xref: /openbmc/linux/net/core/skbuff.c (revision 2ff40400)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 
78 struct kmem_cache *skbuff_head_cache __read_mostly;
79 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
80 
81 /**
82  *	skb_panic - private function for out-of-line support
83  *	@skb:	buffer
84  *	@sz:	size
85  *	@addr:	address
86  *	@msg:	skb_over_panic or skb_under_panic
87  *
88  *	Out-of-line support for skb_put() and skb_push().
89  *	Called via the wrapper skb_over_panic() or skb_under_panic().
90  *	Keep out of line to prevent kernel bloat.
91  *	__builtin_return_address is not used because it is not always reliable.
92  */
93 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
94 		      const char msg[])
95 {
96 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
97 		 msg, addr, skb->len, sz, skb->head, skb->data,
98 		 (unsigned long)skb->tail, (unsigned long)skb->end,
99 		 skb->dev ? skb->dev->name : "<NULL>");
100 	BUG();
101 }
102 
103 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
104 {
105 	skb_panic(skb, sz, addr, __func__);
106 }
107 
108 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 	skb_panic(skb, sz, addr, __func__);
111 }
112 
113 /*
114  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
115  * the caller if emergency pfmemalloc reserves are being used. If it is and
116  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
117  * may be used. Otherwise, the packet data may be discarded until enough
118  * memory is free
119  */
120 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
121 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
122 
123 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
124 			       unsigned long ip, bool *pfmemalloc)
125 {
126 	void *obj;
127 	bool ret_pfmemalloc = false;
128 
129 	/*
130 	 * Try a regular allocation, when that fails and we're not entitled
131 	 * to the reserves, fail.
132 	 */
133 	obj = kmalloc_node_track_caller(size,
134 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
135 					node);
136 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
137 		goto out;
138 
139 	/* Try again but now we are using pfmemalloc reserves */
140 	ret_pfmemalloc = true;
141 	obj = kmalloc_node_track_caller(size, flags, node);
142 
143 out:
144 	if (pfmemalloc)
145 		*pfmemalloc = ret_pfmemalloc;
146 
147 	return obj;
148 }
149 
150 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
151  *	'private' fields and also do memory statistics to find all the
152  *	[BEEP] leaks.
153  *
154  */
155 
156 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
157 {
158 	struct sk_buff *skb;
159 
160 	/* Get the HEAD */
161 	skb = kmem_cache_alloc_node(skbuff_head_cache,
162 				    gfp_mask & ~__GFP_DMA, node);
163 	if (!skb)
164 		goto out;
165 
166 	/*
167 	 * Only clear those fields we need to clear, not those that we will
168 	 * actually initialise below. Hence, don't put any more fields after
169 	 * the tail pointer in struct sk_buff!
170 	 */
171 	memset(skb, 0, offsetof(struct sk_buff, tail));
172 	skb->head = NULL;
173 	skb->truesize = sizeof(struct sk_buff);
174 	atomic_set(&skb->users, 1);
175 
176 	skb->mac_header = (typeof(skb->mac_header))~0U;
177 out:
178 	return skb;
179 }
180 
181 /**
182  *	__alloc_skb	-	allocate a network buffer
183  *	@size: size to allocate
184  *	@gfp_mask: allocation mask
185  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
186  *		instead of head cache and allocate a cloned (child) skb.
187  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
188  *		allocations in case the data is required for writeback
189  *	@node: numa node to allocate memory on
190  *
191  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
192  *	tail room of at least size bytes. The object has a reference count
193  *	of one. The return is the buffer. On a failure the return is %NULL.
194  *
195  *	Buffers may only be allocated from interrupts using a @gfp_mask of
196  *	%GFP_ATOMIC.
197  */
198 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
199 			    int flags, int node)
200 {
201 	struct kmem_cache *cache;
202 	struct skb_shared_info *shinfo;
203 	struct sk_buff *skb;
204 	u8 *data;
205 	bool pfmemalloc;
206 
207 	cache = (flags & SKB_ALLOC_FCLONE)
208 		? skbuff_fclone_cache : skbuff_head_cache;
209 
210 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
211 		gfp_mask |= __GFP_MEMALLOC;
212 
213 	/* Get the HEAD */
214 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
215 	if (!skb)
216 		goto out;
217 	prefetchw(skb);
218 
219 	/* We do our best to align skb_shared_info on a separate cache
220 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
221 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
222 	 * Both skb->head and skb_shared_info are cache line aligned.
223 	 */
224 	size = SKB_DATA_ALIGN(size);
225 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
226 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
227 	if (!data)
228 		goto nodata;
229 	/* kmalloc(size) might give us more room than requested.
230 	 * Put skb_shared_info exactly at the end of allocated zone,
231 	 * to allow max possible filling before reallocation.
232 	 */
233 	size = SKB_WITH_OVERHEAD(ksize(data));
234 	prefetchw(data + size);
235 
236 	/*
237 	 * Only clear those fields we need to clear, not those that we will
238 	 * actually initialise below. Hence, don't put any more fields after
239 	 * the tail pointer in struct sk_buff!
240 	 */
241 	memset(skb, 0, offsetof(struct sk_buff, tail));
242 	/* Account for allocated memory : skb + skb->head */
243 	skb->truesize = SKB_TRUESIZE(size);
244 	skb->pfmemalloc = pfmemalloc;
245 	atomic_set(&skb->users, 1);
246 	skb->head = data;
247 	skb->data = data;
248 	skb_reset_tail_pointer(skb);
249 	skb->end = skb->tail + size;
250 	skb->mac_header = (typeof(skb->mac_header))~0U;
251 	skb->transport_header = (typeof(skb->transport_header))~0U;
252 
253 	/* make sure we initialize shinfo sequentially */
254 	shinfo = skb_shinfo(skb);
255 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
256 	atomic_set(&shinfo->dataref, 1);
257 	kmemcheck_annotate_variable(shinfo->destructor_arg);
258 
259 	if (flags & SKB_ALLOC_FCLONE) {
260 		struct sk_buff_fclones *fclones;
261 
262 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
263 
264 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
265 		skb->fclone = SKB_FCLONE_ORIG;
266 		atomic_set(&fclones->fclone_ref, 1);
267 
268 		fclones->skb2.fclone = SKB_FCLONE_FREE;
269 		fclones->skb2.pfmemalloc = pfmemalloc;
270 	}
271 out:
272 	return skb;
273 nodata:
274 	kmem_cache_free(cache, skb);
275 	skb = NULL;
276 	goto out;
277 }
278 EXPORT_SYMBOL(__alloc_skb);
279 
280 /**
281  * build_skb - build a network buffer
282  * @data: data buffer provided by caller
283  * @frag_size: size of fragment, or 0 if head was kmalloced
284  *
285  * Allocate a new &sk_buff. Caller provides space holding head and
286  * skb_shared_info. @data must have been allocated by kmalloc() only if
287  * @frag_size is 0, otherwise data should come from the page allocator.
288  * The return is the new skb buffer.
289  * On a failure the return is %NULL, and @data is not freed.
290  * Notes :
291  *  Before IO, driver allocates only data buffer where NIC put incoming frame
292  *  Driver should add room at head (NET_SKB_PAD) and
293  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
294  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
295  *  before giving packet to stack.
296  *  RX rings only contains data buffers, not full skbs.
297  */
298 struct sk_buff *build_skb(void *data, unsigned int frag_size)
299 {
300 	struct skb_shared_info *shinfo;
301 	struct sk_buff *skb;
302 	unsigned int size = frag_size ? : ksize(data);
303 
304 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
305 	if (!skb)
306 		return NULL;
307 
308 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
309 
310 	memset(skb, 0, offsetof(struct sk_buff, tail));
311 	skb->truesize = SKB_TRUESIZE(size);
312 	skb->head_frag = frag_size != 0;
313 	atomic_set(&skb->users, 1);
314 	skb->head = data;
315 	skb->data = data;
316 	skb_reset_tail_pointer(skb);
317 	skb->end = skb->tail + size;
318 	skb->mac_header = (typeof(skb->mac_header))~0U;
319 	skb->transport_header = (typeof(skb->transport_header))~0U;
320 
321 	/* make sure we initialize shinfo sequentially */
322 	shinfo = skb_shinfo(skb);
323 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
324 	atomic_set(&shinfo->dataref, 1);
325 	kmemcheck_annotate_variable(shinfo->destructor_arg);
326 
327 	return skb;
328 }
329 EXPORT_SYMBOL(build_skb);
330 
331 struct netdev_alloc_cache {
332 	struct page_frag	frag;
333 	/* we maintain a pagecount bias, so that we dont dirty cache line
334 	 * containing page->_count every time we allocate a fragment.
335 	 */
336 	unsigned int		pagecnt_bias;
337 };
338 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
339 
340 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
341 {
342 	struct netdev_alloc_cache *nc;
343 	void *data = NULL;
344 	int order;
345 	unsigned long flags;
346 
347 	local_irq_save(flags);
348 	nc = this_cpu_ptr(&netdev_alloc_cache);
349 	if (unlikely(!nc->frag.page)) {
350 refill:
351 		for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
352 			gfp_t gfp = gfp_mask;
353 
354 			if (order)
355 				gfp |= __GFP_COMP | __GFP_NOWARN;
356 			nc->frag.page = alloc_pages(gfp, order);
357 			if (likely(nc->frag.page))
358 				break;
359 			if (--order < 0)
360 				goto end;
361 		}
362 		nc->frag.size = PAGE_SIZE << order;
363 		/* Even if we own the page, we do not use atomic_set().
364 		 * This would break get_page_unless_zero() users.
365 		 */
366 		atomic_add(NETDEV_PAGECNT_MAX_BIAS - 1,
367 			   &nc->frag.page->_count);
368 		nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
369 		nc->frag.offset = 0;
370 	}
371 
372 	if (nc->frag.offset + fragsz > nc->frag.size) {
373 		if (atomic_read(&nc->frag.page->_count) != nc->pagecnt_bias) {
374 			if (!atomic_sub_and_test(nc->pagecnt_bias,
375 						 &nc->frag.page->_count))
376 				goto refill;
377 			/* OK, page count is 0, we can safely set it */
378 			atomic_set(&nc->frag.page->_count,
379 				   NETDEV_PAGECNT_MAX_BIAS);
380 		} else {
381 			atomic_add(NETDEV_PAGECNT_MAX_BIAS - nc->pagecnt_bias,
382 				   &nc->frag.page->_count);
383 		}
384 		nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
385 		nc->frag.offset = 0;
386 	}
387 
388 	data = page_address(nc->frag.page) + nc->frag.offset;
389 	nc->frag.offset += fragsz;
390 	nc->pagecnt_bias--;
391 end:
392 	local_irq_restore(flags);
393 	return data;
394 }
395 
396 /**
397  * netdev_alloc_frag - allocate a page fragment
398  * @fragsz: fragment size
399  *
400  * Allocates a frag from a page for receive buffer.
401  * Uses GFP_ATOMIC allocations.
402  */
403 void *netdev_alloc_frag(unsigned int fragsz)
404 {
405 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
406 }
407 EXPORT_SYMBOL(netdev_alloc_frag);
408 
409 /**
410  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
411  *	@dev: network device to receive on
412  *	@length: length to allocate
413  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
414  *
415  *	Allocate a new &sk_buff and assign it a usage count of one. The
416  *	buffer has unspecified headroom built in. Users should allocate
417  *	the headroom they think they need without accounting for the
418  *	built in space. The built in space is used for optimisations.
419  *
420  *	%NULL is returned if there is no free memory.
421  */
422 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
423 				   unsigned int length, gfp_t gfp_mask)
424 {
425 	struct sk_buff *skb = NULL;
426 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
427 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
428 
429 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
430 		void *data;
431 
432 		if (sk_memalloc_socks())
433 			gfp_mask |= __GFP_MEMALLOC;
434 
435 		data = __netdev_alloc_frag(fragsz, gfp_mask);
436 
437 		if (likely(data)) {
438 			skb = build_skb(data, fragsz);
439 			if (unlikely(!skb))
440 				put_page(virt_to_head_page(data));
441 		}
442 	} else {
443 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
444 				  SKB_ALLOC_RX, NUMA_NO_NODE);
445 	}
446 	if (likely(skb)) {
447 		skb_reserve(skb, NET_SKB_PAD);
448 		skb->dev = dev;
449 	}
450 	return skb;
451 }
452 EXPORT_SYMBOL(__netdev_alloc_skb);
453 
454 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
455 		     int size, unsigned int truesize)
456 {
457 	skb_fill_page_desc(skb, i, page, off, size);
458 	skb->len += size;
459 	skb->data_len += size;
460 	skb->truesize += truesize;
461 }
462 EXPORT_SYMBOL(skb_add_rx_frag);
463 
464 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
465 			  unsigned int truesize)
466 {
467 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
468 
469 	skb_frag_size_add(frag, size);
470 	skb->len += size;
471 	skb->data_len += size;
472 	skb->truesize += truesize;
473 }
474 EXPORT_SYMBOL(skb_coalesce_rx_frag);
475 
476 static void skb_drop_list(struct sk_buff **listp)
477 {
478 	kfree_skb_list(*listp);
479 	*listp = NULL;
480 }
481 
482 static inline void skb_drop_fraglist(struct sk_buff *skb)
483 {
484 	skb_drop_list(&skb_shinfo(skb)->frag_list);
485 }
486 
487 static void skb_clone_fraglist(struct sk_buff *skb)
488 {
489 	struct sk_buff *list;
490 
491 	skb_walk_frags(skb, list)
492 		skb_get(list);
493 }
494 
495 static void skb_free_head(struct sk_buff *skb)
496 {
497 	if (skb->head_frag)
498 		put_page(virt_to_head_page(skb->head));
499 	else
500 		kfree(skb->head);
501 }
502 
503 static void skb_release_data(struct sk_buff *skb)
504 {
505 	struct skb_shared_info *shinfo = skb_shinfo(skb);
506 	int i;
507 
508 	if (skb->cloned &&
509 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
510 			      &shinfo->dataref))
511 		return;
512 
513 	for (i = 0; i < shinfo->nr_frags; i++)
514 		__skb_frag_unref(&shinfo->frags[i]);
515 
516 	/*
517 	 * If skb buf is from userspace, we need to notify the caller
518 	 * the lower device DMA has done;
519 	 */
520 	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
521 		struct ubuf_info *uarg;
522 
523 		uarg = shinfo->destructor_arg;
524 		if (uarg->callback)
525 			uarg->callback(uarg, true);
526 	}
527 
528 	if (shinfo->frag_list)
529 		kfree_skb_list(shinfo->frag_list);
530 
531 	skb_free_head(skb);
532 }
533 
534 /*
535  *	Free an skbuff by memory without cleaning the state.
536  */
537 static void kfree_skbmem(struct sk_buff *skb)
538 {
539 	struct sk_buff_fclones *fclones;
540 
541 	switch (skb->fclone) {
542 	case SKB_FCLONE_UNAVAILABLE:
543 		kmem_cache_free(skbuff_head_cache, skb);
544 		break;
545 
546 	case SKB_FCLONE_ORIG:
547 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
548 		if (atomic_dec_and_test(&fclones->fclone_ref))
549 			kmem_cache_free(skbuff_fclone_cache, fclones);
550 		break;
551 
552 	case SKB_FCLONE_CLONE:
553 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
554 
555 		/* The clone portion is available for
556 		 * fast-cloning again.
557 		 */
558 		skb->fclone = SKB_FCLONE_FREE;
559 
560 		if (atomic_dec_and_test(&fclones->fclone_ref))
561 			kmem_cache_free(skbuff_fclone_cache, fclones);
562 		break;
563 	}
564 }
565 
566 static void skb_release_head_state(struct sk_buff *skb)
567 {
568 	skb_dst_drop(skb);
569 #ifdef CONFIG_XFRM
570 	secpath_put(skb->sp);
571 #endif
572 	if (skb->destructor) {
573 		WARN_ON(in_irq());
574 		skb->destructor(skb);
575 	}
576 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
577 	nf_conntrack_put(skb->nfct);
578 #endif
579 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
580 	nf_bridge_put(skb->nf_bridge);
581 #endif
582 /* XXX: IS this still necessary? - JHS */
583 #ifdef CONFIG_NET_SCHED
584 	skb->tc_index = 0;
585 #ifdef CONFIG_NET_CLS_ACT
586 	skb->tc_verd = 0;
587 #endif
588 #endif
589 }
590 
591 /* Free everything but the sk_buff shell. */
592 static void skb_release_all(struct sk_buff *skb)
593 {
594 	skb_release_head_state(skb);
595 	if (likely(skb->head))
596 		skb_release_data(skb);
597 }
598 
599 /**
600  *	__kfree_skb - private function
601  *	@skb: buffer
602  *
603  *	Free an sk_buff. Release anything attached to the buffer.
