1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/tcp.h> 51 #include <linux/udp.h> 52 #include <linux/sctp.h> 53 #include <linux/netdevice.h> 54 #ifdef CONFIG_NET_CLS_ACT 55 #include <net/pkt_sched.h> 56 #endif 57 #include <linux/string.h> 58 #include <linux/skbuff.h> 59 #include <linux/splice.h> 60 #include <linux/cache.h> 61 #include <linux/rtnetlink.h> 62 #include <linux/init.h> 63 #include <linux/scatterlist.h> 64 #include <linux/errqueue.h> 65 #include <linux/prefetch.h> 66 #include <linux/if_vlan.h> 67 68 #include <net/protocol.h> 69 #include <net/dst.h> 70 #include <net/sock.h> 71 #include <net/checksum.h> 72 #include <net/ip6_checksum.h> 73 #include <net/xfrm.h> 74 75 #include <linux/uaccess.h> 76 #include <trace/events/skb.h> 77 #include <linux/highmem.h> 78 #include <linux/capability.h> 79 #include <linux/user_namespace.h> 80 81 struct kmem_cache *skbuff_head_cache __read_mostly; 82 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 84 EXPORT_SYMBOL(sysctl_max_skb_frags); 85 86 /** 87 * skb_panic - private function for out-of-line support 88 * @skb: buffer 89 * @sz: size 90 * @addr: address 91 * @msg: skb_over_panic or skb_under_panic 92 * 93 * Out-of-line support for skb_put() and skb_push(). 94 * Called via the wrapper skb_over_panic() or skb_under_panic(). 95 * Keep out of line to prevent kernel bloat. 96 * __builtin_return_address is not used because it is not always reliable. 97 */ 98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 99 const char msg[]) 100 { 101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 102 msg, addr, skb->len, sz, skb->head, skb->data, 103 (unsigned long)skb->tail, (unsigned long)skb->end, 104 skb->dev ? skb->dev->name : "<NULL>"); 105 BUG(); 106 } 107 108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 109 { 110 skb_panic(skb, sz, addr, __func__); 111 } 112 113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 114 { 115 skb_panic(skb, sz, addr, __func__); 116 } 117 118 /* 119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 120 * the caller if emergency pfmemalloc reserves are being used. If it is and 121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 122 * may be used. Otherwise, the packet data may be discarded until enough 123 * memory is free 124 */ 125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 127 128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 129 unsigned long ip, bool *pfmemalloc) 130 { 131 void *obj; 132 bool ret_pfmemalloc = false; 133 134 /* 135 * Try a regular allocation, when that fails and we're not entitled 136 * to the reserves, fail. 137 */ 138 obj = kmalloc_node_track_caller(size, 139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 140 node); 141 if (obj || !(gfp_pfmemalloc_allowed(flags))) 142 goto out; 143 144 /* Try again but now we are using pfmemalloc reserves */ 145 ret_pfmemalloc = true; 146 obj = kmalloc_node_track_caller(size, flags, node); 147 148 out: 149 if (pfmemalloc) 150 *pfmemalloc = ret_pfmemalloc; 151 152 return obj; 153 } 154 155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 156 * 'private' fields and also do memory statistics to find all the 157 * [BEEP] leaks. 158 * 159 */ 160 161 /** 162 * __alloc_skb - allocate a network buffer 163 * @size: size to allocate 164 * @gfp_mask: allocation mask 165 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 166 * instead of head cache and allocate a cloned (child) skb. 167 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 168 * allocations in case the data is required for writeback 169 * @node: numa node to allocate memory on 170 * 171 * Allocate a new &sk_buff. The returned buffer has no headroom and a 172 * tail room of at least size bytes. The object has a reference count 173 * of one. The return is the buffer. On a failure the return is %NULL. 174 * 175 * Buffers may only be allocated from interrupts using a @gfp_mask of 176 * %GFP_ATOMIC. 177 */ 178 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 179 int flags, int node) 180 { 181 struct kmem_cache *cache; 182 struct skb_shared_info *shinfo; 183 struct sk_buff *skb; 184 u8 *data; 185 bool pfmemalloc; 186 187 cache = (flags & SKB_ALLOC_FCLONE) 188 ? skbuff_fclone_cache : skbuff_head_cache; 189 190 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 191 gfp_mask |= __GFP_MEMALLOC; 192 193 /* Get the HEAD */ 194 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 195 if (!skb) 196 goto out; 197 prefetchw(skb); 198 199 /* We do our best to align skb_shared_info on a separate cache 200 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 201 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 202 * Both skb->head and skb_shared_info are cache line aligned. 203 */ 204 size = SKB_DATA_ALIGN(size); 205 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 206 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 207 if (!data) 208 goto nodata; 209 /* kmalloc(size) might give us more room than requested. 210 * Put skb_shared_info exactly at the end of allocated zone, 211 * to allow max possible filling before reallocation. 212 */ 213 size = SKB_WITH_OVERHEAD(ksize(data)); 214 prefetchw(data + size); 215 216 /* 217 * Only clear those fields we need to clear, not those that we will 218 * actually initialise below. Hence, don't put any more fields after 219 * the tail pointer in struct sk_buff! 220 */ 221 memset(skb, 0, offsetof(struct sk_buff, tail)); 222 /* Account for allocated memory : skb + skb->head */ 223 skb->truesize = SKB_TRUESIZE(size); 224 skb->pfmemalloc = pfmemalloc; 225 refcount_set(&skb->users, 1); 226 skb->head = data; 227 skb->data = data; 228 skb_reset_tail_pointer(skb); 229 skb->end = skb->tail + size; 230 skb->mac_header = (typeof(skb->mac_header))~0U; 231 skb->transport_header = (typeof(skb->transport_header))~0U; 232 233 /* make sure we initialize shinfo sequentially */ 234 shinfo = skb_shinfo(skb); 235 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 236 atomic_set(&shinfo->dataref, 1); 237 kmemcheck_annotate_variable(shinfo->destructor_arg); 238 239 if (flags & SKB_ALLOC_FCLONE) { 240 struct sk_buff_fclones *fclones; 241 242 fclones = container_of(skb, struct sk_buff_fclones, skb1); 243 244 kmemcheck_annotate_bitfield(&fclones->skb2, flags1); 245 skb->fclone = SKB_FCLONE_ORIG; 246 refcount_set(&fclones->fclone_ref, 1); 247 248 fclones->skb2.fclone = SKB_FCLONE_CLONE; 249 } 250 out: 251 return skb; 252 nodata: 253 kmem_cache_free(cache, skb); 254 skb = NULL; 255 goto out; 256 } 257 EXPORT_SYMBOL(__alloc_skb); 258 259 /** 260 * __build_skb - build a network buffer 261 * @data: data buffer provided by caller 262 * @frag_size: size of data, or 0 if head was kmalloced 263 * 264 * Allocate a new &sk_buff. Caller provides space holding head and 265 * skb_shared_info. @data must have been allocated by kmalloc() only if 266 * @frag_size is 0, otherwise data should come from the page allocator 267 * or vmalloc() 268 * The return is the new skb buffer. 269 * On a failure the return is %NULL, and @data is not freed. 270 * Notes : 271 * Before IO, driver allocates only data buffer where NIC put incoming frame 272 * Driver should add room at head (NET_SKB_PAD) and 273 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 274 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 275 * before giving packet to stack. 276 * RX rings only contains data buffers, not full skbs. 277 */ 278 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 279 { 280 struct skb_shared_info *shinfo; 281 struct sk_buff *skb; 282 unsigned int size = frag_size ? : ksize(data); 283 284 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 285 if (!skb) 286 return NULL; 287 288 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 289 290 memset(skb, 0, offsetof(struct sk_buff, tail)); 291 skb->truesize = SKB_TRUESIZE(size); 292 refcount_set(&skb->users, 1); 293 skb->head = data; 294 skb->data = data; 295 skb_reset_tail_pointer(skb); 296 skb->end = skb->tail + size; 297 skb->mac_header = (typeof(skb->mac_header))~0U; 298 skb->transport_header = (typeof(skb->transport_header))~0U; 299 300 /* make sure we initialize shinfo sequentially */ 301 shinfo = skb_shinfo(skb); 302 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 303 atomic_set(&shinfo->dataref, 1); 304 kmemcheck_annotate_variable(shinfo->destructor_arg); 305 306 return skb; 307 } 308 309 /* build_skb() is wrapper over __build_skb(), that specifically 310 * takes care of skb->head and skb->pfmemalloc 311 * This means that if @frag_size is not zero, then @data must be backed 312 * by a page fragment, not kmalloc() or vmalloc() 313 */ 314 struct sk_buff *build_skb(void *data, unsigned int frag_size) 315 { 316 struct sk_buff *skb = __build_skb(data, frag_size); 317 318 if (skb && frag_size) { 319 skb->head_frag = 1; 320 if (page_is_pfmemalloc(virt_to_head_page(data))) 321 skb->pfmemalloc = 1; 322 } 323 return skb; 324 } 325 EXPORT_SYMBOL(build_skb); 326 327 #define NAPI_SKB_CACHE_SIZE 64 328 329 struct napi_alloc_cache { 330 struct page_frag_cache page; 331 unsigned int skb_count; 332 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 333 }; 334 335 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 336 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 337 338 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 339 { 340 struct page_frag_cache *nc; 341 unsigned long flags; 342 void *data; 343 344 local_irq_save(flags); 345 nc = this_cpu_ptr(&netdev_alloc_cache); 346 data = page_frag_alloc(nc, fragsz, gfp_mask); 347 local_irq_restore(flags); 348 return data; 349 } 350 351 /** 352 * netdev_alloc_frag - allocate a page fragment 353 * @fragsz: fragment size 354 * 355 * Allocates a frag from a page for receive buffer. 356 * Uses GFP_ATOMIC allocations. 357 */ 358 void *netdev_alloc_frag(unsigned int fragsz) 359 { 360 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 361 } 362 EXPORT_SYMBOL(netdev_alloc_frag); 363 364 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 365 { 366 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 367 368 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 369 } 370 371 void *napi_alloc_frag(unsigned int fragsz) 372 { 373 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 374 } 375 EXPORT_SYMBOL(napi_alloc_frag); 376 377 /** 378 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 379 * @dev: network device to receive on 380 * @len: length to allocate 381 * @gfp_mask: get_free_pages mask, passed to alloc_skb 382 * 383 * Allocate a new &sk_buff and assign it a usage count of one. The 384 * buffer has NET_SKB_PAD headroom built in. Users should allocate 385 * the headroom they think they need without accounting for the 386 * built in space. The built in space is used for optimisations. 387 * 388 * %NULL is returned if there is no free memory. 389 */ 390 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 391 gfp_t gfp_mask) 392 { 393 struct page_frag_cache *nc; 394 unsigned long flags; 395 struct sk_buff *skb; 396 bool pfmemalloc; 397 void *data; 398 399 len += NET_SKB_PAD; 400 401 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 402 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 403 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 404 if (!skb) 405 goto skb_fail; 406 goto skb_success; 407 } 408 409 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 410 len = SKB_DATA_ALIGN(len); 411 412 if (sk_memalloc_socks()) 413 gfp_mask |= __GFP_MEMALLOC; 414 415 local_irq_save(flags); 416 417 nc = this_cpu_ptr(&netdev_alloc_cache); 418 data = page_frag_alloc(nc, len, gfp_mask); 419 pfmemalloc = nc->pfmemalloc; 420 421 local_irq_restore(flags); 422 423 if (unlikely(!data)) 424 return NULL; 425 426 skb = __build_skb(data, len); 427 if (unlikely(!skb)) { 428 skb_free_frag(data); 429 return NULL; 430 } 431 432 /* use OR instead of assignment to avoid clearing of bits in mask */ 433 if (pfmemalloc) 434 skb->pfmemalloc = 1; 435 skb->head_frag = 1; 436 437 skb_success: 438 skb_reserve(skb, NET_SKB_PAD); 439 skb->dev = dev; 440 441 skb_fail: 442 return skb; 443 } 444 EXPORT_SYMBOL(__netdev_alloc_skb); 445 446 /** 447 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 448 * @napi: napi instance this buffer was allocated for 449 * @len: length to allocate 450 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 451 * 452 * Allocate a new sk_buff for use in NAPI receive. This buffer will 453 * attempt to allocate the head from a special reserved region used 454 * only for NAPI Rx allocation. By doing this we can save several 455 * CPU cycles by avoiding having to disable and re-enable IRQs. 456 * 457 * %NULL is returned if there is no free memory. 458 */ 459 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 460 gfp_t gfp_mask) 461 { 462 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 463 struct sk_buff *skb; 464 void *data; 465 466 len += NET_SKB_PAD + NET_IP_ALIGN; 467 468 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 469 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 470 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 471 if (!skb) 472 goto skb_fail; 473 goto skb_success; 474 } 475 476 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 477 len = SKB_DATA_ALIGN(len); 478 479 if (sk_memalloc_socks()) 480 gfp_mask |= __GFP_MEMALLOC; 481 482 data = page_frag_alloc(&nc->page, len, gfp_mask); 483 if (unlikely(!data)) 484 return NULL; 485 486 skb = __build_skb(data, len); 487 if (unlikely(!skb)) { 488 skb_free_frag(data); 489 return NULL; 490 } 491 492 /* use OR instead of assignment to avoid clearing of bits in mask */ 493 if (nc->page.pfmemalloc) 494 skb->pfmemalloc = 1; 495 skb->head_frag = 1; 496 497 skb_success: 498 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 499 skb->dev = napi->dev; 500 501 skb_fail: 502 return skb; 503 } 504 EXPORT_SYMBOL(__napi_alloc_skb); 505 506 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 507 int size, unsigned int truesize) 508 { 509 skb_fill_page_desc(skb, i, page, off, size); 510 skb->len += size; 511 skb->data_len += size; 512 skb->truesize += truesize; 513 } 514 EXPORT_SYMBOL(skb_add_rx_frag); 515 516 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 517 unsigned int truesize) 518 { 519 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 520 521 skb_frag_size_add(frag, size); 522 skb->len += size; 523 skb->data_len += size; 524 skb->truesize += truesize; 525 } 526 EXPORT_SYMBOL(skb_coalesce_rx_frag); 527 528 static void skb_drop_list(struct sk_buff **listp) 529 { 530 kfree_skb_list(*listp); 531 *listp = NULL; 532 } 533 534 static inline void skb_drop_fraglist(struct sk_buff *skb) 535 { 536 skb_drop_list(&skb_shinfo(skb)->frag_list); 537 } 538 539 static void skb_clone_fraglist(struct sk_buff *skb) 540 { 541 struct sk_buff *list; 542 543 skb_walk_frags(skb, list) 544 skb_get(list); 545 } 546 547 static void skb_free_head(struct sk_buff *skb) 548 { 549 unsigned char *head = skb->head; 550 551 if (skb->head_frag) 552 skb_free_frag(head); 553 else 554 kfree(head); 555 } 556 557 static void skb_release_data(struct sk_buff *skb) 558 { 559 struct skb_shared_info *shinfo = skb_shinfo(skb); 560 int i; 561 562 if (skb->cloned && 563 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 564 &shinfo->dataref)) 565 return; 566 567 for (i = 0; i < shinfo->nr_frags; i++) 568 __skb_frag_unref(&shinfo->frags[i]); 569 570 if (shinfo->frag_list) 571 kfree_skb_list(shinfo->frag_list); 572 573 skb_zcopy_clear(skb, true); 574 skb_free_head(skb); 575 } 576 577 /* 578 * Free an skbuff by memory without cleaning the state. 579 */ 580 static void kfree_skbmem(struct sk_buff *skb) 581 { 582 struct sk_buff_fclones *fclones; 583 584 switch (skb->fclone) { 585 case SKB_FCLONE_UNAVAILABLE: 586 kmem_cache_free(skbuff_head_cache, skb); 587 return; 588 589 case SKB_FCLONE_ORIG: 590 fclones = container_of(skb, struct sk_buff_fclones, skb1); 591 592 /* We usually free the clone (TX completion) before original skb 593 * This test would have no chance to be true for the clone, 594 * while here, branch prediction will be good. 595 */ 596 if (refcount_read(&fclones->fclone_ref) == 1) 597 goto fastpath; 598 break; 599 600 default: /* SKB_FCLONE_CLONE */ 601 fclones = container_of(skb, struct sk_buff_fclones, skb2); 602 break; 603 } 604 if (!refcount_dec_and_test(&fclones->fclone_ref)) 605 return; 606 fastpath: 607 kmem_cache_free(skbuff_fclone_cache, fclones); 608 } 609 610 void skb_release_head_state(struct sk_buff *skb) 611 { 612 skb_dst_drop(skb); 613 secpath_reset(skb); 614 if (skb->destructor) { 615 WARN_ON(in_irq()); 616 skb->destructor(skb); 617 } 618 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 619 nf_conntrack_put(skb_nfct(skb)); 620 #endif 621 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 622 nf_bridge_put(skb->nf_bridge); 623 #endif 624 } 625 626 /* Free everything but the sk_buff shell. */ 627 static void skb_release_all(struct sk_buff *skb) 628 { 629 skb_release_head_state(skb); 630 if (likely(skb->head)) 631 skb_release_data(skb); 632 } 633 634 /** 635 * __kfree_skb - private function 636 * @skb: buffer 637 * 638 * Free an sk_buff. Release anything attached to the buffer. 639 * Clean the state. This is an internal helper function. Users should 640 * always call kfree_skb 641 */ 642 643 void __kfree_skb(struct sk_buff *skb) 644 { 645 skb_release_all(skb); 646 kfree_skbmem(skb); 647 } 648 EXPORT_SYMBOL(__kfree_skb); 649 650 /** 651 * kfree_skb - free an sk_buff 652 * @skb: buffer to free 653 * 654 * Drop a reference to the buffer and free it if the usage count has 655 * hit zero. 656 */ 657 void kfree_skb(struct sk_buff *skb) 658 { 659 if (!skb_unref(skb)) 660 return; 661 662 trace_kfree_skb(skb, __builtin_return_address(0)); 663 __kfree_skb(skb); 664 } 665 EXPORT_SYMBOL(kfree_skb); 666 667 void kfree_skb_list(struct sk_buff *segs) 668 { 669 while (segs) { 670 struct sk_buff *next = segs->next; 671 672 kfree_skb(segs); 673 segs = next; 674 } 675 } 676 EXPORT_SYMBOL(kfree_skb_list); 677 678 /** 679 * skb_tx_error - report an sk_buff xmit error 680 * @skb: buffer that triggered an error 681 * 682 * Report xmit error if a device callback is tracking this skb. 683 * skb must be freed afterwards. 