xref: /openbmc/linux/net/core/skbuff.c (revision 33c1af8e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
65 
66 #include <net/protocol.h>
67 #include <net/dst.h>
68 #include <net/sock.h>
69 #include <net/checksum.h>
70 #include <net/ip6_checksum.h>
71 #include <net/xfrm.h>
72 #include <net/mpls.h>
73 #include <net/mptcp.h>
74 #include <net/mctp.h>
75 #include <net/page_pool.h>
76 #include <net/dropreason.h>
77 
78 #include <linux/uaccess.h>
79 #include <trace/events/skb.h>
80 #include <linux/highmem.h>
81 #include <linux/capability.h>
82 #include <linux/user_namespace.h>
83 #include <linux/indirect_call_wrapper.h>
84 #include <linux/textsearch.h>
85 
86 #include "dev.h"
87 #include "sock_destructor.h"
88 
89 struct kmem_cache *skbuff_cache __ro_after_init;
90 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
91 #ifdef CONFIG_SKB_EXTENSIONS
92 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
93 #endif
94 
95 /* skb_small_head_cache and related code is only supported
96  * for CONFIG_SLAB and CONFIG_SLUB.
97  * As soon as SLOB is removed from the kernel, we can clean up this.
98  */
99 #if !defined(CONFIG_SLOB)
100 # define HAVE_SKB_SMALL_HEAD_CACHE 1
101 #endif
102 
103 #ifdef HAVE_SKB_SMALL_HEAD_CACHE
104 static struct kmem_cache *skb_small_head_cache __ro_after_init;
105 
106 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
107 
108 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
109  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
110  * size, and we can differentiate heads from skb_small_head_cache
111  * vs system slabs by looking at their size (skb_end_offset()).
112  */
113 #define SKB_SMALL_HEAD_CACHE_SIZE					\
114 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
115 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
116 		SKB_SMALL_HEAD_SIZE)
117 
118 #define SKB_SMALL_HEAD_HEADROOM						\
119 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
120 #endif /* HAVE_SKB_SMALL_HEAD_CACHE */
121 
122 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
123 EXPORT_SYMBOL(sysctl_max_skb_frags);
124 
125 #undef FN
126 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
127 static const char * const drop_reasons[] = {
128 	[SKB_CONSUMED] = "CONSUMED",
129 	DEFINE_DROP_REASON(FN, FN)
130 };
131 
132 static const struct drop_reason_list drop_reasons_core = {
133 	.reasons = drop_reasons,
134 	.n_reasons = ARRAY_SIZE(drop_reasons),
135 };
136 
137 const struct drop_reason_list __rcu *
138 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
139 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
140 };
141 EXPORT_SYMBOL(drop_reasons_by_subsys);
142 
143 /**
144  * drop_reasons_register_subsys - register another drop reason subsystem
145  * @subsys: the subsystem to register, must not be the core
146  * @list: the list of drop reasons within the subsystem, must point to
147  *	a statically initialized list
148  */
149 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
150 				  const struct drop_reason_list *list)
151 {
152 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
153 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
154 		 "invalid subsystem %d\n", subsys))
155 		return;
156 
157 	/* must point to statically allocated memory, so INIT is OK */
158 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
159 }
160 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
161 
162 /**
163  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
164  * @subsys: the subsystem to remove, must not be the core
165  *
166  * Note: This will synchronize_rcu() to ensure no users when it returns.
167  */
168 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
169 {
170 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
171 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
172 		 "invalid subsystem %d\n", subsys))
173 		return;
174 
175 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
176 
177 	synchronize_rcu();
178 }
179 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
180 
181 /**
182  *	skb_panic - private function for out-of-line support
183  *	@skb:	buffer
184  *	@sz:	size
185  *	@addr:	address
186  *	@msg:	skb_over_panic or skb_under_panic
187  *
188  *	Out-of-line support for skb_put() and skb_push().
189  *	Called via the wrapper skb_over_panic() or skb_under_panic().
190  *	Keep out of line to prevent kernel bloat.
191  *	__builtin_return_address is not used because it is not always reliable.
192  */
193 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
194 		      const char msg[])
195 {
196 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
197 		 msg, addr, skb->len, sz, skb->head, skb->data,
198 		 (unsigned long)skb->tail, (unsigned long)skb->end,
199 		 skb->dev ? skb->dev->name : "<NULL>");
200 	BUG();
201 }
202 
203 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
204 {
205 	skb_panic(skb, sz, addr, __func__);
206 }
207 
208 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
209 {
210 	skb_panic(skb, sz, addr, __func__);
211 }
212 
213 #define NAPI_SKB_CACHE_SIZE	64
214 #define NAPI_SKB_CACHE_BULK	16
215 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
216 
217 #if PAGE_SIZE == SZ_4K
218 
219 #define NAPI_HAS_SMALL_PAGE_FRAG	1
220 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
221 
222 /* specialized page frag allocator using a single order 0 page
223  * and slicing it into 1K sized fragment. Constrained to systems
224  * with a very limited amount of 1K fragments fitting a single
225  * page - to avoid excessive truesize underestimation
226  */
227 
228 struct page_frag_1k {
229 	void *va;
230 	u16 offset;
231 	bool pfmemalloc;
232 };
233 
234 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
235 {
236 	struct page *page;
237 	int offset;
238 
239 	offset = nc->offset - SZ_1K;
240 	if (likely(offset >= 0))
241 		goto use_frag;
242 
243 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
244 	if (!page)
245 		return NULL;
246 
247 	nc->va = page_address(page);
248 	nc->pfmemalloc = page_is_pfmemalloc(page);
249 	offset = PAGE_SIZE - SZ_1K;
250 	page_ref_add(page, offset / SZ_1K);
251 
252 use_frag:
253 	nc->offset = offset;
254 	return nc->va + offset;
255 }
256 #else
257 
258 /* the small page is actually unused in this build; add dummy helpers
259  * to please the compiler and avoid later preprocessor's conditionals
260  */
261 #define NAPI_HAS_SMALL_PAGE_FRAG	0
262 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
263 
264 struct page_frag_1k {
265 };
266 
267 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
268 {
269 	return NULL;
270 }
271 
272 #endif
273 
274 struct napi_alloc_cache {
275 	struct page_frag_cache page;
276 	struct page_frag_1k page_small;
277 	unsigned int skb_count;
278 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
279 };
280 
281 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
282 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
283 
284 /* Double check that napi_get_frags() allocates skbs with
285  * skb->head being backed by slab, not a page fragment.
286  * This is to make sure bug fixed in 3226b158e67c
287  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
288  * does not accidentally come back.
289  */
290 void napi_get_frags_check(struct napi_struct *napi)
291 {
292 	struct sk_buff *skb;
293 
294 	local_bh_disable();
295 	skb = napi_get_frags(napi);
296 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
297 	napi_free_frags(napi);
298 	local_bh_enable();
299 }
300 
301 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
302 {
303 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
304 
305 	fragsz = SKB_DATA_ALIGN(fragsz);
306 
307 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
308 }
309 EXPORT_SYMBOL(__napi_alloc_frag_align);
310 
311 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
312 {
313 	void *data;
314 
315 	fragsz = SKB_DATA_ALIGN(fragsz);
316 	if (in_hardirq() || irqs_disabled()) {
317 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
318 
319 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
320 	} else {
321 		struct napi_alloc_cache *nc;
322 
323 		local_bh_disable();
324 		nc = this_cpu_ptr(&napi_alloc_cache);
325 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
326 		local_bh_enable();
327 	}
328 	return data;
329 }
330 EXPORT_SYMBOL(__netdev_alloc_frag_align);
331 
332 static struct sk_buff *napi_skb_cache_get(void)
333 {
334 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
335 	struct sk_buff *skb;
336 
337 	if (unlikely(!nc->skb_count)) {
338 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
339 						      GFP_ATOMIC,
340 						      NAPI_SKB_CACHE_BULK,
341 						      nc->skb_cache);
342 		if (unlikely(!nc->skb_count))
343 			return NULL;
344 	}
345 
346 	skb = nc->skb_cache[--nc->skb_count];
347 	kasan_unpoison_object_data(skbuff_cache, skb);
348 
349 	return skb;
350 }
351 
352 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
353 					 unsigned int size)
354 {
355 	struct skb_shared_info *shinfo;
356 
357 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
358 
359 	/* Assumes caller memset cleared SKB */
360 	skb->truesize = SKB_TRUESIZE(size);
361 	refcount_set(&skb->users, 1);
362 	skb->head = data;
363 	skb->data = data;
364 	skb_reset_tail_pointer(skb);
365 	skb_set_end_offset(skb, size);
366 	skb->mac_header = (typeof(skb->mac_header))~0U;
367 	skb->transport_header = (typeof(skb->transport_header))~0U;
368 	skb->alloc_cpu = raw_smp_processor_id();
369 	/* make sure we initialize shinfo sequentially */
370 	shinfo = skb_shinfo(skb);
371 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
372 	atomic_set(&shinfo->dataref, 1);
373 
374 	skb_set_kcov_handle(skb, kcov_common_handle());
375 }
376 
377 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
378 				     unsigned int *size)
379 {
380 	void *resized;
381 
382 	/* Must find the allocation size (and grow it to match). */
383 	*size = ksize(data);
384 	/* krealloc() will immediately return "data" when
385 	 * "ksize(data)" is requested: it is the existing upper
386 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
387 	 * that this "new" pointer needs to be passed back to the
388 	 * caller for use so the __alloc_size hinting will be
389 	 * tracked correctly.
390 	 */
391 	resized = krealloc(data, *size, GFP_ATOMIC);
392 	WARN_ON_ONCE(resized != data);
393 	return resized;
394 }
395 
396 /* build_skb() variant which can operate on slab buffers.
397  * Note that this should be used sparingly as slab buffers
398  * cannot be combined efficiently by GRO!
399  */
400 struct sk_buff *slab_build_skb(void *data)
401 {
402 	struct sk_buff *skb;
403 	unsigned int size;
404 
405 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
406 	if (unlikely(!skb))
407 		return NULL;
408 
409 	memset(skb, 0, offsetof(struct sk_buff, tail));
410 	data = __slab_build_skb(skb, data, &size);
411 	__finalize_skb_around(skb, data, size);
412 
413 	return skb;
414 }
415 EXPORT_SYMBOL(slab_build_skb);
416 
417 /* Caller must provide SKB that is memset cleared */
418 static void __build_skb_around(struct sk_buff *skb, void *data,
419 			       unsigned int frag_size)
420 {
421 	unsigned int size = frag_size;
422 
423 	/* frag_size == 0 is considered deprecated now. Callers
424 	 * using slab buffer should use slab_build_skb() instead.
425 	 */
426 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
427 		data = __slab_build_skb(skb, data, &size);
428 
429 	__finalize_skb_around(skb, data, size);
430 }
431 
432 /**
433  * __build_skb - build a network buffer
434  * @data: data buffer provided by caller
435  * @frag_size: size of data (must not be 0)
436  *
437  * Allocate a new &sk_buff. Caller provides space holding head and
438  * skb_shared_info. @data must have been allocated from the page
439  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
440  * allocation is deprecated, and callers should use slab_build_skb()
441  * instead.)
442  * The return is the new skb buffer.
443  * On a failure the return is %NULL, and @data is not freed.
444  * Notes :
445  *  Before IO, driver allocates only data buffer where NIC put incoming frame
446  *  Driver should add room at head (NET_SKB_PAD) and
447  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
448  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
449  *  before giving packet to stack.
450  *  RX rings only contains data buffers, not full skbs.
451  */
452 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
453 {
454 	struct sk_buff *skb;
455 
456 	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
457 	if (unlikely(!skb))
458 		return NULL;
459 
460 	memset(skb, 0, offsetof(struct sk_buff, tail));
461 	__build_skb_around(skb, data, frag_size);
462 
463 	return skb;
464 }
465 
466 /* build_skb() is wrapper over __build_skb(), that specifically
467  * takes care of skb->head and skb->pfmemalloc
468  */
469 struct sk_buff *build_skb(void *data, unsigned int frag_size)
470 {
471 	struct sk_buff *skb = __build_skb(data, frag_size);
472 
473 	if (likely(skb && frag_size)) {
474 		skb->head_frag = 1;
475 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
476 	}
477 	return skb;
478 }
479 EXPORT_SYMBOL(build_skb);
480 
481 /**
482  * build_skb_around - build a network buffer around provided skb
483  * @skb: sk_buff provide by caller, must be memset cleared
484  * @data: data buffer provided by caller
485  * @frag_size: size of data
486  */
487 struct sk_buff *build_skb_around(struct sk_buff *skb,
488 				 void *data, unsigned int frag_size)
489 {
490 	if (unlikely(!skb))
491 		return NULL;
492 
493 	__build_skb_around(skb, data, frag_size);
494 
495 	if (frag_size) {
496 		skb->head_frag = 1;
497 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
498 	}
499 	return skb;
500 }
501 EXPORT_SYMBOL(build_skb_around);
502 
503 /**
504  * __napi_build_skb - build a network buffer
505  * @data: data buffer provided by caller
506  * @frag_size: size of data
507  *
508  * Version of __build_skb() that uses NAPI percpu caches to obtain
509  * skbuff_head instead of inplace allocation.
510  *
511  * Returns a new &sk_buff on success, %NULL on allocation failure.
512  */
513 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
514 {
515 	struct sk_buff *skb;
516 
517 	skb = napi_skb_cache_get();
518 	if (unlikely(!skb))
519 		return NULL;
520 
521 	memset(skb, 0, offsetof(struct sk_buff, tail));
522 	__build_skb_around(skb, data, frag_size);
523 
524 	return skb;
525 }
526 
527 /**
528  * napi_build_skb - build a network buffer
529  * @data: data buffer provided by caller
530  * @frag_size: size of data
531  *
532  * Version of __napi_build_skb() that takes care of skb->head_frag
533  * and skb->pfmemalloc when the data is a page or page fragment.
534  *
535  * Returns a new &sk_buff on success, %NULL on allocation failure.
536  */
537 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
538 {
539 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
540 
541 	if (likely(skb) && frag_size) {
542 		skb->head_frag = 1;
543 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
544 	}
545 
546 	return skb;
547 }
548 EXPORT_SYMBOL(napi_build_skb);
549 
550 /*
551  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
552  * the caller if emergency pfmemalloc reserves are being used. If it is and
553  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
554  * may be used. Otherwise, the packet data may be discarded until enough
555  * memory is free
556  */
557 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
558 			     bool *pfmemalloc)
559 {
560 	bool ret_pfmemalloc = false;
561 	unsigned int obj_size;
562 	void *obj;
563 
564 	obj_size = SKB_HEAD_ALIGN(*size);
565 #ifdef HAVE_SKB_SMALL_HEAD_CACHE
566 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
567 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
568 		obj = kmem_cache_alloc_node(skb_small_head_cache,
569 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
570 				node);
571 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
572 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
573 			goto out;
574 		/* Try again but now we are using pfmemalloc reserves */
575 		ret_pfmemalloc = true;
576 		obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
577 		goto out;
578 	}
579 #endif
580 	*size = obj_size = kmalloc_size_roundup(obj_size);
581 	/*
582 	 * Try a regular allocation, when that fails and we're not entitled
583 	 * to the reserves, fail.
584 	 */
585 	obj = kmalloc_node_track_caller(obj_size,
586 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
587 					node);
588 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
589 		goto out;
590 
591 	/* Try again but now we are using pfmemalloc reserves */
592 	ret_pfmemalloc = true;
593 	obj = kmalloc_node_track_caller(obj_size, flags, node);
594 
595 out:
596 	if (pfmemalloc)
597 		*pfmemalloc = ret_pfmemalloc;
598 
599 	return obj;
600 }
601 
602 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
603  *	'private' fields and also do memory statistics to find all the
604  *	[BEEP] leaks.
605  *
606  */
607 
608 /**
609  *	__alloc_skb	-	allocate a network buffer
610  *	@size: size to allocate
611  *	@gfp_mask: allocation mask
612  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
613  *		instead of head cache and allocate a cloned (child) skb.
614  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
615  *		allocations in case the data is required for writeback
616  *	@node: numa node to allocate memory on
617  *
618  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
619  *	tail room of at least size bytes. The object has a reference count
620  *	of one. The return is the buffer. On a failure the return is %NULL.
621  *
622  *	Buffers may only be allocated from interrupts using a @gfp_mask of
623  *	%GFP_ATOMIC.
624  */
625 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
626 			    int flags, int node)
627 {
628 	struct kmem_cache *cache;
629 	struct sk_buff *skb;
630 	bool pfmemalloc;
631 	u8 *data;
632 
633 	cache = (flags & SKB_ALLOC_FCLONE)
634 		? skbuff_fclone_cache : skbuff_cache;
635 
636 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
637 		gfp_mask |= __GFP_MEMALLOC;
638 
639 	/* Get the HEAD */
640 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
641 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
642 		skb = napi_skb_cache_get();
643 	else
644 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
645 	if (unlikely(!skb))
646 		return NULL;
647 	prefetchw(skb);
648 
649 	/* We do our best to align skb_shared_info on a separate cache
650 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
651 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
652 	 * Both skb->head and skb_shared_info are cache line aligned.
653 	 */
654 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
655 	if (unlikely(!data))
656 		goto nodata;
657 	/* kmalloc_size_roundup() might give us more room than requested.
658 	 * Put skb_shared_info exactly at the end of allocated zone,
659 	 * to allow max possible filling before reallocation.
660 	 */
661 	prefetchw(data + SKB_WITH_OVERHEAD(size));
662 
663 	/*
664 	 * Only clear those fields we need to clear, not those that we will
665 	 * actually initialise below. Hence, don't put any more fields after
666 	 * the tail pointer in struct sk_buff!
667 	 */
668 	memset(skb, 0, offsetof(struct sk_buff, tail));
669 	__build_skb_around(skb, data, size);
670 	skb->pfmemalloc = pfmemalloc;
671 
672 	if (flags & SKB_ALLOC_FCLONE) {
673 		struct sk_buff_fclones *fclones;
674 
675 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
676 
677 		skb->fclone = SKB_FCLONE_ORIG;
678 		refcount_set(&fclones->fclone_ref, 1);
679 	}
680 
681 	return skb;
682 
683 nodata:
684 	kmem_cache_free(cache, skb);
685 	return NULL;
686 }
687 EXPORT_SYMBOL(__alloc_skb);
688 
689 /**
690  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
691  *	@dev: network device to receive on
692  *	@len: length to allocate
693  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
694  *
695  *	Allocate a new &sk_buff and assign it a usage count of one. The
696  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
697  *	the headroom they think they need without accounting for the
698  *	built in space. The built in space is used for optimisations.
699  *
700  *	%NULL is returned if there is no free memory.
701  */
702 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
703 				   gfp_t gfp_mask)
704 {
705 	struct page_frag_cache *nc;
706 	struct sk_buff *skb;
707 	bool pfmemalloc;
708 	void *data;
709 
710 	len += NET_SKB_PAD;
711 
712 	/* If requested length is either too small or too big,
713 	 * we use kmalloc() for skb->head allocation.
714 	 */
715 	if (len <= SKB_WITH_OVERHEAD(1024) ||
716 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
717 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
718 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
719 		if (!skb)
720 			goto skb_fail;
721 		goto skb_success;
722 	}
723 
724 	len = SKB_HEAD_ALIGN(len);
725 
726 	if (sk_memalloc_socks())
727 		gfp_mask |= __GFP_MEMALLOC;
728 
729 	if (in_hardirq() || irqs_disabled()) {
730 		nc = this_cpu_ptr(&netdev_alloc_cache);
731 		data = page_frag_alloc(nc, len, gfp_mask);
732 		pfmemalloc = nc->pfmemalloc;
733 	} else {
734 		local_bh_disable();
735 		nc = this_cpu_ptr(&napi_alloc_cache.page);
736 		data = page_frag_alloc(nc, len, gfp_mask);
737 		pfmemalloc = nc->pfmemalloc;
738 		local_bh_enable();
739 	}
740 
741 	if (unlikely(!data))
742 		return NULL;
743 
744 	skb = __build_skb(data, len);
745 	if (unlikely(!skb)) {
746 		skb_free_frag(data);
747 		return NULL;
748 	}
749 
750 	if (pfmemalloc)
751 		skb->pfmemalloc = 1;
752 	skb->head_frag = 1;
753 
754 skb_success:
755 	skb_reserve(skb, NET_SKB_PAD);
756 	skb->dev = dev;
757 
758 skb_fail:
759 	return skb;
760 }
761 EXPORT_SYMBOL(__netdev_alloc_skb);
762 
763 /**
764  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
765  *	@napi: napi instance this buffer was allocated for
766  *	@len: length to allocate
767  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
768  *
769  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
770  *	attempt to allocate the head from a special reserved region used
771  *	only for NAPI Rx allocation.  By doing this we can save several
772  *	CPU cycles by avoiding having to disable and re-enable IRQs.
773  *
774  *	%NULL is returned if there is no free memory.
775  */
776 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
777 				 gfp_t gfp_mask)
778 {
779 	struct napi_alloc_cache *nc;
780 	struct sk_buff *skb;
781 	bool pfmemalloc;
782 	void *data;
783 
784 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
785 	len += NET_SKB_PAD + NET_IP_ALIGN;
786 
787 	/* If requested length is either too small or too big,
788 	 * we use kmalloc() for skb->head allocation.
789 	 * When the small frag allocator is available, prefer it over kmalloc
790 	 * for small fragments
791 	 */
792 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
793 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
794 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
795 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
796 				  NUMA_NO_NODE);
797 		if (!skb)
798 			goto skb_fail;
799 		goto skb_success;
800 	}
801 
802 	nc = this_cpu_ptr(&napi_alloc_cache);
803 
804 	if (sk_memalloc_socks())
805 		gfp_mask |= __GFP_MEMALLOC;
806 
807 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
808 		/* we are artificially inflating the allocation size, but
809 		 * that is not as bad as it may look like, as:
810 		 * - 'len' less than GRO_MAX_HEAD makes little sense
811 		 * - On most systems, larger 'len' values lead to fragment
812 		 *   size above 512 bytes
813 		 * - kmalloc would use the kmalloc-1k slab for such values
814 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
815 		 *   little networking, as that implies no WiFi and no
816 		 *   tunnels support, and 32 bits arches.
817 		 */
818 		len = SZ_1K;
819 
820 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
821 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
822 	} else {
823 		len = SKB_HEAD_ALIGN(len);
824 
825 		data = page_frag_alloc(&nc->page, len, gfp_mask);
826 		pfmemalloc = nc->page.pfmemalloc;
827 	}
828 
829 	if (unlikely(!data))
830 		return NULL;
831 
832 	skb = __napi_build_skb(data, len);
833 	if (unlikely(!skb)) {
834 		skb_free_frag(data);
835 		return NULL;
836 	}
837 
838 	if (pfmemalloc)
839 		skb->pfmemalloc = 1;
840 	skb->head_frag = 1;
841 
842 skb_success:
843 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
844 	skb->dev = napi->dev;
845 
846 skb_fail:
847 	return skb;
848 }
849 EXPORT_SYMBOL(__napi_alloc_skb);
850 
851 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
852 		     int size, unsigned int truesize)
853 {
854 	skb_fill_page_desc(skb, i, page, off, size);
855 	skb->len += size;
856 	skb->data_len += size;
857 	skb->truesize += truesize;
858 }
859 EXPORT_SYMBOL(skb_add_rx_frag);
860 
861 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
862 			  unsigned int truesize)
863 {
864 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
865 
866 	skb_frag_size_add(frag, size);
867 	skb->len += size;
868 	skb->data_len += size;
869 	skb->truesize += truesize;
870 }
871 EXPORT_SYMBOL(skb_coalesce_rx_frag);
872 
873 static void skb_drop_list(struct sk_buff **listp)
874 {
875 	kfree_skb_list(*listp);
876 	*listp = NULL;
877 }
878 
879 static inline void skb_drop_fraglist(struct sk_buff *skb)
880 {
881 	skb_drop_list(&skb_shinfo(skb)->frag_list);
882 }
883 
884 static void skb_clone_fraglist(struct sk_buff *skb)
885 {
886 	struct sk_buff *list;
887 
888 	skb_walk_frags(skb, list)
889 		skb_get(list);
890 }
891 
892 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
893 {
894 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
895 		return false;
896 	return page_pool_return_skb_page(virt_to_page(data), napi_safe);
897 }
898 
899 static void skb_kfree_head(void *head, unsigned int end_offset)
900 {
901 #ifdef HAVE_SKB_SMALL_HEAD_CACHE
902 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
903 		kmem_cache_free(skb_small_head_cache, head);
904 	else
905 #endif
906 		kfree(head);
907 }
908 
909 static void skb_free_head(struct sk_buff *skb, bool napi_safe)
910 {
911 	unsigned char *head = skb->head;
912 
913 	if (skb->head_frag) {
914 		if (skb_pp_recycle(skb, head, napi_safe))
915 			return;
916 		skb_free_frag(head);
917 	} else {
918 		skb_kfree_head(head, skb_end_offset(skb));
919 	}
920 }
921 
922 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
923 			     bool napi_safe)
924 {
925 	struct skb_shared_info *shinfo = skb_shinfo(skb);
926 	int i;
927 
928 	if (skb->cloned &&
929 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
930 			      &shinfo->dataref))
931 		goto exit;
932 
933 	if (skb_zcopy(skb)) {
934 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
935 
936 		skb_zcopy_clear(skb, true);
937 		if (skip_unref)
938 			goto free_head;
939 	}
940 
941 	for (i = 0; i < shinfo->nr_frags; i++)
942 		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
943 
944 free_head:
945 	if (shinfo->frag_list)
946 		kfree_skb_list_reason(shinfo->frag_list, reason);
947 
948 	skb_free_head(skb, napi_safe);
949 exit:
950 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
951 	 * bit is only set on the head though, so in order to avoid races
952 	 * while trying to recycle fragments on __skb_frag_unref() we need
953 	 * to make one SKB responsible for triggering the recycle path.
