1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/tcp.h> 51 #include <linux/udp.h> 52 #include <linux/sctp.h> 53 #include <linux/netdevice.h> 54 #ifdef CONFIG_NET_CLS_ACT 55 #include <net/pkt_sched.h> 56 #endif 57 #include <linux/string.h> 58 #include <linux/skbuff.h> 59 #include <linux/splice.h> 60 #include <linux/cache.h> 61 #include <linux/rtnetlink.h> 62 #include <linux/init.h> 63 #include <linux/scatterlist.h> 64 #include <linux/errqueue.h> 65 #include <linux/prefetch.h> 66 #include <linux/if_vlan.h> 67 68 #include <net/protocol.h> 69 #include <net/dst.h> 70 #include <net/sock.h> 71 #include <net/checksum.h> 72 #include <net/ip6_checksum.h> 73 #include <net/xfrm.h> 74 75 #include <linux/uaccess.h> 76 #include <trace/events/skb.h> 77 #include <linux/highmem.h> 78 #include <linux/capability.h> 79 #include <linux/user_namespace.h> 80 81 struct kmem_cache *skbuff_head_cache __read_mostly; 82 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 84 EXPORT_SYMBOL(sysctl_max_skb_frags); 85 86 /** 87 * skb_panic - private function for out-of-line support 88 * @skb: buffer 89 * @sz: size 90 * @addr: address 91 * @msg: skb_over_panic or skb_under_panic 92 * 93 * Out-of-line support for skb_put() and skb_push(). 94 * Called via the wrapper skb_over_panic() or skb_under_panic(). 95 * Keep out of line to prevent kernel bloat. 96 * __builtin_return_address is not used because it is not always reliable. 97 */ 98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 99 const char msg[]) 100 { 101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 102 msg, addr, skb->len, sz, skb->head, skb->data, 103 (unsigned long)skb->tail, (unsigned long)skb->end, 104 skb->dev ? skb->dev->name : "<NULL>"); 105 BUG(); 106 } 107 108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 109 { 110 skb_panic(skb, sz, addr, __func__); 111 } 112 113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 114 { 115 skb_panic(skb, sz, addr, __func__); 116 } 117 118 /* 119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 120 * the caller if emergency pfmemalloc reserves are being used. If it is and 121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 122 * may be used. Otherwise, the packet data may be discarded until enough 123 * memory is free 124 */ 125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 127 128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 129 unsigned long ip, bool *pfmemalloc) 130 { 131 void *obj; 132 bool ret_pfmemalloc = false; 133 134 /* 135 * Try a regular allocation, when that fails and we're not entitled 136 * to the reserves, fail. 137 */ 138 obj = kmalloc_node_track_caller(size, 139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 140 node); 141 if (obj || !(gfp_pfmemalloc_allowed(flags))) 142 goto out; 143 144 /* Try again but now we are using pfmemalloc reserves */ 145 ret_pfmemalloc = true; 146 obj = kmalloc_node_track_caller(size, flags, node); 147 148 out: 149 if (pfmemalloc) 150 *pfmemalloc = ret_pfmemalloc; 151 152 return obj; 153 } 154 155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 156 * 'private' fields and also do memory statistics to find all the 157 * [BEEP] leaks. 158 * 159 */ 160 161 /** 162 * __alloc_skb - allocate a network buffer 163 * @size: size to allocate 164 * @gfp_mask: allocation mask 165 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 166 * instead of head cache and allocate a cloned (child) skb. 167 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 168 * allocations in case the data is required for writeback 169 * @node: numa node to allocate memory on 170 * 171 * Allocate a new &sk_buff. The returned buffer has no headroom and a 172 * tail room of at least size bytes. The object has a reference count 173 * of one. The return is the buffer. On a failure the return is %NULL. 174 * 175 * Buffers may only be allocated from interrupts using a @gfp_mask of 176 * %GFP_ATOMIC. 177 */ 178 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 179 int flags, int node) 180 { 181 struct kmem_cache *cache; 182 struct skb_shared_info *shinfo; 183 struct sk_buff *skb; 184 u8 *data; 185 bool pfmemalloc; 186 187 cache = (flags & SKB_ALLOC_FCLONE) 188 ? skbuff_fclone_cache : skbuff_head_cache; 189 190 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 191 gfp_mask |= __GFP_MEMALLOC; 192 193 /* Get the HEAD */ 194 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 195 if (!skb) 196 goto out; 197 prefetchw(skb); 198 199 /* We do our best to align skb_shared_info on a separate cache 200 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 201 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 202 * Both skb->head and skb_shared_info are cache line aligned. 203 */ 204 size = SKB_DATA_ALIGN(size); 205 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 206 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 207 if (!data) 208 goto nodata; 209 /* kmalloc(size) might give us more room than requested. 210 * Put skb_shared_info exactly at the end of allocated zone, 211 * to allow max possible filling before reallocation. 212 */ 213 size = SKB_WITH_OVERHEAD(ksize(data)); 214 prefetchw(data + size); 215 216 /* 217 * Only clear those fields we need to clear, not those that we will 218 * actually initialise below. Hence, don't put any more fields after 219 * the tail pointer in struct sk_buff! 220 */ 221 memset(skb, 0, offsetof(struct sk_buff, tail)); 222 /* Account for allocated memory : skb + skb->head */ 223 skb->truesize = SKB_TRUESIZE(size); 224 skb->pfmemalloc = pfmemalloc; 225 refcount_set(&skb->users, 1); 226 skb->head = data; 227 skb->data = data; 228 skb_reset_tail_pointer(skb); 229 skb->end = skb->tail + size; 230 skb->mac_header = (typeof(skb->mac_header))~0U; 231 skb->transport_header = (typeof(skb->transport_header))~0U; 232 233 /* make sure we initialize shinfo sequentially */ 234 shinfo = skb_shinfo(skb); 235 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 236 atomic_set(&shinfo->dataref, 1); 237 kmemcheck_annotate_variable(shinfo->destructor_arg); 238 239 if (flags & SKB_ALLOC_FCLONE) { 240 struct sk_buff_fclones *fclones; 241 242 fclones = container_of(skb, struct sk_buff_fclones, skb1); 243 244 kmemcheck_annotate_bitfield(&fclones->skb2, flags1); 245 skb->fclone = SKB_FCLONE_ORIG; 246 refcount_set(&fclones->fclone_ref, 1); 247 248 fclones->skb2.fclone = SKB_FCLONE_CLONE; 249 } 250 out: 251 return skb; 252 nodata: 253 kmem_cache_free(cache, skb); 254 skb = NULL; 255 goto out; 256 } 257 EXPORT_SYMBOL(__alloc_skb); 258 259 /** 260 * __build_skb - build a network buffer 261 * @data: data buffer provided by caller 262 * @frag_size: size of data, or 0 if head was kmalloced 263 * 264 * Allocate a new &sk_buff. Caller provides space holding head and 265 * skb_shared_info. @data must have been allocated by kmalloc() only if 266 * @frag_size is 0, otherwise data should come from the page allocator 267 * or vmalloc() 268 * The return is the new skb buffer. 269 * On a failure the return is %NULL, and @data is not freed. 270 * Notes : 271 * Before IO, driver allocates only data buffer where NIC put incoming frame 272 * Driver should add room at head (NET_SKB_PAD) and 273 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 274 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 275 * before giving packet to stack. 276 * RX rings only contains data buffers, not full skbs. 277 */ 278 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 279 { 280 struct skb_shared_info *shinfo; 281 struct sk_buff *skb; 282 unsigned int size = frag_size ? : ksize(data); 283 284 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 285 if (!skb) 286 return NULL; 287 288 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 289 290 memset(skb, 0, offsetof(struct sk_buff, tail)); 291 skb->truesize = SKB_TRUESIZE(size); 292 refcount_set(&skb->users, 1); 293 skb->head = data; 294 skb->data = data; 295 skb_reset_tail_pointer(skb); 296 skb->end = skb->tail + size; 297 skb->mac_header = (typeof(skb->mac_header))~0U; 298 skb->transport_header = (typeof(skb->transport_header))~0U; 299 300 /* make sure we initialize shinfo sequentially */ 301 shinfo = skb_shinfo(skb); 302 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 303 atomic_set(&shinfo->dataref, 1); 304 kmemcheck_annotate_variable(shinfo->destructor_arg); 305 306 return skb; 307 } 308 309 /* build_skb() is wrapper over __build_skb(), that specifically 310 * takes care of skb->head and skb->pfmemalloc 311 * This means that if @frag_size is not zero, then @data must be backed 312 * by a page fragment, not kmalloc() or vmalloc() 313 */ 314 struct sk_buff *build_skb(void *data, unsigned int frag_size) 315 { 316 struct sk_buff *skb = __build_skb(data, frag_size); 317 318 if (skb && frag_size) { 319 skb->head_frag = 1; 320 if (page_is_pfmemalloc(virt_to_head_page(data))) 321 skb->pfmemalloc = 1; 322 } 323 return skb; 324 } 325 EXPORT_SYMBOL(build_skb); 326 327 #define NAPI_SKB_CACHE_SIZE 64 328 329 struct napi_alloc_cache { 330 struct page_frag_cache page; 331 unsigned int skb_count; 332 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 333 }; 334 335 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 336 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 337 338 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 339 { 340 struct page_frag_cache *nc; 341 unsigned long flags; 342 void *data; 343 344 local_irq_save(flags); 345 nc = this_cpu_ptr(&netdev_alloc_cache); 346 data = page_frag_alloc(nc, fragsz, gfp_mask); 347 local_irq_restore(flags); 348 return data; 349 } 350 351 /** 352 * netdev_alloc_frag - allocate a page fragment 353 * @fragsz: fragment size 354 * 355 * Allocates a frag from a page for receive buffer. 356 * Uses GFP_ATOMIC allocations. 357 */ 358 void *netdev_alloc_frag(unsigned int fragsz) 359 { 360 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 361 } 362 EXPORT_SYMBOL(netdev_alloc_frag); 363 364 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 365 { 366 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 367 368 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 369 } 370 371 void *napi_alloc_frag(unsigned int fragsz) 372 { 373 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 374 } 375 EXPORT_SYMBOL(napi_alloc_frag); 376 377 /** 378 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 379 * @dev: network device to receive on 380 * @len: length to allocate 381 * @gfp_mask: get_free_pages mask, passed to alloc_skb 382 * 383 * Allocate a new &sk_buff and assign it a usage count of one. The 384 * buffer has NET_SKB_PAD headroom built in. Users should allocate 385 * the headroom they think they need without accounting for the 386 * built in space. The built in space is used for optimisations. 387 * 388 * %NULL is returned if there is no free memory. 389 */ 390 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 391 gfp_t gfp_mask) 392 { 393 struct page_frag_cache *nc; 394 unsigned long flags; 395 struct sk_buff *skb; 396 bool pfmemalloc; 397 void *data; 398 399 len += NET_SKB_PAD; 400 401 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 402 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 403 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 404 if (!skb) 405 goto skb_fail; 406 goto skb_success; 407 } 408 409 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 410 len = SKB_DATA_ALIGN(len); 411 412 if (sk_memalloc_socks()) 413 gfp_mask |= __GFP_MEMALLOC; 414 415 local_irq_save(flags); 416 417 nc = this_cpu_ptr(&netdev_alloc_cache); 418 data = page_frag_alloc(nc, len, gfp_mask); 419 pfmemalloc = nc->pfmemalloc; 420 421 local_irq_restore(flags); 422 423 if (unlikely(!data)) 424 return NULL; 425 426 skb = __build_skb(data, len); 427 if (unlikely(!skb)) { 428 skb_free_frag(data); 429 return NULL; 430 } 431 432 /* use OR instead of assignment to avoid clearing of bits in mask */ 433 if (pfmemalloc) 434 skb->pfmemalloc = 1; 435 skb->head_frag = 1; 436 437 skb_success: 438 skb_reserve(skb, NET_SKB_PAD); 439 skb->dev = dev; 440 441 skb_fail: 442 return skb; 443 } 444 EXPORT_SYMBOL(__netdev_alloc_skb); 445 446 /** 447 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 448 * @napi: napi instance this buffer was allocated for 449 * @len: length to allocate 450 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 451 * 452 * Allocate a new sk_buff for use in NAPI receive. This buffer will 453 * attempt to allocate the head from a special reserved region used 454 * only for NAPI Rx allocation. By doing this we can save several 455 * CPU cycles by avoiding having to disable and re-enable IRQs. 456 * 457 * %NULL is returned if there is no free memory. 458 */ 459 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 460 gfp_t gfp_mask) 461 { 462 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 463 struct sk_buff *skb; 464 void *data; 465 466 len += NET_SKB_PAD + NET_IP_ALIGN; 467 468 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 469 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 470 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 471 if (!skb) 472 goto skb_fail; 473 goto skb_success; 474 } 475 476 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 477 len = SKB_DATA_ALIGN(len); 478 479 if (sk_memalloc_socks()) 480 gfp_mask |= __GFP_MEMALLOC; 481 482 data = page_frag_alloc(&nc->page, len, gfp_mask); 483 if (unlikely(!data)) 484 return NULL; 485 486 skb = __build_skb(data, len); 487 if (unlikely(!skb)) { 488 skb_free_frag(data); 489 return NULL; 490 } 491 492 /* use OR instead of assignment to avoid clearing of bits in mask */ 493 if (nc->page.pfmemalloc) 494 skb->pfmemalloc = 1; 495 skb->head_frag = 1; 496 497 skb_success: 498 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 499 skb->dev = napi->dev; 500 501 skb_fail: 502 return skb; 503 } 504 EXPORT_SYMBOL(__napi_alloc_skb); 505 506 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 507 int size, unsigned int truesize) 508 { 509 skb_fill_page_desc(skb, i, page, off, size); 510 skb->len += size; 511 skb->data_len += size; 512 skb->truesize += truesize; 513 } 514 EXPORT_SYMBOL(skb_add_rx_frag); 515 516 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 517 unsigned int truesize) 518 { 519 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 520 521 skb_frag_size_add(frag, size); 522 skb->len += size; 523 skb->data_len += size; 524 skb->truesize += truesize; 525 } 526 EXPORT_SYMBOL(skb_coalesce_rx_frag); 527 528 static void skb_drop_list(struct sk_buff **listp) 529 { 530 kfree_skb_list(*listp); 531 *listp = NULL; 532 } 533 534 static inline void skb_drop_fraglist(struct sk_buff *skb) 535 { 536 skb_drop_list(&skb_shinfo(skb)->frag_list); 537 } 538 539 static void skb_clone_fraglist(struct sk_buff *skb) 540 { 541 struct sk_buff *list; 542 543 skb_walk_frags(skb, list) 544 skb_get(list); 545 } 546 547 static void skb_free_head(struct sk_buff *skb) 548 { 549 unsigned char *head = skb->head; 550 551 if (skb->head_frag) 552 skb_free_frag(head); 553 else 554 kfree(head); 555 } 556 557 static void skb_release_data(struct sk_buff *skb) 558 { 559 struct skb_shared_info *shinfo = skb_shinfo(skb); 560 int i; 561 562 if (skb->cloned && 563 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 564 &shinfo->dataref)) 565 return; 566 567 for (i = 0; i < shinfo->nr_frags; i++) 568 __skb_frag_unref(&shinfo->frags[i]); 569 570 if (shinfo->frag_list) 571 kfree_skb_list(shinfo->frag_list); 572 573 skb_zcopy_clear(skb, true); 574 skb_free_head(skb); 575 } 576 577 /* 578 * Free an skbuff by memory without cleaning the state. 579 */ 580 static void kfree_skbmem(struct sk_buff *skb) 581 { 582 struct sk_buff_fclones *fclones; 583 584 switch (skb->fclone) { 585 case SKB_FCLONE_UNAVAILABLE: 586 kmem_cache_free(skbuff_head_cache, skb); 587 return; 588 589 case SKB_FCLONE_ORIG: 590 fclones = container_of(skb, struct sk_buff_fclones, skb1); 591 592 /* We usually free the clone (TX completion) before original skb 593 * This test would have no chance to be true for the clone, 594 * while here, branch prediction will be good. 595 */ 596 if (refcount_read(&fclones->fclone_ref) == 1) 597 goto fastpath; 598 break; 599 600 default: /* SKB_FCLONE_CLONE */ 601 fclones = container_of(skb, struct sk_buff_fclones, skb2); 602 break; 603 } 604 if (!refcount_dec_and_test(&fclones->fclone_ref)) 605 return; 606 fastpath: 607 kmem_cache_free(skbuff_fclone_cache, fclones); 608 } 609 610 void skb_release_head_state(struct sk_buff *skb) 611 { 612 skb_dst_drop(skb); 613 secpath_reset(skb); 614 if (skb->destructor) { 615 WARN_ON(in_irq()); 616 skb->destructor(skb); 617 } 618 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 619 nf_conntrack_put(skb_nfct(skb)); 620 #endif 621 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 622 nf_bridge_put(skb->nf_bridge); 623 #endif 624 } 625 626 /* Free everything but the sk_buff shell. */ 627 static void skb_release_all(struct sk_buff *skb) 628 { 629 skb_release_head_state(skb); 630 if (likely(skb->head)) 631 skb_release_data(skb); 632 } 633 634 /** 635 * __kfree_skb - private function 636 * @skb: buffer 637 * 638 * Free an sk_buff. Release anything attached to the buffer. 639 * Clean the state. This is an internal helper function. Users should 640 * always call kfree_skb 641 */ 642 643 void __kfree_skb(struct sk_buff *skb) 644 { 645 skb_release_all(skb); 646 kfree_skbmem(skb); 647 } 648 EXPORT_SYMBOL(__kfree_skb); 649 650 /** 651 * kfree_skb - free an sk_buff 652 * @skb: buffer to free 653 * 654 * Drop a reference to the buffer and free it if the usage count has 655 * hit zero. 656 */ 657 void kfree_skb(struct sk_buff *skb) 658 { 659 if (!skb_unref(skb)) 660 return; 661 662 trace_kfree_skb(skb, __builtin_return_address(0)); 663 __kfree_skb(skb); 664 } 665 EXPORT_SYMBOL(kfree_skb); 666 667 void kfree_skb_list(struct sk_buff *segs) 668 { 669 while (segs) { 670 struct sk_buff *next = segs->next; 671 672 kfree_skb(segs); 673 segs = next; 674 } 675 } 676 EXPORT_SYMBOL(kfree_skb_list); 677 678 /** 679 * skb_tx_error - report an sk_buff xmit error 680 * @skb: buffer that triggered an error 681 * 682 * Report xmit error if a device callback is tracking this skb. 683 * skb must be freed afterwards. 