604  *	Clean the state. This is an internal helper function. Users should
605  *	always call kfree_skb
606  */
607 
608 void __kfree_skb(struct sk_buff *skb)
609 {
610 	skb_release_all(skb);
611 	kfree_skbmem(skb);
612 }
613 EXPORT_SYMBOL(__kfree_skb);
614 
615 /**
616  *	kfree_skb - free an sk_buff
617  *	@skb: buffer to free
618  *
619  *	Drop a reference to the buffer and free it if the usage count has
620  *	hit zero.
621  */
622 void kfree_skb(struct sk_buff *skb)
623 {
624 	if (unlikely(!skb))
625 		return;
626 	if (likely(atomic_read(&skb->users) == 1))
627 		smp_rmb();
628 	else if (likely(!atomic_dec_and_test(&skb->users)))
629 		return;
630 	trace_kfree_skb(skb, __builtin_return_address(0));
631 	__kfree_skb(skb);
632 }
633 EXPORT_SYMBOL(kfree_skb);
634 
635 void kfree_skb_list(struct sk_buff *segs)
636 {
637 	while (segs) {
638 		struct sk_buff *next = segs->next;
639 
640 		kfree_skb(segs);
641 		segs = next;
642 	}
643 }
644 EXPORT_SYMBOL(kfree_skb_list);
645 
646 /**
647  *	skb_tx_error - report an sk_buff xmit error
648  *	@skb: buffer that triggered an error
649  *
650  *	Report xmit error if a device callback is tracking this skb.
651  *	skb must be freed afterwards.
652  */
653 void skb_tx_error(struct sk_buff *skb)
654 {
655 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
656 		struct ubuf_info *uarg;
657 
658 		uarg = skb_shinfo(skb)->destructor_arg;
659 		if (uarg->callback)
660 			uarg->callback(uarg, false);
661 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
662 	}
663 }
664 EXPORT_SYMBOL(skb_tx_error);
665 
666 /**
667  *	consume_skb - free an skbuff
668  *	@skb: buffer to free
669  *
670  *	Drop a ref to the buffer and free it if the usage count has hit zero
671  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
672  *	is being dropped after a failure and notes that
673  */
674 void consume_skb(struct sk_buff *skb)
675 {
676 	if (unlikely(!skb))
677 		return;
678 	if (likely(atomic_read(&skb->users) == 1))
679 		smp_rmb();
680 	else if (likely(!atomic_dec_and_test(&skb->users)))
681 		return;
682 	trace_consume_skb(skb);
683 	__kfree_skb(skb);
684 }
685 EXPORT_SYMBOL(consume_skb);
686 
687 /* Make sure a field is enclosed inside headers_start/headers_end section */
688 #define CHECK_SKB_FIELD(field) \
689 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
690 		     offsetof(struct sk_buff, headers_start));	\
691 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
692 		     offsetof(struct sk_buff, headers_end));	\
693 
694 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
695 {
696 	new->tstamp		= old->tstamp;
697 	/* We do not copy old->sk */
698 	new->dev		= old->dev;
699 	memcpy(new->cb, old->cb, sizeof(old->cb));
700 	skb_dst_copy(new, old);
701 #ifdef CONFIG_XFRM
702 	new->sp			= secpath_get(old->sp);
703 #endif
704 	__nf_copy(new, old, false);
705 
706 	/* Note : this field could be in headers_start/headers_end section
707 	 * It is not yet because we do not want to have a 16 bit hole
708 	 */
709 	new->queue_mapping = old->queue_mapping;
710 
711 	memcpy(&new->headers_start, &old->headers_start,
712 	       offsetof(struct sk_buff, headers_end) -
713 	       offsetof(struct sk_buff, headers_start));
714 	CHECK_SKB_FIELD(protocol);
715 	CHECK_SKB_FIELD(csum);
716 	CHECK_SKB_FIELD(hash);
717 	CHECK_SKB_FIELD(priority);
718 	CHECK_SKB_FIELD(skb_iif);
719 	CHECK_SKB_FIELD(vlan_proto);
720 	CHECK_SKB_FIELD(vlan_tci);
721 	CHECK_SKB_FIELD(transport_header);
722 	CHECK_SKB_FIELD(network_header);
723 	CHECK_SKB_FIELD(mac_header);
724 	CHECK_SKB_FIELD(inner_protocol);
725 	CHECK_SKB_FIELD(inner_transport_header);
726 	CHECK_SKB_FIELD(inner_network_header);
727 	CHECK_SKB_FIELD(inner_mac_header);
728 	CHECK_SKB_FIELD(mark);
729 #ifdef CONFIG_NETWORK_SECMARK
730 	CHECK_SKB_FIELD(secmark);
731 #endif
732 #ifdef CONFIG_NET_RX_BUSY_POLL
733 	CHECK_SKB_FIELD(napi_id);
734 #endif
735 #ifdef CONFIG_NET_SCHED
736 	CHECK_SKB_FIELD(tc_index);
737 #ifdef CONFIG_NET_CLS_ACT
738 	CHECK_SKB_FIELD(tc_verd);
739 #endif
740 #endif
741 
742 }
743 
744 /*
745  * You should not add any new code to this function.  Add it to
746  * __copy_skb_header above instead.
747  */
748 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
749 {
750 #define C(x) n->x = skb->x
751 
752 	n->next = n->prev = NULL;
753 	n->sk = NULL;
754 	__copy_skb_header(n, skb);
755 
756 	C(len);
757 	C(data_len);
758 	C(mac_len);
759 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
760 	n->cloned = 1;
761 	n->nohdr = 0;
762 	n->destructor = NULL;
763 	C(tail);
764 	C(end);
765 	C(head);
766 	C(head_frag);
767 	C(data);
768 	C(truesize);
769 	atomic_set(&n->users, 1);
770 
771 	atomic_inc(&(skb_shinfo(skb)->dataref));
772 	skb->cloned = 1;
773 
774 	return n;
775 #undef C
776 }
777 
778 /**
779  *	skb_morph	-	morph one skb into another
780  *	@dst: the skb to receive the contents
781  *	@src: the skb to supply the contents
782  *
783  *	This is identical to skb_clone except that the target skb is
784  *	supplied by the user.
785  *
786  *	The target skb is returned upon exit.
787  */
788 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
789 {
790 	skb_release_all(dst);
791 	return __skb_clone(dst, src);
792 }
793 EXPORT_SYMBOL_GPL(skb_morph);
794 
795 /**
796  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
797  *	@skb: the skb to modify
798  *	@gfp_mask: allocation priority
799  *
800  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
801  *	It will copy all frags into kernel and drop the reference
802  *	to userspace pages.
803  *
804  *	If this function is called from an interrupt gfp_mask() must be
805  *	%GFP_ATOMIC.
806  *
807  *	Returns 0 on success or a negative error code on failure
808  *	to allocate kernel memory to copy to.
809  */
810 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
811 {
812 	int i;
813 	int num_frags = skb_shinfo(skb)->nr_frags;
814 	struct page *page, *head = NULL;
815 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
816 
817 	for (i = 0; i < num_frags; i++) {
818 		u8 *vaddr;
819 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
820 
821 		page = alloc_page(gfp_mask);
822 		if (!page) {
823 			while (head) {
824 				struct page *next = (struct page *)page_private(head);
825 				put_page(head);
826 				head = next;
827 			}
828 			return -ENOMEM;
829 		}
830 		vaddr = kmap_atomic(skb_frag_page(f));
831 		memcpy(page_address(page),
832 		       vaddr + f->page_offset, skb_frag_size(f));
833 		kunmap_atomic(vaddr);
834 		set_page_private(page, (unsigned long)head);
835 		head = page;
836 	}
837 
838 	/* skb frags release userspace buffers */
839 	for (i = 0; i < num_frags; i++)
840 		skb_frag_unref(skb, i);
841 
842 	uarg->callback(uarg, false);
843 
844 	/* skb frags point to kernel buffers */
845 	for (i = num_frags - 1; i >= 0; i--) {
846 		__skb_fill_page_desc(skb, i, head, 0,
847 				     skb_shinfo(skb)->frags[i].size);
848 		head = (struct page *)page_private(head);
849 	}
850 
851 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
852 	return 0;
853 }
854 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
855 
856 /**
857  *	skb_clone	-	duplicate an sk_buff
858  *	@skb: buffer to clone
859  *	@gfp_mask: allocation priority
860  *
861  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
862  *	copies share the same packet data but not structure. The new
863  *	buffer has a reference count of 1. If the allocation fails the
864  *	function returns %NULL otherwise the new buffer is returned.
865  *
866  *	If this function is called from an interrupt gfp_mask() must be
867  *	%GFP_ATOMIC.
868  */
869 
870 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
871 {
872 	struct sk_buff_fclones *fclones = container_of(skb,
873 						       struct sk_buff_fclones,
874 						       skb1);
875 	struct sk_buff *n = &fclones->skb2;
876 
877 	if (skb_orphan_frags(skb, gfp_mask))
878 		return NULL;
879 
880 	if (skb->fclone == SKB_FCLONE_ORIG &&
881 	    n->fclone == SKB_FCLONE_FREE) {
882 		n->fclone = SKB_FCLONE_CLONE;
883 		atomic_inc(&fclones->fclone_ref);
884 	} else {
885 		if (skb_pfmemalloc(skb))
886 			gfp_mask |= __GFP_MEMALLOC;
887 
888 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
889 		if (!n)
890 			return NULL;
891 
892 		kmemcheck_annotate_bitfield(n, flags1);
893 		n->fclone = SKB_FCLONE_UNAVAILABLE;
894 	}
895 
896 	return __skb_clone(n, skb);
897 }
898 EXPORT_SYMBOL(skb_clone);
899 
900 static void skb_headers_offset_update(struct sk_buff *skb, int off)
901 {
902 	/* Only adjust this if it actually is csum_start rather than csum */
903 	if (skb->ip_summed == CHECKSUM_PARTIAL)
904 		skb->csum_start += off;
905 	/* {transport,network,mac}_header and tail are relative to skb->head */
906 	skb->transport_header += off;
907 	skb->network_header   += off;
908 	if (skb_mac_header_was_set(skb))
909 		skb->mac_header += off;
910 	skb->inner_transport_header += off;
911 	skb->inner_network_header += off;
912 	skb->inner_mac_header += off;
913 }
914 
915 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
916 {
917 	__copy_skb_header(new, old);
918 
919 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
920 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
921 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
922 }
923 
924 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
925 {
926 	if (skb_pfmemalloc(skb))
927 		return SKB_ALLOC_RX;
928 	return 0;
929 }
930 
931 /**
932  *	skb_copy	-	create private copy of an sk_buff
933  *	@skb: buffer to copy
934  *	@gfp_mask: allocation priority
935  *
936  *	Make a copy of both an &sk_buff and its data. This is used when the
937  *	caller wishes to modify the data and needs a private copy of the
938  *	data to alter. Returns %NULL on failure or the pointer to the buffer
939  *	on success. The returned buffer has a reference count of 1.
940  *
941  *	As by-product this function converts non-linear &sk_buff to linear
942  *	one, so that &sk_buff becomes completely private and caller is allowed
943  *	to modify all the data of returned buffer. This means that this
944  *	function is not recommended for use in circumstances when only
945  *	header is going to be modified. Use pskb_copy() instead.
946  */
947 
948 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
949 {
950 	int headerlen = skb_headroom(skb);
951 	unsigned int size = skb_end_offset(skb) + skb->data_len;
952 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
953 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
954 
955 	if (!n)
956 		return NULL;
957 
958 	/* Set the data pointer */
959 	skb_reserve(n, headerlen);
960 	/* Set the tail pointer and length */
961 	skb_put(n, skb->len);
962 
963 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
964 		BUG();
965 
966 	copy_skb_header(n, skb);
967 	return n;
968 }
969 EXPORT_SYMBOL(skb_copy);
970 
971 /**
972  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
973  *	@skb: buffer to copy
974  *	@headroom: headroom of new skb
975  *	@gfp_mask: allocation priority
976  *	@fclone: if true allocate the copy of the skb from the fclone
977  *	cache instead of the head cache; it is recommended to set this
978  *	to true for the cases where the copy will likely be cloned
979  *
980  *	Make a copy of both an &sk_buff and part of its data, located
981  *	in header. Fragmented data remain shared. This is used when
982  *	the caller wishes to modify only header of &sk_buff and needs
983  *	private copy of the header to alter. Returns %NULL on failure
984  *	or the pointer to the buffer on success.
985  *	The returned buffer has a reference count of 1.
986  */
987 
988 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
989 				   gfp_t gfp_mask, bool fclone)
990 {
991 	unsigned int size = skb_headlen(skb) + headroom;
992 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
993 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
994 
995 	if (!n)
996 		goto out;
997 
998 	/* Set the data pointer */
999 	skb_reserve(n, headroom);
1000 	/* Set the tail pointer and length */
1001 	skb_put(n, skb_headlen(skb));
1002 	/* Copy the bytes */
1003 	skb_copy_from_linear_data(skb, n->data, n->len);
1004 
1005 	n->truesize += skb->data_len;
1006 	n->data_len  = skb->data_len;
1007 	n->len	     = skb->len;
1008 
1009 	if (skb_shinfo(skb)->nr_frags) {
1010 		int i;
1011 
1012 		if (skb_orphan_frags(skb, gfp_mask)) {
1013 			kfree_skb(n);
1014 			n = NULL;
1015 			goto out;
1016 		}
1017 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1018 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1019 			skb_frag_ref(skb, i);
1020 		}
1021 		skb_shinfo(n)->nr_frags = i;
1022 	}
1023 
1024 	if (skb_has_frag_list(skb)) {
1025 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1026 		skb_clone_fraglist(n);
1027 	}
1028 
1029 	copy_skb_header(n, skb);
1030 out:
1031 	return n;
1032 }
1033 EXPORT_SYMBOL(__pskb_copy_fclone);
1034 
1035 /**
1036  *	pskb_expand_head - reallocate header of &sk_buff
1037  *	@skb: buffer to reallocate
1038  *	@nhead: room to add at head
1039  *	@ntail: room to add at tail
1040  *	@gfp_mask: allocation priority
1041  *
1042  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1043  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1044  *	reference count of 1. Returns zero in the case of success or error,
1045  *	if expansion failed. In the last case, &sk_buff is not changed.
1046  *
1047  *	All the pointers pointing into skb header may change and must be
1048  *	reloaded after call to this function.
1049  */
1050 
1051 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1052 		     gfp_t gfp_mask)
1053 {
1054 	int i;
1055 	u8 *data;
1056 	int size = nhead + skb_end_offset(skb) + ntail;
1057 	long off;
1058 
1059 	BUG_ON(nhead < 0);
1060 
1061 	if (skb_shared(skb))
1062 		BUG();
1063 
1064 	size = SKB_DATA_ALIGN(size);
1065 
1066 	if (skb_pfmemalloc(skb))
1067 		gfp_mask |= __GFP_MEMALLOC;
1068 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1069 			       gfp_mask, NUMA_NO_NODE, NULL);
1070 	if (!data)
1071 		goto nodata;
1072 	size = SKB_WITH_OVERHEAD(ksize(data));
1073 
1074 	/* Copy only real data... and, alas, header. This should be
1075 	 * optimized for the cases when header is void.