684 */ 685 void skb_tx_error(struct sk_buff *skb) 686 { 687 skb_zcopy_clear(skb, true); 688 } 689 EXPORT_SYMBOL(skb_tx_error); 690 691 /** 692 * consume_skb - free an skbuff 693 * @skb: buffer to free 694 * 695 * Drop a ref to the buffer and free it if the usage count has hit zero 696 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 697 * is being dropped after a failure and notes that 698 */ 699 void consume_skb(struct sk_buff *skb) 700 { 701 if (!skb_unref(skb)) 702 return; 703 704 trace_consume_skb(skb); 705 __kfree_skb(skb); 706 } 707 EXPORT_SYMBOL(consume_skb); 708 709 /** 710 * consume_stateless_skb - free an skbuff, assuming it is stateless 711 * @skb: buffer to free 712 * 713 * Alike consume_skb(), but this variant assumes that this is the last 714 * skb reference and all the head states have been already dropped 715 */ 716 void __consume_stateless_skb(struct sk_buff *skb) 717 { 718 trace_consume_skb(skb); 719 skb_release_data(skb); 720 kfree_skbmem(skb); 721 } 722 723 void __kfree_skb_flush(void) 724 { 725 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 726 727 /* flush skb_cache if containing objects */ 728 if (nc->skb_count) { 729 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 730 nc->skb_cache); 731 nc->skb_count = 0; 732 } 733 } 734 735 static inline void _kfree_skb_defer(struct sk_buff *skb) 736 { 737 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 738 739 /* drop skb->head and call any destructors for packet */ 740 skb_release_all(skb); 741 742 /* record skb to CPU local list */ 743 nc->skb_cache[nc->skb_count++] = skb; 744 745 #ifdef CONFIG_SLUB 746 /* SLUB writes into objects when freeing */ 747 prefetchw(skb); 748 #endif 749 750 /* flush skb_cache if it is filled */ 751 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 752 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 753 nc->skb_cache); 754 nc->skb_count = 0; 755 } 756 } 757 void __kfree_skb_defer(struct sk_buff *skb) 758 { 759 _kfree_skb_defer(skb); 760 } 761 762 void napi_consume_skb(struct sk_buff *skb, int budget) 763 { 764 if (unlikely(!skb)) 765 return; 766 767 /* Zero budget indicate non-NAPI context called us, like netpoll */ 768 if (unlikely(!budget)) { 769 dev_consume_skb_any(skb); 770 return; 771 } 772 773 if (!skb_unref(skb)) 774 return; 775 776 /* if reaching here SKB is ready to free */ 777 trace_consume_skb(skb); 778 779 /* if SKB is a clone, don't handle this case */ 780 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 781 __kfree_skb(skb); 782 return; 783 } 784 785 _kfree_skb_defer(skb); 786 } 787 EXPORT_SYMBOL(napi_consume_skb); 788 789 /* Make sure a field is enclosed inside headers_start/headers_end section */ 790 #define CHECK_SKB_FIELD(field) \ 791 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 792 offsetof(struct sk_buff, headers_start)); \ 793 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 794 offsetof(struct sk_buff, headers_end)); \ 795 796 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 797 { 798 new->tstamp = old->tstamp; 799 /* We do not copy old->sk */ 800 new->dev = old->dev; 801 memcpy(new->cb, old->cb, sizeof(old->cb)); 802 skb_dst_copy(new, old); 803 #ifdef CONFIG_XFRM 804 new->sp = secpath_get(old->sp); 805 #endif 806 __nf_copy(new, old, false); 807 808 /* Note : this field could be in headers_start/headers_end section 809 * It is not yet because we do not want to have a 16 bit hole 810 */ 811 new->queue_mapping = old->queue_mapping; 812 813 memcpy(&new->headers_start, &old->headers_start, 814 offsetof(struct sk_buff, headers_end) - 815 offsetof(struct sk_buff, headers_start)); 816 CHECK_SKB_FIELD(protocol); 817 CHECK_SKB_FIELD(csum); 818 CHECK_SKB_FIELD(hash); 819 CHECK_SKB_FIELD(priority); 820 CHECK_SKB_FIELD(skb_iif); 821 CHECK_SKB_FIELD(vlan_proto); 822 CHECK_SKB_FIELD(vlan_tci); 823 CHECK_SKB_FIELD(transport_header); 824 CHECK_SKB_FIELD(network_header); 825 CHECK_SKB_FIELD(mac_header); 826 CHECK_SKB_FIELD(inner_protocol); 827 CHECK_SKB_FIELD(inner_transport_header); 828 CHECK_SKB_FIELD(inner_network_header); 829 CHECK_SKB_FIELD(inner_mac_header); 830 CHECK_SKB_FIELD(mark); 831 #ifdef CONFIG_NETWORK_SECMARK 832 CHECK_SKB_FIELD(secmark); 833 #endif 834 #ifdef CONFIG_NET_RX_BUSY_POLL 835 CHECK_SKB_FIELD(napi_id); 836 #endif 837 #ifdef CONFIG_XPS 838 CHECK_SKB_FIELD(sender_cpu); 839 #endif 840 #ifdef CONFIG_NET_SCHED 841 CHECK_SKB_FIELD(tc_index); 842 #endif 843 844 } 845 846 /* 847 * You should not add any new code to this function. Add it to 848 * __copy_skb_header above instead. 849 */ 850 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 851 { 852 #define C(x) n->x = skb->x 853 854 n->next = n->prev = NULL; 855 n->sk = NULL; 856 __copy_skb_header(n, skb); 857 858 C(len); 859 C(data_len); 860 C(mac_len); 861 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 862 n->cloned = 1; 863 n->nohdr = 0; 864 n->destructor = NULL; 865 C(tail); 866 C(end); 867 C(head); 868 C(head_frag); 869 C(data); 870 C(truesize); 871 refcount_set(&n->users, 1); 872 873 atomic_inc(&(skb_shinfo(skb)->dataref)); 874 skb->cloned = 1; 875 876 return n; 877 #undef C 878 } 879 880 /** 881 * skb_morph - morph one skb into another 882 * @dst: the skb to receive the contents 883 * @src: the skb to supply the contents 884 * 885 * This is identical to skb_clone except that the target skb is 886 * supplied by the user. 887 * 888 * The target skb is returned upon exit. 889 */ 890 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 891 { 892 skb_release_all(dst); 893 return __skb_clone(dst, src); 894 } 895 EXPORT_SYMBOL_GPL(skb_morph); 896 897 static int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 898 { 899 unsigned long max_pg, num_pg, new_pg, old_pg; 900 struct user_struct *user; 901 902 if (capable(CAP_IPC_LOCK) || !size) 903 return 0; 904 905 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 906 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 907 user = mmp->user ? : current_user(); 908 909 do { 910 old_pg = atomic_long_read(&user->locked_vm); 911 new_pg = old_pg + num_pg; 912 if (new_pg > max_pg) 913 return -ENOBUFS; 914 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 915 old_pg); 916 917 if (!mmp->user) { 918 mmp->user = get_uid(user); 919 mmp->num_pg = num_pg; 920 } else { 921 mmp->num_pg += num_pg; 922 } 923 924 return 0; 925 } 926 927 static void mm_unaccount_pinned_pages(struct mmpin *mmp) 928 { 929 if (mmp->user) { 930 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 931 free_uid(mmp->user); 932 } 933 } 934 935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 936 { 937 struct ubuf_info *uarg; 938 struct sk_buff *skb; 939 940 WARN_ON_ONCE(!in_task()); 941 942 if (!sock_flag(sk, SOCK_ZEROCOPY)) 943 return NULL; 944 945 skb = sock_omalloc(sk, 0, GFP_KERNEL); 946 if (!skb) 947 return NULL; 948 949 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 950 uarg = (void *)skb->cb; 951 uarg->mmp.user = NULL; 952 953 if (mm_account_pinned_pages(&uarg->mmp, size)) { 954 kfree_skb(skb); 955 return NULL; 956 } 957 958 uarg->callback = sock_zerocopy_callback; 959 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 960 uarg->len = 1; 961 uarg->bytelen = size; 962 uarg->zerocopy = 1; 963 refcount_set(&uarg->refcnt, 1); 964 sock_hold(sk); 965 966 return uarg; 967 } 968 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 969 970 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 971 { 972 return container_of((void *)uarg, struct sk_buff, cb); 973 } 974 975 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 976 struct ubuf_info *uarg) 977 { 978 if (uarg) { 979 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 980 u32 bytelen, next; 981 982 /* realloc only when socket is locked (TCP, UDP cork), 983 * so uarg->len and sk_zckey access is serialized 984 */ 985 if (!sock_owned_by_user(sk)) { 986 WARN_ON_ONCE(1); 987 return NULL; 988 } 989 990 bytelen = uarg->bytelen + size; 991 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 992 /* TCP can create new skb to attach new uarg */ 993 if (sk->sk_type == SOCK_STREAM) 994 goto new_alloc; 995 return NULL; 996 } 997 998 next = (u32)atomic_read(&sk->sk_zckey); 999 if ((u32)(uarg->id + uarg->len) == next) { 1000 if (mm_account_pinned_pages(&uarg->mmp, size)) 1001 return NULL; 1002 uarg->len++; 1003 uarg->bytelen = bytelen; 1004 atomic_set(&sk->sk_zckey, ++next); 1005 sock_zerocopy_get(uarg); 1006 return uarg; 1007 } 1008 } 1009 1010 new_alloc: 1011 return sock_zerocopy_alloc(sk, size); 1012 } 1013 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1014 1015 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1016 { 1017 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1018 u32 old_lo, old_hi; 1019 u64 sum_len; 1020 1021 old_lo = serr->ee.ee_info; 1022 old_hi = serr->ee.ee_data; 1023 sum_len = old_hi - old_lo + 1ULL + len; 1024 1025 if (sum_len >= (1ULL << 32)) 1026 return false; 1027 1028 if (lo != old_hi + 1) 1029 return false; 1030 1031 serr->ee.ee_data += len; 1032 return true; 1033 } 1034 1035 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1036 { 1037 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1038 struct sock_exterr_skb *serr; 1039 struct sock *sk = skb->sk; 1040 struct sk_buff_head *q; 1041 unsigned long flags; 1042 u32 lo, hi; 1043 u16 len; 1044 1045 mm_unaccount_pinned_pages(&uarg->mmp); 1046 1047 /* if !len, there was only 1 call, and it was aborted 1048 * so do not queue a completion notification 1049 */ 1050 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1051 goto release; 1052 1053 len = uarg->len; 1054 lo = uarg->id; 1055 hi = uarg->id + len - 1; 1056 1057 serr = SKB_EXT_ERR(skb); 1058 memset(serr, 0, sizeof(*serr)); 1059 serr->ee.ee_errno = 0; 1060 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1061 serr->ee.ee_data = hi; 1062 serr->ee.ee_info = lo; 1063 if (!success) 1064 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1065 1066 q = &sk->sk_error_queue; 1067 spin_lock_irqsave(&q->lock, flags); 1068 tail = skb_peek_tail(q); 1069 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1070 !skb_zerocopy_notify_extend(tail, lo, len)) { 1071 __skb_queue_tail(q, skb); 1072 skb = NULL; 1073 } 1074 spin_unlock_irqrestore(&q->lock, flags); 1075 1076 sk->sk_error_report(sk); 1077 1078 release: 1079 consume_skb(skb); 1080 sock_put(sk); 1081 } 1082 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1083 1084 void sock_zerocopy_put(struct ubuf_info *uarg) 1085 { 1086 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1087 if (uarg->callback) 1088 uarg->callback(uarg, uarg->zerocopy); 1089 else 1090 consume_skb(skb_from_uarg(uarg)); 1091 } 1092 } 1093 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1094 1095 void sock_zerocopy_put_abort(struct ubuf_info *uarg) 1096 { 1097 if (uarg) { 1098 struct sock *sk = skb_from_uarg(uarg)->sk; 1099 1100 atomic_dec(&sk->sk_zckey); 1101 uarg->len--; 1102 1103 sock_zerocopy_put(uarg); 1104 } 1105 } 1106 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1107 1108 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1109 struct iov_iter *from, size_t length); 1110 1111 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1112 struct msghdr *msg, int len, 1113 struct ubuf_info *uarg) 1114 { 1115 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1116 struct iov_iter orig_iter = msg->msg_iter; 1117 int err, orig_len = skb->len; 1118 1119 /* An skb can only point to one uarg. This edge case happens when 1120 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1121 */ 1122 if (orig_uarg && uarg != orig_uarg) 1123 return -EEXIST; 1124 1125 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1126 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1127 /* Streams do not free skb on error. Reset to prev state. */ 1128 msg->msg_iter = orig_iter; 1129 ___pskb_trim(skb, orig_len); 1130 return err; 1131 } 1132 1133 skb_zcopy_set(skb, uarg); 1134 return skb->len - orig_len; 1135 } 1136 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1137 1138 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1139 gfp_t gfp_mask) 1140 { 1141 if (skb_zcopy(orig)) { 1142 if (skb_zcopy(nskb)) { 1143 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1144 if (!gfp_mask) { 1145 WARN_ON_ONCE(1); 1146 return -ENOMEM; 1147 } 1148 if (skb_uarg(nskb) == skb_uarg(orig)) 1149 return 0; 1150 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1151 return -EIO; 1152 } 1153 skb_zcopy_set(nskb, skb_uarg(orig)); 1154 } 1155 return 0; 1156 } 1157 1158 /** 1159 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1160 * @skb: the skb to modify 1161 * @gfp_mask: allocation priority 1162 * 1163 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1164 * It will copy all frags into kernel and drop the reference 1165 * to userspace pages. 1166 * 1167 * If this function is called from an interrupt gfp_mask() must be 1168 * %GFP_ATOMIC. 1169 * 1170 * Returns 0 on success or a negative error code on failure 1171 * to allocate kernel memory to copy to. 1172 */ 1173 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1174 { 1175 int num_frags = skb_shinfo(skb)->nr_frags; 1176 struct page *page, *head = NULL; 1177 int i, new_frags; 1178 u32 d_off; 1179 1180 if (!num_frags) 1181 return 0; 1182 1183 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1184 return -EINVAL; 1185 1186 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1187 for (i = 0; i < new_frags; i++) { 1188 page = alloc_page(gfp_mask); 1189 if (!page) { 1190 while (head) { 1191 struct page *next = (struct page *)page_private(head); 1192 put_page(head); 1193 head = next; 1194 } 1195 return -ENOMEM; 1196 } 1197 set_page_private(page, (unsigned long)head); 1198 head = page; 1199 } 1200 1201 page = head; 1202 d_off = 0; 1203 for (i = 0; i < num_frags; i++) { 1204 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1205 u32 p_off, p_len, copied; 1206 struct page *p; 1207 u8 *vaddr; 1208 1209 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1210 p, p_off, p_len, copied) { 1211 u32 copy, done = 0; 1212 vaddr = kmap_atomic(p); 1213 1214 while (done < p_len) { 1215 if (d_off == PAGE_SIZE) { 1216 d_off = 0; 1217 page = (struct page *)page_private(page); 1218 } 1219 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1220 memcpy(page_address(page) + d_off, 1221 vaddr + p_off + done, copy); 1222 done += copy; 1223 d_off += copy; 1224 } 1225 kunmap_atomic(vaddr); 1226 } 1227 } 1228 1229 /* skb frags release userspace buffers */ 1230 for (i = 0; i < num_frags; i++) 1231 skb_frag_unref(skb, i); 1232 1233 /* skb frags point to kernel buffers */ 1234 for (i = 0; i < new_frags - 1; i++) { 1235 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1236 head = (struct page *)page_private(head); 1237 } 1238 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1239 skb_shinfo(skb)->nr_frags = new_frags; 1240 1241 skb_zcopy_clear(skb, false); 1242 return 0; 1243 } 1244 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1245 1246 /** 1247 * skb_clone - duplicate an sk_buff 1248 * @skb: buffer to clone 1249 * @gfp_mask: allocation priority 1250 * 1251 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1252 * copies share the same packet data but not structure. The new 1253 * buffer has a reference count of 1. If the allocation fails the 1254 * function returns %NULL otherwise the new buffer is returned. 1255 * 1256 * If this function is called from an interrupt gfp_mask() must be 1257 * %GFP_ATOMIC. 1258 */ 1259 1260 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1261 { 1262 struct sk_buff_fclones *fclones = container_of(skb, 1263 struct sk_buff_fclones, 1264 skb1); 1265 struct sk_buff *n; 1266 1267 if (skb_orphan_frags(skb, gfp_mask)) 1268 return NULL; 1269 1270 if (skb->fclone == SKB_FCLONE_ORIG && 1271 refcount_read(&fclones->fclone_ref) == 1) { 1272 n = &fclones->skb2; 1273 refcount_set(&fclones->fclone_ref, 2); 1274 } else { 1275 if (skb_pfmemalloc(skb)) 1276 gfp_mask |= __GFP_MEMALLOC; 1277 1278 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1279 if (!n) 1280 return NULL; 1281 1282 kmemcheck_annotate_bitfield(n, flags1); 1283 n->fclone = SKB_FCLONE_UNAVAILABLE; 1284 } 1285 1286 return __skb_clone(n, skb); 1287 } 1288 EXPORT_SYMBOL(skb_clone); 1289 1290 static void skb_headers_offset_update(struct sk_buff *skb, int off) 1291 { 1292 /* Only adjust this if it actually is csum_start rather than csum */ 1293 if (skb->ip_summed == CHECKSUM_PARTIAL) 1294 skb->csum_start += off; 1295 /* {transport,network,mac}_header and tail are relative to skb->head */ 1296 skb->transport_header += off; 1297 skb->network_header += off; 1298 if (skb_mac_header_was_set(skb)) 1299 skb->mac_header += off; 1300 skb->inner_transport_header += off; 1301 skb->inner_network_header += off; 1302 skb->inner_mac_header += off; 1303 } 1304 1305 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1306 { 1307 __copy_skb_header(new, old); 1308 1309 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1310 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1311 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1312 } 1313 1314 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1315 { 1316 if (skb_pfmemalloc(skb)) 1317 return SKB_ALLOC_RX; 1318 return 0; 1319 } 1320 1321 /** 1322 * skb_copy - create private copy of an sk_buff 1323 * @skb: buffer to copy 1324 * @gfp_mask: allocation priority 1325 * 1326 * Make a copy of both an &sk_buff and its data. This is used when the 1327 * caller wishes to modify the data and needs a private copy of the 1328 * data to alter. Returns %NULL on failure or the pointer to the buffer 1329 * on success. The returned buffer has a reference count of 1. 1330 * 1331 * As by-product this function converts non-linear &sk_buff to linear 1332 * one, so that &sk_buff becomes completely private and caller is allowed 1333 * to modify all the data of returned buffer. This means that this 1334 * function is not recommended for use in circumstances when only 1335 * header is going to be modified. Use pskb_copy() instead. 1336 */ 1337 1338 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1339 { 1340 int headerlen = skb_headroom(skb); 1341 unsigned int size = skb_end_offset(skb) + skb->data_len; 1342 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1343 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1344 1345 if (!n) 1346 return NULL; 1347 1348 /* Set the data pointer */ 1349 skb_reserve(n, headerlen); 1350 /* Set the tail pointer and length */ 1351 skb_put(n, skb->len); 1352 1353 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 1354 BUG(); 1355 1356 copy_skb_header(n, skb); 1357 return n; 1358 } 1359 EXPORT_SYMBOL(skb_copy); 1360 1361 /** 1362 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1363 * @skb: buffer to copy 1364 * @headroom: headroom of new skb 1365 * @gfp_mask: allocation priority 1366 * @fclone: if true allocate the copy of the skb from the fclone 1367 * cache instead of the head cache; it is recommended to set this 1368 * to true for the cases where the copy will likely be cloned 1369 * 1370 * Make a copy of both an &sk_buff and part of its data, located 1371 * in header. Fragmented data remain shared. This is used when 1372 * the caller wishes to modify only header of &sk_buff and needs 1373 * private copy of the header to alter. Returns %NULL on failure 1374 * or the pointer to the buffer on success. 