xref: /openbmc/linux/net/core/skbuff.c (revision 2eb3ed33e55d003d721d4d1a5e72fe323c12b4c0)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
56 #endif
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74 
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
85 
86 /**
87  *	skb_panic - private function for out-of-line support
88  *	@skb:	buffer
89  *	@sz:	size
90  *	@addr:	address
91  *	@msg:	skb_over_panic or skb_under_panic
92  *
93  *	Out-of-line support for skb_put() and skb_push().
94  *	Called via the wrapper skb_over_panic() or skb_under_panic().
95  *	Keep out of line to prevent kernel bloat.
96  *	__builtin_return_address is not used because it is not always reliable.
97  */
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 		      const char msg[])
100 {
101 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 		 msg, addr, skb->len, sz, skb->head, skb->data,
103 		 (unsigned long)skb->tail, (unsigned long)skb->end,
104 		 skb->dev ? skb->dev->name : "<NULL>");
105 	BUG();
106 }
107 
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 	skb_panic(skb, sz, addr, __func__);
111 }
112 
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 	skb_panic(skb, sz, addr, __func__);
116 }
117 
118 /*
119  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120  * the caller if emergency pfmemalloc reserves are being used. If it is and
121  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122  * may be used. Otherwise, the packet data may be discarded until enough
123  * memory is free
124  */
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127 
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 			       unsigned long ip, bool *pfmemalloc)
130 {
131 	void *obj;
132 	bool ret_pfmemalloc = false;
133 
134 	/*
135 	 * Try a regular allocation, when that fails and we're not entitled
136 	 * to the reserves, fail.
137 	 */
138 	obj = kmalloc_node_track_caller(size,
139 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 					node);
141 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 		goto out;
143 
144 	/* Try again but now we are using pfmemalloc reserves */
145 	ret_pfmemalloc = true;
146 	obj = kmalloc_node_track_caller(size, flags, node);
147 
148 out:
149 	if (pfmemalloc)
150 		*pfmemalloc = ret_pfmemalloc;
151 
152 	return obj;
153 }
154 
155 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
156  *	'private' fields and also do memory statistics to find all the
157  *	[BEEP] leaks.
158  *
159  */
160 
161 /**
162  *	__alloc_skb	-	allocate a network buffer
163  *	@size: size to allocate
164  *	@gfp_mask: allocation mask
165  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
166  *		instead of head cache and allocate a cloned (child) skb.
167  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
168  *		allocations in case the data is required for writeback
169  *	@node: numa node to allocate memory on
170  *
171  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
172  *	tail room of at least size bytes. The object has a reference count
173  *	of one. The return is the buffer. On a failure the return is %NULL.
174  *
175  *	Buffers may only be allocated from interrupts using a @gfp_mask of
176  *	%GFP_ATOMIC.
177  */
178 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
179 			    int flags, int node)
180 {
181 	struct kmem_cache *cache;
182 	struct skb_shared_info *shinfo;
183 	struct sk_buff *skb;
184 	u8 *data;
185 	bool pfmemalloc;
186 
187 	cache = (flags & SKB_ALLOC_FCLONE)
188 		? skbuff_fclone_cache : skbuff_head_cache;
189 
190 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
191 		gfp_mask |= __GFP_MEMALLOC;
192 
193 	/* Get the HEAD */
194 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
195 	if (!skb)
196 		goto out;
197 	prefetchw(skb);
198 
199 	/* We do our best to align skb_shared_info on a separate cache
200 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
201 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
202 	 * Both skb->head and skb_shared_info are cache line aligned.
203 	 */
204 	size = SKB_DATA_ALIGN(size);
205 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
206 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
207 	if (!data)
208 		goto nodata;
209 	/* kmalloc(size) might give us more room than requested.
210 	 * Put skb_shared_info exactly at the end of allocated zone,
211 	 * to allow max possible filling before reallocation.
212 	 */
213 	size = SKB_WITH_OVERHEAD(ksize(data));
214 	prefetchw(data + size);
215 
216 	/*
217 	 * Only clear those fields we need to clear, not those that we will
218 	 * actually initialise below. Hence, don't put any more fields after
219 	 * the tail pointer in struct sk_buff!
220 	 */
221 	memset(skb, 0, offsetof(struct sk_buff, tail));
222 	/* Account for allocated memory : skb + skb->head */
223 	skb->truesize = SKB_TRUESIZE(size);
224 	skb->pfmemalloc = pfmemalloc;
225 	refcount_set(&skb->users, 1);
226 	skb->head = data;
227 	skb->data = data;
228 	skb_reset_tail_pointer(skb);
229 	skb->end = skb->tail + size;
230 	skb->mac_header = (typeof(skb->mac_header))~0U;
231 	skb->transport_header = (typeof(skb->transport_header))~0U;
232 
233 	/* make sure we initialize shinfo sequentially */
234 	shinfo = skb_shinfo(skb);
235 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
236 	atomic_set(&shinfo->dataref, 1);
237 	kmemcheck_annotate_variable(shinfo->destructor_arg);
238 
239 	if (flags & SKB_ALLOC_FCLONE) {
240 		struct sk_buff_fclones *fclones;
241 
242 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
243 
244 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
245 		skb->fclone = SKB_FCLONE_ORIG;
246 		refcount_set(&fclones->fclone_ref, 1);
247 
248 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
249 	}
250 out:
251 	return skb;
252 nodata:
253 	kmem_cache_free(cache, skb);
254 	skb = NULL;
255 	goto out;
256 }
257 EXPORT_SYMBOL(__alloc_skb);
258 
259 /**
260  * __build_skb - build a network buffer
261  * @data: data buffer provided by caller
262  * @frag_size: size of data, or 0 if head was kmalloced
263  *
264  * Allocate a new &sk_buff. Caller provides space holding head and
265  * skb_shared_info. @data must have been allocated by kmalloc() only if
266  * @frag_size is 0, otherwise data should come from the page allocator
267  *  or vmalloc()
268  * The return is the new skb buffer.
269  * On a failure the return is %NULL, and @data is not freed.
270  * Notes :
271  *  Before IO, driver allocates only data buffer where NIC put incoming frame
272  *  Driver should add room at head (NET_SKB_PAD) and
273  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
274  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
275  *  before giving packet to stack.
276  *  RX rings only contains data buffers, not full skbs.
277  */
278 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
279 {
280 	struct skb_shared_info *shinfo;
281 	struct sk_buff *skb;
282 	unsigned int size = frag_size ? : ksize(data);
283 
284 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
285 	if (!skb)
286 		return NULL;
287 
288 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
289 
290 	memset(skb, 0, offsetof(struct sk_buff, tail));
291 	skb->truesize = SKB_TRUESIZE(size);
292 	refcount_set(&skb->users, 1);
293 	skb->head = data;
294 	skb->data = data;
295 	skb_reset_tail_pointer(skb);
296 	skb->end = skb->tail + size;
297 	skb->mac_header = (typeof(skb->mac_header))~0U;
298 	skb->transport_header = (typeof(skb->transport_header))~0U;
299 
300 	/* make sure we initialize shinfo sequentially */
301 	shinfo = skb_shinfo(skb);
302 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
303 	atomic_set(&shinfo->dataref, 1);
304 	kmemcheck_annotate_variable(shinfo->destructor_arg);
305 
306 	return skb;
307 }
308 
309 /* build_skb() is wrapper over __build_skb(), that specifically
310  * takes care of skb->head and skb->pfmemalloc
311  * This means that if @frag_size is not zero, then @data must be backed
312  * by a page fragment, not kmalloc() or vmalloc()
313  */
314 struct sk_buff *build_skb(void *data, unsigned int frag_size)
315 {
316 	struct sk_buff *skb = __build_skb(data, frag_size);
317 
318 	if (skb && frag_size) {
319 		skb->head_frag = 1;
320 		if (page_is_pfmemalloc(virt_to_head_page(data)))
321 			skb->pfmemalloc = 1;
322 	}
323 	return skb;
324 }
325 EXPORT_SYMBOL(build_skb);
326 
327 #define NAPI_SKB_CACHE_SIZE	64
328 
329 struct napi_alloc_cache {
330 	struct page_frag_cache page;
331 	unsigned int skb_count;
332 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
333 };
334 
335 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
336 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
337 
338 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
339 {
340 	struct page_frag_cache *nc;
341 	unsigned long flags;
342 	void *data;
343 
344 	local_irq_save(flags);
345 	nc = this_cpu_ptr(&netdev_alloc_cache);
346 	data = page_frag_alloc(nc, fragsz, gfp_mask);
347 	local_irq_restore(flags);
348 	return data;
349 }
350 
351 /**
352  * netdev_alloc_frag - allocate a page fragment
353  * @fragsz: fragment size
354  *
355  * Allocates a frag from a page for receive buffer.
356  * Uses GFP_ATOMIC allocations.
357  */
358 void *netdev_alloc_frag(unsigned int fragsz)
359 {
360 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
361 }
362 EXPORT_SYMBOL(netdev_alloc_frag);
363 
364 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
365 {
366 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
367 
368 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
369 }
370 
371 void *napi_alloc_frag(unsigned int fragsz)
372 {
373 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
374 }
375 EXPORT_SYMBOL(napi_alloc_frag);
376 
377 /**
378  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
379  *	@dev: network device to receive on
380  *	@len: length to allocate
381  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
382  *
383  *	Allocate a new &sk_buff and assign it a usage count of one. The
384  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
385  *	the headroom they think they need without accounting for the
386  *	built in space. The built in space is used for optimisations.
387  *
388  *	%NULL is returned if there is no free memory.
389  */
390 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
391 				   gfp_t gfp_mask)
392 {
393 	struct page_frag_cache *nc;
394 	unsigned long flags;
395 	struct sk_buff *skb;
396 	bool pfmemalloc;
397 	void *data;
398 
399 	len += NET_SKB_PAD;
400 
401 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
402 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
403 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
404 		if (!skb)
405 			goto skb_fail;
406 		goto skb_success;
407 	}
408 
409 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
410 	len = SKB_DATA_ALIGN(len);
411 
412 	if (sk_memalloc_socks())
413 		gfp_mask |= __GFP_MEMALLOC;
414 
415 	local_irq_save(flags);
416 
417 	nc = this_cpu_ptr(&netdev_alloc_cache);
418 	data = page_frag_alloc(nc, len, gfp_mask);
419 	pfmemalloc = nc->pfmemalloc;
420 
421 	local_irq_restore(flags);
422 
423 	if (unlikely(!data))
424 		return NULL;
425 
426 	skb = __build_skb(data, len);
427 	if (unlikely(!skb)) {
428 		skb_free_frag(data);
429 		return NULL;
430 	}
431 
432 	/* use OR instead of assignment to avoid clearing of bits in mask */
433 	if (pfmemalloc)
434 		skb->pfmemalloc = 1;
435 	skb->head_frag = 1;
436 
437 skb_success:
438 	skb_reserve(skb, NET_SKB_PAD);
439 	skb->dev = dev;
440 
441 skb_fail:
442 	return skb;
443 }
444 EXPORT_SYMBOL(__netdev_alloc_skb);
445 
446 /**
447  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
448  *	@napi: napi instance this buffer was allocated for
449  *	@len: length to allocate
450  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
451  *
452  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
453  *	attempt to allocate the head from a special reserved region used
454  *	only for NAPI Rx allocation.  By doing this we can save several
455  *	CPU cycles by avoiding having to disable and re-enable IRQs.
456  *
457  *	%NULL is returned if there is no free memory.
458  */
459 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
460 				 gfp_t gfp_mask)
461 {
462 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
463 	struct sk_buff *skb;
464 	void *data;
465 
466 	len += NET_SKB_PAD + NET_IP_ALIGN;
467 
468 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
469 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
470 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
471 		if (!skb)
472 			goto skb_fail;
473 		goto skb_success;
474 	}
475 
476 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
477 	len = SKB_DATA_ALIGN(len);
478 
479 	if (sk_memalloc_socks())
480 		gfp_mask |= __GFP_MEMALLOC;
481 
482 	data = page_frag_alloc(&nc->page, len, gfp_mask);
483 	if (unlikely(!data))
484 		return NULL;
485 
486 	skb = __build_skb(data, len);
487 	if (unlikely(!skb)) {
488 		skb_free_frag(data);
489 		return NULL;
490 	}
491 
492 	/* use OR instead of assignment to avoid clearing of bits in mask */
493 	if (nc->page.pfmemalloc)
494 		skb->pfmemalloc = 1;
495 	skb->head_frag = 1;
496 
497 skb_success:
498 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
499 	skb->dev = napi->dev;
500 
501 skb_fail:
502 	return skb;
503 }
504 EXPORT_SYMBOL(__napi_alloc_skb);
505 
506 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
507 		     int size, unsigned int truesize)
508 {
509 	skb_fill_page_desc(skb, i, page, off, size);
510 	skb->len += size;
511 	skb->data_len += size;
512 	skb->truesize += truesize;
513 }
514 EXPORT_SYMBOL(skb_add_rx_frag);
515 
516 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
517 			  unsigned int truesize)
518 {
519 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
520 
521 	skb_frag_size_add(frag, size);
522 	skb->len += size;
523 	skb->data_len += size;
524 	skb->truesize += truesize;
525 }
526 EXPORT_SYMBOL(skb_coalesce_rx_frag);
527 
528 static void skb_drop_list(struct sk_buff **listp)
529 {
530 	kfree_skb_list(*listp);
531 	*listp = NULL;
532 }
533 
534 static inline void skb_drop_fraglist(struct sk_buff *skb)
535 {
536 	skb_drop_list(&skb_shinfo(skb)->frag_list);
537 }
538 
539 static void skb_clone_fraglist(struct sk_buff *skb)
540 {
541 	struct sk_buff *list;
542 
543 	skb_walk_frags(skb, list)
544 		skb_get(list);
545 }
546 
547 static void skb_free_head(struct sk_buff *skb)
548 {
549 	unsigned char *head = skb->head;
550 
551 	if (skb->head_frag)
552 		skb_free_frag(head);
553 	else
554 		kfree(head);
555 }
556 
557 static void skb_release_data(struct sk_buff *skb)
558 {
559 	struct skb_shared_info *shinfo = skb_shinfo(skb);
560 	int i;
561 
562 	if (skb->cloned &&
563 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
564 			      &shinfo->dataref))
565 		return;
566 
567 	for (i = 0; i < shinfo->nr_frags; i++)
568 		__skb_frag_unref(&shinfo->frags[i]);
569 
570 	if (shinfo->frag_list)
571 		kfree_skb_list(shinfo->frag_list);
572 
573 	skb_zcopy_clear(skb, true);
574 	skb_free_head(skb);
575 }
576 
577 /*
578  *	Free an skbuff by memory without cleaning the state.
579  */
580 static void kfree_skbmem(struct sk_buff *skb)
581 {
582 	struct sk_buff_fclones *fclones;
583 
584 	switch (skb->fclone) {
585 	case SKB_FCLONE_UNAVAILABLE:
586 		kmem_cache_free(skbuff_head_cache, skb);
587 		return;
588 
589 	case SKB_FCLONE_ORIG:
590 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
591 
592 		/* We usually free the clone (TX completion) before original skb
593 		 * This test would have no chance to be true for the clone,
594 		 * while here, branch prediction will be good.
595 		 */
596 		if (refcount_read(&fclones->fclone_ref) == 1)
597 			goto fastpath;
598 		break;
599 
600 	default: /* SKB_FCLONE_CLONE */
601 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
602 		break;
603 	}
604 	if (!refcount_dec_and_test(&fclones->fclone_ref))
605 		return;
606 fastpath:
607 	kmem_cache_free(skbuff_fclone_cache, fclones);
608 }
609 
610 void skb_release_head_state(struct sk_buff *skb)
611 {
612 	skb_dst_drop(skb);
613 	secpath_reset(skb);
614 	if (skb->destructor) {
615 		WARN_ON(in_irq());
616 		skb->destructor(skb);
617 	}
618 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
619 	nf_conntrack_put(skb_nfct(skb));
620 #endif
621 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
622 	nf_bridge_put(skb->nf_bridge);
623 #endif
624 }
625 
626 /* Free everything but the sk_buff shell. */
627 static void skb_release_all(struct sk_buff *skb)
628 {
629 	skb_release_head_state(skb);
630 	if (likely(skb->head))
631 		skb_release_data(skb);
632 }
633 
634 /**
635  *	__kfree_skb - private function
636  *	@skb: buffer
637  *
638  *	Free an sk_buff. Release anything attached to the buffer.
639  *	Clean the state. This is an internal helper function. Users should
640  *	always call kfree_skb
641  */
642 
643 void __kfree_skb(struct sk_buff *skb)
644 {
645 	skb_release_all(skb);
646 	kfree_skbmem(skb);
647 }
648 EXPORT_SYMBOL(__kfree_skb);
649 
650 /**
651  *	kfree_skb - free an sk_buff
652  *	@skb: buffer to free
653  *
654  *	Drop a reference to the buffer and free it if the usage count has
655  *	hit zero.
656  */
657 void kfree_skb(struct sk_buff *skb)
658 {
659 	if (!skb_unref(skb))
660 		return;
661 
662 	trace_kfree_skb(skb, __builtin_return_address(0));
663 	__kfree_skb(skb);
664 }
665 EXPORT_SYMBOL(kfree_skb);
666 
667 void kfree_skb_list(struct sk_buff *segs)
668 {
669 	while (segs) {
670 		struct sk_buff *next = segs->next;
671 
672 		kfree_skb(segs);
673 		segs = next;
674 	}
675 }
676 EXPORT_SYMBOL(kfree_skb_list);
677 
678 /**
679  *	skb_tx_error - report an sk_buff xmit error
680  *	@skb: buffer that triggered an error
681  *
682  *	Report xmit error if a device callback is tracking this skb.
683  *	skb must be freed afterwards.