1076 	 */
1077 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1078 
1079 	memcpy((struct skb_shared_info *)(data + size),
1080 	       skb_shinfo(skb),
1081 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1082 
1083 	/*
1084 	 * if shinfo is shared we must drop the old head gracefully, but if it
1085 	 * is not we can just drop the old head and let the existing refcount
1086 	 * be since all we did is relocate the values
1087 	 */
1088 	if (skb_cloned(skb)) {
1089 		/* copy this zero copy skb frags */
1090 		if (skb_orphan_frags(skb, gfp_mask))
1091 			goto nofrags;
1092 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1093 			skb_frag_ref(skb, i);
1094 
1095 		if (skb_has_frag_list(skb))
1096 			skb_clone_fraglist(skb);
1097 
1098 		skb_release_data(skb);
1099 	} else {
1100 		skb_free_head(skb);
1101 	}
1102 	off = (data + nhead) - skb->head;
1103 
1104 	skb->head     = data;
1105 	skb->head_frag = 0;
1106 	skb->data    += off;
1107 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1108 	skb->end      = size;
1109 	off           = nhead;
1110 #else
1111 	skb->end      = skb->head + size;
1112 #endif
1113 	skb->tail	      += off;
1114 	skb_headers_offset_update(skb, nhead);
1115 	skb->cloned   = 0;
1116 	skb->hdr_len  = 0;
1117 	skb->nohdr    = 0;
1118 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1119 	return 0;
1120 
1121 nofrags:
1122 	kfree(data);
1123 nodata:
1124 	return -ENOMEM;
1125 }
1126 EXPORT_SYMBOL(pskb_expand_head);
1127 
1128 /* Make private copy of skb with writable head and some headroom */
1129 
1130 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1131 {
1132 	struct sk_buff *skb2;
1133 	int delta = headroom - skb_headroom(skb);
1134 
1135 	if (delta <= 0)
1136 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1137 	else {
1138 		skb2 = skb_clone(skb, GFP_ATOMIC);
1139 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1140 					     GFP_ATOMIC)) {
1141 			kfree_skb(skb2);
1142 			skb2 = NULL;
1143 		}
1144 	}
1145 	return skb2;
1146 }
1147 EXPORT_SYMBOL(skb_realloc_headroom);
1148 
1149 /**
1150  *	skb_copy_expand	-	copy and expand sk_buff
1151  *	@skb: buffer to copy
1152  *	@newheadroom: new free bytes at head
1153  *	@newtailroom: new free bytes at tail
1154  *	@gfp_mask: allocation priority
1155  *
1156  *	Make a copy of both an &sk_buff and its data and while doing so
1157  *	allocate additional space.
1158  *
1159  *	This is used when the caller wishes to modify the data and needs a
1160  *	private copy of the data to alter as well as more space for new fields.
1161  *	Returns %NULL on failure or the pointer to the buffer
1162  *	on success. The returned buffer has a reference count of 1.
1163  *
1164  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1165  *	is called from an interrupt.
1166  */
1167 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1168 				int newheadroom, int newtailroom,
1169 				gfp_t gfp_mask)
1170 {
1171 	/*
1172 	 *	Allocate the copy buffer
1173 	 */
1174 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1175 					gfp_mask, skb_alloc_rx_flag(skb),
1176 					NUMA_NO_NODE);
1177 	int oldheadroom = skb_headroom(skb);
1178 	int head_copy_len, head_copy_off;
1179 
1180 	if (!n)
1181 		return NULL;
1182 
1183 	skb_reserve(n, newheadroom);
1184 
1185 	/* Set the tail pointer and length */
1186 	skb_put(n, skb->len);
1187 
1188 	head_copy_len = oldheadroom;
1189 	head_copy_off = 0;
1190 	if (newheadroom <= head_copy_len)
1191 		head_copy_len = newheadroom;
1192 	else
1193 		head_copy_off = newheadroom - head_copy_len;
1194 
1195 	/* Copy the linear header and data. */
1196 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1197 			  skb->len + head_copy_len))
1198 		BUG();
1199 
1200 	copy_skb_header(n, skb);
1201 
1202 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1203 
1204 	return n;
1205 }
1206 EXPORT_SYMBOL(skb_copy_expand);
1207 
1208 /**
1209  *	skb_pad			-	zero pad the tail of an skb
1210  *	@skb: buffer to pad
1211  *	@pad: space to pad
1212  *
1213  *	Ensure that a buffer is followed by a padding area that is zero
1214  *	filled. Used by network drivers which may DMA or transfer data
1215  *	beyond the buffer end onto the wire.
1216  *
1217  *	May return error in out of memory cases. The skb is freed on error.
1218  */
1219 
1220 int skb_pad(struct sk_buff *skb, int pad)
1221 {
1222 	int err;
1223 	int ntail;
1224 
1225 	/* If the skbuff is non linear tailroom is always zero.. */
1226 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1227 		memset(skb->data+skb->len, 0, pad);
1228 		return 0;
1229 	}
1230 
1231 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1232 	if (likely(skb_cloned(skb) || ntail > 0)) {
1233 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1234 		if (unlikely(err))
1235 			goto free_skb;
1236 	}
1237 
1238 	/* FIXME: The use of this function with non-linear skb's really needs
1239 	 * to be audited.
1240 	 */
1241 	err = skb_linearize(skb);
1242 	if (unlikely(err))
1243 		goto free_skb;
1244 
1245 	memset(skb->data + skb->len, 0, pad);
1246 	return 0;
1247 
1248 free_skb:
1249 	kfree_skb(skb);
1250 	return err;
1251 }
1252 EXPORT_SYMBOL(skb_pad);
1253 
1254 /**
1255  *	pskb_put - add data to the tail of a potentially fragmented buffer
1256  *	@skb: start of the buffer to use
1257  *	@tail: tail fragment of the buffer to use
1258  *	@len: amount of data to add
1259  *
1260  *	This function extends the used data area of the potentially
1261  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1262  *	@skb itself. If this would exceed the total buffer size the kernel
1263  *	will panic. A pointer to the first byte of the extra data is
1264  *	returned.
1265  */
1266 
1267 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1268 {
1269 	if (tail != skb) {
1270 		skb->data_len += len;
1271 		skb->len += len;
1272 	}
1273 	return skb_put(tail, len);
1274 }
1275 EXPORT_SYMBOL_GPL(pskb_put);
1276 
1277 /**
1278  *	skb_put - add data to a buffer
1279  *	@skb: buffer to use
1280  *	@len: amount of data to add
1281  *
1282  *	This function extends the used data area of the buffer. If this would
1283  *	exceed the total buffer size the kernel will panic. A pointer to the
1284  *	first byte of the extra data is returned.
1285  */
1286 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1287 {
1288 	unsigned char *tmp = skb_tail_pointer(skb);
1289 	SKB_LINEAR_ASSERT(skb);
1290 	skb->tail += len;
1291 	skb->len  += len;
1292 	if (unlikely(skb->tail > skb->end))
1293 		skb_over_panic(skb, len, __builtin_return_address(0));
1294 	return tmp;
1295 }
1296 EXPORT_SYMBOL(skb_put);
1297 
1298 /**
1299  *	skb_push - add data to the start of a buffer
1300  *	@skb: buffer to use
1301  *	@len: amount of data to add
1302  *
1303  *	This function extends the used data area of the buffer at the buffer
1304  *	start. If this would exceed the total buffer headroom the kernel will
1305  *	panic. A pointer to the first byte of the extra data is returned.
1306  */
1307 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1308 {
1309 	skb->data -= len;
1310 	skb->len  += len;
1311 	if (unlikely(skb->data<skb->head))
1312 		skb_under_panic(skb, len, __builtin_return_address(0));
1313 	return skb->data;
1314 }
1315 EXPORT_SYMBOL(skb_push);
1316 
1317 /**
1318  *	skb_pull - remove data from the start of a buffer
1319  *	@skb: buffer to use
1320  *	@len: amount of data to remove
1321  *
1322  *	This function removes data from the start of a buffer, returning
1323  *	the memory to the headroom. A pointer to the next data in the buffer
1324  *	is returned. Once the data has been pulled future pushes will overwrite
1325  *	the old data.
1326  */
1327 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1328 {
1329 	return skb_pull_inline(skb, len);
1330 }
1331 EXPORT_SYMBOL(skb_pull);
1332 
1333 /**
1334  *	skb_trim - remove end from a buffer
1335  *	@skb: buffer to alter
1336  *	@len: new length
1337  *
1338  *	Cut the length of a buffer down by removing data from the tail. If
1339  *	the buffer is already under the length specified it is not modified.
1340  *	The skb must be linear.
1341  */
1342 void skb_trim(struct sk_buff *skb, unsigned int len)
1343 {
1344 	if (skb->len > len)
1345 		__skb_trim(skb, len);
1346 }
1347 EXPORT_SYMBOL(skb_trim);
1348 
1349 /* Trims skb to length len. It can change skb pointers.
1350  */
1351 
1352 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1353 {
1354 	struct sk_buff **fragp;
1355 	struct sk_buff *frag;
1356 	int offset = skb_headlen(skb);
1357 	int nfrags = skb_shinfo(skb)->nr_frags;
1358 	int i;
1359 	int err;
1360 
1361 	if (skb_cloned(skb) &&
1362 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1363 		return err;
1364 
1365 	i = 0;
1366 	if (offset >= len)
1367 		goto drop_pages;
1368 
1369 	for (; i < nfrags; i++) {
1370 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1371 
1372 		if (end < len) {
1373 			offset = end;
1374 			continue;
1375 		}
1376 
1377 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1378 
1379 drop_pages:
1380 		skb_shinfo(skb)->nr_frags = i;
1381 
1382 		for (; i < nfrags; i++)
1383 			skb_frag_unref(skb, i);
1384 
1385 		if (skb_has_frag_list(skb))
1386 			skb_drop_fraglist(skb);
1387 		goto done;
1388 	}
1389 
1390 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1391 	     fragp = &frag->next) {
1392 		int end = offset + frag->len;
1393 
1394 		if (skb_shared(frag)) {
1395 			struct sk_buff *nfrag;
1396 
1397 			nfrag = skb_clone(frag, GFP_ATOMIC);
1398 			if (unlikely(!nfrag))
1399 				return -ENOMEM;
1400 
1401 			nfrag->next = frag->next;
1402 			consume_skb(frag);
1403 			frag = nfrag;
1404 			*fragp = frag;
1405 		}
1406 
1407 		if (end < len) {
1408 			offset = end;
1409 			continue;
1410 		}
1411 
1412 		if (end > len &&
1413 		    unlikely((err = pskb_trim(frag, len - offset))))
1414 			return err;
1415 
1416 		if (frag->next)
1417 			skb_drop_list(&frag->next);
1418 		break;
1419 	}
1420 
1421 done:
1422 	if (len > skb_headlen(skb)) {
1423 		skb->data_len -= skb->len - len;
1424 		skb->len       = len;
1425 	} else {
1426 		skb->len       = len;
1427 		skb->data_len  = 0;
1428 		skb_set_tail_pointer(skb, len);
1429 	}
1430 
1431 	return 0;
1432 }
1433 EXPORT_SYMBOL(___pskb_trim);
1434 
1435 /**
1436  *	__pskb_pull_tail - advance tail of skb header
1437  *	@skb: buffer to reallocate
1438  *	@delta: number of bytes to advance tail
1439  *
1440  *	The function makes a sense only on a fragmented &sk_buff,
1441  *	it expands header moving its tail forward and copying necessary
1442  *	data from fragmented part.
1443  *
1444  *	&sk_buff MUST have reference count of 1.
1445  *
1446  *	Returns %NULL (and &sk_buff does not change) if pull failed
1447  *	or value of new tail of skb in the case of success.
1448  *
1449  *	All the pointers pointing into skb header may change and must be
1450  *	reloaded after call to this function.
1451  */
1452 
1453 /* Moves tail of skb head forward, copying data from fragmented part,
1454  * when it is necessary.
1455  * 1. It may fail due to malloc failure.
1456  * 2. It may change skb pointers.
1457  *
1458  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1459  */
1460 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1461 {
1462 	/* If skb has not enough free space at tail, get new one
1463 	 * plus 128 bytes for future expansions. If we have enough
1464 	 * room at tail, reallocate without expansion only if skb is cloned.
1465 	 */
1466 	int i, k, eat = (skb->tail + delta) - skb->end;
1467 
1468 	if (eat > 0 || skb_cloned(skb)) {
1469 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1470 				     GFP_ATOMIC))
1471 			return NULL;
1472 	}
1473 
1474 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1475 		BUG();
1476 
1477 	/* Optimization: no fragments, no reasons to preestimate
1478 	 * size of pulled pages. Superb.
1479 	 */
1480 	if (!skb_has_frag_list(skb))
1481 		goto pull_pages;
1482 
1483 	/* Estimate size of pulled pages. */
1484 	eat = delta;
1485 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1486 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1487 
1488 		if (size >= eat)
1489 			goto pull_pages;
1490 		eat -= size;
1491 	}
1492 
1493 	/* If we need update frag list, we are in troubles.
1494 	 * Certainly, it possible to add an offset to skb data,
1495 	 * but taking into account that pulling is expected to
1496 	 * be very rare operation, it is worth to fight against
1497 	 * further bloating skb head and crucify ourselves here instead.
1498 	 * Pure masohism, indeed. 8)8)
1499 	 */
1500 	if (eat) {
1501 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1502 		struct sk_buff *clone = NULL;
1503 		struct sk_buff *insp = NULL;
1504 
1505 		do {
1506 			BUG_ON(!list);
1507 
1508 			if (list->len <= eat) {
1509 				/* Eaten as whole. */
1510 				eat -= list->len;
1511 				list = list->next;
1512 				insp = list;
1513 			} else {
1514 				/* Eaten partially. */
1515 
1516 				if (skb_shared(list)) {
1517 					/* Sucks! We need to fork list. :-( */
1518 					clone = skb_clone(list, GFP_ATOMIC);
1519 					if (!clone)
1520 						return NULL;
1521 					insp = list->next;
1522 					list = clone;
1523 				} else {
1524 					/* This may be pulled without
1525 					 * problems. */
1526 					insp = list;
1527 				}
1528 				if (!pskb_pull(list, eat)) {
1529 					kfree_skb(clone);
1530 					return NULL;
1531 				}
1532 				break;
1533 			}
1534 		} while (eat);
1535 
1536 		/* Free pulled out fragments. */
1537 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1538 			skb_shinfo(skb)->frag_list = list->next;
1539 			kfree_skb(list);
1540 		}
1541 		/* And insert new clone at head. */
1542 		if (clone) {
1543 			clone->next = list;
1544 			skb_shinfo(skb)->frag_list = clone;
1545 		}
1546 	}
1547 	/* Success! Now we may commit changes to skb data. */
1548 
1549 pull_pages:
1550 	eat = delta;
1551 	k = 0;
1552 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1553 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1554 
1555 		if (size <= eat) {
1556 			skb_frag_unref(skb, i);
1557 			eat -= size;
1558 		} else {
1559 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1560 			if (eat) {
1561 				skb_shinfo(skb)->frags[k].page_offset += eat;
1562 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1563 				eat = 0;
1564 			}
1565 			k++;
1566 		}
1567 	}
1568 	skb_shinfo(skb)->nr_frags = k;
1569 
1570 	skb->tail     += delta;
1571 	skb->data_len -= delta;
1572 
1573 	return skb_tail_pointer(skb);
1574 }
1575 EXPORT_SYMBOL(__pskb_pull_tail);
1576 
1577 /**
1578  *	skb_copy_bits - copy bits from skb to kernel buffer
1579  *	@skb: source skb
1580  *	@offset: offset in source
1581  *	@to: destination buffer
1582  *	@len: number of bytes to copy
1583  *
1584  *	Copy the specified number of bytes from the source skb to the
1585  *	destination buffer.
1586  *
1587  *	CAUTION ! :
1588  *		If its prototype is ever changed,
1589  *		check arch/{*}/net/{*}.S files,
1590  *		since it is called from BPF assembly code.
