1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/mctp.h> 74 #include <net/page_pool.h> 75 76 #include <linux/uaccess.h> 77 #include <trace/events/skb.h> 78 #include <linux/highmem.h> 79 #include <linux/capability.h> 80 #include <linux/user_namespace.h> 81 #include <linux/indirect_call_wrapper.h> 82 83 #include "datagram.h" 84 #include "sock_destructor.h" 85 86 struct kmem_cache *skbuff_head_cache __ro_after_init; 87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 88 #ifdef CONFIG_SKB_EXTENSIONS 89 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 90 #endif 91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 92 EXPORT_SYMBOL(sysctl_max_skb_frags); 93 94 /** 95 * skb_panic - private function for out-of-line support 96 * @skb: buffer 97 * @sz: size 98 * @addr: address 99 * @msg: skb_over_panic or skb_under_panic 100 * 101 * Out-of-line support for skb_put() and skb_push(). 102 * Called via the wrapper skb_over_panic() or skb_under_panic(). 103 * Keep out of line to prevent kernel bloat. 104 * __builtin_return_address is not used because it is not always reliable. 105 */ 106 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 107 const char msg[]) 108 { 109 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 110 msg, addr, skb->len, sz, skb->head, skb->data, 111 (unsigned long)skb->tail, (unsigned long)skb->end, 112 skb->dev ? skb->dev->name : "<NULL>"); 113 BUG(); 114 } 115 116 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 117 { 118 skb_panic(skb, sz, addr, __func__); 119 } 120 121 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 122 { 123 skb_panic(skb, sz, addr, __func__); 124 } 125 126 #define NAPI_SKB_CACHE_SIZE 64 127 #define NAPI_SKB_CACHE_BULK 16 128 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 129 130 struct napi_alloc_cache { 131 struct page_frag_cache page; 132 unsigned int skb_count; 133 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 134 }; 135 136 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 137 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 138 139 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 140 { 141 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 142 143 fragsz = SKB_DATA_ALIGN(fragsz); 144 145 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 146 } 147 EXPORT_SYMBOL(__napi_alloc_frag_align); 148 149 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 150 { 151 void *data; 152 153 fragsz = SKB_DATA_ALIGN(fragsz); 154 if (in_hardirq() || irqs_disabled()) { 155 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 156 157 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 158 } else { 159 struct napi_alloc_cache *nc; 160 161 local_bh_disable(); 162 nc = this_cpu_ptr(&napi_alloc_cache); 163 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 164 local_bh_enable(); 165 } 166 return data; 167 } 168 EXPORT_SYMBOL(__netdev_alloc_frag_align); 169 170 static struct sk_buff *napi_skb_cache_get(void) 171 { 172 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 173 struct sk_buff *skb; 174 175 if (unlikely(!nc->skb_count)) 176 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 177 GFP_ATOMIC, 178 NAPI_SKB_CACHE_BULK, 179 nc->skb_cache); 180 if (unlikely(!nc->skb_count)) 181 return NULL; 182 183 skb = nc->skb_cache[--nc->skb_count]; 184 kasan_unpoison_object_data(skbuff_head_cache, skb); 185 186 return skb; 187 } 188 189 /* Caller must provide SKB that is memset cleared */ 190 static void __build_skb_around(struct sk_buff *skb, void *data, 191 unsigned int frag_size) 192 { 193 struct skb_shared_info *shinfo; 194 unsigned int size = frag_size ? : ksize(data); 195 196 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 197 198 /* Assumes caller memset cleared SKB */ 199 skb->truesize = SKB_TRUESIZE(size); 200 refcount_set(&skb->users, 1); 201 skb->head = data; 202 skb->data = data; 203 skb_reset_tail_pointer(skb); 204 skb->end = skb->tail + size; 205 skb->mac_header = (typeof(skb->mac_header))~0U; 206 skb->transport_header = (typeof(skb->transport_header))~0U; 207 208 /* make sure we initialize shinfo sequentially */ 209 shinfo = skb_shinfo(skb); 210 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 211 atomic_set(&shinfo->dataref, 1); 212 213 skb_set_kcov_handle(skb, kcov_common_handle()); 214 } 215 216 /** 217 * __build_skb - build a network buffer 218 * @data: data buffer provided by caller 219 * @frag_size: size of data, or 0 if head was kmalloced 220 * 221 * Allocate a new &sk_buff. Caller provides space holding head and 222 * skb_shared_info. @data must have been allocated by kmalloc() only if 223 * @frag_size is 0, otherwise data should come from the page allocator 224 * or vmalloc() 225 * The return is the new skb buffer. 226 * On a failure the return is %NULL, and @data is not freed. 227 * Notes : 228 * Before IO, driver allocates only data buffer where NIC put incoming frame 229 * Driver should add room at head (NET_SKB_PAD) and 230 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 231 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 232 * before giving packet to stack. 233 * RX rings only contains data buffers, not full skbs. 234 */ 235 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 236 { 237 struct sk_buff *skb; 238 239 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 240 if (unlikely(!skb)) 241 return NULL; 242 243 memset(skb, 0, offsetof(struct sk_buff, tail)); 244 __build_skb_around(skb, data, frag_size); 245 246 return skb; 247 } 248 249 /* build_skb() is wrapper over __build_skb(), that specifically 250 * takes care of skb->head and skb->pfmemalloc 251 * This means that if @frag_size is not zero, then @data must be backed 252 * by a page fragment, not kmalloc() or vmalloc() 253 */ 254 struct sk_buff *build_skb(void *data, unsigned int frag_size) 255 { 256 struct sk_buff *skb = __build_skb(data, frag_size); 257 258 if (skb && frag_size) { 259 skb->head_frag = 1; 260 if (page_is_pfmemalloc(virt_to_head_page(data))) 261 skb->pfmemalloc = 1; 262 } 263 return skb; 264 } 265 EXPORT_SYMBOL(build_skb); 266 267 /** 268 * build_skb_around - build a network buffer around provided skb 269 * @skb: sk_buff provide by caller, must be memset cleared 270 * @data: data buffer provided by caller 271 * @frag_size: size of data, or 0 if head was kmalloced 272 */ 273 struct sk_buff *build_skb_around(struct sk_buff *skb, 274 void *data, unsigned int frag_size) 275 { 276 if (unlikely(!skb)) 277 return NULL; 278 279 __build_skb_around(skb, data, frag_size); 280 281 if (frag_size) { 282 skb->head_frag = 1; 283 if (page_is_pfmemalloc(virt_to_head_page(data))) 284 skb->pfmemalloc = 1; 285 } 286 return skb; 287 } 288 EXPORT_SYMBOL(build_skb_around); 289 290 /** 291 * __napi_build_skb - build a network buffer 292 * @data: data buffer provided by caller 293 * @frag_size: size of data, or 0 if head was kmalloced 294 * 295 * Version of __build_skb() that uses NAPI percpu caches to obtain 296 * skbuff_head instead of inplace allocation. 297 * 298 * Returns a new &sk_buff on success, %NULL on allocation failure. 299 */ 300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 301 { 302 struct sk_buff *skb; 303 304 skb = napi_skb_cache_get(); 305 if (unlikely(!skb)) 306 return NULL; 307 308 memset(skb, 0, offsetof(struct sk_buff, tail)); 309 __build_skb_around(skb, data, frag_size); 310 311 return skb; 312 } 313 314 /** 315 * napi_build_skb - build a network buffer 316 * @data: data buffer provided by caller 317 * @frag_size: size of data, or 0 if head was kmalloced 318 * 319 * Version of __napi_build_skb() that takes care of skb->head_frag 320 * and skb->pfmemalloc when the data is a page or page fragment. 321 * 322 * Returns a new &sk_buff on success, %NULL on allocation failure. 323 */ 324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 325 { 326 struct sk_buff *skb = __napi_build_skb(data, frag_size); 327 328 if (likely(skb) && frag_size) { 329 skb->head_frag = 1; 330 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 331 } 332 333 return skb; 334 } 335 EXPORT_SYMBOL(napi_build_skb); 336 337 /* 338 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 339 * the caller if emergency pfmemalloc reserves are being used. If it is and 340 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 341 * may be used. Otherwise, the packet data may be discarded until enough 342 * memory is free 343 */ 344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 345 bool *pfmemalloc) 346 { 347 void *obj; 348 bool ret_pfmemalloc = false; 349 350 /* 351 * Try a regular allocation, when that fails and we're not entitled 352 * to the reserves, fail. 353 */ 354 obj = kmalloc_node_track_caller(size, 355 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 356 node); 357 if (obj || !(gfp_pfmemalloc_allowed(flags))) 358 goto out; 359 360 /* Try again but now we are using pfmemalloc reserves */ 361 ret_pfmemalloc = true; 362 obj = kmalloc_node_track_caller(size, flags, node); 363 364 out: 365 if (pfmemalloc) 366 *pfmemalloc = ret_pfmemalloc; 367 368 return obj; 369 } 370 371 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 372 * 'private' fields and also do memory statistics to find all the 373 * [BEEP] leaks. 374 * 375 */ 376 377 /** 378 * __alloc_skb - allocate a network buffer 379 * @size: size to allocate 380 * @gfp_mask: allocation mask 381 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 382 * instead of head cache and allocate a cloned (child) skb. 383 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 384 * allocations in case the data is required for writeback 385 * @node: numa node to allocate memory on 386 * 387 * Allocate a new &sk_buff. The returned buffer has no headroom and a 388 * tail room of at least size bytes. The object has a reference count 389 * of one. The return is the buffer. On a failure the return is %NULL. 390 * 391 * Buffers may only be allocated from interrupts using a @gfp_mask of 392 * %GFP_ATOMIC. 393 */ 394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 395 int flags, int node) 396 { 397 struct kmem_cache *cache; 398 struct sk_buff *skb; 399 unsigned int osize; 400 bool pfmemalloc; 401 u8 *data; 402 403 cache = (flags & SKB_ALLOC_FCLONE) 404 ? skbuff_fclone_cache : skbuff_head_cache; 405 406 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 407 gfp_mask |= __GFP_MEMALLOC; 408 409 /* Get the HEAD */ 410 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 411 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 412 skb = napi_skb_cache_get(); 413 else 414 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 415 if (unlikely(!skb)) 416 return NULL; 417 prefetchw(skb); 418 419 /* We do our best to align skb_shared_info on a separate cache 420 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 421 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 422 * Both skb->head and skb_shared_info are cache line aligned. 423 */ 424 size = SKB_DATA_ALIGN(size); 425 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 426 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 427 if (unlikely(!data)) 428 goto nodata; 429 /* kmalloc(size) might give us more room than requested. 430 * Put skb_shared_info exactly at the end of allocated zone, 431 * to allow max possible filling before reallocation. 432 */ 433 osize = ksize(data); 434 size = SKB_WITH_OVERHEAD(osize); 435 prefetchw(data + size); 436 437 /* 438 * Only clear those fields we need to clear, not those that we will 439 * actually initialise below. Hence, don't put any more fields after 440 * the tail pointer in struct sk_buff! 441 */ 442 memset(skb, 0, offsetof(struct sk_buff, tail)); 443 __build_skb_around(skb, data, osize); 444 skb->pfmemalloc = pfmemalloc; 445 446 if (flags & SKB_ALLOC_FCLONE) { 447 struct sk_buff_fclones *fclones; 448 449 fclones = container_of(skb, struct sk_buff_fclones, skb1); 450 451 skb->fclone = SKB_FCLONE_ORIG; 452 refcount_set(&fclones->fclone_ref, 1); 453 454 fclones->skb2.fclone = SKB_FCLONE_CLONE; 455 } 456 457 return skb; 458 459 nodata: 460 kmem_cache_free(cache, skb); 461 return NULL; 462 } 463 EXPORT_SYMBOL(__alloc_skb); 464 465 /** 466 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 467 * @dev: network device to receive on 468 * @len: length to allocate 469 * @gfp_mask: get_free_pages mask, passed to alloc_skb 470 * 471 * Allocate a new &sk_buff and assign it a usage count of one. The 472 * buffer has NET_SKB_PAD headroom built in. Users should allocate 473 * the headroom they think they need without accounting for the 474 * built in space. The built in space is used for optimisations. 475 * 476 * %NULL is returned if there is no free memory. 477 */ 478 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 479 gfp_t gfp_mask) 480 { 481 struct page_frag_cache *nc; 482 struct sk_buff *skb; 483 bool pfmemalloc; 484 void *data; 485 486 len += NET_SKB_PAD; 487 488 /* If requested length is either too small or too big, 489 * we use kmalloc() for skb->head allocation. 490 */ 491 if (len <= SKB_WITH_OVERHEAD(1024) || 492 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 493 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 494 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 495 if (!skb) 496 goto skb_fail; 497 goto skb_success; 498 } 499 500 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 501 len = SKB_DATA_ALIGN(len); 502 503 if (sk_memalloc_socks()) 504 gfp_mask |= __GFP_MEMALLOC; 505 506 if (in_hardirq() || irqs_disabled()) { 507 nc = this_cpu_ptr(&netdev_alloc_cache); 508 data = page_frag_alloc(nc, len, gfp_mask); 509 pfmemalloc = nc->pfmemalloc; 510 } else { 511 local_bh_disable(); 512 nc = this_cpu_ptr(&napi_alloc_cache.page); 513 data = page_frag_alloc(nc, len, gfp_mask); 514 pfmemalloc = nc->pfmemalloc; 515 local_bh_enable(); 516 } 517 518 if (unlikely(!data)) 519 return NULL; 520 521 skb = __build_skb(data, len); 522 if (unlikely(!skb)) { 523 skb_free_frag(data); 524 return NULL; 525 } 526 527 if (pfmemalloc) 528 skb->pfmemalloc = 1; 529 skb->head_frag = 1; 530 531 skb_success: 532 skb_reserve(skb, NET_SKB_PAD); 533 skb->dev = dev; 534 535 skb_fail: 536 return skb; 537 } 538 EXPORT_SYMBOL(__netdev_alloc_skb); 539 540 /** 541 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 542 * @napi: napi instance this buffer was allocated for 543 * @len: length to allocate 544 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 545 * 546 * Allocate a new sk_buff for use in NAPI receive. This buffer will 547 * attempt to allocate the head from a special reserved region used 548 * only for NAPI Rx allocation. By doing this we can save several 549 * CPU cycles by avoiding having to disable and re-enable IRQs. 550 * 551 * %NULL is returned if there is no free memory. 552 */ 553 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 554 gfp_t gfp_mask) 555 { 556 struct napi_alloc_cache *nc; 557 struct sk_buff *skb; 558 void *data; 559 560 len += NET_SKB_PAD + NET_IP_ALIGN; 561 562 /* If requested length is either too small or too big, 563 * we use kmalloc() for skb->head allocation. 564 */ 565 if (len <= SKB_WITH_OVERHEAD(1024) || 566 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 567 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 568 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 569 NUMA_NO_NODE); 570 if (!skb) 571 goto skb_fail; 572 goto skb_success; 573 } 574 575 nc = this_cpu_ptr(&napi_alloc_cache); 576 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 577 len = SKB_DATA_ALIGN(len); 578 579 if (sk_memalloc_socks()) 580 gfp_mask |= __GFP_MEMALLOC; 581 582 data = page_frag_alloc(&nc->page, len, gfp_mask); 583 if (unlikely(!data)) 584 return NULL; 585 586 skb = __napi_build_skb(data, len); 587 if (unlikely(!skb)) { 588 skb_free_frag(data); 589 return NULL; 590 } 591 592 if (nc->page.pfmemalloc) 593 skb->pfmemalloc = 1; 594 skb->head_frag = 1; 595 596 skb_success: 597 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 598 skb->dev = napi->dev; 599 600 skb_fail: 601 return skb; 602 } 603 EXPORT_SYMBOL(__napi_alloc_skb); 604 605 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 606 int size, unsigned int truesize) 607 { 608 skb_fill_page_desc(skb, i, page, off, size); 609 skb->len += size; 610 skb->data_len += size; 611 skb->truesize += truesize; 612 } 613 EXPORT_SYMBOL(skb_add_rx_frag); 614 615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 616 unsigned int truesize) 617 { 618 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 619 620 skb_frag_size_add(frag, size); 621 skb->len += size; 622 skb->data_len += size; 623 skb->truesize += truesize; 624 } 625 EXPORT_SYMBOL(skb_coalesce_rx_frag); 626 627 static void skb_drop_list(struct sk_buff **listp) 628 { 629 kfree_skb_list(*listp); 630 *listp = NULL; 631 } 632 633 static inline void skb_drop_fraglist(struct sk_buff *skb) 634 { 635 skb_drop_list(&skb_shinfo(skb)->frag_list); 636 } 637 638 static void skb_clone_fraglist(struct sk_buff *skb) 639 { 640 struct sk_buff *list; 641 642 skb_walk_frags(skb, list) 643 skb_get(list); 644 } 645 646 static void skb_free_head(struct sk_buff *skb) 647 { 648 unsigned char *head = skb->head; 649 650 if (skb->head_frag) { 651 if (skb_pp_recycle(skb, head)) 652 return; 653 skb_free_frag(head); 654 } else { 655 kfree(head); 656 } 657 } 658 659 static void skb_release_data(struct sk_buff *skb) 660 { 661 struct skb_shared_info *shinfo = skb_shinfo(skb); 662 int i; 663 664 if (skb->cloned && 665 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 666 &shinfo->dataref)) 667 goto exit; 668 669 skb_zcopy_clear(skb, true); 670 671 for (i = 0; i < shinfo->nr_frags; i++) 672 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 673 674 if (shinfo->frag_list) 675 kfree_skb_list(shinfo->frag_list); 676 677 skb_free_head(skb); 678 exit: 679 /* When we clone an SKB we copy the reycling bit. The pp_recycle 680 * bit is only set on the head though, so in order to avoid races 681 * while trying to recycle fragments on __skb_frag_unref() we need 682 * to make one SKB responsible for triggering the recycle path. 683 * So disable the recycling bit if an SKB is cloned and we have 684 * additional references to the fragmented part of the SKB. 685 * Eventually the last SKB will have the recycling bit set and it's 686 * dataref set to 0, which will trigger the recycling 687 */ 688 skb->pp_recycle = 0; 689 } 690 691 /* 692 * Free an skbuff by memory without cleaning the state. 693 */ 694 static void kfree_skbmem(struct sk_buff *skb) 695 { 696 struct sk_buff_fclones *fclones; 697 698 switch (skb->fclone) { 699 case SKB_FCLONE_UNAVAILABLE: 700 kmem_cache_free(skbuff_head_cache, skb); 701 return; 702 703 case SKB_FCLONE_ORIG: 704 fclones = container_of(skb, struct sk_buff_fclones, skb1); 705 706 /* We usually free the clone (TX completion) before original skb 707 * This test would have no chance to be true for the clone, 708 * while here, branch prediction will be good. 709 */ 710 if (refcount_read(&fclones->fclone_ref) == 1) 711 goto fastpath; 712 break; 713 714 default: /* SKB_FCLONE_CLONE */ 715 fclones = container_of(skb, struct sk_buff_fclones, skb2); 716 break; 717 } 718 if (!refcount_dec_and_test(&fclones->fclone_ref)) 719 return; 720 fastpath: 721 kmem_cache_free(skbuff_fclone_cache, fclones); 722 } 723 724 void skb_release_head_state(struct sk_buff *skb) 725 { 726 skb_dst_drop(skb); 727 if (skb->destructor) { 728 WARN_ON(in_hardirq()); 729 skb->destructor(skb); 730 } 731 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 732 nf_conntrack_put(skb_nfct(skb)); 733 #endif 734 skb_ext_put(skb); 735 } 736 737 /* Free everything but the sk_buff shell. */ 738 static void skb_release_all(struct sk_buff *skb) 739 { 740 skb_release_head_state(skb); 741 if (likely(skb->head)) 742 skb_release_data(skb); 743 } 744 745 /** 746 * __kfree_skb - private function 747 * @skb: buffer 748 * 749 * Free an sk_buff. Release anything attached to the buffer. 750 * Clean the state. This is an internal helper function. Users should 751 * always call kfree_skb 752 */ 753 754 void __kfree_skb(struct sk_buff *skb) 755 { 756 skb_release_all(skb); 757 kfree_skbmem(skb); 758 } 759 EXPORT_SYMBOL(__kfree_skb); 760 761 /** 762 * kfree_skb_reason - free an sk_buff with special reason 763 * @skb: buffer to free 764 * @reason: reason why this skb is dropped 765 * 766 * Drop a reference to the buffer and free it if the usage count has 767 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 768 * tracepoint. 769 */ 770 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 771 { 772 if (!skb_unref(skb)) 773 return; 774 775 trace_kfree_skb(skb, __builtin_return_address(0), reason); 776 __kfree_skb(skb); 777 } 778 EXPORT_SYMBOL(kfree_skb_reason); 779 780 void kfree_skb_list(struct sk_buff *segs) 781 { 782 while (segs) { 783 struct sk_buff *next = segs->next; 784 785 kfree_skb(segs); 786 segs = next; 787 } 788 } 789 EXPORT_SYMBOL(kfree_skb_list); 790 791 /* Dump skb information and contents. 792 * 793 * Must only be called from net_ratelimit()-ed paths. 794 * 795 * Dumps whole packets if full_pkt, only headers otherwise. 