684 */ 685 void skb_tx_error(struct sk_buff *skb) 686 { 687 skb_zcopy_clear(skb, true); 688 } 689 EXPORT_SYMBOL(skb_tx_error); 690 691 /** 692 * consume_skb - free an skbuff 693 * @skb: buffer to free 694 * 695 * Drop a ref to the buffer and free it if the usage count has hit zero 696 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 697 * is being dropped after a failure and notes that 698 */ 699 void consume_skb(struct sk_buff *skb) 700 { 701 if (!skb_unref(skb)) 702 return; 703 704 trace_consume_skb(skb); 705 __kfree_skb(skb); 706 } 707 EXPORT_SYMBOL(consume_skb); 708 709 /** 710 * consume_stateless_skb - free an skbuff, assuming it is stateless 711 * @skb: buffer to free 712 * 713 * Alike consume_skb(), but this variant assumes that this is the last 714 * skb reference and all the head states have been already dropped 715 */ 716 void __consume_stateless_skb(struct sk_buff *skb) 717 { 718 trace_consume_skb(skb); 719 skb_release_data(skb); 720 kfree_skbmem(skb); 721 } 722 723 void __kfree_skb_flush(void) 724 { 725 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 726 727 /* flush skb_cache if containing objects */ 728 if (nc->skb_count) { 729 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 730 nc->skb_cache); 731 nc->skb_count = 0; 732 } 733 } 734 735 static inline void _kfree_skb_defer(struct sk_buff *skb) 736 { 737 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 738 739 /* drop skb->head and call any destructors for packet */ 740 skb_release_all(skb); 741 742 /* record skb to CPU local list */ 743 nc->skb_cache[nc->skb_count++] = skb; 744 745 #ifdef CONFIG_SLUB 746 /* SLUB writes into objects when freeing */ 747 prefetchw(skb); 748 #endif 749 750 /* flush skb_cache if it is filled */ 751 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 752 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 753 nc->skb_cache); 754 nc->skb_count = 0; 755 } 756 } 757 void __kfree_skb_defer(struct sk_buff *skb) 758 { 759 _kfree_skb_defer(skb); 760 } 761 762 void napi_consume_skb(struct sk_buff *skb, int budget) 763 { 764 if (unlikely(!skb)) 765 return; 766 767 /* Zero budget indicate non-NAPI context called us, like netpoll */ 768 if (unlikely(!budget)) { 769 dev_consume_skb_any(skb); 770 return; 771 } 772 773 if (!skb_unref(skb)) 774 return; 775 776 /* if reaching here SKB is ready to free */ 777 trace_consume_skb(skb); 778 779 /* if SKB is a clone, don't handle this case */ 780 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 781 __kfree_skb(skb); 782 return; 783 } 784 785 _kfree_skb_defer(skb); 786 } 787 EXPORT_SYMBOL(napi_consume_skb); 788 789 /* Make sure a field is enclosed inside headers_start/headers_end section */ 790 #define CHECK_SKB_FIELD(field) \ 791 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 792 offsetof(struct sk_buff, headers_start)); \ 793 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 794 offsetof(struct sk_buff, headers_end)); \ 795 796 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 797 { 798 new->tstamp = old->tstamp; 799 /* We do not copy old->sk */ 800 new->dev = old->dev; 801 memcpy(new->cb, old->cb, sizeof(old->cb)); 802 skb_dst_copy(new, old); 803 #ifdef CONFIG_XFRM 804 new->sp = secpath_get(old->sp); 805 #endif 806 __nf_copy(new, old, false); 807 808 /* Note : this field could be in headers_start/headers_end section 809 * It is not yet because we do not want to have a 16 bit hole 810 */ 811 new->queue_mapping = old->queue_mapping; 812 813 memcpy(&new->headers_start, &old->headers_start, 814 offsetof(struct sk_buff, headers_end) - 815 offsetof(struct sk_buff, headers_start)); 816 CHECK_SKB_FIELD(protocol); 817 CHECK_SKB_FIELD(csum); 818 CHECK_SKB_FIELD(hash); 819 CHECK_SKB_FIELD(priority); 820 CHECK_SKB_FIELD(skb_iif); 821 CHECK_SKB_FIELD(vlan_proto); 822 CHECK_SKB_FIELD(vlan_tci); 823 CHECK_SKB_FIELD(transport_header); 824 CHECK_SKB_FIELD(network_header); 825 CHECK_SKB_FIELD(mac_header); 826 CHECK_SKB_FIELD(inner_protocol); 827 CHECK_SKB_FIELD(inner_transport_header); 828 CHECK_SKB_FIELD(inner_network_header); 829 CHECK_SKB_FIELD(inner_mac_header); 830 CHECK_SKB_FIELD(mark); 831 #ifdef CONFIG_NETWORK_SECMARK 832 CHECK_SKB_FIELD(secmark); 833 #endif 834 #ifdef CONFIG_NET_RX_BUSY_POLL 835 CHECK_SKB_FIELD(napi_id); 836 #endif 837 #ifdef CONFIG_XPS 838 CHECK_SKB_FIELD(sender_cpu); 839 #endif 840 #ifdef CONFIG_NET_SCHED 841 CHECK_SKB_FIELD(tc_index); 842 #endif 843 844 } 845 846 /* 847 * You should not add any new code to this function. Add it to 848 * __copy_skb_header above instead. 849 */ 850 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 851 { 852 #define C(x) n->x = skb->x 853 854 n->next = n->prev = NULL; 855 n->sk = NULL; 856 __copy_skb_header(n, skb); 857 858 C(len); 859 C(data_len); 860 C(mac_len); 861 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 862 n->cloned = 1; 863 n->nohdr = 0; 864 n->destructor = NULL; 865 C(tail); 866 C(end); 867 C(head); 868 C(head_frag); 869 C(data); 870 C(truesize); 871 refcount_set(&n->users, 1); 872 873 atomic_inc(&(skb_shinfo(skb)->dataref)); 874 skb->cloned = 1; 875 876 return n; 877 #undef C 878 } 879 880 /** 881 * skb_morph - morph one skb into another 882 * @dst: the skb to receive the contents 883 * @src: the skb to supply the contents 884 * 885 * This is identical to skb_clone except that the target skb is 886 * supplied by the user. 887 * 888 * The target skb is returned upon exit. 889 */ 890 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 891 { 892 skb_release_all(dst); 893 return __skb_clone(dst, src); 894 } 895 EXPORT_SYMBOL_GPL(skb_morph); 896 897 static int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 898 { 899 unsigned long max_pg, num_pg, new_pg, old_pg; 900 struct user_struct *user; 901 902 if (capable(CAP_IPC_LOCK) || !size) 903 return 0; 904 905 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 906 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 907 user = mmp->user ? : current_user(); 908 909 do { 910 old_pg = atomic_long_read(&user->locked_vm); 911 new_pg = old_pg + num_pg; 912 if (new_pg > max_pg) 913 return -ENOBUFS; 914 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 915 old_pg); 916 917 if (!mmp->user) { 918 mmp->user = get_uid(user); 919 mmp->num_pg = num_pg; 920 } else { 921 mmp->num_pg += num_pg; 922 } 923 924 return 0; 925 } 926 927 static void mm_unaccount_pinned_pages(struct mmpin *mmp) 928 { 929 if (mmp->user) { 930 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 931 free_uid(mmp->user); 932 } 933 } 934 935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 936 { 937 struct ubuf_info *uarg; 938 struct sk_buff *skb; 939 940 WARN_ON_ONCE(!in_task()); 941 942 if (!sock_flag(sk, SOCK_ZEROCOPY)) 943 return NULL; 944 945 skb = sock_omalloc(sk, 0, GFP_KERNEL); 946 if (!skb) 947 return NULL; 948 949 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 950 uarg = (void *)skb->cb; 951 uarg->mmp.user = NULL; 952 953 if (mm_account_pinned_pages(&uarg->mmp, size)) { 954 kfree_skb(skb); 955 return NULL; 956 } 957 958 uarg->callback = sock_zerocopy_callback; 959 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 960 uarg->len = 1; 961 uarg->bytelen = size; 962 uarg->zerocopy = 1; 963 refcount_set(&uarg->refcnt, 1); 964 sock_hold(sk); 965 966 return uarg; 967 } 968 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 969 970 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 971 { 972 return container_of((void *)uarg, struct sk_buff, cb); 973 } 974 975 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 976 struct ubuf_info *uarg) 977 { 978 if (uarg) { 979 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 980 u32 bytelen, next; 981 982 /* realloc only when socket is locked (TCP, UDP cork), 983 * so uarg->len and sk_zckey access is serialized 984 */ 985 if (!sock_owned_by_user(sk)) { 986 WARN_ON_ONCE(1); 987 return NULL; 988 } 989 990 bytelen = uarg->bytelen + size; 991 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 992 /* TCP can create new skb to attach new uarg */ 993 if (sk->sk_type == SOCK_STREAM) 994 goto new_alloc; 995 return NULL; 996 } 997 998 next = (u32)atomic_read(&sk->sk_zckey); 999 if ((u32)(uarg->id + uarg->len) == next) { 1000 if (mm_account_pinned_pages(&uarg->mmp, size)) 1001 return NULL; 1002 uarg->len++; 1003 uarg->bytelen = bytelen; 1004 atomic_set(&sk->sk_zckey, ++next); 1005 sock_zerocopy_get(uarg); 1006 return uarg; 1007 } 1008 } 1009 1010 new_alloc: 1011 return sock_zerocopy_alloc(sk, size); 1012 } 1013 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1014 1015 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1016 { 1017 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1018 u32 old_lo, old_hi; 1019 u64 sum_len; 1020 1021 old_lo = serr->ee.ee_info; 1022 old_hi = serr->ee.ee_data; 1023 sum_len = old_hi - old_lo + 1ULL + len; 1024 1025 if (sum_len >= (1ULL << 32)) 1026 return false; 1027 1028 if (lo != old_hi + 1) 1029 return false; 1030 1031 serr->ee.ee_data += len; 1032 return true; 1033 } 1034 1035 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1036 { 1037 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1038 struct sock_exterr_skb *serr; 1039 struct sock *sk = skb->sk; 1040 struct sk_buff_head *q; 1041 unsigned long flags; 1042 u32 lo, hi; 1043 u16 len; 1044 1045 mm_unaccount_pinned_pages(&uarg->mmp); 1046 1047 /* if !len, there was only 1 call, and it was aborted 1048 * so do not queue a completion notification 1049 */ 1050 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1051 goto release; 1052 1053 len = uarg->len; 1054 lo = uarg->id; 1055 hi = uarg->id + len - 1; 1056 1057 serr = SKB_EXT_ERR(skb); 1058 memset(serr, 0, sizeof(*serr)); 1059 serr->ee.ee_errno = 0; 1060 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1061 serr->ee.ee_data = hi; 1062 serr->ee.ee_info = lo; 1063 if (!success) 1064 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1065 1066 q = &sk->sk_error_queue; 1067 spin_lock_irqsave(&q->lock, flags); 1068 tail = skb_peek_tail(q); 1069 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1070 !skb_zerocopy_notify_extend(tail, lo, len)) { 1071 __skb_queue_tail(q, skb); 1072 skb = NULL; 1073 } 1074 spin_unlock_irqrestore(&q->lock, flags); 1075 1076 sk->sk_error_report(sk); 1077 1078 release: 1079 consume_skb(skb); 1080 sock_put(sk); 1081 } 1082 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1083 1084 void sock_zerocopy_put(struct ubuf_info *uarg) 1085 { 1086 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1087 if (uarg->callback) 1088 uarg->callback(uarg, uarg->zerocopy); 1089 else 1090 consume_skb(skb_from_uarg(uarg)); 1091 } 1092 } 1093 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1094 1095 void sock_zerocopy_put_abort(struct ubuf_info *uarg) 1096 { 1097 if (uarg) { 1098 struct sock *sk = skb_from_uarg(uarg)->sk; 1099 1100 atomic_dec(&sk->sk_zckey); 1101 uarg->len--; 1102 1103 sock_zerocopy_put(uarg); 1104 } 1105 } 1106 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1107 1108 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1109 struct iov_iter *from, size_t length); 1110 1111 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1112 struct msghdr *msg, int len, 1113 struct ubuf_info *uarg) 1114 { 1115 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1116 struct iov_iter orig_iter = msg->msg_iter; 1117 int err, orig_len = skb->len; 1118 1119 /* An skb can only point to one uarg. This edge case happens when 1120 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1121 */ 1122 if (orig_uarg && uarg != orig_uarg) 1123 return -EEXIST; 1124 1125 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1126 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1127 struct sock *save_sk = skb->sk; 1128 1129 /* Streams do not free skb on error. Reset to prev state. */ 1130 msg->msg_iter = orig_iter; 1131 skb->sk = sk; 1132 ___pskb_trim(skb, orig_len); 1133 skb->sk = save_sk; 1134 return err; 1135 } 1136 1137 skb_zcopy_set(skb, uarg); 1138 return skb->len - orig_len; 1139 } 1140 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1141 1142 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1143 gfp_t gfp_mask) 1144 { 1145 if (skb_zcopy(orig)) { 1146 if (skb_zcopy(nskb)) { 1147 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1148 if (!gfp_mask) { 1149 WARN_ON_ONCE(1); 1150 return -ENOMEM; 1151 } 1152 if (skb_uarg(nskb) == skb_uarg(orig)) 1153 return 0; 1154 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1155 return -EIO; 1156 } 1157 skb_zcopy_set(nskb, skb_uarg(orig)); 1158 } 1159 return 0; 1160 } 1161 1162 /** 1163 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1164 * @skb: the skb to modify 1165 * @gfp_mask: allocation priority 1166 * 1167 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1168 * It will copy all frags into kernel and drop the reference 1169 * to userspace pages. 1170 * 1171 * If this function is called from an interrupt gfp_mask() must be 1172 * %GFP_ATOMIC. 1173 * 1174 * Returns 0 on success or a negative error code on failure 1175 * to allocate kernel memory to copy to. 1176 */ 1177 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1178 { 1179 int num_frags = skb_shinfo(skb)->nr_frags; 1180 struct page *page, *head = NULL; 1181 int i, new_frags; 1182 u32 d_off; 1183 1184 if (!num_frags) 1185 return 0; 1186 1187 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1188 return -EINVAL; 1189 1190 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1191 for (i = 0; i < new_frags; i++) { 1192 page = alloc_page(gfp_mask); 1193 if (!page) { 1194 while (head) { 1195 struct page *next = (struct page *)page_private(head); 1196 put_page(head); 1197 head = next; 1198 } 1199 return -ENOMEM; 1200 } 1201 set_page_private(page, (unsigned long)head); 1202 head = page; 1203 } 1204 1205 page = head; 1206 d_off = 0; 1207 for (i = 0; i < num_frags; i++) { 1208 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1209 u32 p_off, p_len, copied; 1210 struct page *p; 1211 u8 *vaddr; 1212 1213 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1214 p, p_off, p_len, copied) { 1215 u32 copy, done = 0; 1216 vaddr = kmap_atomic(p); 1217 1218 while (done < p_len) { 1219 if (d_off == PAGE_SIZE) { 1220 d_off = 0; 1221 page = (struct page *)page_private(page); 1222 } 1223 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1224 memcpy(page_address(page) + d_off, 1225 vaddr + p_off + done, copy); 1226 done += copy; 1227 d_off += copy; 1228 } 1229 kunmap_atomic(vaddr); 1230 } 1231 } 1232 1233 /* skb frags release userspace buffers */ 1234 for (i = 0; i < num_frags; i++) 1235 skb_frag_unref(skb, i); 1236 1237 /* skb frags point to kernel buffers */ 1238 for (i = 0; i < new_frags - 1; i++) { 1239 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1240 head = (struct page *)page_private(head); 1241 } 1242 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1243 skb_shinfo(skb)->nr_frags = new_frags; 1244 1245 skb_zcopy_clear(skb, false); 1246 return 0; 1247 } 1248 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1249 1250 /** 1251 * skb_clone - duplicate an sk_buff 1252 * @skb: buffer to clone 1253 * @gfp_mask: allocation priority 1254 * 1255 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1256 * copies share the same packet data but not structure. The new 1257 * buffer has a reference count of 1. If the allocation fails the 1258 * function returns %NULL otherwise the new buffer is returned. 1259 * 1260 * If this function is called from an interrupt gfp_mask() must be 1261 * %GFP_ATOMIC. 1262 */ 1263 1264 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1265 { 1266 struct sk_buff_fclones *fclones = container_of(skb, 1267 struct sk_buff_fclones, 1268 skb1); 1269 struct sk_buff *n; 1270 1271 if (skb_orphan_frags(skb, gfp_mask)) 1272 return NULL; 1273 1274 if (skb->fclone == SKB_FCLONE_ORIG && 1275 refcount_read(&fclones->fclone_ref) == 1) { 1276 n = &fclones->skb2; 1277 refcount_set(&fclones->fclone_ref, 2); 1278 } else { 1279 if (skb_pfmemalloc(skb)) 1280 gfp_mask |= __GFP_MEMALLOC; 1281 1282 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1283 if (!n) 1284 return NULL; 1285 1286 kmemcheck_annotate_bitfield(n, flags1); 1287 n->fclone = SKB_FCLONE_UNAVAILABLE; 1288 } 1289 1290 return __skb_clone(n, skb); 1291 } 1292 EXPORT_SYMBOL(skb_clone); 1293 1294 static void skb_headers_offset_update(struct sk_buff *skb, int off) 1295 { 1296 /* Only adjust this if it actually is csum_start rather than csum */ 1297 if (skb->ip_summed == CHECKSUM_PARTIAL) 1298 skb->csum_start += off; 1299 /* {transport,network,mac}_header and tail are relative to skb->head */ 1300 skb->transport_header += off; 1301 skb->network_header += off; 1302 if (skb_mac_header_was_set(skb)) 1303 skb->mac_header += off; 1304 skb->inner_transport_header += off; 1305 skb->inner_network_header += off; 1306 skb->inner_mac_header += off; 1307 } 1308 1309 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1310 { 1311 __copy_skb_header(new, old); 1312 1313 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1314 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1315 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1316 } 1317 1318 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1319 { 1320 if (skb_pfmemalloc(skb)) 1321 return SKB_ALLOC_RX; 1322 return 0; 1323 } 1324 1325 /** 1326 * skb_copy - create private copy of an sk_buff 1327 * @skb: buffer to copy 1328 * @gfp_mask: allocation priority 1329 * 1330 * Make a copy of both an &sk_buff and its data. This is used when the 1331 * caller wishes to modify the data and needs a private copy of the 1332 * data to alter. Returns %NULL on failure or the pointer to the buffer 1333 * on success. The returned buffer has a reference count of 1. 1334 * 1335 * As by-product this function converts non-linear &sk_buff to linear 1336 * one, so that &sk_buff becomes completely private and caller is allowed 1337 * to modify all the data of returned buffer. This means that this 1338 * function is not recommended for use in circumstances when only 1339 * header is going to be modified. Use pskb_copy() instead. 1340 */ 1341 1342 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1343 { 1344 int headerlen = skb_headroom(skb); 1345 unsigned int size = skb_end_offset(skb) + skb->data_len; 1346 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1347 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1348 1349 if (!n) 1350 return NULL; 1351 1352 /* Set the data pointer */ 1353 skb_reserve(n, headerlen); 1354 /* Set the tail pointer and length */ 1355 skb_put(n, skb->len); 1356 1357 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1358 1359 copy_skb_header(n, skb); 1360 return n; 1361 } 1362 EXPORT_SYMBOL(skb_copy); 1363 1364 /** 1365 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1366 * @skb: buffer to copy 1367 * @headroom: headroom of new skb 1368 * @gfp_mask: allocation priority 1369 * @fclone: if true allocate the copy of the skb from the fclone 1370 * cache instead of the head cache; it is recommended to set this 1371 * to true for the cases where the copy will likely be cloned 1372 * 1373 * Make a copy of both an &sk_buff and part of its data, located 1374 * in header. Fragmented data remain shared. This is used when 1375 * the caller wishes to modify only header of &sk_buff and needs 1376 * private copy of the header to alter. Returns %NULL on failure 1377 * or the pointer to the buffer on success. 