1591  */
1592 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1593 {
1594 	int start = skb_headlen(skb);
1595 	struct sk_buff *frag_iter;
1596 	int i, copy;
1597 
1598 	if (offset > (int)skb->len - len)
1599 		goto fault;
1600 
1601 	/* Copy header. */
1602 	if ((copy = start - offset) > 0) {
1603 		if (copy > len)
1604 			copy = len;
1605 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1606 		if ((len -= copy) == 0)
1607 			return 0;
1608 		offset += copy;
1609 		to     += copy;
1610 	}
1611 
1612 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1613 		int end;
1614 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1615 
1616 		WARN_ON(start > offset + len);
1617 
1618 		end = start + skb_frag_size(f);
1619 		if ((copy = end - offset) > 0) {
1620 			u8 *vaddr;
1621 
1622 			if (copy > len)
1623 				copy = len;
1624 
1625 			vaddr = kmap_atomic(skb_frag_page(f));
1626 			memcpy(to,
1627 			       vaddr + f->page_offset + offset - start,
1628 			       copy);
1629 			kunmap_atomic(vaddr);
1630 
1631 			if ((len -= copy) == 0)
1632 				return 0;
1633 			offset += copy;
1634 			to     += copy;
1635 		}
1636 		start = end;
1637 	}
1638 
1639 	skb_walk_frags(skb, frag_iter) {
1640 		int end;
1641 
1642 		WARN_ON(start > offset + len);
1643 
1644 		end = start + frag_iter->len;
1645 		if ((copy = end - offset) > 0) {
1646 			if (copy > len)
1647 				copy = len;
1648 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1649 				goto fault;
1650 			if ((len -= copy) == 0)
1651 				return 0;
1652 			offset += copy;
1653 			to     += copy;
1654 		}
1655 		start = end;
1656 	}
1657 
1658 	if (!len)
1659 		return 0;
1660 
1661 fault:
1662 	return -EFAULT;
1663 }
1664 EXPORT_SYMBOL(skb_copy_bits);
1665 
1666 /*
1667  * Callback from splice_to_pipe(), if we need to release some pages
1668  * at the end of the spd in case we error'ed out in filling the pipe.
1669  */
1670 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1671 {
1672 	put_page(spd->pages[i]);
1673 }
1674 
1675 static struct page *linear_to_page(struct page *page, unsigned int *len,
1676 				   unsigned int *offset,
1677 				   struct sock *sk)
1678 {
1679 	struct page_frag *pfrag = sk_page_frag(sk);
1680 
1681 	if (!sk_page_frag_refill(sk, pfrag))
1682 		return NULL;
1683 
1684 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1685 
1686 	memcpy(page_address(pfrag->page) + pfrag->offset,
1687 	       page_address(page) + *offset, *len);
1688 	*offset = pfrag->offset;
1689 	pfrag->offset += *len;
1690 
1691 	return pfrag->page;
1692 }
1693 
1694 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1695 			     struct page *page,
1696 			     unsigned int offset)
1697 {
1698 	return	spd->nr_pages &&
1699 		spd->pages[spd->nr_pages - 1] == page &&
1700 		(spd->partial[spd->nr_pages - 1].offset +
1701 		 spd->partial[spd->nr_pages - 1].len == offset);
1702 }
1703 
1704 /*
1705  * Fill page/offset/length into spd, if it can hold more pages.
1706  */
1707 static bool spd_fill_page(struct splice_pipe_desc *spd,
1708 			  struct pipe_inode_info *pipe, struct page *page,
1709 			  unsigned int *len, unsigned int offset,
1710 			  bool linear,
1711 			  struct sock *sk)
1712 {
1713 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1714 		return true;
1715 
1716 	if (linear) {
1717 		page = linear_to_page(page, len, &offset, sk);
1718 		if (!page)
1719 			return true;
1720 	}
1721 	if (spd_can_coalesce(spd, page, offset)) {
1722 		spd->partial[spd->nr_pages - 1].len += *len;
1723 		return false;
1724 	}
1725 	get_page(page);
1726 	spd->pages[spd->nr_pages] = page;
1727 	spd->partial[spd->nr_pages].len = *len;
1728 	spd->partial[spd->nr_pages].offset = offset;
1729 	spd->nr_pages++;
1730 
1731 	return false;
1732 }
1733 
1734 static bool __splice_segment(struct page *page, unsigned int poff,
1735 			     unsigned int plen, unsigned int *off,
1736 			     unsigned int *len,
1737 			     struct splice_pipe_desc *spd, bool linear,
1738 			     struct sock *sk,
1739 			     struct pipe_inode_info *pipe)
1740 {
1741 	if (!*len)
1742 		return true;
1743 
1744 	/* skip this segment if already processed */
1745 	if (*off >= plen) {
1746 		*off -= plen;
1747 		return false;
1748 	}
1749 
1750 	/* ignore any bits we already processed */
1751 	poff += *off;
1752 	plen -= *off;
1753 	*off = 0;
1754 
1755 	do {
1756 		unsigned int flen = min(*len, plen);
1757 
1758 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1759 				  linear, sk))
1760 			return true;
1761 		poff += flen;
1762 		plen -= flen;
1763 		*len -= flen;
1764 	} while (*len && plen);
1765 
1766 	return false;
1767 }
1768 
1769 /*
1770  * Map linear and fragment data from the skb to spd. It reports true if the
1771  * pipe is full or if we already spliced the requested length.
1772  */
1773 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1774 			      unsigned int *offset, unsigned int *len,
1775 			      struct splice_pipe_desc *spd, struct sock *sk)
1776 {
1777 	int seg;
1778 
1779 	/* map the linear part :
1780 	 * If skb->head_frag is set, this 'linear' part is backed by a
1781 	 * fragment, and if the head is not shared with any clones then
1782 	 * we can avoid a copy since we own the head portion of this page.
1783 	 */
1784 	if (__splice_segment(virt_to_page(skb->data),
1785 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1786 			     skb_headlen(skb),
1787 			     offset, len, spd,
1788 			     skb_head_is_locked(skb),
1789 			     sk, pipe))
1790 		return true;
1791 
1792 	/*
1793 	 * then map the fragments
1794 	 */
1795 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1796 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1797 
1798 		if (__splice_segment(skb_frag_page(f),
1799 				     f->page_offset, skb_frag_size(f),
1800 				     offset, len, spd, false, sk, pipe))
1801 			return true;
1802 	}
1803 
1804 	return false;
1805 }
1806 
1807 /*
1808  * Map data from the skb to a pipe. Should handle both the linear part,
1809  * the fragments, and the frag list. It does NOT handle frag lists within
1810  * the frag list, if such a thing exists. We'd probably need to recurse to
1811  * handle that cleanly.
1812  */
1813 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1814 		    struct pipe_inode_info *pipe, unsigned int tlen,
1815 		    unsigned int flags)
1816 {
1817 	struct partial_page partial[MAX_SKB_FRAGS];
1818 	struct page *pages[MAX_SKB_FRAGS];
1819 	struct splice_pipe_desc spd = {
1820 		.pages = pages,
1821 		.partial = partial,
1822 		.nr_pages_max = MAX_SKB_FRAGS,
1823 		.flags = flags,
1824 		.ops = &nosteal_pipe_buf_ops,
1825 		.spd_release = sock_spd_release,
1826 	};
1827 	struct sk_buff *frag_iter;
1828 	struct sock *sk = skb->sk;
1829 	int ret = 0;
1830 
1831 	/*
1832 	 * __skb_splice_bits() only fails if the output has no room left,
1833 	 * so no point in going over the frag_list for the error case.
1834 	 */
1835 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1836 		goto done;
1837 	else if (!tlen)
1838 		goto done;
1839 
1840 	/*
1841 	 * now see if we have a frag_list to map
1842 	 */
1843 	skb_walk_frags(skb, frag_iter) {
1844 		if (!tlen)
1845 			break;
1846 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1847 			break;
1848 	}
1849 
1850 done:
1851 	if (spd.nr_pages) {
1852 		/*
1853 		 * Drop the socket lock, otherwise we have reverse
1854 		 * locking dependencies between sk_lock and i_mutex
1855 		 * here as compared to sendfile(). We enter here
1856 		 * with the socket lock held, and splice_to_pipe() will
1857 		 * grab the pipe inode lock. For sendfile() emulation,
1858 		 * we call into ->sendpage() with the i_mutex lock held
1859 		 * and networking will grab the socket lock.
1860 		 */
1861 		release_sock(sk);
1862 		ret = splice_to_pipe(pipe, &spd);
1863 		lock_sock(sk);
1864 	}
1865 
1866 	return ret;
1867 }
1868 
1869 /**
1870  *	skb_store_bits - store bits from kernel buffer to skb
1871  *	@skb: destination buffer
1872  *	@offset: offset in destination
1873  *	@from: source buffer
1874  *	@len: number of bytes to copy
1875  *
1876  *	Copy the specified number of bytes from the source buffer to the
1877  *	destination skb.  This function handles all the messy bits of
1878  *	traversing fragment lists and such.
1879  */
1880 
1881 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1882 {
1883 	int start = skb_headlen(skb);
1884 	struct sk_buff *frag_iter;
1885 	int i, copy;
1886 
1887 	if (offset > (int)skb->len - len)
1888 		goto fault;
1889 
1890 	if ((copy = start - offset) > 0) {
1891 		if (copy > len)
1892 			copy = len;
1893 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1894 		if ((len -= copy) == 0)
1895 			return 0;
1896 		offset += copy;
1897 		from += copy;
1898 	}
1899 
1900 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1901 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1902 		int end;
1903 
1904 		WARN_ON(start > offset + len);
1905 
1906 		end = start + skb_frag_size(frag);
1907 		if ((copy = end - offset) > 0) {
1908 			u8 *vaddr;
1909 
1910 			if (copy > len)
1911 				copy = len;
1912 
1913 			vaddr = kmap_atomic(skb_frag_page(frag));
1914 			memcpy(vaddr + frag->page_offset + offset - start,
1915 			       from, copy);
1916 			kunmap_atomic(vaddr);
1917 
1918 			if ((len -= copy) == 0)
1919 				return 0;
1920 			offset += copy;
1921 			from += copy;
1922 		}
1923 		start = end;
1924 	}
1925 
1926 	skb_walk_frags(skb, frag_iter) {
1927 		int end;
1928 
1929 		WARN_ON(start > offset + len);
1930 
1931 		end = start + frag_iter->len;
1932 		if ((copy = end - offset) > 0) {
1933 			if (copy > len)
1934 				copy = len;
1935 			if (skb_store_bits(frag_iter, offset - start,
1936 					   from, copy))
1937 				goto fault;
1938 			if ((len -= copy) == 0)
1939 				return 0;
1940 			offset += copy;
1941 			from += copy;
1942 		}
1943 		start = end;
1944 	}
1945 	if (!len)
1946 		return 0;
1947 
1948 fault:
1949 	return -EFAULT;
1950 }
1951 EXPORT_SYMBOL(skb_store_bits);
1952 
1953 /* Checksum skb data. */
1954 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
1955 		      __wsum csum, const struct skb_checksum_ops *ops)
1956 {
1957 	int start = skb_headlen(skb);
1958 	int i, copy = start - offset;
1959 	struct sk_buff *frag_iter;
1960 	int pos = 0;
1961 
1962 	/* Checksum header. */
1963 	if (copy > 0) {
1964 		if (copy > len)
1965 			copy = len;
1966 		csum = ops->update(skb->data + offset, copy, csum);
1967 		if ((len -= copy) == 0)
1968 			return csum;
1969 		offset += copy;
1970 		pos	= copy;
1971 	}
1972 
1973 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1974 		int end;
1975 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1976 
1977 		WARN_ON(start > offset + len);
1978 
1979 		end = start + skb_frag_size(frag);
1980 		if ((copy = end - offset) > 0) {
1981 			__wsum csum2;
1982 			u8 *vaddr;
1983 
1984 			if (copy > len)
1985 				copy = len;
1986 			vaddr = kmap_atomic(skb_frag_page(frag));
1987 			csum2 = ops->update(vaddr + frag->page_offset +
1988 					    offset - start, copy, 0);
1989 			kunmap_atomic(vaddr);
1990 			csum = ops->combine(csum, csum2, pos, copy);
1991 			if (!(len -= copy))
1992 				return csum;
1993 			offset += copy;
1994 			pos    += copy;
1995 		}
1996 		start = end;
1997 	}
1998 
1999 	skb_walk_frags(skb, frag_iter) {
2000 		int end;
2001 
2002 		WARN_ON(start > offset + len);
2003 
2004 		end = start + frag_iter->len;
2005 		if ((copy = end - offset) > 0) {
2006 			__wsum csum2;
2007 			if (copy > len)
2008 				copy = len;
2009 			csum2 = __skb_checksum(frag_iter, offset - start,
2010 					       copy, 0, ops);
2011 			csum = ops->combine(csum, csum2, pos, copy);
2012 			if ((len -= copy) == 0)
2013 				return csum;
2014 			offset += copy;
2015 			pos    += copy;
2016 		}
2017 		start = end;
2018 	}
2019 	BUG_ON(len);
2020 
2021 	return csum;
2022 }
2023 EXPORT_SYMBOL(__skb_checksum);
2024 
2025 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2026 		    int len, __wsum csum)
2027 {
2028 	const struct skb_checksum_ops ops = {
2029 		.update  = csum_partial_ext,
2030 		.combine = csum_block_add_ext,
2031 	};
2032 
2033 	return __skb_checksum(skb, offset, len, csum, &ops);
2034 }
2035 EXPORT_SYMBOL(skb_checksum);
2036 
2037 /* Both of above in one bottle. */
2038 
2039 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2040 				    u8 *to, int len, __wsum csum)
2041 {
2042 	int start = skb_headlen(skb);
2043 	int i, copy = start - offset;
2044 	struct sk_buff *frag_iter;
2045 	int pos = 0;
2046 
2047 	/* Copy header. */
2048 	if (copy > 0) {
2049 		if (copy > len)
2050 			copy = len;
2051 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2052 						 copy, csum);
2053 		if ((len -= copy) == 0)
2054 			return csum;
2055 		offset += copy;
2056 		to     += copy;
2057 		pos	= copy;
2058 	}
2059 
2060 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2061 		int end;
2062 
2063 		WARN_ON(start > offset + len);
2064 
2065 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2066 		if ((copy = end - offset) > 0) {
2067 			__wsum csum2;
2068 			u8 *vaddr;
2069 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2070 
2071 			if (copy > len)
2072 				copy = len;
2073 			vaddr = kmap_atomic(skb_frag_page(frag));
2074 			csum2 = csum_partial_copy_nocheck(vaddr +
2075 							  frag->page_offset +
2076 							  offset - start, to,
2077 							  copy, 0);
2078 			kunmap_atomic(vaddr);
2079 			csum = csum_block_add(csum, csum2, pos);
2080 			if (!(len -= copy))
2081 				return csum;
2082 			offset += copy;
2083 			to     += copy;
2084 			pos    += copy;
2085 		}
2086 		start = end;
2087 	}
2088 
2089 	skb_walk_frags(skb, frag_iter) {
2090 		__wsum csum2;
2091 		int end;
2092 
2093 		WARN_ON(start > offset + len);
2094 
2095 		end = start + frag_iter->len;
2096 		if ((copy = end - offset) > 0) {
2097 			if (copy > len)
2098 				copy = len;
2099 			csum2 = skb_copy_and_csum_bits(frag_iter,
2100 						       offset - start,
2101 						       to, copy, 0);
2102 			csum = csum_block_add(csum, csum2, pos);
2103 			if ((len -= copy) == 0)
2104 				return csum;
2105 			offset += copy;
2106 			to     += copy;
2107 			pos    += copy;
2108 		}
2109 		start = end;
2110 	}
2111 	BUG_ON(len);
2112 	return csum;
2113 }
2114 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2115 
2116  /**
2117  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2118  *	@from: source buffer
2119  *
2120  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2121  *	into skb_zerocopy().
2122  */
2123 unsigned int
2124 skb_zerocopy_headlen(const struct sk_buff *from)
2125 {
2126 	unsigned int hlen = 0;
2127 
2128 	if (!from->head_frag ||
2129 	    skb_headlen(from) < L1_CACHE_BYTES ||
2130 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2131 		hlen = skb_headlen(from);
2132 
2133 	if (skb_has_frag_list(from))
2134 		hlen = from->len;
2135 
2136 	return hlen;
2137 }
2138 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2139 
2140 /**
2141  *	skb_zerocopy - Zero copy skb to skb
2142  *	@to: destination buffer
2143  *	@from: source buffer
2144  *	@len: number of bytes to copy from source buffer
2145  *	@hlen: size of linear headroom in destination buffer
2146  *
2147  *	Copies up to `len` bytes from `from` to `to` by creating references
2148  *	to the frags in the source buffer.