796 */ 797 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 798 { 799 struct skb_shared_info *sh = skb_shinfo(skb); 800 struct net_device *dev = skb->dev; 801 struct sock *sk = skb->sk; 802 struct sk_buff *list_skb; 803 bool has_mac, has_trans; 804 int headroom, tailroom; 805 int i, len, seg_len; 806 807 if (full_pkt) 808 len = skb->len; 809 else 810 len = min_t(int, skb->len, MAX_HEADER + 128); 811 812 headroom = skb_headroom(skb); 813 tailroom = skb_tailroom(skb); 814 815 has_mac = skb_mac_header_was_set(skb); 816 has_trans = skb_transport_header_was_set(skb); 817 818 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 819 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 820 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 821 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 822 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 823 level, skb->len, headroom, skb_headlen(skb), tailroom, 824 has_mac ? skb->mac_header : -1, 825 has_mac ? skb_mac_header_len(skb) : -1, 826 skb->network_header, 827 has_trans ? skb_network_header_len(skb) : -1, 828 has_trans ? skb->transport_header : -1, 829 sh->tx_flags, sh->nr_frags, 830 sh->gso_size, sh->gso_type, sh->gso_segs, 831 skb->csum, skb->ip_summed, skb->csum_complete_sw, 832 skb->csum_valid, skb->csum_level, 833 skb->hash, skb->sw_hash, skb->l4_hash, 834 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 835 836 if (dev) 837 printk("%sdev name=%s feat=%pNF\n", 838 level, dev->name, &dev->features); 839 if (sk) 840 printk("%ssk family=%hu type=%u proto=%u\n", 841 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 842 843 if (full_pkt && headroom) 844 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 845 16, 1, skb->head, headroom, false); 846 847 seg_len = min_t(int, skb_headlen(skb), len); 848 if (seg_len) 849 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 850 16, 1, skb->data, seg_len, false); 851 len -= seg_len; 852 853 if (full_pkt && tailroom) 854 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 855 16, 1, skb_tail_pointer(skb), tailroom, false); 856 857 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 858 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 859 u32 p_off, p_len, copied; 860 struct page *p; 861 u8 *vaddr; 862 863 skb_frag_foreach_page(frag, skb_frag_off(frag), 864 skb_frag_size(frag), p, p_off, p_len, 865 copied) { 866 seg_len = min_t(int, p_len, len); 867 vaddr = kmap_atomic(p); 868 print_hex_dump(level, "skb frag: ", 869 DUMP_PREFIX_OFFSET, 870 16, 1, vaddr + p_off, seg_len, false); 871 kunmap_atomic(vaddr); 872 len -= seg_len; 873 if (!len) 874 break; 875 } 876 } 877 878 if (full_pkt && skb_has_frag_list(skb)) { 879 printk("skb fraglist:\n"); 880 skb_walk_frags(skb, list_skb) 881 skb_dump(level, list_skb, true); 882 } 883 } 884 EXPORT_SYMBOL(skb_dump); 885 886 /** 887 * skb_tx_error - report an sk_buff xmit error 888 * @skb: buffer that triggered an error 889 * 890 * Report xmit error if a device callback is tracking this skb. 891 * skb must be freed afterwards. 892 */ 893 void skb_tx_error(struct sk_buff *skb) 894 { 895 skb_zcopy_clear(skb, true); 896 } 897 EXPORT_SYMBOL(skb_tx_error); 898 899 #ifdef CONFIG_TRACEPOINTS 900 /** 901 * consume_skb - free an skbuff 902 * @skb: buffer to free 903 * 904 * Drop a ref to the buffer and free it if the usage count has hit zero 905 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 906 * is being dropped after a failure and notes that 907 */ 908 void consume_skb(struct sk_buff *skb) 909 { 910 if (!skb_unref(skb)) 911 return; 912 913 trace_consume_skb(skb); 914 __kfree_skb(skb); 915 } 916 EXPORT_SYMBOL(consume_skb); 917 #endif 918 919 /** 920 * __consume_stateless_skb - free an skbuff, assuming it is stateless 921 * @skb: buffer to free 922 * 923 * Alike consume_skb(), but this variant assumes that this is the last 924 * skb reference and all the head states have been already dropped 925 */ 926 void __consume_stateless_skb(struct sk_buff *skb) 927 { 928 trace_consume_skb(skb); 929 skb_release_data(skb); 930 kfree_skbmem(skb); 931 } 932 933 static void napi_skb_cache_put(struct sk_buff *skb) 934 { 935 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 936 u32 i; 937 938 kasan_poison_object_data(skbuff_head_cache, skb); 939 nc->skb_cache[nc->skb_count++] = skb; 940 941 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 942 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 943 kasan_unpoison_object_data(skbuff_head_cache, 944 nc->skb_cache[i]); 945 946 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 947 nc->skb_cache + NAPI_SKB_CACHE_HALF); 948 nc->skb_count = NAPI_SKB_CACHE_HALF; 949 } 950 } 951 952 void __kfree_skb_defer(struct sk_buff *skb) 953 { 954 skb_release_all(skb); 955 napi_skb_cache_put(skb); 956 } 957 958 void napi_skb_free_stolen_head(struct sk_buff *skb) 959 { 960 if (unlikely(skb->slow_gro)) { 961 nf_reset_ct(skb); 962 skb_dst_drop(skb); 963 skb_ext_put(skb); 964 skb_orphan(skb); 965 skb->slow_gro = 0; 966 } 967 napi_skb_cache_put(skb); 968 } 969 970 void napi_consume_skb(struct sk_buff *skb, int budget) 971 { 972 /* Zero budget indicate non-NAPI context called us, like netpoll */ 973 if (unlikely(!budget)) { 974 dev_consume_skb_any(skb); 975 return; 976 } 977 978 lockdep_assert_in_softirq(); 979 980 if (!skb_unref(skb)) 981 return; 982 983 /* if reaching here SKB is ready to free */ 984 trace_consume_skb(skb); 985 986 /* if SKB is a clone, don't handle this case */ 987 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 988 __kfree_skb(skb); 989 return; 990 } 991 992 skb_release_all(skb); 993 napi_skb_cache_put(skb); 994 } 995 EXPORT_SYMBOL(napi_consume_skb); 996 997 /* Make sure a field is contained by headers group */ 998 #define CHECK_SKB_FIELD(field) \ 999 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1000 offsetof(struct sk_buff, headers.field)); \ 1001 1002 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1003 { 1004 new->tstamp = old->tstamp; 1005 /* We do not copy old->sk */ 1006 new->dev = old->dev; 1007 memcpy(new->cb, old->cb, sizeof(old->cb)); 1008 skb_dst_copy(new, old); 1009 __skb_ext_copy(new, old); 1010 __nf_copy(new, old, false); 1011 1012 /* Note : this field could be in the headers group. 1013 * It is not yet because we do not want to have a 16 bit hole 1014 */ 1015 new->queue_mapping = old->queue_mapping; 1016 1017 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1018 CHECK_SKB_FIELD(protocol); 1019 CHECK_SKB_FIELD(csum); 1020 CHECK_SKB_FIELD(hash); 1021 CHECK_SKB_FIELD(priority); 1022 CHECK_SKB_FIELD(skb_iif); 1023 CHECK_SKB_FIELD(vlan_proto); 1024 CHECK_SKB_FIELD(vlan_tci); 1025 CHECK_SKB_FIELD(transport_header); 1026 CHECK_SKB_FIELD(network_header); 1027 CHECK_SKB_FIELD(mac_header); 1028 CHECK_SKB_FIELD(inner_protocol); 1029 CHECK_SKB_FIELD(inner_transport_header); 1030 CHECK_SKB_FIELD(inner_network_header); 1031 CHECK_SKB_FIELD(inner_mac_header); 1032 CHECK_SKB_FIELD(mark); 1033 #ifdef CONFIG_NETWORK_SECMARK 1034 CHECK_SKB_FIELD(secmark); 1035 #endif 1036 #ifdef CONFIG_NET_RX_BUSY_POLL 1037 CHECK_SKB_FIELD(napi_id); 1038 #endif 1039 #ifdef CONFIG_XPS 1040 CHECK_SKB_FIELD(sender_cpu); 1041 #endif 1042 #ifdef CONFIG_NET_SCHED 1043 CHECK_SKB_FIELD(tc_index); 1044 #endif 1045 1046 } 1047 1048 /* 1049 * You should not add any new code to this function. Add it to 1050 * __copy_skb_header above instead. 1051 */ 1052 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1053 { 1054 #define C(x) n->x = skb->x 1055 1056 n->next = n->prev = NULL; 1057 n->sk = NULL; 1058 __copy_skb_header(n, skb); 1059 1060 C(len); 1061 C(data_len); 1062 C(mac_len); 1063 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1064 n->cloned = 1; 1065 n->nohdr = 0; 1066 n->peeked = 0; 1067 C(pfmemalloc); 1068 C(pp_recycle); 1069 n->destructor = NULL; 1070 C(tail); 1071 C(end); 1072 C(head); 1073 C(head_frag); 1074 C(data); 1075 C(truesize); 1076 refcount_set(&n->users, 1); 1077 1078 atomic_inc(&(skb_shinfo(skb)->dataref)); 1079 skb->cloned = 1; 1080 1081 return n; 1082 #undef C 1083 } 1084 1085 /** 1086 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1087 * @first: first sk_buff of the msg 1088 */ 1089 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1090 { 1091 struct sk_buff *n; 1092 1093 n = alloc_skb(0, GFP_ATOMIC); 1094 if (!n) 1095 return NULL; 1096 1097 n->len = first->len; 1098 n->data_len = first->len; 1099 n->truesize = first->truesize; 1100 1101 skb_shinfo(n)->frag_list = first; 1102 1103 __copy_skb_header(n, first); 1104 n->destructor = NULL; 1105 1106 return n; 1107 } 1108 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1109 1110 /** 1111 * skb_morph - morph one skb into another 1112 * @dst: the skb to receive the contents 1113 * @src: the skb to supply the contents 1114 * 1115 * This is identical to skb_clone except that the target skb is 1116 * supplied by the user. 1117 * 1118 * The target skb is returned upon exit. 1119 */ 1120 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1121 { 1122 skb_release_all(dst); 1123 return __skb_clone(dst, src); 1124 } 1125 EXPORT_SYMBOL_GPL(skb_morph); 1126 1127 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1128 { 1129 unsigned long max_pg, num_pg, new_pg, old_pg; 1130 struct user_struct *user; 1131 1132 if (capable(CAP_IPC_LOCK) || !size) 1133 return 0; 1134 1135 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1136 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1137 user = mmp->user ? : current_user(); 1138 1139 do { 1140 old_pg = atomic_long_read(&user->locked_vm); 1141 new_pg = old_pg + num_pg; 1142 if (new_pg > max_pg) 1143 return -ENOBUFS; 1144 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1145 old_pg); 1146 1147 if (!mmp->user) { 1148 mmp->user = get_uid(user); 1149 mmp->num_pg = num_pg; 1150 } else { 1151 mmp->num_pg += num_pg; 1152 } 1153 1154 return 0; 1155 } 1156 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1157 1158 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1159 { 1160 if (mmp->user) { 1161 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1162 free_uid(mmp->user); 1163 } 1164 } 1165 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1166 1167 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1168 { 1169 struct ubuf_info *uarg; 1170 struct sk_buff *skb; 1171 1172 WARN_ON_ONCE(!in_task()); 1173 1174 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1175 if (!skb) 1176 return NULL; 1177 1178 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1179 uarg = (void *)skb->cb; 1180 uarg->mmp.user = NULL; 1181 1182 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1183 kfree_skb(skb); 1184 return NULL; 1185 } 1186 1187 uarg->callback = msg_zerocopy_callback; 1188 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1189 uarg->len = 1; 1190 uarg->bytelen = size; 1191 uarg->zerocopy = 1; 1192 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1193 refcount_set(&uarg->refcnt, 1); 1194 sock_hold(sk); 1195 1196 return uarg; 1197 } 1198 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc); 1199 1200 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1201 { 1202 return container_of((void *)uarg, struct sk_buff, cb); 1203 } 1204 1205 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1206 struct ubuf_info *uarg) 1207 { 1208 if (uarg) { 1209 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1210 u32 bytelen, next; 1211 1212 /* realloc only when socket is locked (TCP, UDP cork), 1213 * so uarg->len and sk_zckey access is serialized 1214 */ 1215 if (!sock_owned_by_user(sk)) { 1216 WARN_ON_ONCE(1); 1217 return NULL; 1218 } 1219 1220 bytelen = uarg->bytelen + size; 1221 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1222 /* TCP can create new skb to attach new uarg */ 1223 if (sk->sk_type == SOCK_STREAM) 1224 goto new_alloc; 1225 return NULL; 1226 } 1227 1228 next = (u32)atomic_read(&sk->sk_zckey); 1229 if ((u32)(uarg->id + uarg->len) == next) { 1230 if (mm_account_pinned_pages(&uarg->mmp, size)) 1231 return NULL; 1232 uarg->len++; 1233 uarg->bytelen = bytelen; 1234 atomic_set(&sk->sk_zckey, ++next); 1235 1236 /* no extra ref when appending to datagram (MSG_MORE) */ 1237 if (sk->sk_type == SOCK_STREAM) 1238 net_zcopy_get(uarg); 1239 1240 return uarg; 1241 } 1242 } 1243 1244 new_alloc: 1245 return msg_zerocopy_alloc(sk, size); 1246 } 1247 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1248 1249 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1250 { 1251 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1252 u32 old_lo, old_hi; 1253 u64 sum_len; 1254 1255 old_lo = serr->ee.ee_info; 1256 old_hi = serr->ee.ee_data; 1257 sum_len = old_hi - old_lo + 1ULL + len; 1258 1259 if (sum_len >= (1ULL << 32)) 1260 return false; 1261 1262 if (lo != old_hi + 1) 1263 return false; 1264 1265 serr->ee.ee_data += len; 1266 return true; 1267 } 1268 1269 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1270 { 1271 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1272 struct sock_exterr_skb *serr; 1273 struct sock *sk = skb->sk; 1274 struct sk_buff_head *q; 1275 unsigned long flags; 1276 bool is_zerocopy; 1277 u32 lo, hi; 1278 u16 len; 1279 1280 mm_unaccount_pinned_pages(&uarg->mmp); 1281 1282 /* if !len, there was only 1 call, and it was aborted 1283 * so do not queue a completion notification 1284 */ 1285 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1286 goto release; 1287 1288 len = uarg->len; 1289 lo = uarg->id; 1290 hi = uarg->id + len - 1; 1291 is_zerocopy = uarg->zerocopy; 1292 1293 serr = SKB_EXT_ERR(skb); 1294 memset(serr, 0, sizeof(*serr)); 1295 serr->ee.ee_errno = 0; 1296 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1297 serr->ee.ee_data = hi; 1298 serr->ee.ee_info = lo; 1299 if (!is_zerocopy) 1300 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1301 1302 q = &sk->sk_error_queue; 1303 spin_lock_irqsave(&q->lock, flags); 1304 tail = skb_peek_tail(q); 1305 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1306 !skb_zerocopy_notify_extend(tail, lo, len)) { 1307 __skb_queue_tail(q, skb); 1308 skb = NULL; 1309 } 1310 spin_unlock_irqrestore(&q->lock, flags); 1311 1312 sk_error_report(sk); 1313 1314 release: 1315 consume_skb(skb); 1316 sock_put(sk); 1317 } 1318 1319 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1320 bool success) 1321 { 1322 uarg->zerocopy = uarg->zerocopy & success; 1323 1324 if (refcount_dec_and_test(&uarg->refcnt)) 1325 __msg_zerocopy_callback(uarg); 1326 } 1327 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1328 1329 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1330 { 1331 struct sock *sk = skb_from_uarg(uarg)->sk; 1332 1333 atomic_dec(&sk->sk_zckey); 1334 uarg->len--; 1335 1336 if (have_uref) 1337 msg_zerocopy_callback(NULL, uarg, true); 1338 } 1339 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1340 1341 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1342 { 1343 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1344 } 1345 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1346 1347 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1348 struct msghdr *msg, int len, 1349 struct ubuf_info *uarg) 1350 { 1351 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1352 struct iov_iter orig_iter = msg->msg_iter; 1353 int err, orig_len = skb->len; 1354 1355 /* An skb can only point to one uarg. This edge case happens when 1356 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1357 */ 1358 if (orig_uarg && uarg != orig_uarg) 1359 return -EEXIST; 1360 1361 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1362 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1363 struct sock *save_sk = skb->sk; 1364 1365 /* Streams do not free skb on error. Reset to prev state. */ 1366 msg->msg_iter = orig_iter; 1367 skb->sk = sk; 1368 ___pskb_trim(skb, orig_len); 1369 skb->sk = save_sk; 1370 return err; 1371 } 1372 1373 skb_zcopy_set(skb, uarg, NULL); 1374 return skb->len - orig_len; 1375 } 1376 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1377 1378 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1379 gfp_t gfp_mask) 1380 { 1381 if (skb_zcopy(orig)) { 1382 if (skb_zcopy(nskb)) { 1383 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1384 if (!gfp_mask) { 1385 WARN_ON_ONCE(1); 1386 return -ENOMEM; 1387 } 1388 if (skb_uarg(nskb) == skb_uarg(orig)) 1389 return 0; 1390 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1391 return -EIO; 1392 } 1393 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1394 } 1395 return 0; 1396 } 1397 1398 /** 1399 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1400 * @skb: the skb to modify 1401 * @gfp_mask: allocation priority 1402 * 1403 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1404 * It will copy all frags into kernel and drop the reference 1405 * to userspace pages. 1406 * 1407 * If this function is called from an interrupt gfp_mask() must be 1408 * %GFP_ATOMIC. 1409 * 1410 * Returns 0 on success or a negative error code on failure 1411 * to allocate kernel memory to copy to. 1412 */ 1413 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1414 { 1415 int num_frags = skb_shinfo(skb)->nr_frags; 1416 struct page *page, *head = NULL; 1417 int i, new_frags; 1418 u32 d_off; 1419 1420 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1421 return -EINVAL; 1422 1423 if (!num_frags) 1424 goto release; 1425 1426 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1427 for (i = 0; i < new_frags; i++) { 1428 page = alloc_page(gfp_mask); 1429 if (!page) { 1430 while (head) { 1431 struct page *next = (struct page *)page_private(head); 1432 put_page(head); 1433 head = next; 1434 } 1435 return -ENOMEM; 1436 } 1437 set_page_private(page, (unsigned long)head); 1438 head = page; 1439 } 1440 1441 page = head; 1442 d_off = 0; 1443 for (i = 0; i < num_frags; i++) { 1444 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1445 u32 p_off, p_len, copied; 1446 struct page *p; 1447 u8 *vaddr; 1448 1449 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1450 p, p_off, p_len, copied) { 1451 u32 copy, done = 0; 1452 vaddr = kmap_atomic(p); 1453 1454 while (done < p_len) { 1455 if (d_off == PAGE_SIZE) { 1456 d_off = 0; 1457 page = (struct page *)page_private(page); 1458 } 1459 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1460 memcpy(page_address(page) + d_off, 1461 vaddr + p_off + done, copy); 1462 done += copy; 1463 d_off += copy; 1464 } 1465 kunmap_atomic(vaddr); 1466 } 1467 } 1468 1469 /* skb frags release userspace buffers */ 1470 for (i = 0; i < num_frags; i++) 1471 skb_frag_unref(skb, i); 1472 1473 /* skb frags point to kernel buffers */ 1474 for (i = 0; i < new_frags - 1; i++) { 1475 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1476 head = (struct page *)page_private(head); 1477 } 1478 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1479 skb_shinfo(skb)->nr_frags = new_frags; 1480 1481 release: 1482 skb_zcopy_clear(skb, false); 1483 return 0; 1484 } 1485 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1486 1487 /** 1488 * skb_clone - duplicate an sk_buff 1489 * @skb: buffer to clone 1490 * @gfp_mask: allocation priority 1491 * 1492 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1493 * copies share the same packet data but not structure. The new 1494 * buffer has a reference count of 1. If the allocation fails the 1495 * function returns %NULL otherwise the new buffer is returned. 1496 * 1497 * If this function is called from an interrupt gfp_mask() must be 1498 * %GFP_ATOMIC. 1499 */ 1500 1501 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1502 { 1503 struct sk_buff_fclones *fclones = container_of(skb, 1504 struct sk_buff_fclones, 1505 skb1); 1506 struct sk_buff *n; 1507 1508 if (skb_orphan_frags(skb, gfp_mask)) 1509 return NULL; 1510 1511 if (skb->fclone == SKB_FCLONE_ORIG && 1512 refcount_read(&fclones->fclone_ref) == 1) { 1513 n = &fclones->skb2; 1514 refcount_set(&fclones->fclone_ref, 2); 1515 } else { 1516 if (skb_pfmemalloc(skb)) 1517 gfp_mask |= __GFP_MEMALLOC; 1518 1519 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1520 if (!n) 1521 return NULL; 1522 1523 n->fclone = SKB_FCLONE_UNAVAILABLE; 1524 } 1525 1526 return __skb_clone(n, skb); 1527 } 1528 EXPORT_SYMBOL(skb_clone); 1529 1530 void skb_headers_offset_update(struct sk_buff *skb, int off) 1531 { 1532 /* Only adjust this if it actually is csum_start rather than csum */ 1533 if (skb->ip_summed == CHECKSUM_PARTIAL) 1534 skb->csum_start += off; 1535 /* {transport,network,mac}_header and tail are relative to skb->head */ 1536 skb->transport_header += off; 1537 skb->network_header += off; 1538 if (skb_mac_header_was_set(skb)) 1539 skb->mac_header += off; 1540 skb->inner_transport_header += off; 1541 skb->inner_network_header += off; 1542 skb->inner_mac_header += off; 1543 } 1544 EXPORT_SYMBOL(skb_headers_offset_update); 1545 1546 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1547 { 1548 __copy_skb_header(new, old); 1549 1550 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1551 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1552 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1553 } 1554 EXPORT_SYMBOL(skb_copy_header); 1555 1556 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1557 { 1558 if (skb_pfmemalloc(skb)) 1559 return SKB_ALLOC_RX; 1560 return 0; 1561 } 1562 1563 /** 1564 * skb_copy - create private copy of an sk_buff 1565 * @skb: buffer to copy 1566 * @gfp_mask: allocation priority 1567 * 1568 * Make a copy of both an &sk_buff and its data. This is used when the 1569 * caller wishes to modify the data and needs a private copy of the 1570 * data to alter. Returns %NULL on failure or the pointer to the buffer 1571 * on success. The returned buffer has a reference count of 1. 1572 * 1573 * As by-product this function converts non-linear &sk_buff to linear 1574 * one, so that &sk_buff becomes completely private and caller is allowed 1575 * to modify all the data of returned buffer. This means that this 1576 * function is not recommended for use in circumstances when only 1577 * header is going to be modified. Use pskb_copy() instead. 1578 */ 1579 1580 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1581 { 1582 int headerlen = skb_headroom(skb); 1583 unsigned int size = skb_end_offset(skb) + skb->data_len; 1584 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1585 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1586 1587 if (!n) 1588 return NULL; 1589 1590 /* Set the data pointer */ 1591 skb_reserve(n, headerlen); 1592 /* Set the tail pointer and length */ 1593 skb_put(n, skb->len); 1594 1595 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1596 1597 skb_copy_header(n, skb); 1598 return n; 1599 } 1600 EXPORT_SYMBOL(skb_copy); 1601 1602 /** 1603 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1604 * @skb: buffer to copy 1605 * @headroom: headroom of new skb 1606 * @gfp_mask: allocation priority 1607 * @fclone: if true allocate the copy of the skb from the fclone 1608 * cache instead of the head cache; it is recommended to set this 1609 * to true for the cases where the copy will likely be cloned 1610 * 1611 * Make a copy of both an &sk_buff and part of its data, located 1612 * in header. Fragmented data remain shared. This is used when 1613 * the caller wishes to modify only header of &sk_buff and needs 1614 * private copy of the header to alter. Returns %NULL on failure 1615 * or the pointer to the buffer on success. 1616 * The returned buffer has a reference count of 1. 