1375 * The returned buffer has a reference count of 1. 1376 */ 1377 1378 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1379 gfp_t gfp_mask, bool fclone) 1380 { 1381 unsigned int size = skb_headlen(skb) + headroom; 1382 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1383 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1384 1385 if (!n) 1386 goto out; 1387 1388 /* Set the data pointer */ 1389 skb_reserve(n, headroom); 1390 /* Set the tail pointer and length */ 1391 skb_put(n, skb_headlen(skb)); 1392 /* Copy the bytes */ 1393 skb_copy_from_linear_data(skb, n->data, n->len); 1394 1395 n->truesize += skb->data_len; 1396 n->data_len = skb->data_len; 1397 n->len = skb->len; 1398 1399 if (skb_shinfo(skb)->nr_frags) { 1400 int i; 1401 1402 if (skb_orphan_frags(skb, gfp_mask) || 1403 skb_zerocopy_clone(n, skb, gfp_mask)) { 1404 kfree_skb(n); 1405 n = NULL; 1406 goto out; 1407 } 1408 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1409 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1410 skb_frag_ref(skb, i); 1411 } 1412 skb_shinfo(n)->nr_frags = i; 1413 } 1414 1415 if (skb_has_frag_list(skb)) { 1416 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1417 skb_clone_fraglist(n); 1418 } 1419 1420 copy_skb_header(n, skb); 1421 out: 1422 return n; 1423 } 1424 EXPORT_SYMBOL(__pskb_copy_fclone); 1425 1426 /** 1427 * pskb_expand_head - reallocate header of &sk_buff 1428 * @skb: buffer to reallocate 1429 * @nhead: room to add at head 1430 * @ntail: room to add at tail 1431 * @gfp_mask: allocation priority 1432 * 1433 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1434 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1435 * reference count of 1. Returns zero in the case of success or error, 1436 * if expansion failed. In the last case, &sk_buff is not changed. 1437 * 1438 * All the pointers pointing into skb header may change and must be 1439 * reloaded after call to this function. 1440 */ 1441 1442 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1443 gfp_t gfp_mask) 1444 { 1445 int i, osize = skb_end_offset(skb); 1446 int size = osize + nhead + ntail; 1447 long off; 1448 u8 *data; 1449 1450 BUG_ON(nhead < 0); 1451 1452 if (skb_shared(skb)) 1453 BUG(); 1454 1455 size = SKB_DATA_ALIGN(size); 1456 1457 if (skb_pfmemalloc(skb)) 1458 gfp_mask |= __GFP_MEMALLOC; 1459 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1460 gfp_mask, NUMA_NO_NODE, NULL); 1461 if (!data) 1462 goto nodata; 1463 size = SKB_WITH_OVERHEAD(ksize(data)); 1464 1465 /* Copy only real data... and, alas, header. This should be 1466 * optimized for the cases when header is void. 1467 */ 1468 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1469 1470 memcpy((struct skb_shared_info *)(data + size), 1471 skb_shinfo(skb), 1472 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1473 1474 /* 1475 * if shinfo is shared we must drop the old head gracefully, but if it 1476 * is not we can just drop the old head and let the existing refcount 1477 * be since all we did is relocate the values 1478 */ 1479 if (skb_cloned(skb)) { 1480 if (skb_orphan_frags(skb, gfp_mask)) 1481 goto nofrags; 1482 if (skb_zcopy(skb)) 1483 refcount_inc(&skb_uarg(skb)->refcnt); 1484 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1485 skb_frag_ref(skb, i); 1486 1487 if (skb_has_frag_list(skb)) 1488 skb_clone_fraglist(skb); 1489 1490 skb_release_data(skb); 1491 } else { 1492 skb_free_head(skb); 1493 } 1494 off = (data + nhead) - skb->head; 1495 1496 skb->head = data; 1497 skb->head_frag = 0; 1498 skb->data += off; 1499 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1500 skb->end = size; 1501 off = nhead; 1502 #else 1503 skb->end = skb->head + size; 1504 #endif 1505 skb->tail += off; 1506 skb_headers_offset_update(skb, nhead); 1507 skb->cloned = 0; 1508 skb->hdr_len = 0; 1509 skb->nohdr = 0; 1510 atomic_set(&skb_shinfo(skb)->dataref, 1); 1511 1512 skb_metadata_clear(skb); 1513 1514 /* It is not generally safe to change skb->truesize. 1515 * For the moment, we really care of rx path, or 1516 * when skb is orphaned (not attached to a socket). 1517 */ 1518 if (!skb->sk || skb->destructor == sock_edemux) 1519 skb->truesize += size - osize; 1520 1521 return 0; 1522 1523 nofrags: 1524 kfree(data); 1525 nodata: 1526 return -ENOMEM; 1527 } 1528 EXPORT_SYMBOL(pskb_expand_head); 1529 1530 /* Make private copy of skb with writable head and some headroom */ 1531 1532 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1533 { 1534 struct sk_buff *skb2; 1535 int delta = headroom - skb_headroom(skb); 1536 1537 if (delta <= 0) 1538 skb2 = pskb_copy(skb, GFP_ATOMIC); 1539 else { 1540 skb2 = skb_clone(skb, GFP_ATOMIC); 1541 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1542 GFP_ATOMIC)) { 1543 kfree_skb(skb2); 1544 skb2 = NULL; 1545 } 1546 } 1547 return skb2; 1548 } 1549 EXPORT_SYMBOL(skb_realloc_headroom); 1550 1551 /** 1552 * skb_copy_expand - copy and expand sk_buff 1553 * @skb: buffer to copy 1554 * @newheadroom: new free bytes at head 1555 * @newtailroom: new free bytes at tail 1556 * @gfp_mask: allocation priority 1557 * 1558 * Make a copy of both an &sk_buff and its data and while doing so 1559 * allocate additional space. 1560 * 1561 * This is used when the caller wishes to modify the data and needs a 1562 * private copy of the data to alter as well as more space for new fields. 1563 * Returns %NULL on failure or the pointer to the buffer 1564 * on success. The returned buffer has a reference count of 1. 1565 * 1566 * You must pass %GFP_ATOMIC as the allocation priority if this function 1567 * is called from an interrupt. 1568 */ 1569 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1570 int newheadroom, int newtailroom, 1571 gfp_t gfp_mask) 1572 { 1573 /* 1574 * Allocate the copy buffer 1575 */ 1576 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1577 gfp_mask, skb_alloc_rx_flag(skb), 1578 NUMA_NO_NODE); 1579 int oldheadroom = skb_headroom(skb); 1580 int head_copy_len, head_copy_off; 1581 1582 if (!n) 1583 return NULL; 1584 1585 skb_reserve(n, newheadroom); 1586 1587 /* Set the tail pointer and length */ 1588 skb_put(n, skb->len); 1589 1590 head_copy_len = oldheadroom; 1591 head_copy_off = 0; 1592 if (newheadroom <= head_copy_len) 1593 head_copy_len = newheadroom; 1594 else 1595 head_copy_off = newheadroom - head_copy_len; 1596 1597 /* Copy the linear header and data. */ 1598 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1599 skb->len + head_copy_len)) 1600 BUG(); 1601 1602 copy_skb_header(n, skb); 1603 1604 skb_headers_offset_update(n, newheadroom - oldheadroom); 1605 1606 return n; 1607 } 1608 EXPORT_SYMBOL(skb_copy_expand); 1609 1610 /** 1611 * __skb_pad - zero pad the tail of an skb 1612 * @skb: buffer to pad 1613 * @pad: space to pad 1614 * @free_on_error: free buffer on error 1615 * 1616 * Ensure that a buffer is followed by a padding area that is zero 1617 * filled. Used by network drivers which may DMA or transfer data 1618 * beyond the buffer end onto the wire. 1619 * 1620 * May return error in out of memory cases. The skb is freed on error 1621 * if @free_on_error is true. 1622 */ 1623 1624 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1625 { 1626 int err; 1627 int ntail; 1628 1629 /* If the skbuff is non linear tailroom is always zero.. */ 1630 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1631 memset(skb->data+skb->len, 0, pad); 1632 return 0; 1633 } 1634 1635 ntail = skb->data_len + pad - (skb->end - skb->tail); 1636 if (likely(skb_cloned(skb) || ntail > 0)) { 1637 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1638 if (unlikely(err)) 1639 goto free_skb; 1640 } 1641 1642 /* FIXME: The use of this function with non-linear skb's really needs 1643 * to be audited. 1644 */ 1645 err = skb_linearize(skb); 1646 if (unlikely(err)) 1647 goto free_skb; 1648 1649 memset(skb->data + skb->len, 0, pad); 1650 return 0; 1651 1652 free_skb: 1653 if (free_on_error) 1654 kfree_skb(skb); 1655 return err; 1656 } 1657 EXPORT_SYMBOL(__skb_pad); 1658 1659 /** 1660 * pskb_put - add data to the tail of a potentially fragmented buffer 1661 * @skb: start of the buffer to use 1662 * @tail: tail fragment of the buffer to use 1663 * @len: amount of data to add 1664 * 1665 * This function extends the used data area of the potentially 1666 * fragmented buffer. @tail must be the last fragment of @skb -- or 1667 * @skb itself. If this would exceed the total buffer size the kernel 1668 * will panic. A pointer to the first byte of the extra data is 1669 * returned. 1670 */ 1671 1672 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1673 { 1674 if (tail != skb) { 1675 skb->data_len += len; 1676 skb->len += len; 1677 } 1678 return skb_put(tail, len); 1679 } 1680 EXPORT_SYMBOL_GPL(pskb_put); 1681 1682 /** 1683 * skb_put - add data to a buffer 1684 * @skb: buffer to use 1685 * @len: amount of data to add 1686 * 1687 * This function extends the used data area of the buffer. If this would 1688 * exceed the total buffer size the kernel will panic. A pointer to the 1689 * first byte of the extra data is returned. 1690 */ 1691 void *skb_put(struct sk_buff *skb, unsigned int len) 1692 { 1693 void *tmp = skb_tail_pointer(skb); 1694 SKB_LINEAR_ASSERT(skb); 1695 skb->tail += len; 1696 skb->len += len; 1697 if (unlikely(skb->tail > skb->end)) 1698 skb_over_panic(skb, len, __builtin_return_address(0)); 1699 return tmp; 1700 } 1701 EXPORT_SYMBOL(skb_put); 1702 1703 /** 1704 * skb_push - add data to the start of a buffer 1705 * @skb: buffer to use 1706 * @len: amount of data to add 1707 * 1708 * This function extends the used data area of the buffer at the buffer 1709 * start. If this would exceed the total buffer headroom the kernel will 1710 * panic. A pointer to the first byte of the extra data is returned. 1711 */ 1712 void *skb_push(struct sk_buff *skb, unsigned int len) 1713 { 1714 skb->data -= len; 1715 skb->len += len; 1716 if (unlikely(skb->data<skb->head)) 1717 skb_under_panic(skb, len, __builtin_return_address(0)); 1718 return skb->data; 1719 } 1720 EXPORT_SYMBOL(skb_push); 1721 1722 /** 1723 * skb_pull - remove data from the start of a buffer 1724 * @skb: buffer to use 1725 * @len: amount of data to remove 1726 * 1727 * This function removes data from the start of a buffer, returning 1728 * the memory to the headroom. A pointer to the next data in the buffer 1729 * is returned. Once the data has been pulled future pushes will overwrite 1730 * the old data. 1731 */ 1732 void *skb_pull(struct sk_buff *skb, unsigned int len) 1733 { 1734 return skb_pull_inline(skb, len); 1735 } 1736 EXPORT_SYMBOL(skb_pull); 1737 1738 /** 1739 * skb_trim - remove end from a buffer 1740 * @skb: buffer to alter 1741 * @len: new length 1742 * 1743 * Cut the length of a buffer down by removing data from the tail. If 1744 * the buffer is already under the length specified it is not modified. 1745 * The skb must be linear. 1746 */ 1747 void skb_trim(struct sk_buff *skb, unsigned int len) 1748 { 1749 if (skb->len > len) 1750 __skb_trim(skb, len); 1751 } 1752 EXPORT_SYMBOL(skb_trim); 1753 1754 /* Trims skb to length len. It can change skb pointers. 1755 */ 1756 1757 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1758 { 1759 struct sk_buff **fragp; 1760 struct sk_buff *frag; 1761 int offset = skb_headlen(skb); 1762 int nfrags = skb_shinfo(skb)->nr_frags; 1763 int i; 1764 int err; 1765 1766 if (skb_cloned(skb) && 1767 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1768 return err; 1769 1770 i = 0; 1771 if (offset >= len) 1772 goto drop_pages; 1773 1774 for (; i < nfrags; i++) { 1775 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1776 1777 if (end < len) { 1778 offset = end; 1779 continue; 1780 } 1781 1782 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1783 1784 drop_pages: 1785 skb_shinfo(skb)->nr_frags = i; 1786 1787 for (; i < nfrags; i++) 1788 skb_frag_unref(skb, i); 1789 1790 if (skb_has_frag_list(skb)) 1791 skb_drop_fraglist(skb); 1792 goto done; 1793 } 1794 1795 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1796 fragp = &frag->next) { 1797 int end = offset + frag->len; 1798 1799 if (skb_shared(frag)) { 1800 struct sk_buff *nfrag; 1801 1802 nfrag = skb_clone(frag, GFP_ATOMIC); 1803 if (unlikely(!nfrag)) 1804 return -ENOMEM; 1805 1806 nfrag->next = frag->next; 1807 consume_skb(frag); 1808 frag = nfrag; 1809 *fragp = frag; 1810 } 1811 1812 if (end < len) { 1813 offset = end; 1814 continue; 1815 } 1816 1817 if (end > len && 1818 unlikely((err = pskb_trim(frag, len - offset)))) 1819 return err; 1820 1821 if (frag->next) 1822 skb_drop_list(&frag->next); 1823 break; 1824 } 1825 1826 done: 1827 if (len > skb_headlen(skb)) { 1828 skb->data_len -= skb->len - len; 1829 skb->len = len; 1830 } else { 1831 skb->len = len; 1832 skb->data_len = 0; 1833 skb_set_tail_pointer(skb, len); 1834 } 1835 1836 if (!skb->sk || skb->destructor == sock_edemux) 1837 skb_condense(skb); 1838 return 0; 1839 } 1840 EXPORT_SYMBOL(___pskb_trim); 1841 1842 /** 1843 * __pskb_pull_tail - advance tail of skb header 1844 * @skb: buffer to reallocate 1845 * @delta: number of bytes to advance tail 1846 * 1847 * The function makes a sense only on a fragmented &sk_buff, 1848 * it expands header moving its tail forward and copying necessary 1849 * data from fragmented part. 1850 * 1851 * &sk_buff MUST have reference count of 1. 1852 * 1853 * Returns %NULL (and &sk_buff does not change) if pull failed 1854 * or value of new tail of skb in the case of success. 1855 * 1856 * All the pointers pointing into skb header may change and must be 1857 * reloaded after call to this function. 1858 */ 1859 1860 /* Moves tail of skb head forward, copying data from fragmented part, 1861 * when it is necessary. 1862 * 1. It may fail due to malloc failure. 1863 * 2. It may change skb pointers. 1864 * 1865 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1866 */ 1867 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1868 { 1869 /* If skb has not enough free space at tail, get new one 1870 * plus 128 bytes for future expansions. If we have enough 1871 * room at tail, reallocate without expansion only if skb is cloned. 1872 */ 1873 int i, k, eat = (skb->tail + delta) - skb->end; 1874 1875 if (eat > 0 || skb_cloned(skb)) { 1876 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1877 GFP_ATOMIC)) 1878 return NULL; 1879 } 1880 1881 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1882 BUG(); 1883 1884 /* Optimization: no fragments, no reasons to preestimate 1885 * size of pulled pages. Superb. 1886 */ 1887 if (!skb_has_frag_list(skb)) 1888 goto pull_pages; 1889 1890 /* Estimate size of pulled pages. */ 1891 eat = delta; 1892 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1893 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1894 1895 if (size >= eat) 1896 goto pull_pages; 1897 eat -= size; 1898 } 1899 1900 /* If we need update frag list, we are in troubles. 1901 * Certainly, it possible to add an offset to skb data, 1902 * but taking into account that pulling is expected to 1903 * be very rare operation, it is worth to fight against 1904 * further bloating skb head and crucify ourselves here instead. 1905 * Pure masohism, indeed. 8)8) 1906 */ 1907 if (eat) { 1908 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1909 struct sk_buff *clone = NULL; 1910 struct sk_buff *insp = NULL; 1911 1912 do { 1913 BUG_ON(!list); 1914 1915 if (list->len <= eat) { 1916 /* Eaten as whole. */ 1917 eat -= list->len; 1918 list = list->next; 1919 insp = list; 1920 } else { 1921 /* Eaten partially. */ 1922 1923 if (skb_shared(list)) { 1924 /* Sucks! We need to fork list. :-( */ 1925 clone = skb_clone(list, GFP_ATOMIC); 1926 if (!clone) 1927 return NULL; 1928 insp = list->next; 1929 list = clone; 1930 } else { 1931 /* This may be pulled without 1932 * problems. */ 1933 insp = list; 1934 } 1935 if (!pskb_pull(list, eat)) { 1936 kfree_skb(clone); 1937 return NULL; 1938 } 1939 break; 1940 } 1941 } while (eat); 1942 1943 /* Free pulled out fragments. */ 1944 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1945 skb_shinfo(skb)->frag_list = list->next; 1946 kfree_skb(list); 1947 } 1948 /* And insert new clone at head. */ 1949 if (clone) { 1950 clone->next = list; 1951 skb_shinfo(skb)->frag_list = clone; 1952 } 1953 } 1954 /* Success! Now we may commit changes to skb data. */ 1955 1956 pull_pages: 1957 eat = delta; 1958 k = 0; 1959 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1960 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1961 1962 if (size <= eat) { 1963 skb_frag_unref(skb, i); 1964 eat -= size; 1965 } else { 1966 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1967 if (eat) { 1968 skb_shinfo(skb)->frags[k].page_offset += eat; 1969 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1970 if (!i) 1971 goto end; 1972 eat = 0; 1973 } 1974 k++; 1975 } 1976 } 1977 skb_shinfo(skb)->nr_frags = k; 1978 1979 end: 1980 skb->tail += delta; 1981 skb->data_len -= delta; 1982 1983 if (!skb->data_len) 1984 skb_zcopy_clear(skb, false); 1985 1986 return skb_tail_pointer(skb); 1987 } 1988 EXPORT_SYMBOL(__pskb_pull_tail); 1989 1990 /** 1991 * skb_copy_bits - copy bits from skb to kernel buffer 1992 * @skb: source skb 1993 * @offset: offset in source 1994 * @to: destination buffer 1995 * @len: number of bytes to copy 1996 * 1997 * Copy the specified number of bytes from the source skb to the 1998 * destination buffer. 