1378 * The returned buffer has a reference count of 1. 1379 */ 1380 1381 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1382 gfp_t gfp_mask, bool fclone) 1383 { 1384 unsigned int size = skb_headlen(skb) + headroom; 1385 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1386 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1387 1388 if (!n) 1389 goto out; 1390 1391 /* Set the data pointer */ 1392 skb_reserve(n, headroom); 1393 /* Set the tail pointer and length */ 1394 skb_put(n, skb_headlen(skb)); 1395 /* Copy the bytes */ 1396 skb_copy_from_linear_data(skb, n->data, n->len); 1397 1398 n->truesize += skb->data_len; 1399 n->data_len = skb->data_len; 1400 n->len = skb->len; 1401 1402 if (skb_shinfo(skb)->nr_frags) { 1403 int i; 1404 1405 if (skb_orphan_frags(skb, gfp_mask) || 1406 skb_zerocopy_clone(n, skb, gfp_mask)) { 1407 kfree_skb(n); 1408 n = NULL; 1409 goto out; 1410 } 1411 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1412 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1413 skb_frag_ref(skb, i); 1414 } 1415 skb_shinfo(n)->nr_frags = i; 1416 } 1417 1418 if (skb_has_frag_list(skb)) { 1419 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1420 skb_clone_fraglist(n); 1421 } 1422 1423 copy_skb_header(n, skb); 1424 out: 1425 return n; 1426 } 1427 EXPORT_SYMBOL(__pskb_copy_fclone); 1428 1429 /** 1430 * pskb_expand_head - reallocate header of &sk_buff 1431 * @skb: buffer to reallocate 1432 * @nhead: room to add at head 1433 * @ntail: room to add at tail 1434 * @gfp_mask: allocation priority 1435 * 1436 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1437 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1438 * reference count of 1. Returns zero in the case of success or error, 1439 * if expansion failed. In the last case, &sk_buff is not changed. 1440 * 1441 * All the pointers pointing into skb header may change and must be 1442 * reloaded after call to this function. 1443 */ 1444 1445 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1446 gfp_t gfp_mask) 1447 { 1448 int i, osize = skb_end_offset(skb); 1449 int size = osize + nhead + ntail; 1450 long off; 1451 u8 *data; 1452 1453 BUG_ON(nhead < 0); 1454 1455 BUG_ON(skb_shared(skb)); 1456 1457 size = SKB_DATA_ALIGN(size); 1458 1459 if (skb_pfmemalloc(skb)) 1460 gfp_mask |= __GFP_MEMALLOC; 1461 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1462 gfp_mask, NUMA_NO_NODE, NULL); 1463 if (!data) 1464 goto nodata; 1465 size = SKB_WITH_OVERHEAD(ksize(data)); 1466 1467 /* Copy only real data... and, alas, header. This should be 1468 * optimized for the cases when header is void. 1469 */ 1470 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1471 1472 memcpy((struct skb_shared_info *)(data + size), 1473 skb_shinfo(skb), 1474 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1475 1476 /* 1477 * if shinfo is shared we must drop the old head gracefully, but if it 1478 * is not we can just drop the old head and let the existing refcount 1479 * be since all we did is relocate the values 1480 */ 1481 if (skb_cloned(skb)) { 1482 if (skb_orphan_frags(skb, gfp_mask)) 1483 goto nofrags; 1484 if (skb_zcopy(skb)) 1485 refcount_inc(&skb_uarg(skb)->refcnt); 1486 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1487 skb_frag_ref(skb, i); 1488 1489 if (skb_has_frag_list(skb)) 1490 skb_clone_fraglist(skb); 1491 1492 skb_release_data(skb); 1493 } else { 1494 skb_free_head(skb); 1495 } 1496 off = (data + nhead) - skb->head; 1497 1498 skb->head = data; 1499 skb->head_frag = 0; 1500 skb->data += off; 1501 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1502 skb->end = size; 1503 off = nhead; 1504 #else 1505 skb->end = skb->head + size; 1506 #endif 1507 skb->tail += off; 1508 skb_headers_offset_update(skb, nhead); 1509 skb->cloned = 0; 1510 skb->hdr_len = 0; 1511 skb->nohdr = 0; 1512 atomic_set(&skb_shinfo(skb)->dataref, 1); 1513 1514 skb_metadata_clear(skb); 1515 1516 /* It is not generally safe to change skb->truesize. 1517 * For the moment, we really care of rx path, or 1518 * when skb is orphaned (not attached to a socket). 1519 */ 1520 if (!skb->sk || skb->destructor == sock_edemux) 1521 skb->truesize += size - osize; 1522 1523 return 0; 1524 1525 nofrags: 1526 kfree(data); 1527 nodata: 1528 return -ENOMEM; 1529 } 1530 EXPORT_SYMBOL(pskb_expand_head); 1531 1532 /* Make private copy of skb with writable head and some headroom */ 1533 1534 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1535 { 1536 struct sk_buff *skb2; 1537 int delta = headroom - skb_headroom(skb); 1538 1539 if (delta <= 0) 1540 skb2 = pskb_copy(skb, GFP_ATOMIC); 1541 else { 1542 skb2 = skb_clone(skb, GFP_ATOMIC); 1543 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1544 GFP_ATOMIC)) { 1545 kfree_skb(skb2); 1546 skb2 = NULL; 1547 } 1548 } 1549 return skb2; 1550 } 1551 EXPORT_SYMBOL(skb_realloc_headroom); 1552 1553 /** 1554 * skb_copy_expand - copy and expand sk_buff 1555 * @skb: buffer to copy 1556 * @newheadroom: new free bytes at head 1557 * @newtailroom: new free bytes at tail 1558 * @gfp_mask: allocation priority 1559 * 1560 * Make a copy of both an &sk_buff and its data and while doing so 1561 * allocate additional space. 1562 * 1563 * This is used when the caller wishes to modify the data and needs a 1564 * private copy of the data to alter as well as more space for new fields. 1565 * Returns %NULL on failure or the pointer to the buffer 1566 * on success. The returned buffer has a reference count of 1. 1567 * 1568 * You must pass %GFP_ATOMIC as the allocation priority if this function 1569 * is called from an interrupt. 1570 */ 1571 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1572 int newheadroom, int newtailroom, 1573 gfp_t gfp_mask) 1574 { 1575 /* 1576 * Allocate the copy buffer 1577 */ 1578 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1579 gfp_mask, skb_alloc_rx_flag(skb), 1580 NUMA_NO_NODE); 1581 int oldheadroom = skb_headroom(skb); 1582 int head_copy_len, head_copy_off; 1583 1584 if (!n) 1585 return NULL; 1586 1587 skb_reserve(n, newheadroom); 1588 1589 /* Set the tail pointer and length */ 1590 skb_put(n, skb->len); 1591 1592 head_copy_len = oldheadroom; 1593 head_copy_off = 0; 1594 if (newheadroom <= head_copy_len) 1595 head_copy_len = newheadroom; 1596 else 1597 head_copy_off = newheadroom - head_copy_len; 1598 1599 /* Copy the linear header and data. */ 1600 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1601 skb->len + head_copy_len)); 1602 1603 copy_skb_header(n, skb); 1604 1605 skb_headers_offset_update(n, newheadroom - oldheadroom); 1606 1607 return n; 1608 } 1609 EXPORT_SYMBOL(skb_copy_expand); 1610 1611 /** 1612 * __skb_pad - zero pad the tail of an skb 1613 * @skb: buffer to pad 1614 * @pad: space to pad 1615 * @free_on_error: free buffer on error 1616 * 1617 * Ensure that a buffer is followed by a padding area that is zero 1618 * filled. Used by network drivers which may DMA or transfer data 1619 * beyond the buffer end onto the wire. 1620 * 1621 * May return error in out of memory cases. The skb is freed on error 1622 * if @free_on_error is true. 1623 */ 1624 1625 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1626 { 1627 int err; 1628 int ntail; 1629 1630 /* If the skbuff is non linear tailroom is always zero.. */ 1631 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1632 memset(skb->data+skb->len, 0, pad); 1633 return 0; 1634 } 1635 1636 ntail = skb->data_len + pad - (skb->end - skb->tail); 1637 if (likely(skb_cloned(skb) || ntail > 0)) { 1638 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1639 if (unlikely(err)) 1640 goto free_skb; 1641 } 1642 1643 /* FIXME: The use of this function with non-linear skb's really needs 1644 * to be audited. 1645 */ 1646 err = skb_linearize(skb); 1647 if (unlikely(err)) 1648 goto free_skb; 1649 1650 memset(skb->data + skb->len, 0, pad); 1651 return 0; 1652 1653 free_skb: 1654 if (free_on_error) 1655 kfree_skb(skb); 1656 return err; 1657 } 1658 EXPORT_SYMBOL(__skb_pad); 1659 1660 /** 1661 * pskb_put - add data to the tail of a potentially fragmented buffer 1662 * @skb: start of the buffer to use 1663 * @tail: tail fragment of the buffer to use 1664 * @len: amount of data to add 1665 * 1666 * This function extends the used data area of the potentially 1667 * fragmented buffer. @tail must be the last fragment of @skb -- or 1668 * @skb itself. If this would exceed the total buffer size the kernel 1669 * will panic. A pointer to the first byte of the extra data is 1670 * returned. 1671 */ 1672 1673 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1674 { 1675 if (tail != skb) { 1676 skb->data_len += len; 1677 skb->len += len; 1678 } 1679 return skb_put(tail, len); 1680 } 1681 EXPORT_SYMBOL_GPL(pskb_put); 1682 1683 /** 1684 * skb_put - add data to a buffer 1685 * @skb: buffer to use 1686 * @len: amount of data to add 1687 * 1688 * This function extends the used data area of the buffer. If this would 1689 * exceed the total buffer size the kernel will panic. A pointer to the 1690 * first byte of the extra data is returned. 1691 */ 1692 void *skb_put(struct sk_buff *skb, unsigned int len) 1693 { 1694 void *tmp = skb_tail_pointer(skb); 1695 SKB_LINEAR_ASSERT(skb); 1696 skb->tail += len; 1697 skb->len += len; 1698 if (unlikely(skb->tail > skb->end)) 1699 skb_over_panic(skb, len, __builtin_return_address(0)); 1700 return tmp; 1701 } 1702 EXPORT_SYMBOL(skb_put); 1703 1704 /** 1705 * skb_push - add data to the start of a buffer 1706 * @skb: buffer to use 1707 * @len: amount of data to add 1708 * 1709 * This function extends the used data area of the buffer at the buffer 1710 * start. If this would exceed the total buffer headroom the kernel will 1711 * panic. A pointer to the first byte of the extra data is returned. 1712 */ 1713 void *skb_push(struct sk_buff *skb, unsigned int len) 1714 { 1715 skb->data -= len; 1716 skb->len += len; 1717 if (unlikely(skb->data<skb->head)) 1718 skb_under_panic(skb, len, __builtin_return_address(0)); 1719 return skb->data; 1720 } 1721 EXPORT_SYMBOL(skb_push); 1722 1723 /** 1724 * skb_pull - remove data from the start of a buffer 1725 * @skb: buffer to use 1726 * @len: amount of data to remove 1727 * 1728 * This function removes data from the start of a buffer, returning 1729 * the memory to the headroom. A pointer to the next data in the buffer 1730 * is returned. Once the data has been pulled future pushes will overwrite 1731 * the old data. 1732 */ 1733 void *skb_pull(struct sk_buff *skb, unsigned int len) 1734 { 1735 return skb_pull_inline(skb, len); 1736 } 1737 EXPORT_SYMBOL(skb_pull); 1738 1739 /** 1740 * skb_trim - remove end from a buffer 1741 * @skb: buffer to alter 1742 * @len: new length 1743 * 1744 * Cut the length of a buffer down by removing data from the tail. If 1745 * the buffer is already under the length specified it is not modified. 1746 * The skb must be linear. 1747 */ 1748 void skb_trim(struct sk_buff *skb, unsigned int len) 1749 { 1750 if (skb->len > len) 1751 __skb_trim(skb, len); 1752 } 1753 EXPORT_SYMBOL(skb_trim); 1754 1755 /* Trims skb to length len. It can change skb pointers. 1756 */ 1757 1758 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1759 { 1760 struct sk_buff **fragp; 1761 struct sk_buff *frag; 1762 int offset = skb_headlen(skb); 1763 int nfrags = skb_shinfo(skb)->nr_frags; 1764 int i; 1765 int err; 1766 1767 if (skb_cloned(skb) && 1768 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1769 return err; 1770 1771 i = 0; 1772 if (offset >= len) 1773 goto drop_pages; 1774 1775 for (; i < nfrags; i++) { 1776 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1777 1778 if (end < len) { 1779 offset = end; 1780 continue; 1781 } 1782 1783 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1784 1785 drop_pages: 1786 skb_shinfo(skb)->nr_frags = i; 1787 1788 for (; i < nfrags; i++) 1789 skb_frag_unref(skb, i); 1790 1791 if (skb_has_frag_list(skb)) 1792 skb_drop_fraglist(skb); 1793 goto done; 1794 } 1795 1796 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1797 fragp = &frag->next) { 1798 int end = offset + frag->len; 1799 1800 if (skb_shared(frag)) { 1801 struct sk_buff *nfrag; 1802 1803 nfrag = skb_clone(frag, GFP_ATOMIC); 1804 if (unlikely(!nfrag)) 1805 return -ENOMEM; 1806 1807 nfrag->next = frag->next; 1808 consume_skb(frag); 1809 frag = nfrag; 1810 *fragp = frag; 1811 } 1812 1813 if (end < len) { 1814 offset = end; 1815 continue; 1816 } 1817 1818 if (end > len && 1819 unlikely((err = pskb_trim(frag, len - offset)))) 1820 return err; 1821 1822 if (frag->next) 1823 skb_drop_list(&frag->next); 1824 break; 1825 } 1826 1827 done: 1828 if (len > skb_headlen(skb)) { 1829 skb->data_len -= skb->len - len; 1830 skb->len = len; 1831 } else { 1832 skb->len = len; 1833 skb->data_len = 0; 1834 skb_set_tail_pointer(skb, len); 1835 } 1836 1837 if (!skb->sk || skb->destructor == sock_edemux) 1838 skb_condense(skb); 1839 return 0; 1840 } 1841 EXPORT_SYMBOL(___pskb_trim); 1842 1843 /** 1844 * __pskb_pull_tail - advance tail of skb header 1845 * @skb: buffer to reallocate 1846 * @delta: number of bytes to advance tail 1847 * 1848 * The function makes a sense only on a fragmented &sk_buff, 1849 * it expands header moving its tail forward and copying necessary 1850 * data from fragmented part. 1851 * 1852 * &sk_buff MUST have reference count of 1. 1853 * 1854 * Returns %NULL (and &sk_buff does not change) if pull failed 1855 * or value of new tail of skb in the case of success. 1856 * 1857 * All the pointers pointing into skb header may change and must be 1858 * reloaded after call to this function. 1859 */ 1860 1861 /* Moves tail of skb head forward, copying data from fragmented part, 1862 * when it is necessary. 1863 * 1. It may fail due to malloc failure. 1864 * 2. It may change skb pointers. 1865 * 1866 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1867 */ 1868 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1869 { 1870 /* If skb has not enough free space at tail, get new one 1871 * plus 128 bytes for future expansions. If we have enough 1872 * room at tail, reallocate without expansion only if skb is cloned. 1873 */ 1874 int i, k, eat = (skb->tail + delta) - skb->end; 1875 1876 if (eat > 0 || skb_cloned(skb)) { 1877 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1878 GFP_ATOMIC)) 1879 return NULL; 1880 } 1881 1882 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 1883 skb_tail_pointer(skb), delta)); 1884 1885 /* Optimization: no fragments, no reasons to preestimate 1886 * size of pulled pages. Superb. 1887 */ 1888 if (!skb_has_frag_list(skb)) 1889 goto pull_pages; 1890 1891 /* Estimate size of pulled pages. */ 1892 eat = delta; 1893 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1894 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1895 1896 if (size >= eat) 1897 goto pull_pages; 1898 eat -= size; 1899 } 1900 1901 /* If we need update frag list, we are in troubles. 1902 * Certainly, it is possible to add an offset to skb data, 1903 * but taking into account that pulling is expected to 1904 * be very rare operation, it is worth to fight against 1905 * further bloating skb head and crucify ourselves here instead. 1906 * Pure masohism, indeed. 8)8) 1907 */ 1908 if (eat) { 1909 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1910 struct sk_buff *clone = NULL; 1911 struct sk_buff *insp = NULL; 1912 1913 do { 1914 BUG_ON(!list); 1915 1916 if (list->len <= eat) { 1917 /* Eaten as whole. */ 1918 eat -= list->len; 1919 list = list->next; 1920 insp = list; 1921 } else { 1922 /* Eaten partially. */ 1923 1924 if (skb_shared(list)) { 1925 /* Sucks! We need to fork list. :-( */ 1926 clone = skb_clone(list, GFP_ATOMIC); 1927 if (!clone) 1928 return NULL; 1929 insp = list->next; 1930 list = clone; 1931 } else { 1932 /* This may be pulled without 1933 * problems. */ 1934 insp = list; 1935 } 1936 if (!pskb_pull(list, eat)) { 1937 kfree_skb(clone); 1938 return NULL; 1939 } 1940 break; 1941 } 1942 } while (eat); 1943 1944 /* Free pulled out fragments. */ 1945 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1946 skb_shinfo(skb)->frag_list = list->next; 1947 kfree_skb(list); 1948 } 1949 /* And insert new clone at head. */ 1950 if (clone) { 1951 clone->next = list; 1952 skb_shinfo(skb)->frag_list = clone; 1953 } 1954 } 1955 /* Success! Now we may commit changes to skb data. */ 1956 1957 pull_pages: 1958 eat = delta; 1959 k = 0; 1960 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1961 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1962 1963 if (size <= eat) { 1964 skb_frag_unref(skb, i); 1965 eat -= size; 1966 } else { 1967 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1968 if (eat) { 1969 skb_shinfo(skb)->frags[k].page_offset += eat; 1970 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1971 if (!i) 1972 goto end; 1973 eat = 0; 1974 } 1975 k++; 1976 } 1977 } 1978 skb_shinfo(skb)->nr_frags = k; 1979 1980 end: 1981 skb->tail += delta; 1982 skb->data_len -= delta; 1983 1984 if (!skb->data_len) 1985 skb_zcopy_clear(skb, false); 1986 1987 return skb_tail_pointer(skb); 1988 } 1989 EXPORT_SYMBOL(__pskb_pull_tail); 1990 1991 /** 1992 * skb_copy_bits - copy bits from skb to kernel buffer 1993 * @skb: source skb 1994 * @offset: offset in source 1995 * @to: destination buffer 1996 * @len: number of bytes to copy 1997 * 1998 * Copy the specified number of bytes from the source skb to the 1999 * destination buffer. 