1617 */ 1618 1619 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1620 gfp_t gfp_mask, bool fclone) 1621 { 1622 unsigned int size = skb_headlen(skb) + headroom; 1623 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1624 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1625 1626 if (!n) 1627 goto out; 1628 1629 /* Set the data pointer */ 1630 skb_reserve(n, headroom); 1631 /* Set the tail pointer and length */ 1632 skb_put(n, skb_headlen(skb)); 1633 /* Copy the bytes */ 1634 skb_copy_from_linear_data(skb, n->data, n->len); 1635 1636 n->truesize += skb->data_len; 1637 n->data_len = skb->data_len; 1638 n->len = skb->len; 1639 1640 if (skb_shinfo(skb)->nr_frags) { 1641 int i; 1642 1643 if (skb_orphan_frags(skb, gfp_mask) || 1644 skb_zerocopy_clone(n, skb, gfp_mask)) { 1645 kfree_skb(n); 1646 n = NULL; 1647 goto out; 1648 } 1649 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1650 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1651 skb_frag_ref(skb, i); 1652 } 1653 skb_shinfo(n)->nr_frags = i; 1654 } 1655 1656 if (skb_has_frag_list(skb)) { 1657 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1658 skb_clone_fraglist(n); 1659 } 1660 1661 skb_copy_header(n, skb); 1662 out: 1663 return n; 1664 } 1665 EXPORT_SYMBOL(__pskb_copy_fclone); 1666 1667 /** 1668 * pskb_expand_head - reallocate header of &sk_buff 1669 * @skb: buffer to reallocate 1670 * @nhead: room to add at head 1671 * @ntail: room to add at tail 1672 * @gfp_mask: allocation priority 1673 * 1674 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1675 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1676 * reference count of 1. Returns zero in the case of success or error, 1677 * if expansion failed. In the last case, &sk_buff is not changed. 1678 * 1679 * All the pointers pointing into skb header may change and must be 1680 * reloaded after call to this function. 1681 */ 1682 1683 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1684 gfp_t gfp_mask) 1685 { 1686 int i, osize = skb_end_offset(skb); 1687 int size = osize + nhead + ntail; 1688 long off; 1689 u8 *data; 1690 1691 BUG_ON(nhead < 0); 1692 1693 BUG_ON(skb_shared(skb)); 1694 1695 size = SKB_DATA_ALIGN(size); 1696 1697 if (skb_pfmemalloc(skb)) 1698 gfp_mask |= __GFP_MEMALLOC; 1699 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1700 gfp_mask, NUMA_NO_NODE, NULL); 1701 if (!data) 1702 goto nodata; 1703 size = SKB_WITH_OVERHEAD(ksize(data)); 1704 1705 /* Copy only real data... and, alas, header. This should be 1706 * optimized for the cases when header is void. 1707 */ 1708 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1709 1710 memcpy((struct skb_shared_info *)(data + size), 1711 skb_shinfo(skb), 1712 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1713 1714 /* 1715 * if shinfo is shared we must drop the old head gracefully, but if it 1716 * is not we can just drop the old head and let the existing refcount 1717 * be since all we did is relocate the values 1718 */ 1719 if (skb_cloned(skb)) { 1720 if (skb_orphan_frags(skb, gfp_mask)) 1721 goto nofrags; 1722 if (skb_zcopy(skb)) 1723 refcount_inc(&skb_uarg(skb)->refcnt); 1724 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1725 skb_frag_ref(skb, i); 1726 1727 if (skb_has_frag_list(skb)) 1728 skb_clone_fraglist(skb); 1729 1730 skb_release_data(skb); 1731 } else { 1732 skb_free_head(skb); 1733 } 1734 off = (data + nhead) - skb->head; 1735 1736 skb->head = data; 1737 skb->head_frag = 0; 1738 skb->data += off; 1739 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1740 skb->end = size; 1741 off = nhead; 1742 #else 1743 skb->end = skb->head + size; 1744 #endif 1745 skb->tail += off; 1746 skb_headers_offset_update(skb, nhead); 1747 skb->cloned = 0; 1748 skb->hdr_len = 0; 1749 skb->nohdr = 0; 1750 atomic_set(&skb_shinfo(skb)->dataref, 1); 1751 1752 skb_metadata_clear(skb); 1753 1754 /* It is not generally safe to change skb->truesize. 1755 * For the moment, we really care of rx path, or 1756 * when skb is orphaned (not attached to a socket). 1757 */ 1758 if (!skb->sk || skb->destructor == sock_edemux) 1759 skb->truesize += size - osize; 1760 1761 return 0; 1762 1763 nofrags: 1764 kfree(data); 1765 nodata: 1766 return -ENOMEM; 1767 } 1768 EXPORT_SYMBOL(pskb_expand_head); 1769 1770 /* Make private copy of skb with writable head and some headroom */ 1771 1772 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1773 { 1774 struct sk_buff *skb2; 1775 int delta = headroom - skb_headroom(skb); 1776 1777 if (delta <= 0) 1778 skb2 = pskb_copy(skb, GFP_ATOMIC); 1779 else { 1780 skb2 = skb_clone(skb, GFP_ATOMIC); 1781 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1782 GFP_ATOMIC)) { 1783 kfree_skb(skb2); 1784 skb2 = NULL; 1785 } 1786 } 1787 return skb2; 1788 } 1789 EXPORT_SYMBOL(skb_realloc_headroom); 1790 1791 /** 1792 * skb_expand_head - reallocate header of &sk_buff 1793 * @skb: buffer to reallocate 1794 * @headroom: needed headroom 1795 * 1796 * Unlike skb_realloc_headroom, this one does not allocate a new skb 1797 * if possible; copies skb->sk to new skb as needed 1798 * and frees original skb in case of failures. 1799 * 1800 * It expect increased headroom and generates warning otherwise. 1801 */ 1802 1803 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 1804 { 1805 int delta = headroom - skb_headroom(skb); 1806 int osize = skb_end_offset(skb); 1807 struct sock *sk = skb->sk; 1808 1809 if (WARN_ONCE(delta <= 0, 1810 "%s is expecting an increase in the headroom", __func__)) 1811 return skb; 1812 1813 delta = SKB_DATA_ALIGN(delta); 1814 /* pskb_expand_head() might crash, if skb is shared. */ 1815 if (skb_shared(skb) || !is_skb_wmem(skb)) { 1816 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1817 1818 if (unlikely(!nskb)) 1819 goto fail; 1820 1821 if (sk) 1822 skb_set_owner_w(nskb, sk); 1823 consume_skb(skb); 1824 skb = nskb; 1825 } 1826 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 1827 goto fail; 1828 1829 if (sk && is_skb_wmem(skb)) { 1830 delta = skb_end_offset(skb) - osize; 1831 refcount_add(delta, &sk->sk_wmem_alloc); 1832 skb->truesize += delta; 1833 } 1834 return skb; 1835 1836 fail: 1837 kfree_skb(skb); 1838 return NULL; 1839 } 1840 EXPORT_SYMBOL(skb_expand_head); 1841 1842 /** 1843 * skb_copy_expand - copy and expand sk_buff 1844 * @skb: buffer to copy 1845 * @newheadroom: new free bytes at head 1846 * @newtailroom: new free bytes at tail 1847 * @gfp_mask: allocation priority 1848 * 1849 * Make a copy of both an &sk_buff and its data and while doing so 1850 * allocate additional space. 1851 * 1852 * This is used when the caller wishes to modify the data and needs a 1853 * private copy of the data to alter as well as more space for new fields. 1854 * Returns %NULL on failure or the pointer to the buffer 1855 * on success. The returned buffer has a reference count of 1. 1856 * 1857 * You must pass %GFP_ATOMIC as the allocation priority if this function 1858 * is called from an interrupt. 1859 */ 1860 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1861 int newheadroom, int newtailroom, 1862 gfp_t gfp_mask) 1863 { 1864 /* 1865 * Allocate the copy buffer 1866 */ 1867 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1868 gfp_mask, skb_alloc_rx_flag(skb), 1869 NUMA_NO_NODE); 1870 int oldheadroom = skb_headroom(skb); 1871 int head_copy_len, head_copy_off; 1872 1873 if (!n) 1874 return NULL; 1875 1876 skb_reserve(n, newheadroom); 1877 1878 /* Set the tail pointer and length */ 1879 skb_put(n, skb->len); 1880 1881 head_copy_len = oldheadroom; 1882 head_copy_off = 0; 1883 if (newheadroom <= head_copy_len) 1884 head_copy_len = newheadroom; 1885 else 1886 head_copy_off = newheadroom - head_copy_len; 1887 1888 /* Copy the linear header and data. */ 1889 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1890 skb->len + head_copy_len)); 1891 1892 skb_copy_header(n, skb); 1893 1894 skb_headers_offset_update(n, newheadroom - oldheadroom); 1895 1896 return n; 1897 } 1898 EXPORT_SYMBOL(skb_copy_expand); 1899 1900 /** 1901 * __skb_pad - zero pad the tail of an skb 1902 * @skb: buffer to pad 1903 * @pad: space to pad 1904 * @free_on_error: free buffer on error 1905 * 1906 * Ensure that a buffer is followed by a padding area that is zero 1907 * filled. Used by network drivers which may DMA or transfer data 1908 * beyond the buffer end onto the wire. 1909 * 1910 * May return error in out of memory cases. The skb is freed on error 1911 * if @free_on_error is true. 1912 */ 1913 1914 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1915 { 1916 int err; 1917 int ntail; 1918 1919 /* If the skbuff is non linear tailroom is always zero.. */ 1920 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1921 memset(skb->data+skb->len, 0, pad); 1922 return 0; 1923 } 1924 1925 ntail = skb->data_len + pad - (skb->end - skb->tail); 1926 if (likely(skb_cloned(skb) || ntail > 0)) { 1927 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1928 if (unlikely(err)) 1929 goto free_skb; 1930 } 1931 1932 /* FIXME: The use of this function with non-linear skb's really needs 1933 * to be audited. 1934 */ 1935 err = skb_linearize(skb); 1936 if (unlikely(err)) 1937 goto free_skb; 1938 1939 memset(skb->data + skb->len, 0, pad); 1940 return 0; 1941 1942 free_skb: 1943 if (free_on_error) 1944 kfree_skb(skb); 1945 return err; 1946 } 1947 EXPORT_SYMBOL(__skb_pad); 1948 1949 /** 1950 * pskb_put - add data to the tail of a potentially fragmented buffer 1951 * @skb: start of the buffer to use 1952 * @tail: tail fragment of the buffer to use 1953 * @len: amount of data to add 1954 * 1955 * This function extends the used data area of the potentially 1956 * fragmented buffer. @tail must be the last fragment of @skb -- or 1957 * @skb itself. If this would exceed the total buffer size the kernel 1958 * will panic. A pointer to the first byte of the extra data is 1959 * returned. 1960 */ 1961 1962 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1963 { 1964 if (tail != skb) { 1965 skb->data_len += len; 1966 skb->len += len; 1967 } 1968 return skb_put(tail, len); 1969 } 1970 EXPORT_SYMBOL_GPL(pskb_put); 1971 1972 /** 1973 * skb_put - add data to a buffer 1974 * @skb: buffer to use 1975 * @len: amount of data to add 1976 * 1977 * This function extends the used data area of the buffer. If this would 1978 * exceed the total buffer size the kernel will panic. A pointer to the 1979 * first byte of the extra data is returned. 1980 */ 1981 void *skb_put(struct sk_buff *skb, unsigned int len) 1982 { 1983 void *tmp = skb_tail_pointer(skb); 1984 SKB_LINEAR_ASSERT(skb); 1985 skb->tail += len; 1986 skb->len += len; 1987 if (unlikely(skb->tail > skb->end)) 1988 skb_over_panic(skb, len, __builtin_return_address(0)); 1989 return tmp; 1990 } 1991 EXPORT_SYMBOL(skb_put); 1992 1993 /** 1994 * skb_push - add data to the start of a buffer 1995 * @skb: buffer to use 1996 * @len: amount of data to add 1997 * 1998 * This function extends the used data area of the buffer at the buffer 1999 * start. If this would exceed the total buffer headroom the kernel will 2000 * panic. A pointer to the first byte of the extra data is returned. 2001 */ 2002 void *skb_push(struct sk_buff *skb, unsigned int len) 2003 { 2004 skb->data -= len; 2005 skb->len += len; 2006 if (unlikely(skb->data < skb->head)) 2007 skb_under_panic(skb, len, __builtin_return_address(0)); 2008 return skb->data; 2009 } 2010 EXPORT_SYMBOL(skb_push); 2011 2012 /** 2013 * skb_pull - remove data from the start of a buffer 2014 * @skb: buffer to use 2015 * @len: amount of data to remove 2016 * 2017 * This function removes data from the start of a buffer, returning 2018 * the memory to the headroom. A pointer to the next data in the buffer 2019 * is returned. Once the data has been pulled future pushes will overwrite 2020 * the old data. 2021 */ 2022 void *skb_pull(struct sk_buff *skb, unsigned int len) 2023 { 2024 return skb_pull_inline(skb, len); 2025 } 2026 EXPORT_SYMBOL(skb_pull); 2027 2028 /** 2029 * skb_pull_data - remove data from the start of a buffer returning its 2030 * original position. 2031 * @skb: buffer to use 2032 * @len: amount of data to remove 2033 * 2034 * This function removes data from the start of a buffer, returning 2035 * the memory to the headroom. A pointer to the original data in the buffer 2036 * is returned after checking if there is enough data to pull. Once the 2037 * data has been pulled future pushes will overwrite the old data. 2038 */ 2039 void *skb_pull_data(struct sk_buff *skb, size_t len) 2040 { 2041 void *data = skb->data; 2042 2043 if (skb->len < len) 2044 return NULL; 2045 2046 skb_pull(skb, len); 2047 2048 return data; 2049 } 2050 EXPORT_SYMBOL(skb_pull_data); 2051 2052 /** 2053 * skb_trim - remove end from a buffer 2054 * @skb: buffer to alter 2055 * @len: new length 2056 * 2057 * Cut the length of a buffer down by removing data from the tail. If 2058 * the buffer is already under the length specified it is not modified. 2059 * The skb must be linear. 2060 */ 2061 void skb_trim(struct sk_buff *skb, unsigned int len) 2062 { 2063 if (skb->len > len) 2064 __skb_trim(skb, len); 2065 } 2066 EXPORT_SYMBOL(skb_trim); 2067 2068 /* Trims skb to length len. It can change skb pointers. 2069 */ 2070 2071 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2072 { 2073 struct sk_buff **fragp; 2074 struct sk_buff *frag; 2075 int offset = skb_headlen(skb); 2076 int nfrags = skb_shinfo(skb)->nr_frags; 2077 int i; 2078 int err; 2079 2080 if (skb_cloned(skb) && 2081 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2082 return err; 2083 2084 i = 0; 2085 if (offset >= len) 2086 goto drop_pages; 2087 2088 for (; i < nfrags; i++) { 2089 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2090 2091 if (end < len) { 2092 offset = end; 2093 continue; 2094 } 2095 2096 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2097 2098 drop_pages: 2099 skb_shinfo(skb)->nr_frags = i; 2100 2101 for (; i < nfrags; i++) 2102 skb_frag_unref(skb, i); 2103 2104 if (skb_has_frag_list(skb)) 2105 skb_drop_fraglist(skb); 2106 goto done; 2107 } 2108 2109 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2110 fragp = &frag->next) { 2111 int end = offset + frag->len; 2112 2113 if (skb_shared(frag)) { 2114 struct sk_buff *nfrag; 2115 2116 nfrag = skb_clone(frag, GFP_ATOMIC); 2117 if (unlikely(!nfrag)) 2118 return -ENOMEM; 2119 2120 nfrag->next = frag->next; 2121 consume_skb(frag); 2122 frag = nfrag; 2123 *fragp = frag; 2124 } 2125 2126 if (end < len) { 2127 offset = end; 2128 continue; 2129 } 2130 2131 if (end > len && 2132 unlikely((err = pskb_trim(frag, len - offset)))) 2133 return err; 2134 2135 if (frag->next) 2136 skb_drop_list(&frag->next); 2137 break; 2138 } 2139 2140 done: 2141 if (len > skb_headlen(skb)) { 2142 skb->data_len -= skb->len - len; 2143 skb->len = len; 2144 } else { 2145 skb->len = len; 2146 skb->data_len = 0; 2147 skb_set_tail_pointer(skb, len); 2148 } 2149 2150 if (!skb->sk || skb->destructor == sock_edemux) 2151 skb_condense(skb); 2152 return 0; 2153 } 2154 EXPORT_SYMBOL(___pskb_trim); 2155 2156 /* Note : use pskb_trim_rcsum() instead of calling this directly 2157 */ 2158 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2159 { 2160 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2161 int delta = skb->len - len; 2162 2163 skb->csum = csum_block_sub(skb->csum, 2164 skb_checksum(skb, len, delta, 0), 2165 len); 2166 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2167 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2168 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2169 2170 if (offset + sizeof(__sum16) > hdlen) 2171 return -EINVAL; 2172 } 2173 return __pskb_trim(skb, len); 2174 } 2175 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2176 2177 /** 2178 * __pskb_pull_tail - advance tail of skb header 2179 * @skb: buffer to reallocate 2180 * @delta: number of bytes to advance tail 2181 * 2182 * The function makes a sense only on a fragmented &sk_buff, 2183 * it expands header moving its tail forward and copying necessary 2184 * data from fragmented part. 2185 * 2186 * &sk_buff MUST have reference count of 1. 2187 * 2188 * Returns %NULL (and &sk_buff does not change) if pull failed 2189 * or value of new tail of skb in the case of success. 2190 * 2191 * All the pointers pointing into skb header may change and must be 2192 * reloaded after call to this function. 2193 */ 2194 2195 /* Moves tail of skb head forward, copying data from fragmented part, 2196 * when it is necessary. 2197 * 1. It may fail due to malloc failure. 2198 * 2. It may change skb pointers. 2199 * 2200 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2201 */ 2202 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2203 { 2204 /* If skb has not enough free space at tail, get new one 2205 * plus 128 bytes for future expansions. If we have enough 2206 * room at tail, reallocate without expansion only if skb is cloned. 2207 */ 2208 int i, k, eat = (skb->tail + delta) - skb->end; 2209 2210 if (eat > 0 || skb_cloned(skb)) { 2211 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2212 GFP_ATOMIC)) 2213 return NULL; 2214 } 2215 2216 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2217 skb_tail_pointer(skb), delta)); 2218 2219 /* Optimization: no fragments, no reasons to preestimate 2220 * size of pulled pages. Superb. 2221 */ 2222 if (!skb_has_frag_list(skb)) 2223 goto pull_pages; 2224 2225 /* Estimate size of pulled pages. */ 2226 eat = delta; 2227 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2228 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2229 2230 if (size >= eat) 2231 goto pull_pages; 2232 eat -= size; 2233 } 2234 2235 /* If we need update frag list, we are in troubles. 2236 * Certainly, it is possible to add an offset to skb data, 2237 * but taking into account that pulling is expected to 2238 * be very rare operation, it is worth to fight against 2239 * further bloating skb head and crucify ourselves here instead. 2240 * Pure masohism, indeed. 8)8) 2241 */ 2242 if (eat) { 2243 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2244 struct sk_buff *clone = NULL; 2245 struct sk_buff *insp = NULL; 2246 2247 do { 2248 if (list->len <= eat) { 2249 /* Eaten as whole. */ 2250 eat -= list->len; 2251 list = list->next; 2252 insp = list; 2253 } else { 2254 /* Eaten partially. */ 2255 2256 if (skb_shared(list)) { 2257 /* Sucks! We need to fork list. :-( */ 2258 clone = skb_clone(list, GFP_ATOMIC); 2259 if (!clone) 2260 return NULL; 2261 insp = list->next; 2262 list = clone; 2263 } else { 2264 /* This may be pulled without 2265 * problems. */ 2266 insp = list; 2267 } 2268 if (!pskb_pull(list, eat)) { 2269 kfree_skb(clone); 2270 return NULL; 2271 } 2272 break; 2273 } 2274 } while (eat); 2275 2276 /* Free pulled out fragments. */ 2277 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2278 skb_shinfo(skb)->frag_list = list->next; 2279 kfree_skb(list); 2280 } 2281 /* And insert new clone at head. */ 2282 if (clone) { 2283 clone->next = list; 2284 skb_shinfo(skb)->frag_list = clone; 2285 } 2286 } 2287 /* Success! Now we may commit changes to skb data. */ 2288 2289 pull_pages: 2290 eat = delta; 2291 k = 0; 2292 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2293 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2294 2295 if (size <= eat) { 2296 skb_frag_unref(skb, i); 2297 eat -= size; 2298 } else { 2299 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2300 2301 *frag = skb_shinfo(skb)->frags[i]; 2302 if (eat) { 2303 skb_frag_off_add(frag, eat); 2304 skb_frag_size_sub(frag, eat); 2305 if (!i) 2306 goto end; 2307 eat = 0; 2308 } 2309 k++; 2310 } 2311 } 2312 skb_shinfo(skb)->nr_frags = k; 2313 2314 end: 2315 skb->tail += delta; 2316 skb->data_len -= delta; 2317 2318 if (!skb->data_len) 2319 skb_zcopy_clear(skb, false); 2320 2321 return skb_tail_pointer(skb); 2322 } 2323 EXPORT_SYMBOL(__pskb_pull_tail); 2324 2325 /** 2326 * skb_copy_bits - copy bits from skb to kernel buffer 2327 * @skb: source skb 2328 * @offset: offset in source 2329 * @to: destination buffer 2330 * @len: number of bytes to copy 2331 * 2332 * Copy the specified number of bytes from the source skb to the 2333 * destination buffer. 2334 * 2335 * CAUTION ! : 2336 * If its prototype is ever changed, 2337 * check arch/{*}/net/{*}.S files, 2338 * since it is called from BPF assembly code. 2339 */ 2340 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2341 { 2342 int start = skb_headlen(skb); 2343 struct sk_buff *frag_iter; 2344 int i, copy; 2345 2346 if (offset > (int)skb->len - len) 2347 goto fault; 2348 2349 /* Copy header. */ 2350 if ((copy = start - offset) > 0) { 2351 if (copy > len) 2352 copy = len; 2353 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2354 if ((len -= copy) == 0) 2355 return 0; 2356 offset += copy; 2357 to += copy; 2358 } 2359 2360 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2361 int end; 2362 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2363 2364 WARN_ON(start > offset + len); 2365 2366 end = start + skb_frag_size(f); 2367 if ((copy = end - offset) > 0) { 2368 u32 p_off, p_len, copied; 2369 struct page *p; 2370 u8 *vaddr; 2371 2372 if (copy > len) 2373 copy = len; 2374 2375 skb_frag_foreach_page(f, 2376 skb_frag_off(f) + offset - start, 2377 copy, p, p_off, p_len, copied) { 2378 vaddr = kmap_atomic(p); 2379 memcpy(to + copied, vaddr + p_off, p_len); 2380 kunmap_atomic(vaddr); 2381 } 2382 2383 if ((len -= copy) == 0) 2384 return 0; 2385 offset += copy; 2386 to += copy; 2387 } 2388 start = end; 2389 } 2390 2391 skb_walk_frags(skb, frag_iter) { 2392 int end; 2393 2394 WARN_ON(start > offset + len); 2395 2396 end = start + frag_iter->len; 2397 if ((copy = end - offset) > 0) { 2398 if (copy > len) 2399 copy = len; 2400 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2401 goto fault; 2402 if ((len -= copy) == 0) 2403 return 0; 2404 offset += copy; 2405 to += copy; 2406 } 2407 start = end; 2408 } 2409 2410 if (!len) 2411 return 0; 2412 2413 fault: 2414 return -EFAULT; 2415 } 2416 EXPORT_SYMBOL(skb_copy_bits); 2417 2418 /* 2419 * Callback from splice_to_pipe(), if we need to release some pages 2420 * at the end of the spd in case we error'ed out in filling the pipe. 2421 */ 2422 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2423 { 2424 put_page(spd->pages[i]); 2425 } 2426 2427 static struct page *linear_to_page(struct page *page, unsigned int *len, 2428 unsigned int *offset, 2429 struct sock *sk) 2430 { 2431 struct page_frag *pfrag = sk_page_frag(sk); 2432 2433 if (!sk_page_frag_refill(sk, pfrag)) 2434 return NULL; 2435 2436 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2437 2438 memcpy(page_address(pfrag->page) + pfrag->offset, 2439 page_address(page) + *offset, *len); 2440 *offset = pfrag->offset; 2441 pfrag->offset += *len; 2442 2443 return pfrag->page; 2444 } 2445 2446 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2447 struct page *page, 2448 unsigned int offset) 2449 { 2450 return spd->nr_pages && 2451 spd->pages[spd->nr_pages - 1] == page && 2452 (spd->partial[spd->nr_pages - 1].offset + 2453 spd->partial[spd->nr_pages - 1].len == offset); 2454 } 2455 2456 /* 2457 * Fill page/offset/length into spd, if it can hold more pages. 