954 	 * So disable the recycling bit if an SKB is cloned and we have
955 	 * additional references to the fragmented part of the SKB.
956 	 * Eventually the last SKB will have the recycling bit set and it's
957 	 * dataref set to 0, which will trigger the recycling
958 	 */
959 	skb->pp_recycle = 0;
960 }
961 
962 /*
963  *	Free an skbuff by memory without cleaning the state.
964  */
965 static void kfree_skbmem(struct sk_buff *skb)
966 {
967 	struct sk_buff_fclones *fclones;
968 
969 	switch (skb->fclone) {
970 	case SKB_FCLONE_UNAVAILABLE:
971 		kmem_cache_free(skbuff_cache, skb);
972 		return;
973 
974 	case SKB_FCLONE_ORIG:
975 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
976 
977 		/* We usually free the clone (TX completion) before original skb
978 		 * This test would have no chance to be true for the clone,
979 		 * while here, branch prediction will be good.
980 		 */
981 		if (refcount_read(&fclones->fclone_ref) == 1)
982 			goto fastpath;
983 		break;
984 
985 	default: /* SKB_FCLONE_CLONE */
986 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
987 		break;
988 	}
989 	if (!refcount_dec_and_test(&fclones->fclone_ref))
990 		return;
991 fastpath:
992 	kmem_cache_free(skbuff_fclone_cache, fclones);
993 }
994 
995 void skb_release_head_state(struct sk_buff *skb)
996 {
997 	skb_dst_drop(skb);
998 	if (skb->destructor) {
999 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1000 		skb->destructor(skb);
1001 	}
1002 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1003 	nf_conntrack_put(skb_nfct(skb));
1004 #endif
1005 	skb_ext_put(skb);
1006 }
1007 
1008 /* Free everything but the sk_buff shell. */
1009 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1010 			    bool napi_safe)
1011 {
1012 	skb_release_head_state(skb);
1013 	if (likely(skb->head))
1014 		skb_release_data(skb, reason, napi_safe);
1015 }
1016 
1017 /**
1018  *	__kfree_skb - private function
1019  *	@skb: buffer
1020  *
1021  *	Free an sk_buff. Release anything attached to the buffer.
1022  *	Clean the state. This is an internal helper function. Users should
1023  *	always call kfree_skb
1024  */
1025 
1026 void __kfree_skb(struct sk_buff *skb)
1027 {
1028 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1029 	kfree_skbmem(skb);
1030 }
1031 EXPORT_SYMBOL(__kfree_skb);
1032 
1033 static __always_inline
1034 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1035 {
1036 	if (unlikely(!skb_unref(skb)))
1037 		return false;
1038 
1039 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1040 			       u32_get_bits(reason,
1041 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1042 				SKB_DROP_REASON_SUBSYS_NUM);
1043 
1044 	if (reason == SKB_CONSUMED)
1045 		trace_consume_skb(skb, __builtin_return_address(0));
1046 	else
1047 		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1048 	return true;
1049 }
1050 
1051 /**
1052  *	kfree_skb_reason - free an sk_buff with special reason
1053  *	@skb: buffer to free
1054  *	@reason: reason why this skb is dropped
1055  *
1056  *	Drop a reference to the buffer and free it if the usage count has
1057  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1058  *	tracepoint.
1059  */
1060 void __fix_address
1061 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1062 {
1063 	if (__kfree_skb_reason(skb, reason))
1064 		__kfree_skb(skb);
1065 }
1066 EXPORT_SYMBOL(kfree_skb_reason);
1067 
1068 #define KFREE_SKB_BULK_SIZE	16
1069 
1070 struct skb_free_array {
1071 	unsigned int skb_count;
1072 	void *skb_array[KFREE_SKB_BULK_SIZE];
1073 };
1074 
1075 static void kfree_skb_add_bulk(struct sk_buff *skb,
1076 			       struct skb_free_array *sa,
1077 			       enum skb_drop_reason reason)
1078 {
1079 	/* if SKB is a clone, don't handle this case */
1080 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1081 		__kfree_skb(skb);
1082 		return;
1083 	}
1084 
1085 	skb_release_all(skb, reason, false);
1086 	sa->skb_array[sa->skb_count++] = skb;
1087 
1088 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1089 		kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1090 				     sa->skb_array);
1091 		sa->skb_count = 0;
1092 	}
1093 }
1094 
1095 void __fix_address
1096 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1097 {
1098 	struct skb_free_array sa;
1099 
1100 	sa.skb_count = 0;
1101 
1102 	while (segs) {
1103 		struct sk_buff *next = segs->next;
1104 
1105 		if (__kfree_skb_reason(segs, reason)) {
1106 			skb_poison_list(segs);
1107 			kfree_skb_add_bulk(segs, &sa, reason);
1108 		}
1109 
1110 		segs = next;
1111 	}
1112 
1113 	if (sa.skb_count)
1114 		kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1115 }
1116 EXPORT_SYMBOL(kfree_skb_list_reason);
1117 
1118 /* Dump skb information and contents.
1119  *
1120  * Must only be called from net_ratelimit()-ed paths.
1121  *
1122  * Dumps whole packets if full_pkt, only headers otherwise.
1123  */
1124 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1125 {
1126 	struct skb_shared_info *sh = skb_shinfo(skb);
1127 	struct net_device *dev = skb->dev;
1128 	struct sock *sk = skb->sk;
1129 	struct sk_buff *list_skb;
1130 	bool has_mac, has_trans;
1131 	int headroom, tailroom;
1132 	int i, len, seg_len;
1133 
1134 	if (full_pkt)
1135 		len = skb->len;
1136 	else
1137 		len = min_t(int, skb->len, MAX_HEADER + 128);
1138 
1139 	headroom = skb_headroom(skb);
1140 	tailroom = skb_tailroom(skb);
1141 
1142 	has_mac = skb_mac_header_was_set(skb);
1143 	has_trans = skb_transport_header_was_set(skb);
1144 
1145 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1146 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1147 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1148 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1149 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1150 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1151 	       has_mac ? skb->mac_header : -1,
1152 	       has_mac ? skb_mac_header_len(skb) : -1,
1153 	       skb->network_header,
1154 	       has_trans ? skb_network_header_len(skb) : -1,
1155 	       has_trans ? skb->transport_header : -1,
1156 	       sh->tx_flags, sh->nr_frags,
1157 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1158 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1159 	       skb->csum_valid, skb->csum_level,
1160 	       skb->hash, skb->sw_hash, skb->l4_hash,
1161 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1162 
1163 	if (dev)
1164 		printk("%sdev name=%s feat=%pNF\n",
1165 		       level, dev->name, &dev->features);
1166 	if (sk)
1167 		printk("%ssk family=%hu type=%u proto=%u\n",
1168 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1169 
1170 	if (full_pkt && headroom)
1171 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1172 			       16, 1, skb->head, headroom, false);
1173 
1174 	seg_len = min_t(int, skb_headlen(skb), len);
1175 	if (seg_len)
1176 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1177 			       16, 1, skb->data, seg_len, false);
1178 	len -= seg_len;
1179 
1180 	if (full_pkt && tailroom)
1181 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1182 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1183 
1184 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1185 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1186 		u32 p_off, p_len, copied;
1187 		struct page *p;
1188 		u8 *vaddr;
1189 
1190 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1191 				      skb_frag_size(frag), p, p_off, p_len,
1192 				      copied) {
1193 			seg_len = min_t(int, p_len, len);
1194 			vaddr = kmap_atomic(p);
1195 			print_hex_dump(level, "skb frag:     ",
1196 				       DUMP_PREFIX_OFFSET,
1197 				       16, 1, vaddr + p_off, seg_len, false);
1198 			kunmap_atomic(vaddr);
1199 			len -= seg_len;
1200 			if (!len)
1201 				break;
1202 		}
1203 	}
1204 
1205 	if (full_pkt && skb_has_frag_list(skb)) {
1206 		printk("skb fraglist:\n");
1207 		skb_walk_frags(skb, list_skb)
1208 			skb_dump(level, list_skb, true);
1209 	}
1210 }
1211 EXPORT_SYMBOL(skb_dump);
1212 
1213 /**
1214  *	skb_tx_error - report an sk_buff xmit error
1215  *	@skb: buffer that triggered an error
1216  *
1217  *	Report xmit error if a device callback is tracking this skb.
1218  *	skb must be freed afterwards.
1219  */
1220 void skb_tx_error(struct sk_buff *skb)
1221 {
1222 	if (skb) {
1223 		skb_zcopy_downgrade_managed(skb);
1224 		skb_zcopy_clear(skb, true);
1225 	}
1226 }
1227 EXPORT_SYMBOL(skb_tx_error);
1228 
1229 #ifdef CONFIG_TRACEPOINTS
1230 /**
1231  *	consume_skb - free an skbuff
1232  *	@skb: buffer to free
1233  *
1234  *	Drop a ref to the buffer and free it if the usage count has hit zero
1235  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1236  *	is being dropped after a failure and notes that
1237  */
1238 void consume_skb(struct sk_buff *skb)
1239 {
1240 	if (!skb_unref(skb))
1241 		return;
1242 
1243 	trace_consume_skb(skb, __builtin_return_address(0));
1244 	__kfree_skb(skb);
1245 }
1246 EXPORT_SYMBOL(consume_skb);
1247 #endif
1248 
1249 /**
1250  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1251  *	@skb: buffer to free
1252  *
1253  *	Alike consume_skb(), but this variant assumes that this is the last
1254  *	skb reference and all the head states have been already dropped
1255  */
1256 void __consume_stateless_skb(struct sk_buff *skb)
1257 {
1258 	trace_consume_skb(skb, __builtin_return_address(0));
1259 	skb_release_data(skb, SKB_CONSUMED, false);
1260 	kfree_skbmem(skb);
1261 }
1262 
1263 static void napi_skb_cache_put(struct sk_buff *skb)
1264 {
1265 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1266 	u32 i;
1267 
1268 	kasan_poison_object_data(skbuff_cache, skb);
1269 	nc->skb_cache[nc->skb_count++] = skb;
1270 
1271 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1272 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1273 			kasan_unpoison_object_data(skbuff_cache,
1274 						   nc->skb_cache[i]);
1275 
1276 		kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1277 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1278 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1279 	}
1280 }
1281 
1282 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1283 {
1284 	skb_release_all(skb, reason, true);
1285 	napi_skb_cache_put(skb);
1286 }
1287 
1288 void napi_skb_free_stolen_head(struct sk_buff *skb)
1289 {
1290 	if (unlikely(skb->slow_gro)) {
1291 		nf_reset_ct(skb);
1292 		skb_dst_drop(skb);
1293 		skb_ext_put(skb);
1294 		skb_orphan(skb);
1295 		skb->slow_gro = 0;
1296 	}
1297 	napi_skb_cache_put(skb);
1298 }
1299 
1300 void napi_consume_skb(struct sk_buff *skb, int budget)
1301 {
1302 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1303 	if (unlikely(!budget)) {
1304 		dev_consume_skb_any(skb);
1305 		return;
1306 	}
1307 
1308 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1309 
1310 	if (!skb_unref(skb))
1311 		return;
1312 
1313 	/* if reaching here SKB is ready to free */
1314 	trace_consume_skb(skb, __builtin_return_address(0));
1315 
1316 	/* if SKB is a clone, don't handle this case */
1317 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1318 		__kfree_skb(skb);
1319 		return;
1320 	}
1321 
1322 	skb_release_all(skb, SKB_CONSUMED, !!budget);
1323 	napi_skb_cache_put(skb);
1324 }
1325 EXPORT_SYMBOL(napi_consume_skb);
1326 
1327 /* Make sure a field is contained by headers group */
1328 #define CHECK_SKB_FIELD(field) \
1329 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1330 		     offsetof(struct sk_buff, headers.field));	\
1331 
1332 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1333 {
1334 	new->tstamp		= old->tstamp;
1335 	/* We do not copy old->sk */
1336 	new->dev		= old->dev;
1337 	memcpy(new->cb, old->cb, sizeof(old->cb));
1338 	skb_dst_copy(new, old);
1339 	__skb_ext_copy(new, old);
1340 	__nf_copy(new, old, false);
1341 
1342 	/* Note : this field could be in the headers group.
1343 	 * It is not yet because we do not want to have a 16 bit hole
1344 	 */
1345 	new->queue_mapping = old->queue_mapping;
1346 
1347 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1348 	CHECK_SKB_FIELD(protocol);
1349 	CHECK_SKB_FIELD(csum);
1350 	CHECK_SKB_FIELD(hash);
1351 	CHECK_SKB_FIELD(priority);
1352 	CHECK_SKB_FIELD(skb_iif);
1353 	CHECK_SKB_FIELD(vlan_proto);
1354 	CHECK_SKB_FIELD(vlan_tci);
1355 	CHECK_SKB_FIELD(transport_header);
1356 	CHECK_SKB_FIELD(network_header);
1357 	CHECK_SKB_FIELD(mac_header);
1358 	CHECK_SKB_FIELD(inner_protocol);
1359 	CHECK_SKB_FIELD(inner_transport_header);
1360 	CHECK_SKB_FIELD(inner_network_header);
1361 	CHECK_SKB_FIELD(inner_mac_header);
1362 	CHECK_SKB_FIELD(mark);
1363 #ifdef CONFIG_NETWORK_SECMARK
1364 	CHECK_SKB_FIELD(secmark);
1365 #endif
1366 #ifdef CONFIG_NET_RX_BUSY_POLL
1367 	CHECK_SKB_FIELD(napi_id);
1368 #endif
1369 	CHECK_SKB_FIELD(alloc_cpu);
1370 #ifdef CONFIG_XPS
1371 	CHECK_SKB_FIELD(sender_cpu);
1372 #endif
1373 #ifdef CONFIG_NET_SCHED
1374 	CHECK_SKB_FIELD(tc_index);
1375 #endif
1376 
1377 }
1378 
1379 /*
1380  * You should not add any new code to this function.  Add it to
1381  * __copy_skb_header above instead.
1382  */
1383 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1384 {
1385 #define C(x) n->x = skb->x
1386 
1387 	n->next = n->prev = NULL;
1388 	n->sk = NULL;
1389 	__copy_skb_header(n, skb);
1390 
1391 	C(len);
1392 	C(data_len);
1393 	C(mac_len);
1394 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1395 	n->cloned = 1;
1396 	n->nohdr = 0;
1397 	n->peeked = 0;
1398 	C(pfmemalloc);
1399 	C(pp_recycle);
1400 	n->destructor = NULL;
1401 	C(tail);
1402 	C(end);
1403 	C(head);
1404 	C(head_frag);
1405 	C(data);
1406 	C(truesize);
1407 	refcount_set(&n->users, 1);
1408 
1409 	atomic_inc(&(skb_shinfo(skb)->dataref));
1410 	skb->cloned = 1;
1411 
1412 	return n;
1413 #undef C
1414 }
1415 
1416 /**
1417  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1418  * @first: first sk_buff of the msg
1419  */
1420 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1421 {
1422 	struct sk_buff *n;
1423 
1424 	n = alloc_skb(0, GFP_ATOMIC);
1425 	if (!n)
1426 		return NULL;
1427 
1428 	n->len = first->len;
1429 	n->data_len = first->len;
1430 	n->truesize = first->truesize;
1431 
1432 	skb_shinfo(n)->frag_list = first;
1433 
1434 	__copy_skb_header(n, first);
1435 	n->destructor = NULL;
1436 
1437 	return n;
1438 }
1439 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1440 
1441 /**
1442  *	skb_morph	-	morph one skb into another
1443  *	@dst: the skb to receive the contents
1444  *	@src: the skb to supply the contents
1445  *
1446  *	This is identical to skb_clone except that the target skb is
1447  *	supplied by the user.
1448  *
1449  *	The target skb is returned upon exit.
1450  */
1451 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1452 {
1453 	skb_release_all(dst, SKB_CONSUMED, false);
1454 	return __skb_clone(dst, src);
1455 }
1456 EXPORT_SYMBOL_GPL(skb_morph);
1457 
1458 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1459 {
1460 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1461 	struct user_struct *user;
1462 
1463 	if (capable(CAP_IPC_LOCK) || !size)
1464 		return 0;
1465 
1466 	rlim = rlimit(RLIMIT_MEMLOCK);
1467 	if (rlim == RLIM_INFINITY)
1468 		return 0;
1469 
1470 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1471 	max_pg = rlim >> PAGE_SHIFT;
1472 	user = mmp->user ? : current_user();
1473 
1474 	old_pg = atomic_long_read(&user->locked_vm);
1475 	do {
1476 		new_pg = old_pg + num_pg;
1477 		if (new_pg > max_pg)
1478 			return -ENOBUFS;
1479 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1480 
1481 	if (!mmp->user) {
1482 		mmp->user = get_uid(user);
1483 		mmp->num_pg = num_pg;
1484 	} else {
1485 		mmp->num_pg += num_pg;
1486 	}
1487 
1488 	return 0;
1489 }
1490 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1491 
1492 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1493 {
1494 	if (mmp->user) {
1495 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1496 		free_uid(mmp->user);
1497 	}
1498 }
1499 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1500 
1501 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1502 {
1503 	struct ubuf_info_msgzc *uarg;
1504 	struct sk_buff *skb;
1505 
1506 	WARN_ON_ONCE(!in_task());
1507 
1508 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1509 	if (!skb)
1510 		return NULL;
1511 
1512 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1513 	uarg = (void *)skb->cb;
1514 	uarg->mmp.user = NULL;
1515 
1516 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1517 		kfree_skb(skb);
1518 		return NULL;
1519 	}
1520 
1521 	uarg->ubuf.callback = msg_zerocopy_callback;
1522 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1523 	uarg->len = 1;
1524 	uarg->bytelen = size;
1525 	uarg->zerocopy = 1;
1526 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1527 	refcount_set(&uarg->ubuf.refcnt, 1);
1528 	sock_hold(sk);
1529 
1530 	return &uarg->ubuf;
1531 }
1532 
1533 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1534 {
1535 	return container_of((void *)uarg, struct sk_buff, cb);
1536 }
1537 
1538 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1539 				       struct ubuf_info *uarg)
1540 {
1541 	if (uarg) {
1542 		struct ubuf_info_msgzc *uarg_zc;
1543 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1544 		u32 bytelen, next;
1545 
1546 		/* there might be non MSG_ZEROCOPY users */
1547 		if (uarg->callback != msg_zerocopy_callback)
1548 			return NULL;
1549 
1550 		/* realloc only when socket is locked (TCP, UDP cork),
1551 		 * so uarg->len and sk_zckey access is serialized
1552 		 */
1553 		if (!sock_owned_by_user(sk)) {
1554 			WARN_ON_ONCE(1);
1555 			return NULL;
1556 		}
1557 
1558 		uarg_zc = uarg_to_msgzc(uarg);
1559 		bytelen = uarg_zc->bytelen + size;
1560 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1561 			/* TCP can create new skb to attach new uarg */
1562 			if (sk->sk_type == SOCK_STREAM)
1563 				goto new_alloc;
1564 			return NULL;
1565 		}
1566 
1567 		next = (u32)atomic_read(&sk->sk_zckey);
1568 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1569 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1570 				return NULL;
1571 			uarg_zc->len++;
1572 			uarg_zc->bytelen = bytelen;
1573 			atomic_set(&sk->sk_zckey, ++next);
1574 
1575 			/* no extra ref when appending to datagram (MSG_MORE) */
1576 			if (sk->sk_type == SOCK_STREAM)
1577 				net_zcopy_get(uarg);
1578 
1579 			return uarg;
1580 		}
1581 	}
1582 
1583 new_alloc:
1584 	return msg_zerocopy_alloc(sk, size);
1585 }
1586 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1587 
1588 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1589 {
1590 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1591 	u32 old_lo, old_hi;
1592 	u64 sum_len;
1593 
1594 	old_lo = serr->ee.ee_info;
1595 	old_hi = serr->ee.ee_data;
1596 	sum_len = old_hi - old_lo + 1ULL + len;
1597 
1598 	if (sum_len >= (1ULL << 32))
1599 		return false;
1600 
1601 	if (lo != old_hi + 1)
1602 		return false;
1603 
1604 	serr->ee.ee_data += len;
1605 	return true;
1606 }
1607 
1608 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1609 {
1610 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1611 	struct sock_exterr_skb *serr;
1612 	struct sock *sk = skb->sk;
1613 	struct sk_buff_head *q;
1614 	unsigned long flags;
1615 	bool is_zerocopy;
1616 	u32 lo, hi;
1617 	u16 len;
1618 
1619 	mm_unaccount_pinned_pages(&uarg->mmp);
1620 
1621 	/* if !len, there was only 1 call, and it was aborted
1622 	 * so do not queue a completion notification
1623 	 */
1624 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1625 		goto release;
1626 
1627 	len = uarg->len;
1628 	lo = uarg->id;
1629 	hi = uarg->id + len - 1;
1630 	is_zerocopy = uarg->zerocopy;
1631 
1632 	serr = SKB_EXT_ERR(skb);
1633 	memset(serr, 0, sizeof(*serr));
1634 	serr->ee.ee_errno = 0;
1635 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1636 	serr->ee.ee_data = hi;
1637 	serr->ee.ee_info = lo;
1638 	if (!is_zerocopy)
1639 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1640 
1641 	q = &sk->sk_error_queue;
1642 	spin_lock_irqsave(&q->lock, flags);
1643 	tail = skb_peek_tail(q);
1644 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1645 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1646 		__skb_queue_tail(q, skb);
1647 		skb = NULL;
1648 	}
1649 	spin_unlock_irqrestore(&q->lock, flags);
1650 
1651 	sk_error_report(sk);
1652 
1653 release:
1654 	consume_skb(skb);
1655 	sock_put(sk);
1656 }
1657 
1658 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1659 			   bool success)
1660 {
1661 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1662 
1663 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1664 
1665 	if (refcount_dec_and_test(&uarg->refcnt))
1666 		__msg_zerocopy_callback(uarg_zc);
1667 }
1668 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1669 
1670 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1671 {
1672 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1673 
1674 	atomic_dec(&sk->sk_zckey);
1675 	uarg_to_msgzc(uarg)->len--;
1676 
1677 	if (have_uref)
1678 		msg_zerocopy_callback(NULL, uarg, true);
1679 }
1680 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1681 
1682 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1683 			     struct msghdr *msg, int len,
1684 			     struct ubuf_info *uarg)
1685 {
1686 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1687 	int err, orig_len = skb->len;
1688 
1689 	/* An skb can only point to one uarg. This edge case happens when
1690 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1691 	 */
1692 	if (orig_uarg && uarg != orig_uarg)
1693 		return -EEXIST;
1694 
1695 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1696 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1697 		struct sock *save_sk = skb->sk;
1698 
1699 		/* Streams do not free skb on error. Reset to prev state. */
1700 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1701 		skb->sk = sk;
1702 		___pskb_trim(skb, orig_len);
1703 		skb->sk = save_sk;
1704 		return err;
1705 	}
1706 
1707 	skb_zcopy_set(skb, uarg, NULL);
1708 	return skb->len - orig_len;
1709 }
1710 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1711 
1712 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1713 {
1714 	int i;
1715 
1716 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1717 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1718 		skb_frag_ref(skb, i);
1719 }
1720 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1721 
1722 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1723 			      gfp_t gfp_mask)
1724 {
1725 	if (skb_zcopy(orig)) {
1726 		if (skb_zcopy(nskb)) {
1727 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1728 			if (!gfp_mask) {
1729 				WARN_ON_ONCE(1);
1730 				return -ENOMEM;
1731 			}
1732 			if (skb_uarg(nskb) == skb_uarg(orig))
1733 				return 0;
1734 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1735 				return -EIO;
1736 		}
1737 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1738 	}
1739 	return 0;
1740 }
1741 
1742 /**
1743  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1744  *	@skb: the skb to modify
1745  *	@gfp_mask: allocation priority
1746  *
1747  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1748  *	It will copy all frags into kernel and drop the reference
1749  *	to userspace pages.
1750  *
1751  *	If this function is called from an interrupt gfp_mask() must be
1752  *	%GFP_ATOMIC.
1753  *
1754  *	Returns 0 on success or a negative error code on failure
1755  *	to allocate kernel memory to copy to.