2000 * 2001 * CAUTION ! : 2002 * If its prototype is ever changed, 2003 * check arch/{*}/net/{*}.S files, 2004 * since it is called from BPF assembly code. 2005 */ 2006 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2007 { 2008 int start = skb_headlen(skb); 2009 struct sk_buff *frag_iter; 2010 int i, copy; 2011 2012 if (offset > (int)skb->len - len) 2013 goto fault; 2014 2015 /* Copy header. */ 2016 if ((copy = start - offset) > 0) { 2017 if (copy > len) 2018 copy = len; 2019 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2020 if ((len -= copy) == 0) 2021 return 0; 2022 offset += copy; 2023 to += copy; 2024 } 2025 2026 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2027 int end; 2028 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2029 2030 WARN_ON(start > offset + len); 2031 2032 end = start + skb_frag_size(f); 2033 if ((copy = end - offset) > 0) { 2034 u32 p_off, p_len, copied; 2035 struct page *p; 2036 u8 *vaddr; 2037 2038 if (copy > len) 2039 copy = len; 2040 2041 skb_frag_foreach_page(f, 2042 f->page_offset + offset - start, 2043 copy, p, p_off, p_len, copied) { 2044 vaddr = kmap_atomic(p); 2045 memcpy(to + copied, vaddr + p_off, p_len); 2046 kunmap_atomic(vaddr); 2047 } 2048 2049 if ((len -= copy) == 0) 2050 return 0; 2051 offset += copy; 2052 to += copy; 2053 } 2054 start = end; 2055 } 2056 2057 skb_walk_frags(skb, frag_iter) { 2058 int end; 2059 2060 WARN_ON(start > offset + len); 2061 2062 end = start + frag_iter->len; 2063 if ((copy = end - offset) > 0) { 2064 if (copy > len) 2065 copy = len; 2066 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2067 goto fault; 2068 if ((len -= copy) == 0) 2069 return 0; 2070 offset += copy; 2071 to += copy; 2072 } 2073 start = end; 2074 } 2075 2076 if (!len) 2077 return 0; 2078 2079 fault: 2080 return -EFAULT; 2081 } 2082 EXPORT_SYMBOL(skb_copy_bits); 2083 2084 /* 2085 * Callback from splice_to_pipe(), if we need to release some pages 2086 * at the end of the spd in case we error'ed out in filling the pipe. 2087 */ 2088 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2089 { 2090 put_page(spd->pages[i]); 2091 } 2092 2093 static struct page *linear_to_page(struct page *page, unsigned int *len, 2094 unsigned int *offset, 2095 struct sock *sk) 2096 { 2097 struct page_frag *pfrag = sk_page_frag(sk); 2098 2099 if (!sk_page_frag_refill(sk, pfrag)) 2100 return NULL; 2101 2102 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2103 2104 memcpy(page_address(pfrag->page) + pfrag->offset, 2105 page_address(page) + *offset, *len); 2106 *offset = pfrag->offset; 2107 pfrag->offset += *len; 2108 2109 return pfrag->page; 2110 } 2111 2112 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2113 struct page *page, 2114 unsigned int offset) 2115 { 2116 return spd->nr_pages && 2117 spd->pages[spd->nr_pages - 1] == page && 2118 (spd->partial[spd->nr_pages - 1].offset + 2119 spd->partial[spd->nr_pages - 1].len == offset); 2120 } 2121 2122 /* 2123 * Fill page/offset/length into spd, if it can hold more pages. 2124 */ 2125 static bool spd_fill_page(struct splice_pipe_desc *spd, 2126 struct pipe_inode_info *pipe, struct page *page, 2127 unsigned int *len, unsigned int offset, 2128 bool linear, 2129 struct sock *sk) 2130 { 2131 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2132 return true; 2133 2134 if (linear) { 2135 page = linear_to_page(page, len, &offset, sk); 2136 if (!page) 2137 return true; 2138 } 2139 if (spd_can_coalesce(spd, page, offset)) { 2140 spd->partial[spd->nr_pages - 1].len += *len; 2141 return false; 2142 } 2143 get_page(page); 2144 spd->pages[spd->nr_pages] = page; 2145 spd->partial[spd->nr_pages].len = *len; 2146 spd->partial[spd->nr_pages].offset = offset; 2147 spd->nr_pages++; 2148 2149 return false; 2150 } 2151 2152 static bool __splice_segment(struct page *page, unsigned int poff, 2153 unsigned int plen, unsigned int *off, 2154 unsigned int *len, 2155 struct splice_pipe_desc *spd, bool linear, 2156 struct sock *sk, 2157 struct pipe_inode_info *pipe) 2158 { 2159 if (!*len) 2160 return true; 2161 2162 /* skip this segment if already processed */ 2163 if (*off >= plen) { 2164 *off -= plen; 2165 return false; 2166 } 2167 2168 /* ignore any bits we already processed */ 2169 poff += *off; 2170 plen -= *off; 2171 *off = 0; 2172 2173 do { 2174 unsigned int flen = min(*len, plen); 2175 2176 if (spd_fill_page(spd, pipe, page, &flen, poff, 2177 linear, sk)) 2178 return true; 2179 poff += flen; 2180 plen -= flen; 2181 *len -= flen; 2182 } while (*len && plen); 2183 2184 return false; 2185 } 2186 2187 /* 2188 * Map linear and fragment data from the skb to spd. It reports true if the 2189 * pipe is full or if we already spliced the requested length. 2190 */ 2191 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2192 unsigned int *offset, unsigned int *len, 2193 struct splice_pipe_desc *spd, struct sock *sk) 2194 { 2195 int seg; 2196 struct sk_buff *iter; 2197 2198 /* map the linear part : 2199 * If skb->head_frag is set, this 'linear' part is backed by a 2200 * fragment, and if the head is not shared with any clones then 2201 * we can avoid a copy since we own the head portion of this page. 2202 */ 2203 if (__splice_segment(virt_to_page(skb->data), 2204 (unsigned long) skb->data & (PAGE_SIZE - 1), 2205 skb_headlen(skb), 2206 offset, len, spd, 2207 skb_head_is_locked(skb), 2208 sk, pipe)) 2209 return true; 2210 2211 /* 2212 * then map the fragments 2213 */ 2214 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2215 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2216 2217 if (__splice_segment(skb_frag_page(f), 2218 f->page_offset, skb_frag_size(f), 2219 offset, len, spd, false, sk, pipe)) 2220 return true; 2221 } 2222 2223 skb_walk_frags(skb, iter) { 2224 if (*offset >= iter->len) { 2225 *offset -= iter->len; 2226 continue; 2227 } 2228 /* __skb_splice_bits() only fails if the output has no room 2229 * left, so no point in going over the frag_list for the error 2230 * case. 2231 */ 2232 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2233 return true; 2234 } 2235 2236 return false; 2237 } 2238 2239 /* 2240 * Map data from the skb to a pipe. Should handle both the linear part, 2241 * the fragments, and the frag list. 2242 */ 2243 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2244 struct pipe_inode_info *pipe, unsigned int tlen, 2245 unsigned int flags) 2246 { 2247 struct partial_page partial[MAX_SKB_FRAGS]; 2248 struct page *pages[MAX_SKB_FRAGS]; 2249 struct splice_pipe_desc spd = { 2250 .pages = pages, 2251 .partial = partial, 2252 .nr_pages_max = MAX_SKB_FRAGS, 2253 .ops = &nosteal_pipe_buf_ops, 2254 .spd_release = sock_spd_release, 2255 }; 2256 int ret = 0; 2257 2258 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2259 2260 if (spd.nr_pages) 2261 ret = splice_to_pipe(pipe, &spd); 2262 2263 return ret; 2264 } 2265 EXPORT_SYMBOL_GPL(skb_splice_bits); 2266 2267 /* Send skb data on a socket. Socket must be locked. */ 2268 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2269 int len) 2270 { 2271 unsigned int orig_len = len; 2272 struct sk_buff *head = skb; 2273 unsigned short fragidx; 2274 int slen, ret; 2275 2276 do_frag_list: 2277 2278 /* Deal with head data */ 2279 while (offset < skb_headlen(skb) && len) { 2280 struct kvec kv; 2281 struct msghdr msg; 2282 2283 slen = min_t(int, len, skb_headlen(skb) - offset); 2284 kv.iov_base = skb->data + offset; 2285 kv.iov_len = slen; 2286 memset(&msg, 0, sizeof(msg)); 2287 2288 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2289 if (ret <= 0) 2290 goto error; 2291 2292 offset += ret; 2293 len -= ret; 2294 } 2295 2296 /* All the data was skb head? */ 2297 if (!len) 2298 goto out; 2299 2300 /* Make offset relative to start of frags */ 2301 offset -= skb_headlen(skb); 2302 2303 /* Find where we are in frag list */ 2304 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2305 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2306 2307 if (offset < frag->size) 2308 break; 2309 2310 offset -= frag->size; 2311 } 2312 2313 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2314 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2315 2316 slen = min_t(size_t, len, frag->size - offset); 2317 2318 while (slen) { 2319 ret = kernel_sendpage_locked(sk, frag->page.p, 2320 frag->page_offset + offset, 2321 slen, MSG_DONTWAIT); 2322 if (ret <= 0) 2323 goto error; 2324 2325 len -= ret; 2326 offset += ret; 2327 slen -= ret; 2328 } 2329 2330 offset = 0; 2331 } 2332 2333 if (len) { 2334 /* Process any frag lists */ 2335 2336 if (skb == head) { 2337 if (skb_has_frag_list(skb)) { 2338 skb = skb_shinfo(skb)->frag_list; 2339 goto do_frag_list; 2340 } 2341 } else if (skb->next) { 2342 skb = skb->next; 2343 goto do_frag_list; 2344 } 2345 } 2346 2347 out: 2348 return orig_len - len; 2349 2350 error: 2351 return orig_len == len ? ret : orig_len - len; 2352 } 2353 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2354 2355 /* Send skb data on a socket. */ 2356 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2357 { 2358 int ret = 0; 2359 2360 lock_sock(sk); 2361 ret = skb_send_sock_locked(sk, skb, offset, len); 2362 release_sock(sk); 2363 2364 return ret; 2365 } 2366 EXPORT_SYMBOL_GPL(skb_send_sock); 2367 2368 /** 2369 * skb_store_bits - store bits from kernel buffer to skb 2370 * @skb: destination buffer 2371 * @offset: offset in destination 2372 * @from: source buffer 2373 * @len: number of bytes to copy 2374 * 2375 * Copy the specified number of bytes from the source buffer to the 2376 * destination skb. This function handles all the messy bits of 2377 * traversing fragment lists and such. 2378 */ 2379 2380 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2381 { 2382 int start = skb_headlen(skb); 2383 struct sk_buff *frag_iter; 2384 int i, copy; 2385 2386 if (offset > (int)skb->len - len) 2387 goto fault; 2388 2389 if ((copy = start - offset) > 0) { 2390 if (copy > len) 2391 copy = len; 2392 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2393 if ((len -= copy) == 0) 2394 return 0; 2395 offset += copy; 2396 from += copy; 2397 } 2398 2399 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2400 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2401 int end; 2402 2403 WARN_ON(start > offset + len); 2404 2405 end = start + skb_frag_size(frag); 2406 if ((copy = end - offset) > 0) { 2407 u32 p_off, p_len, copied; 2408 struct page *p; 2409 u8 *vaddr; 2410 2411 if (copy > len) 2412 copy = len; 2413 2414 skb_frag_foreach_page(frag, 2415 frag->page_offset + offset - start, 2416 copy, p, p_off, p_len, copied) { 2417 vaddr = kmap_atomic(p); 2418 memcpy(vaddr + p_off, from + copied, p_len); 2419 kunmap_atomic(vaddr); 2420 } 2421 2422 if ((len -= copy) == 0) 2423 return 0; 2424 offset += copy; 2425 from += copy; 2426 } 2427 start = end; 2428 } 2429 2430 skb_walk_frags(skb, frag_iter) { 2431 int end; 2432 2433 WARN_ON(start > offset + len); 2434 2435 end = start + frag_iter->len; 2436 if ((copy = end - offset) > 0) { 2437 if (copy > len) 2438 copy = len; 2439 if (skb_store_bits(frag_iter, offset - start, 2440 from, copy)) 2441 goto fault; 2442 if ((len -= copy) == 0) 2443 return 0; 2444 offset += copy; 2445 from += copy; 2446 } 2447 start = end; 2448 } 2449 if (!len) 2450 return 0; 2451 2452 fault: 2453 return -EFAULT; 2454 } 2455 EXPORT_SYMBOL(skb_store_bits); 2456 2457 /* Checksum skb data. */ 2458 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2459 __wsum csum, const struct skb_checksum_ops *ops) 2460 { 2461 int start = skb_headlen(skb); 2462 int i, copy = start - offset; 2463 struct sk_buff *frag_iter; 2464 int pos = 0; 2465 2466 /* Checksum header. */ 2467 if (copy > 0) { 2468 if (copy > len) 2469 copy = len; 2470 csum = ops->update(skb->data + offset, copy, csum); 2471 if ((len -= copy) == 0) 2472 return csum; 2473 offset += copy; 2474 pos = copy; 2475 } 2476 2477 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2478 int end; 2479 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2480 2481 WARN_ON(start > offset + len); 2482 2483 end = start + skb_frag_size(frag); 2484 if ((copy = end - offset) > 0) { 2485 u32 p_off, p_len, copied; 2486 struct page *p; 2487 __wsum csum2; 2488 u8 *vaddr; 2489 2490 if (copy > len) 2491 copy = len; 2492 2493 skb_frag_foreach_page(frag, 2494 frag->page_offset + offset - start, 2495 copy, p, p_off, p_len, copied) { 2496 vaddr = kmap_atomic(p); 2497 csum2 = ops->update(vaddr + p_off, p_len, 0); 2498 kunmap_atomic(vaddr); 2499 csum = ops->combine(csum, csum2, pos, p_len); 2500 pos += p_len; 2501 } 2502 2503 if (!(len -= copy)) 2504 return csum; 2505 offset += copy; 2506 } 2507 start = end; 2508 } 2509 2510 skb_walk_frags(skb, frag_iter) { 2511 int end; 2512 2513 WARN_ON(start > offset + len); 2514 2515 end = start + frag_iter->len; 2516 if ((copy = end - offset) > 0) { 2517 __wsum csum2; 2518 if (copy > len) 2519 copy = len; 2520 csum2 = __skb_checksum(frag_iter, offset - start, 2521 copy, 0, ops); 2522 csum = ops->combine(csum, csum2, pos, copy); 2523 if ((len -= copy) == 0) 2524 return csum; 2525 offset += copy; 2526 pos += copy; 2527 } 2528 start = end; 2529 } 2530 BUG_ON(len); 2531 2532 return csum; 2533 } 2534 EXPORT_SYMBOL(__skb_checksum); 2535 2536 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2537 int len, __wsum csum) 2538 { 2539 const struct skb_checksum_ops ops = { 2540 .update = csum_partial_ext, 2541 .combine = csum_block_add_ext, 2542 }; 2543 2544 return __skb_checksum(skb, offset, len, csum, &ops); 2545 } 2546 EXPORT_SYMBOL(skb_checksum); 2547 2548 /* Both of above in one bottle. */ 2549 2550 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2551 u8 *to, int len, __wsum csum) 2552 { 2553 int start = skb_headlen(skb); 2554 int i, copy = start - offset; 2555 struct sk_buff *frag_iter; 2556 int pos = 0; 2557 2558 /* Copy header. */ 2559 if (copy > 0) { 2560 if (copy > len) 2561 copy = len; 2562 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2563 copy, csum); 2564 if ((len -= copy) == 0) 2565 return csum; 2566 offset += copy; 2567 to += copy; 2568 pos = copy; 2569 } 2570 2571 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2572 int end; 2573 2574 WARN_ON(start > offset + len); 2575 2576 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2577 if ((copy = end - offset) > 0) { 2578 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2579 u32 p_off, p_len, copied; 2580 struct page *p; 2581 __wsum csum2; 2582 u8 *vaddr; 2583 2584 if (copy > len) 2585 copy = len; 2586 2587 skb_frag_foreach_page(frag, 2588 frag->page_offset + offset - start, 2589 copy, p, p_off, p_len, copied) { 2590 vaddr = kmap_atomic(p); 2591 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2592 to + copied, 2593 p_len, 0); 2594 kunmap_atomic(vaddr); 2595 csum = csum_block_add(csum, csum2, pos); 2596 pos += p_len; 2597 } 2598 2599 if (!(len -= copy)) 2600 return csum; 2601 offset += copy; 2602 to += copy; 2603 } 2604 start = end; 2605 } 2606 2607 skb_walk_frags(skb, frag_iter) { 2608 __wsum csum2; 2609 int end; 2610 2611 WARN_ON(start > offset + len); 2612 2613 end = start + frag_iter->len; 2614 if ((copy = end - offset) > 0) { 2615 if (copy > len) 2616 copy = len; 2617 csum2 = skb_copy_and_csum_bits(frag_iter, 2618 offset - start, 2619 to, copy, 0); 2620 csum = csum_block_add(csum, csum2, pos); 2621 if ((len -= copy) == 0) 2622 return csum; 2623 offset += copy; 2624 to += copy; 2625 pos += copy; 2626 } 2627 start = end; 2628 } 2629 BUG_ON(len); 2630 return csum; 2631 } 2632 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2633 2634 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2635 { 2636 net_warn_ratelimited( 2637 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2638 __func__); 2639 return 0; 2640 } 2641 2642 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2643 int offset, int len) 2644 { 2645 net_warn_ratelimited( 2646 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2647 __func__); 2648 return 0; 2649 } 2650 2651 static const struct skb_checksum_ops default_crc32c_ops = { 2652 .update = warn_crc32c_csum_update, 2653 .combine = warn_crc32c_csum_combine, 2654 }; 2655 2656 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2657 &default_crc32c_ops; 2658 EXPORT_SYMBOL(crc32c_csum_stub); 2659 2660 /** 2661 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2662 * @from: source buffer 2663 * 2664 * Calculates the amount of linear headroom needed in the 'to' skb passed 2665 * into skb_zerocopy(). 2666 */ 2667 unsigned int 2668 skb_zerocopy_headlen(const struct sk_buff *from) 2669 { 2670 unsigned int hlen = 0; 2671 2672 if (!from->head_frag || 2673 skb_headlen(from) < L1_CACHE_BYTES || 2674 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2675 hlen = skb_headlen(from); 2676 2677 if (skb_has_frag_list(from)) 2678 hlen = from->len; 2679 2680 return hlen; 2681 } 2682 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2683 2684 /** 2685 * skb_zerocopy - Zero copy skb to skb 2686 * @to: destination buffer 2687 * @from: source buffer 2688 * @len: number of bytes to copy from source buffer 2689 * @hlen: size of linear headroom in destination buffer 2690 * 2691 * Copies up to `len` bytes from `from` to `to` by creating references 2692 * to the frags in the source buffer. 2693 * 2694 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2695 * headroom in the `to` buffer. 2696 * 2697 * Return value: 2698 * 0: everything is OK 2699 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2700 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2701 */ 2702 int 2703 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2704 { 2705 int i, j = 0; 2706 int plen = 0; /* length of skb->head fragment */ 2707 int ret; 2708 struct page *page; 2709 unsigned int offset; 2710 2711 BUG_ON(!from->head_frag && !hlen); 2712 2713 /* dont bother with small payloads */ 2714 if (len <= skb_tailroom(to)) 2715 return skb_copy_bits(from, 0, skb_put(to, len), len); 2716 2717 if (hlen) { 2718 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2719 if (unlikely(ret)) 2720 return ret; 2721 len -= hlen; 2722 } else { 2723 plen = min_t(int, skb_headlen(from), len); 2724 if (plen) { 2725 page = virt_to_head_page(from->head); 2726 offset = from->data - (unsigned char *)page_address(page); 2727 __skb_fill_page_desc(to, 0, page, offset, plen); 2728 get_page(page); 2729 j = 1; 2730 len -= plen; 2731 } 2732 } 2733 2734 to->truesize += len + plen; 2735 to->len += len + plen; 2736 to->data_len += len + plen; 2737 2738 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2739 skb_tx_error(from); 2740 return -ENOMEM; 2741 } 2742 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2743 2744 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2745 if (!len) 2746 break; 2747 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2748 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2749 len -= skb_shinfo(to)->frags[j].size; 2750 skb_frag_ref(to, j); 2751 j++; 2752 } 2753 skb_shinfo(to)->nr_frags = j; 2754 2755 return 0; 2756 } 2757 EXPORT_SYMBOL_GPL(skb_zerocopy); 2758 2759 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2760 { 2761 __wsum csum; 2762 long csstart; 2763 2764 if (skb->ip_summed == CHECKSUM_PARTIAL) 2765 csstart = skb_checksum_start_offset(skb); 2766 else 2767 csstart = skb_headlen(skb); 2768 2769 BUG_ON(csstart > skb_headlen(skb)); 2770 2771 skb_copy_from_linear_data(skb, to, csstart); 2772 2773 csum = 0; 2774 if (csstart != skb->len) 2775 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2776 skb->len - csstart, 0); 2777 2778 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2779 long csstuff = csstart + skb->csum_offset; 2780 2781 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2782 } 2783 } 2784 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2785 2786 /** 2787 * skb_dequeue - remove from the head of the queue 2788 * @list: list to dequeue from 2789 * 2790 * Remove the head of the list. The list lock is taken so the function 2791 * may be used safely with other locking list functions. The head item is 2792 * returned or %NULL if the list is empty. 