684  */
685 void skb_tx_error(struct sk_buff *skb)
686 {
687 	skb_zcopy_clear(skb, true);
688 }
689 EXPORT_SYMBOL(skb_tx_error);
690 
691 /**
692  *	consume_skb - free an skbuff
693  *	@skb: buffer to free
694  *
695  *	Drop a ref to the buffer and free it if the usage count has hit zero
696  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
697  *	is being dropped after a failure and notes that
698  */
699 void consume_skb(struct sk_buff *skb)
700 {
701 	if (!skb_unref(skb))
702 		return;
703 
704 	trace_consume_skb(skb);
705 	__kfree_skb(skb);
706 }
707 EXPORT_SYMBOL(consume_skb);
708 
709 /**
710  *	consume_stateless_skb - free an skbuff, assuming it is stateless
711  *	@skb: buffer to free
712  *
713  *	Alike consume_skb(), but this variant assumes that this is the last
714  *	skb reference and all the head states have been already dropped
715  */
716 void __consume_stateless_skb(struct sk_buff *skb)
717 {
718 	trace_consume_skb(skb);
719 	skb_release_data(skb);
720 	kfree_skbmem(skb);
721 }
722 
723 void __kfree_skb_flush(void)
724 {
725 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
726 
727 	/* flush skb_cache if containing objects */
728 	if (nc->skb_count) {
729 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
730 				     nc->skb_cache);
731 		nc->skb_count = 0;
732 	}
733 }
734 
735 static inline void _kfree_skb_defer(struct sk_buff *skb)
736 {
737 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
738 
739 	/* drop skb->head and call any destructors for packet */
740 	skb_release_all(skb);
741 
742 	/* record skb to CPU local list */
743 	nc->skb_cache[nc->skb_count++] = skb;
744 
745 #ifdef CONFIG_SLUB
746 	/* SLUB writes into objects when freeing */
747 	prefetchw(skb);
748 #endif
749 
750 	/* flush skb_cache if it is filled */
751 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
752 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
753 				     nc->skb_cache);
754 		nc->skb_count = 0;
755 	}
756 }
757 void __kfree_skb_defer(struct sk_buff *skb)
758 {
759 	_kfree_skb_defer(skb);
760 }
761 
762 void napi_consume_skb(struct sk_buff *skb, int budget)
763 {
764 	if (unlikely(!skb))
765 		return;
766 
767 	/* Zero budget indicate non-NAPI context called us, like netpoll */
768 	if (unlikely(!budget)) {
769 		dev_consume_skb_any(skb);
770 		return;
771 	}
772 
773 	if (!skb_unref(skb))
774 		return;
775 
776 	/* if reaching here SKB is ready to free */
777 	trace_consume_skb(skb);
778 
779 	/* if SKB is a clone, don't handle this case */
780 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
781 		__kfree_skb(skb);
782 		return;
783 	}
784 
785 	_kfree_skb_defer(skb);
786 }
787 EXPORT_SYMBOL(napi_consume_skb);
788 
789 /* Make sure a field is enclosed inside headers_start/headers_end section */
790 #define CHECK_SKB_FIELD(field) \
791 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
792 		     offsetof(struct sk_buff, headers_start));	\
793 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
794 		     offsetof(struct sk_buff, headers_end));	\
795 
796 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
797 {
798 	new->tstamp		= old->tstamp;
799 	/* We do not copy old->sk */
800 	new->dev		= old->dev;
801 	memcpy(new->cb, old->cb, sizeof(old->cb));
802 	skb_dst_copy(new, old);
803 #ifdef CONFIG_XFRM
804 	new->sp			= secpath_get(old->sp);
805 #endif
806 	__nf_copy(new, old, false);
807 
808 	/* Note : this field could be in headers_start/headers_end section
809 	 * It is not yet because we do not want to have a 16 bit hole
810 	 */
811 	new->queue_mapping = old->queue_mapping;
812 
813 	memcpy(&new->headers_start, &old->headers_start,
814 	       offsetof(struct sk_buff, headers_end) -
815 	       offsetof(struct sk_buff, headers_start));
816 	CHECK_SKB_FIELD(protocol);
817 	CHECK_SKB_FIELD(csum);
818 	CHECK_SKB_FIELD(hash);
819 	CHECK_SKB_FIELD(priority);
820 	CHECK_SKB_FIELD(skb_iif);
821 	CHECK_SKB_FIELD(vlan_proto);
822 	CHECK_SKB_FIELD(vlan_tci);
823 	CHECK_SKB_FIELD(transport_header);
824 	CHECK_SKB_FIELD(network_header);
825 	CHECK_SKB_FIELD(mac_header);
826 	CHECK_SKB_FIELD(inner_protocol);
827 	CHECK_SKB_FIELD(inner_transport_header);
828 	CHECK_SKB_FIELD(inner_network_header);
829 	CHECK_SKB_FIELD(inner_mac_header);
830 	CHECK_SKB_FIELD(mark);
831 #ifdef CONFIG_NETWORK_SECMARK
832 	CHECK_SKB_FIELD(secmark);
833 #endif
834 #ifdef CONFIG_NET_RX_BUSY_POLL
835 	CHECK_SKB_FIELD(napi_id);
836 #endif
837 #ifdef CONFIG_XPS
838 	CHECK_SKB_FIELD(sender_cpu);
839 #endif
840 #ifdef CONFIG_NET_SCHED
841 	CHECK_SKB_FIELD(tc_index);
842 #endif
843 
844 }
845 
846 /*
847  * You should not add any new code to this function.  Add it to
848  * __copy_skb_header above instead.
849  */
850 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
851 {
852 #define C(x) n->x = skb->x
853 
854 	n->next = n->prev = NULL;
855 	n->sk = NULL;
856 	__copy_skb_header(n, skb);
857 
858 	C(len);
859 	C(data_len);
860 	C(mac_len);
861 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
862 	n->cloned = 1;
863 	n->nohdr = 0;
864 	n->destructor = NULL;
865 	C(tail);
866 	C(end);
867 	C(head);
868 	C(head_frag);
869 	C(data);
870 	C(truesize);
871 	refcount_set(&n->users, 1);
872 
873 	atomic_inc(&(skb_shinfo(skb)->dataref));
874 	skb->cloned = 1;
875 
876 	return n;
877 #undef C
878 }
879 
880 /**
881  *	skb_morph	-	morph one skb into another
882  *	@dst: the skb to receive the contents
883  *	@src: the skb to supply the contents
884  *
885  *	This is identical to skb_clone except that the target skb is
886  *	supplied by the user.
887  *
888  *	The target skb is returned upon exit.
889  */
890 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
891 {
892 	skb_release_all(dst);
893 	return __skb_clone(dst, src);
894 }
895 EXPORT_SYMBOL_GPL(skb_morph);
896 
897 static int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
898 {
899 	unsigned long max_pg, num_pg, new_pg, old_pg;
900 	struct user_struct *user;
901 
902 	if (capable(CAP_IPC_LOCK) || !size)
903 		return 0;
904 
905 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
906 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
907 	user = mmp->user ? : current_user();
908 
909 	do {
910 		old_pg = atomic_long_read(&user->locked_vm);
911 		new_pg = old_pg + num_pg;
912 		if (new_pg > max_pg)
913 			return -ENOBUFS;
914 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
915 		 old_pg);
916 
917 	if (!mmp->user) {
918 		mmp->user = get_uid(user);
919 		mmp->num_pg = num_pg;
920 	} else {
921 		mmp->num_pg += num_pg;
922 	}
923 
924 	return 0;
925 }
926 
927 static void mm_unaccount_pinned_pages(struct mmpin *mmp)
928 {
929 	if (mmp->user) {
930 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
931 		free_uid(mmp->user);
932 	}
933 }
934 
935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
936 {
937 	struct ubuf_info *uarg;
938 	struct sk_buff *skb;
939 
940 	WARN_ON_ONCE(!in_task());
941 
942 	if (!sock_flag(sk, SOCK_ZEROCOPY))
943 		return NULL;
944 
945 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
946 	if (!skb)
947 		return NULL;
948 
949 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
950 	uarg = (void *)skb->cb;
951 	uarg->mmp.user = NULL;
952 
953 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
954 		kfree_skb(skb);
955 		return NULL;
956 	}
957 
958 	uarg->callback = sock_zerocopy_callback;
959 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
960 	uarg->len = 1;
961 	uarg->bytelen = size;
962 	uarg->zerocopy = 1;
963 	refcount_set(&uarg->refcnt, 1);
964 	sock_hold(sk);
965 
966 	return uarg;
967 }
968 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
969 
970 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
971 {
972 	return container_of((void *)uarg, struct sk_buff, cb);
973 }
974 
975 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
976 					struct ubuf_info *uarg)
977 {
978 	if (uarg) {
979 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
980 		u32 bytelen, next;
981 
982 		/* realloc only when socket is locked (TCP, UDP cork),
983 		 * so uarg->len and sk_zckey access is serialized
984 		 */
985 		if (!sock_owned_by_user(sk)) {
986 			WARN_ON_ONCE(1);
987 			return NULL;
988 		}
989 
990 		bytelen = uarg->bytelen + size;
991 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
992 			/* TCP can create new skb to attach new uarg */
993 			if (sk->sk_type == SOCK_STREAM)
994 				goto new_alloc;
995 			return NULL;
996 		}
997 
998 		next = (u32)atomic_read(&sk->sk_zckey);
999 		if ((u32)(uarg->id + uarg->len) == next) {
1000 			if (mm_account_pinned_pages(&uarg->mmp, size))
1001 				return NULL;
1002 			uarg->len++;
1003 			uarg->bytelen = bytelen;
1004 			atomic_set(&sk->sk_zckey, ++next);
1005 			sock_zerocopy_get(uarg);
1006 			return uarg;
1007 		}
1008 	}
1009 
1010 new_alloc:
1011 	return sock_zerocopy_alloc(sk, size);
1012 }
1013 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1014 
1015 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1016 {
1017 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1018 	u32 old_lo, old_hi;
1019 	u64 sum_len;
1020 
1021 	old_lo = serr->ee.ee_info;
1022 	old_hi = serr->ee.ee_data;
1023 	sum_len = old_hi - old_lo + 1ULL + len;
1024 
1025 	if (sum_len >= (1ULL << 32))
1026 		return false;
1027 
1028 	if (lo != old_hi + 1)
1029 		return false;
1030 
1031 	serr->ee.ee_data += len;
1032 	return true;
1033 }
1034 
1035 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1036 {
1037 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1038 	struct sock_exterr_skb *serr;
1039 	struct sock *sk = skb->sk;
1040 	struct sk_buff_head *q;
1041 	unsigned long flags;
1042 	u32 lo, hi;
1043 	u16 len;
1044 
1045 	mm_unaccount_pinned_pages(&uarg->mmp);
1046 
1047 	/* if !len, there was only 1 call, and it was aborted
1048 	 * so do not queue a completion notification
1049 	 */
1050 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1051 		goto release;
1052 
1053 	len = uarg->len;
1054 	lo = uarg->id;
1055 	hi = uarg->id + len - 1;
1056 
1057 	serr = SKB_EXT_ERR(skb);
1058 	memset(serr, 0, sizeof(*serr));
1059 	serr->ee.ee_errno = 0;
1060 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1061 	serr->ee.ee_data = hi;
1062 	serr->ee.ee_info = lo;
1063 	if (!success)
1064 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1065 
1066 	q = &sk->sk_error_queue;
1067 	spin_lock_irqsave(&q->lock, flags);
1068 	tail = skb_peek_tail(q);
1069 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1070 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1071 		__skb_queue_tail(q, skb);
1072 		skb = NULL;
1073 	}
1074 	spin_unlock_irqrestore(&q->lock, flags);
1075 
1076 	sk->sk_error_report(sk);
1077 
1078 release:
1079 	consume_skb(skb);
1080 	sock_put(sk);
1081 }
1082 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1083 
1084 void sock_zerocopy_put(struct ubuf_info *uarg)
1085 {
1086 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1087 		if (uarg->callback)
1088 			uarg->callback(uarg, uarg->zerocopy);
1089 		else
1090 			consume_skb(skb_from_uarg(uarg));
1091 	}
1092 }
1093 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1094 
1095 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1096 {
1097 	if (uarg) {
1098 		struct sock *sk = skb_from_uarg(uarg)->sk;
1099 
1100 		atomic_dec(&sk->sk_zckey);
1101 		uarg->len--;
1102 
1103 		sock_zerocopy_put(uarg);
1104 	}
1105 }
1106 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1107 
1108 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1109 				   struct iov_iter *from, size_t length);
1110 
1111 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1112 			     struct msghdr *msg, int len,
1113 			     struct ubuf_info *uarg)
1114 {
1115 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1116 	struct iov_iter orig_iter = msg->msg_iter;
1117 	int err, orig_len = skb->len;
1118 
1119 	/* An skb can only point to one uarg. This edge case happens when
1120 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1121 	 */
1122 	if (orig_uarg && uarg != orig_uarg)
1123 		return -EEXIST;
1124 
1125 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1126 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1127 		struct sock *save_sk = skb->sk;
1128 
1129 		/* Streams do not free skb on error. Reset to prev state. */
1130 		msg->msg_iter = orig_iter;
1131 		skb->sk = sk;
1132 		___pskb_trim(skb, orig_len);
1133 		skb->sk = save_sk;
1134 		return err;
1135 	}
1136 
1137 	skb_zcopy_set(skb, uarg);
1138 	return skb->len - orig_len;
1139 }
1140 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1141 
1142 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1143 			      gfp_t gfp_mask)
1144 {
1145 	if (skb_zcopy(orig)) {
1146 		if (skb_zcopy(nskb)) {
1147 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1148 			if (!gfp_mask) {
1149 				WARN_ON_ONCE(1);
1150 				return -ENOMEM;
1151 			}
1152 			if (skb_uarg(nskb) == skb_uarg(orig))
1153 				return 0;
1154 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1155 				return -EIO;
1156 		}
1157 		skb_zcopy_set(nskb, skb_uarg(orig));
1158 	}
1159 	return 0;
1160 }
1161 
1162 /**
1163  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1164  *	@skb: the skb to modify
1165  *	@gfp_mask: allocation priority
1166  *
1167  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1168  *	It will copy all frags into kernel and drop the reference
1169  *	to userspace pages.
1170  *
1171  *	If this function is called from an interrupt gfp_mask() must be
1172  *	%GFP_ATOMIC.
1173  *
1174  *	Returns 0 on success or a negative error code on failure
1175  *	to allocate kernel memory to copy to.
1176  */
1177 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1178 {
1179 	int num_frags = skb_shinfo(skb)->nr_frags;
1180 	struct page *page, *head = NULL;
1181 	int i, new_frags;
1182 	u32 d_off;
1183 
1184 	if (!num_frags)
1185 		return 0;
1186 
1187 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1188 		return -EINVAL;
1189 
1190 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1191 	for (i = 0; i < new_frags; i++) {
1192 		page = alloc_page(gfp_mask);
1193 		if (!page) {
1194 			while (head) {
1195 				struct page *next = (struct page *)page_private(head);
1196 				put_page(head);
1197 				head = next;
1198 			}
1199 			return -ENOMEM;
1200 		}
1201 		set_page_private(page, (unsigned long)head);
1202 		head = page;
1203 	}
1204 
1205 	page = head;
1206 	d_off = 0;
1207 	for (i = 0; i < num_frags; i++) {
1208 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1209 		u32 p_off, p_len, copied;
1210 		struct page *p;
1211 		u8 *vaddr;
1212 
1213 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1214 				      p, p_off, p_len, copied) {
1215 			u32 copy, done = 0;
1216 			vaddr = kmap_atomic(p);
1217 
1218 			while (done < p_len) {
1219 				if (d_off == PAGE_SIZE) {
1220 					d_off = 0;
1221 					page = (struct page *)page_private(page);
1222 				}
1223 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1224 				memcpy(page_address(page) + d_off,
1225 				       vaddr + p_off + done, copy);
1226 				done += copy;
1227 				d_off += copy;
1228 			}
1229 			kunmap_atomic(vaddr);
1230 		}
1231 	}
1232 
1233 	/* skb frags release userspace buffers */
1234 	for (i = 0; i < num_frags; i++)
1235 		skb_frag_unref(skb, i);
1236 
1237 	/* skb frags point to kernel buffers */
1238 	for (i = 0; i < new_frags - 1; i++) {
1239 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1240 		head = (struct page *)page_private(head);
1241 	}
1242 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1243 	skb_shinfo(skb)->nr_frags = new_frags;
1244 
1245 	skb_zcopy_clear(skb, false);
1246 	return 0;
1247 }
1248 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1249 
1250 /**
1251  *	skb_clone	-	duplicate an sk_buff
1252  *	@skb: buffer to clone
1253  *	@gfp_mask: allocation priority
1254  *
1255  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1256  *	copies share the same packet data but not structure. The new
1257  *	buffer has a reference count of 1. If the allocation fails the
1258  *	function returns %NULL otherwise the new buffer is returned.
1259  *
1260  *	If this function is called from an interrupt gfp_mask() must be
1261  *	%GFP_ATOMIC.
1262  */
1263 
1264 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1265 {
1266 	struct sk_buff_fclones *fclones = container_of(skb,
1267 						       struct sk_buff_fclones,
1268 						       skb1);
1269 	struct sk_buff *n;
1270 
1271 	if (skb_orphan_frags(skb, gfp_mask))
1272 		return NULL;
1273 
1274 	if (skb->fclone == SKB_FCLONE_ORIG &&
1275 	    refcount_read(&fclones->fclone_ref) == 1) {
1276 		n = &fclones->skb2;
1277 		refcount_set(&fclones->fclone_ref, 2);
1278 	} else {
1279 		if (skb_pfmemalloc(skb))
1280 			gfp_mask |= __GFP_MEMALLOC;
1281 
1282 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1283 		if (!n)
1284 			return NULL;
1285 
1286 		kmemcheck_annotate_bitfield(n, flags1);
1287 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1288 	}
1289 
1290 	return __skb_clone(n, skb);
1291 }
1292 EXPORT_SYMBOL(skb_clone);
1293 
1294 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1295 {
1296 	/* Only adjust this if it actually is csum_start rather than csum */
1297 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1298 		skb->csum_start += off;
1299 	/* {transport,network,mac}_header and tail are relative to skb->head */
1300 	skb->transport_header += off;
1301 	skb->network_header   += off;
1302 	if (skb_mac_header_was_set(skb))
1303 		skb->mac_header += off;
1304 	skb->inner_transport_header += off;
1305 	skb->inner_network_header += off;
1306 	skb->inner_mac_header += off;
1307 }
1308 
1309 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1310 {
1311 	__copy_skb_header(new, old);
1312 
1313 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1314 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1315 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1316 }
1317 
1318 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1319 {
1320 	if (skb_pfmemalloc(skb))
1321 		return SKB_ALLOC_RX;
1322 	return 0;
1323 }
1324 
1325 /**
1326  *	skb_copy	-	create private copy of an sk_buff
1327  *	@skb: buffer to copy
1328  *	@gfp_mask: allocation priority
1329  *
1330  *	Make a copy of both an &sk_buff and its data. This is used when the
1331  *	caller wishes to modify the data and needs a private copy of the
1332  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1333  *	on success. The returned buffer has a reference count of 1.
1334  *
1335  *	As by-product this function converts non-linear &sk_buff to linear
1336  *	one, so that &sk_buff becomes completely private and caller is allowed
1337  *	to modify all the data of returned buffer. This means that this
1338  *	function is not recommended for use in circumstances when only
1339  *	header is going to be modified. Use pskb_copy() instead.
1340  */
1341 
1342 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1343 {
1344 	int headerlen = skb_headroom(skb);
1345 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1346 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1347 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1348 
1349 	if (!n)
1350 		return NULL;
1351 
1352 	/* Set the data pointer */
1353 	skb_reserve(n, headerlen);
1354 	/* Set the tail pointer and length */
1355 	skb_put(n, skb->len);
1356 
1357 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1358 
1359 	copy_skb_header(n, skb);
1360 	return n;
1361 }
1362 EXPORT_SYMBOL(skb_copy);
1363 
1364 /**
1365  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1366  *	@skb: buffer to copy
1367  *	@headroom: headroom of new skb
1368  *	@gfp_mask: allocation priority
1369  *	@fclone: if true allocate the copy of the skb from the fclone
1370  *	cache instead of the head cache; it is recommended to set this
1371  *	to true for the cases where the copy will likely be cloned
1372  *
1373  *	Make a copy of both an &sk_buff and part of its data, located
1374  *	in header. Fragmented data remain shared. This is used when
1375  *	the caller wishes to modify only header of &sk_buff and needs
1376  *	private copy of the header to alter. Returns %NULL on failure
1377  *	or the pointer to the buffer on success.
1378  *	The returned buffer has a reference count of 1.
1379  */
1380 
1381 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1382 				   gfp_t gfp_mask, bool fclone)
1383 {
1384 	unsigned int size = skb_headlen(skb) + headroom;
1385 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1386 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1387 
1388 	if (!n)
1389 		goto out;
1390 
1391 	/* Set the data pointer */
1392 	skb_reserve(n, headroom);
1393 	/* Set the tail pointer and length */
1394 	skb_put(n, skb_headlen(skb));
1395 	/* Copy the bytes */
1396 	skb_copy_from_linear_data(skb, n->data, n->len);
1397 
1398 	n->truesize += skb->data_len;
1399 	n->data_len  = skb->data_len;
1400 	n->len	     = skb->len;
1401 
1402 	if (skb_shinfo(skb)->nr_frags) {
1403 		int i;
1404 
1405 		if (skb_orphan_frags(skb, gfp_mask) ||
1406 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1407 			kfree_skb(n);
1408 			n = NULL;
1409 			goto out;
1410 		}
1411 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1412 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1413 			skb_frag_ref(skb, i);
1414 		}
1415 		skb_shinfo(n)->nr_frags = i;
1416 	}
1417 
1418 	if (skb_has_frag_list(skb)) {
1419 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1420 		skb_clone_fraglist(n);
1421 	}
1422 
1423 	copy_skb_header(n, skb);
1424 out:
1425 	return n;
1426 }
1427 EXPORT_SYMBOL(__pskb_copy_fclone);
1428 
1429 /**
1430  *	pskb_expand_head - reallocate header of &sk_buff
1431  *	@skb: buffer to reallocate
1432  *	@nhead: room to add at head
1433  *	@ntail: room to add at tail
1434  *	@gfp_mask: allocation priority
1435  *
1436  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1437  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1438  *	reference count of 1. Returns zero in the case of success or error,
1439  *	if expansion failed. In the last case, &sk_buff is not changed.
1440  *
1441  *	All the pointers pointing into skb header may change and must be
1442  *	reloaded after call to this function.