1756  */
1757 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1758 {
1759 	int num_frags = skb_shinfo(skb)->nr_frags;
1760 	struct page *page, *head = NULL;
1761 	int i, new_frags;
1762 	u32 d_off;
1763 
1764 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1765 		return -EINVAL;
1766 
1767 	if (!num_frags)
1768 		goto release;
1769 
1770 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1771 	for (i = 0; i < new_frags; i++) {
1772 		page = alloc_page(gfp_mask);
1773 		if (!page) {
1774 			while (head) {
1775 				struct page *next = (struct page *)page_private(head);
1776 				put_page(head);
1777 				head = next;
1778 			}
1779 			return -ENOMEM;
1780 		}
1781 		set_page_private(page, (unsigned long)head);
1782 		head = page;
1783 	}
1784 
1785 	page = head;
1786 	d_off = 0;
1787 	for (i = 0; i < num_frags; i++) {
1788 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1789 		u32 p_off, p_len, copied;
1790 		struct page *p;
1791 		u8 *vaddr;
1792 
1793 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1794 				      p, p_off, p_len, copied) {
1795 			u32 copy, done = 0;
1796 			vaddr = kmap_atomic(p);
1797 
1798 			while (done < p_len) {
1799 				if (d_off == PAGE_SIZE) {
1800 					d_off = 0;
1801 					page = (struct page *)page_private(page);
1802 				}
1803 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1804 				memcpy(page_address(page) + d_off,
1805 				       vaddr + p_off + done, copy);
1806 				done += copy;
1807 				d_off += copy;
1808 			}
1809 			kunmap_atomic(vaddr);
1810 		}
1811 	}
1812 
1813 	/* skb frags release userspace buffers */
1814 	for (i = 0; i < num_frags; i++)
1815 		skb_frag_unref(skb, i);
1816 
1817 	/* skb frags point to kernel buffers */
1818 	for (i = 0; i < new_frags - 1; i++) {
1819 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1820 		head = (struct page *)page_private(head);
1821 	}
1822 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1823 	skb_shinfo(skb)->nr_frags = new_frags;
1824 
1825 release:
1826 	skb_zcopy_clear(skb, false);
1827 	return 0;
1828 }
1829 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1830 
1831 /**
1832  *	skb_clone	-	duplicate an sk_buff
1833  *	@skb: buffer to clone
1834  *	@gfp_mask: allocation priority
1835  *
1836  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1837  *	copies share the same packet data but not structure. The new
1838  *	buffer has a reference count of 1. If the allocation fails the
1839  *	function returns %NULL otherwise the new buffer is returned.
1840  *
1841  *	If this function is called from an interrupt gfp_mask() must be
1842  *	%GFP_ATOMIC.
1843  */
1844 
1845 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1846 {
1847 	struct sk_buff_fclones *fclones = container_of(skb,
1848 						       struct sk_buff_fclones,
1849 						       skb1);
1850 	struct sk_buff *n;
1851 
1852 	if (skb_orphan_frags(skb, gfp_mask))
1853 		return NULL;
1854 
1855 	if (skb->fclone == SKB_FCLONE_ORIG &&
1856 	    refcount_read(&fclones->fclone_ref) == 1) {
1857 		n = &fclones->skb2;
1858 		refcount_set(&fclones->fclone_ref, 2);
1859 		n->fclone = SKB_FCLONE_CLONE;
1860 	} else {
1861 		if (skb_pfmemalloc(skb))
1862 			gfp_mask |= __GFP_MEMALLOC;
1863 
1864 		n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1865 		if (!n)
1866 			return NULL;
1867 
1868 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1869 	}
1870 
1871 	return __skb_clone(n, skb);
1872 }
1873 EXPORT_SYMBOL(skb_clone);
1874 
1875 void skb_headers_offset_update(struct sk_buff *skb, int off)
1876 {
1877 	/* Only adjust this if it actually is csum_start rather than csum */
1878 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1879 		skb->csum_start += off;
1880 	/* {transport,network,mac}_header and tail are relative to skb->head */
1881 	skb->transport_header += off;
1882 	skb->network_header   += off;
1883 	if (skb_mac_header_was_set(skb))
1884 		skb->mac_header += off;
1885 	skb->inner_transport_header += off;
1886 	skb->inner_network_header += off;
1887 	skb->inner_mac_header += off;
1888 }
1889 EXPORT_SYMBOL(skb_headers_offset_update);
1890 
1891 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1892 {
1893 	__copy_skb_header(new, old);
1894 
1895 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1896 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1897 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1898 }
1899 EXPORT_SYMBOL(skb_copy_header);
1900 
1901 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1902 {
1903 	if (skb_pfmemalloc(skb))
1904 		return SKB_ALLOC_RX;
1905 	return 0;
1906 }
1907 
1908 /**
1909  *	skb_copy	-	create private copy of an sk_buff
1910  *	@skb: buffer to copy
1911  *	@gfp_mask: allocation priority
1912  *
1913  *	Make a copy of both an &sk_buff and its data. This is used when the
1914  *	caller wishes to modify the data and needs a private copy of the
1915  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1916  *	on success. The returned buffer has a reference count of 1.
1917  *
1918  *	As by-product this function converts non-linear &sk_buff to linear
1919  *	one, so that &sk_buff becomes completely private and caller is allowed
1920  *	to modify all the data of returned buffer. This means that this
1921  *	function is not recommended for use in circumstances when only
1922  *	header is going to be modified. Use pskb_copy() instead.
1923  */
1924 
1925 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1926 {
1927 	int headerlen = skb_headroom(skb);
1928 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1929 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1930 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1931 
1932 	if (!n)
1933 		return NULL;
1934 
1935 	/* Set the data pointer */
1936 	skb_reserve(n, headerlen);
1937 	/* Set the tail pointer and length */
1938 	skb_put(n, skb->len);
1939 
1940 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1941 
1942 	skb_copy_header(n, skb);
1943 	return n;
1944 }
1945 EXPORT_SYMBOL(skb_copy);
1946 
1947 /**
1948  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1949  *	@skb: buffer to copy
1950  *	@headroom: headroom of new skb
1951  *	@gfp_mask: allocation priority
1952  *	@fclone: if true allocate the copy of the skb from the fclone
1953  *	cache instead of the head cache; it is recommended to set this
1954  *	to true for the cases where the copy will likely be cloned
1955  *
1956  *	Make a copy of both an &sk_buff and part of its data, located
1957  *	in header. Fragmented data remain shared. This is used when
1958  *	the caller wishes to modify only header of &sk_buff and needs
1959  *	private copy of the header to alter. Returns %NULL on failure
1960  *	or the pointer to the buffer on success.
1961  *	The returned buffer has a reference count of 1.
1962  */
1963 
1964 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1965 				   gfp_t gfp_mask, bool fclone)
1966 {
1967 	unsigned int size = skb_headlen(skb) + headroom;
1968 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1969 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1970 
1971 	if (!n)
1972 		goto out;
1973 
1974 	/* Set the data pointer */
1975 	skb_reserve(n, headroom);
1976 	/* Set the tail pointer and length */
1977 	skb_put(n, skb_headlen(skb));
1978 	/* Copy the bytes */
1979 	skb_copy_from_linear_data(skb, n->data, n->len);
1980 
1981 	n->truesize += skb->data_len;
1982 	n->data_len  = skb->data_len;
1983 	n->len	     = skb->len;
1984 
1985 	if (skb_shinfo(skb)->nr_frags) {
1986 		int i;
1987 
1988 		if (skb_orphan_frags(skb, gfp_mask) ||
1989 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1990 			kfree_skb(n);
1991 			n = NULL;
1992 			goto out;
1993 		}
1994 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1995 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1996 			skb_frag_ref(skb, i);
1997 		}
1998 		skb_shinfo(n)->nr_frags = i;
1999 	}
2000 
2001 	if (skb_has_frag_list(skb)) {
2002 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2003 		skb_clone_fraglist(n);
2004 	}
2005 
2006 	skb_copy_header(n, skb);
2007 out:
2008 	return n;
2009 }
2010 EXPORT_SYMBOL(__pskb_copy_fclone);
2011 
2012 /**
2013  *	pskb_expand_head - reallocate header of &sk_buff
2014  *	@skb: buffer to reallocate
2015  *	@nhead: room to add at head
2016  *	@ntail: room to add at tail
2017  *	@gfp_mask: allocation priority
2018  *
2019  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2020  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2021  *	reference count of 1. Returns zero in the case of success or error,
2022  *	if expansion failed. In the last case, &sk_buff is not changed.
2023  *
2024  *	All the pointers pointing into skb header may change and must be
2025  *	reloaded after call to this function.
2026  */
2027 
2028 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2029 		     gfp_t gfp_mask)
2030 {
2031 	unsigned int osize = skb_end_offset(skb);
2032 	unsigned int size = osize + nhead + ntail;
2033 	long off;
2034 	u8 *data;
2035 	int i;
2036 
2037 	BUG_ON(nhead < 0);
2038 
2039 	BUG_ON(skb_shared(skb));
2040 
2041 	skb_zcopy_downgrade_managed(skb);
2042 
2043 	if (skb_pfmemalloc(skb))
2044 		gfp_mask |= __GFP_MEMALLOC;
2045 
2046 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2047 	if (!data)
2048 		goto nodata;
2049 	size = SKB_WITH_OVERHEAD(size);
2050 
2051 	/* Copy only real data... and, alas, header. This should be
2052 	 * optimized for the cases when header is void.
2053 	 */
2054 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2055 
2056 	memcpy((struct skb_shared_info *)(data + size),
2057 	       skb_shinfo(skb),
2058 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2059 
2060 	/*
2061 	 * if shinfo is shared we must drop the old head gracefully, but if it
2062 	 * is not we can just drop the old head and let the existing refcount
2063 	 * be since all we did is relocate the values
2064 	 */
2065 	if (skb_cloned(skb)) {
2066 		if (skb_orphan_frags(skb, gfp_mask))
2067 			goto nofrags;
2068 		if (skb_zcopy(skb))
2069 			refcount_inc(&skb_uarg(skb)->refcnt);
2070 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2071 			skb_frag_ref(skb, i);
2072 
2073 		if (skb_has_frag_list(skb))
2074 			skb_clone_fraglist(skb);
2075 
2076 		skb_release_data(skb, SKB_CONSUMED, false);
2077 	} else {
2078 		skb_free_head(skb, false);
2079 	}
2080 	off = (data + nhead) - skb->head;
2081 
2082 	skb->head     = data;
2083 	skb->head_frag = 0;
2084 	skb->data    += off;
2085 
2086 	skb_set_end_offset(skb, size);
2087 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2088 	off           = nhead;
2089 #endif
2090 	skb->tail	      += off;
2091 	skb_headers_offset_update(skb, nhead);
2092 	skb->cloned   = 0;
2093 	skb->hdr_len  = 0;
2094 	skb->nohdr    = 0;
2095 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2096 
2097 	skb_metadata_clear(skb);
2098 
2099 	/* It is not generally safe to change skb->truesize.
2100 	 * For the moment, we really care of rx path, or
2101 	 * when skb is orphaned (not attached to a socket).
2102 	 */
2103 	if (!skb->sk || skb->destructor == sock_edemux)
2104 		skb->truesize += size - osize;
2105 
2106 	return 0;
2107 
2108 nofrags:
2109 	skb_kfree_head(data, size);
2110 nodata:
2111 	return -ENOMEM;
2112 }
2113 EXPORT_SYMBOL(pskb_expand_head);
2114 
2115 /* Make private copy of skb with writable head and some headroom */
2116 
2117 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2118 {
2119 	struct sk_buff *skb2;
2120 	int delta = headroom - skb_headroom(skb);
2121 
2122 	if (delta <= 0)
2123 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2124 	else {
2125 		skb2 = skb_clone(skb, GFP_ATOMIC);
2126 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2127 					     GFP_ATOMIC)) {
2128 			kfree_skb(skb2);
2129 			skb2 = NULL;
2130 		}
2131 	}
2132 	return skb2;
2133 }
2134 EXPORT_SYMBOL(skb_realloc_headroom);
2135 
2136 /* Note: We plan to rework this in linux-6.4 */
2137 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2138 {
2139 	unsigned int saved_end_offset, saved_truesize;
2140 	struct skb_shared_info *shinfo;
2141 	int res;
2142 
2143 	saved_end_offset = skb_end_offset(skb);
2144 	saved_truesize = skb->truesize;
2145 
2146 	res = pskb_expand_head(skb, 0, 0, pri);
2147 	if (res)
2148 		return res;
2149 
2150 	skb->truesize = saved_truesize;
2151 
2152 	if (likely(skb_end_offset(skb) == saved_end_offset))
2153 		return 0;
2154 
2155 #ifdef HAVE_SKB_SMALL_HEAD_CACHE
2156 	/* We can not change skb->end if the original or new value
2157 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2158 	 */
2159 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2160 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2161 		/* We think this path should not be taken.
2162 		 * Add a temporary trace to warn us just in case.
2163 		 */
2164 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2165 			    saved_end_offset, skb_end_offset(skb));
2166 		WARN_ON_ONCE(1);
2167 		return 0;
2168 	}
2169 #endif
2170 
2171 	shinfo = skb_shinfo(skb);
2172 
2173 	/* We are about to change back skb->end,
2174 	 * we need to move skb_shinfo() to its new location.
2175 	 */
2176 	memmove(skb->head + saved_end_offset,
2177 		shinfo,
2178 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2179 
2180 	skb_set_end_offset(skb, saved_end_offset);
2181 
2182 	return 0;
2183 }
2184 
2185 /**
2186  *	skb_expand_head - reallocate header of &sk_buff
2187  *	@skb: buffer to reallocate
2188  *	@headroom: needed headroom
2189  *
2190  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2191  *	if possible; copies skb->sk to new skb as needed
2192  *	and frees original skb in case of failures.
2193  *
2194  *	It expect increased headroom and generates warning otherwise.
2195  */
2196 
2197 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2198 {
2199 	int delta = headroom - skb_headroom(skb);
2200 	int osize = skb_end_offset(skb);
2201 	struct sock *sk = skb->sk;
2202 
2203 	if (WARN_ONCE(delta <= 0,
2204 		      "%s is expecting an increase in the headroom", __func__))
2205 		return skb;
2206 
2207 	delta = SKB_DATA_ALIGN(delta);
2208 	/* pskb_expand_head() might crash, if skb is shared. */
2209 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2210 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2211 
2212 		if (unlikely(!nskb))
2213 			goto fail;
2214 
2215 		if (sk)
2216 			skb_set_owner_w(nskb, sk);
2217 		consume_skb(skb);
2218 		skb = nskb;
2219 	}
2220 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2221 		goto fail;
2222 
2223 	if (sk && is_skb_wmem(skb)) {
2224 		delta = skb_end_offset(skb) - osize;
2225 		refcount_add(delta, &sk->sk_wmem_alloc);
2226 		skb->truesize += delta;
2227 	}
2228 	return skb;
2229 
2230 fail:
2231 	kfree_skb(skb);
2232 	return NULL;
2233 }
2234 EXPORT_SYMBOL(skb_expand_head);
2235 
2236 /**
2237  *	skb_copy_expand	-	copy and expand sk_buff
2238  *	@skb: buffer to copy
2239  *	@newheadroom: new free bytes at head
2240  *	@newtailroom: new free bytes at tail
2241  *	@gfp_mask: allocation priority
2242  *
2243  *	Make a copy of both an &sk_buff and its data and while doing so
2244  *	allocate additional space.
2245  *
2246  *	This is used when the caller wishes to modify the data and needs a
2247  *	private copy of the data to alter as well as more space for new fields.
2248  *	Returns %NULL on failure or the pointer to the buffer
2249  *	on success. The returned buffer has a reference count of 1.
2250  *
2251  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2252  *	is called from an interrupt.
2253  */
2254 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2255 				int newheadroom, int newtailroom,
2256 				gfp_t gfp_mask)
2257 {
2258 	/*
2259 	 *	Allocate the copy buffer
2260 	 */
2261 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2262 					gfp_mask, skb_alloc_rx_flag(skb),
2263 					NUMA_NO_NODE);
2264 	int oldheadroom = skb_headroom(skb);
2265 	int head_copy_len, head_copy_off;
2266 
2267 	if (!n)
2268 		return NULL;
2269 
2270 	skb_reserve(n, newheadroom);
2271 
2272 	/* Set the tail pointer and length */
2273 	skb_put(n, skb->len);
2274 
2275 	head_copy_len = oldheadroom;
2276 	head_copy_off = 0;
2277 	if (newheadroom <= head_copy_len)
2278 		head_copy_len = newheadroom;
2279 	else
2280 		head_copy_off = newheadroom - head_copy_len;
2281 
2282 	/* Copy the linear header and data. */
2283 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2284 			     skb->len + head_copy_len));
2285 
2286 	skb_copy_header(n, skb);
2287 
2288 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2289 
2290 	return n;
2291 }
2292 EXPORT_SYMBOL(skb_copy_expand);
2293 
2294 /**
2295  *	__skb_pad		-	zero pad the tail of an skb
2296  *	@skb: buffer to pad
2297  *	@pad: space to pad
2298  *	@free_on_error: free buffer on error
2299  *
2300  *	Ensure that a buffer is followed by a padding area that is zero
2301  *	filled. Used by network drivers which may DMA or transfer data
2302  *	beyond the buffer end onto the wire.
2303  *
2304  *	May return error in out of memory cases. The skb is freed on error
2305  *	if @free_on_error is true.
2306  */
2307 
2308 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2309 {
2310 	int err;
2311 	int ntail;
2312 
2313 	/* If the skbuff is non linear tailroom is always zero.. */
2314 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2315 		memset(skb->data+skb->len, 0, pad);
2316 		return 0;
2317 	}
2318 
2319 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2320 	if (likely(skb_cloned(skb) || ntail > 0)) {
2321 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2322 		if (unlikely(err))
2323 			goto free_skb;
2324 	}
2325 
2326 	/* FIXME: The use of this function with non-linear skb's really needs
2327 	 * to be audited.
2328 	 */
2329 	err = skb_linearize(skb);
2330 	if (unlikely(err))
2331 		goto free_skb;
2332 
2333 	memset(skb->data + skb->len, 0, pad);
2334 	return 0;
2335 
2336 free_skb:
2337 	if (free_on_error)
2338 		kfree_skb(skb);
2339 	return err;
2340 }
2341 EXPORT_SYMBOL(__skb_pad);
2342 
2343 /**
2344  *	pskb_put - add data to the tail of a potentially fragmented buffer
2345  *	@skb: start of the buffer to use
2346  *	@tail: tail fragment of the buffer to use
2347  *	@len: amount of data to add
2348  *
2349  *	This function extends the used data area of the potentially
2350  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2351  *	@skb itself. If this would exceed the total buffer size the kernel
2352  *	will panic. A pointer to the first byte of the extra data is
2353  *	returned.
2354  */
2355 
2356 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2357 {
2358 	if (tail != skb) {
2359 		skb->data_len += len;
2360 		skb->len += len;
2361 	}
2362 	return skb_put(tail, len);
2363 }
2364 EXPORT_SYMBOL_GPL(pskb_put);
2365 
2366 /**
2367  *	skb_put - add data to a buffer
2368  *	@skb: buffer to use
2369  *	@len: amount of data to add
2370  *
2371  *	This function extends the used data area of the buffer. If this would
2372  *	exceed the total buffer size the kernel will panic. A pointer to the
2373  *	first byte of the extra data is returned.
2374  */
2375 void *skb_put(struct sk_buff *skb, unsigned int len)
2376 {
2377 	void *tmp = skb_tail_pointer(skb);
2378 	SKB_LINEAR_ASSERT(skb);
2379 	skb->tail += len;
2380 	skb->len  += len;
2381 	if (unlikely(skb->tail > skb->end))
2382 		skb_over_panic(skb, len, __builtin_return_address(0));
2383 	return tmp;
2384 }
2385 EXPORT_SYMBOL(skb_put);
2386 
2387 /**
2388  *	skb_push - add data to the start of a buffer
2389  *	@skb: buffer to use
2390  *	@len: amount of data to add
2391  *
2392  *	This function extends the used data area of the buffer at the buffer
2393  *	start. If this would exceed the total buffer headroom the kernel will
2394  *	panic. A pointer to the first byte of the extra data is returned.
2395  */
2396 void *skb_push(struct sk_buff *skb, unsigned int len)
2397 {
2398 	skb->data -= len;
2399 	skb->len  += len;
2400 	if (unlikely(skb->data < skb->head))
2401 		skb_under_panic(skb, len, __builtin_return_address(0));
2402 	return skb->data;
2403 }
2404 EXPORT_SYMBOL(skb_push);
2405 
2406 /**
2407  *	skb_pull - remove data from the start of a buffer
2408  *	@skb: buffer to use
2409  *	@len: amount of data to remove
2410  *
2411  *	This function removes data from the start of a buffer, returning
2412  *	the memory to the headroom. A pointer to the next data in the buffer
2413  *	is returned. Once the data has been pulled future pushes will overwrite
2414  *	the old data.
2415  */
2416 void *skb_pull(struct sk_buff *skb, unsigned int len)
2417 {
2418 	return skb_pull_inline(skb, len);
2419 }
2420 EXPORT_SYMBOL(skb_pull);
2421 
2422 /**
2423  *	skb_pull_data - remove data from the start of a buffer returning its
2424  *	original position.
2425  *	@skb: buffer to use
2426  *	@len: amount of data to remove
2427  *
2428  *	This function removes data from the start of a buffer, returning
2429  *	the memory to the headroom. A pointer to the original data in the buffer
2430  *	is returned after checking if there is enough data to pull. Once the
2431  *	data has been pulled future pushes will overwrite the old data.
2432  */
2433 void *skb_pull_data(struct sk_buff *skb, size_t len)
2434 {
2435 	void *data = skb->data;
2436 
2437 	if (skb->len < len)
2438 		return NULL;
2439 
2440 	skb_pull(skb, len);
2441 
2442 	return data;
2443 }
2444 EXPORT_SYMBOL(skb_pull_data);
2445 
2446 /**
2447  *	skb_trim - remove end from a buffer
2448  *	@skb: buffer to alter
2449  *	@len: new length
2450  *
2451  *	Cut the length of a buffer down by removing data from the tail. If
2452  *	the buffer is already under the length specified it is not modified.
2453  *	The skb must be linear.
2454  */
2455 void skb_trim(struct sk_buff *skb, unsigned int len)
2456 {
2457 	if (skb->len > len)
2458 		__skb_trim(skb, len);
2459 }
2460 EXPORT_SYMBOL(skb_trim);
2461 
2462 /* Trims skb to length len. It can change skb pointers.
2463  */
2464 
2465 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2466 {
2467 	struct sk_buff **fragp;
2468 	struct sk_buff *frag;
2469 	int offset = skb_headlen(skb);
2470 	int nfrags = skb_shinfo(skb)->nr_frags;
2471 	int i;
2472 	int err;
2473 
2474 	if (skb_cloned(skb) &&
2475 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2476 		return err;
2477 
2478 	i = 0;
2479 	if (offset >= len)
2480 		goto drop_pages;
2481 
2482 	for (; i < nfrags; i++) {
2483 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2484 
2485 		if (end < len) {
2486 			offset = end;
2487 			continue;
2488 		}
2489 
2490 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2491 
2492 drop_pages:
2493 		skb_shinfo(skb)->nr_frags = i;
2494 
2495 		for (; i < nfrags; i++)
2496 			skb_frag_unref(skb, i);
2497 
2498 		if (skb_has_frag_list(skb))
2499 			skb_drop_fraglist(skb);
2500 		goto done;
2501 	}
2502 
2503 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2504 	     fragp = &frag->next) {
2505 		int end = offset + frag->len;
2506 
2507 		if (skb_shared(frag)) {
2508 			struct sk_buff *nfrag;
2509 
2510 			nfrag = skb_clone(frag, GFP_ATOMIC);
2511 			if (unlikely(!nfrag))
2512 				return -ENOMEM;
2513 
2514 			nfrag->next = frag->next;
2515 			consume_skb(frag);
2516 			frag = nfrag;
2517 			*fragp = frag;
2518 		}
2519 
2520 		if (end < len) {
2521 			offset = end;
2522 			continue;
2523 		}
2524 
2525 		if (end > len &&
2526 		    unlikely((err = pskb_trim(frag, len - offset))))
2527 			return err;
2528 
2529 		if (frag->next)
2530 			skb_drop_list(&frag->next);
2531 		break;
2532 	}
2533 
2534 done:
2535 	if (len > skb_headlen(skb)) {
2536 		skb->data_len -= skb->len - len;
2537 		skb->len       = len;
2538 	} else {
2539 		skb->len       = len;
2540 		skb->data_len  = 0;
2541 		skb_set_tail_pointer(skb, len);
2542 	}
2543 
2544 	if (!skb->sk || skb->destructor == sock_edemux)
2545 		skb_condense(skb);
2546 	return 0;
2547 }
2548 EXPORT_SYMBOL(___pskb_trim);
2549 
2550 /* Note : use pskb_trim_rcsum() instead of calling this directly
2551  */
2552 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2553 {
2554 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2555 		int delta = skb->len - len;
2556 
2557 		skb->csum = csum_block_sub(skb->csum,
2558 					   skb_checksum(skb, len, delta, 0),
2559 					   len);
2560 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2561 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2562 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2563 
2564 		if (offset + sizeof(__sum16) > hdlen)
2565 			return -EINVAL;
2566 	}
2567 	return __pskb_trim(skb, len);
2568 }
2569 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2570 
2571 /**
2572  *	__pskb_pull_tail - advance tail of skb header
2573  *	@skb: buffer to reallocate
2574  *	@delta: number of bytes to advance tail
2575  *
2576  *	The function makes a sense only on a fragmented &sk_buff,
2577  *	it expands header moving its tail forward and copying necessary
2578  *	data from fragmented part.
2579  *
2580  *	&sk_buff MUST have reference count of 1.
2581  *
2582  *	Returns %NULL (and &sk_buff does not change) if pull failed
2583  *	or value of new tail of skb in the case of success.
2584  *
2585  *	All the pointers pointing into skb header may change and must be
2586  *	reloaded after call to this function.
2587  */
2588 
2589 /* Moves tail of skb head forward, copying data from fragmented part,
2590  * when it is necessary.
2591  * 1. It may fail due to malloc failure.
2592  * 2. It may change skb pointers.
2593  *
2594  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2595  */
2596 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2597 {
2598 	/* If skb has not enough free space at tail, get new one
2599 	 * plus 128 bytes for future expansions. If we have enough
2600 	 * room at tail, reallocate without expansion only if skb is cloned.
