and free it if the usage count has 765 * hit zero. 766 */ 767 void kfree_skb(struct sk_buff *skb) 768 { 769 if (!skb_unref(skb)) 770 return; 771 772 trace_kfree_skb(skb, __builtin_return_address(0)); 773 __kfree_skb(skb); 774 } 775 EXPORT_SYMBOL(kfree_skb); 776 777 void kfree_skb_list(struct sk_buff *segs) 778 { 779 while (segs) { 780 struct sk_buff *next = segs->next; 781 782 kfree_skb(segs); 783 segs = next; 784 } 785 } 786 EXPORT_SYMBOL(kfree_skb_list); 787 788 /* Dump skb information and contents. 789 * 790 * Must only be called from net_ratelimit()-ed paths. 791 * 792 * Dumps whole packets if full_pkt, only headers otherwise. 793 */ 794 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 795 { 796 struct skb_shared_info *sh = skb_shinfo(skb); 797 struct net_device *dev = skb->dev; 798 struct sock *sk = skb->sk; 799 struct sk_buff *list_skb; 800 bool has_mac, has_trans; 801 int headroom, tailroom; 802 int i, len, seg_len; 803 804 if (full_pkt) 805 len = skb->len; 806 else 807 len = min_t(int, skb->len, MAX_HEADER + 128); 808 809 headroom = skb_headroom(skb); 810 tailroom = skb_tailroom(skb); 811 812 has_mac = skb_mac_header_was_set(skb); 813 has_trans = skb_transport_header_was_set(skb); 814 815 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 816 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 817 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 818 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 819 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 820 level, skb->len, headroom, skb_headlen(skb), tailroom, 821 has_mac ? skb->mac_header : -1, 822 has_mac ? skb_mac_header_len(skb) : -1, 823 skb->network_header, 824 has_trans ? skb_network_header_len(skb) : -1, 825 has_trans ? skb->transport_header : -1, 826 sh->tx_flags, sh->nr_frags, 827 sh->gso_size, sh->gso_type, sh->gso_segs, 828 skb->csum, skb->ip_summed, skb->csum_complete_sw, 829 skb->csum_valid, skb->csum_level, 830 skb->hash, skb->sw_hash, skb->l4_hash, 831 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 832 833 if (dev) 834 printk("%sdev name=%s feat=0x%pNF\n", 835 level, dev->name, &dev->features); 836 if (sk) 837 printk("%ssk family=%hu type=%u proto=%u\n", 838 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 839 840 if (full_pkt && headroom) 841 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 842 16, 1, skb->head, headroom, false); 843 844 seg_len = min_t(int, skb_headlen(skb), len); 845 if (seg_len) 846 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 847 16, 1, skb->data, seg_len, false); 848 len -= seg_len; 849 850 if (full_pkt && tailroom) 851 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 852 16, 1, skb_tail_pointer(skb), tailroom, false); 853 854 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 855 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 856 u32 p_off, p_len, copied; 857 struct page *p; 858 u8 *vaddr; 859 860 skb_frag_foreach_page(frag, skb_frag_off(frag), 861 skb_frag_size(frag), p, p_off, p_len, 862 copied) { 863 seg_len = min_t(int, p_len, len); 864 vaddr = kmap_atomic(p); 865 print_hex_dump(level, "skb frag: ", 866 DUMP_PREFIX_OFFSET, 867 16, 1, vaddr + p_off, seg_len, false); 868 kunmap_atomic(vaddr); 869 len -= seg_len; 870 if (!len) 871 break; 872 } 873 } 874 875 if (full_pkt && skb_has_frag_list(skb)) { 876 printk("skb fraglist:\n"); 877 skb_walk_frags(skb, list_skb) 878 skb_dump(level, list_skb, true); 879 } 880 } 881 EXPORT_SYMBOL(skb_dump); 882 883 /** 884 * skb_tx_error - report an sk_buff xmit error 885 * @skb: buffer that triggered an error 886 * 887 * Report xmit error if a device callback is tracking this skb. 888 * skb must be freed afterwards. 889 */ 890 void skb_tx_error(struct sk_buff *skb) 891 { 892 skb_zcopy_clear(skb, true); 893 } 894 EXPORT_SYMBOL(skb_tx_error); 895 896 #ifdef CONFIG_TRACEPOINTS 897 /** 898 * consume_skb - free an skbuff 899 * @skb: buffer to free 900 * 901 * Drop a ref to the buffer and free it if the usage count has hit zero 902 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 903 * is being dropped after a failure and notes that 904 */ 905 void consume_skb(struct sk_buff *skb) 906 { 907 if (!skb_unref(skb)) 908 return; 909 910 trace_consume_skb(skb); 911 __kfree_skb(skb); 912 } 913 EXPORT_SYMBOL(consume_skb); 914 #endif 915 916 /** 917 * __consume_stateless_skb - free an skbuff, assuming it is stateless 918 * @skb: buffer to free 919 * 920 * Alike consume_skb(), but this variant assumes that this is the last 921 * skb reference and all the head states have been already dropped 922 */ 923 void __consume_stateless_skb(struct sk_buff *skb) 924 { 925 trace_consume_skb(skb); 926 skb_release_data(skb); 927 kfree_skbmem(skb); 928 } 929 930 static void napi_skb_cache_put(struct sk_buff *skb) 931 { 932 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 933 u32 i; 934 935 kasan_poison_object_data(skbuff_head_cache, skb); 936 nc->skb_cache[nc->skb_count++] = skb; 937 938 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 939 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 940 kasan_unpoison_object_data(skbuff_head_cache, 941 nc->skb_cache[i]); 942 943 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 944 nc->skb_cache + NAPI_SKB_CACHE_HALF); 945 nc->skb_count = NAPI_SKB_CACHE_HALF; 946 } 947 } 948 949 void __kfree_skb_defer(struct sk_buff *skb) 950 { 951 skb_release_all(skb); 952 napi_skb_cache_put(skb); 953 } 954 955 void napi_skb_free_stolen_head(struct sk_buff *skb) 956 { 957 nf_reset_ct(skb); 958 skb_dst_drop(skb); 959 skb_ext_put(skb); 960 napi_skb_cache_put(skb); 961 } 962 963 void napi_consume_skb(struct sk_buff *skb, int budget) 964 { 965 /* Zero budget indicate non-NAPI context called us, like netpoll */ 966 if (unlikely(!budget)) { 967 dev_consume_skb_any(skb); 968 return; 969 } 970 971 lockdep_assert_in_softirq(); 972 973 if (!skb_unref(skb)) 974 return; 975 976 /* if reaching here SKB is ready to free */ 977 trace_consume_skb(skb); 978 979 /* if SKB is a clone, don't handle this case */ 980 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 981 __kfree_skb(skb); 982 return; 983 } 984 985 skb_release_all(skb); 986 napi_skb_cache_put(skb); 987 } 988 EXPORT_SYMBOL(napi_consume_skb); 989 990 /* Make sure a field is enclosed inside headers_start/headers_end section */ 991 #define CHECK_SKB_FIELD(field) \ 992 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 993 offsetof(struct sk_buff, headers_start)); \ 994 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 995 offsetof(struct sk_buff, headers_end)); \ 996 997 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 998 { 999 new->tstamp = old->tstamp; 1000 /* We do not copy old->sk */ 1001 new->dev = old->dev; 1002 memcpy(new->cb, old->cb, sizeof(old->cb)); 1003 skb_dst_copy(new, old); 1004 __skb_ext_copy(new, old); 1005 __nf_copy(new, old, false); 1006 1007 /* Note : this field could be in headers_start/headers_end section 1008 * It is not yet because we do not want to have a 16 bit hole 1009 */ 1010 new->queue_mapping = old->queue_mapping; 1011 1012 memcpy(&new->headers_start, &old->headers_start, 1013 offsetof(struct sk_buff, headers_end) - 1014 offsetof(struct sk_buff, headers_start)); 1015 CHECK_SKB_FIELD(protocol); 1016 CHECK_SKB_FIELD(csum); 1017 CHECK_SKB_FIELD(hash); 1018 CHECK_SKB_FIELD(priority); 1019 CHECK_SKB_FIELD(skb_iif); 1020 CHECK_SKB_FIELD(vlan_proto); 1021 CHECK_SKB_FIELD(vlan_tci); 1022 CHECK_SKB_FIELD(transport_header); 1023 CHECK_SKB_FIELD(network_header); 1024 CHECK_SKB_FIELD(mac_header); 1025 CHECK_SKB_FIELD(inner_protocol); 1026 CHECK_SKB_FIELD(inner_transport_header); 1027 CHECK_SKB_FIELD(inner_network_header); 1028 CHECK_SKB_FIELD(inner_mac_header); 1029 CHECK_SKB_FIELD(mark); 1030 #ifdef CONFIG_NETWORK_SECMARK 1031 CHECK_SKB_FIELD(secmark); 1032 #endif 1033 #ifdef CONFIG_NET_RX_BUSY_POLL 1034 CHECK_SKB_FIELD(napi_id); 1035 #endif 1036 #ifdef CONFIG_XPS 1037 CHECK_SKB_FIELD(sender_cpu); 1038 #endif 1039 #ifdef CONFIG_NET_SCHED 1040 CHECK_SKB_FIELD(tc_index); 1041 #endif 1042 1043 } 1044 1045 /* 1046 * You should not add any new code to this function. Add it to 1047 * __copy_skb_header above instead. 1048 */ 1049 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1050 { 1051 #define C(x) n->x = skb->x 1052 1053 n->next = n->prev = NULL; 1054 n->sk = NULL; 1055 __copy_skb_header(n, skb); 1056 1057 C(len); 1058 C(data_len); 1059 C(mac_len); 1060 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1061 n->cloned = 1; 1062 n->nohdr = 0; 1063 n->peeked = 0; 1064 C(pfmemalloc); 1065 C(pp_recycle); 1066 n->destructor = NULL; 1067 C(tail); 1068 C(end); 1069 C(head); 1070 C(head_frag); 1071 C(data); 1072 C(truesize); 1073 refcount_set(&n->users, 1); 1074 1075 atomic_inc(&(skb_shinfo(skb)->dataref)); 1076 skb->cloned = 1; 1077 1078 return n; 1079 #undef C 1080 } 1081 1082 /** 1083 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1084 * @first: first sk_buff of the msg 1085 */ 1086 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1087 { 1088 struct sk_buff *n; 1089 1090 n = alloc_skb(0, GFP_ATOMIC); 1091 if (!n) 1092 return NULL; 1093 1094 n->len = first->len; 1095 n->data_len = first->len; 1096 n->truesize = first->truesize; 1097 1098 skb_shinfo(n)->frag_list = first; 1099 1100 __copy_skb_header(n, first); 1101 n->destructor = NULL; 1102 1103 return n; 1104 } 1105 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1106 1107 /** 1108 * skb_morph - morph one skb into another 1109 * @dst: the skb to receive the contents 1110 * @src: the skb to supply the contents 1111 * 1112 * This is identical to skb_clone except that the target skb is 1113 * supplied by the user. 1114 * 1115 * The target skb is returned upon exit. 1116 */ 1117 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1118 { 1119 skb_release_all(dst); 1120 return __skb_clone(dst, src); 1121 } 1122 EXPORT_SYMBOL_GPL(skb_morph); 1123 1124 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1125 { 1126 unsigned long max_pg, num_pg, new_pg, old_pg; 1127 struct user_struct *user; 1128 1129 if (capable(CAP_IPC_LOCK) || !size) 1130 return 0; 1131 1132 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1133 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1134 user = mmp->user ? : current_user(); 1135 1136 do { 1137 old_pg = atomic_long_read(&user->locked_vm); 1138 new_pg = old_pg + num_pg; 1139 if (new_pg > max_pg) 1140 return -ENOBUFS; 1141 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1142 old_pg); 1143 1144 if (!mmp->user) { 1145 mmp->user = get_uid(user); 1146 mmp->num_pg = num_pg; 1147 } else { 1148 mmp->num_pg += num_pg; 1149 } 1150 1151 return 0; 1152 } 1153 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1154 1155 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1156 { 1157 if (mmp->user) { 1158 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1159 free_uid(mmp->user); 1160 } 1161 } 1162 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1163 1164 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1165 { 1166 struct ubuf_info *uarg; 1167 struct sk_buff *skb; 1168 1169 WARN_ON_ONCE(!in_task()); 1170 1171 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1172 if (!skb) 1173 return NULL; 1174 1175 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1176 uarg = (void *)skb->cb; 1177 uarg->mmp.user = NULL; 1178 1179 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1180 kfree_skb(skb); 1181 return NULL; 1182 } 1183 1184 uarg->callback = msg_zerocopy_callback; 1185 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1186 uarg->len = 1; 1187 uarg->bytelen = size; 1188 uarg->zerocopy = 1; 1189 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1190 refcount_set(&uarg->refcnt, 1); 1191 sock_hold(sk); 1192 1193 return uarg; 1194 } 1195 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc); 1196 1197 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1198 { 1199 return container_of((void *)uarg, struct sk_buff, cb); 1200 } 1201 1202 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1203 struct ubuf_info *uarg) 1204 { 1205 if (uarg) { 1206 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1207 u32 bytelen, next; 1208 1209 /* realloc only when socket is locked (TCP, UDP cork), 1210 * so uarg->len and sk_zckey access is serialized 1211 */ 1212 if (!sock_owned_by_user(sk)) { 1213 WARN_ON_ONCE(1); 1214 return NULL; 1215 } 1216 1217 bytelen = uarg->bytelen + size; 1218 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1219 /* TCP can create new skb to attach new uarg */ 1220 if (sk->sk_type == SOCK_STREAM) 1221 goto new_alloc; 1222 return NULL; 1223 } 1224 1225 next = (u32)atomic_read(&sk->sk_zckey); 1226 if ((u32)(uarg->id + uarg->len) == next) { 1227 if (mm_account_pinned_pages(&uarg->mmp, size)) 1228 return NULL; 1229 uarg->len++; 1230 uarg->bytelen = bytelen; 1231 atomic_set(&sk->sk_zckey, ++next); 1232 1233 /* no extra ref when appending to datagram (MSG_MORE) */ 1234 if (sk->sk_type == SOCK_STREAM) 1235 net_zcopy_get(uarg); 1236 1237 return uarg; 1238 } 1239 } 1240 1241 new_alloc: 1242 return msg_zerocopy_alloc(sk, size); 1243 } 1244 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1245 1246 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1247 { 1248 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1249 u32 old_lo, old_hi; 1250 u64 sum_len; 1251 1252 old_lo = serr->ee.ee_info; 1253 old_hi = serr->ee.ee_data; 1254 sum_len = old_hi - old_lo + 1ULL + len; 1255 1256 if (sum_len >= (1ULL << 32)) 1257 return false; 1258 1259 if (lo != old_hi + 1) 1260 return false; 1261 1262 serr->ee.ee_data += len; 1263 return true; 1264 } 1265 1266 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1267 { 1268 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1269 struct sock_exterr_skb *serr; 1270 struct sock *sk = skb->sk; 1271 struct sk_buff_head *q; 1272 unsigned long flags; 1273 bool is_zerocopy; 1274 u32 lo, hi; 1275 u16 len; 1276 1277 mm_unaccount_pinned_pages(&uarg->mmp); 1278 1279 /* if !len, there was only 1 call, and it was aborted 1280 * so do not queue a completion notification 1281 */ 1282 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1283 goto release; 1284 1285 len = uarg->len; 1286 lo = uarg->id; 1287 hi = uarg->id + len - 1; 1288 is_zerocopy = uarg->zerocopy; 1289 1290 serr = SKB_EXT_ERR(skb); 1291 memset(serr, 0, sizeof(*serr)); 1292 serr->ee.ee_errno = 0; 1293 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1294 serr->ee.ee_data = hi; 1295 serr->ee.ee_info = lo; 1296 if (!is_zerocopy) 1297 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1298 1299 q = &sk->sk_error_queue; 1300 spin_lock_irqsave(&q->lock, flags); 1301 tail = skb_peek_tail(q); 1302 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1303 !skb_zerocopy_notify_extend(tail, lo, len)) { 1304 __skb_queue_tail(q, skb); 1305 skb = NULL; 1306 } 1307 spin_unlock_irqrestore(&q->lock, flags); 1308 1309 sk_error_report(sk); 1310 1311 release: 1312 consume_skb(skb); 1313 sock_put(sk); 1314 } 1315 1316 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1317 bool success) 1318 { 1319 uarg->zerocopy = uarg->zerocopy & success; 1320 1321 if (refcount_dec_and_test(&uarg->refcnt)) 1322 __msg_zerocopy_callback(uarg); 1323 } 1324 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1325 1326 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1327 { 1328 struct sock *sk = skb_from_uarg(uarg)->sk; 1329 1330 atomic_dec(&sk->sk_zckey); 1331 uarg->len--; 1332 1333 if (have_uref) 1334 msg_zerocopy_callback(NULL, uarg, true); 1335 } 1336 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1337 1338 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1339 { 1340 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1341 } 1342 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1343 1344 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1345 struct msghdr *msg, int len, 1346 struct ubuf_info *uarg) 1347 { 1348 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1349 struct iov_iter orig_iter = msg->msg_iter; 1350 int err, orig_len = skb->len; 1351 1352 /* An skb can only point to one uarg. This edge case happens when 1353 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1354 */ 1355 if (orig_uarg && uarg != orig_uarg) 1356 return -EEXIST; 1357 1358 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1359 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1360 struct sock *save_sk = skb->sk; 1361 1362 /* Streams do not free skb on error. Reset to prev state. */ 1363 msg->msg_iter = orig_iter; 1364 skb->sk = sk; 1365 ___pskb_trim(skb, orig_len); 1366 skb->sk = save_sk; 1367 return err; 1368 } 1369 1370 skb_zcopy_set(skb, uarg, NULL); 1371 return skb->len - orig_len; 1372 } 1373 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1374 1375 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1376 gfp_t gfp_mask) 1377 { 1378 if (skb_zcopy(orig)) { 1379 if (skb_zcopy(nskb)) { 1380 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1381 if (!gfp_mask) { 1382 WARN_ON_ONCE(1); 1383 return -ENOMEM; 1384 } 1385 if (skb_uarg(nskb) == skb_uarg(orig)) 1386 return 0; 1387 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1388 return -EIO; 1389 } 1390 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1391 } 1392 return 0; 1393 } 1394 1395 /** 1396 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1397 * @skb: the skb to modify 1398 * @gfp_mask: allocation priority 1399 * 1400 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1401 * It will copy all frags into kernel and drop the reference 1402 * to userspace pages. 1403 * 1404 * If this function is called from an interrupt gfp_mask() must be 1405 * %GFP_ATOMIC. 1406 * 1407 * Returns 0 on success or a negative error code on failure 1408 * to allocate kernel memory to copy to. 1409 */ 1410 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1411 { 1412 int num_frags = skb_shinfo(skb)->nr_frags; 1413 struct page *page, *head = NULL; 1414 int i, new_frags; 1415 u32 d_off; 1416 1417 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1418 return -EINVAL; 1419 1420 if (!num_frags) 1421 goto release; 1422 1423 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1424 for (i = 0; i < new_frags; i++) { 1425 page = alloc_page(gfp_mask); 1426 if (!page) { 1427 while (head) { 1428 struct page *next = (struct page *)page_private(head); 1429 put_page(head); 1430 head = next; 1431 } 1432 return -ENOMEM; 1433 } 1434 set_page_private(page, (unsigned long)head); 1435 head = page; 1436 } 1437 1438 page = head; 1439 d_off = 0; 1440 for (i = 0; i < num_frags; i++) { 1441 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1442 u32 p_off, p_len, copied; 1443 struct page *p; 1444 u8 *vaddr; 1445 1446 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1447 p, p_off, p_len, copied) { 1448 u32 copy, done = 0; 1449 vaddr = kmap_atomic(p); 1450 1451 while (done < p_len) { 1452 if (d_off == PAGE_SIZE) { 1453 d_off = 0; 1454 page = (struct page *)page_private(page); 1455 } 1456 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1457 memcpy(page_address(page) + d_off, 1458 vaddr + p_off + done, copy); 1459 done += copy; 1460 d_off += copy; 1461 } 1462 kunmap_atomic(vaddr); 1463 } 1464 } 1465 1466 /* skb frags release userspace buffers */ 1467 for (i = 0; i < num_frags; i++) 1468 skb_frag_unref(skb, i); 1469 1470 /* skb frags point to kernel buffers */ 1471 for (i = 0; i < new_frags - 1; i++) { 1472 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1473 head = (struct page *)page_private(head); 1474 } 1475 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1476 skb_shinfo(skb)->nr_frags = new_frags; 1477 1478 release: 1479 skb_zcopy_clear(skb, false); 1480 return 0; 1481 } 1482 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1483 1484 /** 1485 * skb_clone - duplicate an sk_buff 1486 * @skb: buffer to clone 1487 * @gfp_mask: allocation priority 1488 * 1489 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1490 * copies share the same packet data but not structure. The new 1491 * buffer has a reference count of 1. If the allocation fails the 1492 * function returns %NULL otherwise the new buffer is returned. 