1999 * 2000 * CAUTION ! : 2001 * If its prototype is ever changed, 2002 * check arch/{*}/net/{*}.S files, 2003 * since it is called from BPF assembly code. 2004 */ 2005 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2006 { 2007 int start = skb_headlen(skb); 2008 struct sk_buff *frag_iter; 2009 int i, copy; 2010 2011 if (offset > (int)skb->len - len) 2012 goto fault; 2013 2014 /* Copy header. */ 2015 if ((copy = start - offset) > 0) { 2016 if (copy > len) 2017 copy = len; 2018 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2019 if ((len -= copy) == 0) 2020 return 0; 2021 offset += copy; 2022 to += copy; 2023 } 2024 2025 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2026 int end; 2027 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2028 2029 WARN_ON(start > offset + len); 2030 2031 end = start + skb_frag_size(f); 2032 if ((copy = end - offset) > 0) { 2033 u32 p_off, p_len, copied; 2034 struct page *p; 2035 u8 *vaddr; 2036 2037 if (copy > len) 2038 copy = len; 2039 2040 skb_frag_foreach_page(f, 2041 f->page_offset + offset - start, 2042 copy, p, p_off, p_len, copied) { 2043 vaddr = kmap_atomic(p); 2044 memcpy(to + copied, vaddr + p_off, p_len); 2045 kunmap_atomic(vaddr); 2046 } 2047 2048 if ((len -= copy) == 0) 2049 return 0; 2050 offset += copy; 2051 to += copy; 2052 } 2053 start = end; 2054 } 2055 2056 skb_walk_frags(skb, frag_iter) { 2057 int end; 2058 2059 WARN_ON(start > offset + len); 2060 2061 end = start + frag_iter->len; 2062 if ((copy = end - offset) > 0) { 2063 if (copy > len) 2064 copy = len; 2065 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2066 goto fault; 2067 if ((len -= copy) == 0) 2068 return 0; 2069 offset += copy; 2070 to += copy; 2071 } 2072 start = end; 2073 } 2074 2075 if (!len) 2076 return 0; 2077 2078 fault: 2079 return -EFAULT; 2080 } 2081 EXPORT_SYMBOL(skb_copy_bits); 2082 2083 /* 2084 * Callback from splice_to_pipe(), if we need to release some pages 2085 * at the end of the spd in case we error'ed out in filling the pipe. 2086 */ 2087 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2088 { 2089 put_page(spd->pages[i]); 2090 } 2091 2092 static struct page *linear_to_page(struct page *page, unsigned int *len, 2093 unsigned int *offset, 2094 struct sock *sk) 2095 { 2096 struct page_frag *pfrag = sk_page_frag(sk); 2097 2098 if (!sk_page_frag_refill(sk, pfrag)) 2099 return NULL; 2100 2101 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2102 2103 memcpy(page_address(pfrag->page) + pfrag->offset, 2104 page_address(page) + *offset, *len); 2105 *offset = pfrag->offset; 2106 pfrag->offset += *len; 2107 2108 return pfrag->page; 2109 } 2110 2111 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2112 struct page *page, 2113 unsigned int offset) 2114 { 2115 return spd->nr_pages && 2116 spd->pages[spd->nr_pages - 1] == page && 2117 (spd->partial[spd->nr_pages - 1].offset + 2118 spd->partial[spd->nr_pages - 1].len == offset); 2119 } 2120 2121 /* 2122 * Fill page/offset/length into spd, if it can hold more pages. 2123 */ 2124 static bool spd_fill_page(struct splice_pipe_desc *spd, 2125 struct pipe_inode_info *pipe, struct page *page, 2126 unsigned int *len, unsigned int offset, 2127 bool linear, 2128 struct sock *sk) 2129 { 2130 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2131 return true; 2132 2133 if (linear) { 2134 page = linear_to_page(page, len, &offset, sk); 2135 if (!page) 2136 return true; 2137 } 2138 if (spd_can_coalesce(spd, page, offset)) { 2139 spd->partial[spd->nr_pages - 1].len += *len; 2140 return false; 2141 } 2142 get_page(page); 2143 spd->pages[spd->nr_pages] = page; 2144 spd->partial[spd->nr_pages].len = *len; 2145 spd->partial[spd->nr_pages].offset = offset; 2146 spd->nr_pages++; 2147 2148 return false; 2149 } 2150 2151 static bool __splice_segment(struct page *page, unsigned int poff, 2152 unsigned int plen, unsigned int *off, 2153 unsigned int *len, 2154 struct splice_pipe_desc *spd, bool linear, 2155 struct sock *sk, 2156 struct pipe_inode_info *pipe) 2157 { 2158 if (!*len) 2159 return true; 2160 2161 /* skip this segment if already processed */ 2162 if (*off >= plen) { 2163 *off -= plen; 2164 return false; 2165 } 2166 2167 /* ignore any bits we already processed */ 2168 poff += *off; 2169 plen -= *off; 2170 *off = 0; 2171 2172 do { 2173 unsigned int flen = min(*len, plen); 2174 2175 if (spd_fill_page(spd, pipe, page, &flen, poff, 2176 linear, sk)) 2177 return true; 2178 poff += flen; 2179 plen -= flen; 2180 *len -= flen; 2181 } while (*len && plen); 2182 2183 return false; 2184 } 2185 2186 /* 2187 * Map linear and fragment data from the skb to spd. It reports true if the 2188 * pipe is full or if we already spliced the requested length. 2189 */ 2190 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2191 unsigned int *offset, unsigned int *len, 2192 struct splice_pipe_desc *spd, struct sock *sk) 2193 { 2194 int seg; 2195 struct sk_buff *iter; 2196 2197 /* map the linear part : 2198 * If skb->head_frag is set, this 'linear' part is backed by a 2199 * fragment, and if the head is not shared with any clones then 2200 * we can avoid a copy since we own the head portion of this page. 2201 */ 2202 if (__splice_segment(virt_to_page(skb->data), 2203 (unsigned long) skb->data & (PAGE_SIZE - 1), 2204 skb_headlen(skb), 2205 offset, len, spd, 2206 skb_head_is_locked(skb), 2207 sk, pipe)) 2208 return true; 2209 2210 /* 2211 * then map the fragments 2212 */ 2213 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2214 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2215 2216 if (__splice_segment(skb_frag_page(f), 2217 f->page_offset, skb_frag_size(f), 2218 offset, len, spd, false, sk, pipe)) 2219 return true; 2220 } 2221 2222 skb_walk_frags(skb, iter) { 2223 if (*offset >= iter->len) { 2224 *offset -= iter->len; 2225 continue; 2226 } 2227 /* __skb_splice_bits() only fails if the output has no room 2228 * left, so no point in going over the frag_list for the error 2229 * case. 2230 */ 2231 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2232 return true; 2233 } 2234 2235 return false; 2236 } 2237 2238 /* 2239 * Map data from the skb to a pipe. Should handle both the linear part, 2240 * the fragments, and the frag list. 2241 */ 2242 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2243 struct pipe_inode_info *pipe, unsigned int tlen, 2244 unsigned int flags) 2245 { 2246 struct partial_page partial[MAX_SKB_FRAGS]; 2247 struct page *pages[MAX_SKB_FRAGS]; 2248 struct splice_pipe_desc spd = { 2249 .pages = pages, 2250 .partial = partial, 2251 .nr_pages_max = MAX_SKB_FRAGS, 2252 .ops = &nosteal_pipe_buf_ops, 2253 .spd_release = sock_spd_release, 2254 }; 2255 int ret = 0; 2256 2257 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2258 2259 if (spd.nr_pages) 2260 ret = splice_to_pipe(pipe, &spd); 2261 2262 return ret; 2263 } 2264 EXPORT_SYMBOL_GPL(skb_splice_bits); 2265 2266 /* Send skb data on a socket. Socket must be locked. */ 2267 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2268 int len) 2269 { 2270 unsigned int orig_len = len; 2271 struct sk_buff *head = skb; 2272 unsigned short fragidx; 2273 int slen, ret; 2274 2275 do_frag_list: 2276 2277 /* Deal with head data */ 2278 while (offset < skb_headlen(skb) && len) { 2279 struct kvec kv; 2280 struct msghdr msg; 2281 2282 slen = min_t(int, len, skb_headlen(skb) - offset); 2283 kv.iov_base = skb->data + offset; 2284 kv.iov_len = slen; 2285 memset(&msg, 0, sizeof(msg)); 2286 2287 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2288 if (ret <= 0) 2289 goto error; 2290 2291 offset += ret; 2292 len -= ret; 2293 } 2294 2295 /* All the data was skb head? */ 2296 if (!len) 2297 goto out; 2298 2299 /* Make offset relative to start of frags */ 2300 offset -= skb_headlen(skb); 2301 2302 /* Find where we are in frag list */ 2303 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2304 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2305 2306 if (offset < frag->size) 2307 break; 2308 2309 offset -= frag->size; 2310 } 2311 2312 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2313 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2314 2315 slen = min_t(size_t, len, frag->size - offset); 2316 2317 while (slen) { 2318 ret = kernel_sendpage_locked(sk, frag->page.p, 2319 frag->page_offset + offset, 2320 slen, MSG_DONTWAIT); 2321 if (ret <= 0) 2322 goto error; 2323 2324 len -= ret; 2325 offset += ret; 2326 slen -= ret; 2327 } 2328 2329 offset = 0; 2330 } 2331 2332 if (len) { 2333 /* Process any frag lists */ 2334 2335 if (skb == head) { 2336 if (skb_has_frag_list(skb)) { 2337 skb = skb_shinfo(skb)->frag_list; 2338 goto do_frag_list; 2339 } 2340 } else if (skb->next) { 2341 skb = skb->next; 2342 goto do_frag_list; 2343 } 2344 } 2345 2346 out: 2347 return orig_len - len; 2348 2349 error: 2350 return orig_len == len ? ret : orig_len - len; 2351 } 2352 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2353 2354 /* Send skb data on a socket. */ 2355 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2356 { 2357 int ret = 0; 2358 2359 lock_sock(sk); 2360 ret = skb_send_sock_locked(sk, skb, offset, len); 2361 release_sock(sk); 2362 2363 return ret; 2364 } 2365 EXPORT_SYMBOL_GPL(skb_send_sock); 2366 2367 /** 2368 * skb_store_bits - store bits from kernel buffer to skb 2369 * @skb: destination buffer 2370 * @offset: offset in destination 2371 * @from: source buffer 2372 * @len: number of bytes to copy 2373 * 2374 * Copy the specified number of bytes from the source buffer to the 2375 * destination skb. This function handles all the messy bits of 2376 * traversing fragment lists and such. 2377 */ 2378 2379 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2380 { 2381 int start = skb_headlen(skb); 2382 struct sk_buff *frag_iter; 2383 int i, copy; 2384 2385 if (offset > (int)skb->len - len) 2386 goto fault; 2387 2388 if ((copy = start - offset) > 0) { 2389 if (copy > len) 2390 copy = len; 2391 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2392 if ((len -= copy) == 0) 2393 return 0; 2394 offset += copy; 2395 from += copy; 2396 } 2397 2398 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2399 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2400 int end; 2401 2402 WARN_ON(start > offset + len); 2403 2404 end = start + skb_frag_size(frag); 2405 if ((copy = end - offset) > 0) { 2406 u32 p_off, p_len, copied; 2407 struct page *p; 2408 u8 *vaddr; 2409 2410 if (copy > len) 2411 copy = len; 2412 2413 skb_frag_foreach_page(frag, 2414 frag->page_offset + offset - start, 2415 copy, p, p_off, p_len, copied) { 2416 vaddr = kmap_atomic(p); 2417 memcpy(vaddr + p_off, from + copied, p_len); 2418 kunmap_atomic(vaddr); 2419 } 2420 2421 if ((len -= copy) == 0) 2422 return 0; 2423 offset += copy; 2424 from += copy; 2425 } 2426 start = end; 2427 } 2428 2429 skb_walk_frags(skb, frag_iter) { 2430 int end; 2431 2432 WARN_ON(start > offset + len); 2433 2434 end = start + frag_iter->len; 2435 if ((copy = end - offset) > 0) { 2436 if (copy > len) 2437 copy = len; 2438 if (skb_store_bits(frag_iter, offset - start, 2439 from, copy)) 2440 goto fault; 2441 if ((len -= copy) == 0) 2442 return 0; 2443 offset += copy; 2444 from += copy; 2445 } 2446 start = end; 2447 } 2448 if (!len) 2449 return 0; 2450 2451 fault: 2452 return -EFAULT; 2453 } 2454 EXPORT_SYMBOL(skb_store_bits); 2455 2456 /* Checksum skb data. */ 2457 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2458 __wsum csum, const struct skb_checksum_ops *ops) 2459 { 2460 int start = skb_headlen(skb); 2461 int i, copy = start - offset; 2462 struct sk_buff *frag_iter; 2463 int pos = 0; 2464 2465 /* Checksum header. */ 2466 if (copy > 0) { 2467 if (copy > len) 2468 copy = len; 2469 csum = ops->update(skb->data + offset, copy, csum); 2470 if ((len -= copy) == 0) 2471 return csum; 2472 offset += copy; 2473 pos = copy; 2474 } 2475 2476 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2477 int end; 2478 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2479 2480 WARN_ON(start > offset + len); 2481 2482 end = start + skb_frag_size(frag); 2483 if ((copy = end - offset) > 0) { 2484 u32 p_off, p_len, copied; 2485 struct page *p; 2486 __wsum csum2; 2487 u8 *vaddr; 2488 2489 if (copy > len) 2490 copy = len; 2491 2492 skb_frag_foreach_page(frag, 2493 frag->page_offset + offset - start, 2494 copy, p, p_off, p_len, copied) { 2495 vaddr = kmap_atomic(p); 2496 csum2 = ops->update(vaddr + p_off, p_len, 0); 2497 kunmap_atomic(vaddr); 2498 csum = ops->combine(csum, csum2, pos, p_len); 2499 pos += p_len; 2500 } 2501 2502 if (!(len -= copy)) 2503 return csum; 2504 offset += copy; 2505 } 2506 start = end; 2507 } 2508 2509 skb_walk_frags(skb, frag_iter) { 2510 int end; 2511 2512 WARN_ON(start > offset + len); 2513 2514 end = start + frag_iter->len; 2515 if ((copy = end - offset) > 0) { 2516 __wsum csum2; 2517 if (copy > len) 2518 copy = len; 2519 csum2 = __skb_checksum(frag_iter, offset - start, 2520 copy, 0, ops); 2521 csum = ops->combine(csum, csum2, pos, copy); 2522 if ((len -= copy) == 0) 2523 return csum; 2524 offset += copy; 2525 pos += copy; 2526 } 2527 start = end; 2528 } 2529 BUG_ON(len); 2530 2531 return csum; 2532 } 2533 EXPORT_SYMBOL(__skb_checksum); 2534 2535 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2536 int len, __wsum csum) 2537 { 2538 const struct skb_checksum_ops ops = { 2539 .update = csum_partial_ext, 2540 .combine = csum_block_add_ext, 2541 }; 2542 2543 return __skb_checksum(skb, offset, len, csum, &ops); 2544 } 2545 EXPORT_SYMBOL(skb_checksum); 2546 2547 /* Both of above in one bottle. */ 2548 2549 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2550 u8 *to, int len, __wsum csum) 2551 { 2552 int start = skb_headlen(skb); 2553 int i, copy = start - offset; 2554 struct sk_buff *frag_iter; 2555 int pos = 0; 2556 2557 /* Copy header. */ 2558 if (copy > 0) { 2559 if (copy > len) 2560 copy = len; 2561 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2562 copy, csum); 2563 if ((len -= copy) == 0) 2564 return csum; 2565 offset += copy; 2566 to += copy; 2567 pos = copy; 2568 } 2569 2570 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2571 int end; 2572 2573 WARN_ON(start > offset + len); 2574 2575 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2576 if ((copy = end - offset) > 0) { 2577 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2578 u32 p_off, p_len, copied; 2579 struct page *p; 2580 __wsum csum2; 2581 u8 *vaddr; 2582 2583 if (copy > len) 2584 copy = len; 2585 2586 skb_frag_foreach_page(frag, 2587 frag->page_offset + offset - start, 2588 copy, p, p_off, p_len, copied) { 2589 vaddr = kmap_atomic(p); 2590 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2591 to + copied, 2592 p_len, 0); 2593 kunmap_atomic(vaddr); 2594 csum = csum_block_add(csum, csum2, pos); 2595 pos += p_len; 2596 } 2597 2598 if (!(len -= copy)) 2599 return csum; 2600 offset += copy; 2601 to += copy; 2602 } 2603 start = end; 2604 } 2605 2606 skb_walk_frags(skb, frag_iter) { 2607 __wsum csum2; 2608 int end; 2609 2610 WARN_ON(start > offset + len); 2611 2612 end = start + frag_iter->len; 2613 if ((copy = end - offset) > 0) { 2614 if (copy > len) 2615 copy = len; 2616 csum2 = skb_copy_and_csum_bits(frag_iter, 2617 offset - start, 2618 to, copy, 0); 2619 csum = csum_block_add(csum, csum2, pos); 2620 if ((len -= copy) == 0) 2621 return csum; 2622 offset += copy; 2623 to += copy; 2624 pos += copy; 2625 } 2626 start = end; 2627 } 2628 BUG_ON(len); 2629 return csum; 2630 } 2631 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2632 2633 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2634 { 2635 net_warn_ratelimited( 2636 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2637 __func__); 2638 return 0; 2639 } 2640 2641 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2642 int offset, int len) 2643 { 2644 net_warn_ratelimited( 2645 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2646 __func__); 2647 return 0; 2648 } 2649 2650 static const struct skb_checksum_ops default_crc32c_ops = { 2651 .update = warn_crc32c_csum_update, 2652 .combine = warn_crc32c_csum_combine, 2653 }; 2654 2655 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2656 &default_crc32c_ops; 2657 EXPORT_SYMBOL(crc32c_csum_stub); 2658 2659 /** 2660 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2661 * @from: source buffer 2662 * 2663 * Calculates the amount of linear headroom needed in the 'to' skb passed 2664 * into skb_zerocopy(). 2665 */ 2666 unsigned int 2667 skb_zerocopy_headlen(const struct sk_buff *from) 2668 { 2669 unsigned int hlen = 0; 2670 2671 if (!from->head_frag || 2672 skb_headlen(from) < L1_CACHE_BYTES || 2673 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2674 hlen = skb_headlen(from); 2675 2676 if (skb_has_frag_list(from)) 2677 hlen = from->len; 2678 2679 return hlen; 2680 } 2681 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2682 2683 /** 2684 * skb_zerocopy - Zero copy skb to skb 2685 * @to: destination buffer 2686 * @from: source buffer 2687 * @len: number of bytes to copy from source buffer 2688 * @hlen: size of linear headroom in destination buffer 2689 * 2690 * Copies up to `len` bytes from `from` to `to` by creating references 2691 * to the frags in the source buffer. 2692 * 2693 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2694 * headroom in the `to` buffer. 2695 * 2696 * Return value: 2697 * 0: everything is OK 2698 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2699 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2700 */ 2701 int 2702 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2703 { 2704 int i, j = 0; 2705 int plen = 0; /* length of skb->head fragment */ 2706 int ret; 2707 struct page *page; 2708 unsigned int offset; 2709 2710 BUG_ON(!from->head_frag && !hlen); 2711 2712 /* dont bother with small payloads */ 2713 if (len <= skb_tailroom(to)) 2714 return skb_copy_bits(from, 0, skb_put(to, len), len); 2715 2716 if (hlen) { 2717 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2718 if (unlikely(ret)) 2719 return ret; 2720 len -= hlen; 2721 } else { 2722 plen = min_t(int, skb_headlen(from), len); 2723 if (plen) { 2724 page = virt_to_head_page(from->head); 2725 offset = from->data - (unsigned char *)page_address(page); 2726 __skb_fill_page_desc(to, 0, page, offset, plen); 2727 get_page(page); 2728 j = 1; 2729 len -= plen; 2730 } 2731 } 2732 2733 to->truesize += len + plen; 2734 to->len += len + plen; 2735 to->data_len += len + plen; 2736 2737 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2738 skb_tx_error(from); 2739 return -ENOMEM; 2740 } 2741 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2742 2743 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2744 if (!len) 2745 break; 2746 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2747 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2748 len -= skb_shinfo(to)->frags[j].size; 2749 skb_frag_ref(to, j); 2750 j++; 2751 } 2752 skb_shinfo(to)->nr_frags = j; 2753 2754 return 0; 2755 } 2756 EXPORT_SYMBOL_GPL(skb_zerocopy); 2757 2758 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2759 { 2760 __wsum csum; 2761 long csstart; 2762 2763 if (skb->ip_summed == CHECKSUM_PARTIAL) 2764 csstart = skb_checksum_start_offset(skb); 2765 else 2766 csstart = skb_headlen(skb); 2767 2768 BUG_ON(csstart > skb_headlen(skb)); 2769 2770 skb_copy_from_linear_data(skb, to, csstart); 2771 2772 csum = 0; 2773 if (csstart != skb->len) 2774 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2775 skb->len - csstart, 0); 2776 2777 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2778 long csstuff = csstart + skb->csum_offset; 2779 2780 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2781 } 2782 } 2783 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2784 2785 /** 2786 * skb_dequeue - remove from the head of the queue 2787 * @list: list to dequeue from 2788 * 2789 * Remove the head of the list. The list lock is taken so the function 2790 * may be used safely with other locking list functions. The head item is 2791 * returned or %NULL if the list is empty. 