2793 */ 2794 2795 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2796 { 2797 unsigned long flags; 2798 struct sk_buff *result; 2799 2800 spin_lock_irqsave(&list->lock, flags); 2801 result = __skb_dequeue(list); 2802 spin_unlock_irqrestore(&list->lock, flags); 2803 return result; 2804 } 2805 EXPORT_SYMBOL(skb_dequeue); 2806 2807 /** 2808 * skb_dequeue_tail - remove from the tail of the queue 2809 * @list: list to dequeue from 2810 * 2811 * Remove the tail of the list. The list lock is taken so the function 2812 * may be used safely with other locking list functions. The tail item is 2813 * returned or %NULL if the list is empty. 2814 */ 2815 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2816 { 2817 unsigned long flags; 2818 struct sk_buff *result; 2819 2820 spin_lock_irqsave(&list->lock, flags); 2821 result = __skb_dequeue_tail(list); 2822 spin_unlock_irqrestore(&list->lock, flags); 2823 return result; 2824 } 2825 EXPORT_SYMBOL(skb_dequeue_tail); 2826 2827 /** 2828 * skb_queue_purge - empty a list 2829 * @list: list to empty 2830 * 2831 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2832 * the list and one reference dropped. This function takes the list 2833 * lock and is atomic with respect to other list locking functions. 2834 */ 2835 void skb_queue_purge(struct sk_buff_head *list) 2836 { 2837 struct sk_buff *skb; 2838 while ((skb = skb_dequeue(list)) != NULL) 2839 kfree_skb(skb); 2840 } 2841 EXPORT_SYMBOL(skb_queue_purge); 2842 2843 /** 2844 * skb_rbtree_purge - empty a skb rbtree 2845 * @root: root of the rbtree to empty 2846 * 2847 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2848 * the list and one reference dropped. This function does not take 2849 * any lock. Synchronization should be handled by the caller (e.g., TCP 2850 * out-of-order queue is protected by the socket lock). 2851 */ 2852 void skb_rbtree_purge(struct rb_root *root) 2853 { 2854 struct rb_node *p = rb_first(root); 2855 2856 while (p) { 2857 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2858 2859 p = rb_next(p); 2860 rb_erase(&skb->rbnode, root); 2861 kfree_skb(skb); 2862 } 2863 } 2864 2865 /** 2866 * skb_queue_head - queue a buffer at the list head 2867 * @list: list to use 2868 * @newsk: buffer to queue 2869 * 2870 * Queue a buffer at the start of the list. This function takes the 2871 * list lock and can be used safely with other locking &sk_buff functions 2872 * safely. 2873 * 2874 * A buffer cannot be placed on two lists at the same time. 2875 */ 2876 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2877 { 2878 unsigned long flags; 2879 2880 spin_lock_irqsave(&list->lock, flags); 2881 __skb_queue_head(list, newsk); 2882 spin_unlock_irqrestore(&list->lock, flags); 2883 } 2884 EXPORT_SYMBOL(skb_queue_head); 2885 2886 /** 2887 * skb_queue_tail - queue a buffer at the list tail 2888 * @list: list to use 2889 * @newsk: buffer to queue 2890 * 2891 * Queue a buffer at the tail of the list. This function takes the 2892 * list lock and can be used safely with other locking &sk_buff functions 2893 * safely. 2894 * 2895 * A buffer cannot be placed on two lists at the same time. 2896 */ 2897 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2898 { 2899 unsigned long flags; 2900 2901 spin_lock_irqsave(&list->lock, flags); 2902 __skb_queue_tail(list, newsk); 2903 spin_unlock_irqrestore(&list->lock, flags); 2904 } 2905 EXPORT_SYMBOL(skb_queue_tail); 2906 2907 /** 2908 * skb_unlink - remove a buffer from a list 2909 * @skb: buffer to remove 2910 * @list: list to use 2911 * 2912 * Remove a packet from a list. The list locks are taken and this 2913 * function is atomic with respect to other list locked calls 2914 * 2915 * You must know what list the SKB is on. 2916 */ 2917 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2918 { 2919 unsigned long flags; 2920 2921 spin_lock_irqsave(&list->lock, flags); 2922 __skb_unlink(skb, list); 2923 spin_unlock_irqrestore(&list->lock, flags); 2924 } 2925 EXPORT_SYMBOL(skb_unlink); 2926 2927 /** 2928 * skb_append - append a buffer 2929 * @old: buffer to insert after 2930 * @newsk: buffer to insert 2931 * @list: list to use 2932 * 2933 * Place a packet after a given packet in a list. The list locks are taken 2934 * and this function is atomic with respect to other list locked calls. 2935 * A buffer cannot be placed on two lists at the same time. 2936 */ 2937 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2938 { 2939 unsigned long flags; 2940 2941 spin_lock_irqsave(&list->lock, flags); 2942 __skb_queue_after(list, old, newsk); 2943 spin_unlock_irqrestore(&list->lock, flags); 2944 } 2945 EXPORT_SYMBOL(skb_append); 2946 2947 /** 2948 * skb_insert - insert a buffer 2949 * @old: buffer to insert before 2950 * @newsk: buffer to insert 2951 * @list: list to use 2952 * 2953 * Place a packet before a given packet in a list. The list locks are 2954 * taken and this function is atomic with respect to other list locked 2955 * calls. 2956 * 2957 * A buffer cannot be placed on two lists at the same time. 2958 */ 2959 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2960 { 2961 unsigned long flags; 2962 2963 spin_lock_irqsave(&list->lock, flags); 2964 __skb_insert(newsk, old->prev, old, list); 2965 spin_unlock_irqrestore(&list->lock, flags); 2966 } 2967 EXPORT_SYMBOL(skb_insert); 2968 2969 static inline void skb_split_inside_header(struct sk_buff *skb, 2970 struct sk_buff* skb1, 2971 const u32 len, const int pos) 2972 { 2973 int i; 2974 2975 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2976 pos - len); 2977 /* And move data appendix as is. */ 2978 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2979 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2980 2981 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2982 skb_shinfo(skb)->nr_frags = 0; 2983 skb1->data_len = skb->data_len; 2984 skb1->len += skb1->data_len; 2985 skb->data_len = 0; 2986 skb->len = len; 2987 skb_set_tail_pointer(skb, len); 2988 } 2989 2990 static inline void skb_split_no_header(struct sk_buff *skb, 2991 struct sk_buff* skb1, 2992 const u32 len, int pos) 2993 { 2994 int i, k = 0; 2995 const int nfrags = skb_shinfo(skb)->nr_frags; 2996 2997 skb_shinfo(skb)->nr_frags = 0; 2998 skb1->len = skb1->data_len = skb->len - len; 2999 skb->len = len; 3000 skb->data_len = len - pos; 3001 3002 for (i = 0; i < nfrags; i++) { 3003 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3004 3005 if (pos + size > len) { 3006 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3007 3008 if (pos < len) { 3009 /* Split frag. 3010 * We have two variants in this case: 3011 * 1. Move all the frag to the second 3012 * part, if it is possible. F.e. 3013 * this approach is mandatory for TUX, 3014 * where splitting is expensive. 3015 * 2. Split is accurately. We make this. 3016 */ 3017 skb_frag_ref(skb, i); 3018 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3019 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3020 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3021 skb_shinfo(skb)->nr_frags++; 3022 } 3023 k++; 3024 } else 3025 skb_shinfo(skb)->nr_frags++; 3026 pos += size; 3027 } 3028 skb_shinfo(skb1)->nr_frags = k; 3029 } 3030 3031 /** 3032 * skb_split - Split fragmented skb to two parts at length len. 3033 * @skb: the buffer to split 3034 * @skb1: the buffer to receive the second part 3035 * @len: new length for skb 3036 */ 3037 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3038 { 3039 int pos = skb_headlen(skb); 3040 3041 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3042 SKBTX_SHARED_FRAG; 3043 skb_zerocopy_clone(skb1, skb, 0); 3044 if (len < pos) /* Split line is inside header. */ 3045 skb_split_inside_header(skb, skb1, len, pos); 3046 else /* Second chunk has no header, nothing to copy. */ 3047 skb_split_no_header(skb, skb1, len, pos); 3048 } 3049 EXPORT_SYMBOL(skb_split); 3050 3051 /* Shifting from/to a cloned skb is a no-go. 3052 * 3053 * Caller cannot keep skb_shinfo related pointers past calling here! 3054 */ 3055 static int skb_prepare_for_shift(struct sk_buff *skb) 3056 { 3057 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3058 } 3059 3060 /** 3061 * skb_shift - Shifts paged data partially from skb to another 3062 * @tgt: buffer into which tail data gets added 3063 * @skb: buffer from which the paged data comes from 3064 * @shiftlen: shift up to this many bytes 3065 * 3066 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3067 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3068 * It's up to caller to free skb if everything was shifted. 3069 * 3070 * If @tgt runs out of frags, the whole operation is aborted. 3071 * 3072 * Skb cannot include anything else but paged data while tgt is allowed 3073 * to have non-paged data as well. 3074 * 3075 * TODO: full sized shift could be optimized but that would need 3076 * specialized skb free'er to handle frags without up-to-date nr_frags. 3077 */ 3078 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3079 { 3080 int from, to, merge, todo; 3081 struct skb_frag_struct *fragfrom, *fragto; 3082 3083 BUG_ON(shiftlen > skb->len); 3084 3085 if (skb_headlen(skb)) 3086 return 0; 3087 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3088 return 0; 3089 3090 todo = shiftlen; 3091 from = 0; 3092 to = skb_shinfo(tgt)->nr_frags; 3093 fragfrom = &skb_shinfo(skb)->frags[from]; 3094 3095 /* Actual merge is delayed until the point when we know we can 3096 * commit all, so that we don't have to undo partial changes 3097 */ 3098 if (!to || 3099 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3100 fragfrom->page_offset)) { 3101 merge = -1; 3102 } else { 3103 merge = to - 1; 3104 3105 todo -= skb_frag_size(fragfrom); 3106 if (todo < 0) { 3107 if (skb_prepare_for_shift(skb) || 3108 skb_prepare_for_shift(tgt)) 3109 return 0; 3110 3111 /* All previous frag pointers might be stale! */ 3112 fragfrom = &skb_shinfo(skb)->frags[from]; 3113 fragto = &skb_shinfo(tgt)->frags[merge]; 3114 3115 skb_frag_size_add(fragto, shiftlen); 3116 skb_frag_size_sub(fragfrom, shiftlen); 3117 fragfrom->page_offset += shiftlen; 3118 3119 goto onlymerged; 3120 } 3121 3122 from++; 3123 } 3124 3125 /* Skip full, not-fitting skb to avoid expensive operations */ 3126 if ((shiftlen == skb->len) && 3127 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3128 return 0; 3129 3130 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3131 return 0; 3132 3133 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3134 if (to == MAX_SKB_FRAGS) 3135 return 0; 3136 3137 fragfrom = &skb_shinfo(skb)->frags[from]; 3138 fragto = &skb_shinfo(tgt)->frags[to]; 3139 3140 if (todo >= skb_frag_size(fragfrom)) { 3141 *fragto = *fragfrom; 3142 todo -= skb_frag_size(fragfrom); 3143 from++; 3144 to++; 3145 3146 } else { 3147 __skb_frag_ref(fragfrom); 3148 fragto->page = fragfrom->page; 3149 fragto->page_offset = fragfrom->page_offset; 3150 skb_frag_size_set(fragto, todo); 3151 3152 fragfrom->page_offset += todo; 3153 skb_frag_size_sub(fragfrom, todo); 3154 todo = 0; 3155 3156 to++; 3157 break; 3158 } 3159 } 3160 3161 /* Ready to "commit" this state change to tgt */ 3162 skb_shinfo(tgt)->nr_frags = to; 3163 3164 if (merge >= 0) { 3165 fragfrom = &skb_shinfo(skb)->frags[0]; 3166 fragto = &skb_shinfo(tgt)->frags[merge]; 3167 3168 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3169 __skb_frag_unref(fragfrom); 3170 } 3171 3172 /* Reposition in the original skb */ 3173 to = 0; 3174 while (from < skb_shinfo(skb)->nr_frags) 3175 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3176 skb_shinfo(skb)->nr_frags = to; 3177 3178 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3179 3180 onlymerged: 3181 /* Most likely the tgt won't ever need its checksum anymore, skb on 3182 * the other hand might need it if it needs to be resent 3183 */ 3184 tgt->ip_summed = CHECKSUM_PARTIAL; 3185 skb->ip_summed = CHECKSUM_PARTIAL; 3186 3187 /* Yak, is it really working this way? Some helper please? */ 3188 skb->len -= shiftlen; 3189 skb->data_len -= shiftlen; 3190 skb->truesize -= shiftlen; 3191 tgt->len += shiftlen; 3192 tgt->data_len += shiftlen; 3193 tgt->truesize += shiftlen; 3194 3195 return shiftlen; 3196 } 3197 3198 /** 3199 * skb_prepare_seq_read - Prepare a sequential read of skb data 3200 * @skb: the buffer to read 3201 * @from: lower offset of data to be read 3202 * @to: upper offset of data to be read 3203 * @st: state variable 3204 * 3205 * Initializes the specified state variable. Must be called before 3206 * invoking skb_seq_read() for the first time. 3207 */ 3208 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3209 unsigned int to, struct skb_seq_state *st) 3210 { 3211 st->lower_offset = from; 3212 st->upper_offset = to; 3213 st->root_skb = st->cur_skb = skb; 3214 st->frag_idx = st->stepped_offset = 0; 3215 st->frag_data = NULL; 3216 } 3217 EXPORT_SYMBOL(skb_prepare_seq_read); 3218 3219 /** 3220 * skb_seq_read - Sequentially read skb data 3221 * @consumed: number of bytes consumed by the caller so far 3222 * @data: destination pointer for data to be returned 3223 * @st: state variable 3224 * 3225 * Reads a block of skb data at @consumed relative to the 3226 * lower offset specified to skb_prepare_seq_read(). Assigns 3227 * the head of the data block to @data and returns the length 3228 * of the block or 0 if the end of the skb data or the upper 3229 * offset has been reached. 3230 * 3231 * The caller is not required to consume all of the data 3232 * returned, i.e. @consumed is typically set to the number 3233 * of bytes already consumed and the next call to 3234 * skb_seq_read() will return the remaining part of the block. 3235 * 3236 * Note 1: The size of each block of data returned can be arbitrary, 3237 * this limitation is the cost for zerocopy sequential 3238 * reads of potentially non linear data. 3239 * 3240 * Note 2: Fragment lists within fragments are not implemented 3241 * at the moment, state->root_skb could be replaced with 3242 * a stack for this purpose. 3243 */ 3244 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3245 struct skb_seq_state *st) 3246 { 3247 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3248 skb_frag_t *frag; 3249 3250 if (unlikely(abs_offset >= st->upper_offset)) { 3251 if (st->frag_data) { 3252 kunmap_atomic(st->frag_data); 3253 st->frag_data = NULL; 3254 } 3255 return 0; 3256 } 3257 3258 next_skb: 3259 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3260 3261 if (abs_offset < block_limit && !st->frag_data) { 3262 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3263 return block_limit - abs_offset; 3264 } 3265 3266 if (st->frag_idx == 0 && !st->frag_data) 3267 st->stepped_offset += skb_headlen(st->cur_skb); 3268 3269 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3270 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3271 block_limit = skb_frag_size(frag) + st->stepped_offset; 3272 3273 if (abs_offset < block_limit) { 3274 if (!st->frag_data) 3275 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3276 3277 *data = (u8 *) st->frag_data + frag->page_offset + 3278 (abs_offset - st->stepped_offset); 3279 3280 return block_limit - abs_offset; 3281 } 3282 3283 if (st->frag_data) { 3284 kunmap_atomic(st->frag_data); 3285 st->frag_data = NULL; 3286 } 3287 3288 st->frag_idx++; 3289 st->stepped_offset += skb_frag_size(frag); 3290 } 3291 3292 if (st->frag_data) { 3293 kunmap_atomic(st->frag_data); 3294 st->frag_data = NULL; 3295 } 3296 3297 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3298 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3299 st->frag_idx = 0; 3300 goto next_skb; 3301 } else if (st->cur_skb->next) { 3302 st->cur_skb = st->cur_skb->next; 3303 st->frag_idx = 0; 3304 goto next_skb; 3305 } 3306 3307 return 0; 3308 } 3309 EXPORT_SYMBOL(skb_seq_read); 3310 3311 /** 3312 * skb_abort_seq_read - Abort a sequential read of skb data 3313 * @st: state variable 3314 * 3315 * Must be called if skb_seq_read() was not called until it 3316 * returned 0. 3317 */ 3318 void skb_abort_seq_read(struct skb_seq_state *st) 3319 { 3320 if (st->frag_data) 3321 kunmap_atomic(st->frag_data); 3322 } 3323 EXPORT_SYMBOL(skb_abort_seq_read); 3324 3325 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3326 3327 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3328 struct ts_config *conf, 3329 struct ts_state *state) 3330 { 3331 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3332 } 3333 3334 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3335 { 3336 skb_abort_seq_read(TS_SKB_CB(state)); 3337 } 3338 3339 /** 3340 * skb_find_text - Find a text pattern in skb data 3341 * @skb: the buffer to look in 3342 * @from: search offset 3343 * @to: search limit 3344 * @config: textsearch configuration 3345 * 3346 * Finds a pattern in the skb data according to the specified 3347 * textsearch configuration. Use textsearch_next() to retrieve 3348 * subsequent occurrences of the pattern. Returns the offset 3349 * to the first occurrence or UINT_MAX if no match was found. 