1493 * 1494 * If this function is called from an interrupt gfp_mask() must be 1495 * %GFP_ATOMIC. 1496 */ 1497 1498 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1499 { 1500 struct sk_buff_fclones *fclones = container_of(skb, 1501 struct sk_buff_fclones, 1502 skb1); 1503 struct sk_buff *n; 1504 1505 if (skb_orphan_frags(skb, gfp_mask)) 1506 return NULL; 1507 1508 if (skb->fclone == SKB_FCLONE_ORIG && 1509 refcount_read(&fclones->fclone_ref) == 1) { 1510 n = &fclones->skb2; 1511 refcount_set(&fclones->fclone_ref, 2); 1512 } else { 1513 if (skb_pfmemalloc(skb)) 1514 gfp_mask |= __GFP_MEMALLOC; 1515 1516 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1517 if (!n) 1518 return NULL; 1519 1520 n->fclone = SKB_FCLONE_UNAVAILABLE; 1521 } 1522 1523 return __skb_clone(n, skb); 1524 } 1525 EXPORT_SYMBOL(skb_clone); 1526 1527 void skb_headers_offset_update(struct sk_buff *skb, int off) 1528 { 1529 /* Only adjust this if it actually is csum_start rather than csum */ 1530 if (skb->ip_summed == CHECKSUM_PARTIAL) 1531 skb->csum_start += off; 1532 /* {transport,network,mac}_header and tail are relative to skb->head */ 1533 skb->transport_header += off; 1534 skb->network_header += off; 1535 if (skb_mac_header_was_set(skb)) 1536 skb->mac_header += off; 1537 skb->inner_transport_header += off; 1538 skb->inner_network_header += off; 1539 skb->inner_mac_header += off; 1540 } 1541 EXPORT_SYMBOL(skb_headers_offset_update); 1542 1543 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1544 { 1545 __copy_skb_header(new, old); 1546 1547 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1548 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1549 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1550 } 1551 EXPORT_SYMBOL(skb_copy_header); 1552 1553 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1554 { 1555 if (skb_pfmemalloc(skb)) 1556 return SKB_ALLOC_RX; 1557 return 0; 1558 } 1559 1560 /** 1561 * skb_copy - create private copy of an sk_buff 1562 * @skb: buffer to copy 1563 * @gfp_mask: allocation priority 1564 * 1565 * Make a copy of both an &sk_buff and its data. This is used when the 1566 * caller wishes to modify the data and needs a private copy of the 1567 * data to alter. Returns %NULL on failure or the pointer to the buffer 1568 * on success. The returned buffer has a reference count of 1. 1569 * 1570 * As by-product this function converts non-linear &sk_buff to linear 1571 * one, so that &sk_buff becomes completely private and caller is allowed 1572 * to modify all the data of returned buffer. This means that this 1573 * function is not recommended for use in circumstances when only 1574 * header is going to be modified. Use pskb_copy() instead. 1575 */ 1576 1577 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1578 { 1579 int headerlen = skb_headroom(skb); 1580 unsigned int size = skb_end_offset(skb) + skb->data_len; 1581 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1582 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1583 1584 if (!n) 1585 return NULL; 1586 1587 /* Set the data pointer */ 1588 skb_reserve(n, headerlen); 1589 /* Set the tail pointer and length */ 1590 skb_put(n, skb->len); 1591 1592 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1593 1594 skb_copy_header(n, skb); 1595 return n; 1596 } 1597 EXPORT_SYMBOL(skb_copy); 1598 1599 /** 1600 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1601 * @skb: buffer to copy 1602 * @headroom: headroom of new skb 1603 * @gfp_mask: allocation priority 1604 * @fclone: if true allocate the copy of the skb from the fclone 1605 * cache instead of the head cache; it is recommended to set this 1606 * to true for the cases where the copy will likely be cloned 1607 * 1608 * Make a copy of both an &sk_buff and part of its data, located 1609 * in header. Fragmented data remain shared. This is used when 1610 * the caller wishes to modify only header of &sk_buff and needs 1611 * private copy of the header to alter. Returns %NULL on failure 1612 * or the pointer to the buffer on success. 1613 * The returned buffer has a reference count of 1. 1614 */ 1615 1616 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1617 gfp_t gfp_mask, bool fclone) 1618 { 1619 unsigned int size = skb_headlen(skb) + headroom; 1620 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1621 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1622 1623 if (!n) 1624 goto out; 1625 1626 /* Set the data pointer */ 1627 skb_reserve(n, headroom); 1628 /* Set the tail pointer and length */ 1629 skb_put(n, skb_headlen(skb)); 1630 /* Copy the bytes */ 1631 skb_copy_from_linear_data(skb, n->data, n->len); 1632 1633 n->truesize += skb->data_len; 1634 n->data_len = skb->data_len; 1635 n->len = skb->len; 1636 1637 if (skb_shinfo(skb)->nr_frags) { 1638 int i; 1639 1640 if (skb_orphan_frags(skb, gfp_mask) || 1641 skb_zerocopy_clone(n, skb, gfp_mask)) { 1642 kfree_skb(n); 1643 n = NULL; 1644 goto out; 1645 } 1646 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1647 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1648 skb_frag_ref(skb, i); 1649 } 1650 skb_shinfo(n)->nr_frags = i; 1651 } 1652 1653 if (skb_has_frag_list(skb)) { 1654 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1655 skb_clone_fraglist(n); 1656 } 1657 1658 skb_copy_header(n, skb); 1659 out: 1660 return n; 1661 } 1662 EXPORT_SYMBOL(__pskb_copy_fclone); 1663 1664 /** 1665 * pskb_expand_head - reallocate header of &sk_buff 1666 * @skb: buffer to reallocate 1667 * @nhead: room to add at head 1668 * @ntail: room to add at tail 1669 * @gfp_mask: allocation priority 1670 * 1671 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1672 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1673 * reference count of 1. Returns zero in the case of success or error, 1674 * if expansion failed. In the last case, &sk_buff is not changed. 1675 * 1676 * All the pointers pointing into skb header may change and must be 1677 * reloaded after call to this function. 1678 */ 1679 1680 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1681 gfp_t gfp_mask) 1682 { 1683 int i, osize = skb_end_offset(skb); 1684 int size = osize + nhead + ntail; 1685 long off; 1686 u8 *data; 1687 1688 BUG_ON(nhead < 0); 1689 1690 BUG_ON(skb_shared(skb)); 1691 1692 size = SKB_DATA_ALIGN(size); 1693 1694 if (skb_pfmemalloc(skb)) 1695 gfp_mask |= __GFP_MEMALLOC; 1696 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1697 gfp_mask, NUMA_NO_NODE, NULL); 1698 if (!data) 1699 goto nodata; 1700 size = SKB_WITH_OVERHEAD(ksize(data)); 1701 1702 /* Copy only real data... and, alas, header. This should be 1703 * optimized for the cases when header is void. 1704 */ 1705 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1706 1707 memcpy((struct skb_shared_info *)(data + size), 1708 skb_shinfo(skb), 1709 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1710 1711 /* 1712 * if shinfo is shared we must drop the old head gracefully, but if it 1713 * is not we can just drop the old head and let the existing refcount 1714 * be since all we did is relocate the values 1715 */ 1716 if (skb_cloned(skb)) { 1717 if (skb_orphan_frags(skb, gfp_mask)) 1718 goto nofrags; 1719 if (skb_zcopy(skb)) 1720 refcount_inc(&skb_uarg(skb)->refcnt); 1721 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1722 skb_frag_ref(skb, i); 1723 1724 if (skb_has_frag_list(skb)) 1725 skb_clone_fraglist(skb); 1726 1727 skb_release_data(skb); 1728 } else { 1729 skb_free_head(skb); 1730 } 1731 off = (data + nhead) - skb->head; 1732 1733 skb->head = data; 1734 skb->head_frag = 0; 1735 skb->data += off; 1736 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1737 skb->end = size; 1738 off = nhead; 1739 #else 1740 skb->end = skb->head + size; 1741 #endif 1742 skb->tail += off; 1743 skb_headers_offset_update(skb, nhead); 1744 skb->cloned = 0; 1745 skb->hdr_len = 0; 1746 skb->nohdr = 0; 1747 atomic_set(&skb_shinfo(skb)->dataref, 1); 1748 1749 skb_metadata_clear(skb); 1750 1751 /* It is not generally safe to change skb->truesize. 1752 * For the moment, we really care of rx path, or 1753 * when skb is orphaned (not attached to a socket). 1754 */ 1755 if (!skb->sk || skb->destructor == sock_edemux) 1756 skb->truesize += size - osize; 1757 1758 return 0; 1759 1760 nofrags: 1761 kfree(data); 1762 nodata: 1763 return -ENOMEM; 1764 } 1765 EXPORT_SYMBOL(pskb_expand_head); 1766 1767 /* Make private copy of skb with writable head and some headroom */ 1768 1769 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1770 { 1771 struct sk_buff *skb2; 1772 int delta = headroom - skb_headroom(skb); 1773 1774 if (delta <= 0) 1775 skb2 = pskb_copy(skb, GFP_ATOMIC); 1776 else { 1777 skb2 = skb_clone(skb, GFP_ATOMIC); 1778 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1779 GFP_ATOMIC)) { 1780 kfree_skb(skb2); 1781 skb2 = NULL; 1782 } 1783 } 1784 return skb2; 1785 } 1786 EXPORT_SYMBOL(skb_realloc_headroom); 1787 1788 /** 1789 * skb_copy_expand - copy and expand sk_buff 1790 * @skb: buffer to copy 1791 * @newheadroom: new free bytes at head 1792 * @newtailroom: new free bytes at tail 1793 * @gfp_mask: allocation priority 1794 * 1795 * Make a copy of both an &sk_buff and its data and while doing so 1796 * allocate additional space. 1797 * 1798 * This is used when the caller wishes to modify the data and needs a 1799 * private copy of the data to alter as well as more space for new fields. 1800 * Returns %NULL on failure or the pointer to the buffer 1801 * on success. The returned buffer has a reference count of 1. 1802 * 1803 * You must pass %GFP_ATOMIC as the allocation priority if this function 1804 * is called from an interrupt. 1805 */ 1806 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1807 int newheadroom, int newtailroom, 1808 gfp_t gfp_mask) 1809 { 1810 /* 1811 * Allocate the copy buffer 1812 */ 1813 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1814 gfp_mask, skb_alloc_rx_flag(skb), 1815 NUMA_NO_NODE); 1816 int oldheadroom = skb_headroom(skb); 1817 int head_copy_len, head_copy_off; 1818 1819 if (!n) 1820 return NULL; 1821 1822 skb_reserve(n, newheadroom); 1823 1824 /* Set the tail pointer and length */ 1825 skb_put(n, skb->len); 1826 1827 head_copy_len = oldheadroom; 1828 head_copy_off = 0; 1829 if (newheadroom <= head_copy_len) 1830 head_copy_len = newheadroom; 1831 else 1832 head_copy_off = newheadroom - head_copy_len; 1833 1834 /* Copy the linear header and data. */ 1835 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1836 skb->len + head_copy_len)); 1837 1838 skb_copy_header(n, skb); 1839 1840 skb_headers_offset_update(n, newheadroom - oldheadroom); 1841 1842 return n; 1843 } 1844 EXPORT_SYMBOL(skb_copy_expand); 1845 1846 /** 1847 * __skb_pad - zero pad the tail of an skb 1848 * @skb: buffer to pad 1849 * @pad: space to pad 1850 * @free_on_error: free buffer on error 1851 * 1852 * Ensure that a buffer is followed by a padding area that is zero 1853 * filled. Used by network drivers which may DMA or transfer data 1854 * beyond the buffer end onto the wire. 1855 * 1856 * May return error in out of memory cases. The skb is freed on error 1857 * if @free_on_error is true. 1858 */ 1859 1860 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1861 { 1862 int err; 1863 int ntail; 1864 1865 /* If the skbuff is non linear tailroom is always zero.. */ 1866 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1867 memset(skb->data+skb->len, 0, pad); 1868 return 0; 1869 } 1870 1871 ntail = skb->data_len + pad - (skb->end - skb->tail); 1872 if (likely(skb_cloned(skb) || ntail > 0)) { 1873 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1874 if (unlikely(err)) 1875 goto free_skb; 1876 } 1877 1878 /* FIXME: The use of this function with non-linear skb's really needs 1879 * to be audited. 1880 */ 1881 err = skb_linearize(skb); 1882 if (unlikely(err)) 1883 goto free_skb; 1884 1885 memset(skb->data + skb->len, 0, pad); 1886 return 0; 1887 1888 free_skb: 1889 if (free_on_error) 1890 kfree_skb(skb); 1891 return err; 1892 } 1893 EXPORT_SYMBOL(__skb_pad); 1894 1895 /** 1896 * pskb_put - add data to the tail of a potentially fragmented buffer 1897 * @skb: start of the buffer to use 1898 * @tail: tail fragment of the buffer to use 1899 * @len: amount of data to add 1900 * 1901 * This function extends the used data area of the potentially 1902 * fragmented buffer. @tail must be the last fragment of @skb -- or 1903 * @skb itself. If this would exceed the total buffer size the kernel 1904 * will panic. A pointer to the first byte of the extra data is 1905 * returned. 1906 */ 1907 1908 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1909 { 1910 if (tail != skb) { 1911 skb->data_len += len; 1912 skb->len += len; 1913 } 1914 return skb_put(tail, len); 1915 } 1916 EXPORT_SYMBOL_GPL(pskb_put); 1917 1918 /** 1919 * skb_put - add data to a buffer 1920 * @skb: buffer to use 1921 * @len: amount of data to add 1922 * 1923 * This function extends the used data area of the buffer. If this would 1924 * exceed the total buffer size the kernel will panic. A pointer to the 1925 * first byte of the extra data is returned. 1926 */ 1927 void *skb_put(struct sk_buff *skb, unsigned int len) 1928 { 1929 void *tmp = skb_tail_pointer(skb); 1930 SKB_LINEAR_ASSERT(skb); 1931 skb->tail += len; 1932 skb->len += len; 1933 if (unlikely(skb->tail > skb->end)) 1934 skb_over_panic(skb, len, __builtin_return_address(0)); 1935 return tmp; 1936 } 1937 EXPORT_SYMBOL(skb_put); 1938 1939 /** 1940 * skb_push - add data to the start of a buffer 1941 * @skb: buffer to use 1942 * @len: amount of data to add 1943 * 1944 * This function extends the used data area of the buffer at the buffer 1945 * start. If this would exceed the total buffer headroom the kernel will 1946 * panic. A pointer to the first byte of the extra data is returned. 1947 */ 1948 void *skb_push(struct sk_buff *skb, unsigned int len) 1949 { 1950 skb->data -= len; 1951 skb->len += len; 1952 if (unlikely(skb->data < skb->head)) 1953 skb_under_panic(skb, len, __builtin_return_address(0)); 1954 return skb->data; 1955 } 1956 EXPORT_SYMBOL(skb_push); 1957 1958 /** 1959 * skb_pull - remove data from the start of a buffer 1960 * @skb: buffer to use 1961 * @len: amount of data to remove 1962 * 1963 * This function removes data from the start of a buffer, returning 1964 * the memory to the headroom. A pointer to the next data in the buffer 1965 * is returned. Once the data has been pulled future pushes will overwrite 1966 * the old data. 1967 */ 1968 void *skb_pull(struct sk_buff *skb, unsigned int len) 1969 { 1970 return skb_pull_inline(skb, len); 1971 } 1972 EXPORT_SYMBOL(skb_pull); 1973 1974 /** 1975 * skb_trim - remove end from a buffer 1976 * @skb: buffer to alter 1977 * @len: new length 1978 * 1979 * Cut the length of a buffer down by removing data from the tail. If 1980 * the buffer is already under the length specified it is not modified. 1981 * The skb must be linear. 1982 */ 1983 void skb_trim(struct sk_buff *skb, unsigned int len) 1984 { 1985 if (skb->len > len) 1986 __skb_trim(skb, len); 1987 } 1988 EXPORT_SYMBOL(skb_trim); 1989 1990 /* Trims skb to length len. It can change skb pointers. 1991 */ 1992 1993 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1994 { 1995 struct sk_buff **fragp; 1996 struct sk_buff *frag; 1997 int offset = skb_headlen(skb); 1998 int nfrags = skb_shinfo(skb)->nr_frags; 1999 int i; 2000 int err; 2001 2002 if (skb_cloned(skb) && 2003 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2004 return err; 2005 2006 i = 0; 2007 if (offset >= len) 2008 goto drop_pages; 2009 2010 for (; i < nfrags; i++) { 2011 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2012 2013 if (end < len) { 2014 offset = end; 2015 continue; 2016 } 2017 2018 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2019 2020 drop_pages: 2021 skb_shinfo(skb)->nr_frags = i; 2022 2023 for (; i < nfrags; i++) 2024 skb_frag_unref(skb, i); 2025 2026 if (skb_has_frag_list(skb)) 2027 skb_drop_fraglist(skb); 2028 goto done; 2029 } 2030 2031 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2032 fragp = &frag->next) { 2033 int end = offset + frag->len; 2034 2035 if (skb_shared(frag)) { 2036 struct sk_buff *nfrag; 2037 2038 nfrag = skb_clone(frag, GFP_ATOMIC); 2039 if (unlikely(!nfrag)) 2040 return -ENOMEM; 2041 2042 nfrag->next = frag->next; 2043 consume_skb(frag); 2044 frag = nfrag; 2045 *fragp = frag; 2046 } 2047 2048 if (end < len) { 2049 offset = end; 2050 continue; 2051 } 2052 2053 if (end > len && 2054 unlikely((err = pskb_trim(frag, len - offset)))) 2055 return err; 2056 2057 if (frag->next) 2058 skb_drop_list(&frag->next); 2059 break; 2060 } 2061 2062 done: 2063 if (len > skb_headlen(skb)) { 2064 skb->data_len -= skb->len - len; 2065 skb->len = len; 2066 } else { 2067 skb->len = len; 2068 skb->data_len = 0; 2069 skb_set_tail_pointer(skb, len); 2070 } 2071 2072 if (!skb->sk || skb->destructor == sock_edemux) 2073 skb_condense(skb); 2074 return 0; 2075 } 2076 EXPORT_SYMBOL(___pskb_trim); 2077 2078 /* Note : use pskb_trim_rcsum() instead of calling this directly 2079 */ 2080 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2081 { 2082 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2083 int delta = skb->len - len; 2084 2085 skb->csum = csum_block_sub(skb->csum, 2086 skb_checksum(skb, len, delta, 0), 2087 len); 2088 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2089 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2090 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2091 2092 if (offset + sizeof(__sum16) > hdlen) 2093 return -EINVAL; 2094 } 2095 return __pskb_trim(skb, len); 2096 } 2097 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2098 2099 /** 2100 * __pskb_pull_tail - advance tail of skb header 2101 * @skb: buffer to reallocate 2102 * @delta: number of bytes to advance tail 2103 * 2104 * The function makes a sense only on a fragmented &sk_buff, 2105 * it expands header moving its tail forward and copying necessary 2106 * data from fragmented part. 2107 * 2108 * &sk_buff MUST have reference count of 1. 2109 * 2110 * Returns %NULL (and &sk_buff does not change) if pull failed 2111 * or value of new tail of skb in the case of success. 2112 * 2113 * All the pointers pointing into skb header may change and must be 2114 * reloaded after call to this function. 2115 */ 2116 2117 /* Moves tail of skb head forward, copying data from fragmented part, 2118 * when it is necessary. 2119 * 1. It may fail due to malloc failure. 2120 * 2. It may change skb pointers. 2121 * 2122 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2123 */ 2124 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2125 { 2126 /* If skb has not enough free space at tail, get new one 2127 * plus 128 bytes for future expansions. If we have enough 2128 * room at tail, reallocate without expansion only if skb is cloned. 2129 */ 2130 int i, k, eat = (skb->tail + delta) - skb->end; 2131 2132 if (eat > 0 || skb_cloned(skb)) { 2133 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2134 GFP_ATOMIC)) 2135 return NULL; 2136 } 2137 2138 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2139 skb_tail_pointer(skb), delta)); 2140 2141 /* Optimization: no fragments, no reasons to preestimate 2142 * size of pulled pages. Superb. 2143 */ 2144 if (!skb_has_frag_list(skb)) 2145 goto pull_pages; 2146 2147 /* Estimate size of pulled pages. */ 2148 eat = delta; 2149 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2150 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2151 2152 if (size >= eat) 2153 goto pull_pages; 2154 eat -= size; 2155 } 2156 2157 /* If we need update frag list, we are in troubles. 2158 * Certainly, it is possible to add an offset to skb data, 2159 * but taking into account that pulling is expected to 2160 * be very rare operation, it is worth to fight against 2161 * further bloating skb head and crucify ourselves here instead. 