2149  *
2150  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2151  *	headroom in the `to` buffer.
2152  *
2153  *	Return value:
2154  *	0: everything is OK
2155  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2156  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2157  */
2158 int
2159 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2160 {
2161 	int i, j = 0;
2162 	int plen = 0; /* length of skb->head fragment */
2163 	int ret;
2164 	struct page *page;
2165 	unsigned int offset;
2166 
2167 	BUG_ON(!from->head_frag && !hlen);
2168 
2169 	/* dont bother with small payloads */
2170 	if (len <= skb_tailroom(to))
2171 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2172 
2173 	if (hlen) {
2174 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2175 		if (unlikely(ret))
2176 			return ret;
2177 		len -= hlen;
2178 	} else {
2179 		plen = min_t(int, skb_headlen(from), len);
2180 		if (plen) {
2181 			page = virt_to_head_page(from->head);
2182 			offset = from->data - (unsigned char *)page_address(page);
2183 			__skb_fill_page_desc(to, 0, page, offset, plen);
2184 			get_page(page);
2185 			j = 1;
2186 			len -= plen;
2187 		}
2188 	}
2189 
2190 	to->truesize += len + plen;
2191 	to->len += len + plen;
2192 	to->data_len += len + plen;
2193 
2194 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2195 		skb_tx_error(from);
2196 		return -ENOMEM;
2197 	}
2198 
2199 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2200 		if (!len)
2201 			break;
2202 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2203 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2204 		len -= skb_shinfo(to)->frags[j].size;
2205 		skb_frag_ref(to, j);
2206 		j++;
2207 	}
2208 	skb_shinfo(to)->nr_frags = j;
2209 
2210 	return 0;
2211 }
2212 EXPORT_SYMBOL_GPL(skb_zerocopy);
2213 
2214 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2215 {
2216 	__wsum csum;
2217 	long csstart;
2218 
2219 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2220 		csstart = skb_checksum_start_offset(skb);
2221 	else
2222 		csstart = skb_headlen(skb);
2223 
2224 	BUG_ON(csstart > skb_headlen(skb));
2225 
2226 	skb_copy_from_linear_data(skb, to, csstart);
2227 
2228 	csum = 0;
2229 	if (csstart != skb->len)
2230 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2231 					      skb->len - csstart, 0);
2232 
2233 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2234 		long csstuff = csstart + skb->csum_offset;
2235 
2236 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2237 	}
2238 }
2239 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2240 
2241 /**
2242  *	skb_dequeue - remove from the head of the queue
2243  *	@list: list to dequeue from
2244  *
2245  *	Remove the head of the list. The list lock is taken so the function
2246  *	may be used safely with other locking list functions. The head item is
2247  *	returned or %NULL if the list is empty.
2248  */
2249 
2250 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2251 {
2252 	unsigned long flags;
2253 	struct sk_buff *result;
2254 
2255 	spin_lock_irqsave(&list->lock, flags);
2256 	result = __skb_dequeue(list);
2257 	spin_unlock_irqrestore(&list->lock, flags);
2258 	return result;
2259 }
2260 EXPORT_SYMBOL(skb_dequeue);
2261 
2262 /**
2263  *	skb_dequeue_tail - remove from the tail of the queue
2264  *	@list: list to dequeue from
2265  *
2266  *	Remove the tail of the list. The list lock is taken so the function
2267  *	may be used safely with other locking list functions. The tail item is
2268  *	returned or %NULL if the list is empty.
2269  */
2270 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2271 {
2272 	unsigned long flags;
2273 	struct sk_buff *result;
2274 
2275 	spin_lock_irqsave(&list->lock, flags);
2276 	result = __skb_dequeue_tail(list);
2277 	spin_unlock_irqrestore(&list->lock, flags);
2278 	return result;
2279 }
2280 EXPORT_SYMBOL(skb_dequeue_tail);
2281 
2282 /**
2283  *	skb_queue_purge - empty a list
2284  *	@list: list to empty
2285  *
2286  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2287  *	the list and one reference dropped. This function takes the list
2288  *	lock and is atomic with respect to other list locking functions.
2289  */
2290 void skb_queue_purge(struct sk_buff_head *list)
2291 {
2292 	struct sk_buff *skb;
2293 	while ((skb = skb_dequeue(list)) != NULL)
2294 		kfree_skb(skb);
2295 }
2296 EXPORT_SYMBOL(skb_queue_purge);
2297 
2298 /**
2299  *	skb_queue_head - queue a buffer at the list head
2300  *	@list: list to use
2301  *	@newsk: buffer to queue
2302  *
2303  *	Queue a buffer at the start of the list. This function takes the
2304  *	list lock and can be used safely with other locking &sk_buff functions
2305  *	safely.
2306  *
2307  *	A buffer cannot be placed on two lists at the same time.
2308  */
2309 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2310 {
2311 	unsigned long flags;
2312 
2313 	spin_lock_irqsave(&list->lock, flags);
2314 	__skb_queue_head(list, newsk);
2315 	spin_unlock_irqrestore(&list->lock, flags);
2316 }
2317 EXPORT_SYMBOL(skb_queue_head);
2318 
2319 /**
2320  *	skb_queue_tail - queue a buffer at the list tail
2321  *	@list: list to use
2322  *	@newsk: buffer to queue
2323  *
2324  *	Queue a buffer at the tail of the list. This function takes the
2325  *	list lock and can be used safely with other locking &sk_buff functions
2326  *	safely.
2327  *
2328  *	A buffer cannot be placed on two lists at the same time.
2329  */
2330 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2331 {
2332 	unsigned long flags;
2333 
2334 	spin_lock_irqsave(&list->lock, flags);
2335 	__skb_queue_tail(list, newsk);
2336 	spin_unlock_irqrestore(&list->lock, flags);
2337 }
2338 EXPORT_SYMBOL(skb_queue_tail);
2339 
2340 /**
2341  *	skb_unlink	-	remove a buffer from a list
2342  *	@skb: buffer to remove
2343  *	@list: list to use
2344  *
2345  *	Remove a packet from a list. The list locks are taken and this
2346  *	function is atomic with respect to other list locked calls
2347  *
2348  *	You must know what list the SKB is on.
2349  */
2350 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2351 {
2352 	unsigned long flags;
2353 
2354 	spin_lock_irqsave(&list->lock, flags);
2355 	__skb_unlink(skb, list);
2356 	spin_unlock_irqrestore(&list->lock, flags);
2357 }
2358 EXPORT_SYMBOL(skb_unlink);
2359 
2360 /**
2361  *	skb_append	-	append a buffer
2362  *	@old: buffer to insert after
2363  *	@newsk: buffer to insert
2364  *	@list: list to use
2365  *
2366  *	Place a packet after a given packet in a list. The list locks are taken
2367  *	and this function is atomic with respect to other list locked calls.
2368  *	A buffer cannot be placed on two lists at the same time.
2369  */
2370 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2371 {
2372 	unsigned long flags;
2373 
2374 	spin_lock_irqsave(&list->lock, flags);
2375 	__skb_queue_after(list, old, newsk);
2376 	spin_unlock_irqrestore(&list->lock, flags);
2377 }
2378 EXPORT_SYMBOL(skb_append);
2379 
2380 /**
2381  *	skb_insert	-	insert a buffer
2382  *	@old: buffer to insert before
2383  *	@newsk: buffer to insert
2384  *	@list: list to use
2385  *
2386  *	Place a packet before a given packet in a list. The list locks are
2387  * 	taken and this function is atomic with respect to other list locked
2388  *	calls.
2389  *
2390  *	A buffer cannot be placed on two lists at the same time.
2391  */
2392 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2393 {
2394 	unsigned long flags;
2395 
2396 	spin_lock_irqsave(&list->lock, flags);
2397 	__skb_insert(newsk, old->prev, old, list);
2398 	spin_unlock_irqrestore(&list->lock, flags);
2399 }
2400 EXPORT_SYMBOL(skb_insert);
2401 
2402 static inline void skb_split_inside_header(struct sk_buff *skb,
2403 					   struct sk_buff* skb1,
2404 					   const u32 len, const int pos)
2405 {
2406 	int i;
2407 
2408 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2409 					 pos - len);
2410 	/* And move data appendix as is. */
2411 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2412 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2413 
2414 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2415 	skb_shinfo(skb)->nr_frags  = 0;
2416 	skb1->data_len		   = skb->data_len;
2417 	skb1->len		   += skb1->data_len;
2418 	skb->data_len		   = 0;
2419 	skb->len		   = len;
2420 	skb_set_tail_pointer(skb, len);
2421 }
2422 
2423 static inline void skb_split_no_header(struct sk_buff *skb,
2424 				       struct sk_buff* skb1,
2425 				       const u32 len, int pos)
2426 {
2427 	int i, k = 0;
2428 	const int nfrags = skb_shinfo(skb)->nr_frags;
2429 
2430 	skb_shinfo(skb)->nr_frags = 0;
2431 	skb1->len		  = skb1->data_len = skb->len - len;
2432 	skb->len		  = len;
2433 	skb->data_len		  = len - pos;
2434 
2435 	for (i = 0; i < nfrags; i++) {
2436 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2437 
2438 		if (pos + size > len) {
2439 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2440 
2441 			if (pos < len) {
2442 				/* Split frag.
2443 				 * We have two variants in this case:
2444 				 * 1. Move all the frag to the second
2445 				 *    part, if it is possible. F.e.
2446 				 *    this approach is mandatory for TUX,
2447 				 *    where splitting is expensive.
2448 				 * 2. Split is accurately. We make this.
2449 				 */
2450 				skb_frag_ref(skb, i);
2451 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2452 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2453 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2454 				skb_shinfo(skb)->nr_frags++;
2455 			}
2456 			k++;
2457 		} else
2458 			skb_shinfo(skb)->nr_frags++;
2459 		pos += size;
2460 	}
2461 	skb_shinfo(skb1)->nr_frags = k;
2462 }
2463 
2464 /**
2465  * skb_split - Split fragmented skb to two parts at length len.
2466  * @skb: the buffer to split
2467  * @skb1: the buffer to receive the second part
2468  * @len: new length for skb
2469  */
2470 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2471 {
2472 	int pos = skb_headlen(skb);
2473 
2474 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2475 	if (len < pos)	/* Split line is inside header. */
2476 		skb_split_inside_header(skb, skb1, len, pos);
2477 	else		/* Second chunk has no header, nothing to copy. */
2478 		skb_split_no_header(skb, skb1, len, pos);
2479 }
2480 EXPORT_SYMBOL(skb_split);
2481 
2482 /* Shifting from/to a cloned skb is a no-go.
2483  *
2484  * Caller cannot keep skb_shinfo related pointers past calling here!
2485  */
2486 static int skb_prepare_for_shift(struct sk_buff *skb)
2487 {
2488 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2489 }
2490 
2491 /**
2492  * skb_shift - Shifts paged data partially from skb to another
2493  * @tgt: buffer into which tail data gets added
2494  * @skb: buffer from which the paged data comes from
2495  * @shiftlen: shift up to this many bytes
2496  *
2497  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2498  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2499  * It's up to caller to free skb if everything was shifted.
2500  *
2501  * If @tgt runs out of frags, the whole operation is aborted.
2502  *
2503  * Skb cannot include anything else but paged data while tgt is allowed
2504  * to have non-paged data as well.
2505  *
2506  * TODO: full sized shift could be optimized but that would need
2507  * specialized skb free'er to handle frags without up-to-date nr_frags.
2508  */
2509 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2510 {
2511 	int from, to, merge, todo;
2512 	struct skb_frag_struct *fragfrom, *fragto;
2513 
2514 	BUG_ON(shiftlen > skb->len);
2515 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2516 
2517 	todo = shiftlen;
2518 	from = 0;
2519 	to = skb_shinfo(tgt)->nr_frags;
2520 	fragfrom = &skb_shinfo(skb)->frags[from];
2521 
2522 	/* Actual merge is delayed until the point when we know we can
2523 	 * commit all, so that we don't have to undo partial changes
2524 	 */
2525 	if (!to ||
2526 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2527 			      fragfrom->page_offset)) {
2528 		merge = -1;
2529 	} else {
2530 		merge = to - 1;
2531 
2532 		todo -= skb_frag_size(fragfrom);
2533 		if (todo < 0) {
2534 			if (skb_prepare_for_shift(skb) ||
2535 			    skb_prepare_for_shift(tgt))
2536 				return 0;
2537 
2538 			/* All previous frag pointers might be stale! */
2539 			fragfrom = &skb_shinfo(skb)->frags[from];
2540 			fragto = &skb_shinfo(tgt)->frags[merge];
2541 
2542 			skb_frag_size_add(fragto, shiftlen);
2543 			skb_frag_size_sub(fragfrom, shiftlen);
2544 			fragfrom->page_offset += shiftlen;
2545 
2546 			goto onlymerged;
2547 		}
2548 
2549 		from++;
2550 	}
2551 
2552 	/* Skip full, not-fitting skb to avoid expensive operations */
2553 	if ((shiftlen == skb->len) &&
2554 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2555 		return 0;
2556 
2557 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2558 		return 0;
2559 
2560 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2561 		if (to == MAX_SKB_FRAGS)
2562 			return 0;
2563 
2564 		fragfrom = &skb_shinfo(skb)->frags[from];
2565 		fragto = &skb_shinfo(tgt)->frags[to];
2566 
2567 		if (todo >= skb_frag_size(fragfrom)) {
2568 			*fragto = *fragfrom;
2569 			todo -= skb_frag_size(fragfrom);
2570 			from++;
2571 			to++;
2572 
2573 		} else {
2574 			__skb_frag_ref(fragfrom);
2575 			fragto->page = fragfrom->page;
2576 			fragto->page_offset = fragfrom->page_offset;
2577 			skb_frag_size_set(fragto, todo);
2578 
2579 			fragfrom->page_offset += todo;
2580 			skb_frag_size_sub(fragfrom, todo);
2581 			todo = 0;
2582 
2583 			to++;
2584 			break;
2585 		}
2586 	}
2587 
2588 	/* Ready to "commit" this state change to tgt */
2589 	skb_shinfo(tgt)->nr_frags = to;
2590 
2591 	if (merge >= 0) {
2592 		fragfrom = &skb_shinfo(skb)->frags[0];
2593 		fragto = &skb_shinfo(tgt)->frags[merge];
2594 
2595 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2596 		__skb_frag_unref(fragfrom);
2597 	}
2598 
2599 	/* Reposition in the original skb */
2600 	to = 0;
2601 	while (from < skb_shinfo(skb)->nr_frags)
2602 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2603 	skb_shinfo(skb)->nr_frags = to;
2604 
2605 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2606 
2607 onlymerged:
2608 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2609 	 * the other hand might need it if it needs to be resent
2610 	 */
2611 	tgt->ip_summed = CHECKSUM_PARTIAL;
2612 	skb->ip_summed = CHECKSUM_PARTIAL;
2613 
2614 	/* Yak, is it really working this way? Some helper please? */
2615 	skb->len -= shiftlen;
2616 	skb->data_len -= shiftlen;
2617 	skb->truesize -= shiftlen;
2618 	tgt->len += shiftlen;
2619 	tgt->data_len += shiftlen;
2620 	tgt->truesize += shiftlen;
2621 
2622 	return shiftlen;
2623 }
2624 
2625 /**
2626  * skb_prepare_seq_read - Prepare a sequential read of skb data
2627  * @skb: the buffer to read
2628  * @from: lower offset of data to be read
2629  * @to: upper offset of data to be read
2630  * @st: state variable
2631  *
2632  * Initializes the specified state variable. Must be called before
2633  * invoking skb_seq_read() for the first time.