3350 */ 3351 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3352 unsigned int to, struct ts_config *config) 3353 { 3354 struct ts_state state; 3355 unsigned int ret; 3356 3357 config->get_next_block = skb_ts_get_next_block; 3358 config->finish = skb_ts_finish; 3359 3360 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3361 3362 ret = textsearch_find(config, &state); 3363 return (ret <= to - from ? ret : UINT_MAX); 3364 } 3365 EXPORT_SYMBOL(skb_find_text); 3366 3367 /** 3368 * skb_append_datato_frags - append the user data to a skb 3369 * @sk: sock structure 3370 * @skb: skb structure to be appended with user data. 3371 * @getfrag: call back function to be used for getting the user data 3372 * @from: pointer to user message iov 3373 * @length: length of the iov message 3374 * 3375 * Description: This procedure append the user data in the fragment part 3376 * of the skb if any page alloc fails user this procedure returns -ENOMEM 3377 */ 3378 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 3379 int (*getfrag)(void *from, char *to, int offset, 3380 int len, int odd, struct sk_buff *skb), 3381 void *from, int length) 3382 { 3383 int frg_cnt = skb_shinfo(skb)->nr_frags; 3384 int copy; 3385 int offset = 0; 3386 int ret; 3387 struct page_frag *pfrag = ¤t->task_frag; 3388 3389 do { 3390 /* Return error if we don't have space for new frag */ 3391 if (frg_cnt >= MAX_SKB_FRAGS) 3392 return -EMSGSIZE; 3393 3394 if (!sk_page_frag_refill(sk, pfrag)) 3395 return -ENOMEM; 3396 3397 /* copy the user data to page */ 3398 copy = min_t(int, length, pfrag->size - pfrag->offset); 3399 3400 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 3401 offset, copy, 0, skb); 3402 if (ret < 0) 3403 return -EFAULT; 3404 3405 /* copy was successful so update the size parameters */ 3406 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 3407 copy); 3408 frg_cnt++; 3409 pfrag->offset += copy; 3410 get_page(pfrag->page); 3411 3412 skb->truesize += copy; 3413 refcount_add(copy, &sk->sk_wmem_alloc); 3414 skb->len += copy; 3415 skb->data_len += copy; 3416 offset += copy; 3417 length -= copy; 3418 3419 } while (length > 0); 3420 3421 return 0; 3422 } 3423 EXPORT_SYMBOL(skb_append_datato_frags); 3424 3425 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3426 int offset, size_t size) 3427 { 3428 int i = skb_shinfo(skb)->nr_frags; 3429 3430 if (skb_can_coalesce(skb, i, page, offset)) { 3431 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3432 } else if (i < MAX_SKB_FRAGS) { 3433 get_page(page); 3434 skb_fill_page_desc(skb, i, page, offset, size); 3435 } else { 3436 return -EMSGSIZE; 3437 } 3438 3439 return 0; 3440 } 3441 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3442 3443 /** 3444 * skb_pull_rcsum - pull skb and update receive checksum 3445 * @skb: buffer to update 3446 * @len: length of data pulled 3447 * 3448 * This function performs an skb_pull on the packet and updates 3449 * the CHECKSUM_COMPLETE checksum. It should be used on 3450 * receive path processing instead of skb_pull unless you know 3451 * that the checksum difference is zero (e.g., a valid IP header) 3452 * or you are setting ip_summed to CHECKSUM_NONE. 3453 */ 3454 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3455 { 3456 unsigned char *data = skb->data; 3457 3458 BUG_ON(len > skb->len); 3459 __skb_pull(skb, len); 3460 skb_postpull_rcsum(skb, data, len); 3461 return skb->data; 3462 } 3463 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3464 3465 /** 3466 * skb_segment - Perform protocol segmentation on skb. 3467 * @head_skb: buffer to segment 3468 * @features: features for the output path (see dev->features) 3469 * 3470 * This function performs segmentation on the given skb. It returns 3471 * a pointer to the first in a list of new skbs for the segments. 3472 * In case of error it returns ERR_PTR(err). 3473 */ 3474 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3475 netdev_features_t features) 3476 { 3477 struct sk_buff *segs = NULL; 3478 struct sk_buff *tail = NULL; 3479 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3480 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3481 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3482 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3483 struct sk_buff *frag_skb = head_skb; 3484 unsigned int offset = doffset; 3485 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3486 unsigned int partial_segs = 0; 3487 unsigned int headroom; 3488 unsigned int len = head_skb->len; 3489 __be16 proto; 3490 bool csum, sg; 3491 int nfrags = skb_shinfo(head_skb)->nr_frags; 3492 int err = -ENOMEM; 3493 int i = 0; 3494 int pos; 3495 int dummy; 3496 3497 __skb_push(head_skb, doffset); 3498 proto = skb_network_protocol(head_skb, &dummy); 3499 if (unlikely(!proto)) 3500 return ERR_PTR(-EINVAL); 3501 3502 sg = !!(features & NETIF_F_SG); 3503 csum = !!can_checksum_protocol(features, proto); 3504 3505 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3506 if (!(features & NETIF_F_GSO_PARTIAL)) { 3507 struct sk_buff *iter; 3508 unsigned int frag_len; 3509 3510 if (!list_skb || 3511 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3512 goto normal; 3513 3514 /* If we get here then all the required 3515 * GSO features except frag_list are supported. 3516 * Try to split the SKB to multiple GSO SKBs 3517 * with no frag_list. 3518 * Currently we can do that only when the buffers don't 3519 * have a linear part and all the buffers except 3520 * the last are of the same length. 3521 */ 3522 frag_len = list_skb->len; 3523 skb_walk_frags(head_skb, iter) { 3524 if (frag_len != iter->len && iter->next) 3525 goto normal; 3526 if (skb_headlen(iter) && !iter->head_frag) 3527 goto normal; 3528 3529 len -= iter->len; 3530 } 3531 3532 if (len != frag_len) 3533 goto normal; 3534 } 3535 3536 /* GSO partial only requires that we trim off any excess that 3537 * doesn't fit into an MSS sized block, so take care of that 3538 * now. 3539 */ 3540 partial_segs = len / mss; 3541 if (partial_segs > 1) 3542 mss *= partial_segs; 3543 else 3544 partial_segs = 0; 3545 } 3546 3547 normal: 3548 headroom = skb_headroom(head_skb); 3549 pos = skb_headlen(head_skb); 3550 3551 do { 3552 struct sk_buff *nskb; 3553 skb_frag_t *nskb_frag; 3554 int hsize; 3555 int size; 3556 3557 if (unlikely(mss == GSO_BY_FRAGS)) { 3558 len = list_skb->len; 3559 } else { 3560 len = head_skb->len - offset; 3561 if (len > mss) 3562 len = mss; 3563 } 3564 3565 hsize = skb_headlen(head_skb) - offset; 3566 if (hsize < 0) 3567 hsize = 0; 3568 if (hsize > len || !sg) 3569 hsize = len; 3570 3571 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3572 (skb_headlen(list_skb) == len || sg)) { 3573 BUG_ON(skb_headlen(list_skb) > len); 3574 3575 i = 0; 3576 nfrags = skb_shinfo(list_skb)->nr_frags; 3577 frag = skb_shinfo(list_skb)->frags; 3578 frag_skb = list_skb; 3579 pos += skb_headlen(list_skb); 3580 3581 while (pos < offset + len) { 3582 BUG_ON(i >= nfrags); 3583 3584 size = skb_frag_size(frag); 3585 if (pos + size > offset + len) 3586 break; 3587 3588 i++; 3589 pos += size; 3590 frag++; 3591 } 3592 3593 nskb = skb_clone(list_skb, GFP_ATOMIC); 3594 list_skb = list_skb->next; 3595 3596 if (unlikely(!nskb)) 3597 goto err; 3598 3599 if (unlikely(pskb_trim(nskb, len))) { 3600 kfree_skb(nskb); 3601 goto err; 3602 } 3603 3604 hsize = skb_end_offset(nskb); 3605 if (skb_cow_head(nskb, doffset + headroom)) { 3606 kfree_skb(nskb); 3607 goto err; 3608 } 3609 3610 nskb->truesize += skb_end_offset(nskb) - hsize; 3611 skb_release_head_state(nskb); 3612 __skb_push(nskb, doffset); 3613 } else { 3614 nskb = __alloc_skb(hsize + doffset + headroom, 3615 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3616 NUMA_NO_NODE); 3617 3618 if (unlikely(!nskb)) 3619 goto err; 3620 3621 skb_reserve(nskb, headroom); 3622 __skb_put(nskb, doffset); 3623 } 3624 3625 if (segs) 3626 tail->next = nskb; 3627 else 3628 segs = nskb; 3629 tail = nskb; 3630 3631 __copy_skb_header(nskb, head_skb); 3632 3633 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3634 skb_reset_mac_len(nskb); 3635 3636 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3637 nskb->data - tnl_hlen, 3638 doffset + tnl_hlen); 3639 3640 if (nskb->len == len + doffset) 3641 goto perform_csum_check; 3642 3643 if (!sg) { 3644 if (!nskb->remcsum_offload) 3645 nskb->ip_summed = CHECKSUM_NONE; 3646 SKB_GSO_CB(nskb)->csum = 3647 skb_copy_and_csum_bits(head_skb, offset, 3648 skb_put(nskb, len), 3649 len, 0); 3650 SKB_GSO_CB(nskb)->csum_start = 3651 skb_headroom(nskb) + doffset; 3652 continue; 3653 } 3654 3655 nskb_frag = skb_shinfo(nskb)->frags; 3656 3657 skb_copy_from_linear_data_offset(head_skb, offset, 3658 skb_put(nskb, hsize), hsize); 3659 3660 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3661 SKBTX_SHARED_FRAG; 3662 if (skb_zerocopy_clone(nskb, head_skb, GFP_ATOMIC)) 3663 goto err; 3664 3665 while (pos < offset + len) { 3666 if (i >= nfrags) { 3667 BUG_ON(skb_headlen(list_skb)); 3668 3669 i = 0; 3670 nfrags = skb_shinfo(list_skb)->nr_frags; 3671 frag = skb_shinfo(list_skb)->frags; 3672 frag_skb = list_skb; 3673 3674 BUG_ON(!nfrags); 3675 3676 list_skb = list_skb->next; 3677 } 3678 3679 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3680 MAX_SKB_FRAGS)) { 3681 net_warn_ratelimited( 3682 "skb_segment: too many frags: %u %u\n", 3683 pos, mss); 3684 goto err; 3685 } 3686 3687 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC))) 3688 goto err; 3689 3690 *nskb_frag = *frag; 3691 __skb_frag_ref(nskb_frag); 3692 size = skb_frag_size(nskb_frag); 3693 3694 if (pos < offset) { 3695 nskb_frag->page_offset += offset - pos; 3696 skb_frag_size_sub(nskb_frag, offset - pos); 3697 } 3698 3699 skb_shinfo(nskb)->nr_frags++; 3700 3701 if (pos + size <= offset + len) { 3702 i++; 3703 frag++; 3704 pos += size; 3705 } else { 3706 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3707 goto skip_fraglist; 3708 } 3709 3710 nskb_frag++; 3711 } 3712 3713 skip_fraglist: 3714 nskb->data_len = len - hsize; 3715 nskb->len += nskb->data_len; 3716 nskb->truesize += nskb->data_len; 3717 3718 perform_csum_check: 3719 if (!csum) { 3720 if (skb_has_shared_frag(nskb)) { 3721 err = __skb_linearize(nskb); 3722 if (err) 3723 goto err; 3724 } 3725 if (!nskb->remcsum_offload) 3726 nskb->ip_summed = CHECKSUM_NONE; 3727 SKB_GSO_CB(nskb)->csum = 3728 skb_checksum(nskb, doffset, 3729 nskb->len - doffset, 0); 3730 SKB_GSO_CB(nskb)->csum_start = 3731 skb_headroom(nskb) + doffset; 3732 } 3733 } while ((offset += len) < head_skb->len); 3734 3735 /* Some callers want to get the end of the list. 3736 * Put it in segs->prev to avoid walking the list. 3737 * (see validate_xmit_skb_list() for example) 3738 */ 3739 segs->prev = tail; 3740 3741 if (partial_segs) { 3742 struct sk_buff *iter; 3743 int type = skb_shinfo(head_skb)->gso_type; 3744 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3745 3746 /* Update type to add partial and then remove dodgy if set */ 3747 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3748 type &= ~SKB_GSO_DODGY; 3749 3750 /* Update GSO info and prepare to start updating headers on 3751 * our way back down the stack of protocols. 3752 */ 3753 for (iter = segs; iter; iter = iter->next) { 3754 skb_shinfo(iter)->gso_size = gso_size; 3755 skb_shinfo(iter)->gso_segs = partial_segs; 3756 skb_shinfo(iter)->gso_type = type; 3757 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3758 } 3759 3760 if (tail->len - doffset <= gso_size) 3761 skb_shinfo(tail)->gso_size = 0; 3762 else if (tail != segs) 3763 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3764 } 3765 3766 /* Following permits correct backpressure, for protocols 3767 * using skb_set_owner_w(). 3768 * Idea is to tranfert ownership from head_skb to last segment. 3769 */ 3770 if (head_skb->destructor == sock_wfree) { 3771 swap(tail->truesize, head_skb->truesize); 3772 swap(tail->destructor, head_skb->destructor); 3773 swap(tail->sk, head_skb->sk); 3774 } 3775 return segs; 3776 3777 err: 3778 kfree_skb_list(segs); 3779 return ERR_PTR(err); 3780 } 3781 EXPORT_SYMBOL_GPL(skb_segment); 3782 3783 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3784 { 3785 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3786 unsigned int offset = skb_gro_offset(skb); 3787 unsigned int headlen = skb_headlen(skb); 3788 unsigned int len = skb_gro_len(skb); 3789 struct sk_buff *lp, *p = *head; 3790 unsigned int delta_truesize; 3791 3792 if (unlikely(p->len + len >= 65536)) 3793 return -E2BIG; 3794 3795 lp = NAPI_GRO_CB(p)->last; 3796 pinfo = skb_shinfo(lp); 3797 3798 if (headlen <= offset) { 3799 skb_frag_t *frag; 3800 skb_frag_t *frag2; 3801 int i = skbinfo->nr_frags; 3802 int nr_frags = pinfo->nr_frags + i; 3803 3804 if (nr_frags > MAX_SKB_FRAGS) 3805 goto merge; 3806 3807 offset -= headlen; 3808 pinfo->nr_frags = nr_frags; 3809 skbinfo->nr_frags = 0; 3810 3811 frag = pinfo->frags + nr_frags; 3812 frag2 = skbinfo->frags + i; 3813 do { 3814 *--frag = *--frag2; 3815 } while (--i); 3816 3817 frag->page_offset += offset; 3818 skb_frag_size_sub(frag, offset); 3819 3820 /* all fragments truesize : remove (head size + sk_buff) */ 3821 delta_truesize = skb->truesize - 3822 SKB_TRUESIZE(skb_end_offset(skb)); 3823 3824 skb->truesize -= skb->data_len; 3825 skb->len -= skb->data_len; 3826 skb->data_len = 0; 3827 3828 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3829 goto done; 3830 } else if (skb->head_frag) { 3831 int nr_frags = pinfo->nr_frags; 3832 skb_frag_t *frag = pinfo->frags + nr_frags; 3833 struct page *page = virt_to_head_page(skb->head); 3834 unsigned int first_size = headlen - offset; 3835 unsigned int first_offset; 3836 3837 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3838 goto merge; 3839 3840 first_offset = skb->data - 3841 (unsigned char *)page_address(page) + 3842 offset; 3843 3844 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3845 3846 frag->page.p = page; 3847 frag->page_offset = first_offset; 3848 skb_frag_size_set(frag, first_size); 3849 3850 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3851 /* We dont need to clear skbinfo->nr_frags here */ 3852 3853 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3854 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3855 goto done; 3856 } 3857 3858 merge: 3859 delta_truesize = skb->truesize; 3860 if (offset > headlen) { 3861 unsigned int eat = offset - headlen; 3862 3863 skbinfo->frags[0].page_offset += eat; 3864 skb_frag_size_sub(&skbinfo->frags[0], eat); 3865 skb->data_len -= eat; 3866 skb->len -= eat; 3867 offset = headlen; 3868 } 3869 3870 __skb_pull(skb, offset); 3871 3872 if (NAPI_GRO_CB(p)->last == p) 3873 skb_shinfo(p)->frag_list = skb; 3874 else 3875 NAPI_GRO_CB(p)->last->next = skb; 3876 NAPI_GRO_CB(p)->last = skb; 3877 __skb_header_release(skb); 3878 lp = p; 3879 3880 done: 3881 NAPI_GRO_CB(p)->count++; 3882 p->data_len += len; 3883 p->truesize += delta_truesize; 3884 p->len += len; 3885 if (lp != p) { 3886 lp->data_len += len; 3887 lp->truesize += delta_truesize; 3888 lp->len += len; 3889 } 3890 NAPI_GRO_CB(skb)->same_flow = 1; 3891 return 0; 3892 } 3893 EXPORT_SYMBOL_GPL(skb_gro_receive); 3894 3895 void __init skb_init(void) 3896 { 3897 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3898 sizeof(struct sk_buff), 3899 0, 3900 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3901 NULL); 3902 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3903 sizeof(struct sk_buff_fclones), 3904 0, 3905 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3906 NULL); 3907 } 3908 3909 static int 3910 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3911 unsigned int recursion_level) 3912 { 3913 int start = skb_headlen(skb); 3914 int i, copy = start - offset; 3915 struct sk_buff *frag_iter; 3916 int elt = 0; 3917 3918 if (unlikely(recursion_level >= 24)) 3919 return -EMSGSIZE; 3920 3921 if (copy > 0) { 3922 if (copy > len) 3923 copy = len; 3924 sg_set_buf(sg, skb->data + offset, copy); 3925 elt++; 3926 if ((len -= copy) == 0) 3927 return elt; 3928 offset += copy; 3929 } 3930 3931 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3932 int end; 3933 3934 WARN_ON(start > offset + len); 3935 3936 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3937 if ((copy = end - offset) > 0) { 3938 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3939 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3940 return -EMSGSIZE; 3941 3942 if (copy > len) 3943 copy = len; 3944 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3945 frag->page_offset+offset-start); 3946 elt++; 3947 if (!(len -= copy)) 3948 return elt; 3949 offset += copy; 3950 } 3951 start = end; 3952 } 3953 3954 skb_walk_frags(skb, frag_iter) { 3955 int end, ret; 3956 3957 WARN_ON(start > offset + len); 3958 3959 end = start + frag_iter->len; 3960 if ((copy = end - offset) > 0) { 3961 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3962 return -EMSGSIZE; 3963 3964 if (copy > len) 3965 copy = len; 3966 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3967 copy, recursion_level + 1); 3968 if (unlikely(ret < 0)) 3969 return ret; 3970 elt += ret; 3971 if ((len -= copy) == 0) 3972 return elt; 3973 offset += copy; 3974 } 3975 start = end; 3976 } 3977 BUG_ON(len); 3978 return elt; 3979 } 3980 3981 /** 3982 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3983 * @skb: Socket buffer containing the buffers to be mapped 3984 * @sg: The scatter-gather list to map into 3985 * @offset: The offset into the buffer's contents to start mapping 3986 * @len: Length of buffer space to be mapped 3987 * 3988 * Fill the specified scatter-gather list with mappings/pointers into a 3989 * region of the buffer space attached to a socket buffer. Returns either 3990 * the number of scatterlist items used, or -EMSGSIZE if the contents 3991 * could not fit. 3992 */ 3993 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3994 { 3995 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 3996 3997 if (nsg <= 0) 3998 return nsg; 3999 4000 sg_mark_end(&sg[nsg - 1]); 4001 4002 return nsg; 4003 } 4004 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4005 4006 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4007 * sglist without mark the sg which contain last skb data as the end. 4008 * So the caller can mannipulate sg list as will when padding new data after 4009 * the first call without calling sg_unmark_end to expend sg list. 4010 * 4011 * Scenario to use skb_to_sgvec_nomark: 4012 * 1. sg_init_table 4013 * 2. skb_to_sgvec_nomark(payload1) 4014 * 3. skb_to_sgvec_nomark(payload2) 4015 * 4016 * This is equivalent to: 4017 * 1. sg_init_table 4018 * 2. skb_to_sgvec(payload1) 4019 * 3. sg_unmark_end 4020 * 4. skb_to_sgvec(payload2) 4021 * 4022 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4023 * is more preferable. 4024 */ 4025 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4026 int offset, int len) 4027 { 4028 return __skb_to_sgvec(skb, sg, offset, len, 0); 4029 } 4030 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4031 4032 4033 4034 /** 4035 * skb_cow_data - Check that a socket buffer's data buffers are writable 4036 * @skb: The socket buffer to check. 4037 * @tailbits: Amount of trailing space to be added 4038 * @trailer: Returned pointer to the skb where the @tailbits space begins 4039 * 4040 * Make sure that the data buffers attached to a socket buffer are 4041 * writable. If they are not, private copies are made of the data buffers 4042 * and the socket buffer is set to use these instead. 4043 * 4044 * If @tailbits is given, make sure that there is space to write @tailbits 4045 * bytes of data beyond current end of socket buffer. @trailer will be 4046 * set to point to the skb in which this space begins. 4047 * 4048 * The number of scatterlist elements required to completely map the 4049 * COW'd and extended socket buffer will be returned. 4050 */ 4051 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4052 { 4053 int copyflag; 4054 int elt; 4055 struct sk_buff *skb1, **skb_p; 4056 4057 /* If skb is cloned or its head is paged, reallocate 4058 * head pulling out all the pages (pages are considered not writable 4059 * at the moment even if they are anonymous). 4060 */ 4061 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4062 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4063 return -ENOMEM; 4064 4065 /* Easy case. Most of packets will go this way. */ 4066 if (!skb_has_frag_list(skb)) { 4067 /* A little of trouble, not enough of space for trailer. 