2601 	 */
2602 	int i, k, eat = (skb->tail + delta) - skb->end;
2603 
2604 	if (eat > 0 || skb_cloned(skb)) {
2605 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2606 				     GFP_ATOMIC))
2607 			return NULL;
2608 	}
2609 
2610 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2611 			     skb_tail_pointer(skb), delta));
2612 
2613 	/* Optimization: no fragments, no reasons to preestimate
2614 	 * size of pulled pages. Superb.
2615 	 */
2616 	if (!skb_has_frag_list(skb))
2617 		goto pull_pages;
2618 
2619 	/* Estimate size of pulled pages. */
2620 	eat = delta;
2621 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2622 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2623 
2624 		if (size >= eat)
2625 			goto pull_pages;
2626 		eat -= size;
2627 	}
2628 
2629 	/* If we need update frag list, we are in troubles.
2630 	 * Certainly, it is possible to add an offset to skb data,
2631 	 * but taking into account that pulling is expected to
2632 	 * be very rare operation, it is worth to fight against
2633 	 * further bloating skb head and crucify ourselves here instead.
2634 	 * Pure masohism, indeed. 8)8)
2635 	 */
2636 	if (eat) {
2637 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2638 		struct sk_buff *clone = NULL;
2639 		struct sk_buff *insp = NULL;
2640 
2641 		do {
2642 			if (list->len <= eat) {
2643 				/* Eaten as whole. */
2644 				eat -= list->len;
2645 				list = list->next;
2646 				insp = list;
2647 			} else {
2648 				/* Eaten partially. */
2649 				if (skb_is_gso(skb) && !list->head_frag &&
2650 				    skb_headlen(list))
2651 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2652 
2653 				if (skb_shared(list)) {
2654 					/* Sucks! We need to fork list. :-( */
2655 					clone = skb_clone(list, GFP_ATOMIC);
2656 					if (!clone)
2657 						return NULL;
2658 					insp = list->next;
2659 					list = clone;
2660 				} else {
2661 					/* This may be pulled without
2662 					 * problems. */
2663 					insp = list;
2664 				}
2665 				if (!pskb_pull(list, eat)) {
2666 					kfree_skb(clone);
2667 					return NULL;
2668 				}
2669 				break;
2670 			}
2671 		} while (eat);
2672 
2673 		/* Free pulled out fragments. */
2674 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2675 			skb_shinfo(skb)->frag_list = list->next;
2676 			consume_skb(list);
2677 		}
2678 		/* And insert new clone at head. */
2679 		if (clone) {
2680 			clone->next = list;
2681 			skb_shinfo(skb)->frag_list = clone;
2682 		}
2683 	}
2684 	/* Success! Now we may commit changes to skb data. */
2685 
2686 pull_pages:
2687 	eat = delta;
2688 	k = 0;
2689 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2690 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2691 
2692 		if (size <= eat) {
2693 			skb_frag_unref(skb, i);
2694 			eat -= size;
2695 		} else {
2696 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2697 
2698 			*frag = skb_shinfo(skb)->frags[i];
2699 			if (eat) {
2700 				skb_frag_off_add(frag, eat);
2701 				skb_frag_size_sub(frag, eat);
2702 				if (!i)
2703 					goto end;
2704 				eat = 0;
2705 			}
2706 			k++;
2707 		}
2708 	}
2709 	skb_shinfo(skb)->nr_frags = k;
2710 
2711 end:
2712 	skb->tail     += delta;
2713 	skb->data_len -= delta;
2714 
2715 	if (!skb->data_len)
2716 		skb_zcopy_clear(skb, false);
2717 
2718 	return skb_tail_pointer(skb);
2719 }
2720 EXPORT_SYMBOL(__pskb_pull_tail);
2721 
2722 /**
2723  *	skb_copy_bits - copy bits from skb to kernel buffer
2724  *	@skb: source skb
2725  *	@offset: offset in source
2726  *	@to: destination buffer
2727  *	@len: number of bytes to copy
2728  *
2729  *	Copy the specified number of bytes from the source skb to the
2730  *	destination buffer.
2731  *
2732  *	CAUTION ! :
2733  *		If its prototype is ever changed,
2734  *		check arch/{*}/net/{*}.S files,
2735  *		since it is called from BPF assembly code.
2736  */
2737 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2738 {
2739 	int start = skb_headlen(skb);
2740 	struct sk_buff *frag_iter;
2741 	int i, copy;
2742 
2743 	if (offset > (int)skb->len - len)
2744 		goto fault;
2745 
2746 	/* Copy header. */
2747 	if ((copy = start - offset) > 0) {
2748 		if (copy > len)
2749 			copy = len;
2750 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2751 		if ((len -= copy) == 0)
2752 			return 0;
2753 		offset += copy;
2754 		to     += copy;
2755 	}
2756 
2757 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2758 		int end;
2759 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2760 
2761 		WARN_ON(start > offset + len);
2762 
2763 		end = start + skb_frag_size(f);
2764 		if ((copy = end - offset) > 0) {
2765 			u32 p_off, p_len, copied;
2766 			struct page *p;
2767 			u8 *vaddr;
2768 
2769 			if (copy > len)
2770 				copy = len;
2771 
2772 			skb_frag_foreach_page(f,
2773 					      skb_frag_off(f) + offset - start,
2774 					      copy, p, p_off, p_len, copied) {
2775 				vaddr = kmap_atomic(p);
2776 				memcpy(to + copied, vaddr + p_off, p_len);
2777 				kunmap_atomic(vaddr);
2778 			}
2779 
2780 			if ((len -= copy) == 0)
2781 				return 0;
2782 			offset += copy;
2783 			to     += copy;
2784 		}
2785 		start = end;
2786 	}
2787 
2788 	skb_walk_frags(skb, frag_iter) {
2789 		int end;
2790 
2791 		WARN_ON(start > offset + len);
2792 
2793 		end = start + frag_iter->len;
2794 		if ((copy = end - offset) > 0) {
2795 			if (copy > len)
2796 				copy = len;
2797 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2798 				goto fault;
2799 			if ((len -= copy) == 0)
2800 				return 0;
2801 			offset += copy;
2802 			to     += copy;
2803 		}
2804 		start = end;
2805 	}
2806 
2807 	if (!len)
2808 		return 0;
2809 
2810 fault:
2811 	return -EFAULT;
2812 }
2813 EXPORT_SYMBOL(skb_copy_bits);
2814 
2815 /*
2816  * Callback from splice_to_pipe(), if we need to release some pages
2817  * at the end of the spd in case we error'ed out in filling the pipe.
2818  */
2819 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2820 {
2821 	put_page(spd->pages[i]);
2822 }
2823 
2824 static struct page *linear_to_page(struct page *page, unsigned int *len,
2825 				   unsigned int *offset,
2826 				   struct sock *sk)
2827 {
2828 	struct page_frag *pfrag = sk_page_frag(sk);
2829 
2830 	if (!sk_page_frag_refill(sk, pfrag))
2831 		return NULL;
2832 
2833 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2834 
2835 	memcpy(page_address(pfrag->page) + pfrag->offset,
2836 	       page_address(page) + *offset, *len);
2837 	*offset = pfrag->offset;
2838 	pfrag->offset += *len;
2839 
2840 	return pfrag->page;
2841 }
2842 
2843 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2844 			     struct page *page,
2845 			     unsigned int offset)
2846 {
2847 	return	spd->nr_pages &&
2848 		spd->pages[spd->nr_pages - 1] == page &&
2849 		(spd->partial[spd->nr_pages - 1].offset +
2850 		 spd->partial[spd->nr_pages - 1].len == offset);
2851 }
2852 
2853 /*
2854  * Fill page/offset/length into spd, if it can hold more pages.
2855  */
2856 static bool spd_fill_page(struct splice_pipe_desc *spd,
2857 			  struct pipe_inode_info *pipe, struct page *page,
2858 			  unsigned int *len, unsigned int offset,
2859 			  bool linear,
2860 			  struct sock *sk)
2861 {
2862 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2863 		return true;
2864 
2865 	if (linear) {
2866 		page = linear_to_page(page, len, &offset, sk);
2867 		if (!page)
2868 			return true;
2869 	}
2870 	if (spd_can_coalesce(spd, page, offset)) {
2871 		spd->partial[spd->nr_pages - 1].len += *len;
2872 		return false;
2873 	}
2874 	get_page(page);
2875 	spd->pages[spd->nr_pages] = page;
2876 	spd->partial[spd->nr_pages].len = *len;
2877 	spd->partial[spd->nr_pages].offset = offset;
2878 	spd->nr_pages++;
2879 
2880 	return false;
2881 }
2882 
2883 static bool __splice_segment(struct page *page, unsigned int poff,
2884 			     unsigned int plen, unsigned int *off,
2885 			     unsigned int *len,
2886 			     struct splice_pipe_desc *spd, bool linear,
2887 			     struct sock *sk,
2888 			     struct pipe_inode_info *pipe)
2889 {
2890 	if (!*len)
2891 		return true;
2892 
2893 	/* skip this segment if already processed */
2894 	if (*off >= plen) {
2895 		*off -= plen;
2896 		return false;
2897 	}
2898 
2899 	/* ignore any bits we already processed */
2900 	poff += *off;
2901 	plen -= *off;
2902 	*off = 0;
2903 
2904 	do {
2905 		unsigned int flen = min(*len, plen);
2906 
2907 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2908 				  linear, sk))
2909 			return true;
2910 		poff += flen;
2911 		plen -= flen;
2912 		*len -= flen;
2913 	} while (*len && plen);
2914 
2915 	return false;
2916 }
2917 
2918 /*
2919  * Map linear and fragment data from the skb to spd. It reports true if the
2920  * pipe is full or if we already spliced the requested length.
2921  */
2922 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2923 			      unsigned int *offset, unsigned int *len,
2924 			      struct splice_pipe_desc *spd, struct sock *sk)
2925 {
2926 	int seg;
2927 	struct sk_buff *iter;
2928 
2929 	/* map the linear part :
2930 	 * If skb->head_frag is set, this 'linear' part is backed by a
2931 	 * fragment, and if the head is not shared with any clones then
2932 	 * we can avoid a copy since we own the head portion of this page.
2933 	 */
2934 	if (__splice_segment(virt_to_page(skb->data),
2935 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2936 			     skb_headlen(skb),
2937 			     offset, len, spd,
2938 			     skb_head_is_locked(skb),
2939 			     sk, pipe))
2940 		return true;
2941 
2942 	/*
2943 	 * then map the fragments
2944 	 */
2945 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2946 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2947 
2948 		if (__splice_segment(skb_frag_page(f),
2949 				     skb_frag_off(f), skb_frag_size(f),
2950 				     offset, len, spd, false, sk, pipe))
2951 			return true;
2952 	}
2953 
2954 	skb_walk_frags(skb, iter) {
2955 		if (*offset >= iter->len) {
2956 			*offset -= iter->len;
2957 			continue;
2958 		}
2959 		/* __skb_splice_bits() only fails if the output has no room
2960 		 * left, so no point in going over the frag_list for the error
2961 		 * case.
2962 		 */
2963 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2964 			return true;
2965 	}
2966 
2967 	return false;
2968 }
2969 
2970 /*
2971  * Map data from the skb to a pipe. Should handle both the linear part,
2972  * the fragments, and the frag list.
2973  */
2974 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2975 		    struct pipe_inode_info *pipe, unsigned int tlen,
2976 		    unsigned int flags)
2977 {
2978 	struct partial_page partial[MAX_SKB_FRAGS];
2979 	struct page *pages[MAX_SKB_FRAGS];
2980 	struct splice_pipe_desc spd = {
2981 		.pages = pages,
2982 		.partial = partial,
2983 		.nr_pages_max = MAX_SKB_FRAGS,
2984 		.ops = &nosteal_pipe_buf_ops,
2985 		.spd_release = sock_spd_release,
2986 	};
2987 	int ret = 0;
2988 
2989 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2990 
2991 	if (spd.nr_pages)
2992 		ret = splice_to_pipe(pipe, &spd);
2993 
2994 	return ret;
2995 }
2996 EXPORT_SYMBOL_GPL(skb_splice_bits);
2997 
2998 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2999 			    struct kvec *vec, size_t num, size_t size)
3000 {
3001 	struct socket *sock = sk->sk_socket;
3002 
3003 	if (!sock)
3004 		return -EINVAL;
3005 	return kernel_sendmsg(sock, msg, vec, num, size);
3006 }
3007 
3008 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
3009 			     size_t size, int flags)
3010 {
3011 	struct socket *sock = sk->sk_socket;
3012 
3013 	if (!sock)
3014 		return -EINVAL;
3015 	return kernel_sendpage(sock, page, offset, size, flags);
3016 }
3017 
3018 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
3019 			    struct kvec *vec, size_t num, size_t size);
3020 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
3021 			     size_t size, int flags);
3022 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3023 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
3024 {
3025 	unsigned int orig_len = len;
3026 	struct sk_buff *head = skb;
3027 	unsigned short fragidx;
3028 	int slen, ret;
3029 
3030 do_frag_list:
3031 
3032 	/* Deal with head data */
3033 	while (offset < skb_headlen(skb) && len) {
3034 		struct kvec kv;
3035 		struct msghdr msg;
3036 
3037 		slen = min_t(int, len, skb_headlen(skb) - offset);
3038 		kv.iov_base = skb->data + offset;
3039 		kv.iov_len = slen;
3040 		memset(&msg, 0, sizeof(msg));
3041 		msg.msg_flags = MSG_DONTWAIT;
3042 
3043 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
3044 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
3045 		if (ret <= 0)
3046 			goto error;
3047 
3048 		offset += ret;
3049 		len -= ret;
3050 	}
3051 
3052 	/* All the data was skb head? */
3053 	if (!len)
3054 		goto out;
3055 
3056 	/* Make offset relative to start of frags */
3057 	offset -= skb_headlen(skb);
3058 
3059 	/* Find where we are in frag list */
3060 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3061 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3062 
3063 		if (offset < skb_frag_size(frag))
3064 			break;
3065 
3066 		offset -= skb_frag_size(frag);
3067 	}
3068 
3069 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3070 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3071 
3072 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3073 
3074 		while (slen) {
3075 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
3076 					      sendpage_unlocked, sk,
3077 					      skb_frag_page(frag),
3078 					      skb_frag_off(frag) + offset,
3079 					      slen, MSG_DONTWAIT);
3080 			if (ret <= 0)
3081 				goto error;
3082 
3083 			len -= ret;
3084 			offset += ret;
3085 			slen -= ret;
3086 		}
3087 
3088 		offset = 0;
3089 	}
3090 
3091 	if (len) {
3092 		/* Process any frag lists */
3093 
3094 		if (skb == head) {
3095 			if (skb_has_frag_list(skb)) {
3096 				skb = skb_shinfo(skb)->frag_list;
3097 				goto do_frag_list;
3098 			}
3099 		} else if (skb->next) {
3100 			skb = skb->next;
3101 			goto do_frag_list;
3102 		}
3103 	}
3104 
3105 out:
3106 	return orig_len - len;
3107 
3108 error:
3109 	return orig_len == len ? ret : orig_len - len;
3110 }
3111 
3112 /* Send skb data on a socket. Socket must be locked. */
3113 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3114 			 int len)
3115 {
3116 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
3117 			       kernel_sendpage_locked);
3118 }
3119 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3120 
3121 /* Send skb data on a socket. Socket must be unlocked. */
3122 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3123 {
3124 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
3125 			       sendpage_unlocked);
3126 }
3127 
3128 /**
3129  *	skb_store_bits - store bits from kernel buffer to skb
3130  *	@skb: destination buffer
3131  *	@offset: offset in destination
3132  *	@from: source buffer
3133  *	@len: number of bytes to copy
3134  *
3135  *	Copy the specified number of bytes from the source buffer to the
3136  *	destination skb.  This function handles all the messy bits of
3137  *	traversing fragment lists and such.
3138  */
3139 
3140 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3141 {
3142 	int start = skb_headlen(skb);
3143 	struct sk_buff *frag_iter;
3144 	int i, copy;
3145 
3146 	if (offset > (int)skb->len - len)
3147 		goto fault;
3148 
3149 	if ((copy = start - offset) > 0) {
3150 		if (copy > len)
3151 			copy = len;
3152 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3153 		if ((len -= copy) == 0)
3154 			return 0;
3155 		offset += copy;
3156 		from += copy;
3157 	}
3158 
3159 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3160 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3161 		int end;
3162 
3163 		WARN_ON(start > offset + len);
3164 
3165 		end = start + skb_frag_size(frag);
3166 		if ((copy = end - offset) > 0) {
3167 			u32 p_off, p_len, copied;
3168 			struct page *p;
3169 			u8 *vaddr;
3170 
3171 			if (copy > len)
3172 				copy = len;
3173 
3174 			skb_frag_foreach_page(frag,
3175 					      skb_frag_off(frag) + offset - start,
3176 					      copy, p, p_off, p_len, copied) {
3177 				vaddr = kmap_atomic(p);
3178 				memcpy(vaddr + p_off, from + copied, p_len);
3179 				kunmap_atomic(vaddr);
3180 			}
3181 
3182 			if ((len -= copy) == 0)
3183 				return 0;
3184 			offset += copy;
3185 			from += copy;
3186 		}
3187 		start = end;
3188 	}
3189 
3190 	skb_walk_frags(skb, frag_iter) {
3191 		int end;
3192 
3193 		WARN_ON(start > offset + len);
3194 
3195 		end = start + frag_iter->len;
3196 		if ((copy = end - offset) > 0) {
3197 			if (copy > len)
3198 				copy = len;
3199 			if (skb_store_bits(frag_iter, offset - start,
3200 					   from, copy))
3201 				goto fault;
3202 			if ((len -= copy) == 0)
3203 				return 0;
3204 			offset += copy;
3205 			from += copy;
3206 		}
3207 		start = end;
3208 	}
3209 	if (!len)
3210 		return 0;
3211 
3212 fault:
3213 	return -EFAULT;
3214 }
3215 EXPORT_SYMBOL(skb_store_bits);
3216 
3217 /* Checksum skb data. */
3218 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3219 		      __wsum csum, const struct skb_checksum_ops *ops)
3220 {
3221 	int start = skb_headlen(skb);
3222 	int i, copy = start - offset;
3223 	struct sk_buff *frag_iter;
3224 	int pos = 0;
3225 
3226 	/* Checksum header. */
3227 	if (copy > 0) {
3228 		if (copy > len)
3229 			copy = len;
3230 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3231 				       skb->data + offset, copy, csum);
3232 		if ((len -= copy) == 0)
3233 			return csum;
3234 		offset += copy;
3235 		pos	= copy;
3236 	}
3237 
3238 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3239 		int end;
3240 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3241 
3242 		WARN_ON(start > offset + len);
3243 
3244 		end = start + skb_frag_size(frag);
3245 		if ((copy = end - offset) > 0) {
3246 			u32 p_off, p_len, copied;
3247 			struct page *p;
3248 			__wsum csum2;
3249 			u8 *vaddr;
3250 
3251 			if (copy > len)
3252 				copy = len;
3253 
3254 			skb_frag_foreach_page(frag,
3255 					      skb_frag_off(frag) + offset - start,
3256 					      copy, p, p_off, p_len, copied) {
3257 				vaddr = kmap_atomic(p);
3258 				csum2 = INDIRECT_CALL_1(ops->update,
3259 							csum_partial_ext,
3260 							vaddr + p_off, p_len, 0);
3261 				kunmap_atomic(vaddr);
3262 				csum = INDIRECT_CALL_1(ops->combine,
3263 						       csum_block_add_ext, csum,
3264 						       csum2, pos, p_len);
3265 				pos += p_len;
3266 			}
3267 
3268 			if (!(len -= copy))
3269 				return csum;
3270 			offset += copy;
3271 		}
3272 		start = end;
3273 	}
3274 
3275 	skb_walk_frags(skb, frag_iter) {
3276 		int end;
3277 
3278 		WARN_ON(start > offset + len);
3279 
3280 		end = start + frag_iter->len;
3281 		if ((copy = end - offset) > 0) {
3282 			__wsum csum2;
3283 			if (copy > len)
3284 				copy = len;
3285 			csum2 = __skb_checksum(frag_iter, offset - start,
3286 					       copy, 0, ops);
3287 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3288 					       csum, csum2, pos, copy);
3289 			if ((len -= copy) == 0)
3290 				return csum;
3291 			offset += copy;
3292 			pos    += copy;
3293 		}
3294 		start = end;
3295 	}
3296 	BUG_ON(len);
3297 
3298 	return csum;
3299 }
3300 EXPORT_SYMBOL(__skb_checksum);
3301 
3302 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3303 		    int len, __wsum csum)
3304 {
3305 	const struct skb_checksum_ops ops = {
3306 		.update  = csum_partial_ext,
3307 		.combine = csum_block_add_ext,
3308 	};
3309 
3310 	return __skb_checksum(skb, offset, len, csum, &ops);
3311 }
3312 EXPORT_SYMBOL(skb_checksum);
3313 
3314 /* Both of above in one bottle. */
3315 
3316 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3317 				    u8 *to, int len)
3318 {
3319 	int start = skb_headlen(skb);
3320 	int i, copy = start - offset;
3321 	struct sk_buff *frag_iter;
3322 	int pos = 0;
3323 	__wsum csum = 0;
3324 
3325 	/* Copy header. */
3326 	if (copy > 0) {
3327 		if (copy > len)
3328 			copy = len;
3329 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3330 						 copy);
3331 		if ((len -= copy) == 0)
3332 			return csum;
3333 		offset += copy;
3334 		to     += copy;
3335 		pos	= copy;
3336 	}
3337 
3338 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3339 		int end;
3340 
3341 		WARN_ON(start > offset + len);
3342 
3343 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3344 		if ((copy = end - offset) > 0) {
3345 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3346 			u32 p_off, p_len, copied;
3347 			struct page *p;
3348 			__wsum csum2;
3349 			u8 *vaddr;
3350 
3351 			if (copy > len)
3352 				copy = len;
3353 
3354 			skb_frag_foreach_page(frag,
3355 					      skb_frag_off(frag) + offset - start,
3356 					      copy, p, p_off, p_len, copied) {
3357 				vaddr = kmap_atomic(p);
3358 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3359 								  to + copied,
3360 								  p_len);
3361 				kunmap_atomic(vaddr);
3362 				csum = csum_block_add(csum, csum2, pos);
3363 				pos += p_len;
3364 			}
3365 
3366 			if (!(len -= copy))
3367 				return csum;
3368 			offset += copy;
3369 			to     += copy;
3370 		}
3371 		start = end;
3372 	}
3373 
3374 	skb_walk_frags(skb, frag_iter) {
3375 		__wsum csum2;
3376 		int end;
3377 
3378 		WARN_ON(start > offset + len);
3379 
3380 		end = start + frag_iter->len;
3381 		if ((copy = end - offset) > 0) {
3382 			if (copy > len)
3383 				copy = len;
3384 			csum2 = skb_copy_and_csum_bits(frag_iter,
3385 						       offset - start,
3386 						       to, copy);
3387 			csum = csum_block_add(csum, csum2, pos);
3388 			if ((len -= copy) == 0)
3389 				return csum;
3390 			offset += copy;
3391 			to     += copy;
3392 			pos    += copy;
3393 		}
3394 		start = end;
3395 	}
3396 	BUG_ON(len);
3397 	return csum;
3398 }
3399 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3400 
3401 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3402 {
3403 	__sum16 sum;
3404 
3405 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3406 	/* See comments in __skb_checksum_complete(). */
3407 	if (likely(!sum)) {
3408 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3409 		    !skb->csum_complete_sw)
3410 			netdev_rx_csum_fault(skb->dev, skb);
3411 	}
3412 	if (!skb_shared(skb))
3413 		skb->csum_valid = !sum;
3414 	return sum;
3415 }
3416 EXPORT_SYMBOL(__skb_checksum_complete_head);
3417 
3418 /* This function assumes skb->csum already holds pseudo header's checksum,
3419  * which has been changed from the hardware checksum, for example, by
3420  * __skb_checksum_validate_complete(). And, the original skb->csum must
3421  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3422  *
3423  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3424  * zero. The new checksum is stored back into skb->csum unless the skb is
3425  * shared.
3426  */
3427 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3428 {
3429 	__wsum csum;
3430 	__sum16 sum;
3431 
3432 	csum = skb_checksum(skb, 0, skb->len, 0);
3433 
3434 	sum = csum_fold(csum_add(skb->csum, csum));
3435 	/* This check is inverted, because we already knew the hardware
3436 	 * checksum is invalid before calling this function. So, if the
3437 	 * re-computed checksum is valid instead, then we have a mismatch
3438 	 * between the original skb->csum and skb_checksum(). This means either
3439 	 * the original hardware checksum is incorrect or we screw up skb->csum
3440 	 * when moving skb->data around.
3441 	 */
3442 	if (likely(!sum)) {
3443 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3444 		    !skb->csum_complete_sw)
3445 			netdev_rx_csum_fault(skb->dev, skb);
3446 	}
3447 
3448 	if (!skb_shared(skb)) {
3449 		/* Save full packet checksum */
3450 		skb->csum = csum;
3451 		skb->ip_summed = CHECKSUM_COMPLETE;
3452 		skb->csum_complete_sw = 1;
3453 		skb->csum_valid = !sum;
3454 	}
3455 
3456 	return sum;
3457 }
3458 EXPORT_SYMBOL(__skb_checksum_complete);
3459 
3460 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3461 {
3462 	net_warn_ratelimited(
3463 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3464 		__func__);
3465 	return 0;
3466 }
3467 
3468 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3469 				       int offset, int len)
3470 {
3471 	net_warn_ratelimited(
3472 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3473 		__func__);
3474 	return 0;
3475 }
3476 
3477 static const struct skb_checksum_ops default_crc32c_ops = {
3478 	.update  = warn_crc32c_csum_update,
3479 	.combine = warn_crc32c_csum_combine,
3480 };
3481 
3482 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3483 	&default_crc32c_ops;
3484 EXPORT_SYMBOL(crc32c_csum_stub);
3485 
3486  /**
3487  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3488  *	@from: source buffer
3489  *
3490  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3491  *	into skb_zerocopy().