2792 */ 2793 2794 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2795 { 2796 unsigned long flags; 2797 struct sk_buff *result; 2798 2799 spin_lock_irqsave(&list->lock, flags); 2800 result = __skb_dequeue(list); 2801 spin_unlock_irqrestore(&list->lock, flags); 2802 return result; 2803 } 2804 EXPORT_SYMBOL(skb_dequeue); 2805 2806 /** 2807 * skb_dequeue_tail - remove from the tail of the queue 2808 * @list: list to dequeue from 2809 * 2810 * Remove the tail of the list. The list lock is taken so the function 2811 * may be used safely with other locking list functions. The tail item is 2812 * returned or %NULL if the list is empty. 2813 */ 2814 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2815 { 2816 unsigned long flags; 2817 struct sk_buff *result; 2818 2819 spin_lock_irqsave(&list->lock, flags); 2820 result = __skb_dequeue_tail(list); 2821 spin_unlock_irqrestore(&list->lock, flags); 2822 return result; 2823 } 2824 EXPORT_SYMBOL(skb_dequeue_tail); 2825 2826 /** 2827 * skb_queue_purge - empty a list 2828 * @list: list to empty 2829 * 2830 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2831 * the list and one reference dropped. This function takes the list 2832 * lock and is atomic with respect to other list locking functions. 2833 */ 2834 void skb_queue_purge(struct sk_buff_head *list) 2835 { 2836 struct sk_buff *skb; 2837 while ((skb = skb_dequeue(list)) != NULL) 2838 kfree_skb(skb); 2839 } 2840 EXPORT_SYMBOL(skb_queue_purge); 2841 2842 /** 2843 * skb_rbtree_purge - empty a skb rbtree 2844 * @root: root of the rbtree to empty 2845 * 2846 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2847 * the list and one reference dropped. This function does not take 2848 * any lock. Synchronization should be handled by the caller (e.g., TCP 2849 * out-of-order queue is protected by the socket lock). 2850 */ 2851 void skb_rbtree_purge(struct rb_root *root) 2852 { 2853 struct rb_node *p = rb_first(root); 2854 2855 while (p) { 2856 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2857 2858 p = rb_next(p); 2859 rb_erase(&skb->rbnode, root); 2860 kfree_skb(skb); 2861 } 2862 } 2863 2864 /** 2865 * skb_queue_head - queue a buffer at the list head 2866 * @list: list to use 2867 * @newsk: buffer to queue 2868 * 2869 * Queue a buffer at the start of the list. This function takes the 2870 * list lock and can be used safely with other locking &sk_buff functions 2871 * safely. 2872 * 2873 * A buffer cannot be placed on two lists at the same time. 2874 */ 2875 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2876 { 2877 unsigned long flags; 2878 2879 spin_lock_irqsave(&list->lock, flags); 2880 __skb_queue_head(list, newsk); 2881 spin_unlock_irqrestore(&list->lock, flags); 2882 } 2883 EXPORT_SYMBOL(skb_queue_head); 2884 2885 /** 2886 * skb_queue_tail - queue a buffer at the list tail 2887 * @list: list to use 2888 * @newsk: buffer to queue 2889 * 2890 * Queue a buffer at the tail of the list. This function takes the 2891 * list lock and can be used safely with other locking &sk_buff functions 2892 * safely. 2893 * 2894 * A buffer cannot be placed on two lists at the same time. 2895 */ 2896 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2897 { 2898 unsigned long flags; 2899 2900 spin_lock_irqsave(&list->lock, flags); 2901 __skb_queue_tail(list, newsk); 2902 spin_unlock_irqrestore(&list->lock, flags); 2903 } 2904 EXPORT_SYMBOL(skb_queue_tail); 2905 2906 /** 2907 * skb_unlink - remove a buffer from a list 2908 * @skb: buffer to remove 2909 * @list: list to use 2910 * 2911 * Remove a packet from a list. The list locks are taken and this 2912 * function is atomic with respect to other list locked calls 2913 * 2914 * You must know what list the SKB is on. 2915 */ 2916 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2917 { 2918 unsigned long flags; 2919 2920 spin_lock_irqsave(&list->lock, flags); 2921 __skb_unlink(skb, list); 2922 spin_unlock_irqrestore(&list->lock, flags); 2923 } 2924 EXPORT_SYMBOL(skb_unlink); 2925 2926 /** 2927 * skb_append - append a buffer 2928 * @old: buffer to insert after 2929 * @newsk: buffer to insert 2930 * @list: list to use 2931 * 2932 * Place a packet after a given packet in a list. The list locks are taken 2933 * and this function is atomic with respect to other list locked calls. 2934 * A buffer cannot be placed on two lists at the same time. 2935 */ 2936 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2937 { 2938 unsigned long flags; 2939 2940 spin_lock_irqsave(&list->lock, flags); 2941 __skb_queue_after(list, old, newsk); 2942 spin_unlock_irqrestore(&list->lock, flags); 2943 } 2944 EXPORT_SYMBOL(skb_append); 2945 2946 /** 2947 * skb_insert - insert a buffer 2948 * @old: buffer to insert before 2949 * @newsk: buffer to insert 2950 * @list: list to use 2951 * 2952 * Place a packet before a given packet in a list. The list locks are 2953 * taken and this function is atomic with respect to other list locked 2954 * calls. 2955 * 2956 * A buffer cannot be placed on two lists at the same time. 2957 */ 2958 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2959 { 2960 unsigned long flags; 2961 2962 spin_lock_irqsave(&list->lock, flags); 2963 __skb_insert(newsk, old->prev, old, list); 2964 spin_unlock_irqrestore(&list->lock, flags); 2965 } 2966 EXPORT_SYMBOL(skb_insert); 2967 2968 static inline void skb_split_inside_header(struct sk_buff *skb, 2969 struct sk_buff* skb1, 2970 const u32 len, const int pos) 2971 { 2972 int i; 2973 2974 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2975 pos - len); 2976 /* And move data appendix as is. */ 2977 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2978 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2979 2980 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2981 skb_shinfo(skb)->nr_frags = 0; 2982 skb1->data_len = skb->data_len; 2983 skb1->len += skb1->data_len; 2984 skb->data_len = 0; 2985 skb->len = len; 2986 skb_set_tail_pointer(skb, len); 2987 } 2988 2989 static inline void skb_split_no_header(struct sk_buff *skb, 2990 struct sk_buff* skb1, 2991 const u32 len, int pos) 2992 { 2993 int i, k = 0; 2994 const int nfrags = skb_shinfo(skb)->nr_frags; 2995 2996 skb_shinfo(skb)->nr_frags = 0; 2997 skb1->len = skb1->data_len = skb->len - len; 2998 skb->len = len; 2999 skb->data_len = len - pos; 3000 3001 for (i = 0; i < nfrags; i++) { 3002 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3003 3004 if (pos + size > len) { 3005 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3006 3007 if (pos < len) { 3008 /* Split frag. 3009 * We have two variants in this case: 3010 * 1. Move all the frag to the second 3011 * part, if it is possible. F.e. 3012 * this approach is mandatory for TUX, 3013 * where splitting is expensive. 3014 * 2. Split is accurately. We make this. 3015 */ 3016 skb_frag_ref(skb, i); 3017 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3018 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3019 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3020 skb_shinfo(skb)->nr_frags++; 3021 } 3022 k++; 3023 } else 3024 skb_shinfo(skb)->nr_frags++; 3025 pos += size; 3026 } 3027 skb_shinfo(skb1)->nr_frags = k; 3028 } 3029 3030 /** 3031 * skb_split - Split fragmented skb to two parts at length len. 3032 * @skb: the buffer to split 3033 * @skb1: the buffer to receive the second part 3034 * @len: new length for skb 3035 */ 3036 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3037 { 3038 int pos = skb_headlen(skb); 3039 3040 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3041 SKBTX_SHARED_FRAG; 3042 skb_zerocopy_clone(skb1, skb, 0); 3043 if (len < pos) /* Split line is inside header. */ 3044 skb_split_inside_header(skb, skb1, len, pos); 3045 else /* Second chunk has no header, nothing to copy. */ 3046 skb_split_no_header(skb, skb1, len, pos); 3047 } 3048 EXPORT_SYMBOL(skb_split); 3049 3050 /* Shifting from/to a cloned skb is a no-go. 3051 * 3052 * Caller cannot keep skb_shinfo related pointers past calling here! 3053 */ 3054 static int skb_prepare_for_shift(struct sk_buff *skb) 3055 { 3056 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3057 } 3058 3059 /** 3060 * skb_shift - Shifts paged data partially from skb to another 3061 * @tgt: buffer into which tail data gets added 3062 * @skb: buffer from which the paged data comes from 3063 * @shiftlen: shift up to this many bytes 3064 * 3065 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3066 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3067 * It's up to caller to free skb if everything was shifted. 3068 * 3069 * If @tgt runs out of frags, the whole operation is aborted. 3070 * 3071 * Skb cannot include anything else but paged data while tgt is allowed 3072 * to have non-paged data as well. 3073 * 3074 * TODO: full sized shift could be optimized but that would need 3075 * specialized skb free'er to handle frags without up-to-date nr_frags. 3076 */ 3077 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3078 { 3079 int from, to, merge, todo; 3080 struct skb_frag_struct *fragfrom, *fragto; 3081 3082 BUG_ON(shiftlen > skb->len); 3083 3084 if (skb_headlen(skb)) 3085 return 0; 3086 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3087 return 0; 3088 3089 todo = shiftlen; 3090 from = 0; 3091 to = skb_shinfo(tgt)->nr_frags; 3092 fragfrom = &skb_shinfo(skb)->frags[from]; 3093 3094 /* Actual merge is delayed until the point when we know we can 3095 * commit all, so that we don't have to undo partial changes 3096 */ 3097 if (!to || 3098 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3099 fragfrom->page_offset)) { 3100 merge = -1; 3101 } else { 3102 merge = to - 1; 3103 3104 todo -= skb_frag_size(fragfrom); 3105 if (todo < 0) { 3106 if (skb_prepare_for_shift(skb) || 3107 skb_prepare_for_shift(tgt)) 3108 return 0; 3109 3110 /* All previous frag pointers might be stale! */ 3111 fragfrom = &skb_shinfo(skb)->frags[from]; 3112 fragto = &skb_shinfo(tgt)->frags[merge]; 3113 3114 skb_frag_size_add(fragto, shiftlen); 3115 skb_frag_size_sub(fragfrom, shiftlen); 3116 fragfrom->page_offset += shiftlen; 3117 3118 goto onlymerged; 3119 } 3120 3121 from++; 3122 } 3123 3124 /* Skip full, not-fitting skb to avoid expensive operations */ 3125 if ((shiftlen == skb->len) && 3126 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3127 return 0; 3128 3129 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3130 return 0; 3131 3132 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3133 if (to == MAX_SKB_FRAGS) 3134 return 0; 3135 3136 fragfrom = &skb_shinfo(skb)->frags[from]; 3137 fragto = &skb_shinfo(tgt)->frags[to]; 3138 3139 if (todo >= skb_frag_size(fragfrom)) { 3140 *fragto = *fragfrom; 3141 todo -= skb_frag_size(fragfrom); 3142 from++; 3143 to++; 3144 3145 } else { 3146 __skb_frag_ref(fragfrom); 3147 fragto->page = fragfrom->page; 3148 fragto->page_offset = fragfrom->page_offset; 3149 skb_frag_size_set(fragto, todo); 3150 3151 fragfrom->page_offset += todo; 3152 skb_frag_size_sub(fragfrom, todo); 3153 todo = 0; 3154 3155 to++; 3156 break; 3157 } 3158 } 3159 3160 /* Ready to "commit" this state change to tgt */ 3161 skb_shinfo(tgt)->nr_frags = to; 3162 3163 if (merge >= 0) { 3164 fragfrom = &skb_shinfo(skb)->frags[0]; 3165 fragto = &skb_shinfo(tgt)->frags[merge]; 3166 3167 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3168 __skb_frag_unref(fragfrom); 3169 } 3170 3171 /* Reposition in the original skb */ 3172 to = 0; 3173 while (from < skb_shinfo(skb)->nr_frags) 3174 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3175 skb_shinfo(skb)->nr_frags = to; 3176 3177 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3178 3179 onlymerged: 3180 /* Most likely the tgt won't ever need its checksum anymore, skb on 3181 * the other hand might need it if it needs to be resent 3182 */ 3183 tgt->ip_summed = CHECKSUM_PARTIAL; 3184 skb->ip_summed = CHECKSUM_PARTIAL; 3185 3186 /* Yak, is it really working this way? Some helper please? */ 3187 skb->len -= shiftlen; 3188 skb->data_len -= shiftlen; 3189 skb->truesize -= shiftlen; 3190 tgt->len += shiftlen; 3191 tgt->data_len += shiftlen; 3192 tgt->truesize += shiftlen; 3193 3194 return shiftlen; 3195 } 3196 3197 /** 3198 * skb_prepare_seq_read - Prepare a sequential read of skb data 3199 * @skb: the buffer to read 3200 * @from: lower offset of data to be read 3201 * @to: upper offset of data to be read 3202 * @st: state variable 3203 * 3204 * Initializes the specified state variable. Must be called before 3205 * invoking skb_seq_read() for the first time. 3206 */ 3207 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3208 unsigned int to, struct skb_seq_state *st) 3209 { 3210 st->lower_offset = from; 3211 st->upper_offset = to; 3212 st->root_skb = st->cur_skb = skb; 3213 st->frag_idx = st->stepped_offset = 0; 3214 st->frag_data = NULL; 3215 } 3216 EXPORT_SYMBOL(skb_prepare_seq_read); 3217 3218 /** 3219 * skb_seq_read - Sequentially read skb data 3220 * @consumed: number of bytes consumed by the caller so far 3221 * @data: destination pointer for data to be returned 3222 * @st: state variable 3223 * 3224 * Reads a block of skb data at @consumed relative to the 3225 * lower offset specified to skb_prepare_seq_read(). Assigns 3226 * the head of the data block to @data and returns the length 3227 * of the block or 0 if the end of the skb data or the upper 3228 * offset has been reached. 3229 * 3230 * The caller is not required to consume all of the data 3231 * returned, i.e. @consumed is typically set to the number 3232 * of bytes already consumed and the next call to 3233 * skb_seq_read() will return the remaining part of the block. 3234 * 3235 * Note 1: The size of each block of data returned can be arbitrary, 3236 * this limitation is the cost for zerocopy sequential 3237 * reads of potentially non linear data. 3238 * 3239 * Note 2: Fragment lists within fragments are not implemented 3240 * at the moment, state->root_skb could be replaced with 3241 * a stack for this purpose. 3242 */ 3243 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3244 struct skb_seq_state *st) 3245 { 3246 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3247 skb_frag_t *frag; 3248 3249 if (unlikely(abs_offset >= st->upper_offset)) { 3250 if (st->frag_data) { 3251 kunmap_atomic(st->frag_data); 3252 st->frag_data = NULL; 3253 } 3254 return 0; 3255 } 3256 3257 next_skb: 3258 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3259 3260 if (abs_offset < block_limit && !st->frag_data) { 3261 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3262 return block_limit - abs_offset; 3263 } 3264 3265 if (st->frag_idx == 0 && !st->frag_data) 3266 st->stepped_offset += skb_headlen(st->cur_skb); 3267 3268 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3269 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3270 block_limit = skb_frag_size(frag) + st->stepped_offset; 3271 3272 if (abs_offset < block_limit) { 3273 if (!st->frag_data) 3274 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3275 3276 *data = (u8 *) st->frag_data + frag->page_offset + 3277 (abs_offset - st->stepped_offset); 3278 3279 return block_limit - abs_offset; 3280 } 3281 3282 if (st->frag_data) { 3283 kunmap_atomic(st->frag_data); 3284 st->frag_data = NULL; 3285 } 3286 3287 st->frag_idx++; 3288 st->stepped_offset += skb_frag_size(frag); 3289 } 3290 3291 if (st->frag_data) { 3292 kunmap_atomic(st->frag_data); 3293 st->frag_data = NULL; 3294 } 3295 3296 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3297 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3298 st->frag_idx = 0; 3299 goto next_skb; 3300 } else if (st->cur_skb->next) { 3301 st->cur_skb = st->cur_skb->next; 3302 st->frag_idx = 0; 3303 goto next_skb; 3304 } 3305 3306 return 0; 3307 } 3308 EXPORT_SYMBOL(skb_seq_read); 3309 3310 /** 3311 * skb_abort_seq_read - Abort a sequential read of skb data 3312 * @st: state variable 3313 * 3314 * Must be called if skb_seq_read() was not called until it 3315 * returned 0. 3316 */ 3317 void skb_abort_seq_read(struct skb_seq_state *st) 3318 { 3319 if (st->frag_data) 3320 kunmap_atomic(st->frag_data); 3321 } 3322 EXPORT_SYMBOL(skb_abort_seq_read); 3323 3324 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3325 3326 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3327 struct ts_config *conf, 3328 struct ts_state *state) 3329 { 3330 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3331 } 3332 3333 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3334 { 3335 skb_abort_seq_read(TS_SKB_CB(state)); 3336 } 3337 3338 /** 3339 * skb_find_text - Find a text pattern in skb data 3340 * @skb: the buffer to look in 3341 * @from: search offset 3342 * @to: search limit 3343 * @config: textsearch configuration 3344 * 3345 * Finds a pattern in the skb data according to the specified 3346 * textsearch configuration. Use textsearch_next() to retrieve 3347 * subsequent occurrences of the pattern. Returns the offset 3348 * to the first occurrence or UINT_MAX if no match was found. 