2458 */ 2459 static bool spd_fill_page(struct splice_pipe_desc *spd, 2460 struct pipe_inode_info *pipe, struct page *page, 2461 unsigned int *len, unsigned int offset, 2462 bool linear, 2463 struct sock *sk) 2464 { 2465 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2466 return true; 2467 2468 if (linear) { 2469 page = linear_to_page(page, len, &offset, sk); 2470 if (!page) 2471 return true; 2472 } 2473 if (spd_can_coalesce(spd, page, offset)) { 2474 spd->partial[spd->nr_pages - 1].len += *len; 2475 return false; 2476 } 2477 get_page(page); 2478 spd->pages[spd->nr_pages] = page; 2479 spd->partial[spd->nr_pages].len = *len; 2480 spd->partial[spd->nr_pages].offset = offset; 2481 spd->nr_pages++; 2482 2483 return false; 2484 } 2485 2486 static bool __splice_segment(struct page *page, unsigned int poff, 2487 unsigned int plen, unsigned int *off, 2488 unsigned int *len, 2489 struct splice_pipe_desc *spd, bool linear, 2490 struct sock *sk, 2491 struct pipe_inode_info *pipe) 2492 { 2493 if (!*len) 2494 return true; 2495 2496 /* skip this segment if already processed */ 2497 if (*off >= plen) { 2498 *off -= plen; 2499 return false; 2500 } 2501 2502 /* ignore any bits we already processed */ 2503 poff += *off; 2504 plen -= *off; 2505 *off = 0; 2506 2507 do { 2508 unsigned int flen = min(*len, plen); 2509 2510 if (spd_fill_page(spd, pipe, page, &flen, poff, 2511 linear, sk)) 2512 return true; 2513 poff += flen; 2514 plen -= flen; 2515 *len -= flen; 2516 } while (*len && plen); 2517 2518 return false; 2519 } 2520 2521 /* 2522 * Map linear and fragment data from the skb to spd. It reports true if the 2523 * pipe is full or if we already spliced the requested length. 2524 */ 2525 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2526 unsigned int *offset, unsigned int *len, 2527 struct splice_pipe_desc *spd, struct sock *sk) 2528 { 2529 int seg; 2530 struct sk_buff *iter; 2531 2532 /* map the linear part : 2533 * If skb->head_frag is set, this 'linear' part is backed by a 2534 * fragment, and if the head is not shared with any clones then 2535 * we can avoid a copy since we own the head portion of this page. 2536 */ 2537 if (__splice_segment(virt_to_page(skb->data), 2538 (unsigned long) skb->data & (PAGE_SIZE - 1), 2539 skb_headlen(skb), 2540 offset, len, spd, 2541 skb_head_is_locked(skb), 2542 sk, pipe)) 2543 return true; 2544 2545 /* 2546 * then map the fragments 2547 */ 2548 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2549 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2550 2551 if (__splice_segment(skb_frag_page(f), 2552 skb_frag_off(f), skb_frag_size(f), 2553 offset, len, spd, false, sk, pipe)) 2554 return true; 2555 } 2556 2557 skb_walk_frags(skb, iter) { 2558 if (*offset >= iter->len) { 2559 *offset -= iter->len; 2560 continue; 2561 } 2562 /* __skb_splice_bits() only fails if the output has no room 2563 * left, so no point in going over the frag_list for the error 2564 * case. 2565 */ 2566 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2567 return true; 2568 } 2569 2570 return false; 2571 } 2572 2573 /* 2574 * Map data from the skb to a pipe. Should handle both the linear part, 2575 * the fragments, and the frag list. 2576 */ 2577 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2578 struct pipe_inode_info *pipe, unsigned int tlen, 2579 unsigned int flags) 2580 { 2581 struct partial_page partial[MAX_SKB_FRAGS]; 2582 struct page *pages[MAX_SKB_FRAGS]; 2583 struct splice_pipe_desc spd = { 2584 .pages = pages, 2585 .partial = partial, 2586 .nr_pages_max = MAX_SKB_FRAGS, 2587 .ops = &nosteal_pipe_buf_ops, 2588 .spd_release = sock_spd_release, 2589 }; 2590 int ret = 0; 2591 2592 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2593 2594 if (spd.nr_pages) 2595 ret = splice_to_pipe(pipe, &spd); 2596 2597 return ret; 2598 } 2599 EXPORT_SYMBOL_GPL(skb_splice_bits); 2600 2601 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2602 struct kvec *vec, size_t num, size_t size) 2603 { 2604 struct socket *sock = sk->sk_socket; 2605 2606 if (!sock) 2607 return -EINVAL; 2608 return kernel_sendmsg(sock, msg, vec, num, size); 2609 } 2610 2611 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2612 size_t size, int flags) 2613 { 2614 struct socket *sock = sk->sk_socket; 2615 2616 if (!sock) 2617 return -EINVAL; 2618 return kernel_sendpage(sock, page, offset, size, flags); 2619 } 2620 2621 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2622 struct kvec *vec, size_t num, size_t size); 2623 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2624 size_t size, int flags); 2625 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2626 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2627 { 2628 unsigned int orig_len = len; 2629 struct sk_buff *head = skb; 2630 unsigned short fragidx; 2631 int slen, ret; 2632 2633 do_frag_list: 2634 2635 /* Deal with head data */ 2636 while (offset < skb_headlen(skb) && len) { 2637 struct kvec kv; 2638 struct msghdr msg; 2639 2640 slen = min_t(int, len, skb_headlen(skb) - offset); 2641 kv.iov_base = skb->data + offset; 2642 kv.iov_len = slen; 2643 memset(&msg, 0, sizeof(msg)); 2644 msg.msg_flags = MSG_DONTWAIT; 2645 2646 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2647 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2648 if (ret <= 0) 2649 goto error; 2650 2651 offset += ret; 2652 len -= ret; 2653 } 2654 2655 /* All the data was skb head? */ 2656 if (!len) 2657 goto out; 2658 2659 /* Make offset relative to start of frags */ 2660 offset -= skb_headlen(skb); 2661 2662 /* Find where we are in frag list */ 2663 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2664 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2665 2666 if (offset < skb_frag_size(frag)) 2667 break; 2668 2669 offset -= skb_frag_size(frag); 2670 } 2671 2672 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2673 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2674 2675 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2676 2677 while (slen) { 2678 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2679 sendpage_unlocked, sk, 2680 skb_frag_page(frag), 2681 skb_frag_off(frag) + offset, 2682 slen, MSG_DONTWAIT); 2683 if (ret <= 0) 2684 goto error; 2685 2686 len -= ret; 2687 offset += ret; 2688 slen -= ret; 2689 } 2690 2691 offset = 0; 2692 } 2693 2694 if (len) { 2695 /* Process any frag lists */ 2696 2697 if (skb == head) { 2698 if (skb_has_frag_list(skb)) { 2699 skb = skb_shinfo(skb)->frag_list; 2700 goto do_frag_list; 2701 } 2702 } else if (skb->next) { 2703 skb = skb->next; 2704 goto do_frag_list; 2705 } 2706 } 2707 2708 out: 2709 return orig_len - len; 2710 2711 error: 2712 return orig_len == len ? ret : orig_len - len; 2713 } 2714 2715 /* Send skb data on a socket. Socket must be locked. */ 2716 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2717 int len) 2718 { 2719 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2720 kernel_sendpage_locked); 2721 } 2722 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2723 2724 /* Send skb data on a socket. Socket must be unlocked. */ 2725 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2726 { 2727 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2728 sendpage_unlocked); 2729 } 2730 2731 /** 2732 * skb_store_bits - store bits from kernel buffer to skb 2733 * @skb: destination buffer 2734 * @offset: offset in destination 2735 * @from: source buffer 2736 * @len: number of bytes to copy 2737 * 2738 * Copy the specified number of bytes from the source buffer to the 2739 * destination skb. This function handles all the messy bits of 2740 * traversing fragment lists and such. 2741 */ 2742 2743 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2744 { 2745 int start = skb_headlen(skb); 2746 struct sk_buff *frag_iter; 2747 int i, copy; 2748 2749 if (offset > (int)skb->len - len) 2750 goto fault; 2751 2752 if ((copy = start - offset) > 0) { 2753 if (copy > len) 2754 copy = len; 2755 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2756 if ((len -= copy) == 0) 2757 return 0; 2758 offset += copy; 2759 from += copy; 2760 } 2761 2762 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2763 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2764 int end; 2765 2766 WARN_ON(start > offset + len); 2767 2768 end = start + skb_frag_size(frag); 2769 if ((copy = end - offset) > 0) { 2770 u32 p_off, p_len, copied; 2771 struct page *p; 2772 u8 *vaddr; 2773 2774 if (copy > len) 2775 copy = len; 2776 2777 skb_frag_foreach_page(frag, 2778 skb_frag_off(frag) + offset - start, 2779 copy, p, p_off, p_len, copied) { 2780 vaddr = kmap_atomic(p); 2781 memcpy(vaddr + p_off, from + copied, p_len); 2782 kunmap_atomic(vaddr); 2783 } 2784 2785 if ((len -= copy) == 0) 2786 return 0; 2787 offset += copy; 2788 from += copy; 2789 } 2790 start = end; 2791 } 2792 2793 skb_walk_frags(skb, frag_iter) { 2794 int end; 2795 2796 WARN_ON(start > offset + len); 2797 2798 end = start + frag_iter->len; 2799 if ((copy = end - offset) > 0) { 2800 if (copy > len) 2801 copy = len; 2802 if (skb_store_bits(frag_iter, offset - start, 2803 from, copy)) 2804 goto fault; 2805 if ((len -= copy) == 0) 2806 return 0; 2807 offset += copy; 2808 from += copy; 2809 } 2810 start = end; 2811 } 2812 if (!len) 2813 return 0; 2814 2815 fault: 2816 return -EFAULT; 2817 } 2818 EXPORT_SYMBOL(skb_store_bits); 2819 2820 /* Checksum skb data. */ 2821 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2822 __wsum csum, const struct skb_checksum_ops *ops) 2823 { 2824 int start = skb_headlen(skb); 2825 int i, copy = start - offset; 2826 struct sk_buff *frag_iter; 2827 int pos = 0; 2828 2829 /* Checksum header. */ 2830 if (copy > 0) { 2831 if (copy > len) 2832 copy = len; 2833 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2834 skb->data + offset, copy, csum); 2835 if ((len -= copy) == 0) 2836 return csum; 2837 offset += copy; 2838 pos = copy; 2839 } 2840 2841 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2842 int end; 2843 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2844 2845 WARN_ON(start > offset + len); 2846 2847 end = start + skb_frag_size(frag); 2848 if ((copy = end - offset) > 0) { 2849 u32 p_off, p_len, copied; 2850 struct page *p; 2851 __wsum csum2; 2852 u8 *vaddr; 2853 2854 if (copy > len) 2855 copy = len; 2856 2857 skb_frag_foreach_page(frag, 2858 skb_frag_off(frag) + offset - start, 2859 copy, p, p_off, p_len, copied) { 2860 vaddr = kmap_atomic(p); 2861 csum2 = INDIRECT_CALL_1(ops->update, 2862 csum_partial_ext, 2863 vaddr + p_off, p_len, 0); 2864 kunmap_atomic(vaddr); 2865 csum = INDIRECT_CALL_1(ops->combine, 2866 csum_block_add_ext, csum, 2867 csum2, pos, p_len); 2868 pos += p_len; 2869 } 2870 2871 if (!(len -= copy)) 2872 return csum; 2873 offset += copy; 2874 } 2875 start = end; 2876 } 2877 2878 skb_walk_frags(skb, frag_iter) { 2879 int end; 2880 2881 WARN_ON(start > offset + len); 2882 2883 end = start + frag_iter->len; 2884 if ((copy = end - offset) > 0) { 2885 __wsum csum2; 2886 if (copy > len) 2887 copy = len; 2888 csum2 = __skb_checksum(frag_iter, offset - start, 2889 copy, 0, ops); 2890 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2891 csum, csum2, pos, copy); 2892 if ((len -= copy) == 0) 2893 return csum; 2894 offset += copy; 2895 pos += copy; 2896 } 2897 start = end; 2898 } 2899 BUG_ON(len); 2900 2901 return csum; 2902 } 2903 EXPORT_SYMBOL(__skb_checksum); 2904 2905 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2906 int len, __wsum csum) 2907 { 2908 const struct skb_checksum_ops ops = { 2909 .update = csum_partial_ext, 2910 .combine = csum_block_add_ext, 2911 }; 2912 2913 return __skb_checksum(skb, offset, len, csum, &ops); 2914 } 2915 EXPORT_SYMBOL(skb_checksum); 2916 2917 /* Both of above in one bottle. */ 2918 2919 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2920 u8 *to, int len) 2921 { 2922 int start = skb_headlen(skb); 2923 int i, copy = start - offset; 2924 struct sk_buff *frag_iter; 2925 int pos = 0; 2926 __wsum csum = 0; 2927 2928 /* Copy header. */ 2929 if (copy > 0) { 2930 if (copy > len) 2931 copy = len; 2932 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2933 copy); 2934 if ((len -= copy) == 0) 2935 return csum; 2936 offset += copy; 2937 to += copy; 2938 pos = copy; 2939 } 2940 2941 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2942 int end; 2943 2944 WARN_ON(start > offset + len); 2945 2946 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2947 if ((copy = end - offset) > 0) { 2948 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2949 u32 p_off, p_len, copied; 2950 struct page *p; 2951 __wsum csum2; 2952 u8 *vaddr; 2953 2954 if (copy > len) 2955 copy = len; 2956 2957 skb_frag_foreach_page(frag, 2958 skb_frag_off(frag) + offset - start, 2959 copy, p, p_off, p_len, copied) { 2960 vaddr = kmap_atomic(p); 2961 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2962 to + copied, 2963 p_len); 2964 kunmap_atomic(vaddr); 2965 csum = csum_block_add(csum, csum2, pos); 2966 pos += p_len; 2967 } 2968 2969 if (!(len -= copy)) 2970 return csum; 2971 offset += copy; 2972 to += copy; 2973 } 2974 start = end; 2975 } 2976 2977 skb_walk_frags(skb, frag_iter) { 2978 __wsum csum2; 2979 int end; 2980 2981 WARN_ON(start > offset + len); 2982 2983 end = start + frag_iter->len; 2984 if ((copy = end - offset) > 0) { 2985 if (copy > len) 2986 copy = len; 2987 csum2 = skb_copy_and_csum_bits(frag_iter, 2988 offset - start, 2989 to, copy); 2990 csum = csum_block_add(csum, csum2, pos); 2991 if ((len -= copy) == 0) 2992 return csum; 2993 offset += copy; 2994 to += copy; 2995 pos += copy; 2996 } 2997 start = end; 2998 } 2999 BUG_ON(len); 3000 return csum; 3001 } 3002 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3003 3004 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3005 { 3006 __sum16 sum; 3007 3008 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3009 /* See comments in __skb_checksum_complete(). */ 3010 if (likely(!sum)) { 3011 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3012 !skb->csum_complete_sw) 3013 netdev_rx_csum_fault(skb->dev, skb); 3014 } 3015 if (!skb_shared(skb)) 3016 skb->csum_valid = !sum; 3017 return sum; 3018 } 3019 EXPORT_SYMBOL(__skb_checksum_complete_head); 3020 3021 /* This function assumes skb->csum already holds pseudo header's checksum, 3022 * which has been changed from the hardware checksum, for example, by 3023 * __skb_checksum_validate_complete(). And, the original skb->csum must 3024 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3025 * 3026 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3027 * zero. The new checksum is stored back into skb->csum unless the skb is 3028 * shared. 3029 */ 3030 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3031 { 3032 __wsum csum; 3033 __sum16 sum; 3034 3035 csum = skb_checksum(skb, 0, skb->len, 0); 3036 3037 sum = csum_fold(csum_add(skb->csum, csum)); 3038 /* This check is inverted, because we already knew the hardware 3039 * checksum is invalid before calling this function. So, if the 3040 * re-computed checksum is valid instead, then we have a mismatch 3041 * between the original skb->csum and skb_checksum(). This means either 3042 * the original hardware checksum is incorrect or we screw up skb->csum 3043 * when moving skb->data around. 3044 */ 3045 if (likely(!sum)) { 3046 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3047 !skb->csum_complete_sw) 3048 netdev_rx_csum_fault(skb->dev, skb); 3049 } 3050 3051 if (!skb_shared(skb)) { 3052 /* Save full packet checksum */ 3053 skb->csum = csum; 3054 skb->ip_summed = CHECKSUM_COMPLETE; 3055 skb->csum_complete_sw = 1; 3056 skb->csum_valid = !sum; 3057 } 3058 3059 return sum; 3060 } 3061 EXPORT_SYMBOL(__skb_checksum_complete); 3062 3063 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3064 { 3065 net_warn_ratelimited( 3066 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3067 __func__); 3068 return 0; 3069 } 3070 3071 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3072 int offset, int len) 3073 { 3074 net_warn_ratelimited( 3075 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3076 __func__); 3077 return 0; 3078 } 3079 3080 static const struct skb_checksum_ops default_crc32c_ops = { 3081 .update = warn_crc32c_csum_update, 3082 .combine = warn_crc32c_csum_combine, 3083 }; 3084 3085 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3086 &default_crc32c_ops; 3087 EXPORT_SYMBOL(crc32c_csum_stub); 3088 3089 /** 3090 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3091 * @from: source buffer 3092 * 3093 * Calculates the amount of linear headroom needed in the 'to' skb passed 3094 * into skb_zerocopy(). 3095 */ 3096 unsigned int 3097 skb_zerocopy_headlen(const struct sk_buff *from) 3098 { 3099 unsigned int hlen = 0; 3100 3101 if (!from->head_frag || 3102 skb_headlen(from) < L1_CACHE_BYTES || 3103 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3104 hlen = skb_headlen(from); 3105 if (!hlen) 3106 hlen = from->len; 3107 } 3108 3109 if (skb_has_frag_list(from)) 3110 hlen = from->len; 3111 3112 return hlen; 3113 } 3114 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3115 3116 /** 3117 * skb_zerocopy - Zero copy skb to skb 3118 * @to: destination buffer 3119 * @from: source buffer 3120 * @len: number of bytes to copy from source buffer 3121 * @hlen: size of linear headroom in destination buffer 3122 * 3123 * Copies up to `len` bytes from `from` to `to` by creating references 3124 * to the frags in the source buffer. 3125 * 3126 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3127 * headroom in the `to` buffer. 3128 * 3129 * Return value: 3130 * 0: everything is OK 3131 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3132 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3133 */ 3134 int 3135 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3136 { 3137 int i, j = 0; 3138 int plen = 0; /* length of skb->head fragment */ 3139 int ret; 3140 struct page *page; 3141 unsigned int offset; 3142 3143 BUG_ON(!from->head_frag && !hlen); 3144 3145 /* dont bother with small payloads */ 3146 if (len <= skb_tailroom(to)) 3147 return skb_copy_bits(from, 0, skb_put(to, len), len); 3148 3149 if (hlen) { 3150 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3151 if (unlikely(ret)) 3152 return ret; 3153 len -= hlen; 3154 } else { 3155 plen = min_t(int, skb_headlen(from), len); 3156 if (plen) { 3157 page = virt_to_head_page(from->head); 3158 offset = from->data - (unsigned char *)page_address(page); 3159 __skb_fill_page_desc(to, 0, page, offset, plen); 3160 get_page(page); 3161 j = 1; 3162 len -= plen; 3163 } 3164 } 3165 3166 to->truesize += len + plen; 3167 to->len += len + plen; 3168 to->data_len += len + plen; 3169 3170 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3171 skb_tx_error(from); 3172 return -ENOMEM; 3173 } 3174 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3175 3176 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3177 int size; 3178 3179 if (!len) 3180 break; 3181 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3182 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3183 len); 3184 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3185 len -= size; 3186 skb_frag_ref(to, j); 3187 j++; 3188 } 3189 skb_shinfo(to)->nr_frags = j; 3190 3191 return 0; 3192 } 3193 EXPORT_SYMBOL_GPL(skb_zerocopy); 3194 3195 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3196 { 3197 __wsum csum; 3198 long csstart; 3199 3200 if (skb->ip_summed == CHECKSUM_PARTIAL) 3201 csstart = skb_checksum_start_offset(skb); 3202 else 3203 csstart = skb_headlen(skb); 3204 3205 BUG_ON(csstart > skb_headlen(skb)); 3206 3207 skb_copy_from_linear_data(skb, to, csstart); 3208 3209 csum = 0; 3210 if (csstart != skb->len) 3211 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3212 skb->len - csstart); 3213 3214 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3215 long csstuff = csstart + skb->csum_offset; 3216 3217 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3218 } 3219 } 3220 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3221 3222 /** 3223 * skb_dequeue - remove from the head of the queue 3224 * @list: list to dequeue from 3225 * 3226 * Remove the head of the list. The list lock is taken so the function 3227 * may be used safely with other locking list functions. The head item is 3228 * returned or %NULL if the list is empty. 3229 */ 3230 3231 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3232 { 3233 unsigned long flags; 3234 struct sk_buff *result; 3235 3236 spin_lock_irqsave(&list->lock, flags); 3237 result = __skb_dequeue(list); 3238 spin_unlock_irqrestore(&list->lock, flags); 3239 return result; 3240 } 3241 EXPORT_SYMBOL(skb_dequeue); 3242 3243 /** 3244 * skb_dequeue_tail - remove from the tail of the queue 3245 * @list: list to dequeue from 3246 * 3247 * Remove the tail of the list. The list lock is taken so the function 3248 * may be used safely with other locking list functions. The tail item is 3249 * returned or %NULL if the list is empty. 3250 */ 3251 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3252 { 3253 unsigned long flags; 3254 struct sk_buff *result; 3255 3256 spin_lock_irqsave(&list->lock, flags); 3257 result = __skb_dequeue_tail(list); 3258 spin_unlock_irqrestore(&list->lock, flags); 3259 return result; 3260 } 3261 EXPORT_SYMBOL(skb_dequeue_tail); 3262 3263 /** 3264 * skb_queue_purge - empty a list 3265 * @list: list to empty 3266 * 3267 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3268 * the list and one reference dropped. This function takes the list 3269 * lock and is atomic with respect to other list locking functions. 