4068 * This should not happen, when stack is tuned to generate 4069 * good frames. OK, on miss we reallocate and reserve even more 4070 * space, 128 bytes is fair. */ 4071 4072 if (skb_tailroom(skb) < tailbits && 4073 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4074 return -ENOMEM; 4075 4076 /* Voila! */ 4077 *trailer = skb; 4078 return 1; 4079 } 4080 4081 /* Misery. We are in troubles, going to mincer fragments... */ 4082 4083 elt = 1; 4084 skb_p = &skb_shinfo(skb)->frag_list; 4085 copyflag = 0; 4086 4087 while ((skb1 = *skb_p) != NULL) { 4088 int ntail = 0; 4089 4090 /* The fragment is partially pulled by someone, 4091 * this can happen on input. Copy it and everything 4092 * after it. */ 4093 4094 if (skb_shared(skb1)) 4095 copyflag = 1; 4096 4097 /* If the skb is the last, worry about trailer. */ 4098 4099 if (skb1->next == NULL && tailbits) { 4100 if (skb_shinfo(skb1)->nr_frags || 4101 skb_has_frag_list(skb1) || 4102 skb_tailroom(skb1) < tailbits) 4103 ntail = tailbits + 128; 4104 } 4105 4106 if (copyflag || 4107 skb_cloned(skb1) || 4108 ntail || 4109 skb_shinfo(skb1)->nr_frags || 4110 skb_has_frag_list(skb1)) { 4111 struct sk_buff *skb2; 4112 4113 /* Fuck, we are miserable poor guys... */ 4114 if (ntail == 0) 4115 skb2 = skb_copy(skb1, GFP_ATOMIC); 4116 else 4117 skb2 = skb_copy_expand(skb1, 4118 skb_headroom(skb1), 4119 ntail, 4120 GFP_ATOMIC); 4121 if (unlikely(skb2 == NULL)) 4122 return -ENOMEM; 4123 4124 if (skb1->sk) 4125 skb_set_owner_w(skb2, skb1->sk); 4126 4127 /* Looking around. Are we still alive? 4128 * OK, link new skb, drop old one */ 4129 4130 skb2->next = skb1->next; 4131 *skb_p = skb2; 4132 kfree_skb(skb1); 4133 skb1 = skb2; 4134 } 4135 elt++; 4136 *trailer = skb1; 4137 skb_p = &skb1->next; 4138 } 4139 4140 return elt; 4141 } 4142 EXPORT_SYMBOL_GPL(skb_cow_data); 4143 4144 static void sock_rmem_free(struct sk_buff *skb) 4145 { 4146 struct sock *sk = skb->sk; 4147 4148 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4149 } 4150 4151 static void skb_set_err_queue(struct sk_buff *skb) 4152 { 4153 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4154 * So, it is safe to (mis)use it to mark skbs on the error queue. 4155 */ 4156 skb->pkt_type = PACKET_OUTGOING; 4157 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4158 } 4159 4160 /* 4161 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4162 */ 4163 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4164 { 4165 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4166 (unsigned int)sk->sk_rcvbuf) 4167 return -ENOMEM; 4168 4169 skb_orphan(skb); 4170 skb->sk = sk; 4171 skb->destructor = sock_rmem_free; 4172 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4173 skb_set_err_queue(skb); 4174 4175 /* before exiting rcu section, make sure dst is refcounted */ 4176 skb_dst_force(skb); 4177 4178 skb_queue_tail(&sk->sk_error_queue, skb); 4179 if (!sock_flag(sk, SOCK_DEAD)) 4180 sk->sk_data_ready(sk); 4181 return 0; 4182 } 4183 EXPORT_SYMBOL(sock_queue_err_skb); 4184 4185 static bool is_icmp_err_skb(const struct sk_buff *skb) 4186 { 4187 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4188 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4189 } 4190 4191 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4192 { 4193 struct sk_buff_head *q = &sk->sk_error_queue; 4194 struct sk_buff *skb, *skb_next = NULL; 4195 bool icmp_next = false; 4196 unsigned long flags; 4197 4198 spin_lock_irqsave(&q->lock, flags); 4199 skb = __skb_dequeue(q); 4200 if (skb && (skb_next = skb_peek(q))) { 4201 icmp_next = is_icmp_err_skb(skb_next); 4202 if (icmp_next) 4203 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4204 } 4205 spin_unlock_irqrestore(&q->lock, flags); 4206 4207 if (is_icmp_err_skb(skb) && !icmp_next) 4208 sk->sk_err = 0; 4209 4210 if (skb_next) 4211 sk->sk_error_report(sk); 4212 4213 return skb; 4214 } 4215 EXPORT_SYMBOL(sock_dequeue_err_skb); 4216 4217 /** 4218 * skb_clone_sk - create clone of skb, and take reference to socket 4219 * @skb: the skb to clone 4220 * 4221 * This function creates a clone of a buffer that holds a reference on 4222 * sk_refcnt. Buffers created via this function are meant to be 4223 * returned using sock_queue_err_skb, or free via kfree_skb. 4224 * 4225 * When passing buffers allocated with this function to sock_queue_err_skb 4226 * it is necessary to wrap the call with sock_hold/sock_put in order to 4227 * prevent the socket from being released prior to being enqueued on 4228 * the sk_error_queue. 4229 */ 4230 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4231 { 4232 struct sock *sk = skb->sk; 4233 struct sk_buff *clone; 4234 4235 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4236 return NULL; 4237 4238 clone = skb_clone(skb, GFP_ATOMIC); 4239 if (!clone) { 4240 sock_put(sk); 4241 return NULL; 4242 } 4243 4244 clone->sk = sk; 4245 clone->destructor = sock_efree; 4246 4247 return clone; 4248 } 4249 EXPORT_SYMBOL(skb_clone_sk); 4250 4251 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4252 struct sock *sk, 4253 int tstype, 4254 bool opt_stats) 4255 { 4256 struct sock_exterr_skb *serr; 4257 int err; 4258 4259 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4260 4261 serr = SKB_EXT_ERR(skb); 4262 memset(serr, 0, sizeof(*serr)); 4263 serr->ee.ee_errno = ENOMSG; 4264 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4265 serr->ee.ee_info = tstype; 4266 serr->opt_stats = opt_stats; 4267 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4268 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4269 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4270 if (sk->sk_protocol == IPPROTO_TCP && 4271 sk->sk_type == SOCK_STREAM) 4272 serr->ee.ee_data -= sk->sk_tskey; 4273 } 4274 4275 err = sock_queue_err_skb(sk, skb); 4276 4277 if (err) 4278 kfree_skb(skb); 4279 } 4280 4281 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4282 { 4283 bool ret; 4284 4285 if (likely(sysctl_tstamp_allow_data || tsonly)) 4286 return true; 4287 4288 read_lock_bh(&sk->sk_callback_lock); 4289 ret = sk->sk_socket && sk->sk_socket->file && 4290 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4291 read_unlock_bh(&sk->sk_callback_lock); 4292 return ret; 4293 } 4294 4295 void skb_complete_tx_timestamp(struct sk_buff *skb, 4296 struct skb_shared_hwtstamps *hwtstamps) 4297 { 4298 struct sock *sk = skb->sk; 4299 4300 if (!skb_may_tx_timestamp(sk, false)) 4301 return; 4302 4303 /* Take a reference to prevent skb_orphan() from freeing the socket, 4304 * but only if the socket refcount is not zero. 4305 */ 4306 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4307 *skb_hwtstamps(skb) = *hwtstamps; 4308 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4309 sock_put(sk); 4310 } 4311 } 4312 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4313 4314 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4315 struct skb_shared_hwtstamps *hwtstamps, 4316 struct sock *sk, int tstype) 4317 { 4318 struct sk_buff *skb; 4319 bool tsonly, opt_stats = false; 4320 4321 if (!sk) 4322 return; 4323 4324 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4325 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4326 return; 4327 4328 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4329 if (!skb_may_tx_timestamp(sk, tsonly)) 4330 return; 4331 4332 if (tsonly) { 4333 #ifdef CONFIG_INET 4334 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4335 sk->sk_protocol == IPPROTO_TCP && 4336 sk->sk_type == SOCK_STREAM) { 4337 skb = tcp_get_timestamping_opt_stats(sk); 4338 opt_stats = true; 4339 } else 4340 #endif 4341 skb = alloc_skb(0, GFP_ATOMIC); 4342 } else { 4343 skb = skb_clone(orig_skb, GFP_ATOMIC); 4344 } 4345 if (!skb) 4346 return; 4347 4348 if (tsonly) { 4349 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4350 SKBTX_ANY_TSTAMP; 4351 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4352 } 4353 4354 if (hwtstamps) 4355 *skb_hwtstamps(skb) = *hwtstamps; 4356 else 4357 skb->tstamp = ktime_get_real(); 4358 4359 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4360 } 4361 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4362 4363 void skb_tstamp_tx(struct sk_buff *orig_skb, 4364 struct skb_shared_hwtstamps *hwtstamps) 4365 { 4366 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4367 SCM_TSTAMP_SND); 4368 } 4369 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4370 4371 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4372 { 4373 struct sock *sk = skb->sk; 4374 struct sock_exterr_skb *serr; 4375 int err = 1; 4376 4377 skb->wifi_acked_valid = 1; 4378 skb->wifi_acked = acked; 4379 4380 serr = SKB_EXT_ERR(skb); 4381 memset(serr, 0, sizeof(*serr)); 4382 serr->ee.ee_errno = ENOMSG; 4383 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4384 4385 /* Take a reference to prevent skb_orphan() from freeing the socket, 4386 * but only if the socket refcount is not zero. 4387 */ 4388 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4389 err = sock_queue_err_skb(sk, skb); 4390 sock_put(sk); 4391 } 4392 if (err) 4393 kfree_skb(skb); 4394 } 4395 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4396 4397 /** 4398 * skb_partial_csum_set - set up and verify partial csum values for packet 4399 * @skb: the skb to set 4400 * @start: the number of bytes after skb->data to start checksumming. 4401 * @off: the offset from start to place the checksum. 4402 * 4403 * For untrusted partially-checksummed packets, we need to make sure the values 4404 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4405 * 4406 * This function checks and sets those values and skb->ip_summed: if this 4407 * returns false you should drop the packet. 4408 */ 4409 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4410 { 4411 if (unlikely(start > skb_headlen(skb)) || 4412 unlikely((int)start + off > skb_headlen(skb) - 2)) { 4413 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 4414 start, off, skb_headlen(skb)); 4415 return false; 4416 } 4417 skb->ip_summed = CHECKSUM_PARTIAL; 4418 skb->csum_start = skb_headroom(skb) + start; 4419 skb->csum_offset = off; 4420 skb_set_transport_header(skb, start); 4421 return true; 4422 } 4423 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4424 4425 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4426 unsigned int max) 4427 { 4428 if (skb_headlen(skb) >= len) 4429 return 0; 4430 4431 /* If we need to pullup then pullup to the max, so we 4432 * won't need to do it again. 4433 */ 4434 if (max > skb->len) 4435 max = skb->len; 4436 4437 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4438 return -ENOMEM; 4439 4440 if (skb_headlen(skb) < len) 4441 return -EPROTO; 4442 4443 return 0; 4444 } 4445 4446 #define MAX_TCP_HDR_LEN (15 * 4) 4447 4448 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4449 typeof(IPPROTO_IP) proto, 4450 unsigned int off) 4451 { 4452 switch (proto) { 4453 int err; 4454 4455 case IPPROTO_TCP: 4456 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4457 off + MAX_TCP_HDR_LEN); 4458 if (!err && !skb_partial_csum_set(skb, off, 4459 offsetof(struct tcphdr, 4460 check))) 4461 err = -EPROTO; 4462 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4463 4464 case IPPROTO_UDP: 4465 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4466 off + sizeof(struct udphdr)); 4467 if (!err && !skb_partial_csum_set(skb, off, 4468 offsetof(struct udphdr, 4469 check))) 4470 err = -EPROTO; 4471 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4472 } 4473 4474 return ERR_PTR(-EPROTO); 4475 } 4476 4477 /* This value should be large enough to cover a tagged ethernet header plus 4478 * maximally sized IP and TCP or UDP headers. 4479 */ 4480 #define MAX_IP_HDR_LEN 128 4481 4482 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4483 { 4484 unsigned int off; 4485 bool fragment; 4486 __sum16 *csum; 4487 int err; 4488 4489 fragment = false; 4490 4491 err = skb_maybe_pull_tail(skb, 4492 sizeof(struct iphdr), 4493 MAX_IP_HDR_LEN); 4494 if (err < 0) 4495 goto out; 4496 4497 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4498 fragment = true; 4499 4500 off = ip_hdrlen(skb); 4501 4502 err = -EPROTO; 4503 4504 if (fragment) 4505 goto out; 4506 4507 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4508 if (IS_ERR(csum)) 4509 return PTR_ERR(csum); 4510 4511 if (recalculate) 4512 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4513 ip_hdr(skb)->daddr, 4514 skb->len - off, 4515 ip_hdr(skb)->protocol, 0); 4516 err = 0; 4517 4518 out: 4519 return err; 4520 } 4521 4522 /* This value should be large enough to cover a tagged ethernet header plus 4523 * an IPv6 header, all options, and a maximal TCP or UDP header. 4524 */ 4525 #define MAX_IPV6_HDR_LEN 256 4526 4527 #define OPT_HDR(type, skb, off) \ 4528 (type *)(skb_network_header(skb) + (off)) 4529 4530 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4531 { 4532 int err; 4533 u8 nexthdr; 4534 unsigned int off; 4535 unsigned int len; 4536 bool fragment; 4537 bool done; 4538 __sum16 *csum; 4539 4540 fragment = false; 4541 done = false; 4542 4543 off = sizeof(struct ipv6hdr); 4544 4545 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4546 if (err < 0) 4547 goto out; 4548 4549 nexthdr = ipv6_hdr(skb)->nexthdr; 4550 4551 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4552 while (off <= len && !done) { 4553 switch (nexthdr) { 4554 case IPPROTO_DSTOPTS: 4555 case IPPROTO_HOPOPTS: 4556 case IPPROTO_ROUTING: { 4557 struct ipv6_opt_hdr *hp; 4558 4559 err = skb_maybe_pull_tail(skb, 4560 off + 4561 sizeof(struct ipv6_opt_hdr), 4562 MAX_IPV6_HDR_LEN); 4563 if (err < 0) 4564 goto out; 4565 4566 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4567 nexthdr = hp->nexthdr; 4568 off += ipv6_optlen(hp); 4569 break; 4570 } 4571 case IPPROTO_AH: { 4572 struct ip_auth_hdr *hp; 4573 4574 err = skb_maybe_pull_tail(skb, 4575 off + 4576 sizeof(struct ip_auth_hdr), 4577 MAX_IPV6_HDR_LEN); 4578 if (err < 0) 4579 goto out; 4580 4581 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4582 nexthdr = hp->nexthdr; 4583 off += ipv6_authlen(hp); 4584 break; 4585 } 4586 case IPPROTO_FRAGMENT: { 4587 struct frag_hdr *hp; 4588 4589 err = skb_maybe_pull_tail(skb, 4590 off + 4591 sizeof(struct frag_hdr), 4592 MAX_IPV6_HDR_LEN); 4593 if (err < 0) 4594 goto out; 4595 4596 hp = OPT_HDR(struct frag_hdr, skb, off); 4597 4598 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4599 fragment = true; 4600 4601 nexthdr = hp->nexthdr; 4602 off += sizeof(struct frag_hdr); 4603 break; 4604 } 4605 default: 4606 done = true; 4607 break; 4608 } 4609 } 4610 4611 err = -EPROTO; 4612 4613 if (!done || fragment) 4614 goto out; 4615 4616 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4617 if (IS_ERR(csum)) 4618 return PTR_ERR(csum); 4619 4620 if (recalculate) 4621 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4622 &ipv6_hdr(skb)->daddr, 4623 skb->len - off, nexthdr, 0); 4624 err = 0; 4625 4626 out: 4627 return err; 4628 } 4629 4630 /** 4631 * skb_checksum_setup - set up partial checksum offset 4632 * @skb: the skb to set up 4633 * @recalculate: if true the pseudo-header checksum will be recalculated 4634 */ 4635 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4636 { 4637 int err; 4638 4639 switch (skb->protocol) { 4640 case htons(ETH_P_IP): 4641 err = skb_checksum_setup_ipv4(skb, recalculate); 4642 break; 4643 4644 case htons(ETH_P_IPV6): 4645 err = skb_checksum_setup_ipv6(skb, recalculate); 4646 break; 4647 4648 default: 4649 err = -EPROTO; 4650 break; 4651 } 4652 4653 return err; 4654 } 4655 EXPORT_SYMBOL(skb_checksum_setup); 4656 4657 /** 4658 * skb_checksum_maybe_trim - maybe trims the given skb 4659 * @skb: the skb to check 4660 * @transport_len: the data length beyond the network header 4661 * 4662 * Checks whether the given skb has data beyond the given transport length. 4663 * If so, returns a cloned skb trimmed to this transport length. 4664 * Otherwise returns the provided skb. Returns NULL in error cases 4665 * (e.g. transport_len exceeds skb length or out-of-memory). 4666 * 4667 * Caller needs to set the skb transport header and free any returned skb if it 4668 * differs from the provided skb. 4669 */ 4670 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4671 unsigned int transport_len) 4672 { 4673 struct sk_buff *skb_chk; 4674 unsigned int len = skb_transport_offset(skb) + transport_len; 4675 int ret; 4676 4677 if (skb->len < len) 4678 return NULL; 4679 else if (skb->len == len) 4680 return skb; 4681 4682 skb_chk = skb_clone(skb, GFP_ATOMIC); 4683 if (!skb_chk) 4684 return NULL; 4685 4686 ret = pskb_trim_rcsum(skb_chk, len); 4687 if (ret) { 4688 kfree_skb(skb_chk); 4689 return NULL; 4690 } 4691 4692 return skb_chk; 4693 } 4694 4695 /** 4696 * skb_checksum_trimmed - validate checksum of an skb 4697 * @skb: the skb to check 4698 * @transport_len: the data length beyond the network header 4699 * @skb_chkf: checksum function to use 4700 * 4701 * Applies the given checksum function skb_chkf to the provided skb. 4702 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4703 * 4704 * If the skb has data beyond the given transport length, then a 4705 * trimmed & cloned skb is checked and returned. 