3349 */ 3350 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3351 unsigned int to, struct ts_config *config) 3352 { 3353 struct ts_state state; 3354 unsigned int ret; 3355 3356 config->get_next_block = skb_ts_get_next_block; 3357 config->finish = skb_ts_finish; 3358 3359 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3360 3361 ret = textsearch_find(config, &state); 3362 return (ret <= to - from ? ret : UINT_MAX); 3363 } 3364 EXPORT_SYMBOL(skb_find_text); 3365 3366 /** 3367 * skb_append_datato_frags - append the user data to a skb 3368 * @sk: sock structure 3369 * @skb: skb structure to be appended with user data. 3370 * @getfrag: call back function to be used for getting the user data 3371 * @from: pointer to user message iov 3372 * @length: length of the iov message 3373 * 3374 * Description: This procedure append the user data in the fragment part 3375 * of the skb if any page alloc fails user this procedure returns -ENOMEM 3376 */ 3377 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 3378 int (*getfrag)(void *from, char *to, int offset, 3379 int len, int odd, struct sk_buff *skb), 3380 void *from, int length) 3381 { 3382 int frg_cnt = skb_shinfo(skb)->nr_frags; 3383 int copy; 3384 int offset = 0; 3385 int ret; 3386 struct page_frag *pfrag = ¤t->task_frag; 3387 3388 do { 3389 /* Return error if we don't have space for new frag */ 3390 if (frg_cnt >= MAX_SKB_FRAGS) 3391 return -EMSGSIZE; 3392 3393 if (!sk_page_frag_refill(sk, pfrag)) 3394 return -ENOMEM; 3395 3396 /* copy the user data to page */ 3397 copy = min_t(int, length, pfrag->size - pfrag->offset); 3398 3399 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 3400 offset, copy, 0, skb); 3401 if (ret < 0) 3402 return -EFAULT; 3403 3404 /* copy was successful so update the size parameters */ 3405 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 3406 copy); 3407 frg_cnt++; 3408 pfrag->offset += copy; 3409 get_page(pfrag->page); 3410 3411 skb->truesize += copy; 3412 refcount_add(copy, &sk->sk_wmem_alloc); 3413 skb->len += copy; 3414 skb->data_len += copy; 3415 offset += copy; 3416 length -= copy; 3417 3418 } while (length > 0); 3419 3420 return 0; 3421 } 3422 EXPORT_SYMBOL(skb_append_datato_frags); 3423 3424 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3425 int offset, size_t size) 3426 { 3427 int i = skb_shinfo(skb)->nr_frags; 3428 3429 if (skb_can_coalesce(skb, i, page, offset)) { 3430 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3431 } else if (i < MAX_SKB_FRAGS) { 3432 get_page(page); 3433 skb_fill_page_desc(skb, i, page, offset, size); 3434 } else { 3435 return -EMSGSIZE; 3436 } 3437 3438 return 0; 3439 } 3440 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3441 3442 /** 3443 * skb_pull_rcsum - pull skb and update receive checksum 3444 * @skb: buffer to update 3445 * @len: length of data pulled 3446 * 3447 * This function performs an skb_pull on the packet and updates 3448 * the CHECKSUM_COMPLETE checksum. It should be used on 3449 * receive path processing instead of skb_pull unless you know 3450 * that the checksum difference is zero (e.g., a valid IP header) 3451 * or you are setting ip_summed to CHECKSUM_NONE. 3452 */ 3453 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3454 { 3455 unsigned char *data = skb->data; 3456 3457 BUG_ON(len > skb->len); 3458 __skb_pull(skb, len); 3459 skb_postpull_rcsum(skb, data, len); 3460 return skb->data; 3461 } 3462 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3463 3464 /** 3465 * skb_segment - Perform protocol segmentation on skb. 3466 * @head_skb: buffer to segment 3467 * @features: features for the output path (see dev->features) 3468 * 3469 * This function performs segmentation on the given skb. It returns 3470 * a pointer to the first in a list of new skbs for the segments. 3471 * In case of error it returns ERR_PTR(err). 3472 */ 3473 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3474 netdev_features_t features) 3475 { 3476 struct sk_buff *segs = NULL; 3477 struct sk_buff *tail = NULL; 3478 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3479 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3480 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3481 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3482 struct sk_buff *frag_skb = head_skb; 3483 unsigned int offset = doffset; 3484 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3485 unsigned int partial_segs = 0; 3486 unsigned int headroom; 3487 unsigned int len = head_skb->len; 3488 __be16 proto; 3489 bool csum, sg; 3490 int nfrags = skb_shinfo(head_skb)->nr_frags; 3491 int err = -ENOMEM; 3492 int i = 0; 3493 int pos; 3494 int dummy; 3495 3496 __skb_push(head_skb, doffset); 3497 proto = skb_network_protocol(head_skb, &dummy); 3498 if (unlikely(!proto)) 3499 return ERR_PTR(-EINVAL); 3500 3501 sg = !!(features & NETIF_F_SG); 3502 csum = !!can_checksum_protocol(features, proto); 3503 3504 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3505 if (!(features & NETIF_F_GSO_PARTIAL)) { 3506 struct sk_buff *iter; 3507 unsigned int frag_len; 3508 3509 if (!list_skb || 3510 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3511 goto normal; 3512 3513 /* If we get here then all the required 3514 * GSO features except frag_list are supported. 3515 * Try to split the SKB to multiple GSO SKBs 3516 * with no frag_list. 3517 * Currently we can do that only when the buffers don't 3518 * have a linear part and all the buffers except 3519 * the last are of the same length. 3520 */ 3521 frag_len = list_skb->len; 3522 skb_walk_frags(head_skb, iter) { 3523 if (frag_len != iter->len && iter->next) 3524 goto normal; 3525 if (skb_headlen(iter) && !iter->head_frag) 3526 goto normal; 3527 3528 len -= iter->len; 3529 } 3530 3531 if (len != frag_len) 3532 goto normal; 3533 } 3534 3535 /* GSO partial only requires that we trim off any excess that 3536 * doesn't fit into an MSS sized block, so take care of that 3537 * now. 3538 */ 3539 partial_segs = len / mss; 3540 if (partial_segs > 1) 3541 mss *= partial_segs; 3542 else 3543 partial_segs = 0; 3544 } 3545 3546 normal: 3547 headroom = skb_headroom(head_skb); 3548 pos = skb_headlen(head_skb); 3549 3550 do { 3551 struct sk_buff *nskb; 3552 skb_frag_t *nskb_frag; 3553 int hsize; 3554 int size; 3555 3556 if (unlikely(mss == GSO_BY_FRAGS)) { 3557 len = list_skb->len; 3558 } else { 3559 len = head_skb->len - offset; 3560 if (len > mss) 3561 len = mss; 3562 } 3563 3564 hsize = skb_headlen(head_skb) - offset; 3565 if (hsize < 0) 3566 hsize = 0; 3567 if (hsize > len || !sg) 3568 hsize = len; 3569 3570 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3571 (skb_headlen(list_skb) == len || sg)) { 3572 BUG_ON(skb_headlen(list_skb) > len); 3573 3574 i = 0; 3575 nfrags = skb_shinfo(list_skb)->nr_frags; 3576 frag = skb_shinfo(list_skb)->frags; 3577 frag_skb = list_skb; 3578 pos += skb_headlen(list_skb); 3579 3580 while (pos < offset + len) { 3581 BUG_ON(i >= nfrags); 3582 3583 size = skb_frag_size(frag); 3584 if (pos + size > offset + len) 3585 break; 3586 3587 i++; 3588 pos += size; 3589 frag++; 3590 } 3591 3592 nskb = skb_clone(list_skb, GFP_ATOMIC); 3593 list_skb = list_skb->next; 3594 3595 if (unlikely(!nskb)) 3596 goto err; 3597 3598 if (unlikely(pskb_trim(nskb, len))) { 3599 kfree_skb(nskb); 3600 goto err; 3601 } 3602 3603 hsize = skb_end_offset(nskb); 3604 if (skb_cow_head(nskb, doffset + headroom)) { 3605 kfree_skb(nskb); 3606 goto err; 3607 } 3608 3609 nskb->truesize += skb_end_offset(nskb) - hsize; 3610 skb_release_head_state(nskb); 3611 __skb_push(nskb, doffset); 3612 } else { 3613 nskb = __alloc_skb(hsize + doffset + headroom, 3614 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3615 NUMA_NO_NODE); 3616 3617 if (unlikely(!nskb)) 3618 goto err; 3619 3620 skb_reserve(nskb, headroom); 3621 __skb_put(nskb, doffset); 3622 } 3623 3624 if (segs) 3625 tail->next = nskb; 3626 else 3627 segs = nskb; 3628 tail = nskb; 3629 3630 __copy_skb_header(nskb, head_skb); 3631 3632 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3633 skb_reset_mac_len(nskb); 3634 3635 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3636 nskb->data - tnl_hlen, 3637 doffset + tnl_hlen); 3638 3639 if (nskb->len == len + doffset) 3640 goto perform_csum_check; 3641 3642 if (!sg) { 3643 if (!nskb->remcsum_offload) 3644 nskb->ip_summed = CHECKSUM_NONE; 3645 SKB_GSO_CB(nskb)->csum = 3646 skb_copy_and_csum_bits(head_skb, offset, 3647 skb_put(nskb, len), 3648 len, 0); 3649 SKB_GSO_CB(nskb)->csum_start = 3650 skb_headroom(nskb) + doffset; 3651 continue; 3652 } 3653 3654 nskb_frag = skb_shinfo(nskb)->frags; 3655 3656 skb_copy_from_linear_data_offset(head_skb, offset, 3657 skb_put(nskb, hsize), hsize); 3658 3659 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3660 SKBTX_SHARED_FRAG; 3661 if (skb_zerocopy_clone(nskb, head_skb, GFP_ATOMIC)) 3662 goto err; 3663 3664 while (pos < offset + len) { 3665 if (i >= nfrags) { 3666 BUG_ON(skb_headlen(list_skb)); 3667 3668 i = 0; 3669 nfrags = skb_shinfo(list_skb)->nr_frags; 3670 frag = skb_shinfo(list_skb)->frags; 3671 frag_skb = list_skb; 3672 3673 BUG_ON(!nfrags); 3674 3675 list_skb = list_skb->next; 3676 } 3677 3678 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3679 MAX_SKB_FRAGS)) { 3680 net_warn_ratelimited( 3681 "skb_segment: too many frags: %u %u\n", 3682 pos, mss); 3683 goto err; 3684 } 3685 3686 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC))) 3687 goto err; 3688 3689 *nskb_frag = *frag; 3690 __skb_frag_ref(nskb_frag); 3691 size = skb_frag_size(nskb_frag); 3692 3693 if (pos < offset) { 3694 nskb_frag->page_offset += offset - pos; 3695 skb_frag_size_sub(nskb_frag, offset - pos); 3696 } 3697 3698 skb_shinfo(nskb)->nr_frags++; 3699 3700 if (pos + size <= offset + len) { 3701 i++; 3702 frag++; 3703 pos += size; 3704 } else { 3705 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3706 goto skip_fraglist; 3707 } 3708 3709 nskb_frag++; 3710 } 3711 3712 skip_fraglist: 3713 nskb->data_len = len - hsize; 3714 nskb->len += nskb->data_len; 3715 nskb->truesize += nskb->data_len; 3716 3717 perform_csum_check: 3718 if (!csum) { 3719 if (skb_has_shared_frag(nskb)) { 3720 err = __skb_linearize(nskb); 3721 if (err) 3722 goto err; 3723 } 3724 if (!nskb->remcsum_offload) 3725 nskb->ip_summed = CHECKSUM_NONE; 3726 SKB_GSO_CB(nskb)->csum = 3727 skb_checksum(nskb, doffset, 3728 nskb->len - doffset, 0); 3729 SKB_GSO_CB(nskb)->csum_start = 3730 skb_headroom(nskb) + doffset; 3731 } 3732 } while ((offset += len) < head_skb->len); 3733 3734 /* Some callers want to get the end of the list. 3735 * Put it in segs->prev to avoid walking the list. 3736 * (see validate_xmit_skb_list() for example) 3737 */ 3738 segs->prev = tail; 3739 3740 if (partial_segs) { 3741 struct sk_buff *iter; 3742 int type = skb_shinfo(head_skb)->gso_type; 3743 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3744 3745 /* Update type to add partial and then remove dodgy if set */ 3746 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3747 type &= ~SKB_GSO_DODGY; 3748 3749 /* Update GSO info and prepare to start updating headers on 3750 * our way back down the stack of protocols. 3751 */ 3752 for (iter = segs; iter; iter = iter->next) { 3753 skb_shinfo(iter)->gso_size = gso_size; 3754 skb_shinfo(iter)->gso_segs = partial_segs; 3755 skb_shinfo(iter)->gso_type = type; 3756 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3757 } 3758 3759 if (tail->len - doffset <= gso_size) 3760 skb_shinfo(tail)->gso_size = 0; 3761 else if (tail != segs) 3762 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3763 } 3764 3765 /* Following permits correct backpressure, for protocols 3766 * using skb_set_owner_w(). 3767 * Idea is to tranfert ownership from head_skb to last segment. 3768 */ 3769 if (head_skb->destructor == sock_wfree) { 3770 swap(tail->truesize, head_skb->truesize); 3771 swap(tail->destructor, head_skb->destructor); 3772 swap(tail->sk, head_skb->sk); 3773 } 3774 return segs; 3775 3776 err: 3777 kfree_skb_list(segs); 3778 return ERR_PTR(err); 3779 } 3780 EXPORT_SYMBOL_GPL(skb_segment); 3781 3782 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3783 { 3784 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3785 unsigned int offset = skb_gro_offset(skb); 3786 unsigned int headlen = skb_headlen(skb); 3787 unsigned int len = skb_gro_len(skb); 3788 struct sk_buff *lp, *p = *head; 3789 unsigned int delta_truesize; 3790 3791 if (unlikely(p->len + len >= 65536)) 3792 return -E2BIG; 3793 3794 lp = NAPI_GRO_CB(p)->last; 3795 pinfo = skb_shinfo(lp); 3796 3797 if (headlen <= offset) { 3798 skb_frag_t *frag; 3799 skb_frag_t *frag2; 3800 int i = skbinfo->nr_frags; 3801 int nr_frags = pinfo->nr_frags + i; 3802 3803 if (nr_frags > MAX_SKB_FRAGS) 3804 goto merge; 3805 3806 offset -= headlen; 3807 pinfo->nr_frags = nr_frags; 3808 skbinfo->nr_frags = 0; 3809 3810 frag = pinfo->frags + nr_frags; 3811 frag2 = skbinfo->frags + i; 3812 do { 3813 *--frag = *--frag2; 3814 } while (--i); 3815 3816 frag->page_offset += offset; 3817 skb_frag_size_sub(frag, offset); 3818 3819 /* all fragments truesize : remove (head size + sk_buff) */ 3820 delta_truesize = skb->truesize - 3821 SKB_TRUESIZE(skb_end_offset(skb)); 3822 3823 skb->truesize -= skb->data_len; 3824 skb->len -= skb->data_len; 3825 skb->data_len = 0; 3826 3827 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3828 goto done; 3829 } else if (skb->head_frag) { 3830 int nr_frags = pinfo->nr_frags; 3831 skb_frag_t *frag = pinfo->frags + nr_frags; 3832 struct page *page = virt_to_head_page(skb->head); 3833 unsigned int first_size = headlen - offset; 3834 unsigned int first_offset; 3835 3836 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3837 goto merge; 3838 3839 first_offset = skb->data - 3840 (unsigned char *)page_address(page) + 3841 offset; 3842 3843 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3844 3845 frag->page.p = page; 3846 frag->page_offset = first_offset; 3847 skb_frag_size_set(frag, first_size); 3848 3849 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3850 /* We dont need to clear skbinfo->nr_frags here */ 3851 3852 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3853 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3854 goto done; 3855 } 3856 3857 merge: 3858 delta_truesize = skb->truesize; 3859 if (offset > headlen) { 3860 unsigned int eat = offset - headlen; 3861 3862 skbinfo->frags[0].page_offset += eat; 3863 skb_frag_size_sub(&skbinfo->frags[0], eat); 3864 skb->data_len -= eat; 3865 skb->len -= eat; 3866 offset = headlen; 3867 } 3868 3869 __skb_pull(skb, offset); 3870 3871 if (NAPI_GRO_CB(p)->last == p) 3872 skb_shinfo(p)->frag_list = skb; 3873 else 3874 NAPI_GRO_CB(p)->last->next = skb; 3875 NAPI_GRO_CB(p)->last = skb; 3876 __skb_header_release(skb); 3877 lp = p; 3878 3879 done: 3880 NAPI_GRO_CB(p)->count++; 3881 p->data_len += len; 3882 p->truesize += delta_truesize; 3883 p->len += len; 3884 if (lp != p) { 3885 lp->data_len += len; 3886 lp->truesize += delta_truesize; 3887 lp->len += len; 3888 } 3889 NAPI_GRO_CB(skb)->same_flow = 1; 3890 return 0; 3891 } 3892 EXPORT_SYMBOL_GPL(skb_gro_receive); 3893 3894 void __init skb_init(void) 3895 { 3896 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3897 sizeof(struct sk_buff), 3898 0, 3899 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3900 NULL); 3901 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3902 sizeof(struct sk_buff_fclones), 3903 0, 3904 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3905 NULL); 3906 } 3907 3908 static int 3909 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3910 unsigned int recursion_level) 3911 { 3912 int start = skb_headlen(skb); 3913 int i, copy = start - offset; 3914 struct sk_buff *frag_iter; 3915 int elt = 0; 3916 3917 if (unlikely(recursion_level >= 24)) 3918 return -EMSGSIZE; 3919 3920 if (copy > 0) { 3921 if (copy > len) 3922 copy = len; 3923 sg_set_buf(sg, skb->data + offset, copy); 3924 elt++; 3925 if ((len -= copy) == 0) 3926 return elt; 3927 offset += copy; 3928 } 3929 3930 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3931 int end; 3932 3933 WARN_ON(start > offset + len); 3934 3935 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3936 if ((copy = end - offset) > 0) { 3937 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3938 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3939 return -EMSGSIZE; 3940 3941 if (copy > len) 3942 copy = len; 3943 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3944 frag->page_offset+offset-start); 3945 elt++; 3946 if (!(len -= copy)) 3947 return elt; 3948 offset += copy; 3949 } 3950 start = end; 3951 } 3952 3953 skb_walk_frags(skb, frag_iter) { 3954 int end, ret; 3955 3956 WARN_ON(start > offset + len); 3957 3958 end = start + frag_iter->len; 3959 if ((copy = end - offset) > 0) { 3960 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3961 return -EMSGSIZE; 3962 3963 if (copy > len) 3964 copy = len; 3965 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3966 copy, recursion_level + 1); 3967 if (unlikely(ret < 0)) 3968 return ret; 3969 elt += ret; 3970 if ((len -= copy) == 0) 3971 return elt; 3972 offset += copy; 3973 } 3974 start = end; 3975 } 3976 BUG_ON(len); 3977 return elt; 3978 } 3979 3980 /** 3981 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3982 * @skb: Socket buffer containing the buffers to be mapped 3983 * @sg: The scatter-gather list to map into 3984 * @offset: The offset into the buffer's contents to start mapping 3985 * @len: Length of buffer space to be mapped 3986 * 3987 * Fill the specified scatter-gather list with mappings/pointers into a 3988 * region of the buffer space attached to a socket buffer. Returns either 3989 * the number of scatterlist items used, or -EMSGSIZE if the contents 3990 * could not fit. 3991 */ 3992 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3993 { 3994 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 3995 3996 if (nsg <= 0) 3997 return nsg; 3998 3999 sg_mark_end(&sg[nsg - 1]); 4000 4001 return nsg; 4002 } 4003 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4004 4005 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4006 * sglist without mark the sg which contain last skb data as the end. 4007 * So the caller can mannipulate sg list as will when padding new data after 4008 * the first call without calling sg_unmark_end to expend sg list. 4009 * 4010 * Scenario to use skb_to_sgvec_nomark: 4011 * 1. sg_init_table 4012 * 2. skb_to_sgvec_nomark(payload1) 4013 * 3. skb_to_sgvec_nomark(payload2) 4014 * 4015 * This is equivalent to: 4016 * 1. sg_init_table 4017 * 2. skb_to_sgvec(payload1) 4018 * 3. sg_unmark_end 4019 * 4. skb_to_sgvec(payload2) 4020 * 4021 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4022 * is more preferable. 4023 */ 4024 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4025 int offset, int len) 4026 { 4027 return __skb_to_sgvec(skb, sg, offset, len, 0); 4028 } 4029 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4030 4031 4032 4033 /** 4034 * skb_cow_data - Check that a socket buffer's data buffers are writable 4035 * @skb: The socket buffer to check. 4036 * @tailbits: Amount of trailing space to be added 4037 * @trailer: Returned pointer to the skb where the @tailbits space begins 4038 * 4039 * Make sure that the data buffers attached to a socket buffer are 4040 * writable. If they are not, private copies are made of the data buffers 4041 * and the socket buffer is set to use these instead. 4042 * 4043 * If @tailbits is given, make sure that there is space to write @tailbits 4044 * bytes of data beyond current end of socket buffer. @trailer will be 4045 * set to point to the skb in which this space begins. 4046 * 4047 * The number of scatterlist elements required to completely map the 4048 * COW'd and extended socket buffer will be returned. 4049 */ 4050 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4051 { 4052 int copyflag; 4053 int elt; 4054 struct sk_buff *skb1, **skb_p; 4055 4056 /* If skb is cloned or its head is paged, reallocate 4057 * head pulling out all the pages (pages are considered not writable 4058 * at the moment even if they are anonymous). 4059 */ 4060 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4061 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4062 return -ENOMEM; 4063 4064 /* Easy case. Most of packets will go this way. */ 4065 if (!skb_has_frag_list(skb)) { 4066 /* A little of trouble, not enough of space for trailer. 