2162 * Pure masohism, indeed. 8)8) 2163 */ 2164 if (eat) { 2165 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2166 struct sk_buff *clone = NULL; 2167 struct sk_buff *insp = NULL; 2168 2169 do { 2170 if (list->len <= eat) { 2171 /* Eaten as whole. */ 2172 eat -= list->len; 2173 list = list->next; 2174 insp = list; 2175 } else { 2176 /* Eaten partially. */ 2177 2178 if (skb_shared(list)) { 2179 /* Sucks! We need to fork list. :-( */ 2180 clone = skb_clone(list, GFP_ATOMIC); 2181 if (!clone) 2182 return NULL; 2183 insp = list->next; 2184 list = clone; 2185 } else { 2186 /* This may be pulled without 2187 * problems. */ 2188 insp = list; 2189 } 2190 if (!pskb_pull(list, eat)) { 2191 kfree_skb(clone); 2192 return NULL; 2193 } 2194 break; 2195 } 2196 } while (eat); 2197 2198 /* Free pulled out fragments. */ 2199 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2200 skb_shinfo(skb)->frag_list = list->next; 2201 kfree_skb(list); 2202 } 2203 /* And insert new clone at head. */ 2204 if (clone) { 2205 clone->next = list; 2206 skb_shinfo(skb)->frag_list = clone; 2207 } 2208 } 2209 /* Success! Now we may commit changes to skb data. */ 2210 2211 pull_pages: 2212 eat = delta; 2213 k = 0; 2214 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2215 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2216 2217 if (size <= eat) { 2218 skb_frag_unref(skb, i); 2219 eat -= size; 2220 } else { 2221 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2222 2223 *frag = skb_shinfo(skb)->frags[i]; 2224 if (eat) { 2225 skb_frag_off_add(frag, eat); 2226 skb_frag_size_sub(frag, eat); 2227 if (!i) 2228 goto end; 2229 eat = 0; 2230 } 2231 k++; 2232 } 2233 } 2234 skb_shinfo(skb)->nr_frags = k; 2235 2236 end: 2237 skb->tail += delta; 2238 skb->data_len -= delta; 2239 2240 if (!skb->data_len) 2241 skb_zcopy_clear(skb, false); 2242 2243 return skb_tail_pointer(skb); 2244 } 2245 EXPORT_SYMBOL(__pskb_pull_tail); 2246 2247 /** 2248 * skb_copy_bits - copy bits from skb to kernel buffer 2249 * @skb: source skb 2250 * @offset: offset in source 2251 * @to: destination buffer 2252 * @len: number of bytes to copy 2253 * 2254 * Copy the specified number of bytes from the source skb to the 2255 * destination buffer. 2256 * 2257 * CAUTION ! : 2258 * If its prototype is ever changed, 2259 * check arch/{*}/net/{*}.S files, 2260 * since it is called from BPF assembly code. 2261 */ 2262 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2263 { 2264 int start = skb_headlen(skb); 2265 struct sk_buff *frag_iter; 2266 int i, copy; 2267 2268 if (offset > (int)skb->len - len) 2269 goto fault; 2270 2271 /* Copy header. */ 2272 if ((copy = start - offset) > 0) { 2273 if (copy > len) 2274 copy = len; 2275 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2276 if ((len -= copy) == 0) 2277 return 0; 2278 offset += copy; 2279 to += copy; 2280 } 2281 2282 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2283 int end; 2284 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2285 2286 WARN_ON(start > offset + len); 2287 2288 end = start + skb_frag_size(f); 2289 if ((copy = end - offset) > 0) { 2290 u32 p_off, p_len, copied; 2291 struct page *p; 2292 u8 *vaddr; 2293 2294 if (copy > len) 2295 copy = len; 2296 2297 skb_frag_foreach_page(f, 2298 skb_frag_off(f) + offset - start, 2299 copy, p, p_off, p_len, copied) { 2300 vaddr = kmap_atomic(p); 2301 memcpy(to + copied, vaddr + p_off, p_len); 2302 kunmap_atomic(vaddr); 2303 } 2304 2305 if ((len -= copy) == 0) 2306 return 0; 2307 offset += copy; 2308 to += copy; 2309 } 2310 start = end; 2311 } 2312 2313 skb_walk_frags(skb, frag_iter) { 2314 int end; 2315 2316 WARN_ON(start > offset + len); 2317 2318 end = start + frag_iter->len; 2319 if ((copy = end - offset) > 0) { 2320 if (copy > len) 2321 copy = len; 2322 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2323 goto fault; 2324 if ((len -= copy) == 0) 2325 return 0; 2326 offset += copy; 2327 to += copy; 2328 } 2329 start = end; 2330 } 2331 2332 if (!len) 2333 return 0; 2334 2335 fault: 2336 return -EFAULT; 2337 } 2338 EXPORT_SYMBOL(skb_copy_bits); 2339 2340 /* 2341 * Callback from splice_to_pipe(), if we need to release some pages 2342 * at the end of the spd in case we error'ed out in filling the pipe. 2343 */ 2344 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2345 { 2346 put_page(spd->pages[i]); 2347 } 2348 2349 static struct page *linear_to_page(struct page *page, unsigned int *len, 2350 unsigned int *offset, 2351 struct sock *sk) 2352 { 2353 struct page_frag *pfrag = sk_page_frag(sk); 2354 2355 if (!sk_page_frag_refill(sk, pfrag)) 2356 return NULL; 2357 2358 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2359 2360 memcpy(page_address(pfrag->page) + pfrag->offset, 2361 page_address(page) + *offset, *len); 2362 *offset = pfrag->offset; 2363 pfrag->offset += *len; 2364 2365 return pfrag->page; 2366 } 2367 2368 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2369 struct page *page, 2370 unsigned int offset) 2371 { 2372 return spd->nr_pages && 2373 spd->pages[spd->nr_pages - 1] == page && 2374 (spd->partial[spd->nr_pages - 1].offset + 2375 spd->partial[spd->nr_pages - 1].len == offset); 2376 } 2377 2378 /* 2379 * Fill page/offset/length into spd, if it can hold more pages. 2380 */ 2381 static bool spd_fill_page(struct splice_pipe_desc *spd, 2382 struct pipe_inode_info *pipe, struct page *page, 2383 unsigned int *len, unsigned int offset, 2384 bool linear, 2385 struct sock *sk) 2386 { 2387 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2388 return true; 2389 2390 if (linear) { 2391 page = linear_to_page(page, len, &offset, sk); 2392 if (!page) 2393 return true; 2394 } 2395 if (spd_can_coalesce(spd, page, offset)) { 2396 spd->partial[spd->nr_pages - 1].len += *len; 2397 return false; 2398 } 2399 get_page(page); 2400 spd->pages[spd->nr_pages] = page; 2401 spd->partial[spd->nr_pages].len = *len; 2402 spd->partial[spd->nr_pages].offset = offset; 2403 spd->nr_pages++; 2404 2405 return false; 2406 } 2407 2408 static bool __splice_segment(struct page *page, unsigned int poff, 2409 unsigned int plen, unsigned int *off, 2410 unsigned int *len, 2411 struct splice_pipe_desc *spd, bool linear, 2412 struct sock *sk, 2413 struct pipe_inode_info *pipe) 2414 { 2415 if (!*len) 2416 return true; 2417 2418 /* skip this segment if already processed */ 2419 if (*off >= plen) { 2420 *off -= plen; 2421 return false; 2422 } 2423 2424 /* ignore any bits we already processed */ 2425 poff += *off; 2426 plen -= *off; 2427 *off = 0; 2428 2429 do { 2430 unsigned int flen = min(*len, plen); 2431 2432 if (spd_fill_page(spd, pipe, page, &flen, poff, 2433 linear, sk)) 2434 return true; 2435 poff += flen; 2436 plen -= flen; 2437 *len -= flen; 2438 } while (*len && plen); 2439 2440 return false; 2441 } 2442 2443 /* 2444 * Map linear and fragment data from the skb to spd. It reports true if the 2445 * pipe is full or if we already spliced the requested length. 2446 */ 2447 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2448 unsigned int *offset, unsigned int *len, 2449 struct splice_pipe_desc *spd, struct sock *sk) 2450 { 2451 int seg; 2452 struct sk_buff *iter; 2453 2454 /* map the linear part : 2455 * If skb->head_frag is set, this 'linear' part is backed by a 2456 * fragment, and if the head is not shared with any clones then 2457 * we can avoid a copy since we own the head portion of this page. 2458 */ 2459 if (__splice_segment(virt_to_page(skb->data), 2460 (unsigned long) skb->data & (PAGE_SIZE - 1), 2461 skb_headlen(skb), 2462 offset, len, spd, 2463 skb_head_is_locked(skb), 2464 sk, pipe)) 2465 return true; 2466 2467 /* 2468 * then map the fragments 2469 */ 2470 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2471 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2472 2473 if (__splice_segment(skb_frag_page(f), 2474 skb_frag_off(f), skb_frag_size(f), 2475 offset, len, spd, false, sk, pipe)) 2476 return true; 2477 } 2478 2479 skb_walk_frags(skb, iter) { 2480 if (*offset >= iter->len) { 2481 *offset -= iter->len; 2482 continue; 2483 } 2484 /* __skb_splice_bits() only fails if the output has no room 2485 * left, so no point in going over the frag_list for the error 2486 * case. 2487 */ 2488 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2489 return true; 2490 } 2491 2492 return false; 2493 } 2494 2495 /* 2496 * Map data from the skb to a pipe. Should handle both the linear part, 2497 * the fragments, and the frag list. 2498 */ 2499 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2500 struct pipe_inode_info *pipe, unsigned int tlen, 2501 unsigned int flags) 2502 { 2503 struct partial_page partial[MAX_SKB_FRAGS]; 2504 struct page *pages[MAX_SKB_FRAGS]; 2505 struct splice_pipe_desc spd = { 2506 .pages = pages, 2507 .partial = partial, 2508 .nr_pages_max = MAX_SKB_FRAGS, 2509 .ops = &nosteal_pipe_buf_ops, 2510 .spd_release = sock_spd_release, 2511 }; 2512 int ret = 0; 2513 2514 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2515 2516 if (spd.nr_pages) 2517 ret = splice_to_pipe(pipe, &spd); 2518 2519 return ret; 2520 } 2521 EXPORT_SYMBOL_GPL(skb_splice_bits); 2522 2523 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2524 struct kvec *vec, size_t num, size_t size) 2525 { 2526 struct socket *sock = sk->sk_socket; 2527 2528 if (!sock) 2529 return -EINVAL; 2530 return kernel_sendmsg(sock, msg, vec, num, size); 2531 } 2532 2533 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2534 size_t size, int flags) 2535 { 2536 struct socket *sock = sk->sk_socket; 2537 2538 if (!sock) 2539 return -EINVAL; 2540 return kernel_sendpage(sock, page, offset, size, flags); 2541 } 2542 2543 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2544 struct kvec *vec, size_t num, size_t size); 2545 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2546 size_t size, int flags); 2547 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2548 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2549 { 2550 unsigned int orig_len = len; 2551 struct sk_buff *head = skb; 2552 unsigned short fragidx; 2553 int slen, ret; 2554 2555 do_frag_list: 2556 2557 /* Deal with head data */ 2558 while (offset < skb_headlen(skb) && len) { 2559 struct kvec kv; 2560 struct msghdr msg; 2561 2562 slen = min_t(int, len, skb_headlen(skb) - offset); 2563 kv.iov_base = skb->data + offset; 2564 kv.iov_len = slen; 2565 memset(&msg, 0, sizeof(msg)); 2566 msg.msg_flags = MSG_DONTWAIT; 2567 2568 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2569 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2570 if (ret <= 0) 2571 goto error; 2572 2573 offset += ret; 2574 len -= ret; 2575 } 2576 2577 /* All the data was skb head? */ 2578 if (!len) 2579 goto out; 2580 2581 /* Make offset relative to start of frags */ 2582 offset -= skb_headlen(skb); 2583 2584 /* Find where we are in frag list */ 2585 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2586 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2587 2588 if (offset < skb_frag_size(frag)) 2589 break; 2590 2591 offset -= skb_frag_size(frag); 2592 } 2593 2594 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2595 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2596 2597 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2598 2599 while (slen) { 2600 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2601 sendpage_unlocked, sk, 2602 skb_frag_page(frag), 2603 skb_frag_off(frag) + offset, 2604 slen, MSG_DONTWAIT); 2605 if (ret <= 0) 2606 goto error; 2607 2608 len -= ret; 2609 offset += ret; 2610 slen -= ret; 2611 } 2612 2613 offset = 0; 2614 } 2615 2616 if (len) { 2617 /* Process any frag lists */ 2618 2619 if (skb == head) { 2620 if (skb_has_frag_list(skb)) { 2621 skb = skb_shinfo(skb)->frag_list; 2622 goto do_frag_list; 2623 } 2624 } else if (skb->next) { 2625 skb = skb->next; 2626 goto do_frag_list; 2627 } 2628 } 2629 2630 out: 2631 return orig_len - len; 2632 2633 error: 2634 return orig_len == len ? ret : orig_len - len; 2635 } 2636 2637 /* Send skb data on a socket. Socket must be locked. */ 2638 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2639 int len) 2640 { 2641 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2642 kernel_sendpage_locked); 2643 } 2644 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2645 2646 /* Send skb data on a socket. Socket must be unlocked. */ 2647 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2648 { 2649 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2650 sendpage_unlocked); 2651 } 2652 2653 /** 2654 * skb_store_bits - store bits from kernel buffer to skb 2655 * @skb: destination buffer 2656 * @offset: offset in destination 2657 * @from: source buffer 2658 * @len: number of bytes to copy 2659 * 2660 * Copy the specified number of bytes from the source buffer to the 2661 * destination skb. This function handles all the messy bits of 2662 * traversing fragment lists and such. 2663 */ 2664 2665 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2666 { 2667 int start = skb_headlen(skb); 2668 struct sk_buff *frag_iter; 2669 int i, copy; 2670 2671 if (offset > (int)skb->len - len) 2672 goto fault; 2673 2674 if ((copy = start - offset) > 0) { 2675 if (copy > len) 2676 copy = len; 2677 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2678 if ((len -= copy) == 0) 2679 return 0; 2680 offset += copy; 2681 from += copy; 2682 } 2683 2684 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2685 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2686 int end; 2687 2688 WARN_ON(start > offset + len); 2689 2690 end = start + skb_frag_size(frag); 2691 if ((copy = end - offset) > 0) { 2692 u32 p_off, p_len, copied; 2693 struct page *p; 2694 u8 *vaddr; 2695 2696 if (copy > len) 2697 copy = len; 2698 2699 skb_frag_foreach_page(frag, 2700 skb_frag_off(frag) + offset - start, 2701 copy, p, p_off, p_len, copied) { 2702 vaddr = kmap_atomic(p); 2703 memcpy(vaddr + p_off, from + copied, p_len); 2704 kunmap_atomic(vaddr); 2705 } 2706 2707 if ((len -= copy) == 0) 2708 return 0; 2709 offset += copy; 2710 from += copy; 2711 } 2712 start = end; 2713 } 2714 2715 skb_walk_frags(skb, frag_iter) { 2716 int end; 2717 2718 WARN_ON(start > offset + len); 2719 2720 end = start + frag_iter->len; 2721 if ((copy = end - offset) > 0) { 2722 if (copy > len) 2723 copy = len; 2724 if (skb_store_bits(frag_iter, offset - start, 2725 from, copy)) 2726 goto fault; 2727 if ((len -= copy) == 0) 2728 return 0; 2729 offset += copy; 2730 from += copy; 2731 } 2732 start = end; 2733 } 2734 if (!len) 2735 return 0; 2736 2737 fault: 2738 return -EFAULT; 2739 } 2740 EXPORT_SYMBOL(skb_store_bits); 2741 2742 /* Checksum skb data. */ 2743 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2744 __wsum csum, const struct skb_checksum_ops *ops) 2745 { 2746 int start = skb_headlen(skb); 2747 int i, copy = start - offset; 2748 struct sk_buff *frag_iter; 2749 int pos = 0; 2750 2751 /* Checksum header. */ 2752 if (copy > 0) { 2753 if (copy > len) 2754 copy = len; 2755 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2756 skb->data + offset, copy, csum); 2757 if ((len -= copy) == 0) 2758 return csum; 2759 offset += copy; 2760 pos = copy; 2761 } 2762 2763 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2764 int end; 2765 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2766 2767 WARN_ON(start > offset + len); 2768 2769 end = start + skb_frag_size(frag); 2770 if ((copy = end - offset) > 0) { 2771 u32 p_off, p_len, copied; 2772 struct page *p; 2773 __wsum csum2; 2774 u8 *vaddr; 2775 2776 if (copy > len) 2777 copy = len; 2778 2779 skb_frag_foreach_page(frag, 2780 skb_frag_off(frag) + offset - start, 2781 copy, p, p_off, p_len, copied) { 2782 vaddr = kmap_atomic(p); 2783 csum2 = INDIRECT_CALL_1(ops->update, 2784 csum_partial_ext, 2785 vaddr + p_off, p_len, 0); 2786 kunmap_atomic(vaddr); 2787 csum = INDIRECT_CALL_1(ops->combine, 2788 csum_block_add_ext, csum, 2789 csum2, pos, p_len); 2790 pos += p_len; 2791 } 2792 2793 if (!(len -= copy)) 2794 return csum; 2795 offset += copy; 2796 } 2797 start = end; 2798 } 2799 2800 skb_walk_frags(skb, frag_iter) { 2801 int end; 2802 2803 WARN_ON(start > offset + len); 2804 2805 end = start + frag_iter->len; 2806 if ((copy = end - offset) > 0) { 2807 __wsum csum2; 2808 if (copy > len) 2809 copy = len; 2810 csum2 = __skb_checksum(frag_iter, offset - start, 2811 copy, 0, ops); 2812 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2813 csum, csum2, pos, copy); 2814 if ((len -= copy) == 0) 2815 return csum; 2816 offset += copy; 2817 pos += copy; 2818 } 2819 start = end; 2820 } 2821 BUG_ON(len); 2822 2823 return csum; 2824 } 2825 EXPORT_SYMBOL(__skb_checksum); 2826 2827 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2828 int len, __wsum csum) 2829 { 2830 const struct skb_checksum_ops ops = { 2831 .update = csum_partial_ext, 2832 .combine = csum_block_add_ext, 2833 }; 2834 2835 return __skb_checksum(skb, offset, len, csum, &ops); 2836 } 2837 EXPORT_SYMBOL(skb_checksum); 2838 2839 /* Both of above in one bottle. */ 2840 2841 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2842 u8 *to, int len) 2843 { 2844 int start = skb_headlen(skb); 2845 int i, copy = start - offset; 2846 struct sk_buff *frag_iter; 2847 int pos = 0; 2848 __wsum csum = 0; 2849 2850 /* Copy header. */ 2851 if (copy > 0) { 2852 if (copy > len) 2853 copy = len; 2854 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2855 copy); 2856 if ((len -= copy) == 0) 2857 return csum; 2858 offset += copy; 2859 to += copy; 2860 pos = copy; 2861 } 2862 2863 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2864 int end; 2865 2866 WARN_ON(start > offset + len); 2867 2868 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2869 if ((copy = end - offset) > 0) { 2870 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2871 u32 p_off, p_len, copied; 2872 struct page *p; 2873 __wsum csum2; 2874 u8 *vaddr; 2875 2876 if (copy > len) 2877 copy = len; 2878 2879 skb_frag_foreach_page(frag, 2880 skb_frag_off(frag) + offset - start, 2881 copy, p, p_off, p_len, copied) { 2882 vaddr = kmap_atomic(p); 2883 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2884 to + copied, 2885 p_len); 2886 kunmap_atomic(vaddr); 2887 csum = csum_block_add(csum, csum2, pos); 2888 pos += p_len; 2889 } 2890 2891 if (!(len -= copy)) 2892 return csum; 2893 offset += copy; 2894 to += copy; 2895 } 2896 start = end; 2897 } 2898 2899 skb_walk_frags(skb, frag_iter) { 2900 __wsum csum2; 2901 int end; 2902 2903 WARN_ON(start > offset + len); 2904 2905 end = start + frag_iter->len; 2906 if ((copy = end - offset) > 0) { 2907 if (copy > len) 2908 copy = len; 2909 csum2 = skb_copy_and_csum_bits(frag_iter, 2910 offset - start, 2911 to, copy); 2912 csum = csum_block_add(csum, csum2, pos); 2913 if ((len -= copy) == 0) 2914 return csum; 2915 offset += copy; 2916 to += copy; 2917 pos += copy; 2918 } 2919 start = end; 2920 } 2921 BUG_ON(len); 2922 return csum; 2923 } 2924 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2925 2926 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2927 { 2928 __sum16 sum; 2929 2930 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2931 /* See comments in __skb_checksum_complete(). */ 2932 if (likely(!sum)) { 2933 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2934 !skb->csum_complete_sw) 2935 netdev_rx_csum_fault(skb->dev, skb); 2936 } 2937 if (!skb_shared(skb)) 2938 skb->csum_valid = !sum; 2939 return sum; 2940 } 2941 EXPORT_SYMBOL(__skb_checksum_complete_head); 2942 2943 /* This function assumes skb->csum already holds pseudo header's checksum, 2944 * which has been changed from the hardware checksum, for example, by 2945 * __skb_checksum_validate_complete(). And, the original skb->csum must 2946 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2947 * 2948 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2949 * zero. The new checksum is stored back into skb->csum unless the skb is 2950 * shared. 