2634  */
2635 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2636 			  unsigned int to, struct skb_seq_state *st)
2637 {
2638 	st->lower_offset = from;
2639 	st->upper_offset = to;
2640 	st->root_skb = st->cur_skb = skb;
2641 	st->frag_idx = st->stepped_offset = 0;
2642 	st->frag_data = NULL;
2643 }
2644 EXPORT_SYMBOL(skb_prepare_seq_read);
2645 
2646 /**
2647  * skb_seq_read - Sequentially read skb data
2648  * @consumed: number of bytes consumed by the caller so far
2649  * @data: destination pointer for data to be returned
2650  * @st: state variable
2651  *
2652  * Reads a block of skb data at @consumed relative to the
2653  * lower offset specified to skb_prepare_seq_read(). Assigns
2654  * the head of the data block to @data and returns the length
2655  * of the block or 0 if the end of the skb data or the upper
2656  * offset has been reached.
2657  *
2658  * The caller is not required to consume all of the data
2659  * returned, i.e. @consumed is typically set to the number
2660  * of bytes already consumed and the next call to
2661  * skb_seq_read() will return the remaining part of the block.
2662  *
2663  * Note 1: The size of each block of data returned can be arbitrary,
2664  *       this limitation is the cost for zerocopy sequential
2665  *       reads of potentially non linear data.
2666  *
2667  * Note 2: Fragment lists within fragments are not implemented
2668  *       at the moment, state->root_skb could be replaced with
2669  *       a stack for this purpose.
2670  */
2671 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2672 			  struct skb_seq_state *st)
2673 {
2674 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2675 	skb_frag_t *frag;
2676 
2677 	if (unlikely(abs_offset >= st->upper_offset)) {
2678 		if (st->frag_data) {
2679 			kunmap_atomic(st->frag_data);
2680 			st->frag_data = NULL;
2681 		}
2682 		return 0;
2683 	}
2684 
2685 next_skb:
2686 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2687 
2688 	if (abs_offset < block_limit && !st->frag_data) {
2689 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2690 		return block_limit - abs_offset;
2691 	}
2692 
2693 	if (st->frag_idx == 0 && !st->frag_data)
2694 		st->stepped_offset += skb_headlen(st->cur_skb);
2695 
2696 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2697 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2698 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2699 
2700 		if (abs_offset < block_limit) {
2701 			if (!st->frag_data)
2702 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2703 
2704 			*data = (u8 *) st->frag_data + frag->page_offset +
2705 				(abs_offset - st->stepped_offset);
2706 
2707 			return block_limit - abs_offset;
2708 		}
2709 
2710 		if (st->frag_data) {
2711 			kunmap_atomic(st->frag_data);
2712 			st->frag_data = NULL;
2713 		}
2714 
2715 		st->frag_idx++;
2716 		st->stepped_offset += skb_frag_size(frag);
2717 	}
2718 
2719 	if (st->frag_data) {
2720 		kunmap_atomic(st->frag_data);
2721 		st->frag_data = NULL;
2722 	}
2723 
2724 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2725 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2726 		st->frag_idx = 0;
2727 		goto next_skb;
2728 	} else if (st->cur_skb->next) {
2729 		st->cur_skb = st->cur_skb->next;
2730 		st->frag_idx = 0;
2731 		goto next_skb;
2732 	}
2733 
2734 	return 0;
2735 }
2736 EXPORT_SYMBOL(skb_seq_read);
2737 
2738 /**
2739  * skb_abort_seq_read - Abort a sequential read of skb data
2740  * @st: state variable
2741  *
2742  * Must be called if skb_seq_read() was not called until it
2743  * returned 0.
2744  */
2745 void skb_abort_seq_read(struct skb_seq_state *st)
2746 {
2747 	if (st->frag_data)
2748 		kunmap_atomic(st->frag_data);
2749 }
2750 EXPORT_SYMBOL(skb_abort_seq_read);
2751 
2752 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2753 
2754 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2755 					  struct ts_config *conf,
2756 					  struct ts_state *state)
2757 {
2758 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2759 }
2760 
2761 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2762 {
2763 	skb_abort_seq_read(TS_SKB_CB(state));
2764 }
2765 
2766 /**
2767  * skb_find_text - Find a text pattern in skb data
2768  * @skb: the buffer to look in
2769  * @from: search offset
2770  * @to: search limit
2771  * @config: textsearch configuration
2772  * @state: uninitialized textsearch state variable
2773  *
2774  * Finds a pattern in the skb data according to the specified
2775  * textsearch configuration. Use textsearch_next() to retrieve
2776  * subsequent occurrences of the pattern. Returns the offset
2777  * to the first occurrence or UINT_MAX if no match was found.
2778  */
2779 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2780 			   unsigned int to, struct ts_config *config,
2781 			   struct ts_state *state)
2782 {
2783 	unsigned int ret;
2784 
2785 	config->get_next_block = skb_ts_get_next_block;
2786 	config->finish = skb_ts_finish;
2787 
2788 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2789 
2790 	ret = textsearch_find(config, state);
2791 	return (ret <= to - from ? ret : UINT_MAX);
2792 }
2793 EXPORT_SYMBOL(skb_find_text);
2794 
2795 /**
2796  * skb_append_datato_frags - append the user data to a skb
2797  * @sk: sock  structure
2798  * @skb: skb structure to be appended with user data.
2799  * @getfrag: call back function to be used for getting the user data
2800  * @from: pointer to user message iov
2801  * @length: length of the iov message
2802  *
2803  * Description: This procedure append the user data in the fragment part
2804  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2805  */
2806 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2807 			int (*getfrag)(void *from, char *to, int offset,
2808 					int len, int odd, struct sk_buff *skb),
2809 			void *from, int length)
2810 {
2811 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2812 	int copy;
2813 	int offset = 0;
2814 	int ret;
2815 	struct page_frag *pfrag = &current->task_frag;
2816 
2817 	do {
2818 		/* Return error if we don't have space for new frag */
2819 		if (frg_cnt >= MAX_SKB_FRAGS)
2820 			return -EMSGSIZE;
2821 
2822 		if (!sk_page_frag_refill(sk, pfrag))
2823 			return -ENOMEM;
2824 
2825 		/* copy the user data to page */
2826 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2827 
2828 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2829 			      offset, copy, 0, skb);
2830 		if (ret < 0)
2831 			return -EFAULT;
2832 
2833 		/* copy was successful so update the size parameters */
2834 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2835 				   copy);
2836 		frg_cnt++;
2837 		pfrag->offset += copy;
2838 		get_page(pfrag->page);
2839 
2840 		skb->truesize += copy;
2841 		atomic_add(copy, &sk->sk_wmem_alloc);
2842 		skb->len += copy;
2843 		skb->data_len += copy;
2844 		offset += copy;
2845 		length -= copy;
2846 
2847 	} while (length > 0);
2848 
2849 	return 0;
2850 }
2851 EXPORT_SYMBOL(skb_append_datato_frags);
2852 
2853 /**
2854  *	skb_pull_rcsum - pull skb and update receive checksum
2855  *	@skb: buffer to update
2856  *	@len: length of data pulled
2857  *
2858  *	This function performs an skb_pull on the packet and updates
2859  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2860  *	receive path processing instead of skb_pull unless you know
2861  *	that the checksum difference is zero (e.g., a valid IP header)
2862  *	or you are setting ip_summed to CHECKSUM_NONE.
2863  */
2864 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2865 {
2866 	BUG_ON(len > skb->len);
2867 	skb->len -= len;
2868 	BUG_ON(skb->len < skb->data_len);
2869 	skb_postpull_rcsum(skb, skb->data, len);
2870 	return skb->data += len;
2871 }
2872 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2873 
2874 /**
2875  *	skb_segment - Perform protocol segmentation on skb.
2876  *	@head_skb: buffer to segment
2877  *	@features: features for the output path (see dev->features)
2878  *
2879  *	This function performs segmentation on the given skb.  It returns
2880  *	a pointer to the first in a list of new skbs for the segments.
2881  *	In case of error it returns ERR_PTR(err).
2882  */
2883 struct sk_buff *skb_segment(struct sk_buff *head_skb,
2884 			    netdev_features_t features)
2885 {
2886 	struct sk_buff *segs = NULL;
2887 	struct sk_buff *tail = NULL;
2888 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
2889 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
2890 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
2891 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
2892 	struct sk_buff *frag_skb = head_skb;
2893 	unsigned int offset = doffset;
2894 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
2895 	unsigned int headroom;
2896 	unsigned int len;
2897 	__be16 proto;
2898 	bool csum;
2899 	int sg = !!(features & NETIF_F_SG);
2900 	int nfrags = skb_shinfo(head_skb)->nr_frags;
2901 	int err = -ENOMEM;
2902 	int i = 0;
2903 	int pos;
2904 	int dummy;
2905 
2906 	__skb_push(head_skb, doffset);
2907 	proto = skb_network_protocol(head_skb, &dummy);
2908 	if (unlikely(!proto))
2909 		return ERR_PTR(-EINVAL);
2910 
2911 	csum = !head_skb->encap_hdr_csum &&
2912 	    !!can_checksum_protocol(features, proto);
2913 
2914 	headroom = skb_headroom(head_skb);
2915 	pos = skb_headlen(head_skb);
2916 
2917 	do {
2918 		struct sk_buff *nskb;
2919 		skb_frag_t *nskb_frag;
2920 		int hsize;
2921 		int size;
2922 
2923 		len = head_skb->len - offset;
2924 		if (len > mss)
2925 			len = mss;
2926 
2927 		hsize = skb_headlen(head_skb) - offset;
2928 		if (hsize < 0)
2929 			hsize = 0;
2930 		if (hsize > len || !sg)
2931 			hsize = len;
2932 
2933 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
2934 		    (skb_headlen(list_skb) == len || sg)) {
2935 			BUG_ON(skb_headlen(list_skb) > len);
2936 
2937 			i = 0;
2938 			nfrags = skb_shinfo(list_skb)->nr_frags;
2939 			frag = skb_shinfo(list_skb)->frags;
2940 			frag_skb = list_skb;
2941 			pos += skb_headlen(list_skb);
2942 
2943 			while (pos < offset + len) {
2944 				BUG_ON(i >= nfrags);
2945 
2946 				size = skb_frag_size(frag);
2947 				if (pos + size > offset + len)
2948 					break;
2949 
2950 				i++;
2951 				pos += size;
2952 				frag++;
2953 			}
2954 
2955 			nskb = skb_clone(list_skb, GFP_ATOMIC);
2956 			list_skb = list_skb->next;
2957 
2958 			if (unlikely(!nskb))
2959 				goto err;
2960 
2961 			if (unlikely(pskb_trim(nskb, len))) {
2962 				kfree_skb(nskb);
2963 				goto err;
2964 			}
2965 
2966 			hsize = skb_end_offset(nskb);
2967 			if (skb_cow_head(nskb, doffset + headroom)) {
2968 				kfree_skb(nskb);
2969 				goto err;
2970 			}
2971 
2972 			nskb->truesize += skb_end_offset(nskb) - hsize;
2973 			skb_release_head_state(nskb);
2974 			__skb_push(nskb, doffset);
2975 		} else {
2976 			nskb = __alloc_skb(hsize + doffset + headroom,
2977 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
2978 					   NUMA_NO_NODE);
2979 
2980 			if (unlikely(!nskb))
2981 				goto err;
2982 
2983 			skb_reserve(nskb, headroom);
2984 			__skb_put(nskb, doffset);
2985 		}
2986 
2987 		if (segs)
2988 			tail->next = nskb;
2989 		else
2990 			segs = nskb;
2991 		tail = nskb;
2992 
2993 		__copy_skb_header(nskb, head_skb);
2994 
2995 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
2996 		skb_reset_mac_len(nskb);
2997 
2998 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
2999 						 nskb->data - tnl_hlen,
3000 						 doffset + tnl_hlen);
3001 
3002 		if (nskb->len == len + doffset)
3003 			goto perform_csum_check;
3004 
3005 		if (!sg) {
3006 			nskb->ip_summed = CHECKSUM_NONE;
3007 			nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3008 							    skb_put(nskb, len),
3009 							    len, 0);
3010 			SKB_GSO_CB(nskb)->csum_start =
3011 			    skb_headroom(nskb) + doffset;
3012 			continue;
3013 		}
3014 
3015 		nskb_frag = skb_shinfo(nskb)->frags;
3016 
3017 		skb_copy_from_linear_data_offset(head_skb, offset,
3018 						 skb_put(nskb, hsize), hsize);
3019 
3020 		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3021 			SKBTX_SHARED_FRAG;
3022 
3023 		while (pos < offset + len) {
3024 			if (i >= nfrags) {
3025 				BUG_ON(skb_headlen(list_skb));
3026 
3027 				i = 0;
3028 				nfrags = skb_shinfo(list_skb)->nr_frags;
3029 				frag = skb_shinfo(list_skb)->frags;
3030 				frag_skb = list_skb;
3031 
3032 				BUG_ON(!nfrags);
3033 
3034 				list_skb = list_skb->next;
3035 			}
3036 
3037 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3038 				     MAX_SKB_FRAGS)) {
3039 				net_warn_ratelimited(
3040 					"skb_segment: too many frags: %u %u\n",
3041 					pos, mss);
3042 				goto err;
3043 			}
3044 
3045 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3046 				goto err;
3047 
3048 			*nskb_frag = *frag;
3049 			__skb_frag_ref(nskb_frag);
3050 			size = skb_frag_size(nskb_frag);
3051 
3052 			if (pos < offset) {
3053 				nskb_frag->page_offset += offset - pos;
3054 				skb_frag_size_sub(nskb_frag, offset - pos);
3055 			}
3056 
3057 			skb_shinfo(nskb)->nr_frags++;
3058 
3059 			if (pos + size <= offset + len) {
3060 				i++;
3061 				frag++;
3062 				pos += size;
3063 			} else {
3064 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3065 				goto skip_fraglist;
3066 			}
3067 
3068 			nskb_frag++;
3069 		}
3070 
3071 skip_fraglist:
3072 		nskb->data_len = len - hsize;
3073 		nskb->len += nskb->data_len;
3074 		nskb->truesize += nskb->data_len;
3075 
3076 perform_csum_check:
3077 		if (!csum) {
3078 			nskb->csum = skb_checksum(nskb, doffset,
3079 						  nskb->len - doffset, 0);
3080 			nskb->ip_summed = CHECKSUM_NONE;
3081 			SKB_GSO_CB(nskb)->csum_start =
3082 			    skb_headroom(nskb) + doffset;
3083 		}
3084 	} while ((offset += len) < head_skb->len);
3085 
3086 	/* Some callers want to get the end of the list.
3087 	 * Put it in segs->prev to avoid walking the list.