3270 */ 3271 void skb_queue_purge(struct sk_buff_head *list) 3272 { 3273 struct sk_buff *skb; 3274 while ((skb = skb_dequeue(list)) != NULL) 3275 kfree_skb(skb); 3276 } 3277 EXPORT_SYMBOL(skb_queue_purge); 3278 3279 /** 3280 * skb_rbtree_purge - empty a skb rbtree 3281 * @root: root of the rbtree to empty 3282 * Return value: the sum of truesizes of all purged skbs. 3283 * 3284 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3285 * the list and one reference dropped. This function does not take 3286 * any lock. Synchronization should be handled by the caller (e.g., TCP 3287 * out-of-order queue is protected by the socket lock). 3288 */ 3289 unsigned int skb_rbtree_purge(struct rb_root *root) 3290 { 3291 struct rb_node *p = rb_first(root); 3292 unsigned int sum = 0; 3293 3294 while (p) { 3295 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3296 3297 p = rb_next(p); 3298 rb_erase(&skb->rbnode, root); 3299 sum += skb->truesize; 3300 kfree_skb(skb); 3301 } 3302 return sum; 3303 } 3304 3305 /** 3306 * skb_queue_head - queue a buffer at the list head 3307 * @list: list to use 3308 * @newsk: buffer to queue 3309 * 3310 * Queue a buffer at the start of the list. This function takes the 3311 * list lock and can be used safely with other locking &sk_buff functions 3312 * safely. 3313 * 3314 * A buffer cannot be placed on two lists at the same time. 3315 */ 3316 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3317 { 3318 unsigned long flags; 3319 3320 spin_lock_irqsave(&list->lock, flags); 3321 __skb_queue_head(list, newsk); 3322 spin_unlock_irqrestore(&list->lock, flags); 3323 } 3324 EXPORT_SYMBOL(skb_queue_head); 3325 3326 /** 3327 * skb_queue_tail - queue a buffer at the list tail 3328 * @list: list to use 3329 * @newsk: buffer to queue 3330 * 3331 * Queue a buffer at the tail of the list. This function takes the 3332 * list lock and can be used safely with other locking &sk_buff functions 3333 * safely. 3334 * 3335 * A buffer cannot be placed on two lists at the same time. 3336 */ 3337 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3338 { 3339 unsigned long flags; 3340 3341 spin_lock_irqsave(&list->lock, flags); 3342 __skb_queue_tail(list, newsk); 3343 spin_unlock_irqrestore(&list->lock, flags); 3344 } 3345 EXPORT_SYMBOL(skb_queue_tail); 3346 3347 /** 3348 * skb_unlink - remove a buffer from a list 3349 * @skb: buffer to remove 3350 * @list: list to use 3351 * 3352 * Remove a packet from a list. The list locks are taken and this 3353 * function is atomic with respect to other list locked calls 3354 * 3355 * You must know what list the SKB is on. 3356 */ 3357 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3358 { 3359 unsigned long flags; 3360 3361 spin_lock_irqsave(&list->lock, flags); 3362 __skb_unlink(skb, list); 3363 spin_unlock_irqrestore(&list->lock, flags); 3364 } 3365 EXPORT_SYMBOL(skb_unlink); 3366 3367 /** 3368 * skb_append - append a buffer 3369 * @old: buffer to insert after 3370 * @newsk: buffer to insert 3371 * @list: list to use 3372 * 3373 * Place a packet after a given packet in a list. The list locks are taken 3374 * and this function is atomic with respect to other list locked calls. 3375 * A buffer cannot be placed on two lists at the same time. 3376 */ 3377 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3378 { 3379 unsigned long flags; 3380 3381 spin_lock_irqsave(&list->lock, flags); 3382 __skb_queue_after(list, old, newsk); 3383 spin_unlock_irqrestore(&list->lock, flags); 3384 } 3385 EXPORT_SYMBOL(skb_append); 3386 3387 static inline void skb_split_inside_header(struct sk_buff *skb, 3388 struct sk_buff* skb1, 3389 const u32 len, const int pos) 3390 { 3391 int i; 3392 3393 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3394 pos - len); 3395 /* And move data appendix as is. */ 3396 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3397 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3398 3399 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3400 skb_shinfo(skb)->nr_frags = 0; 3401 skb1->data_len = skb->data_len; 3402 skb1->len += skb1->data_len; 3403 skb->data_len = 0; 3404 skb->len = len; 3405 skb_set_tail_pointer(skb, len); 3406 } 3407 3408 static inline void skb_split_no_header(struct sk_buff *skb, 3409 struct sk_buff* skb1, 3410 const u32 len, int pos) 3411 { 3412 int i, k = 0; 3413 const int nfrags = skb_shinfo(skb)->nr_frags; 3414 3415 skb_shinfo(skb)->nr_frags = 0; 3416 skb1->len = skb1->data_len = skb->len - len; 3417 skb->len = len; 3418 skb->data_len = len - pos; 3419 3420 for (i = 0; i < nfrags; i++) { 3421 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3422 3423 if (pos + size > len) { 3424 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3425 3426 if (pos < len) { 3427 /* Split frag. 3428 * We have two variants in this case: 3429 * 1. Move all the frag to the second 3430 * part, if it is possible. F.e. 3431 * this approach is mandatory for TUX, 3432 * where splitting is expensive. 3433 * 2. Split is accurately. We make this. 3434 */ 3435 skb_frag_ref(skb, i); 3436 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3437 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3438 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3439 skb_shinfo(skb)->nr_frags++; 3440 } 3441 k++; 3442 } else 3443 skb_shinfo(skb)->nr_frags++; 3444 pos += size; 3445 } 3446 skb_shinfo(skb1)->nr_frags = k; 3447 } 3448 3449 /** 3450 * skb_split - Split fragmented skb to two parts at length len. 3451 * @skb: the buffer to split 3452 * @skb1: the buffer to receive the second part 3453 * @len: new length for skb 3454 */ 3455 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3456 { 3457 int pos = skb_headlen(skb); 3458 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3459 3460 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3461 skb_zerocopy_clone(skb1, skb, 0); 3462 if (len < pos) /* Split line is inside header. */ 3463 skb_split_inside_header(skb, skb1, len, pos); 3464 else /* Second chunk has no header, nothing to copy. */ 3465 skb_split_no_header(skb, skb1, len, pos); 3466 } 3467 EXPORT_SYMBOL(skb_split); 3468 3469 /* Shifting from/to a cloned skb is a no-go. 3470 * 3471 * Caller cannot keep skb_shinfo related pointers past calling here! 3472 */ 3473 static int skb_prepare_for_shift(struct sk_buff *skb) 3474 { 3475 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3476 } 3477 3478 /** 3479 * skb_shift - Shifts paged data partially from skb to another 3480 * @tgt: buffer into which tail data gets added 3481 * @skb: buffer from which the paged data comes from 3482 * @shiftlen: shift up to this many bytes 3483 * 3484 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3485 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3486 * It's up to caller to free skb if everything was shifted. 3487 * 3488 * If @tgt runs out of frags, the whole operation is aborted. 3489 * 3490 * Skb cannot include anything else but paged data while tgt is allowed 3491 * to have non-paged data as well. 3492 * 3493 * TODO: full sized shift could be optimized but that would need 3494 * specialized skb free'er to handle frags without up-to-date nr_frags. 3495 */ 3496 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3497 { 3498 int from, to, merge, todo; 3499 skb_frag_t *fragfrom, *fragto; 3500 3501 BUG_ON(shiftlen > skb->len); 3502 3503 if (skb_headlen(skb)) 3504 return 0; 3505 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3506 return 0; 3507 3508 todo = shiftlen; 3509 from = 0; 3510 to = skb_shinfo(tgt)->nr_frags; 3511 fragfrom = &skb_shinfo(skb)->frags[from]; 3512 3513 /* Actual merge is delayed until the point when we know we can 3514 * commit all, so that we don't have to undo partial changes 3515 */ 3516 if (!to || 3517 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3518 skb_frag_off(fragfrom))) { 3519 merge = -1; 3520 } else { 3521 merge = to - 1; 3522 3523 todo -= skb_frag_size(fragfrom); 3524 if (todo < 0) { 3525 if (skb_prepare_for_shift(skb) || 3526 skb_prepare_for_shift(tgt)) 3527 return 0; 3528 3529 /* All previous frag pointers might be stale! */ 3530 fragfrom = &skb_shinfo(skb)->frags[from]; 3531 fragto = &skb_shinfo(tgt)->frags[merge]; 3532 3533 skb_frag_size_add(fragto, shiftlen); 3534 skb_frag_size_sub(fragfrom, shiftlen); 3535 skb_frag_off_add(fragfrom, shiftlen); 3536 3537 goto onlymerged; 3538 } 3539 3540 from++; 3541 } 3542 3543 /* Skip full, not-fitting skb to avoid expensive operations */ 3544 if ((shiftlen == skb->len) && 3545 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3546 return 0; 3547 3548 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3549 return 0; 3550 3551 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3552 if (to == MAX_SKB_FRAGS) 3553 return 0; 3554 3555 fragfrom = &skb_shinfo(skb)->frags[from]; 3556 fragto = &skb_shinfo(tgt)->frags[to]; 3557 3558 if (todo >= skb_frag_size(fragfrom)) { 3559 *fragto = *fragfrom; 3560 todo -= skb_frag_size(fragfrom); 3561 from++; 3562 to++; 3563 3564 } else { 3565 __skb_frag_ref(fragfrom); 3566 skb_frag_page_copy(fragto, fragfrom); 3567 skb_frag_off_copy(fragto, fragfrom); 3568 skb_frag_size_set(fragto, todo); 3569 3570 skb_frag_off_add(fragfrom, todo); 3571 skb_frag_size_sub(fragfrom, todo); 3572 todo = 0; 3573 3574 to++; 3575 break; 3576 } 3577 } 3578 3579 /* Ready to "commit" this state change to tgt */ 3580 skb_shinfo(tgt)->nr_frags = to; 3581 3582 if (merge >= 0) { 3583 fragfrom = &skb_shinfo(skb)->frags[0]; 3584 fragto = &skb_shinfo(tgt)->frags[merge]; 3585 3586 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3587 __skb_frag_unref(fragfrom, skb->pp_recycle); 3588 } 3589 3590 /* Reposition in the original skb */ 3591 to = 0; 3592 while (from < skb_shinfo(skb)->nr_frags) 3593 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3594 skb_shinfo(skb)->nr_frags = to; 3595 3596 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3597 3598 onlymerged: 3599 /* Most likely the tgt won't ever need its checksum anymore, skb on 3600 * the other hand might need it if it needs to be resent 3601 */ 3602 tgt->ip_summed = CHECKSUM_PARTIAL; 3603 skb->ip_summed = CHECKSUM_PARTIAL; 3604 3605 /* Yak, is it really working this way? Some helper please? */ 3606 skb->len -= shiftlen; 3607 skb->data_len -= shiftlen; 3608 skb->truesize -= shiftlen; 3609 tgt->len += shiftlen; 3610 tgt->data_len += shiftlen; 3611 tgt->truesize += shiftlen; 3612 3613 return shiftlen; 3614 } 3615 3616 /** 3617 * skb_prepare_seq_read - Prepare a sequential read of skb data 3618 * @skb: the buffer to read 3619 * @from: lower offset of data to be read 3620 * @to: upper offset of data to be read 3621 * @st: state variable 3622 * 3623 * Initializes the specified state variable. Must be called before 3624 * invoking skb_seq_read() for the first time. 3625 */ 3626 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3627 unsigned int to, struct skb_seq_state *st) 3628 { 3629 st->lower_offset = from; 3630 st->upper_offset = to; 3631 st->root_skb = st->cur_skb = skb; 3632 st->frag_idx = st->stepped_offset = 0; 3633 st->frag_data = NULL; 3634 st->frag_off = 0; 3635 } 3636 EXPORT_SYMBOL(skb_prepare_seq_read); 3637 3638 /** 3639 * skb_seq_read - Sequentially read skb data 3640 * @consumed: number of bytes consumed by the caller so far 3641 * @data: destination pointer for data to be returned 3642 * @st: state variable 3643 * 3644 * Reads a block of skb data at @consumed relative to the 3645 * lower offset specified to skb_prepare_seq_read(). Assigns 3646 * the head of the data block to @data and returns the length 3647 * of the block or 0 if the end of the skb data or the upper 3648 * offset has been reached. 3649 * 3650 * The caller is not required to consume all of the data 3651 * returned, i.e. @consumed is typically set to the number 3652 * of bytes already consumed and the next call to 3653 * skb_seq_read() will return the remaining part of the block. 3654 * 3655 * Note 1: The size of each block of data returned can be arbitrary, 3656 * this limitation is the cost for zerocopy sequential 3657 * reads of potentially non linear data. 3658 * 3659 * Note 2: Fragment lists within fragments are not implemented 3660 * at the moment, state->root_skb could be replaced with 3661 * a stack for this purpose. 3662 */ 3663 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3664 struct skb_seq_state *st) 3665 { 3666 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3667 skb_frag_t *frag; 3668 3669 if (unlikely(abs_offset >= st->upper_offset)) { 3670 if (st->frag_data) { 3671 kunmap_atomic(st->frag_data); 3672 st->frag_data = NULL; 3673 } 3674 return 0; 3675 } 3676 3677 next_skb: 3678 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3679 3680 if (abs_offset < block_limit && !st->frag_data) { 3681 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3682 return block_limit - abs_offset; 3683 } 3684 3685 if (st->frag_idx == 0 && !st->frag_data) 3686 st->stepped_offset += skb_headlen(st->cur_skb); 3687 3688 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3689 unsigned int pg_idx, pg_off, pg_sz; 3690 3691 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3692 3693 pg_idx = 0; 3694 pg_off = skb_frag_off(frag); 3695 pg_sz = skb_frag_size(frag); 3696 3697 if (skb_frag_must_loop(skb_frag_page(frag))) { 3698 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3699 pg_off = offset_in_page(pg_off + st->frag_off); 3700 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3701 PAGE_SIZE - pg_off); 3702 } 3703 3704 block_limit = pg_sz + st->stepped_offset; 3705 if (abs_offset < block_limit) { 3706 if (!st->frag_data) 3707 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3708 3709 *data = (u8 *)st->frag_data + pg_off + 3710 (abs_offset - st->stepped_offset); 3711 3712 return block_limit - abs_offset; 3713 } 3714 3715 if (st->frag_data) { 3716 kunmap_atomic(st->frag_data); 3717 st->frag_data = NULL; 3718 } 3719 3720 st->stepped_offset += pg_sz; 3721 st->frag_off += pg_sz; 3722 if (st->frag_off == skb_frag_size(frag)) { 3723 st->frag_off = 0; 3724 st->frag_idx++; 3725 } 3726 } 3727 3728 if (st->frag_data) { 3729 kunmap_atomic(st->frag_data); 3730 st->frag_data = NULL; 3731 } 3732 3733 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3734 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3735 st->frag_idx = 0; 3736 goto next_skb; 3737 } else if (st->cur_skb->next) { 3738 st->cur_skb = st->cur_skb->next; 3739 st->frag_idx = 0; 3740 goto next_skb; 3741 } 3742 3743 return 0; 3744 } 3745 EXPORT_SYMBOL(skb_seq_read); 3746 3747 /** 3748 * skb_abort_seq_read - Abort a sequential read of skb data 3749 * @st: state variable 3750 * 3751 * Must be called if skb_seq_read() was not called until it 3752 * returned 0. 3753 */ 3754 void skb_abort_seq_read(struct skb_seq_state *st) 3755 { 3756 if (st->frag_data) 3757 kunmap_atomic(st->frag_data); 3758 } 3759 EXPORT_SYMBOL(skb_abort_seq_read); 3760 3761 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3762 3763 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3764 struct ts_config *conf, 3765 struct ts_state *state) 3766 { 3767 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3768 } 3769 3770 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3771 { 3772 skb_abort_seq_read(TS_SKB_CB(state)); 3773 } 3774 3775 /** 3776 * skb_find_text - Find a text pattern in skb data 3777 * @skb: the buffer to look in 3778 * @from: search offset 3779 * @to: search limit 3780 * @config: textsearch configuration 3781 * 3782 * Finds a pattern in the skb data according to the specified 3783 * textsearch configuration. Use textsearch_next() to retrieve 3784 * subsequent occurrences of the pattern. Returns the offset 3785 * to the first occurrence or UINT_MAX if no match was found. 3786 */ 3787 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3788 unsigned int to, struct ts_config *config) 3789 { 3790 struct ts_state state; 3791 unsigned int ret; 3792 3793 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3794 3795 config->get_next_block = skb_ts_get_next_block; 3796 config->finish = skb_ts_finish; 3797 3798 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3799 3800 ret = textsearch_find(config, &state); 3801 return (ret <= to - from ? ret : UINT_MAX); 3802 } 3803 EXPORT_SYMBOL(skb_find_text); 3804 3805 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3806 int offset, size_t size) 3807 { 3808 int i = skb_shinfo(skb)->nr_frags; 3809 3810 if (skb_can_coalesce(skb, i, page, offset)) { 3811 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3812 } else if (i < MAX_SKB_FRAGS) { 3813 get_page(page); 3814 skb_fill_page_desc(skb, i, page, offset, size); 3815 } else { 3816 return -EMSGSIZE; 3817 } 3818 3819 return 0; 3820 } 3821 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3822 3823 /** 3824 * skb_pull_rcsum - pull skb and update receive checksum 3825 * @skb: buffer to update 3826 * @len: length of data pulled 3827 * 3828 * This function performs an skb_pull on the packet and updates 3829 * the CHECKSUM_COMPLETE checksum. It should be used on 3830 * receive path processing instead of skb_pull unless you know 3831 * that the checksum difference is zero (e.g., a valid IP header) 3832 * or you are setting ip_summed to CHECKSUM_NONE. 3833 */ 3834 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3835 { 3836 unsigned char *data = skb->data; 3837 3838 BUG_ON(len > skb->len); 3839 __skb_pull(skb, len); 3840 skb_postpull_rcsum(skb, data, len); 3841 return skb->data; 3842 } 3843 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3844 3845 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3846 { 3847 skb_frag_t head_frag; 3848 struct page *page; 3849 3850 page = virt_to_head_page(frag_skb->head); 3851 __skb_frag_set_page(&head_frag, page); 3852 skb_frag_off_set(&head_frag, frag_skb->data - 3853 (unsigned char *)page_address(page)); 3854 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3855 return head_frag; 3856 } 3857 3858 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3859 netdev_features_t features, 3860 unsigned int offset) 3861 { 3862 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3863 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3864 unsigned int delta_truesize = 0; 3865 unsigned int delta_len = 0; 3866 struct sk_buff *tail = NULL; 3867 struct sk_buff *nskb, *tmp; 3868 int err; 3869 3870 skb_push(skb, -skb_network_offset(skb) + offset); 3871 3872 skb_shinfo(skb)->frag_list = NULL; 3873 3874 do { 3875 nskb = list_skb; 3876 list_skb = list_skb->next; 3877 3878 err = 0; 3879 if (skb_shared(nskb)) { 3880 tmp = skb_clone(nskb, GFP_ATOMIC); 3881 if (tmp) { 3882 consume_skb(nskb); 3883 nskb = tmp; 3884 err = skb_unclone(nskb, GFP_ATOMIC); 3885 } else { 3886 err = -ENOMEM; 3887 } 3888 } 3889 3890 if (!tail) 3891 skb->next = nskb; 3892 else 3893 tail->next = nskb; 3894 3895 if (unlikely(err)) { 3896 nskb->next = list_skb; 3897 goto err_linearize; 3898 } 3899 3900 tail = nskb; 3901 3902 delta_len += nskb->len; 3903 delta_truesize += nskb->truesize; 3904 3905 skb_push(nskb, -skb_network_offset(nskb) + offset); 3906 3907 skb_release_head_state(nskb); 3908 __copy_skb_header(nskb, skb); 3909 3910 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3911 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3912 nskb->data - tnl_hlen, 3913 offset + tnl_hlen); 3914 3915 if (skb_needs_linearize(nskb, features) && 3916 __skb_linearize(nskb)) 3917 goto err_linearize; 3918 3919 } while (list_skb); 3920 3921 skb->truesize = skb->truesize - delta_truesize; 3922 skb->data_len = skb->data_len - delta_len; 3923 skb->len = skb->len - delta_len; 3924 3925 skb_gso_reset(skb); 3926 3927 skb->prev = tail; 3928 3929 if (skb_needs_linearize(skb, features) && 3930 __skb_linearize(skb)) 3931 goto err_linearize; 3932 3933 skb_get(skb); 3934 3935 return skb; 3936 3937 err_linearize: 3938 kfree_skb_list(skb->next); 3939 skb->next = NULL; 3940 return ERR_PTR(-ENOMEM); 3941 } 3942 EXPORT_SYMBOL_GPL(skb_segment_list); 3943 3944 /** 3945 * skb_segment - Perform protocol segmentation on skb. 3946 * @head_skb: buffer to segment 3947 * @features: features for the output path (see dev->features) 3948 * 3949 * This function performs segmentation on the given skb. It returns 3950 * a pointer to the first in a list of new skbs for the segments. 3951 * In case of error it returns ERR_PTR(err). 3952 */ 3953 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3954 netdev_features_t features) 3955 { 3956 struct sk_buff *segs = NULL; 3957 struct sk_buff *tail = NULL; 3958 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3959 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3960 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3961 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3962 struct sk_buff *frag_skb = head_skb; 3963 unsigned int offset = doffset; 3964 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3965 unsigned int partial_segs = 0; 3966 unsigned int headroom; 3967 unsigned int len = head_skb->len; 3968 __be16 proto; 3969 bool csum, sg; 3970 int nfrags = skb_shinfo(head_skb)->nr_frags; 3971 int err = -ENOMEM; 3972 int i = 0; 3973 int pos; 3974 3975 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 3976 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 3977 /* gso_size is untrusted, and we have a frag_list with a linear 3978 * non head_frag head. 3979 * 3980 * (we assume checking the first list_skb member suffices; 3981 * i.e if either of the list_skb members have non head_frag 3982 * head, then the first one has too). 3983 * 3984 * If head_skb's headlen does not fit requested gso_size, it 3985 * means that the frag_list members do NOT terminate on exact 3986 * gso_size boundaries. Hence we cannot perform skb_frag_t page 3987 * sharing. Therefore we must fallback to copying the frag_list 3988 * skbs; we do so by disabling SG. 3989 */ 3990 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 3991 features &= ~NETIF_F_SG; 3992 } 3993 3994 __skb_push(head_skb, doffset); 3995 proto = skb_network_protocol(head_skb, NULL); 3996 if (unlikely(!proto)) 3997 return ERR_PTR(-EINVAL); 3998 3999 sg = !!(features & NETIF_F_SG); 4000 csum = !!can_checksum_protocol(features, proto); 4001 4002 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4003 if (!(features & NETIF_F_GSO_PARTIAL)) { 4004 struct sk_buff *iter; 4005 unsigned int frag_len; 4006 4007 if (!list_skb || 4008 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4009 goto normal; 4010 4011 /* If we get here then all the required 4012 * GSO features except frag_list are supported. 