4706 * 4707 * Caller needs to set the skb transport header and free any returned skb if it 4708 * differs from the provided skb. 4709 */ 4710 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4711 unsigned int transport_len, 4712 __sum16(*skb_chkf)(struct sk_buff *skb)) 4713 { 4714 struct sk_buff *skb_chk; 4715 unsigned int offset = skb_transport_offset(skb); 4716 __sum16 ret; 4717 4718 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4719 if (!skb_chk) 4720 goto err; 4721 4722 if (!pskb_may_pull(skb_chk, offset)) 4723 goto err; 4724 4725 skb_pull_rcsum(skb_chk, offset); 4726 ret = skb_chkf(skb_chk); 4727 skb_push_rcsum(skb_chk, offset); 4728 4729 if (ret) 4730 goto err; 4731 4732 return skb_chk; 4733 4734 err: 4735 if (skb_chk && skb_chk != skb) 4736 kfree_skb(skb_chk); 4737 4738 return NULL; 4739 4740 } 4741 EXPORT_SYMBOL(skb_checksum_trimmed); 4742 4743 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4744 { 4745 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4746 skb->dev->name); 4747 } 4748 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4749 4750 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4751 { 4752 if (head_stolen) { 4753 skb_release_head_state(skb); 4754 kmem_cache_free(skbuff_head_cache, skb); 4755 } else { 4756 __kfree_skb(skb); 4757 } 4758 } 4759 EXPORT_SYMBOL(kfree_skb_partial); 4760 4761 /** 4762 * skb_try_coalesce - try to merge skb to prior one 4763 * @to: prior buffer 4764 * @from: buffer to add 4765 * @fragstolen: pointer to boolean 4766 * @delta_truesize: how much more was allocated than was requested 4767 */ 4768 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4769 bool *fragstolen, int *delta_truesize) 4770 { 4771 struct skb_shared_info *to_shinfo, *from_shinfo; 4772 int i, delta, len = from->len; 4773 4774 *fragstolen = false; 4775 4776 if (skb_cloned(to)) 4777 return false; 4778 4779 if (len <= skb_tailroom(to)) { 4780 if (len) 4781 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4782 *delta_truesize = 0; 4783 return true; 4784 } 4785 4786 to_shinfo = skb_shinfo(to); 4787 from_shinfo = skb_shinfo(from); 4788 if (to_shinfo->frag_list || from_shinfo->frag_list) 4789 return false; 4790 if (skb_zcopy(to) || skb_zcopy(from)) 4791 return false; 4792 4793 if (skb_headlen(from) != 0) { 4794 struct page *page; 4795 unsigned int offset; 4796 4797 if (to_shinfo->nr_frags + 4798 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 4799 return false; 4800 4801 if (skb_head_is_locked(from)) 4802 return false; 4803 4804 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4805 4806 page = virt_to_head_page(from->head); 4807 offset = from->data - (unsigned char *)page_address(page); 4808 4809 skb_fill_page_desc(to, to_shinfo->nr_frags, 4810 page, offset, skb_headlen(from)); 4811 *fragstolen = true; 4812 } else { 4813 if (to_shinfo->nr_frags + 4814 from_shinfo->nr_frags > MAX_SKB_FRAGS) 4815 return false; 4816 4817 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4818 } 4819 4820 WARN_ON_ONCE(delta < len); 4821 4822 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 4823 from_shinfo->frags, 4824 from_shinfo->nr_frags * sizeof(skb_frag_t)); 4825 to_shinfo->nr_frags += from_shinfo->nr_frags; 4826 4827 if (!skb_cloned(from)) 4828 from_shinfo->nr_frags = 0; 4829 4830 /* if the skb is not cloned this does nothing 4831 * since we set nr_frags to 0. 4832 */ 4833 for (i = 0; i < from_shinfo->nr_frags; i++) 4834 __skb_frag_ref(&from_shinfo->frags[i]); 4835 4836 to->truesize += delta; 4837 to->len += len; 4838 to->data_len += len; 4839 4840 *delta_truesize = delta; 4841 return true; 4842 } 4843 EXPORT_SYMBOL(skb_try_coalesce); 4844 4845 /** 4846 * skb_scrub_packet - scrub an skb 4847 * 4848 * @skb: buffer to clean 4849 * @xnet: packet is crossing netns 4850 * 4851 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4852 * into/from a tunnel. Some information have to be cleared during these 4853 * operations. 4854 * skb_scrub_packet can also be used to clean a skb before injecting it in 4855 * another namespace (@xnet == true). We have to clear all information in the 4856 * skb that could impact namespace isolation. 4857 */ 4858 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4859 { 4860 skb->tstamp = 0; 4861 skb->pkt_type = PACKET_HOST; 4862 skb->skb_iif = 0; 4863 skb->ignore_df = 0; 4864 skb_dst_drop(skb); 4865 secpath_reset(skb); 4866 nf_reset(skb); 4867 nf_reset_trace(skb); 4868 4869 if (!xnet) 4870 return; 4871 4872 skb_orphan(skb); 4873 skb->mark = 0; 4874 } 4875 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4876 4877 /** 4878 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4879 * 4880 * @skb: GSO skb 4881 * 4882 * skb_gso_transport_seglen is used to determine the real size of the 4883 * individual segments, including Layer4 headers (TCP/UDP). 4884 * 4885 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4886 */ 4887 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4888 { 4889 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4890 unsigned int thlen = 0; 4891 4892 if (skb->encapsulation) { 4893 thlen = skb_inner_transport_header(skb) - 4894 skb_transport_header(skb); 4895 4896 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4897 thlen += inner_tcp_hdrlen(skb); 4898 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4899 thlen = tcp_hdrlen(skb); 4900 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) { 4901 thlen = sizeof(struct sctphdr); 4902 } 4903 /* UFO sets gso_size to the size of the fragmentation 4904 * payload, i.e. the size of the L4 (UDP) header is already 4905 * accounted for. 4906 */ 4907 return thlen + shinfo->gso_size; 4908 } 4909 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen); 4910 4911 /** 4912 * skb_gso_validate_mtu - Return in case such skb fits a given MTU 4913 * 4914 * @skb: GSO skb 4915 * @mtu: MTU to validate against 4916 * 4917 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU 4918 * once split. 4919 */ 4920 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu) 4921 { 4922 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4923 const struct sk_buff *iter; 4924 unsigned int hlen; 4925 4926 hlen = skb_gso_network_seglen(skb); 4927 4928 if (shinfo->gso_size != GSO_BY_FRAGS) 4929 return hlen <= mtu; 4930 4931 /* Undo this so we can re-use header sizes */ 4932 hlen -= GSO_BY_FRAGS; 4933 4934 skb_walk_frags(skb, iter) { 4935 if (hlen + skb_headlen(iter) > mtu) 4936 return false; 4937 } 4938 4939 return true; 4940 } 4941 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu); 4942 4943 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 4944 { 4945 if (skb_cow(skb, skb_headroom(skb)) < 0) { 4946 kfree_skb(skb); 4947 return NULL; 4948 } 4949 4950 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN, 4951 2 * ETH_ALEN); 4952 skb->mac_header += VLAN_HLEN; 4953 return skb; 4954 } 4955 4956 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 4957 { 4958 struct vlan_hdr *vhdr; 4959 u16 vlan_tci; 4960 4961 if (unlikely(skb_vlan_tag_present(skb))) { 4962 /* vlan_tci is already set-up so leave this for another time */ 4963 return skb; 4964 } 4965 4966 skb = skb_share_check(skb, GFP_ATOMIC); 4967 if (unlikely(!skb)) 4968 goto err_free; 4969 4970 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 4971 goto err_free; 4972 4973 vhdr = (struct vlan_hdr *)skb->data; 4974 vlan_tci = ntohs(vhdr->h_vlan_TCI); 4975 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 4976 4977 skb_pull_rcsum(skb, VLAN_HLEN); 4978 vlan_set_encap_proto(skb, vhdr); 4979 4980 skb = skb_reorder_vlan_header(skb); 4981 if (unlikely(!skb)) 4982 goto err_free; 4983 4984 skb_reset_network_header(skb); 4985 skb_reset_transport_header(skb); 4986 skb_reset_mac_len(skb); 4987 4988 return skb; 4989 4990 err_free: 4991 kfree_skb(skb); 4992 return NULL; 4993 } 4994 EXPORT_SYMBOL(skb_vlan_untag); 4995 4996 int skb_ensure_writable(struct sk_buff *skb, int write_len) 4997 { 4998 if (!pskb_may_pull(skb, write_len)) 4999 return -ENOMEM; 5000 5001 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5002 return 0; 5003 5004 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5005 } 5006 EXPORT_SYMBOL(skb_ensure_writable); 5007 5008 /* remove VLAN header from packet and update csum accordingly. 5009 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5010 */ 5011 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5012 { 5013 struct vlan_hdr *vhdr; 5014 int offset = skb->data - skb_mac_header(skb); 5015 int err; 5016 5017 if (WARN_ONCE(offset, 5018 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5019 offset)) { 5020 return -EINVAL; 5021 } 5022 5023 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5024 if (unlikely(err)) 5025 return err; 5026 5027 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5028 5029 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5030 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5031 5032 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5033 __skb_pull(skb, VLAN_HLEN); 5034 5035 vlan_set_encap_proto(skb, vhdr); 5036 skb->mac_header += VLAN_HLEN; 5037 5038 if (skb_network_offset(skb) < ETH_HLEN) 5039 skb_set_network_header(skb, ETH_HLEN); 5040 5041 skb_reset_mac_len(skb); 5042 5043 return err; 5044 } 5045 EXPORT_SYMBOL(__skb_vlan_pop); 5046 5047 /* Pop a vlan tag either from hwaccel or from payload. 5048 * Expects skb->data at mac header. 5049 */ 5050 int skb_vlan_pop(struct sk_buff *skb) 5051 { 5052 u16 vlan_tci; 5053 __be16 vlan_proto; 5054 int err; 5055 5056 if (likely(skb_vlan_tag_present(skb))) { 5057 skb->vlan_tci = 0; 5058 } else { 5059 if (unlikely(!eth_type_vlan(skb->protocol))) 5060 return 0; 5061 5062 err = __skb_vlan_pop(skb, &vlan_tci); 5063 if (err) 5064 return err; 5065 } 5066 /* move next vlan tag to hw accel tag */ 5067 if (likely(!eth_type_vlan(skb->protocol))) 5068 return 0; 5069 5070 vlan_proto = skb->protocol; 5071 err = __skb_vlan_pop(skb, &vlan_tci); 5072 if (unlikely(err)) 5073 return err; 5074 5075 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5076 return 0; 5077 } 5078 EXPORT_SYMBOL(skb_vlan_pop); 5079 5080 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5081 * Expects skb->data at mac header. 5082 */ 5083 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5084 { 5085 if (skb_vlan_tag_present(skb)) { 5086 int offset = skb->data - skb_mac_header(skb); 5087 int err; 5088 5089 if (WARN_ONCE(offset, 5090 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5091 offset)) { 5092 return -EINVAL; 5093 } 5094 5095 err = __vlan_insert_tag(skb, skb->vlan_proto, 5096 skb_vlan_tag_get(skb)); 5097 if (err) 5098 return err; 5099 5100 skb->protocol = skb->vlan_proto; 5101 skb->mac_len += VLAN_HLEN; 5102 5103 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5104 } 5105 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5106 return 0; 5107 } 5108 EXPORT_SYMBOL(skb_vlan_push); 5109 5110 /** 5111 * alloc_skb_with_frags - allocate skb with page frags 5112 * 5113 * @header_len: size of linear part 5114 * @data_len: needed length in frags 5115 * @max_page_order: max page order desired. 5116 * @errcode: pointer to error code if any 5117 * @gfp_mask: allocation mask 5118 * 5119 * This can be used to allocate a paged skb, given a maximal order for frags. 5120 */ 5121 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5122 unsigned long data_len, 5123 int max_page_order, 5124 int *errcode, 5125 gfp_t gfp_mask) 5126 { 5127 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5128 unsigned long chunk; 5129 struct sk_buff *skb; 5130 struct page *page; 5131 gfp_t gfp_head; 5132 int i; 5133 5134 *errcode = -EMSGSIZE; 5135 /* Note this test could be relaxed, if we succeed to allocate 5136 * high order pages... 5137 */ 5138 if (npages > MAX_SKB_FRAGS) 5139 return NULL; 5140 5141 gfp_head = gfp_mask; 5142 if (gfp_head & __GFP_DIRECT_RECLAIM) 5143 gfp_head |= __GFP_RETRY_MAYFAIL; 5144 5145 *errcode = -ENOBUFS; 5146 skb = alloc_skb(header_len, gfp_head); 5147 if (!skb) 5148 return NULL; 5149 5150 skb->truesize += npages << PAGE_SHIFT; 5151 5152 for (i = 0; npages > 0; i++) { 5153 int order = max_page_order; 5154 5155 while (order) { 5156 if (npages >= 1 << order) { 5157 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5158 __GFP_COMP | 5159 __GFP_NOWARN | 5160 __GFP_NORETRY, 5161 order); 5162 if (page) 5163 goto fill_page; 5164 /* Do not retry other high order allocations */ 5165 order = 1; 5166 max_page_order = 0; 5167 } 5168 order--; 5169 } 5170 page = alloc_page(gfp_mask); 5171 if (!page) 5172 goto failure; 5173 fill_page: 5174 chunk = min_t(unsigned long, data_len, 5175 PAGE_SIZE << order); 5176 skb_fill_page_desc(skb, i, page, 0, chunk); 5177 data_len -= chunk; 5178 npages -= 1 << order; 5179 } 5180 return skb; 5181 5182 failure: 5183 kfree_skb(skb); 5184 return NULL; 5185 } 5186 EXPORT_SYMBOL(alloc_skb_with_frags); 5187 5188 /* carve out the first off bytes from skb when off < headlen */ 5189 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5190 const int headlen, gfp_t gfp_mask) 5191 { 5192 int i; 5193 int size = skb_end_offset(skb); 5194 int new_hlen = headlen - off; 5195 u8 *data; 5196 5197 size = SKB_DATA_ALIGN(size); 5198 5199 if (skb_pfmemalloc(skb)) 5200 gfp_mask |= __GFP_MEMALLOC; 5201 data = kmalloc_reserve(size + 5202 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5203 gfp_mask, NUMA_NO_NODE, NULL); 5204 if (!data) 5205 return -ENOMEM; 5206 5207 size = SKB_WITH_OVERHEAD(ksize(data)); 5208 5209 /* Copy real data, and all frags */ 5210 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5211 skb->len -= off; 5212 5213 memcpy((struct skb_shared_info *)(data + size), 5214 skb_shinfo(skb), 5215 offsetof(struct skb_shared_info, 5216 frags[skb_shinfo(skb)->nr_frags])); 5217 if (skb_cloned(skb)) { 5218 /* drop the old head gracefully */ 5219 if (skb_orphan_frags(skb, gfp_mask)) { 5220 kfree(data); 5221 return -ENOMEM; 5222 } 5223 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5224 skb_frag_ref(skb, i); 5225 if (skb_has_frag_list(skb)) 5226 skb_clone_fraglist(skb); 5227 skb_release_data(skb); 5228 } else { 5229 /* we can reuse existing recount- all we did was 5230 * relocate values 5231 */ 5232 skb_free_head(skb); 5233 } 5234 5235 skb->head = data; 5236 skb->data = data; 5237 skb->head_frag = 0; 5238 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5239 skb->end = size; 5240 #else 5241 skb->end = skb->head + size; 5242 #endif 5243 skb_set_tail_pointer(skb, skb_headlen(skb)); 5244 skb_headers_offset_update(skb, 0); 5245 skb->cloned = 0; 5246 skb->hdr_len = 0; 5247 skb->nohdr = 0; 5248 atomic_set(&skb_shinfo(skb)->dataref, 1); 5249 5250 return 0; 5251 } 5252 5253 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5254 5255 /* carve out the first eat bytes from skb's frag_list. May recurse into 5256 * pskb_carve() 5257 */ 5258 static int pskb_carve_frag_list(struct sk_buff *skb, 5259 struct skb_shared_info *shinfo, int eat, 5260 gfp_t gfp_mask) 5261 { 5262 struct sk_buff *list = shinfo->frag_list; 5263 struct sk_buff *clone = NULL; 5264 struct sk_buff *insp = NULL; 5265 5266 do { 5267 if (!list) { 5268 pr_err("Not enough bytes to eat. Want %d\n", eat); 5269 return -EFAULT; 5270 } 5271 if (list->len <= eat) { 5272 /* Eaten as whole. */ 5273 eat -= list->len; 5274 list = list->next; 5275 insp = list; 5276 } else { 5277 /* Eaten partially. */ 5278 if (skb_shared(list)) { 5279 clone = skb_clone(list, gfp_mask); 5280 if (!clone) 5281 return -ENOMEM; 5282 insp = list->next; 5283 list = clone; 5284 } else { 5285 /* This may be pulled without problems. */ 5286 insp = list; 5287 } 5288 if (pskb_carve(list, eat, gfp_mask) < 0) { 5289 kfree_skb(clone); 5290 return -ENOMEM; 5291 } 5292 break; 5293 } 5294 } while (eat); 5295 5296 /* Free pulled out fragments. */ 5297 while ((list = shinfo->frag_list) != insp) { 5298 shinfo->frag_list = list->next; 5299 kfree_skb(list); 5300 } 5301 /* And insert new clone at head. */ 5302 if (clone) { 5303 clone->next = list; 5304 shinfo->frag_list = clone; 5305 } 5306 return 0; 5307 } 5308 5309 /* carve off first len bytes from skb. Split line (off) is in the 5310 * non-linear part of skb 5311 */ 5312 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5313 int pos, gfp_t gfp_mask) 5314 { 5315 int i, k = 0; 5316 int size = skb_end_offset(skb); 5317 u8 *data; 5318 const int nfrags = skb_shinfo(skb)->nr_frags; 5319 struct skb_shared_info *shinfo; 5320 5321 size = SKB_DATA_ALIGN(size); 5322 5323 if (skb_pfmemalloc(skb)) 5324 gfp_mask |= __GFP_MEMALLOC; 5325 data = kmalloc_reserve(size + 5326 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5327 gfp_mask, NUMA_NO_NODE, NULL); 5328 if (!data) 5329 return -ENOMEM; 5330 5331 size = SKB_WITH_OVERHEAD(ksize(data)); 5332 5333 memcpy((struct skb_shared_info *)(data + size), 5334 skb_shinfo(skb), offsetof(struct skb_shared_info, 5335 frags[skb_shinfo(skb)->nr_frags])); 5336 if (skb_orphan_frags(skb, gfp_mask)) { 5337 kfree(data); 5338 return -ENOMEM; 5339 } 5340 shinfo = (struct skb_shared_info *)(data + size); 5341 for (i = 0; i < nfrags; i++) { 5342 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5343 5344 if (pos + fsize > off) { 5345 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5346 5347 if (pos < off) { 5348 /* Split frag. 5349 * We have two variants in this case: 5350 * 1. Move all the frag to the second 5351 * part, if it is possible. F.e. 5352 * this approach is mandatory for TUX, 5353 * where splitting is expensive. 5354 * 2. Split is accurately. We make this. 5355 */ 5356 shinfo->frags[0].page_offset += off - pos; 5357 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5358 } 5359 skb_frag_ref(skb, i); 5360 k++; 5361 } 5362 pos += fsize; 5363 } 5364 shinfo->nr_frags = k; 5365 if (skb_has_frag_list(skb)) 5366 skb_clone_fraglist(skb); 5367 5368 if (k == 0) { 5369 /* split line is in frag list */ 5370 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5371 } 5372 skb_release_data(skb); 5373 5374 skb->head = data; 5375 skb->head_frag = 0; 5376 skb->data = data; 5377 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5378 skb->end = size; 5379 #else 5380 skb->end = skb->head + size; 5381 #endif 5382 skb_reset_tail_pointer(skb); 5383 skb_headers_offset_update(skb, 0); 5384 skb->cloned = 0; 5385 skb->hdr_len = 0; 5386 skb->nohdr = 0; 5387 skb->len -= off; 5388 skb->data_len = skb->len; 5389 atomic_set(&skb_shinfo(skb)->dataref, 1); 5390 return 0; 5391 } 5392 5393 /* remove len bytes from the beginning of the skb */ 5394 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5395 { 5396 int headlen = skb_headlen(skb); 5397 5398 if (len < headlen) 5399 return pskb_carve_inside_header(skb, len, headlen, gfp); 5400 else 5401 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5402 } 5403 5404 /* Extract to_copy bytes starting at off from skb, and return this in 5405 * a new skb 5406 */ 5407 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5408 int to_copy, gfp_t gfp) 5409 { 5410 struct sk_buff *clone = skb_clone(skb, gfp); 5411 5412 if (!clone) 5413 return NULL; 5414 5415 if (pskb_carve(clone, off, gfp) < 0 || 5416 pskb_trim(clone, to_copy)) { 5417 kfree_skb(clone); 5418 return NULL; 5419 } 5420 return clone; 5421 } 5422 EXPORT_SYMBOL(pskb_extract); 5423 5424 /** 5425 * skb_condense - try to get rid of fragments/frag_list if possible 5426 * @skb: buffer 5427 * 5428 * Can be used to save memory before skb is added to a busy queue. 5429 * If packet has bytes in frags and enough tail room in skb->head, 5430 * pull all of them, so that we can free the frags right now and adjust 5431 * truesize. 5432 * Notes: 5433 * We do not reallocate skb->head thus can not fail. 5434 * Caller must re-evaluate skb->truesize if needed. 5435 */ 5436 void skb_condense(struct sk_buff *skb) 5437 { 5438 if (skb->data_len) { 5439 if (skb->data_len > skb->end - skb->tail || 5440 skb_cloned(skb)) 5441 return; 5442 5443 /* Nice, we can free page frag(s) right now */ 5444 __pskb_pull_tail(skb, skb->data_len); 5445 } 5446 /* At this point, skb->truesize might be over estimated, 5447 * because skb had a fragment, and fragments do not tell 5448 * their truesize. 5449 * When we pulled its content into skb->head, fragment 5450 * was freed, but __pskb_pull_tail() could not possibly 5451 * adjust skb->truesize, not knowing the frag truesize. 5452 */ 5453 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5454 } 5455