1443  */
1444 
1445 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1446 		     gfp_t gfp_mask)
1447 {
1448 	int i, osize = skb_end_offset(skb);
1449 	int size = osize + nhead + ntail;
1450 	long off;
1451 	u8 *data;
1452 
1453 	BUG_ON(nhead < 0);
1454 
1455 	BUG_ON(skb_shared(skb));
1456 
1457 	size = SKB_DATA_ALIGN(size);
1458 
1459 	if (skb_pfmemalloc(skb))
1460 		gfp_mask |= __GFP_MEMALLOC;
1461 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1462 			       gfp_mask, NUMA_NO_NODE, NULL);
1463 	if (!data)
1464 		goto nodata;
1465 	size = SKB_WITH_OVERHEAD(ksize(data));
1466 
1467 	/* Copy only real data... and, alas, header. This should be
1468 	 * optimized for the cases when header is void.
1469 	 */
1470 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1471 
1472 	memcpy((struct skb_shared_info *)(data + size),
1473 	       skb_shinfo(skb),
1474 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1475 
1476 	/*
1477 	 * if shinfo is shared we must drop the old head gracefully, but if it
1478 	 * is not we can just drop the old head and let the existing refcount
1479 	 * be since all we did is relocate the values
1480 	 */
1481 	if (skb_cloned(skb)) {
1482 		if (skb_orphan_frags(skb, gfp_mask))
1483 			goto nofrags;
1484 		if (skb_zcopy(skb))
1485 			refcount_inc(&skb_uarg(skb)->refcnt);
1486 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1487 			skb_frag_ref(skb, i);
1488 
1489 		if (skb_has_frag_list(skb))
1490 			skb_clone_fraglist(skb);
1491 
1492 		skb_release_data(skb);
1493 	} else {
1494 		skb_free_head(skb);
1495 	}
1496 	off = (data + nhead) - skb->head;
1497 
1498 	skb->head     = data;
1499 	skb->head_frag = 0;
1500 	skb->data    += off;
1501 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1502 	skb->end      = size;
1503 	off           = nhead;
1504 #else
1505 	skb->end      = skb->head + size;
1506 #endif
1507 	skb->tail	      += off;
1508 	skb_headers_offset_update(skb, nhead);
1509 	skb->cloned   = 0;
1510 	skb->hdr_len  = 0;
1511 	skb->nohdr    = 0;
1512 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1513 
1514 	skb_metadata_clear(skb);
1515 
1516 	/* It is not generally safe to change skb->truesize.
1517 	 * For the moment, we really care of rx path, or
1518 	 * when skb is orphaned (not attached to a socket).
1519 	 */
1520 	if (!skb->sk || skb->destructor == sock_edemux)
1521 		skb->truesize += size - osize;
1522 
1523 	return 0;
1524 
1525 nofrags:
1526 	kfree(data);
1527 nodata:
1528 	return -ENOMEM;
1529 }
1530 EXPORT_SYMBOL(pskb_expand_head);
1531 
1532 /* Make private copy of skb with writable head and some headroom */
1533 
1534 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1535 {
1536 	struct sk_buff *skb2;
1537 	int delta = headroom - skb_headroom(skb);
1538 
1539 	if (delta <= 0)
1540 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1541 	else {
1542 		skb2 = skb_clone(skb, GFP_ATOMIC);
1543 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1544 					     GFP_ATOMIC)) {
1545 			kfree_skb(skb2);
1546 			skb2 = NULL;
1547 		}
1548 	}
1549 	return skb2;
1550 }
1551 EXPORT_SYMBOL(skb_realloc_headroom);
1552 
1553 /**
1554  *	skb_copy_expand	-	copy and expand sk_buff
1555  *	@skb: buffer to copy
1556  *	@newheadroom: new free bytes at head
1557  *	@newtailroom: new free bytes at tail
1558  *	@gfp_mask: allocation priority
1559  *
1560  *	Make a copy of both an &sk_buff and its data and while doing so
1561  *	allocate additional space.
1562  *
1563  *	This is used when the caller wishes to modify the data and needs a
1564  *	private copy of the data to alter as well as more space for new fields.
1565  *	Returns %NULL on failure or the pointer to the buffer
1566  *	on success. The returned buffer has a reference count of 1.
1567  *
1568  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1569  *	is called from an interrupt.
1570  */
1571 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1572 				int newheadroom, int newtailroom,
1573 				gfp_t gfp_mask)
1574 {
1575 	/*
1576 	 *	Allocate the copy buffer
1577 	 */
1578 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1579 					gfp_mask, skb_alloc_rx_flag(skb),
1580 					NUMA_NO_NODE);
1581 	int oldheadroom = skb_headroom(skb);
1582 	int head_copy_len, head_copy_off;
1583 
1584 	if (!n)
1585 		return NULL;
1586 
1587 	skb_reserve(n, newheadroom);
1588 
1589 	/* Set the tail pointer and length */
1590 	skb_put(n, skb->len);
1591 
1592 	head_copy_len = oldheadroom;
1593 	head_copy_off = 0;
1594 	if (newheadroom <= head_copy_len)
1595 		head_copy_len = newheadroom;
1596 	else
1597 		head_copy_off = newheadroom - head_copy_len;
1598 
1599 	/* Copy the linear header and data. */
1600 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1601 			     skb->len + head_copy_len));
1602 
1603 	copy_skb_header(n, skb);
1604 
1605 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1606 
1607 	return n;
1608 }
1609 EXPORT_SYMBOL(skb_copy_expand);
1610 
1611 /**
1612  *	__skb_pad		-	zero pad the tail of an skb
1613  *	@skb: buffer to pad
1614  *	@pad: space to pad
1615  *	@free_on_error: free buffer on error
1616  *
1617  *	Ensure that a buffer is followed by a padding area that is zero
1618  *	filled. Used by network drivers which may DMA or transfer data
1619  *	beyond the buffer end onto the wire.
1620  *
1621  *	May return error in out of memory cases. The skb is freed on error
1622  *	if @free_on_error is true.
1623  */
1624 
1625 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1626 {
1627 	int err;
1628 	int ntail;
1629 
1630 	/* If the skbuff is non linear tailroom is always zero.. */
1631 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1632 		memset(skb->data+skb->len, 0, pad);
1633 		return 0;
1634 	}
1635 
1636 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1637 	if (likely(skb_cloned(skb) || ntail > 0)) {
1638 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1639 		if (unlikely(err))
1640 			goto free_skb;
1641 	}
1642 
1643 	/* FIXME: The use of this function with non-linear skb's really needs
1644 	 * to be audited.
1645 	 */
1646 	err = skb_linearize(skb);
1647 	if (unlikely(err))
1648 		goto free_skb;
1649 
1650 	memset(skb->data + skb->len, 0, pad);
1651 	return 0;
1652 
1653 free_skb:
1654 	if (free_on_error)
1655 		kfree_skb(skb);
1656 	return err;
1657 }
1658 EXPORT_SYMBOL(__skb_pad);
1659 
1660 /**
1661  *	pskb_put - add data to the tail of a potentially fragmented buffer
1662  *	@skb: start of the buffer to use
1663  *	@tail: tail fragment of the buffer to use
1664  *	@len: amount of data to add
1665  *
1666  *	This function extends the used data area of the potentially
1667  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1668  *	@skb itself. If this would exceed the total buffer size the kernel
1669  *	will panic. A pointer to the first byte of the extra data is
1670  *	returned.
1671  */
1672 
1673 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1674 {
1675 	if (tail != skb) {
1676 		skb->data_len += len;
1677 		skb->len += len;
1678 	}
1679 	return skb_put(tail, len);
1680 }
1681 EXPORT_SYMBOL_GPL(pskb_put);
1682 
1683 /**
1684  *	skb_put - add data to a buffer
1685  *	@skb: buffer to use
1686  *	@len: amount of data to add
1687  *
1688  *	This function extends the used data area of the buffer. If this would
1689  *	exceed the total buffer size the kernel will panic. A pointer to the
1690  *	first byte of the extra data is returned.
1691  */
1692 void *skb_put(struct sk_buff *skb, unsigned int len)
1693 {
1694 	void *tmp = skb_tail_pointer(skb);
1695 	SKB_LINEAR_ASSERT(skb);
1696 	skb->tail += len;
1697 	skb->len  += len;
1698 	if (unlikely(skb->tail > skb->end))
1699 		skb_over_panic(skb, len, __builtin_return_address(0));
1700 	return tmp;
1701 }
1702 EXPORT_SYMBOL(skb_put);
1703 
1704 /**
1705  *	skb_push - add data to the start of a buffer
1706  *	@skb: buffer to use
1707  *	@len: amount of data to add
1708  *
1709  *	This function extends the used data area of the buffer at the buffer
1710  *	start. If this would exceed the total buffer headroom the kernel will
1711  *	panic. A pointer to the first byte of the extra data is returned.
1712  */
1713 void *skb_push(struct sk_buff *skb, unsigned int len)
1714 {
1715 	skb->data -= len;
1716 	skb->len  += len;
1717 	if (unlikely(skb->data<skb->head))
1718 		skb_under_panic(skb, len, __builtin_return_address(0));
1719 	return skb->data;
1720 }
1721 EXPORT_SYMBOL(skb_push);
1722 
1723 /**
1724  *	skb_pull - remove data from the start of a buffer
1725  *	@skb: buffer to use
1726  *	@len: amount of data to remove
1727  *
1728  *	This function removes data from the start of a buffer, returning
1729  *	the memory to the headroom. A pointer to the next data in the buffer
1730  *	is returned. Once the data has been pulled future pushes will overwrite
1731  *	the old data.
1732  */
1733 void *skb_pull(struct sk_buff *skb, unsigned int len)
1734 {
1735 	return skb_pull_inline(skb, len);
1736 }
1737 EXPORT_SYMBOL(skb_pull);
1738 
1739 /**
1740  *	skb_trim - remove end from a buffer
1741  *	@skb: buffer to alter
1742  *	@len: new length
1743  *
1744  *	Cut the length of a buffer down by removing data from the tail. If
1745  *	the buffer is already under the length specified it is not modified.
1746  *	The skb must be linear.
1747  */
1748 void skb_trim(struct sk_buff *skb, unsigned int len)
1749 {
1750 	if (skb->len > len)
1751 		__skb_trim(skb, len);
1752 }
1753 EXPORT_SYMBOL(skb_trim);
1754 
1755 /* Trims skb to length len. It can change skb pointers.
1756  */
1757 
1758 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1759 {
1760 	struct sk_buff **fragp;
1761 	struct sk_buff *frag;
1762 	int offset = skb_headlen(skb);
1763 	int nfrags = skb_shinfo(skb)->nr_frags;
1764 	int i;
1765 	int err;
1766 
1767 	if (skb_cloned(skb) &&
1768 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1769 		return err;
1770 
1771 	i = 0;
1772 	if (offset >= len)
1773 		goto drop_pages;
1774 
1775 	for (; i < nfrags; i++) {
1776 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1777 
1778 		if (end < len) {
1779 			offset = end;
1780 			continue;
1781 		}
1782 
1783 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1784 
1785 drop_pages:
1786 		skb_shinfo(skb)->nr_frags = i;
1787 
1788 		for (; i < nfrags; i++)
1789 			skb_frag_unref(skb, i);
1790 
1791 		if (skb_has_frag_list(skb))
1792 			skb_drop_fraglist(skb);
1793 		goto done;
1794 	}
1795 
1796 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1797 	     fragp = &frag->next) {
1798 		int end = offset + frag->len;
1799 
1800 		if (skb_shared(frag)) {
1801 			struct sk_buff *nfrag;
1802 
1803 			nfrag = skb_clone(frag, GFP_ATOMIC);
1804 			if (unlikely(!nfrag))
1805 				return -ENOMEM;
1806 
1807 			nfrag->next = frag->next;
1808 			consume_skb(frag);
1809 			frag = nfrag;
1810 			*fragp = frag;
1811 		}
1812 
1813 		if (end < len) {
1814 			offset = end;
1815 			continue;
1816 		}
1817 
1818 		if (end > len &&
1819 		    unlikely((err = pskb_trim(frag, len - offset))))
1820 			return err;
1821 
1822 		if (frag->next)
1823 			skb_drop_list(&frag->next);
1824 		break;
1825 	}
1826 
1827 done:
1828 	if (len > skb_headlen(skb)) {
1829 		skb->data_len -= skb->len - len;
1830 		skb->len       = len;
1831 	} else {
1832 		skb->len       = len;
1833 		skb->data_len  = 0;
1834 		skb_set_tail_pointer(skb, len);
1835 	}
1836 
1837 	if (!skb->sk || skb->destructor == sock_edemux)
1838 		skb_condense(skb);
1839 	return 0;
1840 }
1841 EXPORT_SYMBOL(___pskb_trim);
1842 
1843 /**
1844  *	__pskb_pull_tail - advance tail of skb header
1845  *	@skb: buffer to reallocate
1846  *	@delta: number of bytes to advance tail
1847  *
1848  *	The function makes a sense only on a fragmented &sk_buff,
1849  *	it expands header moving its tail forward and copying necessary
1850  *	data from fragmented part.
1851  *
1852  *	&sk_buff MUST have reference count of 1.
1853  *
1854  *	Returns %NULL (and &sk_buff does not change) if pull failed
1855  *	or value of new tail of skb in the case of success.
1856  *
1857  *	All the pointers pointing into skb header may change and must be
1858  *	reloaded after call to this function.
1859  */
1860 
1861 /* Moves tail of skb head forward, copying data from fragmented part,
1862  * when it is necessary.
1863  * 1. It may fail due to malloc failure.
1864  * 2. It may change skb pointers.
1865  *
1866  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1867  */
1868 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1869 {
1870 	/* If skb has not enough free space at tail, get new one
1871 	 * plus 128 bytes for future expansions. If we have enough
1872 	 * room at tail, reallocate without expansion only if skb is cloned.
1873 	 */
1874 	int i, k, eat = (skb->tail + delta) - skb->end;
1875 
1876 	if (eat > 0 || skb_cloned(skb)) {
1877 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1878 				     GFP_ATOMIC))
1879 			return NULL;
1880 	}
1881 
1882 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1883 			     skb_tail_pointer(skb), delta));
1884 
1885 	/* Optimization: no fragments, no reasons to preestimate
1886 	 * size of pulled pages. Superb.
1887 	 */
1888 	if (!skb_has_frag_list(skb))
1889 		goto pull_pages;
1890 
1891 	/* Estimate size of pulled pages. */
1892 	eat = delta;
1893 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1894 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1895 
1896 		if (size >= eat)
1897 			goto pull_pages;
1898 		eat -= size;
1899 	}
1900 
1901 	/* If we need update frag list, we are in troubles.
1902 	 * Certainly, it is possible to add an offset to skb data,
1903 	 * but taking into account that pulling is expected to
1904 	 * be very rare operation, it is worth to fight against
1905 	 * further bloating skb head and crucify ourselves here instead.
1906 	 * Pure masohism, indeed. 8)8)
1907 	 */
1908 	if (eat) {
1909 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1910 		struct sk_buff *clone = NULL;
1911 		struct sk_buff *insp = NULL;
1912 
1913 		do {
1914 			BUG_ON(!list);
1915 
1916 			if (list->len <= eat) {
1917 				/* Eaten as whole. */
1918 				eat -= list->len;
1919 				list = list->next;
1920 				insp = list;
1921 			} else {
1922 				/* Eaten partially. */
1923 
1924 				if (skb_shared(list)) {
1925 					/* Sucks! We need to fork list. :-( */
1926 					clone = skb_clone(list, GFP_ATOMIC);
1927 					if (!clone)
1928 						return NULL;
1929 					insp = list->next;
1930 					list = clone;
1931 				} else {
1932 					/* This may be pulled without
1933 					 * problems. */
1934 					insp = list;
1935 				}
1936 				if (!pskb_pull(list, eat)) {
1937 					kfree_skb(clone);
1938 					return NULL;
1939 				}
1940 				break;
1941 			}
1942 		} while (eat);
1943 
1944 		/* Free pulled out fragments. */
1945 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1946 			skb_shinfo(skb)->frag_list = list->next;
1947 			kfree_skb(list);
1948 		}
1949 		/* And insert new clone at head. */
1950 		if (clone) {
1951 			clone->next = list;
1952 			skb_shinfo(skb)->frag_list = clone;
1953 		}
1954 	}
1955 	/* Success! Now we may commit changes to skb data. */
1956 
1957 pull_pages:
1958 	eat = delta;
1959 	k = 0;
1960 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1961 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1962 
1963 		if (size <= eat) {
1964 			skb_frag_unref(skb, i);
1965 			eat -= size;
1966 		} else {
1967 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1968 			if (eat) {
1969 				skb_shinfo(skb)->frags[k].page_offset += eat;
1970 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1971 				if (!i)
1972 					goto end;
1973 				eat = 0;
1974 			}
1975 			k++;
1976 		}
1977 	}
1978 	skb_shinfo(skb)->nr_frags = k;
1979 
1980 end:
1981 	skb->tail     += delta;
1982 	skb->data_len -= delta;
1983 
1984 	if (!skb->data_len)
1985 		skb_zcopy_clear(skb, false);
1986 
1987 	return skb_tail_pointer(skb);
1988 }
1989 EXPORT_SYMBOL(__pskb_pull_tail);
1990 
1991 /**
1992  *	skb_copy_bits - copy bits from skb to kernel buffer
1993  *	@skb: source skb
1994  *	@offset: offset in source
1995  *	@to: destination buffer
1996  *	@len: number of bytes to copy
1997  *
1998  *	Copy the specified number of bytes from the source skb to the
1999  *	destination buffer.
2000  *
2001  *	CAUTION ! :
2002  *		If its prototype is ever changed,
2003  *		check arch/{*}/net/{*}.S files,
2004  *		since it is called from BPF assembly code.
2005  */
2006 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2007 {
2008 	int start = skb_headlen(skb);
2009 	struct sk_buff *frag_iter;
2010 	int i, copy;
2011 
2012 	if (offset > (int)skb->len - len)
2013 		goto fault;
2014 
2015 	/* Copy header. */
2016 	if ((copy = start - offset) > 0) {
2017 		if (copy > len)
2018 			copy = len;
2019 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2020 		if ((len -= copy) == 0)
2021 			return 0;
2022 		offset += copy;
2023 		to     += copy;
2024 	}
2025 
2026 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2027 		int end;
2028 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2029 
2030 		WARN_ON(start > offset + len);
2031 
2032 		end = start + skb_frag_size(f);
2033 		if ((copy = end - offset) > 0) {
2034 			u32 p_off, p_len, copied;
2035 			struct page *p;
2036 			u8 *vaddr;
2037 
2038 			if (copy > len)
2039 				copy = len;
2040 
2041 			skb_frag_foreach_page(f,
2042 					      f->page_offset + offset - start,
2043 					      copy, p, p_off, p_len, copied) {
2044 				vaddr = kmap_atomic(p);
2045 				memcpy(to + copied, vaddr + p_off, p_len);
2046 				kunmap_atomic(vaddr);
2047 			}
2048 
2049 			if ((len -= copy) == 0)
2050 				return 0;
2051 			offset += copy;
2052 			to     += copy;
2053 		}
2054 		start = end;
2055 	}
2056 
2057 	skb_walk_frags(skb, frag_iter) {
2058 		int end;
2059 
2060 		WARN_ON(start > offset + len);
2061 
2062 		end = start + frag_iter->len;
2063 		if ((copy = end - offset) > 0) {
2064 			if (copy > len)
2065 				copy = len;
2066 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2067 				goto fault;
2068 			if ((len -= copy) == 0)
2069 				return 0;
2070 			offset += copy;
2071 			to     += copy;
2072 		}
2073 		start = end;
2074 	}
2075 
2076 	if (!len)
2077 		return 0;
2078 
2079 fault:
2080 	return -EFAULT;
2081 }
2082 EXPORT_SYMBOL(skb_copy_bits);
2083 
2084 /*
2085  * Callback from splice_to_pipe(), if we need to release some pages
2086  * at the end of the spd in case we error'ed out in filling the pipe.
2087  */
2088 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2089 {
2090 	put_page(spd->pages[i]);
2091 }
2092 
2093 static struct page *linear_to_page(struct page *page, unsigned int *len,
2094 				   unsigned int *offset,
2095 				   struct sock *sk)
2096 {
2097 	struct page_frag *pfrag = sk_page_frag(sk);
2098 
2099 	if (!sk_page_frag_refill(sk, pfrag))
2100 		return NULL;
2101 
2102 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2103 
2104 	memcpy(page_address(pfrag->page) + pfrag->offset,
2105 	       page_address(page) + *offset, *len);
2106 	*offset = pfrag->offset;
2107 	pfrag->offset += *len;
2108 
2109 	return pfrag->page;
2110 }
2111 
2112 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2113 			     struct page *page,
2114 			     unsigned int offset)
2115 {
2116 	return	spd->nr_pages &&
2117 		spd->pages[spd->nr_pages - 1] == page &&
2118 		(spd->partial[spd->nr_pages - 1].offset +
2119 		 spd->partial[spd->nr_pages - 1].len == offset);
2120 }
2121 
2122 /*
2123  * Fill page/offset/length into spd, if it can hold more pages.