2951 */ 2952 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2953 { 2954 __wsum csum; 2955 __sum16 sum; 2956 2957 csum = skb_checksum(skb, 0, skb->len, 0); 2958 2959 sum = csum_fold(csum_add(skb->csum, csum)); 2960 /* This check is inverted, because we already knew the hardware 2961 * checksum is invalid before calling this function. So, if the 2962 * re-computed checksum is valid instead, then we have a mismatch 2963 * between the original skb->csum and skb_checksum(). This means either 2964 * the original hardware checksum is incorrect or we screw up skb->csum 2965 * when moving skb->data around. 2966 */ 2967 if (likely(!sum)) { 2968 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2969 !skb->csum_complete_sw) 2970 netdev_rx_csum_fault(skb->dev, skb); 2971 } 2972 2973 if (!skb_shared(skb)) { 2974 /* Save full packet checksum */ 2975 skb->csum = csum; 2976 skb->ip_summed = CHECKSUM_COMPLETE; 2977 skb->csum_complete_sw = 1; 2978 skb->csum_valid = !sum; 2979 } 2980 2981 return sum; 2982 } 2983 EXPORT_SYMBOL(__skb_checksum_complete); 2984 2985 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2986 { 2987 net_warn_ratelimited( 2988 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2989 __func__); 2990 return 0; 2991 } 2992 2993 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2994 int offset, int len) 2995 { 2996 net_warn_ratelimited( 2997 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2998 __func__); 2999 return 0; 3000 } 3001 3002 static const struct skb_checksum_ops default_crc32c_ops = { 3003 .update = warn_crc32c_csum_update, 3004 .combine = warn_crc32c_csum_combine, 3005 }; 3006 3007 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3008 &default_crc32c_ops; 3009 EXPORT_SYMBOL(crc32c_csum_stub); 3010 3011 /** 3012 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3013 * @from: source buffer 3014 * 3015 * Calculates the amount of linear headroom needed in the 'to' skb passed 3016 * into skb_zerocopy(). 3017 */ 3018 unsigned int 3019 skb_zerocopy_headlen(const struct sk_buff *from) 3020 { 3021 unsigned int hlen = 0; 3022 3023 if (!from->head_frag || 3024 skb_headlen(from) < L1_CACHE_BYTES || 3025 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3026 hlen = skb_headlen(from); 3027 if (!hlen) 3028 hlen = from->len; 3029 } 3030 3031 if (skb_has_frag_list(from)) 3032 hlen = from->len; 3033 3034 return hlen; 3035 } 3036 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3037 3038 /** 3039 * skb_zerocopy - Zero copy skb to skb 3040 * @to: destination buffer 3041 * @from: source buffer 3042 * @len: number of bytes to copy from source buffer 3043 * @hlen: size of linear headroom in destination buffer 3044 * 3045 * Copies up to `len` bytes from `from` to `to` by creating references 3046 * to the frags in the source buffer. 3047 * 3048 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3049 * headroom in the `to` buffer. 3050 * 3051 * Return value: 3052 * 0: everything is OK 3053 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3054 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3055 */ 3056 int 3057 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3058 { 3059 int i, j = 0; 3060 int plen = 0; /* length of skb->head fragment */ 3061 int ret; 3062 struct page *page; 3063 unsigned int offset; 3064 3065 BUG_ON(!from->head_frag && !hlen); 3066 3067 /* dont bother with small payloads */ 3068 if (len <= skb_tailroom(to)) 3069 return skb_copy_bits(from, 0, skb_put(to, len), len); 3070 3071 if (hlen) { 3072 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3073 if (unlikely(ret)) 3074 return ret; 3075 len -= hlen; 3076 } else { 3077 plen = min_t(int, skb_headlen(from), len); 3078 if (plen) { 3079 page = virt_to_head_page(from->head); 3080 offset = from->data - (unsigned char *)page_address(page); 3081 __skb_fill_page_desc(to, 0, page, offset, plen); 3082 get_page(page); 3083 j = 1; 3084 len -= plen; 3085 } 3086 } 3087 3088 to->truesize += len + plen; 3089 to->len += len + plen; 3090 to->data_len += len + plen; 3091 3092 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3093 skb_tx_error(from); 3094 return -ENOMEM; 3095 } 3096 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3097 3098 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3099 int size; 3100 3101 if (!len) 3102 break; 3103 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3104 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3105 len); 3106 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3107 len -= size; 3108 skb_frag_ref(to, j); 3109 j++; 3110 } 3111 skb_shinfo(to)->nr_frags = j; 3112 3113 return 0; 3114 } 3115 EXPORT_SYMBOL_GPL(skb_zerocopy); 3116 3117 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3118 { 3119 __wsum csum; 3120 long csstart; 3121 3122 if (skb->ip_summed == CHECKSUM_PARTIAL) 3123 csstart = skb_checksum_start_offset(skb); 3124 else 3125 csstart = skb_headlen(skb); 3126 3127 BUG_ON(csstart > skb_headlen(skb)); 3128 3129 skb_copy_from_linear_data(skb, to, csstart); 3130 3131 csum = 0; 3132 if (csstart != skb->len) 3133 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3134 skb->len - csstart); 3135 3136 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3137 long csstuff = csstart + skb->csum_offset; 3138 3139 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3140 } 3141 } 3142 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3143 3144 /** 3145 * skb_dequeue - remove from the head of the queue 3146 * @list: list to dequeue from 3147 * 3148 * Remove the head of the list. The list lock is taken so the function 3149 * may be used safely with other locking list functions. The head item is 3150 * returned or %NULL if the list is empty. 3151 */ 3152 3153 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3154 { 3155 unsigned long flags; 3156 struct sk_buff *result; 3157 3158 spin_lock_irqsave(&list->lock, flags); 3159 result = __skb_dequeue(list); 3160 spin_unlock_irqrestore(&list->lock, flags); 3161 return result; 3162 } 3163 EXPORT_SYMBOL(skb_dequeue); 3164 3165 /** 3166 * skb_dequeue_tail - remove from the tail of the queue 3167 * @list: list to dequeue from 3168 * 3169 * Remove the tail of the list. The list lock is taken so the function 3170 * may be used safely with other locking list functions. The tail item is 3171 * returned or %NULL if the list is empty. 3172 */ 3173 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3174 { 3175 unsigned long flags; 3176 struct sk_buff *result; 3177 3178 spin_lock_irqsave(&list->lock, flags); 3179 result = __skb_dequeue_tail(list); 3180 spin_unlock_irqrestore(&list->lock, flags); 3181 return result; 3182 } 3183 EXPORT_SYMBOL(skb_dequeue_tail); 3184 3185 /** 3186 * skb_queue_purge - empty a list 3187 * @list: list to empty 3188 * 3189 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3190 * the list and one reference dropped. This function takes the list 3191 * lock and is atomic with respect to other list locking functions. 3192 */ 3193 void skb_queue_purge(struct sk_buff_head *list) 3194 { 3195 struct sk_buff *skb; 3196 while ((skb = skb_dequeue(list)) != NULL) 3197 kfree_skb(skb); 3198 } 3199 EXPORT_SYMBOL(skb_queue_purge); 3200 3201 /** 3202 * skb_rbtree_purge - empty a skb rbtree 3203 * @root: root of the rbtree to empty 3204 * Return value: the sum of truesizes of all purged skbs. 3205 * 3206 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3207 * the list and one reference dropped. This function does not take 3208 * any lock. Synchronization should be handled by the caller (e.g., TCP 3209 * out-of-order queue is protected by the socket lock). 3210 */ 3211 unsigned int skb_rbtree_purge(struct rb_root *root) 3212 { 3213 struct rb_node *p = rb_first(root); 3214 unsigned int sum = 0; 3215 3216 while (p) { 3217 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3218 3219 p = rb_next(p); 3220 rb_erase(&skb->rbnode, root); 3221 sum += skb->truesize; 3222 kfree_skb(skb); 3223 } 3224 return sum; 3225 } 3226 3227 /** 3228 * skb_queue_head - queue a buffer at the list head 3229 * @list: list to use 3230 * @newsk: buffer to queue 3231 * 3232 * Queue a buffer at the start of the list. This function takes the 3233 * list lock and can be used safely with other locking &sk_buff functions 3234 * safely. 3235 * 3236 * A buffer cannot be placed on two lists at the same time. 3237 */ 3238 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3239 { 3240 unsigned long flags; 3241 3242 spin_lock_irqsave(&list->lock, flags); 3243 __skb_queue_head(list, newsk); 3244 spin_unlock_irqrestore(&list->lock, flags); 3245 } 3246 EXPORT_SYMBOL(skb_queue_head); 3247 3248 /** 3249 * skb_queue_tail - queue a buffer at the list tail 3250 * @list: list to use 3251 * @newsk: buffer to queue 3252 * 3253 * Queue a buffer at the tail of the list. This function takes the 3254 * list lock and can be used safely with other locking &sk_buff functions 3255 * safely. 3256 * 3257 * A buffer cannot be placed on two lists at the same time. 3258 */ 3259 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3260 { 3261 unsigned long flags; 3262 3263 spin_lock_irqsave(&list->lock, flags); 3264 __skb_queue_tail(list, newsk); 3265 spin_unlock_irqrestore(&list->lock, flags); 3266 } 3267 EXPORT_SYMBOL(skb_queue_tail); 3268 3269 /** 3270 * skb_unlink - remove a buffer from a list 3271 * @skb: buffer to remove 3272 * @list: list to use 3273 * 3274 * Remove a packet from a list. The list locks are taken and this 3275 * function is atomic with respect to other list locked calls 3276 * 3277 * You must know what list the SKB is on. 3278 */ 3279 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3280 { 3281 unsigned long flags; 3282 3283 spin_lock_irqsave(&list->lock, flags); 3284 __skb_unlink(skb, list); 3285 spin_unlock_irqrestore(&list->lock, flags); 3286 } 3287 EXPORT_SYMBOL(skb_unlink); 3288 3289 /** 3290 * skb_append - append a buffer 3291 * @old: buffer to insert after 3292 * @newsk: buffer to insert 3293 * @list: list to use 3294 * 3295 * Place a packet after a given packet in a list. The list locks are taken 3296 * and this function is atomic with respect to other list locked calls. 3297 * A buffer cannot be placed on two lists at the same time. 3298 */ 3299 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3300 { 3301 unsigned long flags; 3302 3303 spin_lock_irqsave(&list->lock, flags); 3304 __skb_queue_after(list, old, newsk); 3305 spin_unlock_irqrestore(&list->lock, flags); 3306 } 3307 EXPORT_SYMBOL(skb_append); 3308 3309 static inline void skb_split_inside_header(struct sk_buff *skb, 3310 struct sk_buff* skb1, 3311 const u32 len, const int pos) 3312 { 3313 int i; 3314 3315 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3316 pos - len); 3317 /* And move data appendix as is. */ 3318 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3319 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3320 3321 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3322 skb_shinfo(skb)->nr_frags = 0; 3323 skb1->data_len = skb->data_len; 3324 skb1->len += skb1->data_len; 3325 skb->data_len = 0; 3326 skb->len = len; 3327 skb_set_tail_pointer(skb, len); 3328 } 3329 3330 static inline void skb_split_no_header(struct sk_buff *skb, 3331 struct sk_buff* skb1, 3332 const u32 len, int pos) 3333 { 3334 int i, k = 0; 3335 const int nfrags = skb_shinfo(skb)->nr_frags; 3336 3337 skb_shinfo(skb)->nr_frags = 0; 3338 skb1->len = skb1->data_len = skb->len - len; 3339 skb->len = len; 3340 skb->data_len = len - pos; 3341 3342 for (i = 0; i < nfrags; i++) { 3343 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3344 3345 if (pos + size > len) { 3346 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3347 3348 if (pos < len) { 3349 /* Split frag. 3350 * We have two variants in this case: 3351 * 1. Move all the frag to the second 3352 * part, if it is possible. F.e. 3353 * this approach is mandatory for TUX, 3354 * where splitting is expensive. 3355 * 2. Split is accurately. We make this. 3356 */ 3357 skb_frag_ref(skb, i); 3358 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3359 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3360 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3361 skb_shinfo(skb)->nr_frags++; 3362 } 3363 k++; 3364 } else 3365 skb_shinfo(skb)->nr_frags++; 3366 pos += size; 3367 } 3368 skb_shinfo(skb1)->nr_frags = k; 3369 } 3370 3371 /** 3372 * skb_split - Split fragmented skb to two parts at length len. 3373 * @skb: the buffer to split 3374 * @skb1: the buffer to receive the second part 3375 * @len: new length for skb 3376 */ 3377 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3378 { 3379 int pos = skb_headlen(skb); 3380 3381 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3382 skb_zerocopy_clone(skb1, skb, 0); 3383 if (len < pos) /* Split line is inside header. */ 3384 skb_split_inside_header(skb, skb1, len, pos); 3385 else /* Second chunk has no header, nothing to copy. */ 3386 skb_split_no_header(skb, skb1, len, pos); 3387 } 3388 EXPORT_SYMBOL(skb_split); 3389 3390 /* Shifting from/to a cloned skb is a no-go. 3391 * 3392 * Caller cannot keep skb_shinfo related pointers past calling here! 3393 */ 3394 static int skb_prepare_for_shift(struct sk_buff *skb) 3395 { 3396 int ret = 0; 3397 3398 if (skb_cloned(skb)) { 3399 /* Save and restore truesize: pskb_expand_head() may reallocate 3400 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we 3401 * cannot change truesize at this point. 3402 */ 3403 unsigned int save_truesize = skb->truesize; 3404 3405 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3406 skb->truesize = save_truesize; 3407 } 3408 return ret; 3409 } 3410 3411 /** 3412 * skb_shift - Shifts paged data partially from skb to another 3413 * @tgt: buffer into which tail data gets added 3414 * @skb: buffer from which the paged data comes from 3415 * @shiftlen: shift up to this many bytes 3416 * 3417 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3418 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3419 * It's up to caller to free skb if everything was shifted. 3420 * 3421 * If @tgt runs out of frags, the whole operation is aborted. 3422 * 3423 * Skb cannot include anything else but paged data while tgt is allowed 3424 * to have non-paged data as well. 3425 * 3426 * TODO: full sized shift could be optimized but that would need 3427 * specialized skb free'er to handle frags without up-to-date nr_frags. 3428 */ 3429 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3430 { 3431 int from, to, merge, todo; 3432 skb_frag_t *fragfrom, *fragto; 3433 3434 BUG_ON(shiftlen > skb->len); 3435 3436 if (skb_headlen(skb)) 3437 return 0; 3438 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3439 return 0; 3440 3441 todo = shiftlen; 3442 from = 0; 3443 to = skb_shinfo(tgt)->nr_frags; 3444 fragfrom = &skb_shinfo(skb)->frags[from]; 3445 3446 /* Actual merge is delayed until the point when we know we can 3447 * commit all, so that we don't have to undo partial changes 3448 */ 3449 if (!to || 3450 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3451 skb_frag_off(fragfrom))) { 3452 merge = -1; 3453 } else { 3454 merge = to - 1; 3455 3456 todo -= skb_frag_size(fragfrom); 3457 if (todo < 0) { 3458 if (skb_prepare_for_shift(skb) || 3459 skb_prepare_for_shift(tgt)) 3460 return 0; 3461 3462 /* All previous frag pointers might be stale! */ 3463 fragfrom = &skb_shinfo(skb)->frags[from]; 3464 fragto = &skb_shinfo(tgt)->frags[merge]; 3465 3466 skb_frag_size_add(fragto, shiftlen); 3467 skb_frag_size_sub(fragfrom, shiftlen); 3468 skb_frag_off_add(fragfrom, shiftlen); 3469 3470 goto onlymerged; 3471 } 3472 3473 from++; 3474 } 3475 3476 /* Skip full, not-fitting skb to avoid expensive operations */ 3477 if ((shiftlen == skb->len) && 3478 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3479 return 0; 3480 3481 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3482 return 0; 3483 3484 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3485 if (to == MAX_SKB_FRAGS) 3486 return 0; 3487 3488 fragfrom = &skb_shinfo(skb)->frags[from]; 3489 fragto = &skb_shinfo(tgt)->frags[to]; 3490 3491 if (todo >= skb_frag_size(fragfrom)) { 3492 *fragto = *fragfrom; 3493 todo -= skb_frag_size(fragfrom); 3494 from++; 3495 to++; 3496 3497 } else { 3498 __skb_frag_ref(fragfrom); 3499 skb_frag_page_copy(fragto, fragfrom); 3500 skb_frag_off_copy(fragto, fragfrom); 3501 skb_frag_size_set(fragto, todo); 3502 3503 skb_frag_off_add(fragfrom, todo); 3504 skb_frag_size_sub(fragfrom, todo); 3505 todo = 0; 3506 3507 to++; 3508 break; 3509 } 3510 } 3511 3512 /* Ready to "commit" this state change to tgt */ 3513 skb_shinfo(tgt)->nr_frags = to; 3514 3515 if (merge >= 0) { 3516 fragfrom = &skb_shinfo(skb)->frags[0]; 3517 fragto = &skb_shinfo(tgt)->frags[merge]; 3518 3519 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3520 __skb_frag_unref(fragfrom, skb->pp_recycle); 3521 } 3522 3523 /* Reposition in the original skb */ 3524 to = 0; 3525 while (from < skb_shinfo(skb)->nr_frags) 3526 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3527 skb_shinfo(skb)->nr_frags = to; 3528 3529 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3530 3531 onlymerged: 3532 /* Most likely the tgt won't ever need its checksum anymore, skb on 3533 * the other hand might need it if it needs to be resent 3534 */ 3535 tgt->ip_summed = CHECKSUM_PARTIAL; 3536 skb->ip_summed = CHECKSUM_PARTIAL; 3537 3538 /* Yak, is it really working this way? Some helper please? */ 3539 skb->len -= shiftlen; 3540 skb->data_len -= shiftlen; 3541 skb->truesize -= shiftlen; 3542 tgt->len += shiftlen; 3543 tgt->data_len += shiftlen; 3544 tgt->truesize += shiftlen; 3545 3546 return shiftlen; 3547 } 3548 3549 /** 3550 * skb_prepare_seq_read - Prepare a sequential read of skb data 3551 * @skb: the buffer to read 3552 * @from: lower offset of data to be read 3553 * @to: upper offset of data to be read 3554 * @st: state variable 3555 * 3556 * Initializes the specified state variable. Must be called before 3557 * invoking skb_seq_read() for the first time. 3558 */ 3559 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3560 unsigned int to, struct skb_seq_state *st) 3561 { 3562 st->lower_offset = from; 3563 st->upper_offset = to; 3564 st->root_skb = st->cur_skb = skb; 3565 st->frag_idx = st->stepped_offset = 0; 3566 st->frag_data = NULL; 3567 st->frag_off = 0; 3568 } 3569 EXPORT_SYMBOL(skb_prepare_seq_read); 3570 3571 /** 3572 * skb_seq_read - Sequentially read skb data 3573 * @consumed: number of bytes consumed by the caller so far 3574 * @data: destination pointer for data to be returned 3575 * @st: state variable 3576 * 3577 * Reads a block of skb data at @consumed relative to the 3578 * lower offset specified to skb_prepare_seq_read(). Assigns 3579 * the head of the data block to @data and returns the length 3580 * of the block or 0 if the end of the skb data or the upper 3581 * offset has been reached. 3582 * 3583 * The caller is not required to consume all of the data 3584 * returned, i.e. @consumed is typically set to the number 3585 * of bytes already consumed and the next call to 3586 * skb_seq_read() will return the remaining part of the block. 3587 * 3588 * Note 1: The size of each block of data returned can be arbitrary, 3589 * this limitation is the cost for zerocopy sequential 3590 * reads of potentially non linear data. 3591 * 3592 * Note 2: Fragment lists within fragments are not implemented 3593 * at the moment, state->root_skb could be replaced with 3594 * a stack for this purpose. 