4013 * Try to split the SKB to multiple GSO SKBs 4014 * with no frag_list. 4015 * Currently we can do that only when the buffers don't 4016 * have a linear part and all the buffers except 4017 * the last are of the same length. 4018 */ 4019 frag_len = list_skb->len; 4020 skb_walk_frags(head_skb, iter) { 4021 if (frag_len != iter->len && iter->next) 4022 goto normal; 4023 if (skb_headlen(iter) && !iter->head_frag) 4024 goto normal; 4025 4026 len -= iter->len; 4027 } 4028 4029 if (len != frag_len) 4030 goto normal; 4031 } 4032 4033 /* GSO partial only requires that we trim off any excess that 4034 * doesn't fit into an MSS sized block, so take care of that 4035 * now. 4036 */ 4037 partial_segs = len / mss; 4038 if (partial_segs > 1) 4039 mss *= partial_segs; 4040 else 4041 partial_segs = 0; 4042 } 4043 4044 normal: 4045 headroom = skb_headroom(head_skb); 4046 pos = skb_headlen(head_skb); 4047 4048 do { 4049 struct sk_buff *nskb; 4050 skb_frag_t *nskb_frag; 4051 int hsize; 4052 int size; 4053 4054 if (unlikely(mss == GSO_BY_FRAGS)) { 4055 len = list_skb->len; 4056 } else { 4057 len = head_skb->len - offset; 4058 if (len > mss) 4059 len = mss; 4060 } 4061 4062 hsize = skb_headlen(head_skb) - offset; 4063 4064 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4065 (skb_headlen(list_skb) == len || sg)) { 4066 BUG_ON(skb_headlen(list_skb) > len); 4067 4068 i = 0; 4069 nfrags = skb_shinfo(list_skb)->nr_frags; 4070 frag = skb_shinfo(list_skb)->frags; 4071 frag_skb = list_skb; 4072 pos += skb_headlen(list_skb); 4073 4074 while (pos < offset + len) { 4075 BUG_ON(i >= nfrags); 4076 4077 size = skb_frag_size(frag); 4078 if (pos + size > offset + len) 4079 break; 4080 4081 i++; 4082 pos += size; 4083 frag++; 4084 } 4085 4086 nskb = skb_clone(list_skb, GFP_ATOMIC); 4087 list_skb = list_skb->next; 4088 4089 if (unlikely(!nskb)) 4090 goto err; 4091 4092 if (unlikely(pskb_trim(nskb, len))) { 4093 kfree_skb(nskb); 4094 goto err; 4095 } 4096 4097 hsize = skb_end_offset(nskb); 4098 if (skb_cow_head(nskb, doffset + headroom)) { 4099 kfree_skb(nskb); 4100 goto err; 4101 } 4102 4103 nskb->truesize += skb_end_offset(nskb) - hsize; 4104 skb_release_head_state(nskb); 4105 __skb_push(nskb, doffset); 4106 } else { 4107 if (hsize < 0) 4108 hsize = 0; 4109 if (hsize > len || !sg) 4110 hsize = len; 4111 4112 nskb = __alloc_skb(hsize + doffset + headroom, 4113 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4114 NUMA_NO_NODE); 4115 4116 if (unlikely(!nskb)) 4117 goto err; 4118 4119 skb_reserve(nskb, headroom); 4120 __skb_put(nskb, doffset); 4121 } 4122 4123 if (segs) 4124 tail->next = nskb; 4125 else 4126 segs = nskb; 4127 tail = nskb; 4128 4129 __copy_skb_header(nskb, head_skb); 4130 4131 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4132 skb_reset_mac_len(nskb); 4133 4134 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4135 nskb->data - tnl_hlen, 4136 doffset + tnl_hlen); 4137 4138 if (nskb->len == len + doffset) 4139 goto perform_csum_check; 4140 4141 if (!sg) { 4142 if (!csum) { 4143 if (!nskb->remcsum_offload) 4144 nskb->ip_summed = CHECKSUM_NONE; 4145 SKB_GSO_CB(nskb)->csum = 4146 skb_copy_and_csum_bits(head_skb, offset, 4147 skb_put(nskb, 4148 len), 4149 len); 4150 SKB_GSO_CB(nskb)->csum_start = 4151 skb_headroom(nskb) + doffset; 4152 } else { 4153 skb_copy_bits(head_skb, offset, 4154 skb_put(nskb, len), 4155 len); 4156 } 4157 continue; 4158 } 4159 4160 nskb_frag = skb_shinfo(nskb)->frags; 4161 4162 skb_copy_from_linear_data_offset(head_skb, offset, 4163 skb_put(nskb, hsize), hsize); 4164 4165 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4166 SKBFL_SHARED_FRAG; 4167 4168 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4169 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4170 goto err; 4171 4172 while (pos < offset + len) { 4173 if (i >= nfrags) { 4174 i = 0; 4175 nfrags = skb_shinfo(list_skb)->nr_frags; 4176 frag = skb_shinfo(list_skb)->frags; 4177 frag_skb = list_skb; 4178 if (!skb_headlen(list_skb)) { 4179 BUG_ON(!nfrags); 4180 } else { 4181 BUG_ON(!list_skb->head_frag); 4182 4183 /* to make room for head_frag. */ 4184 i--; 4185 frag--; 4186 } 4187 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4188 skb_zerocopy_clone(nskb, frag_skb, 4189 GFP_ATOMIC)) 4190 goto err; 4191 4192 list_skb = list_skb->next; 4193 } 4194 4195 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4196 MAX_SKB_FRAGS)) { 4197 net_warn_ratelimited( 4198 "skb_segment: too many frags: %u %u\n", 4199 pos, mss); 4200 err = -EINVAL; 4201 goto err; 4202 } 4203 4204 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4205 __skb_frag_ref(nskb_frag); 4206 size = skb_frag_size(nskb_frag); 4207 4208 if (pos < offset) { 4209 skb_frag_off_add(nskb_frag, offset - pos); 4210 skb_frag_size_sub(nskb_frag, offset - pos); 4211 } 4212 4213 skb_shinfo(nskb)->nr_frags++; 4214 4215 if (pos + size <= offset + len) { 4216 i++; 4217 frag++; 4218 pos += size; 4219 } else { 4220 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4221 goto skip_fraglist; 4222 } 4223 4224 nskb_frag++; 4225 } 4226 4227 skip_fraglist: 4228 nskb->data_len = len - hsize; 4229 nskb->len += nskb->data_len; 4230 nskb->truesize += nskb->data_len; 4231 4232 perform_csum_check: 4233 if (!csum) { 4234 if (skb_has_shared_frag(nskb) && 4235 __skb_linearize(nskb)) 4236 goto err; 4237 4238 if (!nskb->remcsum_offload) 4239 nskb->ip_summed = CHECKSUM_NONE; 4240 SKB_GSO_CB(nskb)->csum = 4241 skb_checksum(nskb, doffset, 4242 nskb->len - doffset, 0); 4243 SKB_GSO_CB(nskb)->csum_start = 4244 skb_headroom(nskb) + doffset; 4245 } 4246 } while ((offset += len) < head_skb->len); 4247 4248 /* Some callers want to get the end of the list. 4249 * Put it in segs->prev to avoid walking the list. 4250 * (see validate_xmit_skb_list() for example) 4251 */ 4252 segs->prev = tail; 4253 4254 if (partial_segs) { 4255 struct sk_buff *iter; 4256 int type = skb_shinfo(head_skb)->gso_type; 4257 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4258 4259 /* Update type to add partial and then remove dodgy if set */ 4260 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4261 type &= ~SKB_GSO_DODGY; 4262 4263 /* Update GSO info and prepare to start updating headers on 4264 * our way back down the stack of protocols. 4265 */ 4266 for (iter = segs; iter; iter = iter->next) { 4267 skb_shinfo(iter)->gso_size = gso_size; 4268 skb_shinfo(iter)->gso_segs = partial_segs; 4269 skb_shinfo(iter)->gso_type = type; 4270 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4271 } 4272 4273 if (tail->len - doffset <= gso_size) 4274 skb_shinfo(tail)->gso_size = 0; 4275 else if (tail != segs) 4276 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4277 } 4278 4279 /* Following permits correct backpressure, for protocols 4280 * using skb_set_owner_w(). 4281 * Idea is to tranfert ownership from head_skb to last segment. 4282 */ 4283 if (head_skb->destructor == sock_wfree) { 4284 swap(tail->truesize, head_skb->truesize); 4285 swap(tail->destructor, head_skb->destructor); 4286 swap(tail->sk, head_skb->sk); 4287 } 4288 return segs; 4289 4290 err: 4291 kfree_skb_list(segs); 4292 return ERR_PTR(err); 4293 } 4294 EXPORT_SYMBOL_GPL(skb_segment); 4295 4296 #ifdef CONFIG_SKB_EXTENSIONS 4297 #define SKB_EXT_ALIGN_VALUE 8 4298 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4299 4300 static const u8 skb_ext_type_len[] = { 4301 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4302 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4303 #endif 4304 #ifdef CONFIG_XFRM 4305 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4306 #endif 4307 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4308 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4309 #endif 4310 #if IS_ENABLED(CONFIG_MPTCP) 4311 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4312 #endif 4313 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4314 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4315 #endif 4316 }; 4317 4318 static __always_inline unsigned int skb_ext_total_length(void) 4319 { 4320 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4321 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4322 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4323 #endif 4324 #ifdef CONFIG_XFRM 4325 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4326 #endif 4327 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4328 skb_ext_type_len[TC_SKB_EXT] + 4329 #endif 4330 #if IS_ENABLED(CONFIG_MPTCP) 4331 skb_ext_type_len[SKB_EXT_MPTCP] + 4332 #endif 4333 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4334 skb_ext_type_len[SKB_EXT_MCTP] + 4335 #endif 4336 0; 4337 } 4338 4339 static void skb_extensions_init(void) 4340 { 4341 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4342 BUILD_BUG_ON(skb_ext_total_length() > 255); 4343 4344 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4345 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4346 0, 4347 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4348 NULL); 4349 } 4350 #else 4351 static void skb_extensions_init(void) {} 4352 #endif 4353 4354 void __init skb_init(void) 4355 { 4356 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4357 sizeof(struct sk_buff), 4358 0, 4359 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4360 offsetof(struct sk_buff, cb), 4361 sizeof_field(struct sk_buff, cb), 4362 NULL); 4363 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4364 sizeof(struct sk_buff_fclones), 4365 0, 4366 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4367 NULL); 4368 skb_extensions_init(); 4369 } 4370 4371 static int 4372 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4373 unsigned int recursion_level) 4374 { 4375 int start = skb_headlen(skb); 4376 int i, copy = start - offset; 4377 struct sk_buff *frag_iter; 4378 int elt = 0; 4379 4380 if (unlikely(recursion_level >= 24)) 4381 return -EMSGSIZE; 4382 4383 if (copy > 0) { 4384 if (copy > len) 4385 copy = len; 4386 sg_set_buf(sg, skb->data + offset, copy); 4387 elt++; 4388 if ((len -= copy) == 0) 4389 return elt; 4390 offset += copy; 4391 } 4392 4393 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4394 int end; 4395 4396 WARN_ON(start > offset + len); 4397 4398 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4399 if ((copy = end - offset) > 0) { 4400 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4401 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4402 return -EMSGSIZE; 4403 4404 if (copy > len) 4405 copy = len; 4406 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4407 skb_frag_off(frag) + offset - start); 4408 elt++; 4409 if (!(len -= copy)) 4410 return elt; 4411 offset += copy; 4412 } 4413 start = end; 4414 } 4415 4416 skb_walk_frags(skb, frag_iter) { 4417 int end, ret; 4418 4419 WARN_ON(start > offset + len); 4420 4421 end = start + frag_iter->len; 4422 if ((copy = end - offset) > 0) { 4423 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4424 return -EMSGSIZE; 4425 4426 if (copy > len) 4427 copy = len; 4428 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4429 copy, recursion_level + 1); 4430 if (unlikely(ret < 0)) 4431 return ret; 4432 elt += ret; 4433 if ((len -= copy) == 0) 4434 return elt; 4435 offset += copy; 4436 } 4437 start = end; 4438 } 4439 BUG_ON(len); 4440 return elt; 4441 } 4442 4443 /** 4444 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4445 * @skb: Socket buffer containing the buffers to be mapped 4446 * @sg: The scatter-gather list to map into 4447 * @offset: The offset into the buffer's contents to start mapping 4448 * @len: Length of buffer space to be mapped 4449 * 4450 * Fill the specified scatter-gather list with mappings/pointers into a 4451 * region of the buffer space attached to a socket buffer. Returns either 4452 * the number of scatterlist items used, or -EMSGSIZE if the contents 4453 * could not fit. 4454 */ 4455 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4456 { 4457 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4458 4459 if (nsg <= 0) 4460 return nsg; 4461 4462 sg_mark_end(&sg[nsg - 1]); 4463 4464 return nsg; 4465 } 4466 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4467 4468 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4469 * sglist without mark the sg which contain last skb data as the end. 4470 * So the caller can mannipulate sg list as will when padding new data after 4471 * the first call without calling sg_unmark_end to expend sg list. 4472 * 4473 * Scenario to use skb_to_sgvec_nomark: 4474 * 1. sg_init_table 4475 * 2. skb_to_sgvec_nomark(payload1) 4476 * 3. skb_to_sgvec_nomark(payload2) 4477 * 4478 * This is equivalent to: 4479 * 1. sg_init_table 4480 * 2. skb_to_sgvec(payload1) 4481 * 3. sg_unmark_end 4482 * 4. skb_to_sgvec(payload2) 4483 * 4484 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4485 * is more preferable. 4486 */ 4487 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4488 int offset, int len) 4489 { 4490 return __skb_to_sgvec(skb, sg, offset, len, 0); 4491 } 4492 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4493 4494 4495 4496 /** 4497 * skb_cow_data - Check that a socket buffer's data buffers are writable 4498 * @skb: The socket buffer to check. 4499 * @tailbits: Amount of trailing space to be added 4500 * @trailer: Returned pointer to the skb where the @tailbits space begins 4501 * 4502 * Make sure that the data buffers attached to a socket buffer are 4503 * writable. If they are not, private copies are made of the data buffers 4504 * and the socket buffer is set to use these instead. 4505 * 4506 * If @tailbits is given, make sure that there is space to write @tailbits 4507 * bytes of data beyond current end of socket buffer. @trailer will be 4508 * set to point to the skb in which this space begins. 4509 * 4510 * The number of scatterlist elements required to completely map the 4511 * COW'd and extended socket buffer will be returned. 4512 */ 4513 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4514 { 4515 int copyflag; 4516 int elt; 4517 struct sk_buff *skb1, **skb_p; 4518 4519 /* If skb is cloned or its head is paged, reallocate 4520 * head pulling out all the pages (pages are considered not writable 4521 * at the moment even if they are anonymous). 4522 */ 4523 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4524 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4525 return -ENOMEM; 4526 4527 /* Easy case. Most of packets will go this way. */ 4528 if (!skb_has_frag_list(skb)) { 4529 /* A little of trouble, not enough of space for trailer. 4530 * This should not happen, when stack is tuned to generate 4531 * good frames. OK, on miss we reallocate and reserve even more 4532 * space, 128 bytes is fair. */ 4533 4534 if (skb_tailroom(skb) < tailbits && 4535 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4536 return -ENOMEM; 4537 4538 /* Voila! */ 4539 *trailer = skb; 4540 return 1; 4541 } 4542 4543 /* Misery. We are in troubles, going to mincer fragments... */ 4544 4545 elt = 1; 4546 skb_p = &skb_shinfo(skb)->frag_list; 4547 copyflag = 0; 4548 4549 while ((skb1 = *skb_p) != NULL) { 4550 int ntail = 0; 4551 4552 /* The fragment is partially pulled by someone, 4553 * this can happen on input. Copy it and everything 4554 * after it. */ 4555 4556 if (skb_shared(skb1)) 4557 copyflag = 1; 4558 4559 /* If the skb is the last, worry about trailer. */ 4560 4561 if (skb1->next == NULL && tailbits) { 4562 if (skb_shinfo(skb1)->nr_frags || 4563 skb_has_frag_list(skb1) || 4564 skb_tailroom(skb1) < tailbits) 4565 ntail = tailbits + 128; 4566 } 4567 4568 if (copyflag || 4569 skb_cloned(skb1) || 4570 ntail || 4571 skb_shinfo(skb1)->nr_frags || 4572 skb_has_frag_list(skb1)) { 4573 struct sk_buff *skb2; 4574 4575 /* Fuck, we are miserable poor guys... */ 4576 if (ntail == 0) 4577 skb2 = skb_copy(skb1, GFP_ATOMIC); 4578 else 4579 skb2 = skb_copy_expand(skb1, 4580 skb_headroom(skb1), 4581 ntail, 4582 GFP_ATOMIC); 4583 if (unlikely(skb2 == NULL)) 4584 return -ENOMEM; 4585 4586 if (skb1->sk) 4587 skb_set_owner_w(skb2, skb1->sk); 4588 4589 /* Looking around. Are we still alive? 4590 * OK, link new skb, drop old one */ 4591 4592 skb2->next = skb1->next; 4593 *skb_p = skb2; 4594 kfree_skb(skb1); 4595 skb1 = skb2; 4596 } 4597 elt++; 4598 *trailer = skb1; 4599 skb_p = &skb1->next; 4600 } 4601 4602 return elt; 4603 } 4604 EXPORT_SYMBOL_GPL(skb_cow_data); 4605 4606 static void sock_rmem_free(struct sk_buff *skb) 4607 { 4608 struct sock *sk = skb->sk; 4609 4610 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4611 } 4612 4613 static void skb_set_err_queue(struct sk_buff *skb) 4614 { 4615 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4616 * So, it is safe to (mis)use it to mark skbs on the error queue. 4617 */ 4618 skb->pkt_type = PACKET_OUTGOING; 4619 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4620 } 4621 4622 /* 4623 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4624 */ 4625 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4626 { 4627 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4628 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4629 return -ENOMEM; 4630 4631 skb_orphan(skb); 4632 skb->sk = sk; 4633 skb->destructor = sock_rmem_free; 4634 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4635 skb_set_err_queue(skb); 4636 4637 /* before exiting rcu section, make sure dst is refcounted */ 4638 skb_dst_force(skb); 4639 4640 skb_queue_tail(&sk->sk_error_queue, skb); 4641 if (!sock_flag(sk, SOCK_DEAD)) 4642 sk_error_report(sk); 4643 return 0; 4644 } 4645 EXPORT_SYMBOL(sock_queue_err_skb); 4646 4647 static bool is_icmp_err_skb(const struct sk_buff *skb) 4648 { 4649 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4650 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4651 } 4652 4653 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4654 { 4655 struct sk_buff_head *q = &sk->sk_error_queue; 4656 struct sk_buff *skb, *skb_next = NULL; 4657 bool icmp_next = false; 4658 unsigned long flags; 4659 4660 spin_lock_irqsave(&q->lock, flags); 4661 skb = __skb_dequeue(q); 4662 if (skb && (skb_next = skb_peek(q))) { 4663 icmp_next = is_icmp_err_skb(skb_next); 4664 if (icmp_next) 4665 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4666 } 4667 spin_unlock_irqrestore(&q->lock, flags); 4668 4669 if (is_icmp_err_skb(skb) && !icmp_next) 4670 sk->sk_err = 0; 4671 4672 if (skb_next) 4673 sk_error_report(sk); 4674 4675 return skb; 4676 } 4677 EXPORT_SYMBOL(sock_dequeue_err_skb); 4678 4679 /** 4680 * skb_clone_sk - create clone of skb, and take reference to socket 4681 * @skb: the skb to clone 4682 * 4683 * This function creates a clone of a buffer that holds a reference on 4684 * sk_refcnt. Buffers created via this function are meant to be 4685 * returned using sock_queue_err_skb, or free via kfree_skb. 4686 * 4687 * When passing buffers allocated with this function to sock_queue_err_skb 4688 * it is necessary to wrap the call with sock_hold/sock_put in order to 4689 * prevent the socket from being released prior to being enqueued on 4690 * the sk_error_queue. 4691 */ 4692 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4693 { 4694 struct sock *sk = skb->sk; 4695 struct sk_buff *clone; 4696 4697 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4698 return NULL; 4699 4700 clone = skb_clone(skb, GFP_ATOMIC); 4701 if (!clone) { 4702 sock_put(sk); 4703 return NULL; 4704 } 4705 4706 clone->sk = sk; 4707 clone->destructor = sock_efree; 4708 4709 return clone; 4710 } 4711 EXPORT_SYMBOL(skb_clone_sk); 4712 4713 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4714 struct sock *sk, 4715 int tstype, 4716 bool opt_stats) 4717 { 4718 struct sock_exterr_skb *serr; 4719 int err; 4720 4721 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4722 4723 serr = SKB_EXT_ERR(skb); 4724 memset(serr, 0, sizeof(*serr)); 4725 serr->ee.ee_errno = ENOMSG; 4726 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4727 serr->ee.ee_info = tstype; 4728 serr->opt_stats = opt_stats; 4729 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4730 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4731 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4732 if (sk_is_tcp(sk)) 4733 serr->ee.ee_data -= sk->sk_tskey; 4734 } 4735 4736 err = sock_queue_err_skb(sk, skb); 4737 4738 if (err) 4739 kfree_skb(skb); 4740 } 4741 4742 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4743 { 4744 bool ret; 4745 4746 if (likely(sysctl_tstamp_allow_data || tsonly)) 4747 return true; 4748 4749 read_lock_bh(&sk->sk_callback_lock); 4750 ret = sk->sk_socket && sk->sk_socket->file && 4751 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4752 read_unlock_bh(&sk->sk_callback_lock); 4753 return ret; 4754 } 4755 4756 void skb_complete_tx_timestamp(struct sk_buff *skb, 4757 struct skb_shared_hwtstamps *hwtstamps) 4758 { 4759 struct sock *sk = skb->sk; 4760 4761 if (!skb_may_tx_timestamp(sk, false)) 4762 goto err; 4763 4764 /* Take a reference to prevent skb_orphan() from freeing the socket, 4765 * but only if the socket refcount is not zero. 4766 */ 4767 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4768 *skb_hwtstamps(skb) = *hwtstamps; 4769 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4770 sock_put(sk); 4771 return; 4772 } 4773 4774 err: 4775 kfree_skb(skb); 4776 } 4777 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4778 4779 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4780 const struct sk_buff *ack_skb, 4781 struct skb_shared_hwtstamps *hwtstamps, 4782 struct sock *sk, int tstype) 4783 { 4784 struct sk_buff *skb; 4785 bool tsonly, opt_stats = false; 4786 4787 if (!sk) 4788 return; 4789 4790 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4791 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4792 return; 4793 4794 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4795 if (!skb_may_tx_timestamp(sk, tsonly)) 4796 return; 4797 4798 if (tsonly) { 4799 #ifdef CONFIG_INET 4800 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4801 sk_is_tcp(sk)) { 4802 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4803 ack_skb); 4804 opt_stats = true; 4805 } else 4806 #endif 4807 skb = alloc_skb(0, GFP_ATOMIC); 4808 } else { 4809 skb = skb_clone(orig_skb, GFP_ATOMIC); 4810 } 4811 if (!skb) 4812 return; 4813 4814 if (tsonly) { 4815 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4816 SKBTX_ANY_TSTAMP; 4817 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4818 } 4819 4820 if (hwtstamps) 4821 *skb_hwtstamps(skb) = *hwtstamps; 4822 else 4823 skb->tstamp = ktime_get_real(); 4824 4825 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4826 } 4827 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4828 4829 void skb_tstamp_tx(struct sk_buff *orig_skb, 4830 struct skb_shared_hwtstamps *hwtstamps) 4831 { 4832 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4833 SCM_TSTAMP_SND); 4834 } 4835 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4836 4837 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4838 { 4839 struct sock *sk = skb->sk; 4840 struct sock_exterr_skb *serr; 4841 int err = 1; 4842 4843 skb->wifi_acked_valid = 1; 4844 skb->wifi_acked = acked; 4845 4846 serr = SKB_EXT_ERR(skb); 4847 memset(serr, 0, sizeof(*serr)); 4848 serr->ee.ee_errno = ENOMSG; 4849 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4850 4851 /* Take a reference to prevent skb_orphan() from freeing the socket, 4852 * but only if the socket refcount is not zero. 4853 */ 4854 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4855 err = sock_queue_err_skb(sk, skb); 4856 sock_put(sk); 4857 } 4858 if (err) 4859 kfree_skb(skb); 4860 } 4861 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4862 4863 /** 4864 * skb_partial_csum_set - set up and verify partial csum values for packet 4865 * @skb: the skb to set 4866 * @start: the number of bytes after skb->data to start checksumming. 