2124  */
2125 static bool spd_fill_page(struct splice_pipe_desc *spd,
2126 			  struct pipe_inode_info *pipe, struct page *page,
2127 			  unsigned int *len, unsigned int offset,
2128 			  bool linear,
2129 			  struct sock *sk)
2130 {
2131 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2132 		return true;
2133 
2134 	if (linear) {
2135 		page = linear_to_page(page, len, &offset, sk);
2136 		if (!page)
2137 			return true;
2138 	}
2139 	if (spd_can_coalesce(spd, page, offset)) {
2140 		spd->partial[spd->nr_pages - 1].len += *len;
2141 		return false;
2142 	}
2143 	get_page(page);
2144 	spd->pages[spd->nr_pages] = page;
2145 	spd->partial[spd->nr_pages].len = *len;
2146 	spd->partial[spd->nr_pages].offset = offset;
2147 	spd->nr_pages++;
2148 
2149 	return false;
2150 }
2151 
2152 static bool __splice_segment(struct page *page, unsigned int poff,
2153 			     unsigned int plen, unsigned int *off,
2154 			     unsigned int *len,
2155 			     struct splice_pipe_desc *spd, bool linear,
2156 			     struct sock *sk,
2157 			     struct pipe_inode_info *pipe)
2158 {
2159 	if (!*len)
2160 		return true;
2161 
2162 	/* skip this segment if already processed */
2163 	if (*off >= plen) {
2164 		*off -= plen;
2165 		return false;
2166 	}
2167 
2168 	/* ignore any bits we already processed */
2169 	poff += *off;
2170 	plen -= *off;
2171 	*off = 0;
2172 
2173 	do {
2174 		unsigned int flen = min(*len, plen);
2175 
2176 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2177 				  linear, sk))
2178 			return true;
2179 		poff += flen;
2180 		plen -= flen;
2181 		*len -= flen;
2182 	} while (*len && plen);
2183 
2184 	return false;
2185 }
2186 
2187 /*
2188  * Map linear and fragment data from the skb to spd. It reports true if the
2189  * pipe is full or if we already spliced the requested length.
2190  */
2191 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2192 			      unsigned int *offset, unsigned int *len,
2193 			      struct splice_pipe_desc *spd, struct sock *sk)
2194 {
2195 	int seg;
2196 	struct sk_buff *iter;
2197 
2198 	/* map the linear part :
2199 	 * If skb->head_frag is set, this 'linear' part is backed by a
2200 	 * fragment, and if the head is not shared with any clones then
2201 	 * we can avoid a copy since we own the head portion of this page.
2202 	 */
2203 	if (__splice_segment(virt_to_page(skb->data),
2204 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2205 			     skb_headlen(skb),
2206 			     offset, len, spd,
2207 			     skb_head_is_locked(skb),
2208 			     sk, pipe))
2209 		return true;
2210 
2211 	/*
2212 	 * then map the fragments
2213 	 */
2214 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2215 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2216 
2217 		if (__splice_segment(skb_frag_page(f),
2218 				     f->page_offset, skb_frag_size(f),
2219 				     offset, len, spd, false, sk, pipe))
2220 			return true;
2221 	}
2222 
2223 	skb_walk_frags(skb, iter) {
2224 		if (*offset >= iter->len) {
2225 			*offset -= iter->len;
2226 			continue;
2227 		}
2228 		/* __skb_splice_bits() only fails if the output has no room
2229 		 * left, so no point in going over the frag_list for the error
2230 		 * case.
2231 		 */
2232 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2233 			return true;
2234 	}
2235 
2236 	return false;
2237 }
2238 
2239 /*
2240  * Map data from the skb to a pipe. Should handle both the linear part,
2241  * the fragments, and the frag list.
2242  */
2243 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2244 		    struct pipe_inode_info *pipe, unsigned int tlen,
2245 		    unsigned int flags)
2246 {
2247 	struct partial_page partial[MAX_SKB_FRAGS];
2248 	struct page *pages[MAX_SKB_FRAGS];
2249 	struct splice_pipe_desc spd = {
2250 		.pages = pages,
2251 		.partial = partial,
2252 		.nr_pages_max = MAX_SKB_FRAGS,
2253 		.ops = &nosteal_pipe_buf_ops,
2254 		.spd_release = sock_spd_release,
2255 	};
2256 	int ret = 0;
2257 
2258 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2259 
2260 	if (spd.nr_pages)
2261 		ret = splice_to_pipe(pipe, &spd);
2262 
2263 	return ret;
2264 }
2265 EXPORT_SYMBOL_GPL(skb_splice_bits);
2266 
2267 /* Send skb data on a socket. Socket must be locked. */
2268 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2269 			 int len)
2270 {
2271 	unsigned int orig_len = len;
2272 	struct sk_buff *head = skb;
2273 	unsigned short fragidx;
2274 	int slen, ret;
2275 
2276 do_frag_list:
2277 
2278 	/* Deal with head data */
2279 	while (offset < skb_headlen(skb) && len) {
2280 		struct kvec kv;
2281 		struct msghdr msg;
2282 
2283 		slen = min_t(int, len, skb_headlen(skb) - offset);
2284 		kv.iov_base = skb->data + offset;
2285 		kv.iov_len = slen;
2286 		memset(&msg, 0, sizeof(msg));
2287 
2288 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2289 		if (ret <= 0)
2290 			goto error;
2291 
2292 		offset += ret;
2293 		len -= ret;
2294 	}
2295 
2296 	/* All the data was skb head? */
2297 	if (!len)
2298 		goto out;
2299 
2300 	/* Make offset relative to start of frags */
2301 	offset -= skb_headlen(skb);
2302 
2303 	/* Find where we are in frag list */
2304 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2305 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2306 
2307 		if (offset < frag->size)
2308 			break;
2309 
2310 		offset -= frag->size;
2311 	}
2312 
2313 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2314 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2315 
2316 		slen = min_t(size_t, len, frag->size - offset);
2317 
2318 		while (slen) {
2319 			ret = kernel_sendpage_locked(sk, frag->page.p,
2320 						     frag->page_offset + offset,
2321 						     slen, MSG_DONTWAIT);
2322 			if (ret <= 0)
2323 				goto error;
2324 
2325 			len -= ret;
2326 			offset += ret;
2327 			slen -= ret;
2328 		}
2329 
2330 		offset = 0;
2331 	}
2332 
2333 	if (len) {
2334 		/* Process any frag lists */
2335 
2336 		if (skb == head) {
2337 			if (skb_has_frag_list(skb)) {
2338 				skb = skb_shinfo(skb)->frag_list;
2339 				goto do_frag_list;
2340 			}
2341 		} else if (skb->next) {
2342 			skb = skb->next;
2343 			goto do_frag_list;
2344 		}
2345 	}
2346 
2347 out:
2348 	return orig_len - len;
2349 
2350 error:
2351 	return orig_len == len ? ret : orig_len - len;
2352 }
2353 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2354 
2355 /* Send skb data on a socket. */
2356 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2357 {
2358 	int ret = 0;
2359 
2360 	lock_sock(sk);
2361 	ret = skb_send_sock_locked(sk, skb, offset, len);
2362 	release_sock(sk);
2363 
2364 	return ret;
2365 }
2366 EXPORT_SYMBOL_GPL(skb_send_sock);
2367 
2368 /**
2369  *	skb_store_bits - store bits from kernel buffer to skb
2370  *	@skb: destination buffer
2371  *	@offset: offset in destination
2372  *	@from: source buffer
2373  *	@len: number of bytes to copy
2374  *
2375  *	Copy the specified number of bytes from the source buffer to the
2376  *	destination skb.  This function handles all the messy bits of
2377  *	traversing fragment lists and such.
2378  */
2379 
2380 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2381 {
2382 	int start = skb_headlen(skb);
2383 	struct sk_buff *frag_iter;
2384 	int i, copy;
2385 
2386 	if (offset > (int)skb->len - len)
2387 		goto fault;
2388 
2389 	if ((copy = start - offset) > 0) {
2390 		if (copy > len)
2391 			copy = len;
2392 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2393 		if ((len -= copy) == 0)
2394 			return 0;
2395 		offset += copy;
2396 		from += copy;
2397 	}
2398 
2399 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2400 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2401 		int end;
2402 
2403 		WARN_ON(start > offset + len);
2404 
2405 		end = start + skb_frag_size(frag);
2406 		if ((copy = end - offset) > 0) {
2407 			u32 p_off, p_len, copied;
2408 			struct page *p;
2409 			u8 *vaddr;
2410 
2411 			if (copy > len)
2412 				copy = len;
2413 
2414 			skb_frag_foreach_page(frag,
2415 					      frag->page_offset + offset - start,
2416 					      copy, p, p_off, p_len, copied) {
2417 				vaddr = kmap_atomic(p);
2418 				memcpy(vaddr + p_off, from + copied, p_len);
2419 				kunmap_atomic(vaddr);
2420 			}
2421 
2422 			if ((len -= copy) == 0)
2423 				return 0;
2424 			offset += copy;
2425 			from += copy;
2426 		}
2427 		start = end;
2428 	}
2429 
2430 	skb_walk_frags(skb, frag_iter) {
2431 		int end;
2432 
2433 		WARN_ON(start > offset + len);
2434 
2435 		end = start + frag_iter->len;
2436 		if ((copy = end - offset) > 0) {
2437 			if (copy > len)
2438 				copy = len;
2439 			if (skb_store_bits(frag_iter, offset - start,
2440 					   from, copy))
2441 				goto fault;
2442 			if ((len -= copy) == 0)
2443 				return 0;
2444 			offset += copy;
2445 			from += copy;
2446 		}
2447 		start = end;
2448 	}
2449 	if (!len)
2450 		return 0;
2451 
2452 fault:
2453 	return -EFAULT;
2454 }
2455 EXPORT_SYMBOL(skb_store_bits);
2456 
2457 /* Checksum skb data. */
2458 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2459 		      __wsum csum, const struct skb_checksum_ops *ops)
2460 {
2461 	int start = skb_headlen(skb);
2462 	int i, copy = start - offset;
2463 	struct sk_buff *frag_iter;
2464 	int pos = 0;
2465 
2466 	/* Checksum header. */
2467 	if (copy > 0) {
2468 		if (copy > len)
2469 			copy = len;
2470 		csum = ops->update(skb->data + offset, copy, csum);
2471 		if ((len -= copy) == 0)
2472 			return csum;
2473 		offset += copy;
2474 		pos	= copy;
2475 	}
2476 
2477 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2478 		int end;
2479 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2480 
2481 		WARN_ON(start > offset + len);
2482 
2483 		end = start + skb_frag_size(frag);
2484 		if ((copy = end - offset) > 0) {
2485 			u32 p_off, p_len, copied;
2486 			struct page *p;
2487 			__wsum csum2;
2488 			u8 *vaddr;
2489 
2490 			if (copy > len)
2491 				copy = len;
2492 
2493 			skb_frag_foreach_page(frag,
2494 					      frag->page_offset + offset - start,
2495 					      copy, p, p_off, p_len, copied) {
2496 				vaddr = kmap_atomic(p);
2497 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2498 				kunmap_atomic(vaddr);
2499 				csum = ops->combine(csum, csum2, pos, p_len);
2500 				pos += p_len;
2501 			}
2502 
2503 			if (!(len -= copy))
2504 				return csum;
2505 			offset += copy;
2506 		}
2507 		start = end;
2508 	}
2509 
2510 	skb_walk_frags(skb, frag_iter) {
2511 		int end;
2512 
2513 		WARN_ON(start > offset + len);
2514 
2515 		end = start + frag_iter->len;
2516 		if ((copy = end - offset) > 0) {
2517 			__wsum csum2;
2518 			if (copy > len)
2519 				copy = len;
2520 			csum2 = __skb_checksum(frag_iter, offset - start,
2521 					       copy, 0, ops);
2522 			csum = ops->combine(csum, csum2, pos, copy);
2523 			if ((len -= copy) == 0)
2524 				return csum;
2525 			offset += copy;
2526 			pos    += copy;
2527 		}
2528 		start = end;
2529 	}
2530 	BUG_ON(len);
2531 
2532 	return csum;
2533 }
2534 EXPORT_SYMBOL(__skb_checksum);
2535 
2536 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2537 		    int len, __wsum csum)
2538 {
2539 	const struct skb_checksum_ops ops = {
2540 		.update  = csum_partial_ext,
2541 		.combine = csum_block_add_ext,
2542 	};
2543 
2544 	return __skb_checksum(skb, offset, len, csum, &ops);
2545 }
2546 EXPORT_SYMBOL(skb_checksum);
2547 
2548 /* Both of above in one bottle. */
2549 
2550 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2551 				    u8 *to, int len, __wsum csum)
2552 {
2553 	int start = skb_headlen(skb);
2554 	int i, copy = start - offset;
2555 	struct sk_buff *frag_iter;
2556 	int pos = 0;
2557 
2558 	/* Copy header. */
2559 	if (copy > 0) {
2560 		if (copy > len)
2561 			copy = len;
2562 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2563 						 copy, csum);
2564 		if ((len -= copy) == 0)
2565 			return csum;
2566 		offset += copy;
2567 		to     += copy;
2568 		pos	= copy;
2569 	}
2570 
2571 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2572 		int end;
2573 
2574 		WARN_ON(start > offset + len);
2575 
2576 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2577 		if ((copy = end - offset) > 0) {
2578 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2579 			u32 p_off, p_len, copied;
2580 			struct page *p;
2581 			__wsum csum2;
2582 			u8 *vaddr;
2583 
2584 			if (copy > len)
2585 				copy = len;
2586 
2587 			skb_frag_foreach_page(frag,
2588 					      frag->page_offset + offset - start,
2589 					      copy, p, p_off, p_len, copied) {
2590 				vaddr = kmap_atomic(p);
2591 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2592 								  to + copied,
2593 								  p_len, 0);
2594 				kunmap_atomic(vaddr);
2595 				csum = csum_block_add(csum, csum2, pos);
2596 				pos += p_len;
2597 			}
2598 
2599 			if (!(len -= copy))
2600 				return csum;
2601 			offset += copy;
2602 			to     += copy;
2603 		}
2604 		start = end;
2605 	}
2606 
2607 	skb_walk_frags(skb, frag_iter) {
2608 		__wsum csum2;
2609 		int end;
2610 
2611 		WARN_ON(start > offset + len);
2612 
2613 		end = start + frag_iter->len;
2614 		if ((copy = end - offset) > 0) {
2615 			if (copy > len)
2616 				copy = len;
2617 			csum2 = skb_copy_and_csum_bits(frag_iter,
2618 						       offset - start,
2619 						       to, copy, 0);
2620 			csum = csum_block_add(csum, csum2, pos);
2621 			if ((len -= copy) == 0)
2622 				return csum;
2623 			offset += copy;
2624 			to     += copy;
2625 			pos    += copy;
2626 		}
2627 		start = end;
2628 	}
2629 	BUG_ON(len);
2630 	return csum;
2631 }
2632 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2633 
2634 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2635 {
2636 	net_warn_ratelimited(
2637 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2638 		__func__);
2639 	return 0;
2640 }
2641 
2642 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2643 				       int offset, int len)
2644 {
2645 	net_warn_ratelimited(
2646 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2647 		__func__);
2648 	return 0;
2649 }
2650 
2651 static const struct skb_checksum_ops default_crc32c_ops = {
2652 	.update  = warn_crc32c_csum_update,
2653 	.combine = warn_crc32c_csum_combine,
2654 };
2655 
2656 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2657 	&default_crc32c_ops;
2658 EXPORT_SYMBOL(crc32c_csum_stub);
2659 
2660  /**
2661  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2662  *	@from: source buffer
2663  *
2664  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2665  *	into skb_zerocopy().
2666  */
2667 unsigned int
2668 skb_zerocopy_headlen(const struct sk_buff *from)
2669 {
2670 	unsigned int hlen = 0;
2671 
2672 	if (!from->head_frag ||
2673 	    skb_headlen(from) < L1_CACHE_BYTES ||
2674 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2675 		hlen = skb_headlen(from);
2676 
2677 	if (skb_has_frag_list(from))
2678 		hlen = from->len;
2679 
2680 	return hlen;
2681 }
2682 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2683 
2684 /**
2685  *	skb_zerocopy - Zero copy skb to skb
2686  *	@to: destination buffer
2687  *	@from: source buffer
2688  *	@len: number of bytes to copy from source buffer
2689  *	@hlen: size of linear headroom in destination buffer
2690  *
2691  *	Copies up to `len` bytes from `from` to `to` by creating references
2692  *	to the frags in the source buffer.
2693  *
2694  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2695  *	headroom in the `to` buffer.
2696  *
2697  *	Return value:
2698  *	0: everything is OK
2699  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2700  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2701  */
2702 int
2703 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2704 {
2705 	int i, j = 0;
2706 	int plen = 0; /* length of skb->head fragment */
2707 	int ret;
2708 	struct page *page;
2709 	unsigned int offset;
2710 
2711 	BUG_ON(!from->head_frag && !hlen);
2712 
2713 	/* dont bother with small payloads */
2714 	if (len <= skb_tailroom(to))
2715 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2716 
2717 	if (hlen) {
2718 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2719 		if (unlikely(ret))
2720 			return ret;
2721 		len -= hlen;
2722 	} else {
2723 		plen = min_t(int, skb_headlen(from), len);
2724 		if (plen) {
2725 			page = virt_to_head_page(from->head);
2726 			offset = from->data - (unsigned char *)page_address(page);
2727 			__skb_fill_page_desc(to, 0, page, offset, plen);
2728 			get_page(page);
2729 			j = 1;
2730 			len -= plen;
2731 		}
2732 	}
2733 
2734 	to->truesize += len + plen;
2735 	to->len += len + plen;
2736 	to->data_len += len + plen;
2737 
2738 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2739 		skb_tx_error(from);
2740 		return -ENOMEM;
2741 	}
2742 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2743 
2744 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2745 		if (!len)
2746 			break;
2747 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2748 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2749 		len -= skb_shinfo(to)->frags[j].size;
2750 		skb_frag_ref(to, j);
2751 		j++;
2752 	}
2753 	skb_shinfo(to)->nr_frags = j;
2754 
2755 	return 0;
2756 }
2757 EXPORT_SYMBOL_GPL(skb_zerocopy);
2758 
2759 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2760 {
2761 	__wsum csum;
2762 	long csstart;
2763 
2764 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2765 		csstart = skb_checksum_start_offset(skb);
2766 	else
2767 		csstart = skb_headlen(skb);
2768 
2769 	BUG_ON(csstart > skb_headlen(skb));
2770 
2771 	skb_copy_from_linear_data(skb, to, csstart);
2772 
2773 	csum = 0;
2774 	if (csstart != skb->len)
2775 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2776 					      skb->len - csstart, 0);
2777 
2778 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2779 		long csstuff = csstart + skb->csum_offset;
2780 
2781 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2782 	}
2783 }
2784 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2785 
2786 /**
2787  *	skb_dequeue - remove from the head of the queue
2788  *	@list: list to dequeue from
2789  *
2790  *	Remove the head of the list. The list lock is taken so the function
2791  *	may be used safely with other locking list functions. The head item is
2792  *	returned or %NULL if the list is empty.
2793  */
2794 
2795 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2796 {
2797 	unsigned long flags;
2798 	struct sk_buff *result;
2799 
2800 	spin_lock_irqsave(&list->lock, flags);
2801 	result = __skb_dequeue(list);
2802 	spin_unlock_irqrestore(&list->lock, flags);
2803 	return result;
2804 }
2805 EXPORT_SYMBOL(skb_dequeue);
2806 
2807 /**
2808  *	skb_dequeue_tail - remove from the tail of the queue
2809  *	@list: list to dequeue from
2810  *
2811  *	Remove the tail of the list. The list lock is taken so the function
2812  *	may be used safely with other locking list functions. The tail item is
2813  *	returned or %NULL if the list is empty.