3492  */
3493 unsigned int
3494 skb_zerocopy_headlen(const struct sk_buff *from)
3495 {
3496 	unsigned int hlen = 0;
3497 
3498 	if (!from->head_frag ||
3499 	    skb_headlen(from) < L1_CACHE_BYTES ||
3500 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3501 		hlen = skb_headlen(from);
3502 		if (!hlen)
3503 			hlen = from->len;
3504 	}
3505 
3506 	if (skb_has_frag_list(from))
3507 		hlen = from->len;
3508 
3509 	return hlen;
3510 }
3511 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3512 
3513 /**
3514  *	skb_zerocopy - Zero copy skb to skb
3515  *	@to: destination buffer
3516  *	@from: source buffer
3517  *	@len: number of bytes to copy from source buffer
3518  *	@hlen: size of linear headroom in destination buffer
3519  *
3520  *	Copies up to `len` bytes from `from` to `to` by creating references
3521  *	to the frags in the source buffer.
3522  *
3523  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3524  *	headroom in the `to` buffer.
3525  *
3526  *	Return value:
3527  *	0: everything is OK
3528  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3529  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3530  */
3531 int
3532 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3533 {
3534 	int i, j = 0;
3535 	int plen = 0; /* length of skb->head fragment */
3536 	int ret;
3537 	struct page *page;
3538 	unsigned int offset;
3539 
3540 	BUG_ON(!from->head_frag && !hlen);
3541 
3542 	/* dont bother with small payloads */
3543 	if (len <= skb_tailroom(to))
3544 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3545 
3546 	if (hlen) {
3547 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3548 		if (unlikely(ret))
3549 			return ret;
3550 		len -= hlen;
3551 	} else {
3552 		plen = min_t(int, skb_headlen(from), len);
3553 		if (plen) {
3554 			page = virt_to_head_page(from->head);
3555 			offset = from->data - (unsigned char *)page_address(page);
3556 			__skb_fill_page_desc(to, 0, page, offset, plen);
3557 			get_page(page);
3558 			j = 1;
3559 			len -= plen;
3560 		}
3561 	}
3562 
3563 	skb_len_add(to, len + plen);
3564 
3565 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3566 		skb_tx_error(from);
3567 		return -ENOMEM;
3568 	}
3569 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3570 
3571 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3572 		int size;
3573 
3574 		if (!len)
3575 			break;
3576 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3577 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3578 					len);
3579 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3580 		len -= size;
3581 		skb_frag_ref(to, j);
3582 		j++;
3583 	}
3584 	skb_shinfo(to)->nr_frags = j;
3585 
3586 	return 0;
3587 }
3588 EXPORT_SYMBOL_GPL(skb_zerocopy);
3589 
3590 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3591 {
3592 	__wsum csum;
3593 	long csstart;
3594 
3595 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3596 		csstart = skb_checksum_start_offset(skb);
3597 	else
3598 		csstart = skb_headlen(skb);
3599 
3600 	BUG_ON(csstart > skb_headlen(skb));
3601 
3602 	skb_copy_from_linear_data(skb, to, csstart);
3603 
3604 	csum = 0;
3605 	if (csstart != skb->len)
3606 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3607 					      skb->len - csstart);
3608 
3609 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3610 		long csstuff = csstart + skb->csum_offset;
3611 
3612 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3613 	}
3614 }
3615 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3616 
3617 /**
3618  *	skb_dequeue - remove from the head of the queue
3619  *	@list: list to dequeue from
3620  *
3621  *	Remove the head of the list. The list lock is taken so the function
3622  *	may be used safely with other locking list functions. The head item is
3623  *	returned or %NULL if the list is empty.
3624  */
3625 
3626 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3627 {
3628 	unsigned long flags;
3629 	struct sk_buff *result;
3630 
3631 	spin_lock_irqsave(&list->lock, flags);
3632 	result = __skb_dequeue(list);
3633 	spin_unlock_irqrestore(&list->lock, flags);
3634 	return result;
3635 }
3636 EXPORT_SYMBOL(skb_dequeue);
3637 
3638 /**
3639  *	skb_dequeue_tail - remove from the tail of the queue
3640  *	@list: list to dequeue from
3641  *
3642  *	Remove the tail of the list. The list lock is taken so the function
3643  *	may be used safely with other locking list functions. The tail item is
3644  *	returned or %NULL if the list is empty.
3645  */
3646 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3647 {
3648 	unsigned long flags;
3649 	struct sk_buff *result;
3650 
3651 	spin_lock_irqsave(&list->lock, flags);
3652 	result = __skb_dequeue_tail(list);
3653 	spin_unlock_irqrestore(&list->lock, flags);
3654 	return result;
3655 }
3656 EXPORT_SYMBOL(skb_dequeue_tail);
3657 
3658 /**
3659  *	skb_queue_purge - empty a list
3660  *	@list: list to empty
3661  *
3662  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3663  *	the list and one reference dropped. This function takes the list
3664  *	lock and is atomic with respect to other list locking functions.
3665  */
3666 void skb_queue_purge(struct sk_buff_head *list)
3667 {
3668 	struct sk_buff *skb;
3669 	while ((skb = skb_dequeue(list)) != NULL)
3670 		kfree_skb(skb);
3671 }
3672 EXPORT_SYMBOL(skb_queue_purge);
3673 
3674 /**
3675  *	skb_rbtree_purge - empty a skb rbtree
3676  *	@root: root of the rbtree to empty
3677  *	Return value: the sum of truesizes of all purged skbs.
3678  *
3679  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3680  *	the list and one reference dropped. This function does not take
3681  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3682  *	out-of-order queue is protected by the socket lock).
3683  */
3684 unsigned int skb_rbtree_purge(struct rb_root *root)
3685 {
3686 	struct rb_node *p = rb_first(root);
3687 	unsigned int sum = 0;
3688 
3689 	while (p) {
3690 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3691 
3692 		p = rb_next(p);
3693 		rb_erase(&skb->rbnode, root);
3694 		sum += skb->truesize;
3695 		kfree_skb(skb);
3696 	}
3697 	return sum;
3698 }
3699 
3700 /**
3701  *	skb_queue_head - queue a buffer at the list head
3702  *	@list: list to use
3703  *	@newsk: buffer to queue
3704  *
3705  *	Queue a buffer at the start of the list. This function takes the
3706  *	list lock and can be used safely with other locking &sk_buff functions
3707  *	safely.
3708  *
3709  *	A buffer cannot be placed on two lists at the same time.
3710  */
3711 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3712 {
3713 	unsigned long flags;
3714 
3715 	spin_lock_irqsave(&list->lock, flags);
3716 	__skb_queue_head(list, newsk);
3717 	spin_unlock_irqrestore(&list->lock, flags);
3718 }
3719 EXPORT_SYMBOL(skb_queue_head);
3720 
3721 /**
3722  *	skb_queue_tail - queue a buffer at the list tail
3723  *	@list: list to use
3724  *	@newsk: buffer to queue
3725  *
3726  *	Queue a buffer at the tail of the list. This function takes the
3727  *	list lock and can be used safely with other locking &sk_buff functions
3728  *	safely.
3729  *
3730  *	A buffer cannot be placed on two lists at the same time.
3731  */
3732 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3733 {
3734 	unsigned long flags;
3735 
3736 	spin_lock_irqsave(&list->lock, flags);
3737 	__skb_queue_tail(list, newsk);
3738 	spin_unlock_irqrestore(&list->lock, flags);
3739 }
3740 EXPORT_SYMBOL(skb_queue_tail);
3741 
3742 /**
3743  *	skb_unlink	-	remove a buffer from a list
3744  *	@skb: buffer to remove
3745  *	@list: list to use
3746  *
3747  *	Remove a packet from a list. The list locks are taken and this
3748  *	function is atomic with respect to other list locked calls
3749  *
3750  *	You must know what list the SKB is on.
3751  */
3752 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3753 {
3754 	unsigned long flags;
3755 
3756 	spin_lock_irqsave(&list->lock, flags);
3757 	__skb_unlink(skb, list);
3758 	spin_unlock_irqrestore(&list->lock, flags);
3759 }
3760 EXPORT_SYMBOL(skb_unlink);
3761 
3762 /**
3763  *	skb_append	-	append a buffer
3764  *	@old: buffer to insert after
3765  *	@newsk: buffer to insert
3766  *	@list: list to use
3767  *
3768  *	Place a packet after a given packet in a list. The list locks are taken
3769  *	and this function is atomic with respect to other list locked calls.
3770  *	A buffer cannot be placed on two lists at the same time.
3771  */
3772 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3773 {
3774 	unsigned long flags;
3775 
3776 	spin_lock_irqsave(&list->lock, flags);
3777 	__skb_queue_after(list, old, newsk);
3778 	spin_unlock_irqrestore(&list->lock, flags);
3779 }
3780 EXPORT_SYMBOL(skb_append);
3781 
3782 static inline void skb_split_inside_header(struct sk_buff *skb,
3783 					   struct sk_buff* skb1,
3784 					   const u32 len, const int pos)
3785 {
3786 	int i;
3787 
3788 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3789 					 pos - len);
3790 	/* And move data appendix as is. */
3791 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3792 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3793 
3794 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3795 	skb_shinfo(skb)->nr_frags  = 0;
3796 	skb1->data_len		   = skb->data_len;
3797 	skb1->len		   += skb1->data_len;
3798 	skb->data_len		   = 0;
3799 	skb->len		   = len;
3800 	skb_set_tail_pointer(skb, len);
3801 }
3802 
3803 static inline void skb_split_no_header(struct sk_buff *skb,
3804 				       struct sk_buff* skb1,
3805 				       const u32 len, int pos)
3806 {
3807 	int i, k = 0;
3808 	const int nfrags = skb_shinfo(skb)->nr_frags;
3809 
3810 	skb_shinfo(skb)->nr_frags = 0;
3811 	skb1->len		  = skb1->data_len = skb->len - len;
3812 	skb->len		  = len;
3813 	skb->data_len		  = len - pos;
3814 
3815 	for (i = 0; i < nfrags; i++) {
3816 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3817 
3818 		if (pos + size > len) {
3819 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3820 
3821 			if (pos < len) {
3822 				/* Split frag.
3823 				 * We have two variants in this case:
3824 				 * 1. Move all the frag to the second
3825 				 *    part, if it is possible. F.e.
3826 				 *    this approach is mandatory for TUX,
3827 				 *    where splitting is expensive.
3828 				 * 2. Split is accurately. We make this.
3829 				 */
3830 				skb_frag_ref(skb, i);
3831 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3832 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3833 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3834 				skb_shinfo(skb)->nr_frags++;
3835 			}
3836 			k++;
3837 		} else
3838 			skb_shinfo(skb)->nr_frags++;
3839 		pos += size;
3840 	}
3841 	skb_shinfo(skb1)->nr_frags = k;
3842 }
3843 
3844 /**
3845  * skb_split - Split fragmented skb to two parts at length len.
3846  * @skb: the buffer to split
3847  * @skb1: the buffer to receive the second part
3848  * @len: new length for skb
3849  */
3850 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3851 {
3852 	int pos = skb_headlen(skb);
3853 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3854 
3855 	skb_zcopy_downgrade_managed(skb);
3856 
3857 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3858 	skb_zerocopy_clone(skb1, skb, 0);
3859 	if (len < pos)	/* Split line is inside header. */
3860 		skb_split_inside_header(skb, skb1, len, pos);
3861 	else		/* Second chunk has no header, nothing to copy. */
3862 		skb_split_no_header(skb, skb1, len, pos);
3863 }
3864 EXPORT_SYMBOL(skb_split);
3865 
3866 /* Shifting from/to a cloned skb is a no-go.
3867  *
3868  * Caller cannot keep skb_shinfo related pointers past calling here!
3869  */
3870 static int skb_prepare_for_shift(struct sk_buff *skb)
3871 {
3872 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3873 }
3874 
3875 /**
3876  * skb_shift - Shifts paged data partially from skb to another
3877  * @tgt: buffer into which tail data gets added
3878  * @skb: buffer from which the paged data comes from
3879  * @shiftlen: shift up to this many bytes
3880  *
3881  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3882  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3883  * It's up to caller to free skb if everything was shifted.
3884  *
3885  * If @tgt runs out of frags, the whole operation is aborted.
3886  *
3887  * Skb cannot include anything else but paged data while tgt is allowed
3888  * to have non-paged data as well.
3889  *
3890  * TODO: full sized shift could be optimized but that would need
3891  * specialized skb free'er to handle frags without up-to-date nr_frags.
3892  */
3893 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3894 {
3895 	int from, to, merge, todo;
3896 	skb_frag_t *fragfrom, *fragto;
3897 
3898 	BUG_ON(shiftlen > skb->len);
3899 
3900 	if (skb_headlen(skb))
3901 		return 0;
3902 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3903 		return 0;
3904 
3905 	todo = shiftlen;
3906 	from = 0;
3907 	to = skb_shinfo(tgt)->nr_frags;
3908 	fragfrom = &skb_shinfo(skb)->frags[from];
3909 
3910 	/* Actual merge is delayed until the point when we know we can
3911 	 * commit all, so that we don't have to undo partial changes
3912 	 */
3913 	if (!to ||
3914 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3915 			      skb_frag_off(fragfrom))) {
3916 		merge = -1;
3917 	} else {
3918 		merge = to - 1;
3919 
3920 		todo -= skb_frag_size(fragfrom);
3921 		if (todo < 0) {
3922 			if (skb_prepare_for_shift(skb) ||
3923 			    skb_prepare_for_shift(tgt))
3924 				return 0;
3925 
3926 			/* All previous frag pointers might be stale! */
3927 			fragfrom = &skb_shinfo(skb)->frags[from];
3928 			fragto = &skb_shinfo(tgt)->frags[merge];
3929 
3930 			skb_frag_size_add(fragto, shiftlen);
3931 			skb_frag_size_sub(fragfrom, shiftlen);
3932 			skb_frag_off_add(fragfrom, shiftlen);
3933 
3934 			goto onlymerged;
3935 		}
3936 
3937 		from++;
3938 	}
3939 
3940 	/* Skip full, not-fitting skb to avoid expensive operations */
3941 	if ((shiftlen == skb->len) &&
3942 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3943 		return 0;
3944 
3945 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3946 		return 0;
3947 
3948 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3949 		if (to == MAX_SKB_FRAGS)
3950 			return 0;
3951 
3952 		fragfrom = &skb_shinfo(skb)->frags[from];
3953 		fragto = &skb_shinfo(tgt)->frags[to];
3954 
3955 		if (todo >= skb_frag_size(fragfrom)) {
3956 			*fragto = *fragfrom;
3957 			todo -= skb_frag_size(fragfrom);
3958 			from++;
3959 			to++;
3960 
3961 		} else {
3962 			__skb_frag_ref(fragfrom);
3963 			skb_frag_page_copy(fragto, fragfrom);
3964 			skb_frag_off_copy(fragto, fragfrom);
3965 			skb_frag_size_set(fragto, todo);
3966 
3967 			skb_frag_off_add(fragfrom, todo);
3968 			skb_frag_size_sub(fragfrom, todo);
3969 			todo = 0;
3970 
3971 			to++;
3972 			break;
3973 		}
3974 	}
3975 
3976 	/* Ready to "commit" this state change to tgt */
3977 	skb_shinfo(tgt)->nr_frags = to;
3978 
3979 	if (merge >= 0) {
3980 		fragfrom = &skb_shinfo(skb)->frags[0];
3981 		fragto = &skb_shinfo(tgt)->frags[merge];
3982 
3983 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3984 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3985 	}
3986 
3987 	/* Reposition in the original skb */
3988 	to = 0;
3989 	while (from < skb_shinfo(skb)->nr_frags)
3990 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3991 	skb_shinfo(skb)->nr_frags = to;
3992 
3993 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3994 
3995 onlymerged:
3996 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3997 	 * the other hand might need it if it needs to be resent
3998 	 */
3999 	tgt->ip_summed = CHECKSUM_PARTIAL;
4000 	skb->ip_summed = CHECKSUM_PARTIAL;
4001 
4002 	skb_len_add(skb, -shiftlen);
4003 	skb_len_add(tgt, shiftlen);
4004 
4005 	return shiftlen;
4006 }
4007 
4008 /**
4009  * skb_prepare_seq_read - Prepare a sequential read of skb data
4010  * @skb: the buffer to read
4011  * @from: lower offset of data to be read
4012  * @to: upper offset of data to be read
4013  * @st: state variable
4014  *
4015  * Initializes the specified state variable. Must be called before
4016  * invoking skb_seq_read() for the first time.
4017  */
4018 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4019 			  unsigned int to, struct skb_seq_state *st)
4020 {
4021 	st->lower_offset = from;
4022 	st->upper_offset = to;
4023 	st->root_skb = st->cur_skb = skb;
4024 	st->frag_idx = st->stepped_offset = 0;
4025 	st->frag_data = NULL;
4026 	st->frag_off = 0;
4027 }
4028 EXPORT_SYMBOL(skb_prepare_seq_read);
4029 
4030 /**
4031  * skb_seq_read - Sequentially read skb data
4032  * @consumed: number of bytes consumed by the caller so far
4033  * @data: destination pointer for data to be returned
4034  * @st: state variable
4035  *
4036  * Reads a block of skb data at @consumed relative to the
4037  * lower offset specified to skb_prepare_seq_read(). Assigns
4038  * the head of the data block to @data and returns the length
4039  * of the block or 0 if the end of the skb data or the upper
4040  * offset has been reached.
4041  *
4042  * The caller is not required to consume all of the data
4043  * returned, i.e. @consumed is typically set to the number
4044  * of bytes already consumed and the next call to
4045  * skb_seq_read() will return the remaining part of the block.
4046  *
4047  * Note 1: The size of each block of data returned can be arbitrary,
4048  *       this limitation is the cost for zerocopy sequential
4049  *       reads of potentially non linear data.
4050  *
4051  * Note 2: Fragment lists within fragments are not implemented
4052  *       at the moment, state->root_skb could be replaced with
4053  *       a stack for this purpose.
4054  */
4055 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4056 			  struct skb_seq_state *st)
4057 {
4058 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4059 	skb_frag_t *frag;
4060 
4061 	if (unlikely(abs_offset >= st->upper_offset)) {
4062 		if (st->frag_data) {
4063 			kunmap_atomic(st->frag_data);
4064 			st->frag_data = NULL;
4065 		}
4066 		return 0;
4067 	}
4068 
4069 next_skb:
4070 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4071 
4072 	if (abs_offset < block_limit && !st->frag_data) {
4073 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4074 		return block_limit - abs_offset;
4075 	}
4076 
4077 	if (st->frag_idx == 0 && !st->frag_data)
4078 		st->stepped_offset += skb_headlen(st->cur_skb);
4079 
4080 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4081 		unsigned int pg_idx, pg_off, pg_sz;
4082 
4083 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4084 
4085 		pg_idx = 0;
4086 		pg_off = skb_frag_off(frag);
4087 		pg_sz = skb_frag_size(frag);
4088 
4089 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4090 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4091 			pg_off = offset_in_page(pg_off + st->frag_off);
4092 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4093 						    PAGE_SIZE - pg_off);
4094 		}
4095 
4096 		block_limit = pg_sz + st->stepped_offset;
4097 		if (abs_offset < block_limit) {
4098 			if (!st->frag_data)
4099 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4100 
4101 			*data = (u8 *)st->frag_data + pg_off +
4102 				(abs_offset - st->stepped_offset);
4103 
4104 			return block_limit - abs_offset;
4105 		}
4106 
4107 		if (st->frag_data) {
4108 			kunmap_atomic(st->frag_data);
4109 			st->frag_data = NULL;
4110 		}
4111 
4112 		st->stepped_offset += pg_sz;
4113 		st->frag_off += pg_sz;
4114 		if (st->frag_off == skb_frag_size(frag)) {
4115 			st->frag_off = 0;
4116 			st->frag_idx++;
4117 		}
4118 	}
4119 
4120 	if (st->frag_data) {
4121 		kunmap_atomic(st->frag_data);
4122 		st->frag_data = NULL;
4123 	}
4124 
4125 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4126 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4127 		st->frag_idx = 0;
4128 		goto next_skb;
4129 	} else if (st->cur_skb->next) {
4130 		st->cur_skb = st->cur_skb->next;
4131 		st->frag_idx = 0;
4132 		goto next_skb;
4133 	}
4134 
4135 	return 0;
4136 }
4137 EXPORT_SYMBOL(skb_seq_read);
4138 
4139 /**
4140  * skb_abort_seq_read - Abort a sequential read of skb data
4141  * @st: state variable
4142  *
4143  * Must be called if skb_seq_read() was not called until it
4144  * returned 0.
4145  */
4146 void skb_abort_seq_read(struct skb_seq_state *st)
4147 {
4148 	if (st->frag_data)
4149 		kunmap_atomic(st->frag_data);
4150 }
4151 EXPORT_SYMBOL(skb_abort_seq_read);
4152 
4153 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4154 
4155 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4156 					  struct ts_config *conf,
4157 					  struct ts_state *state)
4158 {
4159 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4160 }
4161 
4162 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4163 {
4164 	skb_abort_seq_read(TS_SKB_CB(state));
4165 }
4166 
4167 /**
4168  * skb_find_text - Find a text pattern in skb data
4169  * @skb: the buffer to look in
4170  * @from: search offset
4171  * @to: search limit
4172  * @config: textsearch configuration
4173  *
4174  * Finds a pattern in the skb data according to the specified
4175  * textsearch configuration. Use textsearch_next() to retrieve
4176  * subsequent occurrences of the pattern. Returns the offset
4177  * to the first occurrence or UINT_MAX if no match was found.
4178  */
4179 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4180 			   unsigned int to, struct ts_config *config)
4181 {
4182 	struct ts_state state;
4183 	unsigned int ret;
4184 
4185 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4186 
4187 	config->get_next_block = skb_ts_get_next_block;
4188 	config->finish = skb_ts_finish;
4189 
4190 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4191 
4192 	ret = textsearch_find(config, &state);
4193 	return (ret <= to - from ? ret : UINT_MAX);
4194 }
4195 EXPORT_SYMBOL(skb_find_text);
4196 
4197 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4198 			 int offset, size_t size)
4199 {
4200 	int i = skb_shinfo(skb)->nr_frags;
4201 
4202 	if (skb_can_coalesce(skb, i, page, offset)) {
4203 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4204 	} else if (i < MAX_SKB_FRAGS) {
4205 		skb_zcopy_downgrade_managed(skb);
4206 		get_page(page);
4207 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4208 	} else {
4209 		return -EMSGSIZE;
4210 	}
4211 
4212 	return 0;
4213 }
4214 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4215 
4216 /**
4217  *	skb_pull_rcsum - pull skb and update receive checksum
4218  *	@skb: buffer to update
4219  *	@len: length of data pulled
4220  *
4221  *	This function performs an skb_pull on the packet and updates
4222  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4223  *	receive path processing instead of skb_pull unless you know
4224  *	that the checksum difference is zero (e.g., a valid IP header)
4225  *	or you are setting ip_summed to CHECKSUM_NONE.
4226  */
4227 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4228 {
4229 	unsigned char *data = skb->data;
4230 
4231 	BUG_ON(len > skb->len);
4232 	__skb_pull(skb, len);
4233 	skb_postpull_rcsum(skb, data, len);
4234 	return skb->data;
4235 }
4236 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4237 
4238 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4239 {
4240 	skb_frag_t head_frag;
4241 	struct page *page;
4242 
4243 	page = virt_to_head_page(frag_skb->head);
4244 	__skb_frag_set_page(&head_frag, page);
4245 	skb_frag_off_set(&head_frag, frag_skb->data -
4246 			 (unsigned char *)page_address(page));
4247 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4248 	return head_frag;
4249 }
4250 
4251 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4252 				 netdev_features_t features,
4253 				 unsigned int offset)
4254 {
4255 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4256 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4257 	unsigned int delta_truesize = 0;
4258 	unsigned int delta_len = 0;
4259 	struct sk_buff *tail = NULL;
4260 	struct sk_buff *nskb, *tmp;
4261 	int len_diff, err;
4262 
4263 	skb_push(skb, -skb_network_offset(skb) + offset);
4264 
4265 	skb_shinfo(skb)->frag_list = NULL;
4266 
4267 	while (list_skb) {
4268 		nskb = list_skb;
4269 		list_skb = list_skb->next;
4270 
4271 		err = 0;
4272 		delta_truesize += nskb->truesize;
4273 		if (skb_shared(nskb)) {
4274 			tmp = skb_clone(nskb, GFP_ATOMIC);
4275 			if (tmp) {
4276 				consume_skb(nskb);
4277 				nskb = tmp;
4278 				err = skb_unclone(nskb, GFP_ATOMIC);
4279 			} else {
4280 				err = -ENOMEM;
4281 			}
4282 		}
4283 
4284 		if (!tail)
4285 			skb->next = nskb;
4286 		else
4287 			tail->next = nskb;
4288 
4289 		if (unlikely(err)) {
4290 			nskb->next = list_skb;
4291 			goto err_linearize;
4292 		}
4293 
4294 		tail = nskb;
4295 
4296 		delta_len += nskb->len;
4297 
4298 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4299 
4300 		skb_release_head_state(nskb);
4301 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4302 		__copy_skb_header(nskb, skb);
4303 
4304 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4305 		nskb->transport_header += len_diff;
4306 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4307 						 nskb->data - tnl_hlen,
4308 						 offset + tnl_hlen);
4309 
4310 		if (skb_needs_linearize(nskb, features) &&
4311 		    __skb_linearize(nskb))
4312 			goto err_linearize;
4313 	}
4314 
4315 	skb->truesize = skb->truesize - delta_truesize;
4316 	skb->data_len = skb->data_len - delta_len;
4317 	skb->len = skb->len - delta_len;
4318 
4319 	skb_gso_reset(skb);
4320 
4321 	skb->prev = tail;
4322 
4323 	if (skb_needs_linearize(skb, features) &&
4324 	    __skb_linearize(skb))
4325 		goto err_linearize;
4326 
4327 	skb_get(skb);
4328 
4329 	return skb;
4330 
4331 err_linearize:
4332 	kfree_skb_list(skb->next);
4333 	skb->next = NULL;
4334 	return ERR_PTR(-ENOMEM);
4335 }
4336 EXPORT_SYMBOL_GPL(skb_segment_list);
4337 
4338 /**
4339  *	skb_segment - Perform protocol segmentation on skb.