4067 * This should not happen, when stack is tuned to generate 4068 * good frames. OK, on miss we reallocate and reserve even more 4069 * space, 128 bytes is fair. */ 4070 4071 if (skb_tailroom(skb) < tailbits && 4072 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4073 return -ENOMEM; 4074 4075 /* Voila! */ 4076 *trailer = skb; 4077 return 1; 4078 } 4079 4080 /* Misery. We are in troubles, going to mincer fragments... */ 4081 4082 elt = 1; 4083 skb_p = &skb_shinfo(skb)->frag_list; 4084 copyflag = 0; 4085 4086 while ((skb1 = *skb_p) != NULL) { 4087 int ntail = 0; 4088 4089 /* The fragment is partially pulled by someone, 4090 * this can happen on input. Copy it and everything 4091 * after it. */ 4092 4093 if (skb_shared(skb1)) 4094 copyflag = 1; 4095 4096 /* If the skb is the last, worry about trailer. */ 4097 4098 if (skb1->next == NULL && tailbits) { 4099 if (skb_shinfo(skb1)->nr_frags || 4100 skb_has_frag_list(skb1) || 4101 skb_tailroom(skb1) < tailbits) 4102 ntail = tailbits + 128; 4103 } 4104 4105 if (copyflag || 4106 skb_cloned(skb1) || 4107 ntail || 4108 skb_shinfo(skb1)->nr_frags || 4109 skb_has_frag_list(skb1)) { 4110 struct sk_buff *skb2; 4111 4112 /* Fuck, we are miserable poor guys... */ 4113 if (ntail == 0) 4114 skb2 = skb_copy(skb1, GFP_ATOMIC); 4115 else 4116 skb2 = skb_copy_expand(skb1, 4117 skb_headroom(skb1), 4118 ntail, 4119 GFP_ATOMIC); 4120 if (unlikely(skb2 == NULL)) 4121 return -ENOMEM; 4122 4123 if (skb1->sk) 4124 skb_set_owner_w(skb2, skb1->sk); 4125 4126 /* Looking around. Are we still alive? 4127 * OK, link new skb, drop old one */ 4128 4129 skb2->next = skb1->next; 4130 *skb_p = skb2; 4131 kfree_skb(skb1); 4132 skb1 = skb2; 4133 } 4134 elt++; 4135 *trailer = skb1; 4136 skb_p = &skb1->next; 4137 } 4138 4139 return elt; 4140 } 4141 EXPORT_SYMBOL_GPL(skb_cow_data); 4142 4143 static void sock_rmem_free(struct sk_buff *skb) 4144 { 4145 struct sock *sk = skb->sk; 4146 4147 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4148 } 4149 4150 static void skb_set_err_queue(struct sk_buff *skb) 4151 { 4152 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4153 * So, it is safe to (mis)use it to mark skbs on the error queue. 4154 */ 4155 skb->pkt_type = PACKET_OUTGOING; 4156 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4157 } 4158 4159 /* 4160 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4161 */ 4162 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4163 { 4164 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4165 (unsigned int)sk->sk_rcvbuf) 4166 return -ENOMEM; 4167 4168 skb_orphan(skb); 4169 skb->sk = sk; 4170 skb->destructor = sock_rmem_free; 4171 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4172 skb_set_err_queue(skb); 4173 4174 /* before exiting rcu section, make sure dst is refcounted */ 4175 skb_dst_force(skb); 4176 4177 skb_queue_tail(&sk->sk_error_queue, skb); 4178 if (!sock_flag(sk, SOCK_DEAD)) 4179 sk->sk_data_ready(sk); 4180 return 0; 4181 } 4182 EXPORT_SYMBOL(sock_queue_err_skb); 4183 4184 static bool is_icmp_err_skb(const struct sk_buff *skb) 4185 { 4186 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4187 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4188 } 4189 4190 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4191 { 4192 struct sk_buff_head *q = &sk->sk_error_queue; 4193 struct sk_buff *skb, *skb_next = NULL; 4194 bool icmp_next = false; 4195 unsigned long flags; 4196 4197 spin_lock_irqsave(&q->lock, flags); 4198 skb = __skb_dequeue(q); 4199 if (skb && (skb_next = skb_peek(q))) { 4200 icmp_next = is_icmp_err_skb(skb_next); 4201 if (icmp_next) 4202 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4203 } 4204 spin_unlock_irqrestore(&q->lock, flags); 4205 4206 if (is_icmp_err_skb(skb) && !icmp_next) 4207 sk->sk_err = 0; 4208 4209 if (skb_next) 4210 sk->sk_error_report(sk); 4211 4212 return skb; 4213 } 4214 EXPORT_SYMBOL(sock_dequeue_err_skb); 4215 4216 /** 4217 * skb_clone_sk - create clone of skb, and take reference to socket 4218 * @skb: the skb to clone 4219 * 4220 * This function creates a clone of a buffer that holds a reference on 4221 * sk_refcnt. Buffers created via this function are meant to be 4222 * returned using sock_queue_err_skb, or free via kfree_skb. 4223 * 4224 * When passing buffers allocated with this function to sock_queue_err_skb 4225 * it is necessary to wrap the call with sock_hold/sock_put in order to 4226 * prevent the socket from being released prior to being enqueued on 4227 * the sk_error_queue. 4228 */ 4229 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4230 { 4231 struct sock *sk = skb->sk; 4232 struct sk_buff *clone; 4233 4234 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4235 return NULL; 4236 4237 clone = skb_clone(skb, GFP_ATOMIC); 4238 if (!clone) { 4239 sock_put(sk); 4240 return NULL; 4241 } 4242 4243 clone->sk = sk; 4244 clone->destructor = sock_efree; 4245 4246 return clone; 4247 } 4248 EXPORT_SYMBOL(skb_clone_sk); 4249 4250 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4251 struct sock *sk, 4252 int tstype, 4253 bool opt_stats) 4254 { 4255 struct sock_exterr_skb *serr; 4256 int err; 4257 4258 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4259 4260 serr = SKB_EXT_ERR(skb); 4261 memset(serr, 0, sizeof(*serr)); 4262 serr->ee.ee_errno = ENOMSG; 4263 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4264 serr->ee.ee_info = tstype; 4265 serr->opt_stats = opt_stats; 4266 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4267 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4268 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4269 if (sk->sk_protocol == IPPROTO_TCP && 4270 sk->sk_type == SOCK_STREAM) 4271 serr->ee.ee_data -= sk->sk_tskey; 4272 } 4273 4274 err = sock_queue_err_skb(sk, skb); 4275 4276 if (err) 4277 kfree_skb(skb); 4278 } 4279 4280 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4281 { 4282 bool ret; 4283 4284 if (likely(sysctl_tstamp_allow_data || tsonly)) 4285 return true; 4286 4287 read_lock_bh(&sk->sk_callback_lock); 4288 ret = sk->sk_socket && sk->sk_socket->file && 4289 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4290 read_unlock_bh(&sk->sk_callback_lock); 4291 return ret; 4292 } 4293 4294 void skb_complete_tx_timestamp(struct sk_buff *skb, 4295 struct skb_shared_hwtstamps *hwtstamps) 4296 { 4297 struct sock *sk = skb->sk; 4298 4299 if (!skb_may_tx_timestamp(sk, false)) 4300 return; 4301 4302 /* Take a reference to prevent skb_orphan() from freeing the socket, 4303 * but only if the socket refcount is not zero. 4304 */ 4305 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4306 *skb_hwtstamps(skb) = *hwtstamps; 4307 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4308 sock_put(sk); 4309 } 4310 } 4311 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4312 4313 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4314 struct skb_shared_hwtstamps *hwtstamps, 4315 struct sock *sk, int tstype) 4316 { 4317 struct sk_buff *skb; 4318 bool tsonly, opt_stats = false; 4319 4320 if (!sk) 4321 return; 4322 4323 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4324 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4325 return; 4326 4327 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4328 if (!skb_may_tx_timestamp(sk, tsonly)) 4329 return; 4330 4331 if (tsonly) { 4332 #ifdef CONFIG_INET 4333 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4334 sk->sk_protocol == IPPROTO_TCP && 4335 sk->sk_type == SOCK_STREAM) { 4336 skb = tcp_get_timestamping_opt_stats(sk); 4337 opt_stats = true; 4338 } else 4339 #endif 4340 skb = alloc_skb(0, GFP_ATOMIC); 4341 } else { 4342 skb = skb_clone(orig_skb, GFP_ATOMIC); 4343 } 4344 if (!skb) 4345 return; 4346 4347 if (tsonly) { 4348 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4349 SKBTX_ANY_TSTAMP; 4350 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4351 } 4352 4353 if (hwtstamps) 4354 *skb_hwtstamps(skb) = *hwtstamps; 4355 else 4356 skb->tstamp = ktime_get_real(); 4357 4358 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4359 } 4360 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4361 4362 void skb_tstamp_tx(struct sk_buff *orig_skb, 4363 struct skb_shared_hwtstamps *hwtstamps) 4364 { 4365 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4366 SCM_TSTAMP_SND); 4367 } 4368 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4369 4370 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4371 { 4372 struct sock *sk = skb->sk; 4373 struct sock_exterr_skb *serr; 4374 int err = 1; 4375 4376 skb->wifi_acked_valid = 1; 4377 skb->wifi_acked = acked; 4378 4379 serr = SKB_EXT_ERR(skb); 4380 memset(serr, 0, sizeof(*serr)); 4381 serr->ee.ee_errno = ENOMSG; 4382 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4383 4384 /* Take a reference to prevent skb_orphan() from freeing the socket, 4385 * but only if the socket refcount is not zero. 4386 */ 4387 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4388 err = sock_queue_err_skb(sk, skb); 4389 sock_put(sk); 4390 } 4391 if (err) 4392 kfree_skb(skb); 4393 } 4394 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4395 4396 /** 4397 * skb_partial_csum_set - set up and verify partial csum values for packet 4398 * @skb: the skb to set 4399 * @start: the number of bytes after skb->data to start checksumming. 4400 * @off: the offset from start to place the checksum. 4401 * 4402 * For untrusted partially-checksummed packets, we need to make sure the values 4403 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4404 * 4405 * This function checks and sets those values and skb->ip_summed: if this 4406 * returns false you should drop the packet. 4407 */ 4408 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4409 { 4410 if (unlikely(start > skb_headlen(skb)) || 4411 unlikely((int)start + off > skb_headlen(skb) - 2)) { 4412 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 4413 start, off, skb_headlen(skb)); 4414 return false; 4415 } 4416 skb->ip_summed = CHECKSUM_PARTIAL; 4417 skb->csum_start = skb_headroom(skb) + start; 4418 skb->csum_offset = off; 4419 skb_set_transport_header(skb, start); 4420 return true; 4421 } 4422 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4423 4424 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4425 unsigned int max) 4426 { 4427 if (skb_headlen(skb) >= len) 4428 return 0; 4429 4430 /* If we need to pullup then pullup to the max, so we 4431 * won't need to do it again. 4432 */ 4433 if (max > skb->len) 4434 max = skb->len; 4435 4436 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4437 return -ENOMEM; 4438 4439 if (skb_headlen(skb) < len) 4440 return -EPROTO; 4441 4442 return 0; 4443 } 4444 4445 #define MAX_TCP_HDR_LEN (15 * 4) 4446 4447 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4448 typeof(IPPROTO_IP) proto, 4449 unsigned int off) 4450 { 4451 switch (proto) { 4452 int err; 4453 4454 case IPPROTO_TCP: 4455 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4456 off + MAX_TCP_HDR_LEN); 4457 if (!err && !skb_partial_csum_set(skb, off, 4458 offsetof(struct tcphdr, 4459 check))) 4460 err = -EPROTO; 4461 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4462 4463 case IPPROTO_UDP: 4464 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4465 off + sizeof(struct udphdr)); 4466 if (!err && !skb_partial_csum_set(skb, off, 4467 offsetof(struct udphdr, 4468 check))) 4469 err = -EPROTO; 4470 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4471 } 4472 4473 return ERR_PTR(-EPROTO); 4474 } 4475 4476 /* This value should be large enough to cover a tagged ethernet header plus 4477 * maximally sized IP and TCP or UDP headers. 4478 */ 4479 #define MAX_IP_HDR_LEN 128 4480 4481 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4482 { 4483 unsigned int off; 4484 bool fragment; 4485 __sum16 *csum; 4486 int err; 4487 4488 fragment = false; 4489 4490 err = skb_maybe_pull_tail(skb, 4491 sizeof(struct iphdr), 4492 MAX_IP_HDR_LEN); 4493 if (err < 0) 4494 goto out; 4495 4496 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4497 fragment = true; 4498 4499 off = ip_hdrlen(skb); 4500 4501 err = -EPROTO; 4502 4503 if (fragment) 4504 goto out; 4505 4506 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4507 if (IS_ERR(csum)) 4508 return PTR_ERR(csum); 4509 4510 if (recalculate) 4511 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4512 ip_hdr(skb)->daddr, 4513 skb->len - off, 4514 ip_hdr(skb)->protocol, 0); 4515 err = 0; 4516 4517 out: 4518 return err; 4519 } 4520 4521 /* This value should be large enough to cover a tagged ethernet header plus 4522 * an IPv6 header, all options, and a maximal TCP or UDP header. 4523 */ 4524 #define MAX_IPV6_HDR_LEN 256 4525 4526 #define OPT_HDR(type, skb, off) \ 4527 (type *)(skb_network_header(skb) + (off)) 4528 4529 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4530 { 4531 int err; 4532 u8 nexthdr; 4533 unsigned int off; 4534 unsigned int len; 4535 bool fragment; 4536 bool done; 4537 __sum16 *csum; 4538 4539 fragment = false; 4540 done = false; 4541 4542 off = sizeof(struct ipv6hdr); 4543 4544 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4545 if (err < 0) 4546 goto out; 4547 4548 nexthdr = ipv6_hdr(skb)->nexthdr; 4549 4550 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4551 while (off <= len && !done) { 4552 switch (nexthdr) { 4553 case IPPROTO_DSTOPTS: 4554 case IPPROTO_HOPOPTS: 4555 case IPPROTO_ROUTING: { 4556 struct ipv6_opt_hdr *hp; 4557 4558 err = skb_maybe_pull_tail(skb, 4559 off + 4560 sizeof(struct ipv6_opt_hdr), 4561 MAX_IPV6_HDR_LEN); 4562 if (err < 0) 4563 goto out; 4564 4565 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4566 nexthdr = hp->nexthdr; 4567 off += ipv6_optlen(hp); 4568 break; 4569 } 4570 case IPPROTO_AH: { 4571 struct ip_auth_hdr *hp; 4572 4573 err = skb_maybe_pull_tail(skb, 4574 off + 4575 sizeof(struct ip_auth_hdr), 4576 MAX_IPV6_HDR_LEN); 4577 if (err < 0) 4578 goto out; 4579 4580 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4581 nexthdr = hp->nexthdr; 4582 off += ipv6_authlen(hp); 4583 break; 4584 } 4585 case IPPROTO_FRAGMENT: { 4586 struct frag_hdr *hp; 4587 4588 err = skb_maybe_pull_tail(skb, 4589 off + 4590 sizeof(struct frag_hdr), 4591 MAX_IPV6_HDR_LEN); 4592 if (err < 0) 4593 goto out; 4594 4595 hp = OPT_HDR(struct frag_hdr, skb, off); 4596 4597 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4598 fragment = true; 4599 4600 nexthdr = hp->nexthdr; 4601 off += sizeof(struct frag_hdr); 4602 break; 4603 } 4604 default: 4605 done = true; 4606 break; 4607 } 4608 } 4609 4610 err = -EPROTO; 4611 4612 if (!done || fragment) 4613 goto out; 4614 4615 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4616 if (IS_ERR(csum)) 4617 return PTR_ERR(csum); 4618 4619 if (recalculate) 4620 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4621 &ipv6_hdr(skb)->daddr, 4622 skb->len - off, nexthdr, 0); 4623 err = 0; 4624 4625 out: 4626 return err; 4627 } 4628 4629 /** 4630 * skb_checksum_setup - set up partial checksum offset 4631 * @skb: the skb to set up 4632 * @recalculate: if true the pseudo-header checksum will be recalculated 4633 */ 4634 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4635 { 4636 int err; 4637 4638 switch (skb->protocol) { 4639 case htons(ETH_P_IP): 4640 err = skb_checksum_setup_ipv4(skb, recalculate); 4641 break; 4642 4643 case htons(ETH_P_IPV6): 4644 err = skb_checksum_setup_ipv6(skb, recalculate); 4645 break; 4646 4647 default: 4648 err = -EPROTO; 4649 break; 4650 } 4651 4652 return err; 4653 } 4654 EXPORT_SYMBOL(skb_checksum_setup); 4655 4656 /** 4657 * skb_checksum_maybe_trim - maybe trims the given skb 4658 * @skb: the skb to check 4659 * @transport_len: the data length beyond the network header 4660 * 4661 * Checks whether the given skb has data beyond the given transport length. 4662 * If so, returns a cloned skb trimmed to this transport length. 4663 * Otherwise returns the provided skb. Returns NULL in error cases 4664 * (e.g. transport_len exceeds skb length or out-of-memory). 4665 * 4666 * Caller needs to set the skb transport header and free any returned skb if it 4667 * differs from the provided skb. 4668 */ 4669 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4670 unsigned int transport_len) 4671 { 4672 struct sk_buff *skb_chk; 4673 unsigned int len = skb_transport_offset(skb) + transport_len; 4674 int ret; 4675 4676 if (skb->len < len) 4677 return NULL; 4678 else if (skb->len == len) 4679 return skb; 4680 4681 skb_chk = skb_clone(skb, GFP_ATOMIC); 4682 if (!skb_chk) 4683 return NULL; 4684 4685 ret = pskb_trim_rcsum(skb_chk, len); 4686 if (ret) { 4687 kfree_skb(skb_chk); 4688 return NULL; 4689 } 4690 4691 return skb_chk; 4692 } 4693 4694 /** 4695 * skb_checksum_trimmed - validate checksum of an skb 4696 * @skb: the skb to check 4697 * @transport_len: the data length beyond the network header 4698 * @skb_chkf: checksum function to use 4699 * 4700 * Applies the given checksum function skb_chkf to the provided skb. 4701 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4702 * 4703 * If the skb has data beyond the given transport length, then a 4704 * trimmed & cloned skb is checked and returned. 