2814  */
2815 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2816 {
2817 	unsigned long flags;
2818 	struct sk_buff *result;
2819 
2820 	spin_lock_irqsave(&list->lock, flags);
2821 	result = __skb_dequeue_tail(list);
2822 	spin_unlock_irqrestore(&list->lock, flags);
2823 	return result;
2824 }
2825 EXPORT_SYMBOL(skb_dequeue_tail);
2826 
2827 /**
2828  *	skb_queue_purge - empty a list
2829  *	@list: list to empty
2830  *
2831  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2832  *	the list and one reference dropped. This function takes the list
2833  *	lock and is atomic with respect to other list locking functions.
2834  */
2835 void skb_queue_purge(struct sk_buff_head *list)
2836 {
2837 	struct sk_buff *skb;
2838 	while ((skb = skb_dequeue(list)) != NULL)
2839 		kfree_skb(skb);
2840 }
2841 EXPORT_SYMBOL(skb_queue_purge);
2842 
2843 /**
2844  *	skb_rbtree_purge - empty a skb rbtree
2845  *	@root: root of the rbtree to empty
2846  *
2847  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2848  *	the list and one reference dropped. This function does not take
2849  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2850  *	out-of-order queue is protected by the socket lock).
2851  */
2852 void skb_rbtree_purge(struct rb_root *root)
2853 {
2854 	struct rb_node *p = rb_first(root);
2855 
2856 	while (p) {
2857 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2858 
2859 		p = rb_next(p);
2860 		rb_erase(&skb->rbnode, root);
2861 		kfree_skb(skb);
2862 	}
2863 }
2864 
2865 /**
2866  *	skb_queue_head - queue a buffer at the list head
2867  *	@list: list to use
2868  *	@newsk: buffer to queue
2869  *
2870  *	Queue a buffer at the start of the list. This function takes the
2871  *	list lock and can be used safely with other locking &sk_buff functions
2872  *	safely.
2873  *
2874  *	A buffer cannot be placed on two lists at the same time.
2875  */
2876 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2877 {
2878 	unsigned long flags;
2879 
2880 	spin_lock_irqsave(&list->lock, flags);
2881 	__skb_queue_head(list, newsk);
2882 	spin_unlock_irqrestore(&list->lock, flags);
2883 }
2884 EXPORT_SYMBOL(skb_queue_head);
2885 
2886 /**
2887  *	skb_queue_tail - queue a buffer at the list tail
2888  *	@list: list to use
2889  *	@newsk: buffer to queue
2890  *
2891  *	Queue a buffer at the tail of the list. This function takes the
2892  *	list lock and can be used safely with other locking &sk_buff functions
2893  *	safely.
2894  *
2895  *	A buffer cannot be placed on two lists at the same time.
2896  */
2897 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2898 {
2899 	unsigned long flags;
2900 
2901 	spin_lock_irqsave(&list->lock, flags);
2902 	__skb_queue_tail(list, newsk);
2903 	spin_unlock_irqrestore(&list->lock, flags);
2904 }
2905 EXPORT_SYMBOL(skb_queue_tail);
2906 
2907 /**
2908  *	skb_unlink	-	remove a buffer from a list
2909  *	@skb: buffer to remove
2910  *	@list: list to use
2911  *
2912  *	Remove a packet from a list. The list locks are taken and this
2913  *	function is atomic with respect to other list locked calls
2914  *
2915  *	You must know what list the SKB is on.
2916  */
2917 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2918 {
2919 	unsigned long flags;
2920 
2921 	spin_lock_irqsave(&list->lock, flags);
2922 	__skb_unlink(skb, list);
2923 	spin_unlock_irqrestore(&list->lock, flags);
2924 }
2925 EXPORT_SYMBOL(skb_unlink);
2926 
2927 /**
2928  *	skb_append	-	append a buffer
2929  *	@old: buffer to insert after
2930  *	@newsk: buffer to insert
2931  *	@list: list to use
2932  *
2933  *	Place a packet after a given packet in a list. The list locks are taken
2934  *	and this function is atomic with respect to other list locked calls.
2935  *	A buffer cannot be placed on two lists at the same time.
2936  */
2937 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2938 {
2939 	unsigned long flags;
2940 
2941 	spin_lock_irqsave(&list->lock, flags);
2942 	__skb_queue_after(list, old, newsk);
2943 	spin_unlock_irqrestore(&list->lock, flags);
2944 }
2945 EXPORT_SYMBOL(skb_append);
2946 
2947 /**
2948  *	skb_insert	-	insert a buffer
2949  *	@old: buffer to insert before
2950  *	@newsk: buffer to insert
2951  *	@list: list to use
2952  *
2953  *	Place a packet before a given packet in a list. The list locks are
2954  * 	taken and this function is atomic with respect to other list locked
2955  *	calls.
2956  *
2957  *	A buffer cannot be placed on two lists at the same time.
2958  */
2959 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2960 {
2961 	unsigned long flags;
2962 
2963 	spin_lock_irqsave(&list->lock, flags);
2964 	__skb_insert(newsk, old->prev, old, list);
2965 	spin_unlock_irqrestore(&list->lock, flags);
2966 }
2967 EXPORT_SYMBOL(skb_insert);
2968 
2969 static inline void skb_split_inside_header(struct sk_buff *skb,
2970 					   struct sk_buff* skb1,
2971 					   const u32 len, const int pos)
2972 {
2973 	int i;
2974 
2975 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2976 					 pos - len);
2977 	/* And move data appendix as is. */
2978 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2979 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2980 
2981 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2982 	skb_shinfo(skb)->nr_frags  = 0;
2983 	skb1->data_len		   = skb->data_len;
2984 	skb1->len		   += skb1->data_len;
2985 	skb->data_len		   = 0;
2986 	skb->len		   = len;
2987 	skb_set_tail_pointer(skb, len);
2988 }
2989 
2990 static inline void skb_split_no_header(struct sk_buff *skb,
2991 				       struct sk_buff* skb1,
2992 				       const u32 len, int pos)
2993 {
2994 	int i, k = 0;
2995 	const int nfrags = skb_shinfo(skb)->nr_frags;
2996 
2997 	skb_shinfo(skb)->nr_frags = 0;
2998 	skb1->len		  = skb1->data_len = skb->len - len;
2999 	skb->len		  = len;
3000 	skb->data_len		  = len - pos;
3001 
3002 	for (i = 0; i < nfrags; i++) {
3003 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3004 
3005 		if (pos + size > len) {
3006 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3007 
3008 			if (pos < len) {
3009 				/* Split frag.
3010 				 * We have two variants in this case:
3011 				 * 1. Move all the frag to the second
3012 				 *    part, if it is possible. F.e.
3013 				 *    this approach is mandatory for TUX,
3014 				 *    where splitting is expensive.
3015 				 * 2. Split is accurately. We make this.
3016 				 */
3017 				skb_frag_ref(skb, i);
3018 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3019 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3020 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3021 				skb_shinfo(skb)->nr_frags++;
3022 			}
3023 			k++;
3024 		} else
3025 			skb_shinfo(skb)->nr_frags++;
3026 		pos += size;
3027 	}
3028 	skb_shinfo(skb1)->nr_frags = k;
3029 }
3030 
3031 /**
3032  * skb_split - Split fragmented skb to two parts at length len.
3033  * @skb: the buffer to split
3034  * @skb1: the buffer to receive the second part
3035  * @len: new length for skb
3036  */
3037 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3038 {
3039 	int pos = skb_headlen(skb);
3040 
3041 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3042 				      SKBTX_SHARED_FRAG;
3043 	skb_zerocopy_clone(skb1, skb, 0);
3044 	if (len < pos)	/* Split line is inside header. */
3045 		skb_split_inside_header(skb, skb1, len, pos);
3046 	else		/* Second chunk has no header, nothing to copy. */
3047 		skb_split_no_header(skb, skb1, len, pos);
3048 }
3049 EXPORT_SYMBOL(skb_split);
3050 
3051 /* Shifting from/to a cloned skb is a no-go.
3052  *
3053  * Caller cannot keep skb_shinfo related pointers past calling here!
3054  */
3055 static int skb_prepare_for_shift(struct sk_buff *skb)
3056 {
3057 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3058 }
3059 
3060 /**
3061  * skb_shift - Shifts paged data partially from skb to another
3062  * @tgt: buffer into which tail data gets added
3063  * @skb: buffer from which the paged data comes from
3064  * @shiftlen: shift up to this many bytes
3065  *
3066  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3067  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3068  * It's up to caller to free skb if everything was shifted.
3069  *
3070  * If @tgt runs out of frags, the whole operation is aborted.
3071  *
3072  * Skb cannot include anything else but paged data while tgt is allowed
3073  * to have non-paged data as well.
3074  *
3075  * TODO: full sized shift could be optimized but that would need
3076  * specialized skb free'er to handle frags without up-to-date nr_frags.
3077  */
3078 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3079 {
3080 	int from, to, merge, todo;
3081 	struct skb_frag_struct *fragfrom, *fragto;
3082 
3083 	BUG_ON(shiftlen > skb->len);
3084 
3085 	if (skb_headlen(skb))
3086 		return 0;
3087 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3088 		return 0;
3089 
3090 	todo = shiftlen;
3091 	from = 0;
3092 	to = skb_shinfo(tgt)->nr_frags;
3093 	fragfrom = &skb_shinfo(skb)->frags[from];
3094 
3095 	/* Actual merge is delayed until the point when we know we can
3096 	 * commit all, so that we don't have to undo partial changes
3097 	 */
3098 	if (!to ||
3099 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3100 			      fragfrom->page_offset)) {
3101 		merge = -1;
3102 	} else {
3103 		merge = to - 1;
3104 
3105 		todo -= skb_frag_size(fragfrom);
3106 		if (todo < 0) {
3107 			if (skb_prepare_for_shift(skb) ||
3108 			    skb_prepare_for_shift(tgt))
3109 				return 0;
3110 
3111 			/* All previous frag pointers might be stale! */
3112 			fragfrom = &skb_shinfo(skb)->frags[from];
3113 			fragto = &skb_shinfo(tgt)->frags[merge];
3114 
3115 			skb_frag_size_add(fragto, shiftlen);
3116 			skb_frag_size_sub(fragfrom, shiftlen);
3117 			fragfrom->page_offset += shiftlen;
3118 
3119 			goto onlymerged;
3120 		}
3121 
3122 		from++;
3123 	}
3124 
3125 	/* Skip full, not-fitting skb to avoid expensive operations */
3126 	if ((shiftlen == skb->len) &&
3127 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3128 		return 0;
3129 
3130 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3131 		return 0;
3132 
3133 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3134 		if (to == MAX_SKB_FRAGS)
3135 			return 0;
3136 
3137 		fragfrom = &skb_shinfo(skb)->frags[from];
3138 		fragto = &skb_shinfo(tgt)->frags[to];
3139 
3140 		if (todo >= skb_frag_size(fragfrom)) {
3141 			*fragto = *fragfrom;
3142 			todo -= skb_frag_size(fragfrom);
3143 			from++;
3144 			to++;
3145 
3146 		} else {
3147 			__skb_frag_ref(fragfrom);
3148 			fragto->page = fragfrom->page;
3149 			fragto->page_offset = fragfrom->page_offset;
3150 			skb_frag_size_set(fragto, todo);
3151 
3152 			fragfrom->page_offset += todo;
3153 			skb_frag_size_sub(fragfrom, todo);
3154 			todo = 0;
3155 
3156 			to++;
3157 			break;
3158 		}
3159 	}
3160 
3161 	/* Ready to "commit" this state change to tgt */
3162 	skb_shinfo(tgt)->nr_frags = to;
3163 
3164 	if (merge >= 0) {
3165 		fragfrom = &skb_shinfo(skb)->frags[0];
3166 		fragto = &skb_shinfo(tgt)->frags[merge];
3167 
3168 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3169 		__skb_frag_unref(fragfrom);
3170 	}
3171 
3172 	/* Reposition in the original skb */
3173 	to = 0;
3174 	while (from < skb_shinfo(skb)->nr_frags)
3175 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3176 	skb_shinfo(skb)->nr_frags = to;
3177 
3178 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3179 
3180 onlymerged:
3181 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3182 	 * the other hand might need it if it needs to be resent
3183 	 */
3184 	tgt->ip_summed = CHECKSUM_PARTIAL;
3185 	skb->ip_summed = CHECKSUM_PARTIAL;
3186 
3187 	/* Yak, is it really working this way? Some helper please? */
3188 	skb->len -= shiftlen;
3189 	skb->data_len -= shiftlen;
3190 	skb->truesize -= shiftlen;
3191 	tgt->len += shiftlen;
3192 	tgt->data_len += shiftlen;
3193 	tgt->truesize += shiftlen;
3194 
3195 	return shiftlen;
3196 }
3197 
3198 /**
3199  * skb_prepare_seq_read - Prepare a sequential read of skb data
3200  * @skb: the buffer to read
3201  * @from: lower offset of data to be read
3202  * @to: upper offset of data to be read
3203  * @st: state variable
3204  *
3205  * Initializes the specified state variable. Must be called before
3206  * invoking skb_seq_read() for the first time.
3207  */
3208 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3209 			  unsigned int to, struct skb_seq_state *st)
3210 {
3211 	st->lower_offset = from;
3212 	st->upper_offset = to;
3213 	st->root_skb = st->cur_skb = skb;
3214 	st->frag_idx = st->stepped_offset = 0;
3215 	st->frag_data = NULL;
3216 }
3217 EXPORT_SYMBOL(skb_prepare_seq_read);
3218 
3219 /**
3220  * skb_seq_read - Sequentially read skb data
3221  * @consumed: number of bytes consumed by the caller so far
3222  * @data: destination pointer for data to be returned
3223  * @st: state variable
3224  *
3225  * Reads a block of skb data at @consumed relative to the
3226  * lower offset specified to skb_prepare_seq_read(). Assigns
3227  * the head of the data block to @data and returns the length
3228  * of the block or 0 if the end of the skb data or the upper
3229  * offset has been reached.
3230  *
3231  * The caller is not required to consume all of the data
3232  * returned, i.e. @consumed is typically set to the number
3233  * of bytes already consumed and the next call to
3234  * skb_seq_read() will return the remaining part of the block.
3235  *
3236  * Note 1: The size of each block of data returned can be arbitrary,
3237  *       this limitation is the cost for zerocopy sequential
3238  *       reads of potentially non linear data.
3239  *
3240  * Note 2: Fragment lists within fragments are not implemented
3241  *       at the moment, state->root_skb could be replaced with
3242  *       a stack for this purpose.
3243  */
3244 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3245 			  struct skb_seq_state *st)
3246 {
3247 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3248 	skb_frag_t *frag;
3249 
3250 	if (unlikely(abs_offset >= st->upper_offset)) {
3251 		if (st->frag_data) {
3252 			kunmap_atomic(st->frag_data);
3253 			st->frag_data = NULL;
3254 		}
3255 		return 0;
3256 	}
3257 
3258 next_skb:
3259 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3260 
3261 	if (abs_offset < block_limit && !st->frag_data) {
3262 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3263 		return block_limit - abs_offset;
3264 	}
3265 
3266 	if (st->frag_idx == 0 && !st->frag_data)
3267 		st->stepped_offset += skb_headlen(st->cur_skb);
3268 
3269 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3270 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3271 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3272 
3273 		if (abs_offset < block_limit) {
3274 			if (!st->frag_data)
3275 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3276 
3277 			*data = (u8 *) st->frag_data + frag->page_offset +
3278 				(abs_offset - st->stepped_offset);
3279 
3280 			return block_limit - abs_offset;
3281 		}
3282 
3283 		if (st->frag_data) {
3284 			kunmap_atomic(st->frag_data);
3285 			st->frag_data = NULL;
3286 		}
3287 
3288 		st->frag_idx++;
3289 		st->stepped_offset += skb_frag_size(frag);
3290 	}
3291 
3292 	if (st->frag_data) {
3293 		kunmap_atomic(st->frag_data);
3294 		st->frag_data = NULL;
3295 	}
3296 
3297 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3298 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3299 		st->frag_idx = 0;
3300 		goto next_skb;
3301 	} else if (st->cur_skb->next) {
3302 		st->cur_skb = st->cur_skb->next;
3303 		st->frag_idx = 0;
3304 		goto next_skb;
3305 	}
3306 
3307 	return 0;
3308 }
3309 EXPORT_SYMBOL(skb_seq_read);
3310 
3311 /**
3312  * skb_abort_seq_read - Abort a sequential read of skb data
3313  * @st: state variable
3314  *
3315  * Must be called if skb_seq_read() was not called until it
3316  * returned 0.
3317  */
3318 void skb_abort_seq_read(struct skb_seq_state *st)
3319 {
3320 	if (st->frag_data)
3321 		kunmap_atomic(st->frag_data);
3322 }
3323 EXPORT_SYMBOL(skb_abort_seq_read);
3324 
3325 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3326 
3327 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3328 					  struct ts_config *conf,
3329 					  struct ts_state *state)
3330 {
3331 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3332 }
3333 
3334 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3335 {
3336 	skb_abort_seq_read(TS_SKB_CB(state));
3337 }
3338 
3339 /**
3340  * skb_find_text - Find a text pattern in skb data
3341  * @skb: the buffer to look in
3342  * @from: search offset
3343  * @to: search limit
3344  * @config: textsearch configuration
3345  *
3346  * Finds a pattern in the skb data according to the specified
3347  * textsearch configuration. Use textsearch_next() to retrieve
3348  * subsequent occurrences of the pattern. Returns the offset
3349  * to the first occurrence or UINT_MAX if no match was found.
3350  */
3351 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3352 			   unsigned int to, struct ts_config *config)
3353 {
3354 	struct ts_state state;
3355 	unsigned int ret;
3356 
3357 	config->get_next_block = skb_ts_get_next_block;
3358 	config->finish = skb_ts_finish;
3359 
3360 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3361 
3362 	ret = textsearch_find(config, &state);
3363 	return (ret <= to - from ? ret : UINT_MAX);
3364 }
3365 EXPORT_SYMBOL(skb_find_text);
3366 
3367 /**
3368  * skb_append_datato_frags - append the user data to a skb
3369  * @sk: sock  structure
3370  * @skb: skb structure to be appended with user data.
3371  * @getfrag: call back function to be used for getting the user data
3372  * @from: pointer to user message iov
3373  * @length: length of the iov message
3374  *
3375  * Description: This procedure append the user data in the fragment part
3376  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
3377  */
3378 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3379 			int (*getfrag)(void *from, char *to, int offset,
3380 					int len, int odd, struct sk_buff *skb),
3381 			void *from, int length)
3382 {
3383 	int frg_cnt = skb_shinfo(skb)->nr_frags;
3384 	int copy;
3385 	int offset = 0;
3386 	int ret;
3387 	struct page_frag *pfrag = &current->task_frag;
3388 
3389 	do {
3390 		/* Return error if we don't have space for new frag */
3391 		if (frg_cnt >= MAX_SKB_FRAGS)
3392 			return -EMSGSIZE;
3393 
3394 		if (!sk_page_frag_refill(sk, pfrag))
3395 			return -ENOMEM;
3396 
3397 		/* copy the user data to page */
3398 		copy = min_t(int, length, pfrag->size - pfrag->offset);
3399 
3400 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3401 			      offset, copy, 0, skb);
3402 		if (ret < 0)
3403 			return -EFAULT;
3404 
3405 		/* copy was successful so update the size parameters */
3406 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3407 				   copy);
3408 		frg_cnt++;
3409 		pfrag->offset += copy;
3410 		get_page(pfrag->page);
3411 
3412 		skb->truesize += copy;
3413 		refcount_add(copy, &sk->sk_wmem_alloc);
3414 		skb->len += copy;
3415 		skb->data_len += copy;
3416 		offset += copy;
3417 		length -= copy;
3418 
3419 	} while (length > 0);
3420 
3421 	return 0;
3422 }
3423 EXPORT_SYMBOL(skb_append_datato_frags);
3424 
3425 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3426 			 int offset, size_t size)
3427 {
3428 	int i = skb_shinfo(skb)->nr_frags;
3429 
3430 	if (skb_can_coalesce(skb, i, page, offset)) {
3431 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3432 	} else if (i < MAX_SKB_FRAGS) {
3433 		get_page(page);
3434 		skb_fill_page_desc(skb, i, page, offset, size);
3435 	} else {
3436 		return -EMSGSIZE;
3437 	}
3438 
3439 	return 0;
3440 }
3441 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3442 
3443 /**
3444  *	skb_pull_rcsum - pull skb and update receive checksum
3445  *	@skb: buffer to update
3446  *	@len: length of data pulled
3447  *
3448  *	This function performs an skb_pull on the packet and updates
3449  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3450  *	receive path processing instead of skb_pull unless you know
3451  *	that the checksum difference is zero (e.g., a valid IP header)
3452  *	or you are setting ip_summed to CHECKSUM_NONE.