4867 * @off: the offset from start to place the checksum. 4868 * 4869 * For untrusted partially-checksummed packets, we need to make sure the values 4870 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4871 * 4872 * This function checks and sets those values and skb->ip_summed: if this 4873 * returns false you should drop the packet. 4874 */ 4875 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4876 { 4877 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4878 u32 csum_start = skb_headroom(skb) + (u32)start; 4879 4880 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4881 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4882 start, off, skb_headroom(skb), skb_headlen(skb)); 4883 return false; 4884 } 4885 skb->ip_summed = CHECKSUM_PARTIAL; 4886 skb->csum_start = csum_start; 4887 skb->csum_offset = off; 4888 skb_set_transport_header(skb, start); 4889 return true; 4890 } 4891 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4892 4893 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4894 unsigned int max) 4895 { 4896 if (skb_headlen(skb) >= len) 4897 return 0; 4898 4899 /* If we need to pullup then pullup to the max, so we 4900 * won't need to do it again. 4901 */ 4902 if (max > skb->len) 4903 max = skb->len; 4904 4905 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4906 return -ENOMEM; 4907 4908 if (skb_headlen(skb) < len) 4909 return -EPROTO; 4910 4911 return 0; 4912 } 4913 4914 #define MAX_TCP_HDR_LEN (15 * 4) 4915 4916 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4917 typeof(IPPROTO_IP) proto, 4918 unsigned int off) 4919 { 4920 int err; 4921 4922 switch (proto) { 4923 case IPPROTO_TCP: 4924 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4925 off + MAX_TCP_HDR_LEN); 4926 if (!err && !skb_partial_csum_set(skb, off, 4927 offsetof(struct tcphdr, 4928 check))) 4929 err = -EPROTO; 4930 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4931 4932 case IPPROTO_UDP: 4933 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4934 off + sizeof(struct udphdr)); 4935 if (!err && !skb_partial_csum_set(skb, off, 4936 offsetof(struct udphdr, 4937 check))) 4938 err = -EPROTO; 4939 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4940 } 4941 4942 return ERR_PTR(-EPROTO); 4943 } 4944 4945 /* This value should be large enough to cover a tagged ethernet header plus 4946 * maximally sized IP and TCP or UDP headers. 4947 */ 4948 #define MAX_IP_HDR_LEN 128 4949 4950 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4951 { 4952 unsigned int off; 4953 bool fragment; 4954 __sum16 *csum; 4955 int err; 4956 4957 fragment = false; 4958 4959 err = skb_maybe_pull_tail(skb, 4960 sizeof(struct iphdr), 4961 MAX_IP_HDR_LEN); 4962 if (err < 0) 4963 goto out; 4964 4965 if (ip_is_fragment(ip_hdr(skb))) 4966 fragment = true; 4967 4968 off = ip_hdrlen(skb); 4969 4970 err = -EPROTO; 4971 4972 if (fragment) 4973 goto out; 4974 4975 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4976 if (IS_ERR(csum)) 4977 return PTR_ERR(csum); 4978 4979 if (recalculate) 4980 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4981 ip_hdr(skb)->daddr, 4982 skb->len - off, 4983 ip_hdr(skb)->protocol, 0); 4984 err = 0; 4985 4986 out: 4987 return err; 4988 } 4989 4990 /* This value should be large enough to cover a tagged ethernet header plus 4991 * an IPv6 header, all options, and a maximal TCP or UDP header. 4992 */ 4993 #define MAX_IPV6_HDR_LEN 256 4994 4995 #define OPT_HDR(type, skb, off) \ 4996 (type *)(skb_network_header(skb) + (off)) 4997 4998 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4999 { 5000 int err; 5001 u8 nexthdr; 5002 unsigned int off; 5003 unsigned int len; 5004 bool fragment; 5005 bool done; 5006 __sum16 *csum; 5007 5008 fragment = false; 5009 done = false; 5010 5011 off = sizeof(struct ipv6hdr); 5012 5013 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5014 if (err < 0) 5015 goto out; 5016 5017 nexthdr = ipv6_hdr(skb)->nexthdr; 5018 5019 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5020 while (off <= len && !done) { 5021 switch (nexthdr) { 5022 case IPPROTO_DSTOPTS: 5023 case IPPROTO_HOPOPTS: 5024 case IPPROTO_ROUTING: { 5025 struct ipv6_opt_hdr *hp; 5026 5027 err = skb_maybe_pull_tail(skb, 5028 off + 5029 sizeof(struct ipv6_opt_hdr), 5030 MAX_IPV6_HDR_LEN); 5031 if (err < 0) 5032 goto out; 5033 5034 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5035 nexthdr = hp->nexthdr; 5036 off += ipv6_optlen(hp); 5037 break; 5038 } 5039 case IPPROTO_AH: { 5040 struct ip_auth_hdr *hp; 5041 5042 err = skb_maybe_pull_tail(skb, 5043 off + 5044 sizeof(struct ip_auth_hdr), 5045 MAX_IPV6_HDR_LEN); 5046 if (err < 0) 5047 goto out; 5048 5049 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5050 nexthdr = hp->nexthdr; 5051 off += ipv6_authlen(hp); 5052 break; 5053 } 5054 case IPPROTO_FRAGMENT: { 5055 struct frag_hdr *hp; 5056 5057 err = skb_maybe_pull_tail(skb, 5058 off + 5059 sizeof(struct frag_hdr), 5060 MAX_IPV6_HDR_LEN); 5061 if (err < 0) 5062 goto out; 5063 5064 hp = OPT_HDR(struct frag_hdr, skb, off); 5065 5066 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5067 fragment = true; 5068 5069 nexthdr = hp->nexthdr; 5070 off += sizeof(struct frag_hdr); 5071 break; 5072 } 5073 default: 5074 done = true; 5075 break; 5076 } 5077 } 5078 5079 err = -EPROTO; 5080 5081 if (!done || fragment) 5082 goto out; 5083 5084 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5085 if (IS_ERR(csum)) 5086 return PTR_ERR(csum); 5087 5088 if (recalculate) 5089 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5090 &ipv6_hdr(skb)->daddr, 5091 skb->len - off, nexthdr, 0); 5092 err = 0; 5093 5094 out: 5095 return err; 5096 } 5097 5098 /** 5099 * skb_checksum_setup - set up partial checksum offset 5100 * @skb: the skb to set up 5101 * @recalculate: if true the pseudo-header checksum will be recalculated 5102 */ 5103 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5104 { 5105 int err; 5106 5107 switch (skb->protocol) { 5108 case htons(ETH_P_IP): 5109 err = skb_checksum_setup_ipv4(skb, recalculate); 5110 break; 5111 5112 case htons(ETH_P_IPV6): 5113 err = skb_checksum_setup_ipv6(skb, recalculate); 5114 break; 5115 5116 default: 5117 err = -EPROTO; 5118 break; 5119 } 5120 5121 return err; 5122 } 5123 EXPORT_SYMBOL(skb_checksum_setup); 5124 5125 /** 5126 * skb_checksum_maybe_trim - maybe trims the given skb 5127 * @skb: the skb to check 5128 * @transport_len: the data length beyond the network header 5129 * 5130 * Checks whether the given skb has data beyond the given transport length. 5131 * If so, returns a cloned skb trimmed to this transport length. 5132 * Otherwise returns the provided skb. Returns NULL in error cases 5133 * (e.g. transport_len exceeds skb length or out-of-memory). 5134 * 5135 * Caller needs to set the skb transport header and free any returned skb if it 5136 * differs from the provided skb. 5137 */ 5138 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5139 unsigned int transport_len) 5140 { 5141 struct sk_buff *skb_chk; 5142 unsigned int len = skb_transport_offset(skb) + transport_len; 5143 int ret; 5144 5145 if (skb->len < len) 5146 return NULL; 5147 else if (skb->len == len) 5148 return skb; 5149 5150 skb_chk = skb_clone(skb, GFP_ATOMIC); 5151 if (!skb_chk) 5152 return NULL; 5153 5154 ret = pskb_trim_rcsum(skb_chk, len); 5155 if (ret) { 5156 kfree_skb(skb_chk); 5157 return NULL; 5158 } 5159 5160 return skb_chk; 5161 } 5162 5163 /** 5164 * skb_checksum_trimmed - validate checksum of an skb 5165 * @skb: the skb to check 5166 * @transport_len: the data length beyond the network header 5167 * @skb_chkf: checksum function to use 5168 * 5169 * Applies the given checksum function skb_chkf to the provided skb. 5170 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5171 * 5172 * If the skb has data beyond the given transport length, then a 5173 * trimmed & cloned skb is checked and returned. 5174 * 5175 * Caller needs to set the skb transport header and free any returned skb if it 5176 * differs from the provided skb. 5177 */ 5178 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5179 unsigned int transport_len, 5180 __sum16(*skb_chkf)(struct sk_buff *skb)) 5181 { 5182 struct sk_buff *skb_chk; 5183 unsigned int offset = skb_transport_offset(skb); 5184 __sum16 ret; 5185 5186 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5187 if (!skb_chk) 5188 goto err; 5189 5190 if (!pskb_may_pull(skb_chk, offset)) 5191 goto err; 5192 5193 skb_pull_rcsum(skb_chk, offset); 5194 ret = skb_chkf(skb_chk); 5195 skb_push_rcsum(skb_chk, offset); 5196 5197 if (ret) 5198 goto err; 5199 5200 return skb_chk; 5201 5202 err: 5203 if (skb_chk && skb_chk != skb) 5204 kfree_skb(skb_chk); 5205 5206 return NULL; 5207 5208 } 5209 EXPORT_SYMBOL(skb_checksum_trimmed); 5210 5211 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5212 { 5213 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5214 skb->dev->name); 5215 } 5216 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5217 5218 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5219 { 5220 if (head_stolen) { 5221 skb_release_head_state(skb); 5222 kmem_cache_free(skbuff_head_cache, skb); 5223 } else { 5224 __kfree_skb(skb); 5225 } 5226 } 5227 EXPORT_SYMBOL(kfree_skb_partial); 5228 5229 /** 5230 * skb_try_coalesce - try to merge skb to prior one 5231 * @to: prior buffer 5232 * @from: buffer to add 5233 * @fragstolen: pointer to boolean 5234 * @delta_truesize: how much more was allocated than was requested 5235 */ 5236 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5237 bool *fragstolen, int *delta_truesize) 5238 { 5239 struct skb_shared_info *to_shinfo, *from_shinfo; 5240 int i, delta, len = from->len; 5241 5242 *fragstolen = false; 5243 5244 if (skb_cloned(to)) 5245 return false; 5246 5247 /* The page pool signature of struct page will eventually figure out 5248 * which pages can be recycled or not but for now let's prohibit slab 5249 * allocated and page_pool allocated SKBs from being coalesced. 5250 */ 5251 if (to->pp_recycle != from->pp_recycle) 5252 return false; 5253 5254 if (len <= skb_tailroom(to)) { 5255 if (len) 5256 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5257 *delta_truesize = 0; 5258 return true; 5259 } 5260 5261 to_shinfo = skb_shinfo(to); 5262 from_shinfo = skb_shinfo(from); 5263 if (to_shinfo->frag_list || from_shinfo->frag_list) 5264 return false; 5265 if (skb_zcopy(to) || skb_zcopy(from)) 5266 return false; 5267 5268 if (skb_headlen(from) != 0) { 5269 struct page *page; 5270 unsigned int offset; 5271 5272 if (to_shinfo->nr_frags + 5273 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5274 return false; 5275 5276 if (skb_head_is_locked(from)) 5277 return false; 5278 5279 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5280 5281 page = virt_to_head_page(from->head); 5282 offset = from->data - (unsigned char *)page_address(page); 5283 5284 skb_fill_page_desc(to, to_shinfo->nr_frags, 5285 page, offset, skb_headlen(from)); 5286 *fragstolen = true; 5287 } else { 5288 if (to_shinfo->nr_frags + 5289 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5290 return false; 5291 5292 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5293 } 5294 5295 WARN_ON_ONCE(delta < len); 5296 5297 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5298 from_shinfo->frags, 5299 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5300 to_shinfo->nr_frags += from_shinfo->nr_frags; 5301 5302 if (!skb_cloned(from)) 5303 from_shinfo->nr_frags = 0; 5304 5305 /* if the skb is not cloned this does nothing 5306 * since we set nr_frags to 0. 5307 */ 5308 for (i = 0; i < from_shinfo->nr_frags; i++) 5309 __skb_frag_ref(&from_shinfo->frags[i]); 5310 5311 to->truesize += delta; 5312 to->len += len; 5313 to->data_len += len; 5314 5315 *delta_truesize = delta; 5316 return true; 5317 } 5318 EXPORT_SYMBOL(skb_try_coalesce); 5319 5320 /** 5321 * skb_scrub_packet - scrub an skb 5322 * 5323 * @skb: buffer to clean 5324 * @xnet: packet is crossing netns 5325 * 5326 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5327 * into/from a tunnel. Some information have to be cleared during these 5328 * operations. 5329 * skb_scrub_packet can also be used to clean a skb before injecting it in 5330 * another namespace (@xnet == true). We have to clear all information in the 5331 * skb that could impact namespace isolation. 5332 */ 5333 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5334 { 5335 skb->pkt_type = PACKET_HOST; 5336 skb->skb_iif = 0; 5337 skb->ignore_df = 0; 5338 skb_dst_drop(skb); 5339 skb_ext_reset(skb); 5340 nf_reset_ct(skb); 5341 nf_reset_trace(skb); 5342 5343 #ifdef CONFIG_NET_SWITCHDEV 5344 skb->offload_fwd_mark = 0; 5345 skb->offload_l3_fwd_mark = 0; 5346 #endif 5347 5348 if (!xnet) 5349 return; 5350 5351 ipvs_reset(skb); 5352 skb->mark = 0; 5353 skb->tstamp = 0; 5354 } 5355 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5356 5357 /** 5358 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5359 * 5360 * @skb: GSO skb 5361 * 5362 * skb_gso_transport_seglen is used to determine the real size of the 5363 * individual segments, including Layer4 headers (TCP/UDP). 5364 * 5365 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5366 */ 5367 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5368 { 5369 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5370 unsigned int thlen = 0; 5371 5372 if (skb->encapsulation) { 5373 thlen = skb_inner_transport_header(skb) - 5374 skb_transport_header(skb); 5375 5376 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5377 thlen += inner_tcp_hdrlen(skb); 5378 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5379 thlen = tcp_hdrlen(skb); 5380 } else if (unlikely(skb_is_gso_sctp(skb))) { 5381 thlen = sizeof(struct sctphdr); 5382 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5383 thlen = sizeof(struct udphdr); 5384 } 5385 /* UFO sets gso_size to the size of the fragmentation 5386 * payload, i.e. the size of the L4 (UDP) header is already 5387 * accounted for. 5388 */ 5389 return thlen + shinfo->gso_size; 5390 } 5391 5392 /** 5393 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5394 * 5395 * @skb: GSO skb 5396 * 5397 * skb_gso_network_seglen is used to determine the real size of the 5398 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5399 * 5400 * The MAC/L2 header is not accounted for. 5401 */ 5402 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5403 { 5404 unsigned int hdr_len = skb_transport_header(skb) - 5405 skb_network_header(skb); 5406 5407 return hdr_len + skb_gso_transport_seglen(skb); 5408 } 5409 5410 /** 5411 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5412 * 5413 * @skb: GSO skb 5414 * 5415 * skb_gso_mac_seglen is used to determine the real size of the 5416 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5417 * headers (TCP/UDP). 5418 */ 5419 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5420 { 5421 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5422 5423 return hdr_len + skb_gso_transport_seglen(skb); 5424 } 5425 5426 /** 5427 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5428 * 5429 * There are a couple of instances where we have a GSO skb, and we 5430 * want to determine what size it would be after it is segmented. 5431 * 5432 * We might want to check: 5433 * - L3+L4+payload size (e.g. IP forwarding) 5434 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5435 * 5436 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5437 * 5438 * @skb: GSO skb 5439 * 5440 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5441 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5442 * 5443 * @max_len: The maximum permissible length. 5444 * 5445 * Returns true if the segmented length <= max length. 5446 */ 5447 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5448 unsigned int seg_len, 5449 unsigned int max_len) { 5450 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5451 const struct sk_buff *iter; 5452 5453 if (shinfo->gso_size != GSO_BY_FRAGS) 5454 return seg_len <= max_len; 5455 5456 /* Undo this so we can re-use header sizes */ 5457 seg_len -= GSO_BY_FRAGS; 5458 5459 skb_walk_frags(skb, iter) { 5460 if (seg_len + skb_headlen(iter) > max_len) 5461 return false; 5462 } 5463 5464 return true; 5465 } 5466 5467 /** 5468 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5469 * 5470 * @skb: GSO skb 5471 * @mtu: MTU to validate against 5472 * 5473 * skb_gso_validate_network_len validates if a given skb will fit a 5474 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5475 * payload. 5476 */ 5477 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5478 { 5479 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5480 } 5481 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5482 5483 /** 5484 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5485 * 5486 * @skb: GSO skb 5487 * @len: length to validate against 5488 * 5489 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5490 * length once split, including L2, L3 and L4 headers and the payload. 5491 */ 5492 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5493 { 5494 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5495 } 5496 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5497 5498 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5499 { 5500 int mac_len, meta_len; 5501 void *meta; 5502 5503 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5504 kfree_skb(skb); 5505 return NULL; 5506 } 5507 5508 mac_len = skb->data - skb_mac_header(skb); 5509 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5510 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5511 mac_len - VLAN_HLEN - ETH_TLEN); 5512 } 5513 5514 meta_len = skb_metadata_len(skb); 5515 if (meta_len) { 5516 meta = skb_metadata_end(skb) - meta_len; 5517 memmove(meta + VLAN_HLEN, meta, meta_len); 5518 } 5519 5520 skb->mac_header += VLAN_HLEN; 5521 return skb; 5522 } 5523 5524 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5525 { 5526 struct vlan_hdr *vhdr; 5527 u16 vlan_tci; 5528 5529 if (unlikely(skb_vlan_tag_present(skb))) { 5530 /* vlan_tci is already set-up so leave this for another time */ 5531 return skb; 5532 } 5533 5534 skb = skb_share_check(skb, GFP_ATOMIC); 5535 if (unlikely(!skb)) 5536 goto err_free; 5537 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5538 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5539 goto err_free; 5540 5541 vhdr = (struct vlan_hdr *)skb->data; 5542 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5543 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5544 5545 skb_pull_rcsum(skb, VLAN_HLEN); 5546 vlan_set_encap_proto(skb, vhdr); 5547 5548 skb = skb_reorder_vlan_header(skb); 5549 if (unlikely(!skb)) 5550 goto err_free; 5551 5552 skb_reset_network_header(skb); 5553 if (!skb_transport_header_was_set(skb)) 5554 skb_reset_transport_header(skb); 5555 skb_reset_mac_len(skb); 5556 5557 return skb; 5558 5559 err_free: 5560 kfree_skb(skb); 5561 return NULL; 5562 } 5563 EXPORT_SYMBOL(skb_vlan_untag); 5564 5565 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5566 { 5567 if (!pskb_may_pull(skb, write_len)) 5568 return -ENOMEM; 5569 5570 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5571 return 0; 5572 5573 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5574 } 5575 EXPORT_SYMBOL(skb_ensure_writable); 5576 5577 /* remove VLAN header from packet and update csum accordingly. 5578 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5579 */ 5580 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5581 { 5582 struct vlan_hdr *vhdr; 5583 int offset = skb->data - skb_mac_header(skb); 5584 int err; 5585 5586 if (WARN_ONCE(offset, 5587 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5588 offset)) { 5589 return -EINVAL; 5590 } 5591 5592 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5593 if (unlikely(err)) 5594 return err; 5595 5596 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5597 5598 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5599 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5600 5601 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5602 __skb_pull(skb, VLAN_HLEN); 5603 5604 vlan_set_encap_proto(skb, vhdr); 5605 skb->mac_header += VLAN_HLEN; 5606 5607 if (skb_network_offset(skb) < ETH_HLEN) 5608 skb_set_network_header(skb, ETH_HLEN); 5609 5610 skb_reset_mac_len(skb); 5611 5612 return err; 5613 } 5614 EXPORT_SYMBOL(__skb_vlan_pop); 5615 5616 /* Pop a vlan tag either from hwaccel or from payload. 5617 * Expects skb->data at mac header. 5618 */ 5619 int skb_vlan_pop(struct sk_buff *skb) 5620 { 5621 u16 vlan_tci; 5622 __be16 vlan_proto; 5623 int err; 5624 5625 if (likely(skb_vlan_tag_present(skb))) { 5626 __vlan_hwaccel_clear_tag(skb); 5627 } else { 5628 if (unlikely(!eth_type_vlan(skb->protocol))) 5629 return 0; 5630 5631 err = __skb_vlan_pop(skb, &vlan_tci); 5632 if (err) 5633 return err; 5634 } 5635 /* move next vlan tag to hw accel tag */ 5636 if (likely(!eth_type_vlan(skb->protocol))) 5637 return 0; 5638 5639 vlan_proto = skb->protocol; 5640 err = __skb_vlan_pop(skb, &vlan_tci); 5641 if (unlikely(err)) 5642 return err; 5643 5644 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5645 return 0; 5646 } 5647 EXPORT_SYMBOL(skb_vlan_pop); 5648 5649 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5650 * Expects skb->data at mac header. 