3088 	 * (see validate_xmit_skb_list() for example)
3089 	 */
3090 	segs->prev = tail;
3091 	return segs;
3092 
3093 err:
3094 	kfree_skb_list(segs);
3095 	return ERR_PTR(err);
3096 }
3097 EXPORT_SYMBOL_GPL(skb_segment);
3098 
3099 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3100 {
3101 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3102 	unsigned int offset = skb_gro_offset(skb);
3103 	unsigned int headlen = skb_headlen(skb);
3104 	struct sk_buff *nskb, *lp, *p = *head;
3105 	unsigned int len = skb_gro_len(skb);
3106 	unsigned int delta_truesize;
3107 	unsigned int headroom;
3108 
3109 	if (unlikely(p->len + len >= 65536))
3110 		return -E2BIG;
3111 
3112 	lp = NAPI_GRO_CB(p)->last;
3113 	pinfo = skb_shinfo(lp);
3114 
3115 	if (headlen <= offset) {
3116 		skb_frag_t *frag;
3117 		skb_frag_t *frag2;
3118 		int i = skbinfo->nr_frags;
3119 		int nr_frags = pinfo->nr_frags + i;
3120 
3121 		if (nr_frags > MAX_SKB_FRAGS)
3122 			goto merge;
3123 
3124 		offset -= headlen;
3125 		pinfo->nr_frags = nr_frags;
3126 		skbinfo->nr_frags = 0;
3127 
3128 		frag = pinfo->frags + nr_frags;
3129 		frag2 = skbinfo->frags + i;
3130 		do {
3131 			*--frag = *--frag2;
3132 		} while (--i);
3133 
3134 		frag->page_offset += offset;
3135 		skb_frag_size_sub(frag, offset);
3136 
3137 		/* all fragments truesize : remove (head size + sk_buff) */
3138 		delta_truesize = skb->truesize -
3139 				 SKB_TRUESIZE(skb_end_offset(skb));
3140 
3141 		skb->truesize -= skb->data_len;
3142 		skb->len -= skb->data_len;
3143 		skb->data_len = 0;
3144 
3145 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3146 		goto done;
3147 	} else if (skb->head_frag) {
3148 		int nr_frags = pinfo->nr_frags;
3149 		skb_frag_t *frag = pinfo->frags + nr_frags;
3150 		struct page *page = virt_to_head_page(skb->head);
3151 		unsigned int first_size = headlen - offset;
3152 		unsigned int first_offset;
3153 
3154 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3155 			goto merge;
3156 
3157 		first_offset = skb->data -
3158 			       (unsigned char *)page_address(page) +
3159 			       offset;
3160 
3161 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3162 
3163 		frag->page.p	  = page;
3164 		frag->page_offset = first_offset;
3165 		skb_frag_size_set(frag, first_size);
3166 
3167 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3168 		/* We dont need to clear skbinfo->nr_frags here */
3169 
3170 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3171 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3172 		goto done;
3173 	}
3174 	/* switch back to head shinfo */
3175 	pinfo = skb_shinfo(p);
3176 
3177 	if (pinfo->frag_list)
3178 		goto merge;
3179 	if (skb_gro_len(p) != pinfo->gso_size)
3180 		return -E2BIG;
3181 
3182 	headroom = skb_headroom(p);
3183 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3184 	if (unlikely(!nskb))
3185 		return -ENOMEM;
3186 
3187 	__copy_skb_header(nskb, p);
3188 	nskb->mac_len = p->mac_len;
3189 
3190 	skb_reserve(nskb, headroom);
3191 	__skb_put(nskb, skb_gro_offset(p));
3192 
3193 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3194 	skb_set_network_header(nskb, skb_network_offset(p));
3195 	skb_set_transport_header(nskb, skb_transport_offset(p));
3196 
3197 	__skb_pull(p, skb_gro_offset(p));
3198 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
3199 	       p->data - skb_mac_header(p));
3200 
3201 	skb_shinfo(nskb)->frag_list = p;
3202 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3203 	pinfo->gso_size = 0;
3204 	__skb_header_release(p);
3205 	NAPI_GRO_CB(nskb)->last = p;
3206 
3207 	nskb->data_len += p->len;
3208 	nskb->truesize += p->truesize;
3209 	nskb->len += p->len;
3210 
3211 	*head = nskb;
3212 	nskb->next = p->next;
3213 	p->next = NULL;
3214 
3215 	p = nskb;
3216 
3217 merge:
3218 	delta_truesize = skb->truesize;
3219 	if (offset > headlen) {
3220 		unsigned int eat = offset - headlen;
3221 
3222 		skbinfo->frags[0].page_offset += eat;
3223 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3224 		skb->data_len -= eat;
3225 		skb->len -= eat;
3226 		offset = headlen;
3227 	}
3228 
3229 	__skb_pull(skb, offset);
3230 
3231 	if (NAPI_GRO_CB(p)->last == p)
3232 		skb_shinfo(p)->frag_list = skb;
3233 	else
3234 		NAPI_GRO_CB(p)->last->next = skb;
3235 	NAPI_GRO_CB(p)->last = skb;
3236 	__skb_header_release(skb);
3237 	lp = p;
3238 
3239 done:
3240 	NAPI_GRO_CB(p)->count++;
3241 	p->data_len += len;
3242 	p->truesize += delta_truesize;
3243 	p->len += len;
3244 	if (lp != p) {
3245 		lp->data_len += len;
3246 		lp->truesize += delta_truesize;
3247 		lp->len += len;
3248 	}
3249 	NAPI_GRO_CB(skb)->same_flow = 1;
3250 	return 0;
3251 }
3252 
3253 void __init skb_init(void)
3254 {
3255 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3256 					      sizeof(struct sk_buff),
3257 					      0,
3258 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3259 					      NULL);
3260 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3261 						sizeof(struct sk_buff_fclones),
3262 						0,
3263 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3264 						NULL);
3265 }
3266 
3267 /**
3268  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3269  *	@skb: Socket buffer containing the buffers to be mapped
3270  *	@sg: The scatter-gather list to map into
3271  *	@offset: The offset into the buffer's contents to start mapping
3272  *	@len: Length of buffer space to be mapped
3273  *
3274  *	Fill the specified scatter-gather list with mappings/pointers into a
3275  *	region of the buffer space attached to a socket buffer.
3276  */
3277 static int
3278 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3279 {
3280 	int start = skb_headlen(skb);
3281 	int i, copy = start - offset;
3282 	struct sk_buff *frag_iter;
3283 	int elt = 0;
3284 
3285 	if (copy > 0) {
3286 		if (copy > len)
3287 			copy = len;
3288 		sg_set_buf(sg, skb->data + offset, copy);
3289 		elt++;
3290 		if ((len -= copy) == 0)
3291 			return elt;
3292 		offset += copy;
3293 	}
3294 
3295 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3296 		int end;
3297 
3298 		WARN_ON(start > offset + len);
3299 
3300 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3301 		if ((copy = end - offset) > 0) {
3302 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3303 
3304 			if (copy > len)
3305 				copy = len;
3306 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3307 					frag->page_offset+offset-start);
3308 			elt++;
3309 			if (!(len -= copy))
3310 				return elt;
3311 			offset += copy;
3312 		}
3313 		start = end;
3314 	}
3315 
3316 	skb_walk_frags(skb, frag_iter) {
3317 		int end;
3318 
3319 		WARN_ON(start > offset + len);
3320 
3321 		end = start + frag_iter->len;
3322 		if ((copy = end - offset) > 0) {
3323 			if (copy > len)
3324 				copy = len;
3325 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3326 					      copy);
3327 			if ((len -= copy) == 0)
3328 				return elt;
3329 			offset += copy;
3330 		}
3331 		start = end;
3332 	}
3333 	BUG_ON(len);
3334 	return elt;
3335 }
3336 
3337 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3338  * sglist without mark the sg which contain last skb data as the end.
3339  * So the caller can mannipulate sg list as will when padding new data after
3340  * the first call without calling sg_unmark_end to expend sg list.
3341  *
3342  * Scenario to use skb_to_sgvec_nomark:
3343  * 1. sg_init_table
3344  * 2. skb_to_sgvec_nomark(payload1)
3345  * 3. skb_to_sgvec_nomark(payload2)
3346  *
3347  * This is equivalent to:
3348  * 1. sg_init_table
3349  * 2. skb_to_sgvec(payload1)
3350  * 3. sg_unmark_end
3351  * 4. skb_to_sgvec(payload2)
3352  *
3353  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3354  * is more preferable.
3355  */
3356 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3357 			int offset, int len)
3358 {
3359 	return __skb_to_sgvec(skb, sg, offset, len);
3360 }
3361 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3362 
3363 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3364 {
3365 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3366 
3367 	sg_mark_end(&sg[nsg - 1]);
3368 
3369 	return nsg;
3370 }
3371 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3372 
3373 /**
3374  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3375  *	@skb: The socket buffer to check.
3376  *	@tailbits: Amount of trailing space to be added
3377  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3378  *
3379  *	Make sure that the data buffers attached to a socket buffer are
3380  *	writable. If they are not, private copies are made of the data buffers
3381  *	and the socket buffer is set to use these instead.
3382  *
3383  *	If @tailbits is given, make sure that there is space to write @tailbits
3384  *	bytes of data beyond current end of socket buffer.  @trailer will be
3385  *	set to point to the skb in which this space begins.
3386  *
3387  *	The number of scatterlist elements required to completely map the
3388  *	COW'd and extended socket buffer will be returned.
3389  */
3390 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3391 {
3392 	int copyflag;
3393 	int elt;
3394 	struct sk_buff *skb1, **skb_p;
3395 
3396 	/* If skb is cloned or its head is paged, reallocate
3397 	 * head pulling out all the pages (pages are considered not writable
3398 	 * at the moment even if they are anonymous).
3399 	 */
3400 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3401 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3402 		return -ENOMEM;
3403 
3404 	/* Easy case. Most of packets will go this way. */
3405 	if (!skb_has_frag_list(skb)) {
3406 		/* A little of trouble, not enough of space for trailer.
3407 		 * This should not happen, when stack is tuned to generate
3408 		 * good frames. OK, on miss we reallocate and reserve even more
3409 		 * space, 128 bytes is fair. */
3410 
3411 		if (skb_tailroom(skb) < tailbits &&
3412 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3413 			return -ENOMEM;
3414 
3415 		/* Voila! */
3416 		*trailer = skb;
3417 		return 1;
3418 	}
3419 
3420 	/* Misery. We are in troubles, going to mincer fragments... */
3421 
3422 	elt = 1;
3423 	skb_p = &skb_shinfo(skb)->frag_list;
3424 	copyflag = 0;
3425 
3426 	while ((skb1 = *skb_p) != NULL) {
3427 		int ntail = 0;
3428 
3429 		/* The fragment is partially pulled by someone,
3430 		 * this can happen on input. Copy it and everything
3431 		 * after it. */
3432 
3433 		if (skb_shared(skb1))
3434 			copyflag = 1;
3435 
3436 		/* If the skb is the last, worry about trailer. */
3437 
3438 		if (skb1->next == NULL && tailbits) {
3439 			if (skb_shinfo(skb1)->nr_frags ||
3440 			    skb_has_frag_list(skb1) ||
3441 			    skb_tailroom(skb1) < tailbits)
3442 				ntail = tailbits + 128;
3443 		}
3444 
3445 		if (copyflag ||
3446 		    skb_cloned(skb1) ||
3447 		    ntail ||
3448 		    skb_shinfo(skb1)->nr_frags ||
3449 		    skb_has_frag_list(skb1)) {
3450 			struct sk_buff *skb2;
3451 
3452 			/* Fuck, we are miserable poor guys... */
3453 			if (ntail == 0)
3454 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3455 			else
3456 				skb2 = skb_copy_expand(skb1,
3457 						       skb_headroom(skb1),
3458 						       ntail,
3459 						       GFP_ATOMIC);
3460 			if (unlikely(skb2 == NULL))
3461 				return -ENOMEM;
3462 
3463 			if (skb1->sk)
3464 				skb_set_owner_w(skb2, skb1->sk);
3465 
3466 			/* Looking around. Are we still alive?
3467 			 * OK, link new skb, drop old one */
3468 
3469 			skb2->next = skb1->next;
3470 			*skb_p = skb2;
3471 			kfree_skb(skb1);
3472 			skb1 = skb2;
3473 		}
3474 		elt++;
3475 		*trailer = skb1;
3476 		skb_p = &skb1->next;
3477 	}
3478 
3479 	return elt;
3480 }
3481 EXPORT_SYMBOL_GPL(skb_cow_data);
3482 
3483 static void sock_rmem_free(struct sk_buff *skb)
3484 {
3485 	struct sock *sk = skb->sk;
3486 
3487 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3488 }
3489 
3490 /*
3491  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3492  */
3493 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3494 {
3495 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3496 	    (unsigned int)sk->sk_rcvbuf)
3497 		return -ENOMEM;
3498 
3499 	skb_orphan(skb);
3500 	skb->sk = sk;
3501 	skb->destructor = sock_rmem_free;
3502 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3503 
3504 	/* before exiting rcu section, make sure dst is refcounted */
3505 	skb_dst_force(skb);
3506 
3507 	skb_queue_tail(&sk->sk_error_queue, skb);
3508 	if (!sock_flag(sk, SOCK_DEAD))
3509 		sk->sk_data_ready(sk);
3510 	return 0;
3511 }
3512 EXPORT_SYMBOL(sock_queue_err_skb);
3513 
3514 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3515 {
3516 	struct sk_buff_head *q = &sk->sk_error_queue;
3517 	struct sk_buff *skb, *skb_next;
3518 	int err = 0;
3519 
3520 	spin_lock_bh(&q->lock);
3521 	skb = __skb_dequeue(q);
3522 	if (skb && (skb_next = skb_peek(q)))
3523 		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3524 	spin_unlock_bh(&q->lock);
3525 
3526 	sk->sk_err = err;
3527 	if (err)
3528 		sk->sk_error_report(sk);
3529 
3530 	return skb;
3531 }
3532 EXPORT_SYMBOL(sock_dequeue_err_skb);
3533 
3534 /**
3535  * skb_clone_sk - create clone of skb, and take reference to socket
3536  * @skb: the skb to clone
3537  *
3538  * This function creates a clone of a buffer that holds a reference on
3539  * sk_refcnt.  Buffers created via this function are meant to be
3540  * returned using sock_queue_err_skb, or free via kfree_skb.
3541  *
3542  * When passing buffers allocated with this function to sock_queue_err_skb
3543  * it is necessary to wrap the call with sock_hold/sock_put in order to
3544  * prevent the socket from being released prior to being enqueued on
3545  * the sk_error_queue.
3546  */
3547 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3548 {
3549 	struct sock *sk = skb->sk;
3550 	struct sk_buff *clone;
3551 
3552 	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3553 		return NULL;
3554 
3555 	clone = skb_clone(skb, GFP_ATOMIC);
3556 	if (!clone) {
3557 		sock_put(sk);
3558 		return NULL;
3559 	}
3560 
3561 	clone->sk = sk;
3562 	clone->destructor = sock_efree;
3563 
3564 	return clone;
3565 }
3566 EXPORT_SYMBOL(skb_clone_sk);
3567 
3568 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3569 					struct sock *sk,
3570 					int tstype)
3571 {
3572 	struct sock_exterr_skb *serr;
3573 	int err;
3574 
3575 	serr = SKB_EXT_ERR(skb);
3576 	memset(serr, 0, sizeof(*serr));
3577 	serr->ee.ee_errno = ENOMSG;
3578 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3579 	serr->ee.ee_info = tstype;
3580 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3581 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3582 		if (sk->sk_protocol == IPPROTO_TCP)
3583 			serr->ee.ee_data -= sk->sk_tskey;
3584 	}
3585 
3586 	err = sock_queue_err_skb(sk, skb);
3587 
3588 	if (err)
3589 		kfree_skb(skb);
3590 }
3591 
3592 void skb_complete_tx_timestamp(struct sk_buff *skb,
3593 			       struct skb_shared_hwtstamps *hwtstamps)
3594 {
3595 	struct sock *sk = skb->sk;
3596 
3597 	/* take a reference to prevent skb_orphan() from freeing the socket */
3598 	sock_hold(sk);
3599 
3600 	*skb_hwtstamps(skb) = *hwtstamps;
3601 	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3602 
3603 	sock_put(sk);
3604 }
3605 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3606 
3607 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3608 		     struct skb_shared_hwtstamps *hwtstamps,
3609 		     struct sock *sk, int tstype)
3610 {
3611 	struct sk_buff *skb;
3612 
3613 	if (!sk)
3614 		return;
3615 
3616 	if (hwtstamps)
3617 		*skb_hwtstamps(orig_skb) = *hwtstamps;
3618 	else
3619 		orig_skb->tstamp = ktime_get_real();
3620 
3621 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3622 	if (!skb)
3623 		return;
3624 
3625 	__skb_complete_tx_timestamp(skb, sk, tstype);
3626 }
3627 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3628 
3629 void skb_tstamp_tx(struct sk_buff *orig_skb,
3630 		   struct skb_shared_hwtstamps *hwtstamps)
3631 {
3632 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3633 			       SCM_TSTAMP_SND);
3634 }
3635 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3636 
3637 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3638 {
3639 	struct sock *sk = skb->sk;
3640 	struct sock_exterr_skb *serr;
3641 	int err;
3642 
3643 	skb->wifi_acked_valid = 1;
3644 	skb->wifi_acked = acked;
3645 
3646 	serr = SKB_EXT_ERR(skb);
3647 	memset(serr, 0, sizeof(*serr));
3648 	serr->ee.ee_errno = ENOMSG;
3649 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3650 
3651 	/* take a reference to prevent skb_orphan() from freeing the socket */
3652 	sock_hold(sk);
3653 
3654 	err = sock_queue_err_skb(sk, skb);
3655 	if (err)
3656 		kfree_skb(skb);
3657 
3658 	sock_put(sk);
3659 }
3660 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3661 
3662 
3663 /**
3664  * skb_partial_csum_set - set up and verify partial csum values for packet
3665  * @skb: the skb to set
3666  * @start: the number of bytes after skb->data to start checksumming.