3453  */
3454 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3455 {
3456 	unsigned char *data = skb->data;
3457 
3458 	BUG_ON(len > skb->len);
3459 	__skb_pull(skb, len);
3460 	skb_postpull_rcsum(skb, data, len);
3461 	return skb->data;
3462 }
3463 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3464 
3465 /**
3466  *	skb_segment - Perform protocol segmentation on skb.
3467  *	@head_skb: buffer to segment
3468  *	@features: features for the output path (see dev->features)
3469  *
3470  *	This function performs segmentation on the given skb.  It returns
3471  *	a pointer to the first in a list of new skbs for the segments.
3472  *	In case of error it returns ERR_PTR(err).
3473  */
3474 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3475 			    netdev_features_t features)
3476 {
3477 	struct sk_buff *segs = NULL;
3478 	struct sk_buff *tail = NULL;
3479 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3480 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3481 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3482 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3483 	struct sk_buff *frag_skb = head_skb;
3484 	unsigned int offset = doffset;
3485 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3486 	unsigned int partial_segs = 0;
3487 	unsigned int headroom;
3488 	unsigned int len = head_skb->len;
3489 	__be16 proto;
3490 	bool csum, sg;
3491 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3492 	int err = -ENOMEM;
3493 	int i = 0;
3494 	int pos;
3495 	int dummy;
3496 
3497 	__skb_push(head_skb, doffset);
3498 	proto = skb_network_protocol(head_skb, &dummy);
3499 	if (unlikely(!proto))
3500 		return ERR_PTR(-EINVAL);
3501 
3502 	sg = !!(features & NETIF_F_SG);
3503 	csum = !!can_checksum_protocol(features, proto);
3504 
3505 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3506 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3507 			struct sk_buff *iter;
3508 			unsigned int frag_len;
3509 
3510 			if (!list_skb ||
3511 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3512 				goto normal;
3513 
3514 			/* If we get here then all the required
3515 			 * GSO features except frag_list are supported.
3516 			 * Try to split the SKB to multiple GSO SKBs
3517 			 * with no frag_list.
3518 			 * Currently we can do that only when the buffers don't
3519 			 * have a linear part and all the buffers except
3520 			 * the last are of the same length.
3521 			 */
3522 			frag_len = list_skb->len;
3523 			skb_walk_frags(head_skb, iter) {
3524 				if (frag_len != iter->len && iter->next)
3525 					goto normal;
3526 				if (skb_headlen(iter) && !iter->head_frag)
3527 					goto normal;
3528 
3529 				len -= iter->len;
3530 			}
3531 
3532 			if (len != frag_len)
3533 				goto normal;
3534 		}
3535 
3536 		/* GSO partial only requires that we trim off any excess that
3537 		 * doesn't fit into an MSS sized block, so take care of that
3538 		 * now.
3539 		 */
3540 		partial_segs = len / mss;
3541 		if (partial_segs > 1)
3542 			mss *= partial_segs;
3543 		else
3544 			partial_segs = 0;
3545 	}
3546 
3547 normal:
3548 	headroom = skb_headroom(head_skb);
3549 	pos = skb_headlen(head_skb);
3550 
3551 	do {
3552 		struct sk_buff *nskb;
3553 		skb_frag_t *nskb_frag;
3554 		int hsize;
3555 		int size;
3556 
3557 		if (unlikely(mss == GSO_BY_FRAGS)) {
3558 			len = list_skb->len;
3559 		} else {
3560 			len = head_skb->len - offset;
3561 			if (len > mss)
3562 				len = mss;
3563 		}
3564 
3565 		hsize = skb_headlen(head_skb) - offset;
3566 		if (hsize < 0)
3567 			hsize = 0;
3568 		if (hsize > len || !sg)
3569 			hsize = len;
3570 
3571 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3572 		    (skb_headlen(list_skb) == len || sg)) {
3573 			BUG_ON(skb_headlen(list_skb) > len);
3574 
3575 			i = 0;
3576 			nfrags = skb_shinfo(list_skb)->nr_frags;
3577 			frag = skb_shinfo(list_skb)->frags;
3578 			frag_skb = list_skb;
3579 			pos += skb_headlen(list_skb);
3580 
3581 			while (pos < offset + len) {
3582 				BUG_ON(i >= nfrags);
3583 
3584 				size = skb_frag_size(frag);
3585 				if (pos + size > offset + len)
3586 					break;
3587 
3588 				i++;
3589 				pos += size;
3590 				frag++;
3591 			}
3592 
3593 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3594 			list_skb = list_skb->next;
3595 
3596 			if (unlikely(!nskb))
3597 				goto err;
3598 
3599 			if (unlikely(pskb_trim(nskb, len))) {
3600 				kfree_skb(nskb);
3601 				goto err;
3602 			}
3603 
3604 			hsize = skb_end_offset(nskb);
3605 			if (skb_cow_head(nskb, doffset + headroom)) {
3606 				kfree_skb(nskb);
3607 				goto err;
3608 			}
3609 
3610 			nskb->truesize += skb_end_offset(nskb) - hsize;
3611 			skb_release_head_state(nskb);
3612 			__skb_push(nskb, doffset);
3613 		} else {
3614 			nskb = __alloc_skb(hsize + doffset + headroom,
3615 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3616 					   NUMA_NO_NODE);
3617 
3618 			if (unlikely(!nskb))
3619 				goto err;
3620 
3621 			skb_reserve(nskb, headroom);
3622 			__skb_put(nskb, doffset);
3623 		}
3624 
3625 		if (segs)
3626 			tail->next = nskb;
3627 		else
3628 			segs = nskb;
3629 		tail = nskb;
3630 
3631 		__copy_skb_header(nskb, head_skb);
3632 
3633 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3634 		skb_reset_mac_len(nskb);
3635 
3636 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3637 						 nskb->data - tnl_hlen,
3638 						 doffset + tnl_hlen);
3639 
3640 		if (nskb->len == len + doffset)
3641 			goto perform_csum_check;
3642 
3643 		if (!sg) {
3644 			if (!nskb->remcsum_offload)
3645 				nskb->ip_summed = CHECKSUM_NONE;
3646 			SKB_GSO_CB(nskb)->csum =
3647 				skb_copy_and_csum_bits(head_skb, offset,
3648 						       skb_put(nskb, len),
3649 						       len, 0);
3650 			SKB_GSO_CB(nskb)->csum_start =
3651 				skb_headroom(nskb) + doffset;
3652 			continue;
3653 		}
3654 
3655 		nskb_frag = skb_shinfo(nskb)->frags;
3656 
3657 		skb_copy_from_linear_data_offset(head_skb, offset,
3658 						 skb_put(nskb, hsize), hsize);
3659 
3660 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3661 					      SKBTX_SHARED_FRAG;
3662 		if (skb_zerocopy_clone(nskb, head_skb, GFP_ATOMIC))
3663 			goto err;
3664 
3665 		while (pos < offset + len) {
3666 			if (i >= nfrags) {
3667 				BUG_ON(skb_headlen(list_skb));
3668 
3669 				i = 0;
3670 				nfrags = skb_shinfo(list_skb)->nr_frags;
3671 				frag = skb_shinfo(list_skb)->frags;
3672 				frag_skb = list_skb;
3673 
3674 				BUG_ON(!nfrags);
3675 
3676 				list_skb = list_skb->next;
3677 			}
3678 
3679 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3680 				     MAX_SKB_FRAGS)) {
3681 				net_warn_ratelimited(
3682 					"skb_segment: too many frags: %u %u\n",
3683 					pos, mss);
3684 				goto err;
3685 			}
3686 
3687 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3688 				goto err;
3689 
3690 			*nskb_frag = *frag;
3691 			__skb_frag_ref(nskb_frag);
3692 			size = skb_frag_size(nskb_frag);
3693 
3694 			if (pos < offset) {
3695 				nskb_frag->page_offset += offset - pos;
3696 				skb_frag_size_sub(nskb_frag, offset - pos);
3697 			}
3698 
3699 			skb_shinfo(nskb)->nr_frags++;
3700 
3701 			if (pos + size <= offset + len) {
3702 				i++;
3703 				frag++;
3704 				pos += size;
3705 			} else {
3706 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3707 				goto skip_fraglist;
3708 			}
3709 
3710 			nskb_frag++;
3711 		}
3712 
3713 skip_fraglist:
3714 		nskb->data_len = len - hsize;
3715 		nskb->len += nskb->data_len;
3716 		nskb->truesize += nskb->data_len;
3717 
3718 perform_csum_check:
3719 		if (!csum) {
3720 			if (skb_has_shared_frag(nskb)) {
3721 				err = __skb_linearize(nskb);
3722 				if (err)
3723 					goto err;
3724 			}
3725 			if (!nskb->remcsum_offload)
3726 				nskb->ip_summed = CHECKSUM_NONE;
3727 			SKB_GSO_CB(nskb)->csum =
3728 				skb_checksum(nskb, doffset,
3729 					     nskb->len - doffset, 0);
3730 			SKB_GSO_CB(nskb)->csum_start =
3731 				skb_headroom(nskb) + doffset;
3732 		}
3733 	} while ((offset += len) < head_skb->len);
3734 
3735 	/* Some callers want to get the end of the list.
3736 	 * Put it in segs->prev to avoid walking the list.
3737 	 * (see validate_xmit_skb_list() for example)
3738 	 */
3739 	segs->prev = tail;
3740 
3741 	if (partial_segs) {
3742 		struct sk_buff *iter;
3743 		int type = skb_shinfo(head_skb)->gso_type;
3744 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3745 
3746 		/* Update type to add partial and then remove dodgy if set */
3747 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3748 		type &= ~SKB_GSO_DODGY;
3749 
3750 		/* Update GSO info and prepare to start updating headers on
3751 		 * our way back down the stack of protocols.
3752 		 */
3753 		for (iter = segs; iter; iter = iter->next) {
3754 			skb_shinfo(iter)->gso_size = gso_size;
3755 			skb_shinfo(iter)->gso_segs = partial_segs;
3756 			skb_shinfo(iter)->gso_type = type;
3757 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3758 		}
3759 
3760 		if (tail->len - doffset <= gso_size)
3761 			skb_shinfo(tail)->gso_size = 0;
3762 		else if (tail != segs)
3763 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3764 	}
3765 
3766 	/* Following permits correct backpressure, for protocols
3767 	 * using skb_set_owner_w().
3768 	 * Idea is to tranfert ownership from head_skb to last segment.
3769 	 */
3770 	if (head_skb->destructor == sock_wfree) {
3771 		swap(tail->truesize, head_skb->truesize);
3772 		swap(tail->destructor, head_skb->destructor);
3773 		swap(tail->sk, head_skb->sk);
3774 	}
3775 	return segs;
3776 
3777 err:
3778 	kfree_skb_list(segs);
3779 	return ERR_PTR(err);
3780 }
3781 EXPORT_SYMBOL_GPL(skb_segment);
3782 
3783 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3784 {
3785 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3786 	unsigned int offset = skb_gro_offset(skb);
3787 	unsigned int headlen = skb_headlen(skb);
3788 	unsigned int len = skb_gro_len(skb);
3789 	struct sk_buff *lp, *p = *head;
3790 	unsigned int delta_truesize;
3791 
3792 	if (unlikely(p->len + len >= 65536))
3793 		return -E2BIG;
3794 
3795 	lp = NAPI_GRO_CB(p)->last;
3796 	pinfo = skb_shinfo(lp);
3797 
3798 	if (headlen <= offset) {
3799 		skb_frag_t *frag;
3800 		skb_frag_t *frag2;
3801 		int i = skbinfo->nr_frags;
3802 		int nr_frags = pinfo->nr_frags + i;
3803 
3804 		if (nr_frags > MAX_SKB_FRAGS)
3805 			goto merge;
3806 
3807 		offset -= headlen;
3808 		pinfo->nr_frags = nr_frags;
3809 		skbinfo->nr_frags = 0;
3810 
3811 		frag = pinfo->frags + nr_frags;
3812 		frag2 = skbinfo->frags + i;
3813 		do {
3814 			*--frag = *--frag2;
3815 		} while (--i);
3816 
3817 		frag->page_offset += offset;
3818 		skb_frag_size_sub(frag, offset);
3819 
3820 		/* all fragments truesize : remove (head size + sk_buff) */
3821 		delta_truesize = skb->truesize -
3822 				 SKB_TRUESIZE(skb_end_offset(skb));
3823 
3824 		skb->truesize -= skb->data_len;
3825 		skb->len -= skb->data_len;
3826 		skb->data_len = 0;
3827 
3828 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3829 		goto done;
3830 	} else if (skb->head_frag) {
3831 		int nr_frags = pinfo->nr_frags;
3832 		skb_frag_t *frag = pinfo->frags + nr_frags;
3833 		struct page *page = virt_to_head_page(skb->head);
3834 		unsigned int first_size = headlen - offset;
3835 		unsigned int first_offset;
3836 
3837 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3838 			goto merge;
3839 
3840 		first_offset = skb->data -
3841 			       (unsigned char *)page_address(page) +
3842 			       offset;
3843 
3844 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3845 
3846 		frag->page.p	  = page;
3847 		frag->page_offset = first_offset;
3848 		skb_frag_size_set(frag, first_size);
3849 
3850 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3851 		/* We dont need to clear skbinfo->nr_frags here */
3852 
3853 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3854 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3855 		goto done;
3856 	}
3857 
3858 merge:
3859 	delta_truesize = skb->truesize;
3860 	if (offset > headlen) {
3861 		unsigned int eat = offset - headlen;
3862 
3863 		skbinfo->frags[0].page_offset += eat;
3864 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3865 		skb->data_len -= eat;
3866 		skb->len -= eat;
3867 		offset = headlen;
3868 	}
3869 
3870 	__skb_pull(skb, offset);
3871 
3872 	if (NAPI_GRO_CB(p)->last == p)
3873 		skb_shinfo(p)->frag_list = skb;
3874 	else
3875 		NAPI_GRO_CB(p)->last->next = skb;
3876 	NAPI_GRO_CB(p)->last = skb;
3877 	__skb_header_release(skb);
3878 	lp = p;
3879 
3880 done:
3881 	NAPI_GRO_CB(p)->count++;
3882 	p->data_len += len;
3883 	p->truesize += delta_truesize;
3884 	p->len += len;
3885 	if (lp != p) {
3886 		lp->data_len += len;
3887 		lp->truesize += delta_truesize;
3888 		lp->len += len;
3889 	}
3890 	NAPI_GRO_CB(skb)->same_flow = 1;
3891 	return 0;
3892 }
3893 EXPORT_SYMBOL_GPL(skb_gro_receive);
3894 
3895 void __init skb_init(void)
3896 {
3897 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3898 					      sizeof(struct sk_buff),
3899 					      0,
3900 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3901 					      NULL);
3902 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3903 						sizeof(struct sk_buff_fclones),
3904 						0,
3905 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3906 						NULL);
3907 }
3908 
3909 static int
3910 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3911 	       unsigned int recursion_level)
3912 {
3913 	int start = skb_headlen(skb);
3914 	int i, copy = start - offset;
3915 	struct sk_buff *frag_iter;
3916 	int elt = 0;
3917 
3918 	if (unlikely(recursion_level >= 24))
3919 		return -EMSGSIZE;
3920 
3921 	if (copy > 0) {
3922 		if (copy > len)
3923 			copy = len;
3924 		sg_set_buf(sg, skb->data + offset, copy);
3925 		elt++;
3926 		if ((len -= copy) == 0)
3927 			return elt;
3928 		offset += copy;
3929 	}
3930 
3931 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3932 		int end;
3933 
3934 		WARN_ON(start > offset + len);
3935 
3936 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3937 		if ((copy = end - offset) > 0) {
3938 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3939 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3940 				return -EMSGSIZE;
3941 
3942 			if (copy > len)
3943 				copy = len;
3944 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3945 					frag->page_offset+offset-start);
3946 			elt++;
3947 			if (!(len -= copy))
3948 				return elt;
3949 			offset += copy;
3950 		}
3951 		start = end;
3952 	}
3953 
3954 	skb_walk_frags(skb, frag_iter) {
3955 		int end, ret;
3956 
3957 		WARN_ON(start > offset + len);
3958 
3959 		end = start + frag_iter->len;
3960 		if ((copy = end - offset) > 0) {
3961 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3962 				return -EMSGSIZE;
3963 
3964 			if (copy > len)
3965 				copy = len;
3966 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3967 					      copy, recursion_level + 1);
3968 			if (unlikely(ret < 0))
3969 				return ret;
3970 			elt += ret;
3971 			if ((len -= copy) == 0)
3972 				return elt;
3973 			offset += copy;
3974 		}
3975 		start = end;
3976 	}
3977 	BUG_ON(len);
3978 	return elt;
3979 }
3980 
3981 /**
3982  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3983  *	@skb: Socket buffer containing the buffers to be mapped
3984  *	@sg: The scatter-gather list to map into
3985  *	@offset: The offset into the buffer's contents to start mapping
3986  *	@len: Length of buffer space to be mapped
3987  *
3988  *	Fill the specified scatter-gather list with mappings/pointers into a
3989  *	region of the buffer space attached to a socket buffer. Returns either
3990  *	the number of scatterlist items used, or -EMSGSIZE if the contents
3991  *	could not fit.
3992  */
3993 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3994 {
3995 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3996 
3997 	if (nsg <= 0)
3998 		return nsg;
3999 
4000 	sg_mark_end(&sg[nsg - 1]);
4001 
4002 	return nsg;
4003 }
4004 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4005 
4006 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4007  * sglist without mark the sg which contain last skb data as the end.
4008  * So the caller can mannipulate sg list as will when padding new data after
4009  * the first call without calling sg_unmark_end to expend sg list.
4010  *
4011  * Scenario to use skb_to_sgvec_nomark:
4012  * 1. sg_init_table
4013  * 2. skb_to_sgvec_nomark(payload1)
4014  * 3. skb_to_sgvec_nomark(payload2)
4015  *
4016  * This is equivalent to:
4017  * 1. sg_init_table
4018  * 2. skb_to_sgvec(payload1)
4019  * 3. sg_unmark_end
4020  * 4. skb_to_sgvec(payload2)
4021  *
4022  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4023  * is more preferable.
4024  */
4025 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4026 			int offset, int len)
4027 {
4028 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4029 }
4030 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4031 
4032 
4033 
4034 /**
4035  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4036  *	@skb: The socket buffer to check.
4037  *	@tailbits: Amount of trailing space to be added
4038  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4039  *
4040  *	Make sure that the data buffers attached to a socket buffer are
4041  *	writable. If they are not, private copies are made of the data buffers
4042  *	and the socket buffer is set to use these instead.
4043  *
4044  *	If @tailbits is given, make sure that there is space to write @tailbits
4045  *	bytes of data beyond current end of socket buffer.  @trailer will be
4046  *	set to point to the skb in which this space begins.
4047  *
4048  *	The number of scatterlist elements required to completely map the
4049  *	COW'd and extended socket buffer will be returned.
4050  */
4051 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4052 {
4053 	int copyflag;
4054 	int elt;
4055 	struct sk_buff *skb1, **skb_p;
4056 
4057 	/* If skb is cloned or its head is paged, reallocate
4058 	 * head pulling out all the pages (pages are considered not writable
4059 	 * at the moment even if they are anonymous).
4060 	 */
4061 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4062 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4063 		return -ENOMEM;
4064 
4065 	/* Easy case. Most of packets will go this way. */
4066 	if (!skb_has_frag_list(skb)) {
4067 		/* A little of trouble, not enough of space for trailer.