3595 */ 3596 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3597 struct skb_seq_state *st) 3598 { 3599 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3600 skb_frag_t *frag; 3601 3602 if (unlikely(abs_offset >= st->upper_offset)) { 3603 if (st->frag_data) { 3604 kunmap_atomic(st->frag_data); 3605 st->frag_data = NULL; 3606 } 3607 return 0; 3608 } 3609 3610 next_skb: 3611 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3612 3613 if (abs_offset < block_limit && !st->frag_data) { 3614 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3615 return block_limit - abs_offset; 3616 } 3617 3618 if (st->frag_idx == 0 && !st->frag_data) 3619 st->stepped_offset += skb_headlen(st->cur_skb); 3620 3621 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3622 unsigned int pg_idx, pg_off, pg_sz; 3623 3624 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3625 3626 pg_idx = 0; 3627 pg_off = skb_frag_off(frag); 3628 pg_sz = skb_frag_size(frag); 3629 3630 if (skb_frag_must_loop(skb_frag_page(frag))) { 3631 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3632 pg_off = offset_in_page(pg_off + st->frag_off); 3633 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3634 PAGE_SIZE - pg_off); 3635 } 3636 3637 block_limit = pg_sz + st->stepped_offset; 3638 if (abs_offset < block_limit) { 3639 if (!st->frag_data) 3640 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3641 3642 *data = (u8 *)st->frag_data + pg_off + 3643 (abs_offset - st->stepped_offset); 3644 3645 return block_limit - abs_offset; 3646 } 3647 3648 if (st->frag_data) { 3649 kunmap_atomic(st->frag_data); 3650 st->frag_data = NULL; 3651 } 3652 3653 st->stepped_offset += pg_sz; 3654 st->frag_off += pg_sz; 3655 if (st->frag_off == skb_frag_size(frag)) { 3656 st->frag_off = 0; 3657 st->frag_idx++; 3658 } 3659 } 3660 3661 if (st->frag_data) { 3662 kunmap_atomic(st->frag_data); 3663 st->frag_data = NULL; 3664 } 3665 3666 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3667 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3668 st->frag_idx = 0; 3669 goto next_skb; 3670 } else if (st->cur_skb->next) { 3671 st->cur_skb = st->cur_skb->next; 3672 st->frag_idx = 0; 3673 goto next_skb; 3674 } 3675 3676 return 0; 3677 } 3678 EXPORT_SYMBOL(skb_seq_read); 3679 3680 /** 3681 * skb_abort_seq_read - Abort a sequential read of skb data 3682 * @st: state variable 3683 * 3684 * Must be called if skb_seq_read() was not called until it 3685 * returned 0. 3686 */ 3687 void skb_abort_seq_read(struct skb_seq_state *st) 3688 { 3689 if (st->frag_data) 3690 kunmap_atomic(st->frag_data); 3691 } 3692 EXPORT_SYMBOL(skb_abort_seq_read); 3693 3694 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3695 3696 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3697 struct ts_config *conf, 3698 struct ts_state *state) 3699 { 3700 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3701 } 3702 3703 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3704 { 3705 skb_abort_seq_read(TS_SKB_CB(state)); 3706 } 3707 3708 /** 3709 * skb_find_text - Find a text pattern in skb data 3710 * @skb: the buffer to look in 3711 * @from: search offset 3712 * @to: search limit 3713 * @config: textsearch configuration 3714 * 3715 * Finds a pattern in the skb data according to the specified 3716 * textsearch configuration. Use textsearch_next() to retrieve 3717 * subsequent occurrences of the pattern. Returns the offset 3718 * to the first occurrence or UINT_MAX if no match was found. 3719 */ 3720 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3721 unsigned int to, struct ts_config *config) 3722 { 3723 struct ts_state state; 3724 unsigned int ret; 3725 3726 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3727 3728 config->get_next_block = skb_ts_get_next_block; 3729 config->finish = skb_ts_finish; 3730 3731 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3732 3733 ret = textsearch_find(config, &state); 3734 return (ret <= to - from ? ret : UINT_MAX); 3735 } 3736 EXPORT_SYMBOL(skb_find_text); 3737 3738 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3739 int offset, size_t size) 3740 { 3741 int i = skb_shinfo(skb)->nr_frags; 3742 3743 if (skb_can_coalesce(skb, i, page, offset)) { 3744 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3745 } else if (i < MAX_SKB_FRAGS) { 3746 get_page(page); 3747 skb_fill_page_desc(skb, i, page, offset, size); 3748 } else { 3749 return -EMSGSIZE; 3750 } 3751 3752 return 0; 3753 } 3754 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3755 3756 /** 3757 * skb_pull_rcsum - pull skb and update receive checksum 3758 * @skb: buffer to update 3759 * @len: length of data pulled 3760 * 3761 * This function performs an skb_pull on the packet and updates 3762 * the CHECKSUM_COMPLETE checksum. It should be used on 3763 * receive path processing instead of skb_pull unless you know 3764 * that the checksum difference is zero (e.g., a valid IP header) 3765 * or you are setting ip_summed to CHECKSUM_NONE. 3766 */ 3767 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3768 { 3769 unsigned char *data = skb->data; 3770 3771 BUG_ON(len > skb->len); 3772 __skb_pull(skb, len); 3773 skb_postpull_rcsum(skb, data, len); 3774 return skb->data; 3775 } 3776 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3777 3778 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3779 { 3780 skb_frag_t head_frag; 3781 struct page *page; 3782 3783 page = virt_to_head_page(frag_skb->head); 3784 __skb_frag_set_page(&head_frag, page); 3785 skb_frag_off_set(&head_frag, frag_skb->data - 3786 (unsigned char *)page_address(page)); 3787 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3788 return head_frag; 3789 } 3790 3791 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3792 netdev_features_t features, 3793 unsigned int offset) 3794 { 3795 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3796 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3797 unsigned int delta_truesize = 0; 3798 unsigned int delta_len = 0; 3799 struct sk_buff *tail = NULL; 3800 struct sk_buff *nskb, *tmp; 3801 int err; 3802 3803 skb_push(skb, -skb_network_offset(skb) + offset); 3804 3805 skb_shinfo(skb)->frag_list = NULL; 3806 3807 do { 3808 nskb = list_skb; 3809 list_skb = list_skb->next; 3810 3811 err = 0; 3812 if (skb_shared(nskb)) { 3813 tmp = skb_clone(nskb, GFP_ATOMIC); 3814 if (tmp) { 3815 consume_skb(nskb); 3816 nskb = tmp; 3817 err = skb_unclone(nskb, GFP_ATOMIC); 3818 } else { 3819 err = -ENOMEM; 3820 } 3821 } 3822 3823 if (!tail) 3824 skb->next = nskb; 3825 else 3826 tail->next = nskb; 3827 3828 if (unlikely(err)) { 3829 nskb->next = list_skb; 3830 goto err_linearize; 3831 } 3832 3833 tail = nskb; 3834 3835 delta_len += nskb->len; 3836 delta_truesize += nskb->truesize; 3837 3838 skb_push(nskb, -skb_network_offset(nskb) + offset); 3839 3840 skb_release_head_state(nskb); 3841 __copy_skb_header(nskb, skb); 3842 3843 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3844 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3845 nskb->data - tnl_hlen, 3846 offset + tnl_hlen); 3847 3848 if (skb_needs_linearize(nskb, features) && 3849 __skb_linearize(nskb)) 3850 goto err_linearize; 3851 3852 } while (list_skb); 3853 3854 skb->truesize = skb->truesize - delta_truesize; 3855 skb->data_len = skb->data_len - delta_len; 3856 skb->len = skb->len - delta_len; 3857 3858 skb_gso_reset(skb); 3859 3860 skb->prev = tail; 3861 3862 if (skb_needs_linearize(skb, features) && 3863 __skb_linearize(skb)) 3864 goto err_linearize; 3865 3866 skb_get(skb); 3867 3868 return skb; 3869 3870 err_linearize: 3871 kfree_skb_list(skb->next); 3872 skb->next = NULL; 3873 return ERR_PTR(-ENOMEM); 3874 } 3875 EXPORT_SYMBOL_GPL(skb_segment_list); 3876 3877 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) 3878 { 3879 if (unlikely(p->len + skb->len >= 65536)) 3880 return -E2BIG; 3881 3882 if (NAPI_GRO_CB(p)->last == p) 3883 skb_shinfo(p)->frag_list = skb; 3884 else 3885 NAPI_GRO_CB(p)->last->next = skb; 3886 3887 skb_pull(skb, skb_gro_offset(skb)); 3888 3889 NAPI_GRO_CB(p)->last = skb; 3890 NAPI_GRO_CB(p)->count++; 3891 p->data_len += skb->len; 3892 p->truesize += skb->truesize; 3893 p->len += skb->len; 3894 3895 NAPI_GRO_CB(skb)->same_flow = 1; 3896 3897 return 0; 3898 } 3899 3900 /** 3901 * skb_segment - Perform protocol segmentation on skb. 3902 * @head_skb: buffer to segment 3903 * @features: features for the output path (see dev->features) 3904 * 3905 * This function performs segmentation on the given skb. It returns 3906 * a pointer to the first in a list of new skbs for the segments. 3907 * In case of error it returns ERR_PTR(err). 3908 */ 3909 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3910 netdev_features_t features) 3911 { 3912 struct sk_buff *segs = NULL; 3913 struct sk_buff *tail = NULL; 3914 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3915 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3916 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3917 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3918 struct sk_buff *frag_skb = head_skb; 3919 unsigned int offset = doffset; 3920 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3921 unsigned int partial_segs = 0; 3922 unsigned int headroom; 3923 unsigned int len = head_skb->len; 3924 __be16 proto; 3925 bool csum, sg; 3926 int nfrags = skb_shinfo(head_skb)->nr_frags; 3927 int err = -ENOMEM; 3928 int i = 0; 3929 int pos; 3930 3931 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3932 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3933 /* gso_size is untrusted, and we have a frag_list with a linear 3934 * non head_frag head. 3935 * 3936 * (we assume checking the first list_skb member suffices; 3937 * i.e if either of the list_skb members have non head_frag 3938 * head, then the first one has too). 3939 * 3940 * If head_skb's headlen does not fit requested gso_size, it 3941 * means that the frag_list members do NOT terminate on exact 3942 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3943 * sharing. Therefore we must fallback to copying the frag_list 3944 * skbs; we do so by disabling SG. 3945 */ 3946 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3947 features &= ~NETIF_F_SG; 3948 } 3949 3950 __skb_push(head_skb, doffset); 3951 proto = skb_network_protocol(head_skb, NULL); 3952 if (unlikely(!proto)) 3953 return ERR_PTR(-EINVAL); 3954 3955 sg = !!(features & NETIF_F_SG); 3956 csum = !!can_checksum_protocol(features, proto); 3957 3958 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3959 if (!(features & NETIF_F_GSO_PARTIAL)) { 3960 struct sk_buff *iter; 3961 unsigned int frag_len; 3962 3963 if (!list_skb || 3964 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3965 goto normal; 3966 3967 /* If we get here then all the required 3968 * GSO features except frag_list are supported. 3969 * Try to split the SKB to multiple GSO SKBs 3970 * with no frag_list. 3971 * Currently we can do that only when the buffers don't 3972 * have a linear part and all the buffers except 3973 * the last are of the same length. 3974 */ 3975 frag_len = list_skb->len; 3976 skb_walk_frags(head_skb, iter) { 3977 if (frag_len != iter->len && iter->next) 3978 goto normal; 3979 if (skb_headlen(iter) && !iter->head_frag) 3980 goto normal; 3981 3982 len -= iter->len; 3983 } 3984 3985 if (len != frag_len) 3986 goto normal; 3987 } 3988 3989 /* GSO partial only requires that we trim off any excess that 3990 * doesn't fit into an MSS sized block, so take care of that 3991 * now. 3992 */ 3993 partial_segs = len / mss; 3994 if (partial_segs > 1) 3995 mss *= partial_segs; 3996 else 3997 partial_segs = 0; 3998 } 3999 4000 normal: 4001 headroom = skb_headroom(head_skb); 4002 pos = skb_headlen(head_skb); 4003 4004 do { 4005 struct sk_buff *nskb; 4006 skb_frag_t *nskb_frag; 4007 int hsize; 4008 int size; 4009 4010 if (unlikely(mss == GSO_BY_FRAGS)) { 4011 len = list_skb->len; 4012 } else { 4013 len = head_skb->len - offset; 4014 if (len > mss) 4015 len = mss; 4016 } 4017 4018 hsize = skb_headlen(head_skb) - offset; 4019 4020 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4021 (skb_headlen(list_skb) == len || sg)) { 4022 BUG_ON(skb_headlen(list_skb) > len); 4023 4024 i = 0; 4025 nfrags = skb_shinfo(list_skb)->nr_frags; 4026 frag = skb_shinfo(list_skb)->frags; 4027 frag_skb = list_skb; 4028 pos += skb_headlen(list_skb); 4029 4030 while (pos < offset + len) { 4031 BUG_ON(i >= nfrags); 4032 4033 size = skb_frag_size(frag); 4034 if (pos + size > offset + len) 4035 break; 4036 4037 i++; 4038 pos += size; 4039 frag++; 4040 } 4041 4042 nskb = skb_clone(list_skb, GFP_ATOMIC); 4043 list_skb = list_skb->next; 4044 4045 if (unlikely(!nskb)) 4046 goto err; 4047 4048 if (unlikely(pskb_trim(nskb, len))) { 4049 kfree_skb(nskb); 4050 goto err; 4051 } 4052 4053 hsize = skb_end_offset(nskb); 4054 if (skb_cow_head(nskb, doffset + headroom)) { 4055 kfree_skb(nskb); 4056 goto err; 4057 } 4058 4059 nskb->truesize += skb_end_offset(nskb) - hsize; 4060 skb_release_head_state(nskb); 4061 __skb_push(nskb, doffset); 4062 } else { 4063 if (hsize < 0) 4064 hsize = 0; 4065 if (hsize > len || !sg) 4066 hsize = len; 4067 4068 nskb = __alloc_skb(hsize + doffset + headroom, 4069 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4070 NUMA_NO_NODE); 4071 4072 if (unlikely(!nskb)) 4073 goto err; 4074 4075 skb_reserve(nskb, headroom); 4076 __skb_put(nskb, doffset); 4077 } 4078 4079 if (segs) 4080 tail->next = nskb; 4081 else 4082 segs = nskb; 4083 tail = nskb; 4084 4085 __copy_skb_header(nskb, head_skb); 4086 4087 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4088 skb_reset_mac_len(nskb); 4089 4090 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4091 nskb->data - tnl_hlen, 4092 doffset + tnl_hlen); 4093 4094 if (nskb->len == len + doffset) 4095 goto perform_csum_check; 4096 4097 if (!sg) { 4098 if (!csum) { 4099 if (!nskb->remcsum_offload) 4100 nskb->ip_summed = CHECKSUM_NONE; 4101 SKB_GSO_CB(nskb)->csum = 4102 skb_copy_and_csum_bits(head_skb, offset, 4103 skb_put(nskb, 4104 len), 4105 len); 4106 SKB_GSO_CB(nskb)->csum_start = 4107 skb_headroom(nskb) + doffset; 4108 } else { 4109 skb_copy_bits(head_skb, offset, 4110 skb_put(nskb, len), 4111 len); 4112 } 4113 continue; 4114 } 4115 4116 nskb_frag = skb_shinfo(nskb)->frags; 4117 4118 skb_copy_from_linear_data_offset(head_skb, offset, 4119 skb_put(nskb, hsize), hsize); 4120 4121 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4122 SKBFL_SHARED_FRAG; 4123 4124 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4125 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4126 goto err; 4127 4128 while (pos < offset + len) { 4129 if (i >= nfrags) { 4130 i = 0; 4131 nfrags = skb_shinfo(list_skb)->nr_frags; 4132 frag = skb_shinfo(list_skb)->frags; 4133 frag_skb = list_skb; 4134 if (!skb_headlen(list_skb)) { 4135 BUG_ON(!nfrags); 4136 } else { 4137 BUG_ON(!list_skb->head_frag); 4138 4139 /* to make room for head_frag. */ 4140 i--; 4141 frag--; 4142 } 4143 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4144 skb_zerocopy_clone(nskb, frag_skb, 4145 GFP_ATOMIC)) 4146 goto err; 4147 4148 list_skb = list_skb->next; 4149 } 4150 4151 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4152 MAX_SKB_FRAGS)) { 4153 net_warn_ratelimited( 4154 "skb_segment: too many frags: %u %u\n", 4155 pos, mss); 4156 err = -EINVAL; 4157 goto err; 4158 } 4159 4160 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4161 __skb_frag_ref(nskb_frag); 4162 size = skb_frag_size(nskb_frag); 4163 4164 if (pos < offset) { 4165 skb_frag_off_add(nskb_frag, offset - pos); 4166 skb_frag_size_sub(nskb_frag, offset - pos); 4167 } 4168 4169 skb_shinfo(nskb)->nr_frags++; 4170 4171 if (pos + size <= offset + len) { 4172 i++; 4173 frag++; 4174 pos += size; 4175 } else { 4176 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4177 goto skip_fraglist; 4178 } 4179 4180 nskb_frag++; 4181 } 4182 4183 skip_fraglist: 4184 nskb->data_len = len - hsize; 4185 nskb->len += nskb->data_len; 4186 nskb->truesize += nskb->data_len; 4187 4188 perform_csum_check: 4189 if (!csum) { 4190 if (skb_has_shared_frag(nskb) && 4191 __skb_linearize(nskb)) 4192 goto err; 4193 4194 if (!nskb->remcsum_offload) 4195 nskb->ip_summed = CHECKSUM_NONE; 4196 SKB_GSO_CB(nskb)->csum = 4197 skb_checksum(nskb, doffset, 4198 nskb->len - doffset, 0); 4199 SKB_GSO_CB(nskb)->csum_start = 4200 skb_headroom(nskb) + doffset; 4201 } 4202 } while ((offset += len) < head_skb->len); 4203 4204 /* Some callers want to get the end of the list. 4205 * Put it in segs->prev to avoid walking the list. 4206 * (see validate_xmit_skb_list() for example) 4207 */ 4208 segs->prev = tail; 4209 4210 if (partial_segs) { 4211 struct sk_buff *iter; 4212 int type = skb_shinfo(head_skb)->gso_type; 4213 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4214 4215 /* Update type to add partial and then remove dodgy if set */ 4216 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4217 type &= ~SKB_GSO_DODGY; 4218 4219 /* Update GSO info and prepare to start updating headers on 4220 * our way back down the stack of protocols. 4221 */ 4222 for (iter = segs; iter; iter = iter->next) { 4223 skb_shinfo(iter)->gso_size = gso_size; 4224 skb_shinfo(iter)->gso_segs = partial_segs; 4225 skb_shinfo(iter)->gso_type = type; 4226 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4227 } 4228 4229 if (tail->len - doffset <= gso_size) 4230 skb_shinfo(tail)->gso_size = 0; 4231 else if (tail != segs) 4232 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4233 } 4234 4235 /* Following permits correct backpressure, for protocols 4236 * using skb_set_owner_w(). 4237 * Idea is to tranfert ownership from head_skb to last segment. 