4340  *	@head_skb: buffer to segment
4341  *	@features: features for the output path (see dev->features)
4342  *
4343  *	This function performs segmentation on the given skb.  It returns
4344  *	a pointer to the first in a list of new skbs for the segments.
4345  *	In case of error it returns ERR_PTR(err).
4346  */
4347 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4348 			    netdev_features_t features)
4349 {
4350 	struct sk_buff *segs = NULL;
4351 	struct sk_buff *tail = NULL;
4352 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4353 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4354 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4355 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4356 	struct sk_buff *frag_skb = head_skb;
4357 	unsigned int offset = doffset;
4358 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4359 	unsigned int partial_segs = 0;
4360 	unsigned int headroom;
4361 	unsigned int len = head_skb->len;
4362 	__be16 proto;
4363 	bool csum, sg;
4364 	int nfrags = skb_shinfo(head_skb)->nr_frags;
4365 	int err = -ENOMEM;
4366 	int i = 0;
4367 	int pos;
4368 
4369 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4370 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4371 		struct sk_buff *check_skb;
4372 
4373 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4374 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4375 				/* gso_size is untrusted, and we have a frag_list with
4376 				 * a linear non head_frag item.
4377 				 *
4378 				 * If head_skb's headlen does not fit requested gso_size,
4379 				 * it means that the frag_list members do NOT terminate
4380 				 * on exact gso_size boundaries. Hence we cannot perform
4381 				 * skb_frag_t page sharing. Therefore we must fallback to
4382 				 * copying the frag_list skbs; we do so by disabling SG.
4383 				 */
4384 				features &= ~NETIF_F_SG;
4385 				break;
4386 			}
4387 		}
4388 	}
4389 
4390 	__skb_push(head_skb, doffset);
4391 	proto = skb_network_protocol(head_skb, NULL);
4392 	if (unlikely(!proto))
4393 		return ERR_PTR(-EINVAL);
4394 
4395 	sg = !!(features & NETIF_F_SG);
4396 	csum = !!can_checksum_protocol(features, proto);
4397 
4398 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4399 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4400 			struct sk_buff *iter;
4401 			unsigned int frag_len;
4402 
4403 			if (!list_skb ||
4404 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4405 				goto normal;
4406 
4407 			/* If we get here then all the required
4408 			 * GSO features except frag_list are supported.
4409 			 * Try to split the SKB to multiple GSO SKBs
4410 			 * with no frag_list.
4411 			 * Currently we can do that only when the buffers don't
4412 			 * have a linear part and all the buffers except
4413 			 * the last are of the same length.
4414 			 */
4415 			frag_len = list_skb->len;
4416 			skb_walk_frags(head_skb, iter) {
4417 				if (frag_len != iter->len && iter->next)
4418 					goto normal;
4419 				if (skb_headlen(iter) && !iter->head_frag)
4420 					goto normal;
4421 
4422 				len -= iter->len;
4423 			}
4424 
4425 			if (len != frag_len)
4426 				goto normal;
4427 		}
4428 
4429 		/* GSO partial only requires that we trim off any excess that
4430 		 * doesn't fit into an MSS sized block, so take care of that
4431 		 * now.
4432 		 */
4433 		partial_segs = len / mss;
4434 		if (partial_segs > 1)
4435 			mss *= partial_segs;
4436 		else
4437 			partial_segs = 0;
4438 	}
4439 
4440 normal:
4441 	headroom = skb_headroom(head_skb);
4442 	pos = skb_headlen(head_skb);
4443 
4444 	do {
4445 		struct sk_buff *nskb;
4446 		skb_frag_t *nskb_frag;
4447 		int hsize;
4448 		int size;
4449 
4450 		if (unlikely(mss == GSO_BY_FRAGS)) {
4451 			len = list_skb->len;
4452 		} else {
4453 			len = head_skb->len - offset;
4454 			if (len > mss)
4455 				len = mss;
4456 		}
4457 
4458 		hsize = skb_headlen(head_skb) - offset;
4459 
4460 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4461 		    (skb_headlen(list_skb) == len || sg)) {
4462 			BUG_ON(skb_headlen(list_skb) > len);
4463 
4464 			i = 0;
4465 			nfrags = skb_shinfo(list_skb)->nr_frags;
4466 			frag = skb_shinfo(list_skb)->frags;
4467 			frag_skb = list_skb;
4468 			pos += skb_headlen(list_skb);
4469 
4470 			while (pos < offset + len) {
4471 				BUG_ON(i >= nfrags);
4472 
4473 				size = skb_frag_size(frag);
4474 				if (pos + size > offset + len)
4475 					break;
4476 
4477 				i++;
4478 				pos += size;
4479 				frag++;
4480 			}
4481 
4482 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4483 			list_skb = list_skb->next;
4484 
4485 			if (unlikely(!nskb))
4486 				goto err;
4487 
4488 			if (unlikely(pskb_trim(nskb, len))) {
4489 				kfree_skb(nskb);
4490 				goto err;
4491 			}
4492 
4493 			hsize = skb_end_offset(nskb);
4494 			if (skb_cow_head(nskb, doffset + headroom)) {
4495 				kfree_skb(nskb);
4496 				goto err;
4497 			}
4498 
4499 			nskb->truesize += skb_end_offset(nskb) - hsize;
4500 			skb_release_head_state(nskb);
4501 			__skb_push(nskb, doffset);
4502 		} else {
4503 			if (hsize < 0)
4504 				hsize = 0;
4505 			if (hsize > len || !sg)
4506 				hsize = len;
4507 
4508 			nskb = __alloc_skb(hsize + doffset + headroom,
4509 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4510 					   NUMA_NO_NODE);
4511 
4512 			if (unlikely(!nskb))
4513 				goto err;
4514 
4515 			skb_reserve(nskb, headroom);
4516 			__skb_put(nskb, doffset);
4517 		}
4518 
4519 		if (segs)
4520 			tail->next = nskb;
4521 		else
4522 			segs = nskb;
4523 		tail = nskb;
4524 
4525 		__copy_skb_header(nskb, head_skb);
4526 
4527 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4528 		skb_reset_mac_len(nskb);
4529 
4530 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4531 						 nskb->data - tnl_hlen,
4532 						 doffset + tnl_hlen);
4533 
4534 		if (nskb->len == len + doffset)
4535 			goto perform_csum_check;
4536 
4537 		if (!sg) {
4538 			if (!csum) {
4539 				if (!nskb->remcsum_offload)
4540 					nskb->ip_summed = CHECKSUM_NONE;
4541 				SKB_GSO_CB(nskb)->csum =
4542 					skb_copy_and_csum_bits(head_skb, offset,
4543 							       skb_put(nskb,
4544 								       len),
4545 							       len);
4546 				SKB_GSO_CB(nskb)->csum_start =
4547 					skb_headroom(nskb) + doffset;
4548 			} else {
4549 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4550 					goto err;
4551 			}
4552 			continue;
4553 		}
4554 
4555 		nskb_frag = skb_shinfo(nskb)->frags;
4556 
4557 		skb_copy_from_linear_data_offset(head_skb, offset,
4558 						 skb_put(nskb, hsize), hsize);
4559 
4560 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4561 					   SKBFL_SHARED_FRAG;
4562 
4563 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4564 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4565 			goto err;
4566 
4567 		while (pos < offset + len) {
4568 			if (i >= nfrags) {
4569 				i = 0;
4570 				nfrags = skb_shinfo(list_skb)->nr_frags;
4571 				frag = skb_shinfo(list_skb)->frags;
4572 				frag_skb = list_skb;
4573 				if (!skb_headlen(list_skb)) {
4574 					BUG_ON(!nfrags);
4575 				} else {
4576 					BUG_ON(!list_skb->head_frag);
4577 
4578 					/* to make room for head_frag. */
4579 					i--;
4580 					frag--;
4581 				}
4582 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4583 				    skb_zerocopy_clone(nskb, frag_skb,
4584 						       GFP_ATOMIC))
4585 					goto err;
4586 
4587 				list_skb = list_skb->next;
4588 			}
4589 
4590 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4591 				     MAX_SKB_FRAGS)) {
4592 				net_warn_ratelimited(
4593 					"skb_segment: too many frags: %u %u\n",
4594 					pos, mss);
4595 				err = -EINVAL;
4596 				goto err;
4597 			}
4598 
4599 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4600 			__skb_frag_ref(nskb_frag);
4601 			size = skb_frag_size(nskb_frag);
4602 
4603 			if (pos < offset) {
4604 				skb_frag_off_add(nskb_frag, offset - pos);
4605 				skb_frag_size_sub(nskb_frag, offset - pos);
4606 			}
4607 
4608 			skb_shinfo(nskb)->nr_frags++;
4609 
4610 			if (pos + size <= offset + len) {
4611 				i++;
4612 				frag++;
4613 				pos += size;
4614 			} else {
4615 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4616 				goto skip_fraglist;
4617 			}
4618 
4619 			nskb_frag++;
4620 		}
4621 
4622 skip_fraglist:
4623 		nskb->data_len = len - hsize;
4624 		nskb->len += nskb->data_len;
4625 		nskb->truesize += nskb->data_len;
4626 
4627 perform_csum_check:
4628 		if (!csum) {
4629 			if (skb_has_shared_frag(nskb) &&
4630 			    __skb_linearize(nskb))
4631 				goto err;
4632 
4633 			if (!nskb->remcsum_offload)
4634 				nskb->ip_summed = CHECKSUM_NONE;
4635 			SKB_GSO_CB(nskb)->csum =
4636 				skb_checksum(nskb, doffset,
4637 					     nskb->len - doffset, 0);
4638 			SKB_GSO_CB(nskb)->csum_start =
4639 				skb_headroom(nskb) + doffset;
4640 		}
4641 	} while ((offset += len) < head_skb->len);
4642 
4643 	/* Some callers want to get the end of the list.
4644 	 * Put it in segs->prev to avoid walking the list.
4645 	 * (see validate_xmit_skb_list() for example)
4646 	 */
4647 	segs->prev = tail;
4648 
4649 	if (partial_segs) {
4650 		struct sk_buff *iter;
4651 		int type = skb_shinfo(head_skb)->gso_type;
4652 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4653 
4654 		/* Update type to add partial and then remove dodgy if set */
4655 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4656 		type &= ~SKB_GSO_DODGY;
4657 
4658 		/* Update GSO info and prepare to start updating headers on
4659 		 * our way back down the stack of protocols.
4660 		 */
4661 		for (iter = segs; iter; iter = iter->next) {
4662 			skb_shinfo(iter)->gso_size = gso_size;
4663 			skb_shinfo(iter)->gso_segs = partial_segs;
4664 			skb_shinfo(iter)->gso_type = type;
4665 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4666 		}
4667 
4668 		if (tail->len - doffset <= gso_size)
4669 			skb_shinfo(tail)->gso_size = 0;
4670 		else if (tail != segs)
4671 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4672 	}
4673 
4674 	/* Following permits correct backpressure, for protocols
4675 	 * using skb_set_owner_w().
4676 	 * Idea is to tranfert ownership from head_skb to last segment.
4677 	 */
4678 	if (head_skb->destructor == sock_wfree) {
4679 		swap(tail->truesize, head_skb->truesize);
4680 		swap(tail->destructor, head_skb->destructor);
4681 		swap(tail->sk, head_skb->sk);
4682 	}
4683 	return segs;
4684 
4685 err:
4686 	kfree_skb_list(segs);
4687 	return ERR_PTR(err);
4688 }
4689 EXPORT_SYMBOL_GPL(skb_segment);
4690 
4691 #ifdef CONFIG_SKB_EXTENSIONS
4692 #define SKB_EXT_ALIGN_VALUE	8
4693 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4694 
4695 static const u8 skb_ext_type_len[] = {
4696 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4697 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4698 #endif
4699 #ifdef CONFIG_XFRM
4700 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4701 #endif
4702 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4703 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4704 #endif
4705 #if IS_ENABLED(CONFIG_MPTCP)
4706 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4707 #endif
4708 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4709 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4710 #endif
4711 };
4712 
4713 static __always_inline unsigned int skb_ext_total_length(void)
4714 {
4715 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4716 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4717 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4718 #endif
4719 #ifdef CONFIG_XFRM
4720 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4721 #endif
4722 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4723 		skb_ext_type_len[TC_SKB_EXT] +
4724 #endif
4725 #if IS_ENABLED(CONFIG_MPTCP)
4726 		skb_ext_type_len[SKB_EXT_MPTCP] +
4727 #endif
4728 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4729 		skb_ext_type_len[SKB_EXT_MCTP] +
4730 #endif
4731 		0;
4732 }
4733 
4734 static void skb_extensions_init(void)
4735 {
4736 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4737 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4738 
4739 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4740 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4741 					     0,
4742 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4743 					     NULL);
4744 }
4745 #else
4746 static void skb_extensions_init(void) {}
4747 #endif
4748 
4749 void __init skb_init(void)
4750 {
4751 	skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4752 					      sizeof(struct sk_buff),
4753 					      0,
4754 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4755 					      offsetof(struct sk_buff, cb),
4756 					      sizeof_field(struct sk_buff, cb),
4757 					      NULL);
4758 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4759 						sizeof(struct sk_buff_fclones),
4760 						0,
4761 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4762 						NULL);
4763 #ifdef HAVE_SKB_SMALL_HEAD_CACHE
4764 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4765 	 * struct skb_shared_info is located at the end of skb->head,
4766 	 * and should not be copied to/from user.
4767 	 */
4768 	skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4769 						SKB_SMALL_HEAD_CACHE_SIZE,
4770 						0,
4771 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4772 						0,
4773 						SKB_SMALL_HEAD_HEADROOM,
4774 						NULL);
4775 #endif
4776 	skb_extensions_init();
4777 }
4778 
4779 static int
4780 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4781 	       unsigned int recursion_level)
4782 {
4783 	int start = skb_headlen(skb);
4784 	int i, copy = start - offset;
4785 	struct sk_buff *frag_iter;
4786 	int elt = 0;
4787 
4788 	if (unlikely(recursion_level >= 24))
4789 		return -EMSGSIZE;
4790 
4791 	if (copy > 0) {
4792 		if (copy > len)
4793 			copy = len;
4794 		sg_set_buf(sg, skb->data + offset, copy);
4795 		elt++;
4796 		if ((len -= copy) == 0)
4797 			return elt;
4798 		offset += copy;
4799 	}
4800 
4801 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4802 		int end;
4803 
4804 		WARN_ON(start > offset + len);
4805 
4806 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4807 		if ((copy = end - offset) > 0) {
4808 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4809 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4810 				return -EMSGSIZE;
4811 
4812 			if (copy > len)
4813 				copy = len;
4814 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4815 				    skb_frag_off(frag) + offset - start);
4816 			elt++;
4817 			if (!(len -= copy))
4818 				return elt;
4819 			offset += copy;
4820 		}
4821 		start = end;
4822 	}
4823 
4824 	skb_walk_frags(skb, frag_iter) {
4825 		int end, ret;
4826 
4827 		WARN_ON(start > offset + len);
4828 
4829 		end = start + frag_iter->len;
4830 		if ((copy = end - offset) > 0) {
4831 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4832 				return -EMSGSIZE;
4833 
4834 			if (copy > len)
4835 				copy = len;
4836 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4837 					      copy, recursion_level + 1);
4838 			if (unlikely(ret < 0))
4839 				return ret;
4840 			elt += ret;
4841 			if ((len -= copy) == 0)
4842 				return elt;
4843 			offset += copy;
4844 		}
4845 		start = end;
4846 	}
4847 	BUG_ON(len);
4848 	return elt;
4849 }
4850 
4851 /**
4852  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4853  *	@skb: Socket buffer containing the buffers to be mapped
4854  *	@sg: The scatter-gather list to map into
4855  *	@offset: The offset into the buffer's contents to start mapping
4856  *	@len: Length of buffer space to be mapped
4857  *
4858  *	Fill the specified scatter-gather list with mappings/pointers into a
4859  *	region of the buffer space attached to a socket buffer. Returns either
4860  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4861  *	could not fit.
4862  */
4863 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4864 {
4865 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4866 
4867 	if (nsg <= 0)
4868 		return nsg;
4869 
4870 	sg_mark_end(&sg[nsg - 1]);
4871 
4872 	return nsg;
4873 }
4874 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4875 
4876 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4877  * sglist without mark the sg which contain last skb data as the end.
4878  * So the caller can mannipulate sg list as will when padding new data after
4879  * the first call without calling sg_unmark_end to expend sg list.
4880  *
4881  * Scenario to use skb_to_sgvec_nomark:
4882  * 1. sg_init_table
4883  * 2. skb_to_sgvec_nomark(payload1)
4884  * 3. skb_to_sgvec_nomark(payload2)
4885  *
4886  * This is equivalent to:
4887  * 1. sg_init_table
4888  * 2. skb_to_sgvec(payload1)
4889  * 3. sg_unmark_end
4890  * 4. skb_to_sgvec(payload2)
4891  *
4892  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4893  * is more preferable.
4894  */
4895 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4896 			int offset, int len)
4897 {
4898 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4899 }
4900 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4901 
4902 
4903 
4904 /**
4905  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4906  *	@skb: The socket buffer to check.
4907  *	@tailbits: Amount of trailing space to be added
4908  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4909  *
4910  *	Make sure that the data buffers attached to a socket buffer are
4911  *	writable. If they are not, private copies are made of the data buffers
4912  *	and the socket buffer is set to use these instead.
4913  *
4914  *	If @tailbits is given, make sure that there is space to write @tailbits
4915  *	bytes of data beyond current end of socket buffer.  @trailer will be
4916  *	set to point to the skb in which this space begins.
4917  *
4918  *	The number of scatterlist elements required to completely map the
4919  *	COW'd and extended socket buffer will be returned.
4920  */
4921 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4922 {
4923 	int copyflag;
4924 	int elt;
4925 	struct sk_buff *skb1, **skb_p;
4926 
4927 	/* If skb is cloned or its head is paged, reallocate
4928 	 * head pulling out all the pages (pages are considered not writable
4929 	 * at the moment even if they are anonymous).
4930 	 */
4931 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4932 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4933 		return -ENOMEM;
4934 
4935 	/* Easy case. Most of packets will go this way. */
4936 	if (!skb_has_frag_list(skb)) {
4937 		/* A little of trouble, not enough of space for trailer.
4938 		 * This should not happen, when stack is tuned to generate
4939 		 * good frames. OK, on miss we reallocate and reserve even more
4940 		 * space, 128 bytes is fair. */
4941 
4942 		if (skb_tailroom(skb) < tailbits &&
4943 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4944 			return -ENOMEM;
4945 
4946 		/* Voila! */
4947 		*trailer = skb;
4948 		return 1;
4949 	}
4950 
4951 	/* Misery. We are in troubles, going to mincer fragments... */
4952 
4953 	elt = 1;
4954 	skb_p = &skb_shinfo(skb)->frag_list;
4955 	copyflag = 0;
4956 
4957 	while ((skb1 = *skb_p) != NULL) {
4958 		int ntail = 0;
4959 
4960 		/* The fragment is partially pulled by someone,
4961 		 * this can happen on input. Copy it and everything
4962 		 * after it. */
4963 
4964 		if (skb_shared(skb1))
4965 			copyflag = 1;
4966 
4967 		/* If the skb is the last, worry about trailer. */
4968 
4969 		if (skb1->next == NULL && tailbits) {
4970 			if (skb_shinfo(skb1)->nr_frags ||
4971 			    skb_has_frag_list(skb1) ||
4972 			    skb_tailroom(skb1) < tailbits)
4973 				ntail = tailbits + 128;
4974 		}
4975 
4976 		if (copyflag ||
4977 		    skb_cloned(skb1) ||
4978 		    ntail ||
4979 		    skb_shinfo(skb1)->nr_frags ||
4980 		    skb_has_frag_list(skb1)) {
4981 			struct sk_buff *skb2;
4982 
4983 			/* Fuck, we are miserable poor guys... */
4984 			if (ntail == 0)
4985 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4986 			else
4987 				skb2 = skb_copy_expand(skb1,
4988 						       skb_headroom(skb1),
4989 						       ntail,
4990 						       GFP_ATOMIC);
4991 			if (unlikely(skb2 == NULL))
4992 				return -ENOMEM;
4993 
4994 			if (skb1->sk)
4995 				skb_set_owner_w(skb2, skb1->sk);
4996 
4997 			/* Looking around. Are we still alive?
4998 			 * OK, link new skb, drop old one */
4999 
5000 			skb2->next = skb1->next;
5001 			*skb_p = skb2;
5002 			kfree_skb(skb1);
5003 			skb1 = skb2;
5004 		}
5005 		elt++;
5006 		*trailer = skb1;
5007 		skb_p = &skb1->next;
5008 	}
5009 
5010 	return elt;
5011 }
5012 EXPORT_SYMBOL_GPL(skb_cow_data);
5013 
5014 static void sock_rmem_free(struct sk_buff *skb)
5015 {
5016 	struct sock *sk = skb->sk;
5017 
5018 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5019 }
5020 
5021 static void skb_set_err_queue(struct sk_buff *skb)
5022 {
5023 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5024 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5025 	 */
5026 	skb->pkt_type = PACKET_OUTGOING;
5027 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5028 }
5029 
5030 /*
5031  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5032  */
5033 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5034 {
5035 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5036 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5037 		return -ENOMEM;
5038 
5039 	skb_orphan(skb);
5040 	skb->sk = sk;
5041 	skb->destructor = sock_rmem_free;
5042 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5043 	skb_set_err_queue(skb);
5044 
5045 	/* before exiting rcu section, make sure dst is refcounted */
5046 	skb_dst_force(skb);
5047 
5048 	skb_queue_tail(&sk->sk_error_queue, skb);
5049 	if (!sock_flag(sk, SOCK_DEAD))
5050 		sk_error_report(sk);
5051 	return 0;
5052 }
5053 EXPORT_SYMBOL(sock_queue_err_skb);
5054 
5055 static bool is_icmp_err_skb(const struct sk_buff *skb)
5056 {
5057 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5058 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5059 }
5060 
5061 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5062 {
5063 	struct sk_buff_head *q = &sk->sk_error_queue;
5064 	struct sk_buff *skb, *skb_next = NULL;
5065 	bool icmp_next = false;
5066 	unsigned long flags;
5067 
5068 	spin_lock_irqsave(&q->lock, flags);
5069 	skb = __skb_dequeue(q);
5070 	if (skb && (skb_next = skb_peek(q))) {
5071 		icmp_next = is_icmp_err_skb(skb_next);
5072 		if (icmp_next)
5073 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5074 	}
5075 	spin_unlock_irqrestore(&q->lock, flags);
5076 
5077 	if (is_icmp_err_skb(skb) && !icmp_next)
5078 		sk->sk_err = 0;
5079 
5080 	if (skb_next)
5081 		sk_error_report(sk);
5082 
5083 	return skb;
5084 }
5085 EXPORT_SYMBOL(sock_dequeue_err_skb);
5086 
5087 /**
5088  * skb_clone_sk - create clone of skb, and take reference to socket
5089  * @skb: the skb to clone
5090  *
5091  * This function creates a clone of a buffer that holds a reference on
5092  * sk_refcnt.  Buffers created via this function are meant to be
5093  * returned using sock_queue_err_skb, or free via kfree_skb.
5094  *
5095  * When passing buffers allocated with this function to sock_queue_err_skb
5096  * it is necessary to wrap the call with sock_hold/sock_put in order to
5097  * prevent the socket from being released prior to being enqueued on
5098  * the sk_error_queue.
5099  */
5100 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5101 {
5102 	struct sock *sk = skb->sk;
5103 	struct sk_buff *clone;
5104 
5105 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5106 		return NULL;
5107 
5108 	clone = skb_clone(skb, GFP_ATOMIC);
5109 	if (!clone) {
5110 		sock_put(sk);
5111 		return NULL;
5112 	}
5113 
5114 	clone->sk = sk;
5115 	clone->destructor = sock_efree;
5116 
5117 	return clone;
5118 }
5119 EXPORT_SYMBOL(skb_clone_sk);
5120 
5121 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5122 					struct sock *sk,
5123 					int tstype,
5124 					bool opt_stats)
5125 {
5126 	struct sock_exterr_skb *serr;
5127 	int err;
5128 
5129 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5130 
5131 	serr = SKB_EXT_ERR(skb);
5132 	memset(serr, 0, sizeof(*serr));
5133 	serr->ee.ee_errno = ENOMSG;
5134 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5135 	serr->ee.ee_info = tstype;
5136 	serr->opt_stats = opt_stats;
5137 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5138 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
5139 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5140 		if (sk_is_tcp(sk))
5141 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5142 	}
5143 
5144 	err = sock_queue_err_skb(sk, skb);
5145 
5146 	if (err)
5147 		kfree_skb(skb);
5148 }
5149 
5150 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5151 {
5152 	bool ret;
5153 
5154 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5155 		return true;
5156 
5157 	read_lock_bh(&sk->sk_callback_lock);
5158 	ret = sk->sk_socket && sk->sk_socket->file &&
5159 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5160 	read_unlock_bh(&sk->sk_callback_lock);
5161 	return ret;
5162 }
5163 
5164 void skb_complete_tx_timestamp(struct sk_buff *skb,
5165 			       struct skb_shared_hwtstamps *hwtstamps)
5166 {
5167 	struct sock *sk = skb->sk;
5168 
5169 	if (!skb_may_tx_timestamp(sk, false))
5170 		goto err;
5171 
5172 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5173 	 * but only if the socket refcount is not zero.