5651 */ 5652 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5653 { 5654 if (skb_vlan_tag_present(skb)) { 5655 int offset = skb->data - skb_mac_header(skb); 5656 int err; 5657 5658 if (WARN_ONCE(offset, 5659 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5660 offset)) { 5661 return -EINVAL; 5662 } 5663 5664 err = __vlan_insert_tag(skb, skb->vlan_proto, 5665 skb_vlan_tag_get(skb)); 5666 if (err) 5667 return err; 5668 5669 skb->protocol = skb->vlan_proto; 5670 skb->mac_len += VLAN_HLEN; 5671 5672 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5673 } 5674 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5675 return 0; 5676 } 5677 EXPORT_SYMBOL(skb_vlan_push); 5678 5679 /** 5680 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5681 * 5682 * @skb: Socket buffer to modify 5683 * 5684 * Drop the Ethernet header of @skb. 5685 * 5686 * Expects that skb->data points to the mac header and that no VLAN tags are 5687 * present. 5688 * 5689 * Returns 0 on success, -errno otherwise. 5690 */ 5691 int skb_eth_pop(struct sk_buff *skb) 5692 { 5693 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5694 skb_network_offset(skb) < ETH_HLEN) 5695 return -EPROTO; 5696 5697 skb_pull_rcsum(skb, ETH_HLEN); 5698 skb_reset_mac_header(skb); 5699 skb_reset_mac_len(skb); 5700 5701 return 0; 5702 } 5703 EXPORT_SYMBOL(skb_eth_pop); 5704 5705 /** 5706 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5707 * 5708 * @skb: Socket buffer to modify 5709 * @dst: Destination MAC address of the new header 5710 * @src: Source MAC address of the new header 5711 * 5712 * Prepend @skb with a new Ethernet header. 5713 * 5714 * Expects that skb->data points to the mac header, which must be empty. 5715 * 5716 * Returns 0 on success, -errno otherwise. 5717 */ 5718 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5719 const unsigned char *src) 5720 { 5721 struct ethhdr *eth; 5722 int err; 5723 5724 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5725 return -EPROTO; 5726 5727 err = skb_cow_head(skb, sizeof(*eth)); 5728 if (err < 0) 5729 return err; 5730 5731 skb_push(skb, sizeof(*eth)); 5732 skb_reset_mac_header(skb); 5733 skb_reset_mac_len(skb); 5734 5735 eth = eth_hdr(skb); 5736 ether_addr_copy(eth->h_dest, dst); 5737 ether_addr_copy(eth->h_source, src); 5738 eth->h_proto = skb->protocol; 5739 5740 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5741 5742 return 0; 5743 } 5744 EXPORT_SYMBOL(skb_eth_push); 5745 5746 /* Update the ethertype of hdr and the skb csum value if required. */ 5747 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5748 __be16 ethertype) 5749 { 5750 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5751 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5752 5753 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5754 } 5755 5756 hdr->h_proto = ethertype; 5757 } 5758 5759 /** 5760 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5761 * the packet 5762 * 5763 * @skb: buffer 5764 * @mpls_lse: MPLS label stack entry to push 5765 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5766 * @mac_len: length of the MAC header 5767 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5768 * ethernet 5769 * 5770 * Expects skb->data at mac header. 5771 * 5772 * Returns 0 on success, -errno otherwise. 5773 */ 5774 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5775 int mac_len, bool ethernet) 5776 { 5777 struct mpls_shim_hdr *lse; 5778 int err; 5779 5780 if (unlikely(!eth_p_mpls(mpls_proto))) 5781 return -EINVAL; 5782 5783 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5784 if (skb->encapsulation) 5785 return -EINVAL; 5786 5787 err = skb_cow_head(skb, MPLS_HLEN); 5788 if (unlikely(err)) 5789 return err; 5790 5791 if (!skb->inner_protocol) { 5792 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5793 skb_set_inner_protocol(skb, skb->protocol); 5794 } 5795 5796 skb_push(skb, MPLS_HLEN); 5797 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5798 mac_len); 5799 skb_reset_mac_header(skb); 5800 skb_set_network_header(skb, mac_len); 5801 skb_reset_mac_len(skb); 5802 5803 lse = mpls_hdr(skb); 5804 lse->label_stack_entry = mpls_lse; 5805 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5806 5807 if (ethernet && mac_len >= ETH_HLEN) 5808 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5809 skb->protocol = mpls_proto; 5810 5811 return 0; 5812 } 5813 EXPORT_SYMBOL_GPL(skb_mpls_push); 5814 5815 /** 5816 * skb_mpls_pop() - pop the outermost MPLS header 5817 * 5818 * @skb: buffer 5819 * @next_proto: ethertype of header after popped MPLS header 5820 * @mac_len: length of the MAC header 5821 * @ethernet: flag to indicate if the packet is ethernet 5822 * 5823 * Expects skb->data at mac header. 5824 * 5825 * Returns 0 on success, -errno otherwise. 5826 */ 5827 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5828 bool ethernet) 5829 { 5830 int err; 5831 5832 if (unlikely(!eth_p_mpls(skb->protocol))) 5833 return 0; 5834 5835 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5836 if (unlikely(err)) 5837 return err; 5838 5839 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5840 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5841 mac_len); 5842 5843 __skb_pull(skb, MPLS_HLEN); 5844 skb_reset_mac_header(skb); 5845 skb_set_network_header(skb, mac_len); 5846 5847 if (ethernet && mac_len >= ETH_HLEN) { 5848 struct ethhdr *hdr; 5849 5850 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5851 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5852 skb_mod_eth_type(skb, hdr, next_proto); 5853 } 5854 skb->protocol = next_proto; 5855 5856 return 0; 5857 } 5858 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5859 5860 /** 5861 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5862 * 5863 * @skb: buffer 5864 * @mpls_lse: new MPLS label stack entry to update to 5865 * 5866 * Expects skb->data at mac header. 5867 * 5868 * Returns 0 on success, -errno otherwise. 5869 */ 5870 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5871 { 5872 int err; 5873 5874 if (unlikely(!eth_p_mpls(skb->protocol))) 5875 return -EINVAL; 5876 5877 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5878 if (unlikely(err)) 5879 return err; 5880 5881 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5882 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5883 5884 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5885 } 5886 5887 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5888 5889 return 0; 5890 } 5891 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5892 5893 /** 5894 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5895 * 5896 * @skb: buffer 5897 * 5898 * Expects skb->data at mac header. 5899 * 5900 * Returns 0 on success, -errno otherwise. 5901 */ 5902 int skb_mpls_dec_ttl(struct sk_buff *skb) 5903 { 5904 u32 lse; 5905 u8 ttl; 5906 5907 if (unlikely(!eth_p_mpls(skb->protocol))) 5908 return -EINVAL; 5909 5910 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5911 return -ENOMEM; 5912 5913 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5914 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5915 if (!--ttl) 5916 return -EINVAL; 5917 5918 lse &= ~MPLS_LS_TTL_MASK; 5919 lse |= ttl << MPLS_LS_TTL_SHIFT; 5920 5921 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5922 } 5923 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5924 5925 /** 5926 * alloc_skb_with_frags - allocate skb with page frags 5927 * 5928 * @header_len: size of linear part 5929 * @data_len: needed length in frags 5930 * @max_page_order: max page order desired. 5931 * @errcode: pointer to error code if any 5932 * @gfp_mask: allocation mask 5933 * 5934 * This can be used to allocate a paged skb, given a maximal order for frags. 5935 */ 5936 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5937 unsigned long data_len, 5938 int max_page_order, 5939 int *errcode, 5940 gfp_t gfp_mask) 5941 { 5942 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5943 unsigned long chunk; 5944 struct sk_buff *skb; 5945 struct page *page; 5946 int i; 5947 5948 *errcode = -EMSGSIZE; 5949 /* Note this test could be relaxed, if we succeed to allocate 5950 * high order pages... 5951 */ 5952 if (npages > MAX_SKB_FRAGS) 5953 return NULL; 5954 5955 *errcode = -ENOBUFS; 5956 skb = alloc_skb(header_len, gfp_mask); 5957 if (!skb) 5958 return NULL; 5959 5960 skb->truesize += npages << PAGE_SHIFT; 5961 5962 for (i = 0; npages > 0; i++) { 5963 int order = max_page_order; 5964 5965 while (order) { 5966 if (npages >= 1 << order) { 5967 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5968 __GFP_COMP | 5969 __GFP_NOWARN, 5970 order); 5971 if (page) 5972 goto fill_page; 5973 /* Do not retry other high order allocations */ 5974 order = 1; 5975 max_page_order = 0; 5976 } 5977 order--; 5978 } 5979 page = alloc_page(gfp_mask); 5980 if (!page) 5981 goto failure; 5982 fill_page: 5983 chunk = min_t(unsigned long, data_len, 5984 PAGE_SIZE << order); 5985 skb_fill_page_desc(skb, i, page, 0, chunk); 5986 data_len -= chunk; 5987 npages -= 1 << order; 5988 } 5989 return skb; 5990 5991 failure: 5992 kfree_skb(skb); 5993 return NULL; 5994 } 5995 EXPORT_SYMBOL(alloc_skb_with_frags); 5996 5997 /* carve out the first off bytes from skb when off < headlen */ 5998 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5999 const int headlen, gfp_t gfp_mask) 6000 { 6001 int i; 6002 int size = skb_end_offset(skb); 6003 int new_hlen = headlen - off; 6004 u8 *data; 6005 6006 size = SKB_DATA_ALIGN(size); 6007 6008 if (skb_pfmemalloc(skb)) 6009 gfp_mask |= __GFP_MEMALLOC; 6010 data = kmalloc_reserve(size + 6011 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6012 gfp_mask, NUMA_NO_NODE, NULL); 6013 if (!data) 6014 return -ENOMEM; 6015 6016 size = SKB_WITH_OVERHEAD(ksize(data)); 6017 6018 /* Copy real data, and all frags */ 6019 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6020 skb->len -= off; 6021 6022 memcpy((struct skb_shared_info *)(data + size), 6023 skb_shinfo(skb), 6024 offsetof(struct skb_shared_info, 6025 frags[skb_shinfo(skb)->nr_frags])); 6026 if (skb_cloned(skb)) { 6027 /* drop the old head gracefully */ 6028 if (skb_orphan_frags(skb, gfp_mask)) { 6029 kfree(data); 6030 return -ENOMEM; 6031 } 6032 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6033 skb_frag_ref(skb, i); 6034 if (skb_has_frag_list(skb)) 6035 skb_clone_fraglist(skb); 6036 skb_release_data(skb); 6037 } else { 6038 /* we can reuse existing recount- all we did was 6039 * relocate values 6040 */ 6041 skb_free_head(skb); 6042 } 6043 6044 skb->head = data; 6045 skb->data = data; 6046 skb->head_frag = 0; 6047 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6048 skb->end = size; 6049 #else 6050 skb->end = skb->head + size; 6051 #endif 6052 skb_set_tail_pointer(skb, skb_headlen(skb)); 6053 skb_headers_offset_update(skb, 0); 6054 skb->cloned = 0; 6055 skb->hdr_len = 0; 6056 skb->nohdr = 0; 6057 atomic_set(&skb_shinfo(skb)->dataref, 1); 6058 6059 return 0; 6060 } 6061 6062 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6063 6064 /* carve out the first eat bytes from skb's frag_list. May recurse into 6065 * pskb_carve() 6066 */ 6067 static int pskb_carve_frag_list(struct sk_buff *skb, 6068 struct skb_shared_info *shinfo, int eat, 6069 gfp_t gfp_mask) 6070 { 6071 struct sk_buff *list = shinfo->frag_list; 6072 struct sk_buff *clone = NULL; 6073 struct sk_buff *insp = NULL; 6074 6075 do { 6076 if (!list) { 6077 pr_err("Not enough bytes to eat. Want %d\n", eat); 6078 return -EFAULT; 6079 } 6080 if (list->len <= eat) { 6081 /* Eaten as whole. */ 6082 eat -= list->len; 6083 list = list->next; 6084 insp = list; 6085 } else { 6086 /* Eaten partially. */ 6087 if (skb_shared(list)) { 6088 clone = skb_clone(list, gfp_mask); 6089 if (!clone) 6090 return -ENOMEM; 6091 insp = list->next; 6092 list = clone; 6093 } else { 6094 /* This may be pulled without problems. */ 6095 insp = list; 6096 } 6097 if (pskb_carve(list, eat, gfp_mask) < 0) { 6098 kfree_skb(clone); 6099 return -ENOMEM; 6100 } 6101 break; 6102 } 6103 } while (eat); 6104 6105 /* Free pulled out fragments. */ 6106 while ((list = shinfo->frag_list) != insp) { 6107 shinfo->frag_list = list->next; 6108 kfree_skb(list); 6109 } 6110 /* And insert new clone at head. */ 6111 if (clone) { 6112 clone->next = list; 6113 shinfo->frag_list = clone; 6114 } 6115 return 0; 6116 } 6117 6118 /* carve off first len bytes from skb. Split line (off) is in the 6119 * non-linear part of skb 6120 */ 6121 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6122 int pos, gfp_t gfp_mask) 6123 { 6124 int i, k = 0; 6125 int size = skb_end_offset(skb); 6126 u8 *data; 6127 const int nfrags = skb_shinfo(skb)->nr_frags; 6128 struct skb_shared_info *shinfo; 6129 6130 size = SKB_DATA_ALIGN(size); 6131 6132 if (skb_pfmemalloc(skb)) 6133 gfp_mask |= __GFP_MEMALLOC; 6134 data = kmalloc_reserve(size + 6135 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6136 gfp_mask, NUMA_NO_NODE, NULL); 6137 if (!data) 6138 return -ENOMEM; 6139 6140 size = SKB_WITH_OVERHEAD(ksize(data)); 6141 6142 memcpy((struct skb_shared_info *)(data + size), 6143 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6144 if (skb_orphan_frags(skb, gfp_mask)) { 6145 kfree(data); 6146 return -ENOMEM; 6147 } 6148 shinfo = (struct skb_shared_info *)(data + size); 6149 for (i = 0; i < nfrags; i++) { 6150 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6151 6152 if (pos + fsize > off) { 6153 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6154 6155 if (pos < off) { 6156 /* Split frag. 6157 * We have two variants in this case: 6158 * 1. Move all the frag to the second 6159 * part, if it is possible. F.e. 6160 * this approach is mandatory for TUX, 6161 * where splitting is expensive. 6162 * 2. Split is accurately. We make this. 6163 */ 6164 skb_frag_off_add(&shinfo->frags[0], off - pos); 6165 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6166 } 6167 skb_frag_ref(skb, i); 6168 k++; 6169 } 6170 pos += fsize; 6171 } 6172 shinfo->nr_frags = k; 6173 if (skb_has_frag_list(skb)) 6174 skb_clone_fraglist(skb); 6175 6176 /* split line is in frag list */ 6177 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6178 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6179 if (skb_has_frag_list(skb)) 6180 kfree_skb_list(skb_shinfo(skb)->frag_list); 6181 kfree(data); 6182 return -ENOMEM; 6183 } 6184 skb_release_data(skb); 6185 6186 skb->head = data; 6187 skb->head_frag = 0; 6188 skb->data = data; 6189 #ifdef NET_SKBUFF_DATA_USES_OFFSET 6190 skb->end = size; 6191 #else 6192 skb->end = skb->head + size; 6193 #endif 6194 skb_reset_tail_pointer(skb); 6195 skb_headers_offset_update(skb, 0); 6196 skb->cloned = 0; 6197 skb->hdr_len = 0; 6198 skb->nohdr = 0; 6199 skb->len -= off; 6200 skb->data_len = skb->len; 6201 atomic_set(&skb_shinfo(skb)->dataref, 1); 6202 return 0; 6203 } 6204 6205 /* remove len bytes from the beginning of the skb */ 6206 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6207 { 6208 int headlen = skb_headlen(skb); 6209 6210 if (len < headlen) 6211 return pskb_carve_inside_header(skb, len, headlen, gfp); 6212 else 6213 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6214 } 6215 6216 /* Extract to_copy bytes starting at off from skb, and return this in 6217 * a new skb 6218 */ 6219 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6220 int to_copy, gfp_t gfp) 6221 { 6222 struct sk_buff *clone = skb_clone(skb, gfp); 6223 6224 if (!clone) 6225 return NULL; 6226 6227 if (pskb_carve(clone, off, gfp) < 0 || 6228 pskb_trim(clone, to_copy)) { 6229 kfree_skb(clone); 6230 return NULL; 6231 } 6232 return clone; 6233 } 6234 EXPORT_SYMBOL(pskb_extract); 6235 6236 /** 6237 * skb_condense - try to get rid of fragments/frag_list if possible 6238 * @skb: buffer 6239 * 6240 * Can be used to save memory before skb is added to a busy queue. 6241 * If packet has bytes in frags and enough tail room in skb->head, 6242 * pull all of them, so that we can free the frags right now and adjust 6243 * truesize. 6244 * Notes: 6245 * We do not reallocate skb->head thus can not fail. 6246 * Caller must re-evaluate skb->truesize if needed. 6247 */ 6248 void skb_condense(struct sk_buff *skb) 6249 { 6250 if (skb->data_len) { 6251 if (skb->data_len > skb->end - skb->tail || 6252 skb_cloned(skb)) 6253 return; 6254 6255 /* Nice, we can free page frag(s) right now */ 6256 __pskb_pull_tail(skb, skb->data_len); 6257 } 6258 /* At this point, skb->truesize might be over estimated, 6259 * because skb had a fragment, and fragments do not tell 6260 * their truesize. 6261 * When we pulled its content into skb->head, fragment 6262 * was freed, but __pskb_pull_tail() could not possibly 6263 * adjust skb->truesize, not knowing the frag truesize. 6264 */ 6265 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6266 } 6267 6268 #ifdef CONFIG_SKB_EXTENSIONS 6269 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6270 { 6271 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6272 } 6273 6274 /** 6275 * __skb_ext_alloc - allocate a new skb extensions storage 6276 * 6277 * @flags: See kmalloc(). 6278 * 6279 * Returns the newly allocated pointer. The pointer can later attached to a 6280 * skb via __skb_ext_set(). 6281 * Note: caller must handle the skb_ext as an opaque data. 6282 */ 6283 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6284 { 6285 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6286 6287 if (new) { 6288 memset(new->offset, 0, sizeof(new->offset)); 6289 refcount_set(&new->refcnt, 1); 6290 } 6291 6292 return new; 6293 } 6294 6295 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6296 unsigned int old_active) 6297 { 6298 struct skb_ext *new; 6299 6300 if (refcount_read(&old->refcnt) == 1) 6301 return old; 6302 6303 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6304 if (!new) 6305 return NULL; 6306 6307 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6308 refcount_set(&new->refcnt, 1); 6309 6310 #ifdef CONFIG_XFRM 6311 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6312 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6313 unsigned int i; 6314 6315 for (i = 0; i < sp->len; i++) 6316 xfrm_state_hold(sp->xvec[i]); 6317 } 6318 #endif 6319 __skb_ext_put(old); 6320 return new; 6321 } 6322 6323 /** 6324 * __skb_ext_set - attach the specified extension storage to this skb 6325 * @skb: buffer 6326 * @id: extension id 6327 * @ext: extension storage previously allocated via __skb_ext_alloc() 6328 * 6329 * Existing extensions, if any, are cleared. 6330 * 6331 * Returns the pointer to the extension. 6332 */ 6333 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6334 struct skb_ext *ext) 6335 { 6336 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6337 6338 skb_ext_put(skb); 6339 newlen = newoff + skb_ext_type_len[id]; 6340 ext->chunks = newlen; 6341 ext->offset[id] = newoff; 6342 skb->extensions = ext; 6343 skb->active_extensions = 1 << id; 6344 return skb_ext_get_ptr(ext, id); 6345 } 6346 6347 /** 6348 * skb_ext_add - allocate space for given extension, COW if needed 6349 * @skb: buffer 6350 * @id: extension to allocate space for 6351 * 6352 * Allocates enough space for the given extension. 6353 * If the extension is already present, a pointer to that extension 6354 * is returned. 6355 * 6356 * If the skb was cloned, COW applies and the returned memory can be 6357 * modified without changing the extension space of clones buffers. 6358 * 6359 * Returns pointer to the extension or NULL on allocation failure. 6360 */ 6361 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6362 { 6363 struct skb_ext *new, *old = NULL; 6364 unsigned int newlen, newoff; 6365 6366 if (skb->active_extensions) { 6367 old = skb->extensions; 6368 6369 new = skb_ext_maybe_cow(old, skb->active_extensions); 6370 if (!new) 6371 return NULL; 6372 6373 if (__skb_ext_exist(new, id)) 6374 goto set_active; 6375 6376 newoff = new->chunks; 6377 } else { 6378 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6379 6380 new = __skb_ext_alloc(GFP_ATOMIC); 6381 if (!new) 6382 return NULL; 6383 } 6384 6385 newlen = newoff + skb_ext_type_len[id]; 6386 new->chunks = newlen; 6387 new->offset[id] = newoff; 6388 set_active: 6389 skb->slow_gro = 1; 6390 skb->extensions = new; 6391 skb->active_extensions |= 1 << id; 6392 return skb_ext_get_ptr(new, id); 6393 } 6394 EXPORT_SYMBOL(skb_ext_add); 6395 6396 #ifdef CONFIG_XFRM 6397 static void skb_ext_put_sp(struct sec_path *sp) 6398 { 6399 unsigned int i; 6400 6401 for (i = 0; i < sp->len; i++) 6402 xfrm_state_put(sp->xvec[i]); 6403 } 6404 #endif 6405 6406 #ifdef CONFIG_MCTP_FLOWS 6407 static void skb_ext_put_mctp(struct mctp_flow *flow) 6408 { 6409 if (flow->key) 6410 mctp_key_unref(flow->key); 6411 } 6412 #endif 6413 6414 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6415 { 6416 struct skb_ext *ext = skb->extensions; 6417 6418 skb->active_extensions &= ~(1 << id); 6419 if (skb->active_extensions == 0) { 6420 skb->extensions = NULL; 6421 __skb_ext_put(ext); 6422 #ifdef CONFIG_XFRM 6423 } else if (id == SKB_EXT_SEC_PATH && 6424 refcount_read(&ext->refcnt) == 1) { 6425 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6426 6427 skb_ext_put_sp(sp); 6428 sp->len = 0; 6429 #endif 6430 } 6431 } 6432 EXPORT_SYMBOL(__skb_ext_del); 6433 6434 void __skb_ext_put(struct skb_ext *ext) 6435 { 6436 /* If this is last clone, nothing can increment 6437 * it after check passes. Avoids one atomic op. 6438 */ 6439 if (refcount_read(&ext->refcnt) == 1) 6440 goto free_now; 6441 6442 if (!refcount_dec_and_test(&ext->refcnt)) 6443 return; 6444 free_now: 6445 #ifdef CONFIG_XFRM 6446 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6447 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6448 #endif 6449 #ifdef CONFIG_MCTP_FLOWS 6450 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6451 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6452 #endif 6453 6454 kmem_cache_free(skbuff_ext_cache, ext); 6455 } 6456 EXPORT_SYMBOL(__skb_ext_put); 6457 #endif /* CONFIG_SKB_EXTENSIONS */ 6458