4238 */ 4239 if (head_skb->destructor == sock_wfree) { 4240 swap(tail->truesize, head_skb->truesize); 4241 swap(tail->destructor, head_skb->destructor); 4242 swap(tail->sk, head_skb->sk); 4243 } 4244 return segs; 4245 4246 err: 4247 kfree_skb_list(segs); 4248 return ERR_PTR(err); 4249 } 4250 EXPORT_SYMBOL_GPL(skb_segment); 4251 4252 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 4253 { 4254 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 4255 unsigned int offset = skb_gro_offset(skb); 4256 unsigned int headlen = skb_headlen(skb); 4257 unsigned int len = skb_gro_len(skb); 4258 unsigned int delta_truesize; 4259 struct sk_buff *lp; 4260 4261 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) 4262 return -E2BIG; 4263 4264 lp = NAPI_GRO_CB(p)->last; 4265 pinfo = skb_shinfo(lp); 4266 4267 if (headlen <= offset) { 4268 skb_frag_t *frag; 4269 skb_frag_t *frag2; 4270 int i = skbinfo->nr_frags; 4271 int nr_frags = pinfo->nr_frags + i; 4272 4273 if (nr_frags > MAX_SKB_FRAGS) 4274 goto merge; 4275 4276 offset -= headlen; 4277 pinfo->nr_frags = nr_frags; 4278 skbinfo->nr_frags = 0; 4279 4280 frag = pinfo->frags + nr_frags; 4281 frag2 = skbinfo->frags + i; 4282 do { 4283 *--frag = *--frag2; 4284 } while (--i); 4285 4286 skb_frag_off_add(frag, offset); 4287 skb_frag_size_sub(frag, offset); 4288 4289 /* all fragments truesize : remove (head size + sk_buff) */ 4290 delta_truesize = skb->truesize - 4291 SKB_TRUESIZE(skb_end_offset(skb)); 4292 4293 skb->truesize -= skb->data_len; 4294 skb->len -= skb->data_len; 4295 skb->data_len = 0; 4296 4297 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 4298 goto done; 4299 } else if (skb->head_frag) { 4300 int nr_frags = pinfo->nr_frags; 4301 skb_frag_t *frag = pinfo->frags + nr_frags; 4302 struct page *page = virt_to_head_page(skb->head); 4303 unsigned int first_size = headlen - offset; 4304 unsigned int first_offset; 4305 4306 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 4307 goto merge; 4308 4309 first_offset = skb->data - 4310 (unsigned char *)page_address(page) + 4311 offset; 4312 4313 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 4314 4315 __skb_frag_set_page(frag, page); 4316 skb_frag_off_set(frag, first_offset); 4317 skb_frag_size_set(frag, first_size); 4318 4319 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 4320 /* We dont need to clear skbinfo->nr_frags here */ 4321 4322 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4323 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 4324 goto done; 4325 } 4326 4327 merge: 4328 delta_truesize = skb->truesize; 4329 if (offset > headlen) { 4330 unsigned int eat = offset - headlen; 4331 4332 skb_frag_off_add(&skbinfo->frags[0], eat); 4333 skb_frag_size_sub(&skbinfo->frags[0], eat); 4334 skb->data_len -= eat; 4335 skb->len -= eat; 4336 offset = headlen; 4337 } 4338 4339 __skb_pull(skb, offset); 4340 4341 if (NAPI_GRO_CB(p)->last == p) 4342 skb_shinfo(p)->frag_list = skb; 4343 else 4344 NAPI_GRO_CB(p)->last->next = skb; 4345 NAPI_GRO_CB(p)->last = skb; 4346 __skb_header_release(skb); 4347 lp = p; 4348 4349 done: 4350 NAPI_GRO_CB(p)->count++; 4351 p->data_len += len; 4352 p->truesize += delta_truesize; 4353 p->len += len; 4354 if (lp != p) { 4355 lp->data_len += len; 4356 lp->truesize += delta_truesize; 4357 lp->len += len; 4358 } 4359 NAPI_GRO_CB(skb)->same_flow = 1; 4360 return 0; 4361 } 4362 4363 #ifdef CONFIG_SKB_EXTENSIONS 4364 #define SKB_EXT_ALIGN_VALUE 8 4365 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4366 4367 static const u8 skb_ext_type_len[] = { 4368 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4369 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4370 #endif 4371 #ifdef CONFIG_XFRM 4372 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4373 #endif 4374 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4375 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4376 #endif 4377 #if IS_ENABLED(CONFIG_MPTCP) 4378 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4379 #endif 4380 }; 4381 4382 static __always_inline unsigned int skb_ext_total_length(void) 4383 { 4384 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4385 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4386 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4387 #endif 4388 #ifdef CONFIG_XFRM 4389 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4390 #endif 4391 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4392 skb_ext_type_len[TC_SKB_EXT] + 4393 #endif 4394 #if IS_ENABLED(CONFIG_MPTCP) 4395 skb_ext_type_len[SKB_EXT_MPTCP] + 4396 #endif 4397 0; 4398 } 4399 4400 static void skb_extensions_init(void) 4401 { 4402 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4403 BUILD_BUG_ON(skb_ext_total_length() > 255); 4404 4405 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4406 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4407 0, 4408 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4409 NULL); 4410 } 4411 #else 4412 static void skb_extensions_init(void) {} 4413 #endif 4414 4415 void __init skb_init(void) 4416 { 4417 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4418 sizeof(struct sk_buff), 4419 0, 4420 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4421 offsetof(struct sk_buff, cb), 4422 sizeof_field(struct sk_buff, cb), 4423 NULL); 4424 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4425 sizeof(struct sk_buff_fclones), 4426 0, 4427 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4428 NULL); 4429 skb_extensions_init(); 4430 } 4431 4432 static int 4433 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4434 unsigned int recursion_level) 4435 { 4436 int start = skb_headlen(skb); 4437 int i, copy = start - offset; 4438 struct sk_buff *frag_iter; 4439 int elt = 0; 4440 4441 if (unlikely(recursion_level >= 24)) 4442 return -EMSGSIZE; 4443 4444 if (copy > 0) { 4445 if (copy > len) 4446 copy = len; 4447 sg_set_buf(sg, skb->data + offset, copy); 4448 elt++; 4449 if ((len -= copy) == 0) 4450 return elt; 4451 offset += copy; 4452 } 4453 4454 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4455 int end; 4456 4457 WARN_ON(start > offset + len); 4458 4459 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4460 if ((copy = end - offset) > 0) { 4461 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4462 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4463 return -EMSGSIZE; 4464 4465 if (copy > len) 4466 copy = len; 4467 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4468 skb_frag_off(frag) + offset - start); 4469 elt++; 4470 if (!(len -= copy)) 4471 return elt; 4472 offset += copy; 4473 } 4474 start = end; 4475 } 4476 4477 skb_walk_frags(skb, frag_iter) { 4478 int end, ret; 4479 4480 WARN_ON(start > offset + len); 4481 4482 end = start + frag_iter->len; 4483 if ((copy = end - offset) > 0) { 4484 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4485 return -EMSGSIZE; 4486 4487 if (copy > len) 4488 copy = len; 4489 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4490 copy, recursion_level + 1); 4491 if (unlikely(ret < 0)) 4492 return ret; 4493 elt += ret; 4494 if ((len -= copy) == 0) 4495 return elt; 4496 offset += copy; 4497 } 4498 start = end; 4499 } 4500 BUG_ON(len); 4501 return elt; 4502 } 4503 4504 /** 4505 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4506 * @skb: Socket buffer containing the buffers to be mapped 4507 * @sg: The scatter-gather list to map into 4508 * @offset: The offset into the buffer's contents to start mapping 4509 * @len: Length of buffer space to be mapped 4510 * 4511 * Fill the specified scatter-gather list with mappings/pointers into a 4512 * region of the buffer space attached to a socket buffer. Returns either 4513 * the number of scatterlist items used, or -EMSGSIZE if the contents 4514 * could not fit. 4515 */ 4516 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4517 { 4518 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4519 4520 if (nsg <= 0) 4521 return nsg; 4522 4523 sg_mark_end(&sg[nsg - 1]); 4524 4525 return nsg; 4526 } 4527 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4528 4529 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4530 * sglist without mark the sg which contain last skb data as the end. 4531 * So the caller can mannipulate sg list as will when padding new data after 4532 * the first call without calling sg_unmark_end to expend sg list. 4533 * 4534 * Scenario to use skb_to_sgvec_nomark: 4535 * 1. sg_init_table 4536 * 2. skb_to_sgvec_nomark(payload1) 4537 * 3. skb_to_sgvec_nomark(payload2) 4538 * 4539 * This is equivalent to: 4540 * 1. sg_init_table 4541 * 2. skb_to_sgvec(payload1) 4542 * 3. sg_unmark_end 4543 * 4. skb_to_sgvec(payload2) 4544 * 4545 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4546 * is more preferable. 4547 */ 4548 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4549 int offset, int len) 4550 { 4551 return __skb_to_sgvec(skb, sg, offset, len, 0); 4552 } 4553 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4554 4555 4556 4557 /** 4558 * skb_cow_data - Check that a socket buffer's data buffers are writable 4559 * @skb: The socket buffer to check. 4560 * @tailbits: Amount of trailing space to be added 4561 * @trailer: Returned pointer to the skb where the @tailbits space begins 4562 * 4563 * Make sure that the data buffers attached to a socket buffer are 4564 * writable. If they are not, private copies are made of the data buffers 4565 * and the socket buffer is set to use these instead. 4566 * 4567 * If @tailbits is given, make sure that there is space to write @tailbits 4568 * bytes of data beyond current end of socket buffer. @trailer will be 4569 * set to point to the skb in which this space begins. 4570 * 4571 * The number of scatterlist elements required to completely map the 4572 * COW'd and extended socket buffer will be returned. 4573 */ 4574 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4575 { 4576 int copyflag; 4577 int elt; 4578 struct sk_buff *skb1, **skb_p; 4579 4580 /* If skb is cloned or its head is paged, reallocate 4581 * head pulling out all the pages (pages are considered not writable 4582 * at the moment even if they are anonymous). 4583 */ 4584 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4585 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4586 return -ENOMEM; 4587 4588 /* Easy case. Most of packets will go this way. */ 4589 if (!skb_has_frag_list(skb)) { 4590 /* A little of trouble, not enough of space for trailer. 4591 * This should not happen, when stack is tuned to generate 4592 * good frames. OK, on miss we reallocate and reserve even more 4593 * space, 128 bytes is fair. */ 4594 4595 if (skb_tailroom(skb) < tailbits && 4596 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4597 return -ENOMEM; 4598 4599 /* Voila! */ 4600 *trailer = skb; 4601 return 1; 4602 } 4603 4604 /* Misery. We are in troubles, going to mincer fragments... */ 4605 4606 elt = 1; 4607 skb_p = &skb_shinfo(skb)->frag_list; 4608 copyflag = 0; 4609 4610 while ((skb1 = *skb_p) != NULL) { 4611 int ntail = 0; 4612 4613 /* The fragment is partially pulled by someone, 4614 * this can happen on input. Copy it and everything 4615 * after it. */ 4616 4617 if (skb_shared(skb1)) 4618 copyflag = 1; 4619 4620 /* If the skb is the last, worry about trailer. */ 4621 4622 if (skb1->next == NULL && tailbits) { 4623 if (skb_shinfo(skb1)->nr_frags || 4624 skb_has_frag_list(skb1) || 4625 skb_tailroom(skb1) < tailbits) 4626 ntail = tailbits + 128; 4627 } 4628 4629 if (copyflag || 4630 skb_cloned(skb1) || 4631 ntail || 4632 skb_shinfo(skb1)->nr_frags || 4633 skb_has_frag_list(skb1)) { 4634 struct sk_buff *skb2; 4635 4636 /* Fuck, we are miserable poor guys... */ 4637 if (ntail == 0) 4638 skb2 = skb_copy(skb1, GFP_ATOMIC); 4639 else 4640 skb2 = skb_copy_expand(skb1, 4641 skb_headroom(skb1), 4642 ntail, 4643 GFP_ATOMIC); 4644 if (unlikely(skb2 == NULL)) 4645 return -ENOMEM; 4646 4647 if (skb1->sk) 4648 skb_set_owner_w(skb2, skb1->sk); 4649 4650 /* Looking around. Are we still alive? 4651 * OK, link new skb, drop old one */ 4652 4653 skb2->next = skb1->next; 4654 *skb_p = skb2; 4655 kfree_skb(skb1); 4656 skb1 = skb2; 4657 } 4658 elt++; 4659 *trailer = skb1; 4660 skb_p = &skb1->next; 4661 } 4662 4663 return elt; 4664 } 4665 EXPORT_SYMBOL_GPL(skb_cow_data); 4666 4667 static void sock_rmem_free(struct sk_buff *skb) 4668 { 4669 struct sock *sk = skb->sk; 4670 4671 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4672 } 4673 4674 static void skb_set_err_queue(struct sk_buff *skb) 4675 { 4676 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4677 * So, it is safe to (mis)use it to mark skbs on the error queue. 4678 */ 4679 skb->pkt_type = PACKET_OUTGOING; 4680 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4681 } 4682 4683 /* 4684 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4685 */ 4686 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4687 { 4688 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4689 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4690 return -ENOMEM; 4691 4692 skb_orphan(skb); 4693 skb->sk = sk; 4694 skb->destructor = sock_rmem_free; 4695 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4696 skb_set_err_queue(skb); 4697 4698 /* before exiting rcu section, make sure dst is refcounted */ 4699 skb_dst_force(skb); 4700 4701 skb_queue_tail(&sk->sk_error_queue, skb); 4702 if (!sock_flag(sk, SOCK_DEAD)) 4703 sk_error_report(sk); 4704 return 0; 4705 } 4706 EXPORT_SYMBOL(sock_queue_err_skb); 4707 4708 static bool is_icmp_err_skb(const struct sk_buff *skb) 4709 { 4710 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4711 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4712 } 4713 4714 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4715 { 4716 struct sk_buff_head *q = &sk->sk_error_queue; 4717 struct sk_buff *skb, *skb_next = NULL; 4718 bool icmp_next = false; 4719 unsigned long flags; 4720 4721 spin_lock_irqsave(&q->lock, flags); 4722 skb = __skb_dequeue(q); 4723 if (skb && (skb_next = skb_peek(q))) { 4724 icmp_next = is_icmp_err_skb(skb_next); 4725 if (icmp_next) 4726 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4727 } 4728 spin_unlock_irqrestore(&q->lock, flags); 4729 4730 if (is_icmp_err_skb(skb) && !icmp_next) 4731 sk->sk_err = 0; 4732 4733 if (skb_next) 4734 sk_error_report(sk); 4735 4736 return skb; 4737 } 4738 EXPORT_SYMBOL(sock_dequeue_err_skb); 4739 4740 /** 4741 * skb_clone_sk - create clone of skb, and take reference to socket 4742 * @skb: the skb to clone 4743 * 4744 * This function creates a clone of a buffer that holds a reference on 4745 * sk_refcnt. Buffers created via this function are meant to be 4746 * returned using sock_queue_err_skb, or free via kfree_skb. 4747 * 4748 * When passing buffers allocated with this function to sock_queue_err_skb 4749 * it is necessary to wrap the call with sock_hold/sock_put in order to 4750 * prevent the socket from being released prior to being enqueued on 4751 * the sk_error_queue. 4752 */ 4753 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4754 { 4755 struct sock *sk = skb->sk; 4756 struct sk_buff *clone; 4757 4758 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4759 return NULL; 4760 4761 clone = skb_clone(skb, GFP_ATOMIC); 4762 if (!clone) { 4763 sock_put(sk); 4764 return NULL; 4765 } 4766 4767 clone->sk = sk; 4768 clone->destructor = sock_efree; 4769 4770 return clone; 4771 } 4772 EXPORT_SYMBOL(skb_clone_sk); 4773 4774 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4775 struct sock *sk, 4776 int tstype, 4777 bool opt_stats) 4778 { 4779 struct sock_exterr_skb *serr; 4780 int err; 4781 4782 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4783 4784 serr = SKB_EXT_ERR(skb); 4785 memset(serr, 0, sizeof(*serr)); 4786 serr->ee.ee_errno = ENOMSG; 4787 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4788 serr->ee.ee_info = tstype; 4789 serr->opt_stats = opt_stats; 4790 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4791 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4792 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4793 if (sk->sk_protocol == IPPROTO_TCP && 4794 sk->sk_type == SOCK_STREAM) 4795 serr->ee.ee_data -= sk->sk_tskey; 4796 } 4797 4798 err = sock_queue_err_skb(sk, skb); 4799 4800 if (err) 4801 kfree_skb(skb); 4802 } 4803 4804 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4805 { 4806 bool ret; 4807 4808 if (likely(sysctl_tstamp_allow_data || tsonly)) 4809 return true; 4810 4811 read_lock_bh(&sk->sk_callback_lock); 4812 ret = sk->sk_socket && sk->sk_socket->file && 4813 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4814 read_unlock_bh(&sk->sk_callback_lock); 4815 return ret; 4816 } 4817 4818 void skb_complete_tx_timestamp(struct sk_buff *skb, 4819 struct skb_shared_hwtstamps *hwtstamps) 4820 { 4821 struct sock *sk = skb->sk; 4822 4823 if (!skb_may_tx_timestamp(sk, false)) 4824 goto err; 4825 4826 /* Take a reference to prevent skb_orphan() from freeing the socket, 4827 * but only if the socket refcount is not zero. 4828 */ 4829 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4830 *skb_hwtstamps(skb) = *hwtstamps; 4831 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4832 sock_put(sk); 4833 return; 4834 } 4835 4836 err: 4837 kfree_skb(skb); 4838 } 4839 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4840 4841 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4842 const struct sk_buff *ack_skb, 4843 struct skb_shared_hwtstamps *hwtstamps, 4844 struct sock *sk, int tstype) 4845 { 4846 struct sk_buff *skb; 4847 bool tsonly, opt_stats = false; 4848 4849 if (!sk) 4850 return; 4851 4852 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4853 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4854 return; 4855 4856 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4857 if (!skb_may_tx_timestamp(sk, tsonly)) 4858 return; 4859 4860 if (tsonly) { 4861 #ifdef CONFIG_INET 4862 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4863 sk->sk_protocol == IPPROTO_TCP && 4864 sk->sk_type == SOCK_STREAM) { 4865 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4866 ack_skb); 4867 opt_stats = true; 4868 } else 4869 #endif 4870 skb = alloc_skb(0, GFP_ATOMIC); 4871 } else { 4872 skb = skb_clone(orig_skb, GFP_ATOMIC); 4873 } 4874 if (!skb) 4875 return; 4876 4877 if (tsonly) { 4878 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4879 SKBTX_ANY_TSTAMP; 4880 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4881 } 4882 4883 if (hwtstamps) 4884 *skb_hwtstamps(skb) = *hwtstamps; 4885 else 4886 skb->tstamp = ktime_get_real(); 4887 4888 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4889 } 4890 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4891 4892 void skb_tstamp_tx(struct sk_buff *orig_skb, 4893 struct skb_shared_hwtstamps *hwtstamps) 4894 { 4895 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4896 SCM_TSTAMP_SND); 4897 } 4898 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4899 4900 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4901 { 4902 struct sock *sk = skb->sk; 4903 struct sock_exterr_skb *serr; 4904 int err = 1; 4905 4906 skb->wifi_acked_valid = 1; 4907 skb->wifi_acked = acked; 4908 4909 serr = SKB_EXT_ERR(skb); 4910 memset(serr, 0, sizeof(*serr)); 4911 serr->ee.ee_errno = ENOMSG; 4912 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4913 4914 /* Take a reference to prevent skb_orphan() from freeing the socket, 4915 * but only if the socket refcount is not zero. 4916 */ 4917 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4918 err = sock_queue_err_skb(sk, skb); 4919 sock_put(sk); 4920 } 4921 if (err) 4922 kfree_skb(skb); 4923 } 4924 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4925 4926 /** 4927 * skb_partial_csum_set - set up and verify partial csum values for packet 4928 * @skb: the skb to set 4929 * @start: the number of bytes after skb->data to start checksumming. 4930 * @off: the offset from start to place the checksum. 4931 * 4932 * For untrusted partially-checksummed packets, we need to make sure the values 4933 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4934 * 4935 * This function checks and sets those values and skb->ip_summed: if this 4936 * returns false you should drop the packet. 4937 */ 4938 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4939 { 4940 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4941 u32 csum_start = skb_headroom(skb) + (u32)start; 4942 4943 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4944 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4945 start, off, skb_headroom(skb), skb_headlen(skb)); 4946 return false; 4947 } 4948 skb->ip_summed = CHECKSUM_PARTIAL; 4949 skb->csum_start = csum_start; 4950 skb->csum_offset = off; 4951 skb_set_transport_header(skb, start); 4952 return true; 4953 } 4954 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4955 4956 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4957 unsigned int max) 4958 { 4959 if (skb_headlen(skb) >= len) 4960 return 0; 4961 4962 /* If we need to pullup then pullup to the max, so we 4963 * won't need to do it again. 4964 */ 4965 if (max > skb->len) 4966 max = skb->len; 4967 4968 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4969 return -ENOMEM; 4970 4971 if (skb_headlen(skb) < len) 4972 return -EPROTO; 4973 4974 return 0; 4975 } 4976 4977 #define MAX_TCP_HDR_LEN (15 * 4) 4978 4979 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4980 typeof(IPPROTO_IP) proto, 4981 unsigned int off) 4982 { 4983 int err; 4984 4985 switch (proto) { 4986 case IPPROTO_TCP: 4987 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4988 off + MAX_TCP_HDR_LEN); 4989 if (!err && !skb_partial_csum_set(skb, off, 4990 offsetof(struct tcphdr, 4991 check))) 4992 err = -EPROTO; 4993 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4994 4995 case IPPROTO_UDP: 4996 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4997 off + sizeof(struct udphdr)); 4998 if (!err && !skb_partial_csum_set(skb, off, 4999 offsetof(struct udphdr, 5000 check))) 5001 err = -EPROTO; 5002 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5003 } 5004 5005 return ERR_PTR(-EPROTO); 5006 } 5007 5008 /* This value should be large enough to cover a tagged ethernet header plus 5009 * maximally sized IP and TCP or UDP headers. 5010 */ 5011 #define MAX_IP_HDR_LEN 128 5012 5013 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5014 { 5015 unsigned int off; 5016 bool fragment; 5017 __sum16 *csum; 5018 int err; 5019 5020 fragment = false; 5021 5022 err = skb_maybe_pull_tail(skb, 5023 sizeof(struct iphdr), 5024 MAX_IP_HDR_LEN); 5025 if (err < 0) 5026 goto out; 5027 5028 if (ip_is_fragment(ip_hdr(skb))) 5029 fragment = true; 5030 5031 off = ip_hdrlen(skb); 5032 5033 err = -EPROTO; 5034 5035 if (fragment) 5036 goto out; 5037 5038 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5039 if (IS_ERR(csum)) 5040 return PTR_ERR(csum); 5041 5042 if (recalculate) 5043 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5044 ip_hdr(skb)->daddr, 5045 skb->len - off, 5046 ip_hdr(skb)->protocol, 0); 5047 err = 0; 5048 5049 out: 5050 return err; 5051 } 5052 5053 /* This value should be large enough to cover a tagged ethernet header plus 5054 * an IPv6 header, all options, and a maximal TCP or UDP header. 