5174 	 */
5175 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5176 		*skb_hwtstamps(skb) = *hwtstamps;
5177 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5178 		sock_put(sk);
5179 		return;
5180 	}
5181 
5182 err:
5183 	kfree_skb(skb);
5184 }
5185 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5186 
5187 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5188 		     const struct sk_buff *ack_skb,
5189 		     struct skb_shared_hwtstamps *hwtstamps,
5190 		     struct sock *sk, int tstype)
5191 {
5192 	struct sk_buff *skb;
5193 	bool tsonly, opt_stats = false;
5194 
5195 	if (!sk)
5196 		return;
5197 
5198 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5199 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5200 		return;
5201 
5202 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5203 	if (!skb_may_tx_timestamp(sk, tsonly))
5204 		return;
5205 
5206 	if (tsonly) {
5207 #ifdef CONFIG_INET
5208 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5209 		    sk_is_tcp(sk)) {
5210 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5211 							     ack_skb);
5212 			opt_stats = true;
5213 		} else
5214 #endif
5215 			skb = alloc_skb(0, GFP_ATOMIC);
5216 	} else {
5217 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5218 	}
5219 	if (!skb)
5220 		return;
5221 
5222 	if (tsonly) {
5223 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5224 					     SKBTX_ANY_TSTAMP;
5225 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5226 	}
5227 
5228 	if (hwtstamps)
5229 		*skb_hwtstamps(skb) = *hwtstamps;
5230 	else
5231 		__net_timestamp(skb);
5232 
5233 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5234 }
5235 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5236 
5237 void skb_tstamp_tx(struct sk_buff *orig_skb,
5238 		   struct skb_shared_hwtstamps *hwtstamps)
5239 {
5240 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5241 			       SCM_TSTAMP_SND);
5242 }
5243 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5244 
5245 #ifdef CONFIG_WIRELESS
5246 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5247 {
5248 	struct sock *sk = skb->sk;
5249 	struct sock_exterr_skb *serr;
5250 	int err = 1;
5251 
5252 	skb->wifi_acked_valid = 1;
5253 	skb->wifi_acked = acked;
5254 
5255 	serr = SKB_EXT_ERR(skb);
5256 	memset(serr, 0, sizeof(*serr));
5257 	serr->ee.ee_errno = ENOMSG;
5258 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5259 
5260 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5261 	 * but only if the socket refcount is not zero.
5262 	 */
5263 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5264 		err = sock_queue_err_skb(sk, skb);
5265 		sock_put(sk);
5266 	}
5267 	if (err)
5268 		kfree_skb(skb);
5269 }
5270 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5271 #endif /* CONFIG_WIRELESS */
5272 
5273 /**
5274  * skb_partial_csum_set - set up and verify partial csum values for packet
5275  * @skb: the skb to set
5276  * @start: the number of bytes after skb->data to start checksumming.
5277  * @off: the offset from start to place the checksum.
5278  *
5279  * For untrusted partially-checksummed packets, we need to make sure the values
5280  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5281  *
5282  * This function checks and sets those values and skb->ip_summed: if this
5283  * returns false you should drop the packet.
5284  */
5285 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5286 {
5287 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5288 	u32 csum_start = skb_headroom(skb) + (u32)start;
5289 
5290 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5291 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5292 				     start, off, skb_headroom(skb), skb_headlen(skb));
5293 		return false;
5294 	}
5295 	skb->ip_summed = CHECKSUM_PARTIAL;
5296 	skb->csum_start = csum_start;
5297 	skb->csum_offset = off;
5298 	skb_set_transport_header(skb, start);
5299 	return true;
5300 }
5301 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5302 
5303 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5304 			       unsigned int max)
5305 {
5306 	if (skb_headlen(skb) >= len)
5307 		return 0;
5308 
5309 	/* If we need to pullup then pullup to the max, so we
5310 	 * won't need to do it again.
5311 	 */
5312 	if (max > skb->len)
5313 		max = skb->len;
5314 
5315 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5316 		return -ENOMEM;
5317 
5318 	if (skb_headlen(skb) < len)
5319 		return -EPROTO;
5320 
5321 	return 0;
5322 }
5323 
5324 #define MAX_TCP_HDR_LEN (15 * 4)
5325 
5326 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5327 				      typeof(IPPROTO_IP) proto,
5328 				      unsigned int off)
5329 {
5330 	int err;
5331 
5332 	switch (proto) {
5333 	case IPPROTO_TCP:
5334 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5335 					  off + MAX_TCP_HDR_LEN);
5336 		if (!err && !skb_partial_csum_set(skb, off,
5337 						  offsetof(struct tcphdr,
5338 							   check)))
5339 			err = -EPROTO;
5340 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5341 
5342 	case IPPROTO_UDP:
5343 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5344 					  off + sizeof(struct udphdr));
5345 		if (!err && !skb_partial_csum_set(skb, off,
5346 						  offsetof(struct udphdr,
5347 							   check)))
5348 			err = -EPROTO;
5349 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5350 	}
5351 
5352 	return ERR_PTR(-EPROTO);
5353 }
5354 
5355 /* This value should be large enough to cover a tagged ethernet header plus
5356  * maximally sized IP and TCP or UDP headers.
5357  */
5358 #define MAX_IP_HDR_LEN 128
5359 
5360 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5361 {
5362 	unsigned int off;
5363 	bool fragment;
5364 	__sum16 *csum;
5365 	int err;
5366 
5367 	fragment = false;
5368 
5369 	err = skb_maybe_pull_tail(skb,
5370 				  sizeof(struct iphdr),
5371 				  MAX_IP_HDR_LEN);
5372 	if (err < 0)
5373 		goto out;
5374 
5375 	if (ip_is_fragment(ip_hdr(skb)))
5376 		fragment = true;
5377 
5378 	off = ip_hdrlen(skb);
5379 
5380 	err = -EPROTO;
5381 
5382 	if (fragment)
5383 		goto out;
5384 
5385 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5386 	if (IS_ERR(csum))
5387 		return PTR_ERR(csum);
5388 
5389 	if (recalculate)
5390 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5391 					   ip_hdr(skb)->daddr,
5392 					   skb->len - off,
5393 					   ip_hdr(skb)->protocol, 0);
5394 	err = 0;
5395 
5396 out:
5397 	return err;
5398 }
5399 
5400 /* This value should be large enough to cover a tagged ethernet header plus
5401  * an IPv6 header, all options, and a maximal TCP or UDP header.
5402  */
5403 #define MAX_IPV6_HDR_LEN 256
5404 
5405 #define OPT_HDR(type, skb, off) \
5406 	(type *)(skb_network_header(skb) + (off))
5407 
5408 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5409 {
5410 	int err;
5411 	u8 nexthdr;
5412 	unsigned int off;
5413 	unsigned int len;
5414 	bool fragment;
5415 	bool done;
5416 	__sum16 *csum;
5417 
5418 	fragment = false;
5419 	done = false;
5420 
5421 	off = sizeof(struct ipv6hdr);
5422 
5423 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5424 	if (err < 0)
5425 		goto out;
5426 
5427 	nexthdr = ipv6_hdr(skb)->nexthdr;
5428 
5429 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5430 	while (off <= len && !done) {
5431 		switch (nexthdr) {
5432 		case IPPROTO_DSTOPTS:
5433 		case IPPROTO_HOPOPTS:
5434 		case IPPROTO_ROUTING: {
5435 			struct ipv6_opt_hdr *hp;
5436 
5437 			err = skb_maybe_pull_tail(skb,
5438 						  off +
5439 						  sizeof(struct ipv6_opt_hdr),
5440 						  MAX_IPV6_HDR_LEN);
5441 			if (err < 0)
5442 				goto out;
5443 
5444 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5445 			nexthdr = hp->nexthdr;
5446 			off += ipv6_optlen(hp);
5447 			break;
5448 		}
5449 		case IPPROTO_AH: {
5450 			struct ip_auth_hdr *hp;
5451 
5452 			err = skb_maybe_pull_tail(skb,
5453 						  off +
5454 						  sizeof(struct ip_auth_hdr),
5455 						  MAX_IPV6_HDR_LEN);
5456 			if (err < 0)
5457 				goto out;
5458 
5459 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5460 			nexthdr = hp->nexthdr;
5461 			off += ipv6_authlen(hp);
5462 			break;
5463 		}
5464 		case IPPROTO_FRAGMENT: {
5465 			struct frag_hdr *hp;
5466 
5467 			err = skb_maybe_pull_tail(skb,
5468 						  off +
5469 						  sizeof(struct frag_hdr),
5470 						  MAX_IPV6_HDR_LEN);
5471 			if (err < 0)
5472 				goto out;
5473 
5474 			hp = OPT_HDR(struct frag_hdr, skb, off);
5475 
5476 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5477 				fragment = true;
5478 
5479 			nexthdr = hp->nexthdr;
5480 			off += sizeof(struct frag_hdr);
5481 			break;
5482 		}
5483 		default:
5484 			done = true;
5485 			break;
5486 		}
5487 	}
5488 
5489 	err = -EPROTO;
5490 
5491 	if (!done || fragment)
5492 		goto out;
5493 
5494 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5495 	if (IS_ERR(csum))
5496 		return PTR_ERR(csum);
5497 
5498 	if (recalculate)
5499 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5500 					 &ipv6_hdr(skb)->daddr,
5501 					 skb->len - off, nexthdr, 0);
5502 	err = 0;
5503 
5504 out:
5505 	return err;
5506 }
5507 
5508 /**
5509  * skb_checksum_setup - set up partial checksum offset
5510  * @skb: the skb to set up
5511  * @recalculate: if true the pseudo-header checksum will be recalculated
5512  */
5513 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5514 {
5515 	int err;
5516 
5517 	switch (skb->protocol) {
5518 	case htons(ETH_P_IP):
5519 		err = skb_checksum_setup_ipv4(skb, recalculate);
5520 		break;
5521 
5522 	case htons(ETH_P_IPV6):
5523 		err = skb_checksum_setup_ipv6(skb, recalculate);
5524 		break;
5525 
5526 	default:
5527 		err = -EPROTO;
5528 		break;
5529 	}
5530 
5531 	return err;
5532 }
5533 EXPORT_SYMBOL(skb_checksum_setup);
5534 
5535 /**
5536  * skb_checksum_maybe_trim - maybe trims the given skb
5537  * @skb: the skb to check
5538  * @transport_len: the data length beyond the network header
5539  *
5540  * Checks whether the given skb has data beyond the given transport length.
5541  * If so, returns a cloned skb trimmed to this transport length.
5542  * Otherwise returns the provided skb. Returns NULL in error cases
5543  * (e.g. transport_len exceeds skb length or out-of-memory).
5544  *
5545  * Caller needs to set the skb transport header and free any returned skb if it
5546  * differs from the provided skb.
5547  */
5548 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5549 					       unsigned int transport_len)
5550 {
5551 	struct sk_buff *skb_chk;
5552 	unsigned int len = skb_transport_offset(skb) + transport_len;
5553 	int ret;
5554 
5555 	if (skb->len < len)
5556 		return NULL;
5557 	else if (skb->len == len)
5558 		return skb;
5559 
5560 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5561 	if (!skb_chk)
5562 		return NULL;
5563 
5564 	ret = pskb_trim_rcsum(skb_chk, len);
5565 	if (ret) {
5566 		kfree_skb(skb_chk);
5567 		return NULL;
5568 	}
5569 
5570 	return skb_chk;
5571 }
5572 
5573 /**
5574  * skb_checksum_trimmed - validate checksum of an skb
5575  * @skb: the skb to check
5576  * @transport_len: the data length beyond the network header
5577  * @skb_chkf: checksum function to use
5578  *
5579  * Applies the given checksum function skb_chkf to the provided skb.
5580  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5581  *
5582  * If the skb has data beyond the given transport length, then a
5583  * trimmed & cloned skb is checked and returned.
5584  *
5585  * Caller needs to set the skb transport header and free any returned skb if it
5586  * differs from the provided skb.
5587  */
5588 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5589 				     unsigned int transport_len,
5590 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5591 {
5592 	struct sk_buff *skb_chk;
5593 	unsigned int offset = skb_transport_offset(skb);
5594 	__sum16 ret;
5595 
5596 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5597 	if (!skb_chk)
5598 		goto err;
5599 
5600 	if (!pskb_may_pull(skb_chk, offset))
5601 		goto err;
5602 
5603 	skb_pull_rcsum(skb_chk, offset);
5604 	ret = skb_chkf(skb_chk);
5605 	skb_push_rcsum(skb_chk, offset);
5606 
5607 	if (ret)
5608 		goto err;
5609 
5610 	return skb_chk;
5611 
5612 err:
5613 	if (skb_chk && skb_chk != skb)
5614 		kfree_skb(skb_chk);
5615 
5616 	return NULL;
5617 
5618 }
5619 EXPORT_SYMBOL(skb_checksum_trimmed);
5620 
5621 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5622 {
5623 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5624 			     skb->dev->name);
5625 }
5626 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5627 
5628 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5629 {
5630 	if (head_stolen) {
5631 		skb_release_head_state(skb);
5632 		kmem_cache_free(skbuff_cache, skb);
5633 	} else {
5634 		__kfree_skb(skb);
5635 	}
5636 }
5637 EXPORT_SYMBOL(kfree_skb_partial);
5638 
5639 /**
5640  * skb_try_coalesce - try to merge skb to prior one
5641  * @to: prior buffer
5642  * @from: buffer to add
5643  * @fragstolen: pointer to boolean
5644  * @delta_truesize: how much more was allocated than was requested
5645  */
5646 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5647 		      bool *fragstolen, int *delta_truesize)
5648 {
5649 	struct skb_shared_info *to_shinfo, *from_shinfo;
5650 	int i, delta, len = from->len;
5651 
5652 	*fragstolen = false;
5653 
5654 	if (skb_cloned(to))
5655 		return false;
5656 
5657 	/* In general, avoid mixing page_pool and non-page_pool allocated
5658 	 * pages within the same SKB. Additionally avoid dealing with clones
5659 	 * with page_pool pages, in case the SKB is using page_pool fragment
5660 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5661 	 * references for cloned SKBs at the moment that would result in
5662 	 * inconsistent reference counts.
5663 	 * In theory we could take full references if @from is cloned and
5664 	 * !@to->pp_recycle but its tricky (due to potential race with
5665 	 * the clone disappearing) and rare, so not worth dealing with.
5666 	 */
5667 	if (to->pp_recycle != from->pp_recycle ||
5668 	    (from->pp_recycle && skb_cloned(from)))
5669 		return false;
5670 
5671 	if (len <= skb_tailroom(to)) {
5672 		if (len)
5673 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5674 		*delta_truesize = 0;
5675 		return true;
5676 	}
5677 
5678 	to_shinfo = skb_shinfo(to);
5679 	from_shinfo = skb_shinfo(from);
5680 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5681 		return false;
5682 	if (skb_zcopy(to) || skb_zcopy(from))
5683 		return false;
5684 
5685 	if (skb_headlen(from) != 0) {
5686 		struct page *page;
5687 		unsigned int offset;
5688 
5689 		if (to_shinfo->nr_frags +
5690 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5691 			return false;
5692 
5693 		if (skb_head_is_locked(from))
5694 			return false;
5695 
5696 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5697 
5698 		page = virt_to_head_page(from->head);
5699 		offset = from->data - (unsigned char *)page_address(page);
5700 
5701 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5702 				   page, offset, skb_headlen(from));
5703 		*fragstolen = true;
5704 	} else {
5705 		if (to_shinfo->nr_frags +
5706 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5707 			return false;
5708 
5709 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5710 	}
5711 
5712 	WARN_ON_ONCE(delta < len);
5713 
5714 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5715 	       from_shinfo->frags,
5716 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5717 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5718 
5719 	if (!skb_cloned(from))
5720 		from_shinfo->nr_frags = 0;
5721 
5722 	/* if the skb is not cloned this does nothing
5723 	 * since we set nr_frags to 0.
5724 	 */
5725 	for (i = 0; i < from_shinfo->nr_frags; i++)
5726 		__skb_frag_ref(&from_shinfo->frags[i]);
5727 
5728 	to->truesize += delta;
5729 	to->len += len;
5730 	to->data_len += len;
5731 
5732 	*delta_truesize = delta;
5733 	return true;
5734 }
5735 EXPORT_SYMBOL(skb_try_coalesce);
5736 
5737 /**
5738  * skb_scrub_packet - scrub an skb
5739  *
5740  * @skb: buffer to clean
5741  * @xnet: packet is crossing netns
5742  *
5743  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5744  * into/from a tunnel. Some information have to be cleared during these
5745  * operations.
5746  * skb_scrub_packet can also be used to clean a skb before injecting it in
5747  * another namespace (@xnet == true). We have to clear all information in the
5748  * skb that could impact namespace isolation.
5749  */
5750 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5751 {
5752 	skb->pkt_type = PACKET_HOST;
5753 	skb->skb_iif = 0;
5754 	skb->ignore_df = 0;
5755 	skb_dst_drop(skb);
5756 	skb_ext_reset(skb);
5757 	nf_reset_ct(skb);
5758 	nf_reset_trace(skb);
5759 
5760 #ifdef CONFIG_NET_SWITCHDEV
5761 	skb->offload_fwd_mark = 0;
5762 	skb->offload_l3_fwd_mark = 0;
5763 #endif
5764 
5765 	if (!xnet)
5766 		return;
5767 
5768 	ipvs_reset(skb);
5769 	skb->mark = 0;
5770 	skb_clear_tstamp(skb);
5771 }
5772 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5773 
5774 /**
5775  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5776  *
5777  * @skb: GSO skb
5778  *
5779  * skb_gso_transport_seglen is used to determine the real size of the
5780  * individual segments, including Layer4 headers (TCP/UDP).
5781  *
5782  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5783  */
5784 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5785 {
5786 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5787 	unsigned int thlen = 0;
5788 
5789 	if (skb->encapsulation) {
5790 		thlen = skb_inner_transport_header(skb) -
5791 			skb_transport_header(skb);
5792 
5793 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5794 			thlen += inner_tcp_hdrlen(skb);
5795 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5796 		thlen = tcp_hdrlen(skb);
5797 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5798 		thlen = sizeof(struct sctphdr);
5799 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5800 		thlen = sizeof(struct udphdr);
5801 	}
5802 	/* UFO sets gso_size to the size of the fragmentation
5803 	 * payload, i.e. the size of the L4 (UDP) header is already
5804 	 * accounted for.
5805 	 */
5806 	return thlen + shinfo->gso_size;
5807 }
5808 
5809 /**
5810  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5811  *
5812  * @skb: GSO skb
5813  *
5814  * skb_gso_network_seglen is used to determine the real size of the
5815  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5816  *
5817  * The MAC/L2 header is not accounted for.
5818  */
5819 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5820 {
5821 	unsigned int hdr_len = skb_transport_header(skb) -
5822 			       skb_network_header(skb);
5823 
5824 	return hdr_len + skb_gso_transport_seglen(skb);
5825 }
5826 
5827 /**
5828  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5829  *
5830  * @skb: GSO skb
5831  *
5832  * skb_gso_mac_seglen is used to determine the real size of the
5833  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5834  * headers (TCP/UDP).
5835  */
5836 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5837 {
5838 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5839 
5840 	return hdr_len + skb_gso_transport_seglen(skb);
5841 }
5842 
5843 /**
5844  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5845  *
5846  * There are a couple of instances where we have a GSO skb, and we
5847  * want to determine what size it would be after it is segmented.
5848  *
5849  * We might want to check:
5850  * -    L3+L4+payload size (e.g. IP forwarding)
5851  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5852  *
5853  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5854  *
5855  * @skb: GSO skb
5856  *
5857  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5858  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5859  *
5860  * @max_len: The maximum permissible length.
5861  *
5862  * Returns true if the segmented length <= max length.
5863  */
5864 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5865 				      unsigned int seg_len,
5866 				      unsigned int max_len) {
5867 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5868 	const struct sk_buff *iter;
5869 
5870 	if (shinfo->gso_size != GSO_BY_FRAGS)
5871 		return seg_len <= max_len;
5872 
5873 	/* Undo this so we can re-use header sizes */
5874 	seg_len -= GSO_BY_FRAGS;
5875 
5876 	skb_walk_frags(skb, iter) {
5877 		if (seg_len + skb_headlen(iter) > max_len)
5878 			return false;
5879 	}
5880 
5881 	return true;
5882 }
5883 
5884 /**
5885  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5886  *
5887  * @skb: GSO skb
5888  * @mtu: MTU to validate against
5889  *
5890  * skb_gso_validate_network_len validates if a given skb will fit a
5891  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5892  * payload.
5893  */
5894 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5895 {
5896 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5897 }
5898 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5899 
5900 /**
5901  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5902  *
5903  * @skb: GSO skb
5904  * @len: length to validate against
5905  *
5906  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5907  * length once split, including L2, L3 and L4 headers and the payload.
5908  */
5909 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5910 {
5911 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5912 }
5913 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5914 
5915 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5916 {
5917 	int mac_len, meta_len;
5918 	void *meta;
5919 
5920 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5921 		kfree_skb(skb);
5922 		return NULL;
5923 	}
5924 
5925 	mac_len = skb->data - skb_mac_header(skb);
5926 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5927 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5928 			mac_len - VLAN_HLEN - ETH_TLEN);
5929 	}
5930 
5931 	meta_len = skb_metadata_len(skb);
5932 	if (meta_len) {
5933 		meta = skb_metadata_end(skb) - meta_len;
5934 		memmove(meta + VLAN_HLEN, meta, meta_len);
5935 	}
5936 
5937 	skb->mac_header += VLAN_HLEN;
5938 	return skb;
5939 }
5940 
5941 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5942 {
5943 	struct vlan_hdr *vhdr;
5944 	u16 vlan_tci;
5945 
5946 	if (unlikely(skb_vlan_tag_present(skb))) {
5947 		/* vlan_tci is already set-up so leave this for another time */
5948 		return skb;
5949 	}
5950 
5951 	skb = skb_share_check(skb, GFP_ATOMIC);
5952 	if (unlikely(!skb))
5953 		goto err_free;
5954 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5955 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5956 		goto err_free;
5957 
5958 	vhdr = (struct vlan_hdr *)skb->data;
5959 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5960 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5961 
5962 	skb_pull_rcsum(skb, VLAN_HLEN);
5963 	vlan_set_encap_proto(skb, vhdr);
5964 
5965 	skb = skb_reorder_vlan_header(skb);
5966 	if (unlikely(!skb))
5967 		goto err_free;
5968 
5969 	skb_reset_network_header(skb);
5970 	if (!skb_transport_header_was_set(skb))
5971 		skb_reset_transport_header(skb);
5972 	skb_reset_mac_len(skb);
5973 
5974 	return skb;
5975 
5976 err_free:
5977 	kfree_skb(skb);
5978 	return NULL;
5979 }
5980 EXPORT_SYMBOL(skb_vlan_untag);
5981 
5982 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5983 {
5984 	if (!pskb_may_pull(skb, write_len))
5985 		return -ENOMEM;
5986 
5987 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5988 		return 0;
5989 
5990 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5991 }
5992 EXPORT_SYMBOL(skb_ensure_writable);
5993 
5994 /* remove VLAN header from packet and update csum accordingly.
5995  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5996  */
5997 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5998 {
5999 	struct vlan_hdr *vhdr;
6000 	int offset = skb->data - skb_mac_header(skb);
6001 	int err;
6002 
6003 	if (WARN_ONCE(offset,
6004 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6005 		      offset)) {
6006 		return -EINVAL;
6007 	}
6008 
6009 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6010 	if (unlikely(err))
6011 		return err;
6012 
6013 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6014 
6015 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
6016 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
6017 
6018 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
6019 	__skb_pull(skb, VLAN_HLEN);
6020 
6021 	vlan_set_encap_proto(skb, vhdr);
6022 	skb->mac_header += VLAN_HLEN;
6023 
6024 	if (skb_network_offset(skb) < ETH_HLEN)
6025 		skb_set_network_header(skb, ETH_HLEN);
6026 
6027 	skb_reset_mac_len(skb);
6028 
6029 	return err;
6030 }
6031 EXPORT_SYMBOL(__skb_vlan_pop);
6032 
6033 /* Pop a vlan tag either from hwaccel or from payload.
6034  * Expects skb->data at mac header.