4068 		 * This should not happen, when stack is tuned to generate
4069 		 * good frames. OK, on miss we reallocate and reserve even more
4070 		 * space, 128 bytes is fair. */
4071 
4072 		if (skb_tailroom(skb) < tailbits &&
4073 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4074 			return -ENOMEM;
4075 
4076 		/* Voila! */
4077 		*trailer = skb;
4078 		return 1;
4079 	}
4080 
4081 	/* Misery. We are in troubles, going to mincer fragments... */
4082 
4083 	elt = 1;
4084 	skb_p = &skb_shinfo(skb)->frag_list;
4085 	copyflag = 0;
4086 
4087 	while ((skb1 = *skb_p) != NULL) {
4088 		int ntail = 0;
4089 
4090 		/* The fragment is partially pulled by someone,
4091 		 * this can happen on input. Copy it and everything
4092 		 * after it. */
4093 
4094 		if (skb_shared(skb1))
4095 			copyflag = 1;
4096 
4097 		/* If the skb is the last, worry about trailer. */
4098 
4099 		if (skb1->next == NULL && tailbits) {
4100 			if (skb_shinfo(skb1)->nr_frags ||
4101 			    skb_has_frag_list(skb1) ||
4102 			    skb_tailroom(skb1) < tailbits)
4103 				ntail = tailbits + 128;
4104 		}
4105 
4106 		if (copyflag ||
4107 		    skb_cloned(skb1) ||
4108 		    ntail ||
4109 		    skb_shinfo(skb1)->nr_frags ||
4110 		    skb_has_frag_list(skb1)) {
4111 			struct sk_buff *skb2;
4112 
4113 			/* Fuck, we are miserable poor guys... */
4114 			if (ntail == 0)
4115 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4116 			else
4117 				skb2 = skb_copy_expand(skb1,
4118 						       skb_headroom(skb1),
4119 						       ntail,
4120 						       GFP_ATOMIC);
4121 			if (unlikely(skb2 == NULL))
4122 				return -ENOMEM;
4123 
4124 			if (skb1->sk)
4125 				skb_set_owner_w(skb2, skb1->sk);
4126 
4127 			/* Looking around. Are we still alive?
4128 			 * OK, link new skb, drop old one */
4129 
4130 			skb2->next = skb1->next;
4131 			*skb_p = skb2;
4132 			kfree_skb(skb1);
4133 			skb1 = skb2;
4134 		}
4135 		elt++;
4136 		*trailer = skb1;
4137 		skb_p = &skb1->next;
4138 	}
4139 
4140 	return elt;
4141 }
4142 EXPORT_SYMBOL_GPL(skb_cow_data);
4143 
4144 static void sock_rmem_free(struct sk_buff *skb)
4145 {
4146 	struct sock *sk = skb->sk;
4147 
4148 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4149 }
4150 
4151 static void skb_set_err_queue(struct sk_buff *skb)
4152 {
4153 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4154 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4155 	 */
4156 	skb->pkt_type = PACKET_OUTGOING;
4157 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4158 }
4159 
4160 /*
4161  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4162  */
4163 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4164 {
4165 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4166 	    (unsigned int)sk->sk_rcvbuf)
4167 		return -ENOMEM;
4168 
4169 	skb_orphan(skb);
4170 	skb->sk = sk;
4171 	skb->destructor = sock_rmem_free;
4172 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4173 	skb_set_err_queue(skb);
4174 
4175 	/* before exiting rcu section, make sure dst is refcounted */
4176 	skb_dst_force(skb);
4177 
4178 	skb_queue_tail(&sk->sk_error_queue, skb);
4179 	if (!sock_flag(sk, SOCK_DEAD))
4180 		sk->sk_data_ready(sk);
4181 	return 0;
4182 }
4183 EXPORT_SYMBOL(sock_queue_err_skb);
4184 
4185 static bool is_icmp_err_skb(const struct sk_buff *skb)
4186 {
4187 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4188 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4189 }
4190 
4191 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4192 {
4193 	struct sk_buff_head *q = &sk->sk_error_queue;
4194 	struct sk_buff *skb, *skb_next = NULL;
4195 	bool icmp_next = false;
4196 	unsigned long flags;
4197 
4198 	spin_lock_irqsave(&q->lock, flags);
4199 	skb = __skb_dequeue(q);
4200 	if (skb && (skb_next = skb_peek(q))) {
4201 		icmp_next = is_icmp_err_skb(skb_next);
4202 		if (icmp_next)
4203 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4204 	}
4205 	spin_unlock_irqrestore(&q->lock, flags);
4206 
4207 	if (is_icmp_err_skb(skb) && !icmp_next)
4208 		sk->sk_err = 0;
4209 
4210 	if (skb_next)
4211 		sk->sk_error_report(sk);
4212 
4213 	return skb;
4214 }
4215 EXPORT_SYMBOL(sock_dequeue_err_skb);
4216 
4217 /**
4218  * skb_clone_sk - create clone of skb, and take reference to socket
4219  * @skb: the skb to clone
4220  *
4221  * This function creates a clone of a buffer that holds a reference on
4222  * sk_refcnt.  Buffers created via this function are meant to be
4223  * returned using sock_queue_err_skb, or free via kfree_skb.
4224  *
4225  * When passing buffers allocated with this function to sock_queue_err_skb
4226  * it is necessary to wrap the call with sock_hold/sock_put in order to
4227  * prevent the socket from being released prior to being enqueued on
4228  * the sk_error_queue.
4229  */
4230 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4231 {
4232 	struct sock *sk = skb->sk;
4233 	struct sk_buff *clone;
4234 
4235 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4236 		return NULL;
4237 
4238 	clone = skb_clone(skb, GFP_ATOMIC);
4239 	if (!clone) {
4240 		sock_put(sk);
4241 		return NULL;
4242 	}
4243 
4244 	clone->sk = sk;
4245 	clone->destructor = sock_efree;
4246 
4247 	return clone;
4248 }
4249 EXPORT_SYMBOL(skb_clone_sk);
4250 
4251 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4252 					struct sock *sk,
4253 					int tstype,
4254 					bool opt_stats)
4255 {
4256 	struct sock_exterr_skb *serr;
4257 	int err;
4258 
4259 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4260 
4261 	serr = SKB_EXT_ERR(skb);
4262 	memset(serr, 0, sizeof(*serr));
4263 	serr->ee.ee_errno = ENOMSG;
4264 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4265 	serr->ee.ee_info = tstype;
4266 	serr->opt_stats = opt_stats;
4267 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4268 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4269 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4270 		if (sk->sk_protocol == IPPROTO_TCP &&
4271 		    sk->sk_type == SOCK_STREAM)
4272 			serr->ee.ee_data -= sk->sk_tskey;
4273 	}
4274 
4275 	err = sock_queue_err_skb(sk, skb);
4276 
4277 	if (err)
4278 		kfree_skb(skb);
4279 }
4280 
4281 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4282 {
4283 	bool ret;
4284 
4285 	if (likely(sysctl_tstamp_allow_data || tsonly))
4286 		return true;
4287 
4288 	read_lock_bh(&sk->sk_callback_lock);
4289 	ret = sk->sk_socket && sk->sk_socket->file &&
4290 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4291 	read_unlock_bh(&sk->sk_callback_lock);
4292 	return ret;
4293 }
4294 
4295 void skb_complete_tx_timestamp(struct sk_buff *skb,
4296 			       struct skb_shared_hwtstamps *hwtstamps)
4297 {
4298 	struct sock *sk = skb->sk;
4299 
4300 	if (!skb_may_tx_timestamp(sk, false))
4301 		return;
4302 
4303 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4304 	 * but only if the socket refcount is not zero.
4305 	 */
4306 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4307 		*skb_hwtstamps(skb) = *hwtstamps;
4308 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4309 		sock_put(sk);
4310 	}
4311 }
4312 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4313 
4314 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4315 		     struct skb_shared_hwtstamps *hwtstamps,
4316 		     struct sock *sk, int tstype)
4317 {
4318 	struct sk_buff *skb;
4319 	bool tsonly, opt_stats = false;
4320 
4321 	if (!sk)
4322 		return;
4323 
4324 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4325 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4326 		return;
4327 
4328 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4329 	if (!skb_may_tx_timestamp(sk, tsonly))
4330 		return;
4331 
4332 	if (tsonly) {
4333 #ifdef CONFIG_INET
4334 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4335 		    sk->sk_protocol == IPPROTO_TCP &&
4336 		    sk->sk_type == SOCK_STREAM) {
4337 			skb = tcp_get_timestamping_opt_stats(sk);
4338 			opt_stats = true;
4339 		} else
4340 #endif
4341 			skb = alloc_skb(0, GFP_ATOMIC);
4342 	} else {
4343 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4344 	}
4345 	if (!skb)
4346 		return;
4347 
4348 	if (tsonly) {
4349 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4350 					     SKBTX_ANY_TSTAMP;
4351 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4352 	}
4353 
4354 	if (hwtstamps)
4355 		*skb_hwtstamps(skb) = *hwtstamps;
4356 	else
4357 		skb->tstamp = ktime_get_real();
4358 
4359 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4360 }
4361 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4362 
4363 void skb_tstamp_tx(struct sk_buff *orig_skb,
4364 		   struct skb_shared_hwtstamps *hwtstamps)
4365 {
4366 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4367 			       SCM_TSTAMP_SND);
4368 }
4369 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4370 
4371 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4372 {
4373 	struct sock *sk = skb->sk;
4374 	struct sock_exterr_skb *serr;
4375 	int err = 1;
4376 
4377 	skb->wifi_acked_valid = 1;
4378 	skb->wifi_acked = acked;
4379 
4380 	serr = SKB_EXT_ERR(skb);
4381 	memset(serr, 0, sizeof(*serr));
4382 	serr->ee.ee_errno = ENOMSG;
4383 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4384 
4385 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4386 	 * but only if the socket refcount is not zero.
4387 	 */
4388 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4389 		err = sock_queue_err_skb(sk, skb);
4390 		sock_put(sk);
4391 	}
4392 	if (err)
4393 		kfree_skb(skb);
4394 }
4395 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4396 
4397 /**
4398  * skb_partial_csum_set - set up and verify partial csum values for packet
4399  * @skb: the skb to set
4400  * @start: the number of bytes after skb->data to start checksumming.
4401  * @off: the offset from start to place the checksum.
4402  *
4403  * For untrusted partially-checksummed packets, we need to make sure the values
4404  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4405  *
4406  * This function checks and sets those values and skb->ip_summed: if this
4407  * returns false you should drop the packet.
4408  */
4409 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4410 {
4411 	if (unlikely(start > skb_headlen(skb)) ||
4412 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
4413 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4414 				     start, off, skb_headlen(skb));
4415 		return false;
4416 	}
4417 	skb->ip_summed = CHECKSUM_PARTIAL;
4418 	skb->csum_start = skb_headroom(skb) + start;
4419 	skb->csum_offset = off;
4420 	skb_set_transport_header(skb, start);
4421 	return true;
4422 }
4423 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4424 
4425 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4426 			       unsigned int max)
4427 {
4428 	if (skb_headlen(skb) >= len)
4429 		return 0;
4430 
4431 	/* If we need to pullup then pullup to the max, so we
4432 	 * won't need to do it again.
4433 	 */
4434 	if (max > skb->len)
4435 		max = skb->len;
4436 
4437 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4438 		return -ENOMEM;
4439 
4440 	if (skb_headlen(skb) < len)
4441 		return -EPROTO;
4442 
4443 	return 0;
4444 }
4445 
4446 #define MAX_TCP_HDR_LEN (15 * 4)
4447 
4448 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4449 				      typeof(IPPROTO_IP) proto,
4450 				      unsigned int off)
4451 {
4452 	switch (proto) {
4453 		int err;
4454 
4455 	case IPPROTO_TCP:
4456 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4457 					  off + MAX_TCP_HDR_LEN);
4458 		if (!err && !skb_partial_csum_set(skb, off,
4459 						  offsetof(struct tcphdr,
4460 							   check)))
4461 			err = -EPROTO;
4462 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4463 
4464 	case IPPROTO_UDP:
4465 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4466 					  off + sizeof(struct udphdr));
4467 		if (!err && !skb_partial_csum_set(skb, off,
4468 						  offsetof(struct udphdr,
4469 							   check)))
4470 			err = -EPROTO;
4471 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4472 	}
4473 
4474 	return ERR_PTR(-EPROTO);
4475 }
4476 
4477 /* This value should be large enough to cover a tagged ethernet header plus
4478  * maximally sized IP and TCP or UDP headers.
4479  */
4480 #define MAX_IP_HDR_LEN 128
4481 
4482 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4483 {
4484 	unsigned int off;
4485 	bool fragment;
4486 	__sum16 *csum;
4487 	int err;
4488 
4489 	fragment = false;
4490 
4491 	err = skb_maybe_pull_tail(skb,
4492 				  sizeof(struct iphdr),
4493 				  MAX_IP_HDR_LEN);
4494 	if (err < 0)
4495 		goto out;
4496 
4497 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4498 		fragment = true;
4499 
4500 	off = ip_hdrlen(skb);
4501 
4502 	err = -EPROTO;
4503 
4504 	if (fragment)
4505 		goto out;
4506 
4507 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4508 	if (IS_ERR(csum))
4509 		return PTR_ERR(csum);
4510 
4511 	if (recalculate)
4512 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4513 					   ip_hdr(skb)->daddr,
4514 					   skb->len - off,
4515 					   ip_hdr(skb)->protocol, 0);
4516 	err = 0;
4517 
4518 out:
4519 	return err;
4520 }
4521 
4522 /* This value should be large enough to cover a tagged ethernet header plus
4523  * an IPv6 header, all options, and a maximal TCP or UDP header.
4524  */
4525 #define MAX_IPV6_HDR_LEN 256
4526 
4527 #define OPT_HDR(type, skb, off) \
4528 	(type *)(skb_network_header(skb) + (off))
4529 
4530 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4531 {
4532 	int err;
4533 	u8 nexthdr;
4534 	unsigned int off;
4535 	unsigned int len;
4536 	bool fragment;
4537 	bool done;
4538 	__sum16 *csum;
4539 
4540 	fragment = false;
4541 	done = false;
4542 
4543 	off = sizeof(struct ipv6hdr);
4544 
4545 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4546 	if (err < 0)
4547 		goto out;
4548 
4549 	nexthdr = ipv6_hdr(skb)->nexthdr;
4550 
4551 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4552 	while (off <= len && !done) {
4553 		switch (nexthdr) {
4554 		case IPPROTO_DSTOPTS:
4555 		case IPPROTO_HOPOPTS:
4556 		case IPPROTO_ROUTING: {
4557 			struct ipv6_opt_hdr *hp;
4558 
4559 			err = skb_maybe_pull_tail(skb,
4560 						  off +
4561 						  sizeof(struct ipv6_opt_hdr),
4562 						  MAX_IPV6_HDR_LEN);
4563 			if (err < 0)
4564 				goto out;
4565 
4566 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4567 			nexthdr = hp->nexthdr;
4568 			off += ipv6_optlen(hp);
4569 			break;
4570 		}
4571 		case IPPROTO_AH: {
4572 			struct ip_auth_hdr *hp;
4573 
4574 			err = skb_maybe_pull_tail(skb,
4575 						  off +
4576 						  sizeof(struct ip_auth_hdr),
4577 						  MAX_IPV6_HDR_LEN);
4578 			if (err < 0)
4579 				goto out;
4580 
4581 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4582 			nexthdr = hp->nexthdr;
4583 			off += ipv6_authlen(hp);
4584 			break;
4585 		}
4586 		case IPPROTO_FRAGMENT: {
4587 			struct frag_hdr *hp;
4588 
4589 			err = skb_maybe_pull_tail(skb,
4590 						  off +
4591 						  sizeof(struct frag_hdr),
4592 						  MAX_IPV6_HDR_LEN);
4593 			if (err < 0)
4594 				goto out;
4595 
4596 			hp = OPT_HDR(struct frag_hdr, skb, off);
4597 
4598 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4599 				fragment = true;
4600 
4601 			nexthdr = hp->nexthdr;
4602 			off += sizeof(struct frag_hdr);
4603 			break;
4604 		}
4605 		default:
4606 			done = true;
4607 			break;
4608 		}
4609 	}
4610 
4611 	err = -EPROTO;
4612 
4613 	if (!done || fragment)
4614 		goto out;
4615 
4616 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4617 	if (IS_ERR(csum))
4618 		return PTR_ERR(csum);
4619 
4620 	if (recalculate)
4621 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4622 					 &ipv6_hdr(skb)->daddr,
4623 					 skb->len - off, nexthdr, 0);
4624 	err = 0;
4625 
4626 out:
4627 	return err;
4628 }
4629 
4630 /**
4631  * skb_checksum_setup - set up partial checksum offset
4632  * @skb: the skb to set up
4633  * @recalculate: if true the pseudo-header checksum will be recalculated
4634  */
4635 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4636 {
4637 	int err;
4638 
4639 	switch (skb->protocol) {
4640 	case htons(ETH_P_IP):
4641 		err = skb_checksum_setup_ipv4(skb, recalculate);
4642 		break;
4643 
4644 	case htons(ETH_P_IPV6):
4645 		err = skb_checksum_setup_ipv6(skb, recalculate);
4646 		break;
4647 
4648 	default:
4649 		err = -EPROTO;
4650 		break;
4651 	}
4652 
4653 	return err;
4654 }
4655 EXPORT_SYMBOL(skb_checksum_setup);
4656 
4657 /**
4658  * skb_checksum_maybe_trim - maybe trims the given skb
4659  * @skb: the skb to check
4660  * @transport_len: the data length beyond the network header
4661  *
4662  * Checks whether the given skb has data beyond the given transport length.
4663  * If so, returns a cloned skb trimmed to this transport length.
4664  * Otherwise returns the provided skb. Returns NULL in error cases
4665  * (e.g. transport_len exceeds skb length or out-of-memory).
4666  *
4667  * Caller needs to set the skb transport header and free any returned skb if it
4668  * differs from the provided skb.
4669  */
4670 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4671 					       unsigned int transport_len)
4672 {
4673 	struct sk_buff *skb_chk;
4674 	unsigned int len = skb_transport_offset(skb) + transport_len;
4675 	int ret;
4676 
4677 	if (skb->len < len)
4678 		return NULL;
4679 	else if (skb->len == len)
4680 		return skb;
4681 
4682 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4683 	if (!skb_chk)
4684 		return NULL;
4685 
4686 	ret = pskb_trim_rcsum(skb_chk, len);
4687 	if (ret) {
4688 		kfree_skb(skb_chk);
4689 		return NULL;
4690 	}
4691 
4692 	return skb_chk;
4693 }
4694 
4695 /**
4696  * skb_checksum_trimmed - validate checksum of an skb
4697  * @skb: the skb to check
4698  * @transport_len: the data length beyond the network header
4699  * @skb_chkf: checksum function to use
4700  *
4701  * Applies the given checksum function skb_chkf to the provided skb.
4702  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4703  *
4704  * If the skb has data beyond the given transport length, then a
4705  * trimmed & cloned skb is checked and returned.
4706  *
4707  * Caller needs to set the skb transport header and free any returned skb if it
4708  * differs from the provided skb.
4709  */
4710 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4711 				     unsigned int transport_len,
4712 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4713 {
4714 	struct sk_buff *skb_chk;
4715 	unsigned int offset = skb_transport_offset(skb);
4716 	__sum16 ret;
4717 
4718 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4719 	if (!skb_chk)
4720 		goto err;
4721 
4722 	if (!pskb_may_pull(skb_chk, offset))
4723 		goto err;
4724 
4725 	skb_pull_rcsum(skb_chk, offset);
4726 	ret = skb_chkf(skb_chk);
4727 	skb_push_rcsum(skb_chk, offset);
4728 
4729 	if (ret)
4730 		goto err;
4731 
4732 	return skb_chk;
4733 
4734 err:
4735 	if (skb_chk && skb_chk != skb)
4736 		kfree_skb(skb_chk);
4737 
4738 	return NULL;
4739 
4740 }
4741 EXPORT_SYMBOL(skb_checksum_trimmed);
4742 
4743 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4744 {
4745 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4746 			     skb->dev->name);
4747 }
4748 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4749 
4750 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4751 {
4752 	if (head_stolen) {
4753 		skb_release_head_state(skb);
4754 		kmem_cache_free(skbuff_head_cache, skb);
4755 	} else {
4756 		__kfree_skb(skb);
4757 	}
4758 }
4759 EXPORT_SYMBOL(kfree_skb_partial);
4760 
4761 /**
4762  * skb_try_coalesce - try to merge skb to prior one
4763  * @to: prior buffer
4764  * @from: buffer to add
4765  * @fragstolen: pointer to boolean
4766  * @delta_truesize: how much more was allocated than was requested
4767  */
4768 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4769 		      bool *fragstolen, int *delta_truesize)
4770 {
4771 	struct skb_shared_info *to_shinfo, *from_shinfo;
4772 	int i, delta, len = from->len;
4773 
4774 	*fragstolen = false;
4775 
4776 	if (skb_cloned(to))
4777 		return false;
4778 
4779 	if (len <= skb_tailroom(to)) {
4780 		if (len)
4781 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4782 		*delta_truesize = 0;
4783 		return true;
4784 	}
4785 
4786 	to_shinfo = skb_shinfo(to);
4787 	from_shinfo = skb_shinfo(from);
4788 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4789 		return false;
4790 	if (skb_zcopy(to) || skb_zcopy(from))
4791 		return false;
4792 
4793 	if (skb_headlen(from) != 0) {
4794 		struct page *page;
4795 		unsigned int offset;
4796 
4797 		if (to_shinfo->nr_frags +
4798 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4799 			return false;
4800 
4801 		if (skb_head_is_locked(from))
4802 			return false;
4803 
4804 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4805 
4806 		page = virt_to_head_page(from->head);
4807 		offset = from->data - (unsigned char *)page_address(page);
4808 
4809 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4810 				   page, offset, skb_headlen(from));
4811 		*fragstolen = true;
4812 	} else {
4813 		if (to_shinfo->nr_frags +
4814 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4815 			return false;
4816 
4817 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4818 	}
4819 
4820 	WARN_ON_ONCE(delta < len);
4821 
4822 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4823 	       from_shinfo->frags,
4824 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4825 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4826 
4827 	if (!skb_cloned(from))
4828 		from_shinfo->nr_frags = 0;
4829 
4830 	/* if the skb is not cloned this does nothing
4831 	 * since we set nr_frags to 0.