4705 * 4706 * Caller needs to set the skb transport header and free any returned skb if it 4707 * differs from the provided skb. 4708 */ 4709 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4710 unsigned int transport_len, 4711 __sum16(*skb_chkf)(struct sk_buff *skb)) 4712 { 4713 struct sk_buff *skb_chk; 4714 unsigned int offset = skb_transport_offset(skb); 4715 __sum16 ret; 4716 4717 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4718 if (!skb_chk) 4719 goto err; 4720 4721 if (!pskb_may_pull(skb_chk, offset)) 4722 goto err; 4723 4724 skb_pull_rcsum(skb_chk, offset); 4725 ret = skb_chkf(skb_chk); 4726 skb_push_rcsum(skb_chk, offset); 4727 4728 if (ret) 4729 goto err; 4730 4731 return skb_chk; 4732 4733 err: 4734 if (skb_chk && skb_chk != skb) 4735 kfree_skb(skb_chk); 4736 4737 return NULL; 4738 4739 } 4740 EXPORT_SYMBOL(skb_checksum_trimmed); 4741 4742 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4743 { 4744 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4745 skb->dev->name); 4746 } 4747 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4748 4749 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4750 { 4751 if (head_stolen) { 4752 skb_release_head_state(skb); 4753 kmem_cache_free(skbuff_head_cache, skb); 4754 } else { 4755 __kfree_skb(skb); 4756 } 4757 } 4758 EXPORT_SYMBOL(kfree_skb_partial); 4759 4760 /** 4761 * skb_try_coalesce - try to merge skb to prior one 4762 * @to: prior buffer 4763 * @from: buffer to add 4764 * @fragstolen: pointer to boolean 4765 * @delta_truesize: how much more was allocated than was requested 4766 */ 4767 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4768 bool *fragstolen, int *delta_truesize) 4769 { 4770 int i, delta, len = from->len; 4771 4772 *fragstolen = false; 4773 4774 if (skb_cloned(to)) 4775 return false; 4776 4777 if (len <= skb_tailroom(to)) { 4778 if (len) 4779 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4780 *delta_truesize = 0; 4781 return true; 4782 } 4783 4784 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 4785 return false; 4786 if (skb_zcopy(to) || skb_zcopy(from)) 4787 return false; 4788 4789 if (skb_headlen(from) != 0) { 4790 struct page *page; 4791 unsigned int offset; 4792 4793 if (skb_shinfo(to)->nr_frags + 4794 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 4795 return false; 4796 4797 if (skb_head_is_locked(from)) 4798 return false; 4799 4800 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4801 4802 page = virt_to_head_page(from->head); 4803 offset = from->data - (unsigned char *)page_address(page); 4804 4805 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 4806 page, offset, skb_headlen(from)); 4807 *fragstolen = true; 4808 } else { 4809 if (skb_shinfo(to)->nr_frags + 4810 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 4811 return false; 4812 4813 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4814 } 4815 4816 WARN_ON_ONCE(delta < len); 4817 4818 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 4819 skb_shinfo(from)->frags, 4820 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 4821 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 4822 4823 if (!skb_cloned(from)) 4824 skb_shinfo(from)->nr_frags = 0; 4825 4826 /* if the skb is not cloned this does nothing 4827 * since we set nr_frags to 0. 4828 */ 4829 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 4830 skb_frag_ref(from, i); 4831 4832 to->truesize += delta; 4833 to->len += len; 4834 to->data_len += len; 4835 4836 *delta_truesize = delta; 4837 return true; 4838 } 4839 EXPORT_SYMBOL(skb_try_coalesce); 4840 4841 /** 4842 * skb_scrub_packet - scrub an skb 4843 * 4844 * @skb: buffer to clean 4845 * @xnet: packet is crossing netns 4846 * 4847 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4848 * into/from a tunnel. Some information have to be cleared during these 4849 * operations. 4850 * skb_scrub_packet can also be used to clean a skb before injecting it in 4851 * another namespace (@xnet == true). We have to clear all information in the 4852 * skb that could impact namespace isolation. 4853 */ 4854 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4855 { 4856 skb->tstamp = 0; 4857 skb->pkt_type = PACKET_HOST; 4858 skb->skb_iif = 0; 4859 skb->ignore_df = 0; 4860 skb_dst_drop(skb); 4861 secpath_reset(skb); 4862 nf_reset(skb); 4863 nf_reset_trace(skb); 4864 4865 if (!xnet) 4866 return; 4867 4868 skb_orphan(skb); 4869 skb->mark = 0; 4870 } 4871 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4872 4873 /** 4874 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4875 * 4876 * @skb: GSO skb 4877 * 4878 * skb_gso_transport_seglen is used to determine the real size of the 4879 * individual segments, including Layer4 headers (TCP/UDP). 4880 * 4881 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4882 */ 4883 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4884 { 4885 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4886 unsigned int thlen = 0; 4887 4888 if (skb->encapsulation) { 4889 thlen = skb_inner_transport_header(skb) - 4890 skb_transport_header(skb); 4891 4892 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4893 thlen += inner_tcp_hdrlen(skb); 4894 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4895 thlen = tcp_hdrlen(skb); 4896 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) { 4897 thlen = sizeof(struct sctphdr); 4898 } 4899 /* UFO sets gso_size to the size of the fragmentation 4900 * payload, i.e. the size of the L4 (UDP) header is already 4901 * accounted for. 4902 */ 4903 return thlen + shinfo->gso_size; 4904 } 4905 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen); 4906 4907 /** 4908 * skb_gso_validate_mtu - Return in case such skb fits a given MTU 4909 * 4910 * @skb: GSO skb 4911 * @mtu: MTU to validate against 4912 * 4913 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU 4914 * once split. 4915 */ 4916 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu) 4917 { 4918 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4919 const struct sk_buff *iter; 4920 unsigned int hlen; 4921 4922 hlen = skb_gso_network_seglen(skb); 4923 4924 if (shinfo->gso_size != GSO_BY_FRAGS) 4925 return hlen <= mtu; 4926 4927 /* Undo this so we can re-use header sizes */ 4928 hlen -= GSO_BY_FRAGS; 4929 4930 skb_walk_frags(skb, iter) { 4931 if (hlen + skb_headlen(iter) > mtu) 4932 return false; 4933 } 4934 4935 return true; 4936 } 4937 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu); 4938 4939 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 4940 { 4941 if (skb_cow(skb, skb_headroom(skb)) < 0) { 4942 kfree_skb(skb); 4943 return NULL; 4944 } 4945 4946 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN, 4947 2 * ETH_ALEN); 4948 skb->mac_header += VLAN_HLEN; 4949 return skb; 4950 } 4951 4952 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 4953 { 4954 struct vlan_hdr *vhdr; 4955 u16 vlan_tci; 4956 4957 if (unlikely(skb_vlan_tag_present(skb))) { 4958 /* vlan_tci is already set-up so leave this for another time */ 4959 return skb; 4960 } 4961 4962 skb = skb_share_check(skb, GFP_ATOMIC); 4963 if (unlikely(!skb)) 4964 goto err_free; 4965 4966 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 4967 goto err_free; 4968 4969 vhdr = (struct vlan_hdr *)skb->data; 4970 vlan_tci = ntohs(vhdr->h_vlan_TCI); 4971 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 4972 4973 skb_pull_rcsum(skb, VLAN_HLEN); 4974 vlan_set_encap_proto(skb, vhdr); 4975 4976 skb = skb_reorder_vlan_header(skb); 4977 if (unlikely(!skb)) 4978 goto err_free; 4979 4980 skb_reset_network_header(skb); 4981 skb_reset_transport_header(skb); 4982 skb_reset_mac_len(skb); 4983 4984 return skb; 4985 4986 err_free: 4987 kfree_skb(skb); 4988 return NULL; 4989 } 4990 EXPORT_SYMBOL(skb_vlan_untag); 4991 4992 int skb_ensure_writable(struct sk_buff *skb, int write_len) 4993 { 4994 if (!pskb_may_pull(skb, write_len)) 4995 return -ENOMEM; 4996 4997 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 4998 return 0; 4999 5000 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5001 } 5002 EXPORT_SYMBOL(skb_ensure_writable); 5003 5004 /* remove VLAN header from packet and update csum accordingly. 5005 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5006 */ 5007 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5008 { 5009 struct vlan_hdr *vhdr; 5010 int offset = skb->data - skb_mac_header(skb); 5011 int err; 5012 5013 if (WARN_ONCE(offset, 5014 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5015 offset)) { 5016 return -EINVAL; 5017 } 5018 5019 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5020 if (unlikely(err)) 5021 return err; 5022 5023 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5024 5025 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5026 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5027 5028 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5029 __skb_pull(skb, VLAN_HLEN); 5030 5031 vlan_set_encap_proto(skb, vhdr); 5032 skb->mac_header += VLAN_HLEN; 5033 5034 if (skb_network_offset(skb) < ETH_HLEN) 5035 skb_set_network_header(skb, ETH_HLEN); 5036 5037 skb_reset_mac_len(skb); 5038 5039 return err; 5040 } 5041 EXPORT_SYMBOL(__skb_vlan_pop); 5042 5043 /* Pop a vlan tag either from hwaccel or from payload. 5044 * Expects skb->data at mac header. 5045 */ 5046 int skb_vlan_pop(struct sk_buff *skb) 5047 { 5048 u16 vlan_tci; 5049 __be16 vlan_proto; 5050 int err; 5051 5052 if (likely(skb_vlan_tag_present(skb))) { 5053 skb->vlan_tci = 0; 5054 } else { 5055 if (unlikely(!eth_type_vlan(skb->protocol))) 5056 return 0; 5057 5058 err = __skb_vlan_pop(skb, &vlan_tci); 5059 if (err) 5060 return err; 5061 } 5062 /* move next vlan tag to hw accel tag */ 5063 if (likely(!eth_type_vlan(skb->protocol))) 5064 return 0; 5065 5066 vlan_proto = skb->protocol; 5067 err = __skb_vlan_pop(skb, &vlan_tci); 5068 if (unlikely(err)) 5069 return err; 5070 5071 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5072 return 0; 5073 } 5074 EXPORT_SYMBOL(skb_vlan_pop); 5075 5076 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5077 * Expects skb->data at mac header. 5078 */ 5079 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5080 { 5081 if (skb_vlan_tag_present(skb)) { 5082 int offset = skb->data - skb_mac_header(skb); 5083 int err; 5084 5085 if (WARN_ONCE(offset, 5086 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5087 offset)) { 5088 return -EINVAL; 5089 } 5090 5091 err = __vlan_insert_tag(skb, skb->vlan_proto, 5092 skb_vlan_tag_get(skb)); 5093 if (err) 5094 return err; 5095 5096 skb->protocol = skb->vlan_proto; 5097 skb->mac_len += VLAN_HLEN; 5098 5099 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5100 } 5101 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5102 return 0; 5103 } 5104 EXPORT_SYMBOL(skb_vlan_push); 5105 5106 /** 5107 * alloc_skb_with_frags - allocate skb with page frags 5108 * 5109 * @header_len: size of linear part 5110 * @data_len: needed length in frags 5111 * @max_page_order: max page order desired. 5112 * @errcode: pointer to error code if any 5113 * @gfp_mask: allocation mask 5114 * 5115 * This can be used to allocate a paged skb, given a maximal order for frags. 5116 */ 5117 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5118 unsigned long data_len, 5119 int max_page_order, 5120 int *errcode, 5121 gfp_t gfp_mask) 5122 { 5123 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5124 unsigned long chunk; 5125 struct sk_buff *skb; 5126 struct page *page; 5127 gfp_t gfp_head; 5128 int i; 5129 5130 *errcode = -EMSGSIZE; 5131 /* Note this test could be relaxed, if we succeed to allocate 5132 * high order pages... 5133 */ 5134 if (npages > MAX_SKB_FRAGS) 5135 return NULL; 5136 5137 gfp_head = gfp_mask; 5138 if (gfp_head & __GFP_DIRECT_RECLAIM) 5139 gfp_head |= __GFP_RETRY_MAYFAIL; 5140 5141 *errcode = -ENOBUFS; 5142 skb = alloc_skb(header_len, gfp_head); 5143 if (!skb) 5144 return NULL; 5145 5146 skb->truesize += npages << PAGE_SHIFT; 5147 5148 for (i = 0; npages > 0; i++) { 5149 int order = max_page_order; 5150 5151 while (order) { 5152 if (npages >= 1 << order) { 5153 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5154 __GFP_COMP | 5155 __GFP_NOWARN | 5156 __GFP_NORETRY, 5157 order); 5158 if (page) 5159 goto fill_page; 5160 /* Do not retry other high order allocations */ 5161 order = 1; 5162 max_page_order = 0; 5163 } 5164 order--; 5165 } 5166 page = alloc_page(gfp_mask); 5167 if (!page) 5168 goto failure; 5169 fill_page: 5170 chunk = min_t(unsigned long, data_len, 5171 PAGE_SIZE << order); 5172 skb_fill_page_desc(skb, i, page, 0, chunk); 5173 data_len -= chunk; 5174 npages -= 1 << order; 5175 } 5176 return skb; 5177 5178 failure: 5179 kfree_skb(skb); 5180 return NULL; 5181 } 5182 EXPORT_SYMBOL(alloc_skb_with_frags); 5183 5184 /* carve out the first off bytes from skb when off < headlen */ 5185 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5186 const int headlen, gfp_t gfp_mask) 5187 { 5188 int i; 5189 int size = skb_end_offset(skb); 5190 int new_hlen = headlen - off; 5191 u8 *data; 5192 5193 size = SKB_DATA_ALIGN(size); 5194 5195 if (skb_pfmemalloc(skb)) 5196 gfp_mask |= __GFP_MEMALLOC; 5197 data = kmalloc_reserve(size + 5198 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5199 gfp_mask, NUMA_NO_NODE, NULL); 5200 if (!data) 5201 return -ENOMEM; 5202 5203 size = SKB_WITH_OVERHEAD(ksize(data)); 5204 5205 /* Copy real data, and all frags */ 5206 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5207 skb->len -= off; 5208 5209 memcpy((struct skb_shared_info *)(data + size), 5210 skb_shinfo(skb), 5211 offsetof(struct skb_shared_info, 5212 frags[skb_shinfo(skb)->nr_frags])); 5213 if (skb_cloned(skb)) { 5214 /* drop the old head gracefully */ 5215 if (skb_orphan_frags(skb, gfp_mask)) { 5216 kfree(data); 5217 return -ENOMEM; 5218 } 5219 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5220 skb_frag_ref(skb, i); 5221 if (skb_has_frag_list(skb)) 5222 skb_clone_fraglist(skb); 5223 skb_release_data(skb); 5224 } else { 5225 /* we can reuse existing recount- all we did was 5226 * relocate values 5227 */ 5228 skb_free_head(skb); 5229 } 5230 5231 skb->head = data; 5232 skb->data = data; 5233 skb->head_frag = 0; 5234 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5235 skb->end = size; 5236 #else 5237 skb->end = skb->head + size; 5238 #endif 5239 skb_set_tail_pointer(skb, skb_headlen(skb)); 5240 skb_headers_offset_update(skb, 0); 5241 skb->cloned = 0; 5242 skb->hdr_len = 0; 5243 skb->nohdr = 0; 5244 atomic_set(&skb_shinfo(skb)->dataref, 1); 5245 5246 return 0; 5247 } 5248 5249 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5250 5251 /* carve out the first eat bytes from skb's frag_list. May recurse into 5252 * pskb_carve() 5253 */ 5254 static int pskb_carve_frag_list(struct sk_buff *skb, 5255 struct skb_shared_info *shinfo, int eat, 5256 gfp_t gfp_mask) 5257 { 5258 struct sk_buff *list = shinfo->frag_list; 5259 struct sk_buff *clone = NULL; 5260 struct sk_buff *insp = NULL; 5261 5262 do { 5263 if (!list) { 5264 pr_err("Not enough bytes to eat. Want %d\n", eat); 5265 return -EFAULT; 5266 } 5267 if (list->len <= eat) { 5268 /* Eaten as whole. */ 5269 eat -= list->len; 5270 list = list->next; 5271 insp = list; 5272 } else { 5273 /* Eaten partially. */ 5274 if (skb_shared(list)) { 5275 clone = skb_clone(list, gfp_mask); 5276 if (!clone) 5277 return -ENOMEM; 5278 insp = list->next; 5279 list = clone; 5280 } else { 5281 /* This may be pulled without problems. */ 5282 insp = list; 5283 } 5284 if (pskb_carve(list, eat, gfp_mask) < 0) { 5285 kfree_skb(clone); 5286 return -ENOMEM; 5287 } 5288 break; 5289 } 5290 } while (eat); 5291 5292 /* Free pulled out fragments. */ 5293 while ((list = shinfo->frag_list) != insp) { 5294 shinfo->frag_list = list->next; 5295 kfree_skb(list); 5296 } 5297 /* And insert new clone at head. */ 5298 if (clone) { 5299 clone->next = list; 5300 shinfo->frag_list = clone; 5301 } 5302 return 0; 5303 } 5304 5305 /* carve off first len bytes from skb. Split line (off) is in the 5306 * non-linear part of skb 5307 */ 5308 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5309 int pos, gfp_t gfp_mask) 5310 { 5311 int i, k = 0; 5312 int size = skb_end_offset(skb); 5313 u8 *data; 5314 const int nfrags = skb_shinfo(skb)->nr_frags; 5315 struct skb_shared_info *shinfo; 5316 5317 size = SKB_DATA_ALIGN(size); 5318 5319 if (skb_pfmemalloc(skb)) 5320 gfp_mask |= __GFP_MEMALLOC; 5321 data = kmalloc_reserve(size + 5322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5323 gfp_mask, NUMA_NO_NODE, NULL); 5324 if (!data) 5325 return -ENOMEM; 5326 5327 size = SKB_WITH_OVERHEAD(ksize(data)); 5328 5329 memcpy((struct skb_shared_info *)(data + size), 5330 skb_shinfo(skb), offsetof(struct skb_shared_info, 5331 frags[skb_shinfo(skb)->nr_frags])); 5332 if (skb_orphan_frags(skb, gfp_mask)) { 5333 kfree(data); 5334 return -ENOMEM; 5335 } 5336 shinfo = (struct skb_shared_info *)(data + size); 5337 for (i = 0; i < nfrags; i++) { 5338 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5339 5340 if (pos + fsize > off) { 5341 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5342 5343 if (pos < off) { 5344 /* Split frag. 5345 * We have two variants in this case: 5346 * 1. Move all the frag to the second 5347 * part, if it is possible. F.e. 5348 * this approach is mandatory for TUX, 5349 * where splitting is expensive. 5350 * 2. Split is accurately. We make this. 5351 */ 5352 shinfo->frags[0].page_offset += off - pos; 5353 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5354 } 5355 skb_frag_ref(skb, i); 5356 k++; 5357 } 5358 pos += fsize; 5359 } 5360 shinfo->nr_frags = k; 5361 if (skb_has_frag_list(skb)) 5362 skb_clone_fraglist(skb); 5363 5364 if (k == 0) { 5365 /* split line is in frag list */ 5366 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5367 } 5368 skb_release_data(skb); 5369 5370 skb->head = data; 5371 skb->head_frag = 0; 5372 skb->data = data; 5373 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5374 skb->end = size; 5375 #else 5376 skb->end = skb->head + size; 5377 #endif 5378 skb_reset_tail_pointer(skb); 5379 skb_headers_offset_update(skb, 0); 5380 skb->cloned = 0; 5381 skb->hdr_len = 0; 5382 skb->nohdr = 0; 5383 skb->len -= off; 5384 skb->data_len = skb->len; 5385 atomic_set(&skb_shinfo(skb)->dataref, 1); 5386 return 0; 5387 } 5388 5389 /* remove len bytes from the beginning of the skb */ 5390 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5391 { 5392 int headlen = skb_headlen(skb); 5393 5394 if (len < headlen) 5395 return pskb_carve_inside_header(skb, len, headlen, gfp); 5396 else 5397 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5398 } 5399 5400 /* Extract to_copy bytes starting at off from skb, and return this in 5401 * a new skb 5402 */ 5403 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5404 int to_copy, gfp_t gfp) 5405 { 5406 struct sk_buff *clone = skb_clone(skb, gfp); 5407 5408 if (!clone) 5409 return NULL; 5410 5411 if (pskb_carve(clone, off, gfp) < 0 || 5412 pskb_trim(clone, to_copy)) { 5413 kfree_skb(clone); 5414 return NULL; 5415 } 5416 return clone; 5417 } 5418 EXPORT_SYMBOL(pskb_extract); 5419 5420 /** 5421 * skb_condense - try to get rid of fragments/frag_list if possible 5422 * @skb: buffer 5423 * 5424 * Can be used to save memory before skb is added to a busy queue. 5425 * If packet has bytes in frags and enough tail room in skb->head, 5426 * pull all of them, so that we can free the frags right now and adjust 5427 * truesize. 5428 * Notes: 5429 * We do not reallocate skb->head thus can not fail. 5430 * Caller must re-evaluate skb->truesize if needed. 5431 */ 5432 void skb_condense(struct sk_buff *skb) 5433 { 5434 if (skb->data_len) { 5435 if (skb->data_len > skb->end - skb->tail || 5436 skb_cloned(skb)) 5437 return; 5438 5439 /* Nice, we can free page frag(s) right now */ 5440 __pskb_pull_tail(skb, skb->data_len); 5441 } 5442 /* At this point, skb->truesize might be over estimated, 5443 * because skb had a fragment, and fragments do not tell 5444 * their truesize. 5445 * When we pulled its content into skb->head, fragment 5446 * was freed, but __pskb_pull_tail() could not possibly 5447 * adjust skb->truesize, not knowing the frag truesize. 5448 */ 5449 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5450 } 5451