5055 */ 5056 #define MAX_IPV6_HDR_LEN 256 5057 5058 #define OPT_HDR(type, skb, off) \ 5059 (type *)(skb_network_header(skb) + (off)) 5060 5061 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5062 { 5063 int err; 5064 u8 nexthdr; 5065 unsigned int off; 5066 unsigned int len; 5067 bool fragment; 5068 bool done; 5069 __sum16 *csum; 5070 5071 fragment = false; 5072 done = false; 5073 5074 off = sizeof(struct ipv6hdr); 5075 5076 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5077 if (err < 0) 5078 goto out; 5079 5080 nexthdr = ipv6_hdr(skb)->nexthdr; 5081 5082 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5083 while (off <= len && !done) { 5084 switch (nexthdr) { 5085 case IPPROTO_DSTOPTS: 5086 case IPPROTO_HOPOPTS: 5087 case IPPROTO_ROUTING: { 5088 struct ipv6_opt_hdr *hp; 5089 5090 err = skb_maybe_pull_tail(skb, 5091 off + 5092 sizeof(struct ipv6_opt_hdr), 5093 MAX_IPV6_HDR_LEN); 5094 if (err < 0) 5095 goto out; 5096 5097 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5098 nexthdr = hp->nexthdr; 5099 off += ipv6_optlen(hp); 5100 break; 5101 } 5102 case IPPROTO_AH: { 5103 struct ip_auth_hdr *hp; 5104 5105 err = skb_maybe_pull_tail(skb, 5106 off + 5107 sizeof(struct ip_auth_hdr), 5108 MAX_IPV6_HDR_LEN); 5109 if (err < 0) 5110 goto out; 5111 5112 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5113 nexthdr = hp->nexthdr; 5114 off += ipv6_authlen(hp); 5115 break; 5116 } 5117 case IPPROTO_FRAGMENT: { 5118 struct frag_hdr *hp; 5119 5120 err = skb_maybe_pull_tail(skb, 5121 off + 5122 sizeof(struct frag_hdr), 5123 MAX_IPV6_HDR_LEN); 5124 if (err < 0) 5125 goto out; 5126 5127 hp = OPT_HDR(struct frag_hdr, skb, off); 5128 5129 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5130 fragment = true; 5131 5132 nexthdr = hp->nexthdr; 5133 off += sizeof(struct frag_hdr); 5134 break; 5135 } 5136 default: 5137 done = true; 5138 break; 5139 } 5140 } 5141 5142 err = -EPROTO; 5143 5144 if (!done || fragment) 5145 goto out; 5146 5147 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5148 if (IS_ERR(csum)) 5149 return PTR_ERR(csum); 5150 5151 if (recalculate) 5152 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5153 &ipv6_hdr(skb)->daddr, 5154 skb->len - off, nexthdr, 0); 5155 err = 0; 5156 5157 out: 5158 return err; 5159 } 5160 5161 /** 5162 * skb_checksum_setup - set up partial checksum offset 5163 * @skb: the skb to set up 5164 * @recalculate: if true the pseudo-header checksum will be recalculated 5165 */ 5166 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5167 { 5168 int err; 5169 5170 switch (skb->protocol) { 5171 case htons(ETH_P_IP): 5172 err = skb_checksum_setup_ipv4(skb, recalculate); 5173 break; 5174 5175 case htons(ETH_P_IPV6): 5176 err = skb_checksum_setup_ipv6(skb, recalculate); 5177 break; 5178 5179 default: 5180 err = -EPROTO; 5181 break; 5182 } 5183 5184 return err; 5185 } 5186 EXPORT_SYMBOL(skb_checksum_setup); 5187 5188 /** 5189 * skb_checksum_maybe_trim - maybe trims the given skb 5190 * @skb: the skb to check 5191 * @transport_len: the data length beyond the network header 5192 * 5193 * Checks whether the given skb has data beyond the given transport length. 5194 * If so, returns a cloned skb trimmed to this transport length. 5195 * Otherwise returns the provided skb. Returns NULL in error cases 5196 * (e.g. transport_len exceeds skb length or out-of-memory). 5197 * 5198 * Caller needs to set the skb transport header and free any returned skb if it 5199 * differs from the provided skb. 5200 */ 5201 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5202 unsigned int transport_len) 5203 { 5204 struct sk_buff *skb_chk; 5205 unsigned int len = skb_transport_offset(skb) + transport_len; 5206 int ret; 5207 5208 if (skb->len < len) 5209 return NULL; 5210 else if (skb->len == len) 5211 return skb; 5212 5213 skb_chk = skb_clone(skb, GFP_ATOMIC); 5214 if (!skb_chk) 5215 return NULL; 5216 5217 ret = pskb_trim_rcsum(skb_chk, len); 5218 if (ret) { 5219 kfree_skb(skb_chk); 5220 return NULL; 5221 } 5222 5223 return skb_chk; 5224 } 5225 5226 /** 5227 * skb_checksum_trimmed - validate checksum of an skb 5228 * @skb: the skb to check 5229 * @transport_len: the data length beyond the network header 5230 * @skb_chkf: checksum function to use 5231 * 5232 * Applies the given checksum function skb_chkf to the provided skb. 5233 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5234 * 5235 * If the skb has data beyond the given transport length, then a 5236 * trimmed & cloned skb is checked and returned. 5237 * 5238 * Caller needs to set the skb transport header and free any returned skb if it 5239 * differs from the provided skb. 5240 */ 5241 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5242 unsigned int transport_len, 5243 __sum16(*skb_chkf)(struct sk_buff *skb)) 5244 { 5245 struct sk_buff *skb_chk; 5246 unsigned int offset = skb_transport_offset(skb); 5247 __sum16 ret; 5248 5249 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5250 if (!skb_chk) 5251 goto err; 5252 5253 if (!pskb_may_pull(skb_chk, offset)) 5254 goto err; 5255 5256 skb_pull_rcsum(skb_chk, offset); 5257 ret = skb_chkf(skb_chk); 5258 skb_push_rcsum(skb_chk, offset); 5259 5260 if (ret) 5261 goto err; 5262 5263 return skb_chk; 5264 5265 err: 5266 if (skb_chk && skb_chk != skb) 5267 kfree_skb(skb_chk); 5268 5269 return NULL; 5270 5271 } 5272 EXPORT_SYMBOL(skb_checksum_trimmed); 5273 5274 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5275 { 5276 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5277 skb->dev->name); 5278 } 5279 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5280 5281 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5282 { 5283 if (head_stolen) { 5284 skb_release_head_state(skb); 5285 kmem_cache_free(skbuff_head_cache, skb); 5286 } else { 5287 __kfree_skb(skb); 5288 } 5289 } 5290 EXPORT_SYMBOL(kfree_skb_partial); 5291 5292 /** 5293 * skb_try_coalesce - try to merge skb to prior one 5294 * @to: prior buffer 5295 * @from: buffer to add 5296 * @fragstolen: pointer to boolean 5297 * @delta_truesize: how much more was allocated than was requested 5298 */ 5299 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5300 bool *fragstolen, int *delta_truesize) 5301 { 5302 struct skb_shared_info *to_shinfo, *from_shinfo; 5303 int i, delta, len = from->len; 5304 5305 *fragstolen = false; 5306 5307 if (skb_cloned(to)) 5308 return false; 5309 5310 /* The page pool signature of struct page will eventually figure out 5311 * which pages can be recycled or not but for now let's prohibit slab 5312 * allocated and page_pool allocated SKBs from being coalesced. 5313 */ 5314 if (to->pp_recycle != from->pp_recycle) 5315 return false; 5316 5317 if (len <= skb_tailroom(to)) { 5318 if (len) 5319 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5320 *delta_truesize = 0; 5321 return true; 5322 } 5323 5324 to_shinfo = skb_shinfo(to); 5325 from_shinfo = skb_shinfo(from); 5326 if (to_shinfo->frag_list || from_shinfo->frag_list) 5327 return false; 5328 if (skb_zcopy(to) || skb_zcopy(from)) 5329 return false; 5330 5331 if (skb_headlen(from) != 0) { 5332 struct page *page; 5333 unsigned int offset; 5334 5335 if (to_shinfo->nr_frags + 5336 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5337 return false; 5338 5339 if (skb_head_is_locked(from)) 5340 return false; 5341 5342 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5343 5344 page = virt_to_head_page(from->head); 5345 offset = from->data - (unsigned char *)page_address(page); 5346 5347 skb_fill_page_desc(to, to_shinfo->nr_frags, 5348 page, offset, skb_headlen(from)); 5349 *fragstolen = true; 5350 } else { 5351 if (to_shinfo->nr_frags + 5352 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5353 return false; 5354 5355 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5356 } 5357 5358 WARN_ON_ONCE(delta < len); 5359 5360 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5361 from_shinfo->frags, 5362 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5363 to_shinfo->nr_frags += from_shinfo->nr_frags; 5364 5365 if (!skb_cloned(from)) 5366 from_shinfo->nr_frags = 0; 5367 5368 /* if the skb is not cloned this does nothing 5369 * since we set nr_frags to 0. 5370 */ 5371 for (i = 0; i < from_shinfo->nr_frags; i++) 5372 __skb_frag_ref(&from_shinfo->frags[i]); 5373 5374 to->truesize += delta; 5375 to->len += len; 5376 to->data_len += len; 5377 5378 *delta_truesize = delta; 5379 return true; 5380 } 5381 EXPORT_SYMBOL(skb_try_coalesce); 5382 5383 /** 5384 * skb_scrub_packet - scrub an skb 5385 * 5386 * @skb: buffer to clean 5387 * @xnet: packet is crossing netns 5388 * 5389 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5390 * into/from a tunnel. Some information have to be cleared during these 5391 * operations. 5392 * skb_scrub_packet can also be used to clean a skb before injecting it in 5393 * another namespace (@xnet == true). We have to clear all information in the 5394 * skb that could impact namespace isolation. 5395 */ 5396 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5397 { 5398 skb->pkt_type = PACKET_HOST; 5399 skb->skb_iif = 0; 5400 skb->ignore_df = 0; 5401 skb_dst_drop(skb); 5402 skb_ext_reset(skb); 5403 nf_reset_ct(skb); 5404 nf_reset_trace(skb); 5405 5406 #ifdef CONFIG_NET_SWITCHDEV 5407 skb->offload_fwd_mark = 0; 5408 skb->offload_l3_fwd_mark = 0; 5409 #endif 5410 5411 if (!xnet) 5412 return; 5413 5414 ipvs_reset(skb); 5415 skb->mark = 0; 5416 skb->tstamp = 0; 5417 } 5418 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5419 5420 /** 5421 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5422 * 5423 * @skb: GSO skb 5424 * 5425 * skb_gso_transport_seglen is used to determine the real size of the 5426 * individual segments, including Layer4 headers (TCP/UDP). 5427 * 5428 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5429 */ 5430 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5431 { 5432 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5433 unsigned int thlen = 0; 5434 5435 if (skb->encapsulation) { 5436 thlen = skb_inner_transport_header(skb) - 5437 skb_transport_header(skb); 5438 5439 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5440 thlen += inner_tcp_hdrlen(skb); 5441 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5442 thlen = tcp_hdrlen(skb); 5443 } else if (unlikely(skb_is_gso_sctp(skb))) { 5444 thlen = sizeof(struct sctphdr); 5445 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5446 thlen = sizeof(struct udphdr); 5447 } 5448 /* UFO sets gso_size to the size of the fragmentation 5449 * payload, i.e. the size of the L4 (UDP) header is already 5450 * accounted for. 5451 */ 5452 return thlen + shinfo->gso_size; 5453 } 5454 5455 /** 5456 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5457 * 5458 * @skb: GSO skb 5459 * 5460 * skb_gso_network_seglen is used to determine the real size of the 5461 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5462 * 5463 * The MAC/L2 header is not accounted for. 5464 */ 5465 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5466 { 5467 unsigned int hdr_len = skb_transport_header(skb) - 5468 skb_network_header(skb); 5469 5470 return hdr_len + skb_gso_transport_seglen(skb); 5471 } 5472 5473 /** 5474 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5475 * 5476 * @skb: GSO skb 5477 * 5478 * skb_gso_mac_seglen is used to determine the real size of the 5479 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5480 * headers (TCP/UDP). 5481 */ 5482 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5483 { 5484 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5485 5486 return hdr_len + skb_gso_transport_seglen(skb); 5487 } 5488 5489 /** 5490 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5491 * 5492 * There are a couple of instances where we have a GSO skb, and we 5493 * want to determine what size it would be after it is segmented. 5494 * 5495 * We might want to check: 5496 * - L3+L4+payload size (e.g. IP forwarding) 5497 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5498 * 5499 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5500 * 5501 * @skb: GSO skb 5502 * 5503 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5504 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5505 * 5506 * @max_len: The maximum permissible length. 5507 * 5508 * Returns true if the segmented length <= max length. 5509 */ 5510 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5511 unsigned int seg_len, 5512 unsigned int max_len) { 5513 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5514 const struct sk_buff *iter; 5515 5516 if (shinfo->gso_size != GSO_BY_FRAGS) 5517 return seg_len <= max_len; 5518 5519 /* Undo this so we can re-use header sizes */ 5520 seg_len -= GSO_BY_FRAGS; 5521 5522 skb_walk_frags(skb, iter) { 5523 if (seg_len + skb_headlen(iter) > max_len) 5524 return false; 5525 } 5526 5527 return true; 5528 } 5529 5530 /** 5531 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5532 * 5533 * @skb: GSO skb 5534 * @mtu: MTU to validate against 5535 * 5536 * skb_gso_validate_network_len validates if a given skb will fit a 5537 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5538 * payload. 5539 */ 5540 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5541 { 5542 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5543 } 5544 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5545 5546 /** 5547 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5548 * 5549 * @skb: GSO skb 5550 * @len: length to validate against 5551 * 5552 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5553 * length once split, including L2, L3 and L4 headers and the payload. 5554 */ 5555 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5556 { 5557 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5558 } 5559 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5560 5561 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5562 { 5563 int mac_len, meta_len; 5564 void *meta; 5565 5566 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5567 kfree_skb(skb); 5568 return NULL; 5569 } 5570 5571 mac_len = skb->data - skb_mac_header(skb); 5572 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5573 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5574 mac_len - VLAN_HLEN - ETH_TLEN); 5575 } 5576 5577 meta_len = skb_metadata_len(skb); 5578 if (meta_len) { 5579 meta = skb_metadata_end(skb) - meta_len; 5580 memmove(meta + VLAN_HLEN, meta, meta_len); 5581 } 5582 5583 skb->mac_header += VLAN_HLEN; 5584 return skb; 5585 } 5586 5587 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5588 { 5589 struct vlan_hdr *vhdr; 5590 u16 vlan_tci; 5591 5592 if (unlikely(skb_vlan_tag_present(skb))) { 5593 /* vlan_tci is already set-up so leave this for another time */ 5594 return skb; 5595 } 5596 5597 skb = skb_share_check(skb, GFP_ATOMIC); 5598 if (unlikely(!skb)) 5599 goto err_free; 5600 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5601 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5602 goto err_free; 5603 5604 vhdr = (struct vlan_hdr *)skb->data; 5605 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5606 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5607 5608 skb_pull_rcsum(skb, VLAN_HLEN); 5609 vlan_set_encap_proto(skb, vhdr); 5610 5611 skb = skb_reorder_vlan_header(skb); 5612 if (unlikely(!skb)) 5613 goto err_free; 5614 5615 skb_reset_network_header(skb); 5616 if (!skb_transport_header_was_set(skb)) 5617 skb_reset_transport_header(skb); 5618 skb_reset_mac_len(skb); 5619 5620 return skb; 5621 5622 err_free: 5623 kfree_skb(skb); 5624 return NULL; 5625 } 5626 EXPORT_SYMBOL(skb_vlan_untag); 5627 5628 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5629 { 5630 if (!pskb_may_pull(skb, write_len)) 5631 return -ENOMEM; 5632 5633 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5634 return 0; 5635 5636 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5637 } 5638 EXPORT_SYMBOL(skb_ensure_writable); 5639 5640 /* remove VLAN header from packet and update csum accordingly. 5641 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5642 */ 5643 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5644 { 5645 struct vlan_hdr *vhdr; 5646 int offset = skb->data - skb_mac_header(skb); 5647 int err; 5648 5649 if (WARN_ONCE(offset, 5650 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5651 offset)) { 5652 return -EINVAL; 5653 } 5654 5655 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5656 if (unlikely(err)) 5657 return err; 5658 5659 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5660 5661 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5662 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5663 5664 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5665 __skb_pull(skb, VLAN_HLEN); 5666 5667 vlan_set_encap_proto(skb, vhdr); 5668 skb->mac_header += VLAN_HLEN; 5669 5670 if (skb_network_offset(skb) < ETH_HLEN) 5671 skb_set_network_header(skb, ETH_HLEN); 5672 5673 skb_reset_mac_len(skb); 5674 5675 return err; 5676 } 5677 EXPORT_SYMBOL(__skb_vlan_pop); 5678 5679 /* Pop a vlan tag either from hwaccel or from payload. 5680 * Expects skb->data at mac header. 5681 */ 5682 int skb_vlan_pop(struct sk_buff *skb) 5683 { 5684 u16 vlan_tci; 5685 __be16 vlan_proto; 5686 int err; 5687 5688 if (likely(skb_vlan_tag_present(skb))) { 5689 __vlan_hwaccel_clear_tag(skb); 5690 } else { 5691 if (unlikely(!eth_type_vlan(skb->protocol))) 5692 return 0; 5693 5694 err = __skb_vlan_pop(skb, &vlan_tci); 5695 if (err) 5696 return err; 5697 } 5698 /* move next vlan tag to hw accel tag */ 5699 if (likely(!eth_type_vlan(skb->protocol))) 5700 return 0; 5701 5702 vlan_proto = skb->protocol; 5703 err = __skb_vlan_pop(skb, &vlan_tci); 5704 if (unlikely(err)) 5705 return err; 5706 5707 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5708 return 0; 5709 } 5710 EXPORT_SYMBOL(skb_vlan_pop); 5711 5712 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5713 * Expects skb->data at mac header. 5714 */ 5715 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5716 { 5717 if (skb_vlan_tag_present(skb)) { 5718 int offset = skb->data - skb_mac_header(skb); 5719 int err; 5720 5721 if (WARN_ONCE(offset, 5722 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5723 offset)) { 5724 return -EINVAL; 5725 } 5726 5727 err = __vlan_insert_tag(skb, skb->vlan_proto, 5728 skb_vlan_tag_get(skb)); 5729 if (err) 5730 return err; 5731 5732 skb->protocol = skb->vlan_proto; 5733 skb->mac_len += VLAN_HLEN; 5734 5735 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5736 } 5737 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5738 return 0; 5739 } 5740 EXPORT_SYMBOL(skb_vlan_push); 5741 5742 /** 5743 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5744 * 5745 * @skb: Socket buffer to modify 5746 * 5747 * Drop the Ethernet header of @skb. 5748 * 5749 * Expects that skb->data points to the mac header and that no VLAN tags are 5750 * present. 5751 * 5752 * Returns 0 on success, -errno otherwise. 5753 */ 5754 int skb_eth_pop(struct sk_buff *skb) 5755 { 5756 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5757 skb_network_offset(skb) < ETH_HLEN) 5758 return -EPROTO; 5759 5760 skb_pull_rcsum(skb, ETH_HLEN); 5761 skb_reset_mac_header(skb); 5762 skb_reset_mac_len(skb); 5763 5764 return 0; 5765 } 5766 EXPORT_SYMBOL(skb_eth_pop); 5767 5768 /** 5769 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5770 * 5771 * @skb: Socket buffer to modify 5772 * @dst: Destination MAC address of the new header 5773 * @src: Source MAC address of the new header 5774 * 5775 * Prepend @skb with a new Ethernet header. 