4832 	 */
4833 	for (i = 0; i < from_shinfo->nr_frags; i++)
4834 		__skb_frag_ref(&from_shinfo->frags[i]);
4835 
4836 	to->truesize += delta;
4837 	to->len += len;
4838 	to->data_len += len;
4839 
4840 	*delta_truesize = delta;
4841 	return true;
4842 }
4843 EXPORT_SYMBOL(skb_try_coalesce);
4844 
4845 /**
4846  * skb_scrub_packet - scrub an skb
4847  *
4848  * @skb: buffer to clean
4849  * @xnet: packet is crossing netns
4850  *
4851  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4852  * into/from a tunnel. Some information have to be cleared during these
4853  * operations.
4854  * skb_scrub_packet can also be used to clean a skb before injecting it in
4855  * another namespace (@xnet == true). We have to clear all information in the
4856  * skb that could impact namespace isolation.
4857  */
4858 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4859 {
4860 	skb->tstamp = 0;
4861 	skb->pkt_type = PACKET_HOST;
4862 	skb->skb_iif = 0;
4863 	skb->ignore_df = 0;
4864 	skb_dst_drop(skb);
4865 	secpath_reset(skb);
4866 	nf_reset(skb);
4867 	nf_reset_trace(skb);
4868 
4869 	if (!xnet)
4870 		return;
4871 
4872 	skb_orphan(skb);
4873 	skb->mark = 0;
4874 }
4875 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4876 
4877 /**
4878  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4879  *
4880  * @skb: GSO skb
4881  *
4882  * skb_gso_transport_seglen is used to determine the real size of the
4883  * individual segments, including Layer4 headers (TCP/UDP).
4884  *
4885  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4886  */
4887 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4888 {
4889 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4890 	unsigned int thlen = 0;
4891 
4892 	if (skb->encapsulation) {
4893 		thlen = skb_inner_transport_header(skb) -
4894 			skb_transport_header(skb);
4895 
4896 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4897 			thlen += inner_tcp_hdrlen(skb);
4898 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4899 		thlen = tcp_hdrlen(skb);
4900 	} else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4901 		thlen = sizeof(struct sctphdr);
4902 	}
4903 	/* UFO sets gso_size to the size of the fragmentation
4904 	 * payload, i.e. the size of the L4 (UDP) header is already
4905 	 * accounted for.
4906 	 */
4907 	return thlen + shinfo->gso_size;
4908 }
4909 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4910 
4911 /**
4912  * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4913  *
4914  * @skb: GSO skb
4915  * @mtu: MTU to validate against
4916  *
4917  * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4918  * once split.
4919  */
4920 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4921 {
4922 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4923 	const struct sk_buff *iter;
4924 	unsigned int hlen;
4925 
4926 	hlen = skb_gso_network_seglen(skb);
4927 
4928 	if (shinfo->gso_size != GSO_BY_FRAGS)
4929 		return hlen <= mtu;
4930 
4931 	/* Undo this so we can re-use header sizes */
4932 	hlen -= GSO_BY_FRAGS;
4933 
4934 	skb_walk_frags(skb, iter) {
4935 		if (hlen + skb_headlen(iter) > mtu)
4936 			return false;
4937 	}
4938 
4939 	return true;
4940 }
4941 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4942 
4943 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4944 {
4945 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4946 		kfree_skb(skb);
4947 		return NULL;
4948 	}
4949 
4950 	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4951 		2 * ETH_ALEN);
4952 	skb->mac_header += VLAN_HLEN;
4953 	return skb;
4954 }
4955 
4956 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4957 {
4958 	struct vlan_hdr *vhdr;
4959 	u16 vlan_tci;
4960 
4961 	if (unlikely(skb_vlan_tag_present(skb))) {
4962 		/* vlan_tci is already set-up so leave this for another time */
4963 		return skb;
4964 	}
4965 
4966 	skb = skb_share_check(skb, GFP_ATOMIC);
4967 	if (unlikely(!skb))
4968 		goto err_free;
4969 
4970 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4971 		goto err_free;
4972 
4973 	vhdr = (struct vlan_hdr *)skb->data;
4974 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4975 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4976 
4977 	skb_pull_rcsum(skb, VLAN_HLEN);
4978 	vlan_set_encap_proto(skb, vhdr);
4979 
4980 	skb = skb_reorder_vlan_header(skb);
4981 	if (unlikely(!skb))
4982 		goto err_free;
4983 
4984 	skb_reset_network_header(skb);
4985 	skb_reset_transport_header(skb);
4986 	skb_reset_mac_len(skb);
4987 
4988 	return skb;
4989 
4990 err_free:
4991 	kfree_skb(skb);
4992 	return NULL;
4993 }
4994 EXPORT_SYMBOL(skb_vlan_untag);
4995 
4996 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4997 {
4998 	if (!pskb_may_pull(skb, write_len))
4999 		return -ENOMEM;
5000 
5001 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5002 		return 0;
5003 
5004 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5005 }
5006 EXPORT_SYMBOL(skb_ensure_writable);
5007 
5008 /* remove VLAN header from packet and update csum accordingly.
5009  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5010  */
5011 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5012 {
5013 	struct vlan_hdr *vhdr;
5014 	int offset = skb->data - skb_mac_header(skb);
5015 	int err;
5016 
5017 	if (WARN_ONCE(offset,
5018 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5019 		      offset)) {
5020 		return -EINVAL;
5021 	}
5022 
5023 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5024 	if (unlikely(err))
5025 		return err;
5026 
5027 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5028 
5029 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5030 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5031 
5032 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5033 	__skb_pull(skb, VLAN_HLEN);
5034 
5035 	vlan_set_encap_proto(skb, vhdr);
5036 	skb->mac_header += VLAN_HLEN;
5037 
5038 	if (skb_network_offset(skb) < ETH_HLEN)
5039 		skb_set_network_header(skb, ETH_HLEN);
5040 
5041 	skb_reset_mac_len(skb);
5042 
5043 	return err;
5044 }
5045 EXPORT_SYMBOL(__skb_vlan_pop);
5046 
5047 /* Pop a vlan tag either from hwaccel or from payload.
5048  * Expects skb->data at mac header.
5049  */
5050 int skb_vlan_pop(struct sk_buff *skb)
5051 {
5052 	u16 vlan_tci;
5053 	__be16 vlan_proto;
5054 	int err;
5055 
5056 	if (likely(skb_vlan_tag_present(skb))) {
5057 		skb->vlan_tci = 0;
5058 	} else {
5059 		if (unlikely(!eth_type_vlan(skb->protocol)))
5060 			return 0;
5061 
5062 		err = __skb_vlan_pop(skb, &vlan_tci);
5063 		if (err)
5064 			return err;
5065 	}
5066 	/* move next vlan tag to hw accel tag */
5067 	if (likely(!eth_type_vlan(skb->protocol)))
5068 		return 0;
5069 
5070 	vlan_proto = skb->protocol;
5071 	err = __skb_vlan_pop(skb, &vlan_tci);
5072 	if (unlikely(err))
5073 		return err;
5074 
5075 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5076 	return 0;
5077 }
5078 EXPORT_SYMBOL(skb_vlan_pop);
5079 
5080 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5081  * Expects skb->data at mac header.
5082  */
5083 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5084 {
5085 	if (skb_vlan_tag_present(skb)) {
5086 		int offset = skb->data - skb_mac_header(skb);
5087 		int err;
5088 
5089 		if (WARN_ONCE(offset,
5090 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5091 			      offset)) {
5092 			return -EINVAL;
5093 		}
5094 
5095 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5096 					skb_vlan_tag_get(skb));
5097 		if (err)
5098 			return err;
5099 
5100 		skb->protocol = skb->vlan_proto;
5101 		skb->mac_len += VLAN_HLEN;
5102 
5103 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5104 	}
5105 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5106 	return 0;
5107 }
5108 EXPORT_SYMBOL(skb_vlan_push);
5109 
5110 /**
5111  * alloc_skb_with_frags - allocate skb with page frags
5112  *
5113  * @header_len: size of linear part
5114  * @data_len: needed length in frags
5115  * @max_page_order: max page order desired.
5116  * @errcode: pointer to error code if any
5117  * @gfp_mask: allocation mask
5118  *
5119  * This can be used to allocate a paged skb, given a maximal order for frags.
5120  */
5121 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5122 				     unsigned long data_len,
5123 				     int max_page_order,
5124 				     int *errcode,
5125 				     gfp_t gfp_mask)
5126 {
5127 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5128 	unsigned long chunk;
5129 	struct sk_buff *skb;
5130 	struct page *page;
5131 	gfp_t gfp_head;
5132 	int i;
5133 
5134 	*errcode = -EMSGSIZE;
5135 	/* Note this test could be relaxed, if we succeed to allocate
5136 	 * high order pages...
5137 	 */
5138 	if (npages > MAX_SKB_FRAGS)
5139 		return NULL;
5140 
5141 	gfp_head = gfp_mask;
5142 	if (gfp_head & __GFP_DIRECT_RECLAIM)
5143 		gfp_head |= __GFP_RETRY_MAYFAIL;
5144 
5145 	*errcode = -ENOBUFS;
5146 	skb = alloc_skb(header_len, gfp_head);
5147 	if (!skb)
5148 		return NULL;
5149 
5150 	skb->truesize += npages << PAGE_SHIFT;
5151 
5152 	for (i = 0; npages > 0; i++) {
5153 		int order = max_page_order;
5154 
5155 		while (order) {
5156 			if (npages >= 1 << order) {
5157 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5158 						   __GFP_COMP |
5159 						   __GFP_NOWARN |
5160 						   __GFP_NORETRY,
5161 						   order);
5162 				if (page)
5163 					goto fill_page;
5164 				/* Do not retry other high order allocations */
5165 				order = 1;
5166 				max_page_order = 0;
5167 			}
5168 			order--;
5169 		}
5170 		page = alloc_page(gfp_mask);
5171 		if (!page)
5172 			goto failure;
5173 fill_page:
5174 		chunk = min_t(unsigned long, data_len,
5175 			      PAGE_SIZE << order);
5176 		skb_fill_page_desc(skb, i, page, 0, chunk);
5177 		data_len -= chunk;
5178 		npages -= 1 << order;
5179 	}
5180 	return skb;
5181 
5182 failure:
5183 	kfree_skb(skb);
5184 	return NULL;
5185 }
5186 EXPORT_SYMBOL(alloc_skb_with_frags);
5187 
5188 /* carve out the first off bytes from skb when off < headlen */
5189 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5190 				    const int headlen, gfp_t gfp_mask)
5191 {
5192 	int i;
5193 	int size = skb_end_offset(skb);
5194 	int new_hlen = headlen - off;
5195 	u8 *data;
5196 
5197 	size = SKB_DATA_ALIGN(size);
5198 
5199 	if (skb_pfmemalloc(skb))
5200 		gfp_mask |= __GFP_MEMALLOC;
5201 	data = kmalloc_reserve(size +
5202 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5203 			       gfp_mask, NUMA_NO_NODE, NULL);
5204 	if (!data)
5205 		return -ENOMEM;
5206 
5207 	size = SKB_WITH_OVERHEAD(ksize(data));
5208 
5209 	/* Copy real data, and all frags */
5210 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5211 	skb->len -= off;
5212 
5213 	memcpy((struct skb_shared_info *)(data + size),
5214 	       skb_shinfo(skb),
5215 	       offsetof(struct skb_shared_info,
5216 			frags[skb_shinfo(skb)->nr_frags]));
5217 	if (skb_cloned(skb)) {
5218 		/* drop the old head gracefully */
5219 		if (skb_orphan_frags(skb, gfp_mask)) {
5220 			kfree(data);
5221 			return -ENOMEM;
5222 		}
5223 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5224 			skb_frag_ref(skb, i);
5225 		if (skb_has_frag_list(skb))
5226 			skb_clone_fraglist(skb);
5227 		skb_release_data(skb);
5228 	} else {
5229 		/* we can reuse existing recount- all we did was
5230 		 * relocate values
5231 		 */
5232 		skb_free_head(skb);
5233 	}
5234 
5235 	skb->head = data;
5236 	skb->data = data;
5237 	skb->head_frag = 0;
5238 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5239 	skb->end = size;
5240 #else
5241 	skb->end = skb->head + size;
5242 #endif
5243 	skb_set_tail_pointer(skb, skb_headlen(skb));
5244 	skb_headers_offset_update(skb, 0);
5245 	skb->cloned = 0;
5246 	skb->hdr_len = 0;
5247 	skb->nohdr = 0;
5248 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5249 
5250 	return 0;
5251 }
5252 
5253 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5254 
5255 /* carve out the first eat bytes from skb's frag_list. May recurse into
5256  * pskb_carve()
5257  */
5258 static int pskb_carve_frag_list(struct sk_buff *skb,
5259 				struct skb_shared_info *shinfo, int eat,
5260 				gfp_t gfp_mask)
5261 {
5262 	struct sk_buff *list = shinfo->frag_list;
5263 	struct sk_buff *clone = NULL;
5264 	struct sk_buff *insp = NULL;
5265 
5266 	do {
5267 		if (!list) {
5268 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5269 			return -EFAULT;
5270 		}
5271 		if (list->len <= eat) {
5272 			/* Eaten as whole. */
5273 			eat -= list->len;
5274 			list = list->next;
5275 			insp = list;
5276 		} else {
5277 			/* Eaten partially. */
5278 			if (skb_shared(list)) {
5279 				clone = skb_clone(list, gfp_mask);
5280 				if (!clone)
5281 					return -ENOMEM;
5282 				insp = list->next;
5283 				list = clone;
5284 			} else {
5285 				/* This may be pulled without problems. */
5286 				insp = list;
5287 			}
5288 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5289 				kfree_skb(clone);
5290 				return -ENOMEM;
5291 			}
5292 			break;
5293 		}
5294 	} while (eat);
5295 
5296 	/* Free pulled out fragments. */
5297 	while ((list = shinfo->frag_list) != insp) {
5298 		shinfo->frag_list = list->next;
5299 		kfree_skb(list);
5300 	}
5301 	/* And insert new clone at head. */
5302 	if (clone) {
5303 		clone->next = list;
5304 		shinfo->frag_list = clone;
5305 	}
5306 	return 0;
5307 }
5308 
5309 /* carve off first len bytes from skb. Split line (off) is in the
5310  * non-linear part of skb
5311  */
5312 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5313 				       int pos, gfp_t gfp_mask)
5314 {
5315 	int i, k = 0;
5316 	int size = skb_end_offset(skb);
5317 	u8 *data;
5318 	const int nfrags = skb_shinfo(skb)->nr_frags;
5319 	struct skb_shared_info *shinfo;
5320 
5321 	size = SKB_DATA_ALIGN(size);
5322 
5323 	if (skb_pfmemalloc(skb))
5324 		gfp_mask |= __GFP_MEMALLOC;
5325 	data = kmalloc_reserve(size +
5326 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5327 			       gfp_mask, NUMA_NO_NODE, NULL);
5328 	if (!data)
5329 		return -ENOMEM;
5330 
5331 	size = SKB_WITH_OVERHEAD(ksize(data));
5332 
5333 	memcpy((struct skb_shared_info *)(data + size),
5334 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5335 					 frags[skb_shinfo(skb)->nr_frags]));
5336 	if (skb_orphan_frags(skb, gfp_mask)) {
5337 		kfree(data);
5338 		return -ENOMEM;
5339 	}
5340 	shinfo = (struct skb_shared_info *)(data + size);
5341 	for (i = 0; i < nfrags; i++) {
5342 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5343 
5344 		if (pos + fsize > off) {
5345 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5346 
5347 			if (pos < off) {
5348 				/* Split frag.
5349 				 * We have two variants in this case:
5350 				 * 1. Move all the frag to the second
5351 				 *    part, if it is possible. F.e.
5352 				 *    this approach is mandatory for TUX,
5353 				 *    where splitting is expensive.
5354 				 * 2. Split is accurately. We make this.
5355 				 */
5356 				shinfo->frags[0].page_offset += off - pos;
5357 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5358 			}
5359 			skb_frag_ref(skb, i);
5360 			k++;
5361 		}
5362 		pos += fsize;
5363 	}
5364 	shinfo->nr_frags = k;
5365 	if (skb_has_frag_list(skb))
5366 		skb_clone_fraglist(skb);
5367 
5368 	if (k == 0) {
5369 		/* split line is in frag list */
5370 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5371 	}
5372 	skb_release_data(skb);
5373 
5374 	skb->head = data;
5375 	skb->head_frag = 0;
5376 	skb->data = data;
5377 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5378 	skb->end = size;
5379 #else
5380 	skb->end = skb->head + size;
5381 #endif
5382 	skb_reset_tail_pointer(skb);
5383 	skb_headers_offset_update(skb, 0);
5384 	skb->cloned   = 0;
5385 	skb->hdr_len  = 0;
5386 	skb->nohdr    = 0;
5387 	skb->len -= off;
5388 	skb->data_len = skb->len;
5389 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5390 	return 0;
5391 }
5392 
5393 /* remove len bytes from the beginning of the skb */
5394 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5395 {
5396 	int headlen = skb_headlen(skb);
5397 
5398 	if (len < headlen)
5399 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5400 	else
5401 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5402 }
5403 
5404 /* Extract to_copy bytes starting at off from skb, and return this in
5405  * a new skb
5406  */
5407 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5408 			     int to_copy, gfp_t gfp)
5409 {
5410 	struct sk_buff  *clone = skb_clone(skb, gfp);
5411 
5412 	if (!clone)
5413 		return NULL;
5414 
5415 	if (pskb_carve(clone, off, gfp) < 0 ||
5416 	    pskb_trim(clone, to_copy)) {
5417 		kfree_skb(clone);
5418 		return NULL;
5419 	}
5420 	return clone;
5421 }
5422 EXPORT_SYMBOL(pskb_extract);
5423 
5424 /**
5425  * skb_condense - try to get rid of fragments/frag_list if possible
5426  * @skb: buffer
5427  *
5428  * Can be used to save memory before skb is added to a busy queue.
5429  * If packet has bytes in frags and enough tail room in skb->head,
5430  * pull all of them, so that we can free the frags right now and adjust
5431  * truesize.
5432  * Notes:
5433  *	We do not reallocate skb->head thus can not fail.
5434  *	Caller must re-evaluate skb->truesize if needed.
5435  */
5436 void skb_condense(struct sk_buff *skb)
5437 {
5438 	if (skb->data_len) {
5439 		if (skb->data_len > skb->end - skb->tail ||
5440 		    skb_cloned(skb))
5441 			return;
5442 
5443 		/* Nice, we can free page frag(s) right now */
5444 		__pskb_pull_tail(skb, skb->data_len);
5445 	}
5446 	/* At this point, skb->truesize might be over estimated,
5447 	 * because skb had a fragment, and fragments do not tell
5448 	 * their truesize.
5449 	 * When we pulled its content into skb->head, fragment
5450 	 * was freed, but __pskb_pull_tail() could not possibly
5451 	 * adjust skb->truesize, not knowing the frag truesize.
5452 	 */
5453 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5454 }
5455