6035  */
6036 int skb_vlan_pop(struct sk_buff *skb)
6037 {
6038 	u16 vlan_tci;
6039 	__be16 vlan_proto;
6040 	int err;
6041 
6042 	if (likely(skb_vlan_tag_present(skb))) {
6043 		__vlan_hwaccel_clear_tag(skb);
6044 	} else {
6045 		if (unlikely(!eth_type_vlan(skb->protocol)))
6046 			return 0;
6047 
6048 		err = __skb_vlan_pop(skb, &vlan_tci);
6049 		if (err)
6050 			return err;
6051 	}
6052 	/* move next vlan tag to hw accel tag */
6053 	if (likely(!eth_type_vlan(skb->protocol)))
6054 		return 0;
6055 
6056 	vlan_proto = skb->protocol;
6057 	err = __skb_vlan_pop(skb, &vlan_tci);
6058 	if (unlikely(err))
6059 		return err;
6060 
6061 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6062 	return 0;
6063 }
6064 EXPORT_SYMBOL(skb_vlan_pop);
6065 
6066 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6067  * Expects skb->data at mac header.
6068  */
6069 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6070 {
6071 	if (skb_vlan_tag_present(skb)) {
6072 		int offset = skb->data - skb_mac_header(skb);
6073 		int err;
6074 
6075 		if (WARN_ONCE(offset,
6076 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6077 			      offset)) {
6078 			return -EINVAL;
6079 		}
6080 
6081 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6082 					skb_vlan_tag_get(skb));
6083 		if (err)
6084 			return err;
6085 
6086 		skb->protocol = skb->vlan_proto;
6087 		skb->mac_len += VLAN_HLEN;
6088 
6089 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6090 	}
6091 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6092 	return 0;
6093 }
6094 EXPORT_SYMBOL(skb_vlan_push);
6095 
6096 /**
6097  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6098  *
6099  * @skb: Socket buffer to modify
6100  *
6101  * Drop the Ethernet header of @skb.
6102  *
6103  * Expects that skb->data points to the mac header and that no VLAN tags are
6104  * present.
6105  *
6106  * Returns 0 on success, -errno otherwise.
6107  */
6108 int skb_eth_pop(struct sk_buff *skb)
6109 {
6110 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6111 	    skb_network_offset(skb) < ETH_HLEN)
6112 		return -EPROTO;
6113 
6114 	skb_pull_rcsum(skb, ETH_HLEN);
6115 	skb_reset_mac_header(skb);
6116 	skb_reset_mac_len(skb);
6117 
6118 	return 0;
6119 }
6120 EXPORT_SYMBOL(skb_eth_pop);
6121 
6122 /**
6123  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6124  *
6125  * @skb: Socket buffer to modify
6126  * @dst: Destination MAC address of the new header
6127  * @src: Source MAC address of the new header
6128  *
6129  * Prepend @skb with a new Ethernet header.
6130  *
6131  * Expects that skb->data points to the mac header, which must be empty.
6132  *
6133  * Returns 0 on success, -errno otherwise.
6134  */
6135 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6136 		 const unsigned char *src)
6137 {
6138 	struct ethhdr *eth;
6139 	int err;
6140 
6141 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6142 		return -EPROTO;
6143 
6144 	err = skb_cow_head(skb, sizeof(*eth));
6145 	if (err < 0)
6146 		return err;
6147 
6148 	skb_push(skb, sizeof(*eth));
6149 	skb_reset_mac_header(skb);
6150 	skb_reset_mac_len(skb);
6151 
6152 	eth = eth_hdr(skb);
6153 	ether_addr_copy(eth->h_dest, dst);
6154 	ether_addr_copy(eth->h_source, src);
6155 	eth->h_proto = skb->protocol;
6156 
6157 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6158 
6159 	return 0;
6160 }
6161 EXPORT_SYMBOL(skb_eth_push);
6162 
6163 /* Update the ethertype of hdr and the skb csum value if required. */
6164 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6165 			     __be16 ethertype)
6166 {
6167 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6168 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6169 
6170 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6171 	}
6172 
6173 	hdr->h_proto = ethertype;
6174 }
6175 
6176 /**
6177  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6178  *                   the packet
6179  *
6180  * @skb: buffer
6181  * @mpls_lse: MPLS label stack entry to push
6182  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6183  * @mac_len: length of the MAC header
6184  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6185  *            ethernet
6186  *
6187  * Expects skb->data at mac header.
6188  *
6189  * Returns 0 on success, -errno otherwise.
6190  */
6191 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6192 		  int mac_len, bool ethernet)
6193 {
6194 	struct mpls_shim_hdr *lse;
6195 	int err;
6196 
6197 	if (unlikely(!eth_p_mpls(mpls_proto)))
6198 		return -EINVAL;
6199 
6200 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6201 	if (skb->encapsulation)
6202 		return -EINVAL;
6203 
6204 	err = skb_cow_head(skb, MPLS_HLEN);
6205 	if (unlikely(err))
6206 		return err;
6207 
6208 	if (!skb->inner_protocol) {
6209 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6210 		skb_set_inner_protocol(skb, skb->protocol);
6211 	}
6212 
6213 	skb_push(skb, MPLS_HLEN);
6214 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6215 		mac_len);
6216 	skb_reset_mac_header(skb);
6217 	skb_set_network_header(skb, mac_len);
6218 	skb_reset_mac_len(skb);
6219 
6220 	lse = mpls_hdr(skb);
6221 	lse->label_stack_entry = mpls_lse;
6222 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6223 
6224 	if (ethernet && mac_len >= ETH_HLEN)
6225 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6226 	skb->protocol = mpls_proto;
6227 
6228 	return 0;
6229 }
6230 EXPORT_SYMBOL_GPL(skb_mpls_push);
6231 
6232 /**
6233  * skb_mpls_pop() - pop the outermost MPLS header
6234  *
6235  * @skb: buffer
6236  * @next_proto: ethertype of header after popped MPLS header
6237  * @mac_len: length of the MAC header
6238  * @ethernet: flag to indicate if the packet is ethernet
6239  *
6240  * Expects skb->data at mac header.
6241  *
6242  * Returns 0 on success, -errno otherwise.
6243  */
6244 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6245 		 bool ethernet)
6246 {
6247 	int err;
6248 
6249 	if (unlikely(!eth_p_mpls(skb->protocol)))
6250 		return 0;
6251 
6252 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6253 	if (unlikely(err))
6254 		return err;
6255 
6256 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6257 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6258 		mac_len);
6259 
6260 	__skb_pull(skb, MPLS_HLEN);
6261 	skb_reset_mac_header(skb);
6262 	skb_set_network_header(skb, mac_len);
6263 
6264 	if (ethernet && mac_len >= ETH_HLEN) {
6265 		struct ethhdr *hdr;
6266 
6267 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6268 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6269 		skb_mod_eth_type(skb, hdr, next_proto);
6270 	}
6271 	skb->protocol = next_proto;
6272 
6273 	return 0;
6274 }
6275 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6276 
6277 /**
6278  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6279  *
6280  * @skb: buffer
6281  * @mpls_lse: new MPLS label stack entry to update to
6282  *
6283  * Expects skb->data at mac header.
6284  *
6285  * Returns 0 on success, -errno otherwise.
6286  */
6287 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6288 {
6289 	int err;
6290 
6291 	if (unlikely(!eth_p_mpls(skb->protocol)))
6292 		return -EINVAL;
6293 
6294 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6295 	if (unlikely(err))
6296 		return err;
6297 
6298 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6299 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6300 
6301 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6302 	}
6303 
6304 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6305 
6306 	return 0;
6307 }
6308 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6309 
6310 /**
6311  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6312  *
6313  * @skb: buffer
6314  *
6315  * Expects skb->data at mac header.
6316  *
6317  * Returns 0 on success, -errno otherwise.
6318  */
6319 int skb_mpls_dec_ttl(struct sk_buff *skb)
6320 {
6321 	u32 lse;
6322 	u8 ttl;
6323 
6324 	if (unlikely(!eth_p_mpls(skb->protocol)))
6325 		return -EINVAL;
6326 
6327 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6328 		return -ENOMEM;
6329 
6330 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6331 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6332 	if (!--ttl)
6333 		return -EINVAL;
6334 
6335 	lse &= ~MPLS_LS_TTL_MASK;
6336 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6337 
6338 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6339 }
6340 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6341 
6342 /**
6343  * alloc_skb_with_frags - allocate skb with page frags
6344  *
6345  * @header_len: size of linear part
6346  * @data_len: needed length in frags
6347  * @max_page_order: max page order desired.
6348  * @errcode: pointer to error code if any
6349  * @gfp_mask: allocation mask
6350  *
6351  * This can be used to allocate a paged skb, given a maximal order for frags.
6352  */
6353 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6354 				     unsigned long data_len,
6355 				     int max_page_order,
6356 				     int *errcode,
6357 				     gfp_t gfp_mask)
6358 {
6359 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6360 	unsigned long chunk;
6361 	struct sk_buff *skb;
6362 	struct page *page;
6363 	int i;
6364 
6365 	*errcode = -EMSGSIZE;
6366 	/* Note this test could be relaxed, if we succeed to allocate
6367 	 * high order pages...
6368 	 */
6369 	if (npages > MAX_SKB_FRAGS)
6370 		return NULL;
6371 
6372 	*errcode = -ENOBUFS;
6373 	skb = alloc_skb(header_len, gfp_mask);
6374 	if (!skb)
6375 		return NULL;
6376 
6377 	skb->truesize += npages << PAGE_SHIFT;
6378 
6379 	for (i = 0; npages > 0; i++) {
6380 		int order = max_page_order;
6381 
6382 		while (order) {
6383 			if (npages >= 1 << order) {
6384 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6385 						   __GFP_COMP |
6386 						   __GFP_NOWARN,
6387 						   order);
6388 				if (page)
6389 					goto fill_page;
6390 				/* Do not retry other high order allocations */
6391 				order = 1;
6392 				max_page_order = 0;
6393 			}
6394 			order--;
6395 		}
6396 		page = alloc_page(gfp_mask);
6397 		if (!page)
6398 			goto failure;
6399 fill_page:
6400 		chunk = min_t(unsigned long, data_len,
6401 			      PAGE_SIZE << order);
6402 		skb_fill_page_desc(skb, i, page, 0, chunk);
6403 		data_len -= chunk;
6404 		npages -= 1 << order;
6405 	}
6406 	return skb;
6407 
6408 failure:
6409 	kfree_skb(skb);
6410 	return NULL;
6411 }
6412 EXPORT_SYMBOL(alloc_skb_with_frags);
6413 
6414 /* carve out the first off bytes from skb when off < headlen */
6415 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6416 				    const int headlen, gfp_t gfp_mask)
6417 {
6418 	int i;
6419 	unsigned int size = skb_end_offset(skb);
6420 	int new_hlen = headlen - off;
6421 	u8 *data;
6422 
6423 	if (skb_pfmemalloc(skb))
6424 		gfp_mask |= __GFP_MEMALLOC;
6425 
6426 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6427 	if (!data)
6428 		return -ENOMEM;
6429 	size = SKB_WITH_OVERHEAD(size);
6430 
6431 	/* Copy real data, and all frags */
6432 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6433 	skb->len -= off;
6434 
6435 	memcpy((struct skb_shared_info *)(data + size),
6436 	       skb_shinfo(skb),
6437 	       offsetof(struct skb_shared_info,
6438 			frags[skb_shinfo(skb)->nr_frags]));
6439 	if (skb_cloned(skb)) {
6440 		/* drop the old head gracefully */
6441 		if (skb_orphan_frags(skb, gfp_mask)) {
6442 			skb_kfree_head(data, size);
6443 			return -ENOMEM;
6444 		}
6445 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6446 			skb_frag_ref(skb, i);
6447 		if (skb_has_frag_list(skb))
6448 			skb_clone_fraglist(skb);
6449 		skb_release_data(skb, SKB_CONSUMED, false);
6450 	} else {
6451 		/* we can reuse existing recount- all we did was
6452 		 * relocate values
6453 		 */
6454 		skb_free_head(skb, false);
6455 	}
6456 
6457 	skb->head = data;
6458 	skb->data = data;
6459 	skb->head_frag = 0;
6460 	skb_set_end_offset(skb, size);
6461 	skb_set_tail_pointer(skb, skb_headlen(skb));
6462 	skb_headers_offset_update(skb, 0);
6463 	skb->cloned = 0;
6464 	skb->hdr_len = 0;
6465 	skb->nohdr = 0;
6466 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6467 
6468 	return 0;
6469 }
6470 
6471 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6472 
6473 /* carve out the first eat bytes from skb's frag_list. May recurse into
6474  * pskb_carve()
6475  */
6476 static int pskb_carve_frag_list(struct sk_buff *skb,
6477 				struct skb_shared_info *shinfo, int eat,
6478 				gfp_t gfp_mask)
6479 {
6480 	struct sk_buff *list = shinfo->frag_list;
6481 	struct sk_buff *clone = NULL;
6482 	struct sk_buff *insp = NULL;
6483 
6484 	do {
6485 		if (!list) {
6486 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6487 			return -EFAULT;
6488 		}
6489 		if (list->len <= eat) {
6490 			/* Eaten as whole. */
6491 			eat -= list->len;
6492 			list = list->next;
6493 			insp = list;
6494 		} else {
6495 			/* Eaten partially. */
6496 			if (skb_shared(list)) {
6497 				clone = skb_clone(list, gfp_mask);
6498 				if (!clone)
6499 					return -ENOMEM;
6500 				insp = list->next;
6501 				list = clone;
6502 			} else {
6503 				/* This may be pulled without problems. */
6504 				insp = list;
6505 			}
6506 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6507 				kfree_skb(clone);
6508 				return -ENOMEM;
6509 			}
6510 			break;
6511 		}
6512 	} while (eat);
6513 
6514 	/* Free pulled out fragments. */
6515 	while ((list = shinfo->frag_list) != insp) {
6516 		shinfo->frag_list = list->next;
6517 		consume_skb(list);
6518 	}
6519 	/* And insert new clone at head. */
6520 	if (clone) {
6521 		clone->next = list;
6522 		shinfo->frag_list = clone;
6523 	}
6524 	return 0;
6525 }
6526 
6527 /* carve off first len bytes from skb. Split line (off) is in the
6528  * non-linear part of skb
6529  */
6530 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6531 				       int pos, gfp_t gfp_mask)
6532 {
6533 	int i, k = 0;
6534 	unsigned int size = skb_end_offset(skb);
6535 	u8 *data;
6536 	const int nfrags = skb_shinfo(skb)->nr_frags;
6537 	struct skb_shared_info *shinfo;
6538 
6539 	if (skb_pfmemalloc(skb))
6540 		gfp_mask |= __GFP_MEMALLOC;
6541 
6542 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6543 	if (!data)
6544 		return -ENOMEM;
6545 	size = SKB_WITH_OVERHEAD(size);
6546 
6547 	memcpy((struct skb_shared_info *)(data + size),
6548 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6549 	if (skb_orphan_frags(skb, gfp_mask)) {
6550 		skb_kfree_head(data, size);
6551 		return -ENOMEM;
6552 	}
6553 	shinfo = (struct skb_shared_info *)(data + size);
6554 	for (i = 0; i < nfrags; i++) {
6555 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6556 
6557 		if (pos + fsize > off) {
6558 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6559 
6560 			if (pos < off) {
6561 				/* Split frag.
6562 				 * We have two variants in this case:
6563 				 * 1. Move all the frag to the second
6564 				 *    part, if it is possible. F.e.
6565 				 *    this approach is mandatory for TUX,
6566 				 *    where splitting is expensive.
6567 				 * 2. Split is accurately. We make this.
6568 				 */
6569 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6570 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6571 			}
6572 			skb_frag_ref(skb, i);
6573 			k++;
6574 		}
6575 		pos += fsize;
6576 	}
6577 	shinfo->nr_frags = k;
6578 	if (skb_has_frag_list(skb))
6579 		skb_clone_fraglist(skb);
6580 
6581 	/* split line is in frag list */
6582 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6583 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6584 		if (skb_has_frag_list(skb))
6585 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6586 		skb_kfree_head(data, size);
6587 		return -ENOMEM;
6588 	}
6589 	skb_release_data(skb, SKB_CONSUMED, false);
6590 
6591 	skb->head = data;
6592 	skb->head_frag = 0;
6593 	skb->data = data;
6594 	skb_set_end_offset(skb, size);
6595 	skb_reset_tail_pointer(skb);
6596 	skb_headers_offset_update(skb, 0);
6597 	skb->cloned   = 0;
6598 	skb->hdr_len  = 0;
6599 	skb->nohdr    = 0;
6600 	skb->len -= off;
6601 	skb->data_len = skb->len;
6602 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6603 	return 0;
6604 }
6605 
6606 /* remove len bytes from the beginning of the skb */
6607 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6608 {
6609 	int headlen = skb_headlen(skb);
6610 
6611 	if (len < headlen)
6612 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6613 	else
6614 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6615 }
6616 
6617 /* Extract to_copy bytes starting at off from skb, and return this in
6618  * a new skb
6619  */
6620 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6621 			     int to_copy, gfp_t gfp)
6622 {
6623 	struct sk_buff  *clone = skb_clone(skb, gfp);
6624 
6625 	if (!clone)
6626 		return NULL;
6627 
6628 	if (pskb_carve(clone, off, gfp) < 0 ||
6629 	    pskb_trim(clone, to_copy)) {
6630 		kfree_skb(clone);
6631 		return NULL;
6632 	}
6633 	return clone;
6634 }
6635 EXPORT_SYMBOL(pskb_extract);
6636 
6637 /**
6638  * skb_condense - try to get rid of fragments/frag_list if possible
6639  * @skb: buffer
6640  *
6641  * Can be used to save memory before skb is added to a busy queue.
6642  * If packet has bytes in frags and enough tail room in skb->head,
6643  * pull all of them, so that we can free the frags right now and adjust
6644  * truesize.
6645  * Notes:
6646  *	We do not reallocate skb->head thus can not fail.
6647  *	Caller must re-evaluate skb->truesize if needed.
6648  */
6649 void skb_condense(struct sk_buff *skb)
6650 {
6651 	if (skb->data_len) {
6652 		if (skb->data_len > skb->end - skb->tail ||
6653 		    skb_cloned(skb))
6654 			return;
6655 
6656 		/* Nice, we can free page frag(s) right now */
6657 		__pskb_pull_tail(skb, skb->data_len);
6658 	}
6659 	/* At this point, skb->truesize might be over estimated,
6660 	 * because skb had a fragment, and fragments do not tell
6661 	 * their truesize.
6662 	 * When we pulled its content into skb->head, fragment
6663 	 * was freed, but __pskb_pull_tail() could not possibly
6664 	 * adjust skb->truesize, not knowing the frag truesize.
6665 	 */
6666 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6667 }
6668 EXPORT_SYMBOL(skb_condense);
6669 
6670 #ifdef CONFIG_SKB_EXTENSIONS
6671 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6672 {
6673 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6674 }
6675 
6676 /**
6677  * __skb_ext_alloc - allocate a new skb extensions storage
6678  *
6679  * @flags: See kmalloc().
6680  *
6681  * Returns the newly allocated pointer. The pointer can later attached to a
6682  * skb via __skb_ext_set().
6683  * Note: caller must handle the skb_ext as an opaque data.
6684  */
6685 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6686 {
6687 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6688 
6689 	if (new) {
6690 		memset(new->offset, 0, sizeof(new->offset));
6691 		refcount_set(&new->refcnt, 1);
6692 	}
6693 
6694 	return new;
6695 }
6696 
6697 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6698 					 unsigned int old_active)
6699 {
6700 	struct skb_ext *new;
6701 
6702 	if (refcount_read(&old->refcnt) == 1)
6703 		return old;
6704 
6705 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6706 	if (!new)
6707 		return NULL;
6708 
6709 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6710 	refcount_set(&new->refcnt, 1);
6711 
6712 #ifdef CONFIG_XFRM
6713 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6714 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6715 		unsigned int i;
6716 
6717 		for (i = 0; i < sp->len; i++)
6718 			xfrm_state_hold(sp->xvec[i]);
6719 	}
6720 #endif
6721 	__skb_ext_put(old);
6722 	return new;
6723 }
6724 
6725 /**
6726  * __skb_ext_set - attach the specified extension storage to this skb
6727  * @skb: buffer
6728  * @id: extension id
6729  * @ext: extension storage previously allocated via __skb_ext_alloc()
6730  *
6731  * Existing extensions, if any, are cleared.
6732  *
6733  * Returns the pointer to the extension.
6734  */
6735 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6736 		    struct skb_ext *ext)
6737 {
6738 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6739 
6740 	skb_ext_put(skb);
6741 	newlen = newoff + skb_ext_type_len[id];
6742 	ext->chunks = newlen;
6743 	ext->offset[id] = newoff;
6744 	skb->extensions = ext;
6745 	skb->active_extensions = 1 << id;
6746 	return skb_ext_get_ptr(ext, id);
6747 }
6748 
6749 /**
6750  * skb_ext_add - allocate space for given extension, COW if needed
6751  * @skb: buffer
6752  * @id: extension to allocate space for
6753  *
6754  * Allocates enough space for the given extension.
6755  * If the extension is already present, a pointer to that extension
6756  * is returned.
6757  *
6758  * If the skb was cloned, COW applies and the returned memory can be
6759  * modified without changing the extension space of clones buffers.
6760  *
6761  * Returns pointer to the extension or NULL on allocation failure.
6762  */
6763 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6764 {
6765 	struct skb_ext *new, *old = NULL;
6766 	unsigned int newlen, newoff;
6767 
6768 	if (skb->active_extensions) {
6769 		old = skb->extensions;
6770 
6771 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6772 		if (!new)
6773 			return NULL;
6774 
6775 		if (__skb_ext_exist(new, id))
6776 			goto set_active;
6777 
6778 		newoff = new->chunks;
6779 	} else {
6780 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6781 
6782 		new = __skb_ext_alloc(GFP_ATOMIC);
6783 		if (!new)
6784 			return NULL;
6785 	}
6786 
6787 	newlen = newoff + skb_ext_type_len[id];
6788 	new->chunks = newlen;
6789 	new->offset[id] = newoff;
6790 set_active:
6791 	skb->slow_gro = 1;
6792 	skb->extensions = new;
6793 	skb->active_extensions |= 1 << id;
6794 	return skb_ext_get_ptr(new, id);
6795 }
6796 EXPORT_SYMBOL(skb_ext_add);
6797 
6798 #ifdef CONFIG_XFRM
6799 static void skb_ext_put_sp(struct sec_path *sp)
6800 {
6801 	unsigned int i;
6802 
6803 	for (i = 0; i < sp->len; i++)
6804 		xfrm_state_put(sp->xvec[i]);
6805 }
6806 #endif
6807 
6808 #ifdef CONFIG_MCTP_FLOWS
6809 static void skb_ext_put_mctp(struct mctp_flow *flow)
6810 {
6811 	if (flow->key)
6812 		mctp_key_unref(flow->key);
6813 }
6814 #endif
6815 
6816 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6817 {
6818 	struct skb_ext *ext = skb->extensions;
6819 
6820 	skb->active_extensions &= ~(1 << id);
6821 	if (skb->active_extensions == 0) {
6822 		skb->extensions = NULL;
6823 		__skb_ext_put(ext);
6824 #ifdef CONFIG_XFRM
6825 	} else if (id == SKB_EXT_SEC_PATH &&
6826 		   refcount_read(&ext->refcnt) == 1) {
6827 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6828 
6829 		skb_ext_put_sp(sp);
6830 		sp->len = 0;
6831 #endif
6832 	}
6833 }
6834 EXPORT_SYMBOL(__skb_ext_del);
6835 
6836 void __skb_ext_put(struct skb_ext *ext)
6837 {
6838 	/* If this is last clone, nothing can increment
6839 	 * it after check passes.  Avoids one atomic op.
6840 	 */
6841 	if (refcount_read(&ext->refcnt) == 1)
6842 		goto free_now;
6843 
6844 	if (!refcount_dec_and_test(&ext->refcnt))
6845 		return;
6846 free_now:
6847 #ifdef CONFIG_XFRM
6848 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6849 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6850 #endif
6851 #ifdef CONFIG_MCTP_FLOWS
6852 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6853 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6854 #endif
6855 
6856 	kmem_cache_free(skbuff_ext_cache, ext);
6857 }
6858 EXPORT_SYMBOL(__skb_ext_put);
6859 #endif /* CONFIG_SKB_EXTENSIONS */
6860 
6861 /**
6862  * skb_attempt_defer_free - queue skb for remote freeing
6863  * @skb: buffer
6864  *
6865  * Put @skb in a per-cpu list, using the cpu which
6866  * allocated the skb/pages to reduce false sharing
6867  * and memory zone spinlock contention.
6868  */
6869 void skb_attempt_defer_free(struct sk_buff *skb)
6870 {
6871 	int cpu = skb->alloc_cpu;
6872 	struct softnet_data *sd;
6873 	unsigned long flags;
6874 	unsigned int defer_max;
6875 	bool kick;
6876 
6877 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6878 	    !cpu_online(cpu) ||
6879 	    cpu == raw_smp_processor_id()) {
6880 nodefer:	__kfree_skb(skb);
6881 		return;
6882 	}
6883 
6884 	sd = &per_cpu(softnet_data, cpu);
6885 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6886 	if (READ_ONCE(sd->defer_count) >= defer_max)
6887 		goto nodefer;
6888 
6889 	spin_lock_irqsave(&sd->defer_lock, flags);
6890 	/* Send an IPI every time queue reaches half capacity. */
6891 	kick = sd->defer_count == (defer_max >> 1);
6892 	/* Paired with the READ_ONCE() few lines above */
6893 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6894 
6895 	skb->next = sd->defer_list;
6896 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6897 	WRITE_ONCE(sd->defer_list, skb);
6898 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6899 
6900 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6901 	 * if we are unlucky enough (this seems very unlikely).
6902 	 */
6903 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6904 		smp_call_function_single_async(cpu, &sd->defer_csd);
6905 }
6906