5776 * 5777 * Expects that skb->data points to the mac header, which must be empty. 5778 * 5779 * Returns 0 on success, -errno otherwise. 5780 */ 5781 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5782 const unsigned char *src) 5783 { 5784 struct ethhdr *eth; 5785 int err; 5786 5787 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5788 return -EPROTO; 5789 5790 err = skb_cow_head(skb, sizeof(*eth)); 5791 if (err < 0) 5792 return err; 5793 5794 skb_push(skb, sizeof(*eth)); 5795 skb_reset_mac_header(skb); 5796 skb_reset_mac_len(skb); 5797 5798 eth = eth_hdr(skb); 5799 ether_addr_copy(eth->h_dest, dst); 5800 ether_addr_copy(eth->h_source, src); 5801 eth->h_proto = skb->protocol; 5802 5803 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5804 5805 return 0; 5806 } 5807 EXPORT_SYMBOL(skb_eth_push); 5808 5809 /* Update the ethertype of hdr and the skb csum value if required. */ 5810 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5811 __be16 ethertype) 5812 { 5813 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5814 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5815 5816 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5817 } 5818 5819 hdr->h_proto = ethertype; 5820 } 5821 5822 /** 5823 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5824 * the packet 5825 * 5826 * @skb: buffer 5827 * @mpls_lse: MPLS label stack entry to push 5828 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5829 * @mac_len: length of the MAC header 5830 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5831 * ethernet 5832 * 5833 * Expects skb->data at mac header. 5834 * 5835 * Returns 0 on success, -errno otherwise. 5836 */ 5837 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5838 int mac_len, bool ethernet) 5839 { 5840 struct mpls_shim_hdr *lse; 5841 int err; 5842 5843 if (unlikely(!eth_p_mpls(mpls_proto))) 5844 return -EINVAL; 5845 5846 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5847 if (skb->encapsulation) 5848 return -EINVAL; 5849 5850 err = skb_cow_head(skb, MPLS_HLEN); 5851 if (unlikely(err)) 5852 return err; 5853 5854 if (!skb->inner_protocol) { 5855 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5856 skb_set_inner_protocol(skb, skb->protocol); 5857 } 5858 5859 skb_push(skb, MPLS_HLEN); 5860 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5861 mac_len); 5862 skb_reset_mac_header(skb); 5863 skb_set_network_header(skb, mac_len); 5864 skb_reset_mac_len(skb); 5865 5866 lse = mpls_hdr(skb); 5867 lse->label_stack_entry = mpls_lse; 5868 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5869 5870 if (ethernet && mac_len >= ETH_HLEN) 5871 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5872 skb->protocol = mpls_proto; 5873 5874 return 0; 5875 } 5876 EXPORT_SYMBOL_GPL(skb_mpls_push); 5877 5878 /** 5879 * skb_mpls_pop() - pop the outermost MPLS header 5880 * 5881 * @skb: buffer 5882 * @next_proto: ethertype of header after popped MPLS header 5883 * @mac_len: length of the MAC header 5884 * @ethernet: flag to indicate if the packet is ethernet 5885 * 5886 * Expects skb->data at mac header. 5887 * 5888 * Returns 0 on success, -errno otherwise. 5889 */ 5890 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5891 bool ethernet) 5892 { 5893 int err; 5894 5895 if (unlikely(!eth_p_mpls(skb->protocol))) 5896 return 0; 5897 5898 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5899 if (unlikely(err)) 5900 return err; 5901 5902 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5903 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5904 mac_len); 5905 5906 __skb_pull(skb, MPLS_HLEN); 5907 skb_reset_mac_header(skb); 5908 skb_set_network_header(skb, mac_len); 5909 5910 if (ethernet && mac_len >= ETH_HLEN) { 5911 struct ethhdr *hdr; 5912 5913 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5914 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5915 skb_mod_eth_type(skb, hdr, next_proto); 5916 } 5917 skb->protocol = next_proto; 5918 5919 return 0; 5920 } 5921 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5922 5923 /** 5924 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5925 * 5926 * @skb: buffer 5927 * @mpls_lse: new MPLS label stack entry to update to 5928 * 5929 * Expects skb->data at mac header. 5930 * 5931 * Returns 0 on success, -errno otherwise. 5932 */ 5933 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5934 { 5935 int err; 5936 5937 if (unlikely(!eth_p_mpls(skb->protocol))) 5938 return -EINVAL; 5939 5940 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5941 if (unlikely(err)) 5942 return err; 5943 5944 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5945 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5946 5947 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5948 } 5949 5950 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5951 5952 return 0; 5953 } 5954 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5955 5956 /** 5957 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5958 * 5959 * @skb: buffer 5960 * 5961 * Expects skb->data at mac header. 5962 * 5963 * Returns 0 on success, -errno otherwise. 5964 */ 5965 int skb_mpls_dec_ttl(struct sk_buff *skb) 5966 { 5967 u32 lse; 5968 u8 ttl; 5969 5970 if (unlikely(!eth_p_mpls(skb->protocol))) 5971 return -EINVAL; 5972 5973 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5974 return -ENOMEM; 5975 5976 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5977 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5978 if (!--ttl) 5979 return -EINVAL; 5980 5981 lse &= ~MPLS_LS_TTL_MASK; 5982 lse |= ttl << MPLS_LS_TTL_SHIFT; 5983 5984 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5985 } 5986 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5987 5988 /** 5989 * alloc_skb_with_frags - allocate skb with page frags 5990 * 5991 * @header_len: size of linear part 5992 * @data_len: needed length in frags 5993 * @max_page_order: max page order desired. 5994 * @errcode: pointer to error code if any 5995 * @gfp_mask: allocation mask 5996 * 5997 * This can be used to allocate a paged skb, given a maximal order for frags. 5998 */ 5999 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6000 unsigned long data_len, 6001 int max_page_order, 6002 int *errcode, 6003 gfp_t gfp_mask) 6004 { 6005 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 6006 unsigned long chunk; 6007 struct sk_buff *skb; 6008 struct page *page; 6009 int i; 6010 6011 *errcode = -EMSGSIZE; 6012 /* Note this test could be relaxed, if we succeed to allocate 6013 * high order pages... 6014 */ 6015 if (npages > MAX_SKB_FRAGS) 6016 return NULL; 6017 6018 *errcode = -ENOBUFS; 6019 skb = alloc_skb(header_len, gfp_mask); 6020 if (!skb) 6021 return NULL; 6022 6023 skb->truesize += npages << PAGE_SHIFT; 6024 6025 for (i = 0; npages > 0; i++) { 6026 int order = max_page_order; 6027 6028 while (order) { 6029 if (npages >= 1 << order) { 6030 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6031 __GFP_COMP | 6032 __GFP_NOWARN, 6033 order); 6034 if (page) 6035 goto fill_page; 6036 /* Do not retry other high order allocations */ 6037 order = 1; 6038 max_page_order = 0; 6039 } 6040 order--; 6041 } 6042 page = alloc_page(gfp_mask); 6043 if (!page) 6044 goto failure; 6045 fill_page: 6046 chunk = min_t(unsigned long, data_len, 6047 PAGE_SIZE << order); 6048 skb_fill_page_desc(skb, i, page, 0, chunk); 6049 data_len -= chunk; 6050 npages -= 1 << order; 6051 } 6052 return skb; 6053 6054 failure: 6055 kfree_skb(skb); 6056 return NULL; 6057 } 6058 EXPORT_SYMBOL(alloc_skb_with_frags); 6059 6060 /* carve out the first off bytes from skb when off < headlen */ 6061 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6062 const int headlen, gfp_t gfp_mask) 6063 { 6064 int i; 6065 int size = skb_end_offset(skb); 6066 int new_hlen = headlen - off; 6067 u8 *data; 6068 6069 size = SKB_DATA_ALIGN(size); 6070 6071 if (skb_pfmemalloc(skb)) 6072 gfp_mask |= __GFP_MEMALLOC; 6073 data = kmalloc_reserve(size + 6074 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6075 gfp_mask, NUMA_NO_NODE, NULL); 6076 if (!data) 6077 return -ENOMEM; 6078 6079 size = SKB_WITH_OVERHEAD(ksize(data)); 6080 6081 /* Copy real data, and all frags */ 6082 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6083 skb->len -= off; 6084 6085 memcpy((struct skb_shared_info *)(data + size), 6086 skb_shinfo(skb), 6087 offsetof(struct skb_shared_info, 6088 frags[skb_shinfo(skb)->nr_frags])); 6089 if (skb_cloned(skb)) { 6090 /* drop the old head gracefully */ 6091 if (skb_orphan_frags(skb, gfp_mask)) { 6092 kfree(data); 6093 return -ENOMEM; 6094 } 6095 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6096 skb_frag_ref(skb, i); 6097 if (skb_has_frag_list(skb)) 6098 skb_clone_fraglist(skb); 6099 skb_release_data(skb); 6100 } else { 6101 /* we can reuse existing recount- all we did was 6102 * relocate values 6103 */ 6104 skb_free_head(skb); 6105 } 6106 6107 skb->head = data; 6108 skb->data = data; 6109 skb->head_frag = 0; 6110 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6111 skb->end = size; 6112 #else 6113 skb->end = skb->head + size; 6114 #endif 6115 skb_set_tail_pointer(skb, skb_headlen(skb)); 6116 skb_headers_offset_update(skb, 0); 6117 skb->cloned = 0; 6118 skb->hdr_len = 0; 6119 skb->nohdr = 0; 6120 atomic_set(&skb_shinfo(skb)->dataref, 1); 6121 6122 return 0; 6123 } 6124 6125 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6126 6127 /* carve out the first eat bytes from skb's frag_list. May recurse into 6128 * pskb_carve() 6129 */ 6130 static int pskb_carve_frag_list(struct sk_buff *skb, 6131 struct skb_shared_info *shinfo, int eat, 6132 gfp_t gfp_mask) 6133 { 6134 struct sk_buff *list = shinfo->frag_list; 6135 struct sk_buff *clone = NULL; 6136 struct sk_buff *insp = NULL; 6137 6138 do { 6139 if (!list) { 6140 pr_err("Not enough bytes to eat. Want %d\n", eat); 6141 return -EFAULT; 6142 } 6143 if (list->len <= eat) { 6144 /* Eaten as whole. */ 6145 eat -= list->len; 6146 list = list->next; 6147 insp = list; 6148 } else { 6149 /* Eaten partially. */ 6150 if (skb_shared(list)) { 6151 clone = skb_clone(list, gfp_mask); 6152 if (!clone) 6153 return -ENOMEM; 6154 insp = list->next; 6155 list = clone; 6156 } else { 6157 /* This may be pulled without problems. */ 6158 insp = list; 6159 } 6160 if (pskb_carve(list, eat, gfp_mask) < 0) { 6161 kfree_skb(clone); 6162 return -ENOMEM; 6163 } 6164 break; 6165 } 6166 } while (eat); 6167 6168 /* Free pulled out fragments. */ 6169 while ((list = shinfo->frag_list) != insp) { 6170 shinfo->frag_list = list->next; 6171 kfree_skb(list); 6172 } 6173 /* And insert new clone at head. */ 6174 if (clone) { 6175 clone->next = list; 6176 shinfo->frag_list = clone; 6177 } 6178 return 0; 6179 } 6180 6181 /* carve off first len bytes from skb. Split line (off) is in the 6182 * non-linear part of skb 6183 */ 6184 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6185 int pos, gfp_t gfp_mask) 6186 { 6187 int i, k = 0; 6188 int size = skb_end_offset(skb); 6189 u8 *data; 6190 const int nfrags = skb_shinfo(skb)->nr_frags; 6191 struct skb_shared_info *shinfo; 6192 6193 size = SKB_DATA_ALIGN(size); 6194 6195 if (skb_pfmemalloc(skb)) 6196 gfp_mask |= __GFP_MEMALLOC; 6197 data = kmalloc_reserve(size + 6198 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6199 gfp_mask, NUMA_NO_NODE, NULL); 6200 if (!data) 6201 return -ENOMEM; 6202 6203 size = SKB_WITH_OVERHEAD(ksize(data)); 6204 6205 memcpy((struct skb_shared_info *)(data + size), 6206 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6207 if (skb_orphan_frags(skb, gfp_mask)) { 6208 kfree(data); 6209 return -ENOMEM; 6210 } 6211 shinfo = (struct skb_shared_info *)(data + size); 6212 for (i = 0; i < nfrags; i++) { 6213 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6214 6215 if (pos + fsize > off) { 6216 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6217 6218 if (pos < off) { 6219 /* Split frag. 6220 * We have two variants in this case: 6221 * 1. Move all the frag to the second 6222 * part, if it is possible. F.e. 6223 * this approach is mandatory for TUX, 6224 * where splitting is expensive. 6225 * 2. Split is accurately. We make this. 6226 */ 6227 skb_frag_off_add(&shinfo->frags[0], off - pos); 6228 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6229 } 6230 skb_frag_ref(skb, i); 6231 k++; 6232 } 6233 pos += fsize; 6234 } 6235 shinfo->nr_frags = k; 6236 if (skb_has_frag_list(skb)) 6237 skb_clone_fraglist(skb); 6238 6239 /* split line is in frag list */ 6240 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6241 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6242 if (skb_has_frag_list(skb)) 6243 kfree_skb_list(skb_shinfo(skb)->frag_list); 6244 kfree(data); 6245 return -ENOMEM; 6246 } 6247 skb_release_data(skb); 6248 6249 skb->head = data; 6250 skb->head_frag = 0; 6251 skb->data = data; 6252 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6253 skb->end = size; 6254 #else 6255 skb->end = skb->head + size; 6256 #endif 6257 skb_reset_tail_pointer(skb); 6258 skb_headers_offset_update(skb, 0); 6259 skb->cloned = 0; 6260 skb->hdr_len = 0; 6261 skb->nohdr = 0; 6262 skb->len -= off; 6263 skb->data_len = skb->len; 6264 atomic_set(&skb_shinfo(skb)->dataref, 1); 6265 return 0; 6266 } 6267 6268 /* remove len bytes from the beginning of the skb */ 6269 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6270 { 6271 int headlen = skb_headlen(skb); 6272 6273 if (len < headlen) 6274 return pskb_carve_inside_header(skb, len, headlen, gfp); 6275 else 6276 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6277 } 6278 6279 /* Extract to_copy bytes starting at off from skb, and return this in 6280 * a new skb 6281 */ 6282 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6283 int to_copy, gfp_t gfp) 6284 { 6285 struct sk_buff *clone = skb_clone(skb, gfp); 6286 6287 if (!clone) 6288 return NULL; 6289 6290 if (pskb_carve(clone, off, gfp) < 0 || 6291 pskb_trim(clone, to_copy)) { 6292 kfree_skb(clone); 6293 return NULL; 6294 } 6295 return clone; 6296 } 6297 EXPORT_SYMBOL(pskb_extract); 6298 6299 /** 6300 * skb_condense - try to get rid of fragments/frag_list if possible 6301 * @skb: buffer 6302 * 6303 * Can be used to save memory before skb is added to a busy queue. 6304 * If packet has bytes in frags and enough tail room in skb->head, 6305 * pull all of them, so that we can free the frags right now and adjust 6306 * truesize. 6307 * Notes: 6308 * We do not reallocate skb->head thus can not fail. 6309 * Caller must re-evaluate skb->truesize if needed. 6310 */ 6311 void skb_condense(struct sk_buff *skb) 6312 { 6313 if (skb->data_len) { 6314 if (skb->data_len > skb->end - skb->tail || 6315 skb_cloned(skb)) 6316 return; 6317 6318 /* Nice, we can free page frag(s) right now */ 6319 __pskb_pull_tail(skb, skb->data_len); 6320 } 6321 /* At this point, skb->truesize might be over estimated, 6322 * because skb had a fragment, and fragments do not tell 6323 * their truesize. 6324 * When we pulled its content into skb->head, fragment 6325 * was freed, but __pskb_pull_tail() could not possibly 6326 * adjust skb->truesize, not knowing the frag truesize. 6327 */ 6328 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6329 } 6330 6331 #ifdef CONFIG_SKB_EXTENSIONS 6332 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6333 { 6334 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6335 } 6336 6337 /** 6338 * __skb_ext_alloc - allocate a new skb extensions storage 6339 * 6340 * @flags: See kmalloc(). 6341 * 6342 * Returns the newly allocated pointer. The pointer can later attached to a 6343 * skb via __skb_ext_set(). 6344 * Note: caller must handle the skb_ext as an opaque data. 6345 */ 6346 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6347 { 6348 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6349 6350 if (new) { 6351 memset(new->offset, 0, sizeof(new->offset)); 6352 refcount_set(&new->refcnt, 1); 6353 } 6354 6355 return new; 6356 } 6357 6358 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6359 unsigned int old_active) 6360 { 6361 struct skb_ext *new; 6362 6363 if (refcount_read(&old->refcnt) == 1) 6364 return old; 6365 6366 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6367 if (!new) 6368 return NULL; 6369 6370 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6371 refcount_set(&new->refcnt, 1); 6372 6373 #ifdef CONFIG_XFRM 6374 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6375 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6376 unsigned int i; 6377 6378 for (i = 0; i < sp->len; i++) 6379 xfrm_state_hold(sp->xvec[i]); 6380 } 6381 #endif 6382 __skb_ext_put(old); 6383 return new; 6384 } 6385 6386 /** 6387 * __skb_ext_set - attach the specified extension storage to this skb 6388 * @skb: buffer 6389 * @id: extension id 6390 * @ext: extension storage previously allocated via __skb_ext_alloc() 6391 * 6392 * Existing extensions, if any, are cleared. 6393 * 6394 * Returns the pointer to the extension. 6395 */ 6396 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6397 struct skb_ext *ext) 6398 { 6399 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6400 6401 skb_ext_put(skb); 6402 newlen = newoff + skb_ext_type_len[id]; 6403 ext->chunks = newlen; 6404 ext->offset[id] = newoff; 6405 skb->extensions = ext; 6406 skb->active_extensions = 1 << id; 6407 return skb_ext_get_ptr(ext, id); 6408 } 6409 6410 /** 6411 * skb_ext_add - allocate space for given extension, COW if needed 6412 * @skb: buffer 6413 * @id: extension to allocate space for 6414 * 6415 * Allocates enough space for the given extension. 6416 * If the extension is already present, a pointer to that extension 6417 * is returned. 6418 * 6419 * If the skb was cloned, COW applies and the returned memory can be 6420 * modified without changing the extension space of clones buffers. 6421 * 6422 * Returns pointer to the extension or NULL on allocation failure. 6423 */ 6424 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6425 { 6426 struct skb_ext *new, *old = NULL; 6427 unsigned int newlen, newoff; 6428 6429 if (skb->active_extensions) { 6430 old = skb->extensions; 6431 6432 new = skb_ext_maybe_cow(old, skb->active_extensions); 6433 if (!new) 6434 return NULL; 6435 6436 if (__skb_ext_exist(new, id)) 6437 goto set_active; 6438 6439 newoff = new->chunks; 6440 } else { 6441 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6442 6443 new = __skb_ext_alloc(GFP_ATOMIC); 6444 if (!new) 6445 return NULL; 6446 } 6447 6448 newlen = newoff + skb_ext_type_len[id]; 6449 new->chunks = newlen; 6450 new->offset[id] = newoff; 6451 set_active: 6452 skb->extensions = new; 6453 skb->active_extensions |= 1 << id; 6454 return skb_ext_get_ptr(new, id); 6455 } 6456 EXPORT_SYMBOL(skb_ext_add); 6457 6458 #ifdef CONFIG_XFRM 6459 static void skb_ext_put_sp(struct sec_path *sp) 6460 { 6461 unsigned int i; 6462 6463 for (i = 0; i < sp->len; i++) 6464 xfrm_state_put(sp->xvec[i]); 6465 } 6466 #endif 6467 6468 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6469 { 6470 struct skb_ext *ext = skb->extensions; 6471 6472 skb->active_extensions &= ~(1 << id); 6473 if (skb->active_extensions == 0) { 6474 skb->extensions = NULL; 6475 __skb_ext_put(ext); 6476 #ifdef CONFIG_XFRM 6477 } else if (id == SKB_EXT_SEC_PATH && 6478 refcount_read(&ext->refcnt) == 1) { 6479 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6480 6481 skb_ext_put_sp(sp); 6482 sp->len = 0; 6483 #endif 6484 } 6485 } 6486 EXPORT_SYMBOL(__skb_ext_del); 6487 6488 void __skb_ext_put(struct skb_ext *ext) 6489 { 6490 /* If this is last clone, nothing can increment 6491 * it after check passes. Avoids one atomic op. 6492 */ 6493 if (refcount_read(&ext->refcnt) == 1) 6494 goto free_now; 6495 6496 if (!refcount_dec_and_test(&ext->refcnt)) 6497 return; 6498 free_now: 6499 #ifdef CONFIG_XFRM 6500 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6501 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6502 #endif 6503 6504 kmem_cache_free(skbuff_ext_cache, ext); 6505 } 6506 EXPORT_SYMBOL(__skb_ext_put); 6507 #endif /* CONFIG_SKB_EXTENSIONS */ 6508