3667  * @off: the offset from start to place the checksum.
3668  *
3669  * For untrusted partially-checksummed packets, we need to make sure the values
3670  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3671  *
3672  * This function checks and sets those values and skb->ip_summed: if this
3673  * returns false you should drop the packet.
3674  */
3675 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3676 {
3677 	if (unlikely(start > skb_headlen(skb)) ||
3678 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3679 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3680 				     start, off, skb_headlen(skb));
3681 		return false;
3682 	}
3683 	skb->ip_summed = CHECKSUM_PARTIAL;
3684 	skb->csum_start = skb_headroom(skb) + start;
3685 	skb->csum_offset = off;
3686 	skb_set_transport_header(skb, start);
3687 	return true;
3688 }
3689 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3690 
3691 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3692 			       unsigned int max)
3693 {
3694 	if (skb_headlen(skb) >= len)
3695 		return 0;
3696 
3697 	/* If we need to pullup then pullup to the max, so we
3698 	 * won't need to do it again.
3699 	 */
3700 	if (max > skb->len)
3701 		max = skb->len;
3702 
3703 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3704 		return -ENOMEM;
3705 
3706 	if (skb_headlen(skb) < len)
3707 		return -EPROTO;
3708 
3709 	return 0;
3710 }
3711 
3712 #define MAX_TCP_HDR_LEN (15 * 4)
3713 
3714 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3715 				      typeof(IPPROTO_IP) proto,
3716 				      unsigned int off)
3717 {
3718 	switch (proto) {
3719 		int err;
3720 
3721 	case IPPROTO_TCP:
3722 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3723 					  off + MAX_TCP_HDR_LEN);
3724 		if (!err && !skb_partial_csum_set(skb, off,
3725 						  offsetof(struct tcphdr,
3726 							   check)))
3727 			err = -EPROTO;
3728 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3729 
3730 	case IPPROTO_UDP:
3731 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3732 					  off + sizeof(struct udphdr));
3733 		if (!err && !skb_partial_csum_set(skb, off,
3734 						  offsetof(struct udphdr,
3735 							   check)))
3736 			err = -EPROTO;
3737 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3738 	}
3739 
3740 	return ERR_PTR(-EPROTO);
3741 }
3742 
3743 /* This value should be large enough to cover a tagged ethernet header plus
3744  * maximally sized IP and TCP or UDP headers.
3745  */
3746 #define MAX_IP_HDR_LEN 128
3747 
3748 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3749 {
3750 	unsigned int off;
3751 	bool fragment;
3752 	__sum16 *csum;
3753 	int err;
3754 
3755 	fragment = false;
3756 
3757 	err = skb_maybe_pull_tail(skb,
3758 				  sizeof(struct iphdr),
3759 				  MAX_IP_HDR_LEN);
3760 	if (err < 0)
3761 		goto out;
3762 
3763 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3764 		fragment = true;
3765 
3766 	off = ip_hdrlen(skb);
3767 
3768 	err = -EPROTO;
3769 
3770 	if (fragment)
3771 		goto out;
3772 
3773 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3774 	if (IS_ERR(csum))
3775 		return PTR_ERR(csum);
3776 
3777 	if (recalculate)
3778 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3779 					   ip_hdr(skb)->daddr,
3780 					   skb->len - off,
3781 					   ip_hdr(skb)->protocol, 0);
3782 	err = 0;
3783 
3784 out:
3785 	return err;
3786 }
3787 
3788 /* This value should be large enough to cover a tagged ethernet header plus
3789  * an IPv6 header, all options, and a maximal TCP or UDP header.
3790  */
3791 #define MAX_IPV6_HDR_LEN 256
3792 
3793 #define OPT_HDR(type, skb, off) \
3794 	(type *)(skb_network_header(skb) + (off))
3795 
3796 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3797 {
3798 	int err;
3799 	u8 nexthdr;
3800 	unsigned int off;
3801 	unsigned int len;
3802 	bool fragment;
3803 	bool done;
3804 	__sum16 *csum;
3805 
3806 	fragment = false;
3807 	done = false;
3808 
3809 	off = sizeof(struct ipv6hdr);
3810 
3811 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3812 	if (err < 0)
3813 		goto out;
3814 
3815 	nexthdr = ipv6_hdr(skb)->nexthdr;
3816 
3817 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3818 	while (off <= len && !done) {
3819 		switch (nexthdr) {
3820 		case IPPROTO_DSTOPTS:
3821 		case IPPROTO_HOPOPTS:
3822 		case IPPROTO_ROUTING: {
3823 			struct ipv6_opt_hdr *hp;
3824 
3825 			err = skb_maybe_pull_tail(skb,
3826 						  off +
3827 						  sizeof(struct ipv6_opt_hdr),
3828 						  MAX_IPV6_HDR_LEN);
3829 			if (err < 0)
3830 				goto out;
3831 
3832 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3833 			nexthdr = hp->nexthdr;
3834 			off += ipv6_optlen(hp);
3835 			break;
3836 		}
3837 		case IPPROTO_AH: {
3838 			struct ip_auth_hdr *hp;
3839 
3840 			err = skb_maybe_pull_tail(skb,
3841 						  off +
3842 						  sizeof(struct ip_auth_hdr),
3843 						  MAX_IPV6_HDR_LEN);
3844 			if (err < 0)
3845 				goto out;
3846 
3847 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3848 			nexthdr = hp->nexthdr;
3849 			off += ipv6_authlen(hp);
3850 			break;
3851 		}
3852 		case IPPROTO_FRAGMENT: {
3853 			struct frag_hdr *hp;
3854 
3855 			err = skb_maybe_pull_tail(skb,
3856 						  off +
3857 						  sizeof(struct frag_hdr),
3858 						  MAX_IPV6_HDR_LEN);
3859 			if (err < 0)
3860 				goto out;
3861 
3862 			hp = OPT_HDR(struct frag_hdr, skb, off);
3863 
3864 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3865 				fragment = true;
3866 
3867 			nexthdr = hp->nexthdr;
3868 			off += sizeof(struct frag_hdr);
3869 			break;
3870 		}
3871 		default:
3872 			done = true;
3873 			break;
3874 		}
3875 	}
3876 
3877 	err = -EPROTO;
3878 
3879 	if (!done || fragment)
3880 		goto out;
3881 
3882 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
3883 	if (IS_ERR(csum))
3884 		return PTR_ERR(csum);
3885 
3886 	if (recalculate)
3887 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3888 					 &ipv6_hdr(skb)->daddr,
3889 					 skb->len - off, nexthdr, 0);
3890 	err = 0;
3891 
3892 out:
3893 	return err;
3894 }
3895 
3896 /**
3897  * skb_checksum_setup - set up partial checksum offset
3898  * @skb: the skb to set up
3899  * @recalculate: if true the pseudo-header checksum will be recalculated
3900  */
3901 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
3902 {
3903 	int err;
3904 
3905 	switch (skb->protocol) {
3906 	case htons(ETH_P_IP):
3907 		err = skb_checksum_setup_ipv4(skb, recalculate);
3908 		break;
3909 
3910 	case htons(ETH_P_IPV6):
3911 		err = skb_checksum_setup_ipv6(skb, recalculate);
3912 		break;
3913 
3914 	default:
3915 		err = -EPROTO;
3916 		break;
3917 	}
3918 
3919 	return err;
3920 }
3921 EXPORT_SYMBOL(skb_checksum_setup);
3922 
3923 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3924 {
3925 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3926 			     skb->dev->name);
3927 }
3928 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3929 
3930 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3931 {
3932 	if (head_stolen) {
3933 		skb_release_head_state(skb);
3934 		kmem_cache_free(skbuff_head_cache, skb);
3935 	} else {
3936 		__kfree_skb(skb);
3937 	}
3938 }
3939 EXPORT_SYMBOL(kfree_skb_partial);
3940 
3941 /**
3942  * skb_try_coalesce - try to merge skb to prior one
3943  * @to: prior buffer
3944  * @from: buffer to add
3945  * @fragstolen: pointer to boolean
3946  * @delta_truesize: how much more was allocated than was requested
3947  */
3948 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3949 		      bool *fragstolen, int *delta_truesize)
3950 {
3951 	int i, delta, len = from->len;
3952 
3953 	*fragstolen = false;
3954 
3955 	if (skb_cloned(to))
3956 		return false;
3957 
3958 	if (len <= skb_tailroom(to)) {
3959 		if (len)
3960 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3961 		*delta_truesize = 0;
3962 		return true;
3963 	}
3964 
3965 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3966 		return false;
3967 
3968 	if (skb_headlen(from) != 0) {
3969 		struct page *page;
3970 		unsigned int offset;
3971 
3972 		if (skb_shinfo(to)->nr_frags +
3973 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3974 			return false;
3975 
3976 		if (skb_head_is_locked(from))
3977 			return false;
3978 
3979 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3980 
3981 		page = virt_to_head_page(from->head);
3982 		offset = from->data - (unsigned char *)page_address(page);
3983 
3984 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3985 				   page, offset, skb_headlen(from));
3986 		*fragstolen = true;
3987 	} else {
3988 		if (skb_shinfo(to)->nr_frags +
3989 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3990 			return false;
3991 
3992 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3993 	}
3994 
3995 	WARN_ON_ONCE(delta < len);
3996 
3997 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3998 	       skb_shinfo(from)->frags,
3999 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4000 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4001 
4002 	if (!skb_cloned(from))
4003 		skb_shinfo(from)->nr_frags = 0;
4004 
4005 	/* if the skb is not cloned this does nothing
4006 	 * since we set nr_frags to 0.
4007 	 */
4008 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4009 		skb_frag_ref(from, i);
4010 
4011 	to->truesize += delta;
4012 	to->len += len;
4013 	to->data_len += len;
4014 
4015 	*delta_truesize = delta;
4016 	return true;
4017 }
4018 EXPORT_SYMBOL(skb_try_coalesce);
4019 
4020 /**
4021  * skb_scrub_packet - scrub an skb
4022  *
4023  * @skb: buffer to clean
4024  * @xnet: packet is crossing netns
4025  *
4026  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4027  * into/from a tunnel. Some information have to be cleared during these
4028  * operations.
4029  * skb_scrub_packet can also be used to clean a skb before injecting it in
4030  * another namespace (@xnet == true). We have to clear all information in the
4031  * skb that could impact namespace isolation.
4032  */
4033 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4034 {
4035 	if (xnet)
4036 		skb_orphan(skb);
4037 	skb->tstamp.tv64 = 0;
4038 	skb->pkt_type = PACKET_HOST;
4039 	skb->skb_iif = 0;
4040 	skb->ignore_df = 0;
4041 	skb_dst_drop(skb);
4042 	skb->mark = 0;
4043 	secpath_reset(skb);
4044 	nf_reset(skb);
4045 	nf_reset_trace(skb);
4046 }
4047 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4048 
4049 /**
4050  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4051  *
4052  * @skb: GSO skb
4053  *
4054  * skb_gso_transport_seglen is used to determine the real size of the
4055  * individual segments, including Layer4 headers (TCP/UDP).
4056  *
4057  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4058  */
4059 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4060 {
4061 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4062 	unsigned int thlen = 0;
4063 
4064 	if (skb->encapsulation) {
4065 		thlen = skb_inner_transport_header(skb) -
4066 			skb_transport_header(skb);
4067 
4068 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4069 			thlen += inner_tcp_hdrlen(skb);
4070 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4071 		thlen = tcp_hdrlen(skb);
4072 	}
4073 	/* UFO sets gso_size to the size of the fragmentation
4074 	 * payload, i.e. the size of the L4 (UDP) header is already
4075 	 * accounted for.
4076 	 */
4077 	return thlen + shinfo->gso_size;
4078 }
4079 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4080 
4081 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4082 {
4083 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4084 		kfree_skb(skb);
4085 		return NULL;
4086 	}
4087 
4088 	memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN);
4089 	skb->mac_header += VLAN_HLEN;
4090 	return skb;
4091 }
4092 
4093 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4094 {
4095 	struct vlan_hdr *vhdr;
4096 	u16 vlan_tci;
4097 
4098 	if (unlikely(vlan_tx_tag_present(skb))) {
4099 		/* vlan_tci is already set-up so leave this for another time */
4100 		return skb;
4101 	}
4102 
4103 	skb = skb_share_check(skb, GFP_ATOMIC);
4104 	if (unlikely(!skb))
4105 		goto err_free;
4106 
4107 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4108 		goto err_free;
4109 
4110 	vhdr = (struct vlan_hdr *)skb->data;
4111 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4112 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4113 
4114 	skb_pull_rcsum(skb, VLAN_HLEN);
4115 	vlan_set_encap_proto(skb, vhdr);
4116 
4117 	skb = skb_reorder_vlan_header(skb);
4118 	if (unlikely(!skb))
4119 		goto err_free;
4120 
4121 	skb_reset_network_header(skb);
4122 	skb_reset_transport_header(skb);
4123 	skb_reset_mac_len(skb);
4124 
4125 	return skb;
4126 
4127 err_free:
4128 	kfree_skb(skb);
4129 	return NULL;
4130 }
4131 EXPORT_SYMBOL(skb_vlan_untag);
4132 
4133 /**
4134  * alloc_skb_with_frags - allocate skb with page frags
4135  *
4136  * @header_len: size of linear part
4137  * @data_len: needed length in frags
4138  * @max_page_order: max page order desired.
4139  * @errcode: pointer to error code if any
4140  * @gfp_mask: allocation mask
4141  *
4142  * This can be used to allocate a paged skb, given a maximal order for frags.
4143  */
4144 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4145 				     unsigned long data_len,
4146 				     int max_page_order,
4147 				     int *errcode,
4148 				     gfp_t gfp_mask)
4149 {
4150 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4151 	unsigned long chunk;
4152 	struct sk_buff *skb;
4153 	struct page *page;
4154 	gfp_t gfp_head;
4155 	int i;
4156 
4157 	*errcode = -EMSGSIZE;
4158 	/* Note this test could be relaxed, if we succeed to allocate
4159 	 * high order pages...
4160 	 */
4161 	if (npages > MAX_SKB_FRAGS)
4162 		return NULL;
4163 
4164 	gfp_head = gfp_mask;
4165 	if (gfp_head & __GFP_WAIT)
4166 		gfp_head |= __GFP_REPEAT;
4167 
4168 	*errcode = -ENOBUFS;
4169 	skb = alloc_skb(header_len, gfp_head);
4170 	if (!skb)
4171 		return NULL;
4172 
4173 	skb->truesize += npages << PAGE_SHIFT;
4174 
4175 	for (i = 0; npages > 0; i++) {
4176 		int order = max_page_order;
4177 
4178 		while (order) {
4179 			if (npages >= 1 << order) {
4180 				page = alloc_pages(gfp_mask |
4181 						   __GFP_COMP |
4182 						   __GFP_NOWARN |
4183 						   __GFP_NORETRY,
4184 						   order);
4185 				if (page)
4186 					goto fill_page;
4187 				/* Do not retry other high order allocations */
4188 				order = 1;
4189 				max_page_order = 0;
4190 			}
4191 			order--;
4192 		}
4193 		page = alloc_page(gfp_mask);
4194 		if (!page)
4195 			goto failure;
4196 fill_page:
4197 		chunk = min_t(unsigned long, data_len,
4198 			      PAGE_SIZE << order);
4199 		skb_fill_page_desc(skb, i, page, 0, chunk);
4200 		data_len -= chunk;
4201 		npages -= 1 << order;
4202 	}
4203 	return skb;
4204 
4205 failure:
4206 	kfree_skb(skb);
4207 	return NULL;
4208 }
4209 EXPORT_SYMBOL(alloc_skb_with_frags);
4210