xref: /openbmc/linux/net/core/skbuff.c (revision 273a2397fc9157c04e904b6ae37f723aa910a0d1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "datagram.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 /**
95  *	skb_panic - private function for out-of-line support
96  *	@skb:	buffer
97  *	@sz:	size
98  *	@addr:	address
99  *	@msg:	skb_over_panic or skb_under_panic
100  *
101  *	Out-of-line support for skb_put() and skb_push().
102  *	Called via the wrapper skb_over_panic() or skb_under_panic().
103  *	Keep out of line to prevent kernel bloat.
104  *	__builtin_return_address is not used because it is not always reliable.
105  */
106 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
107 		      const char msg[])
108 {
109 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
110 		 msg, addr, skb->len, sz, skb->head, skb->data,
111 		 (unsigned long)skb->tail, (unsigned long)skb->end,
112 		 skb->dev ? skb->dev->name : "<NULL>");
113 	BUG();
114 }
115 
116 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 {
118 	skb_panic(skb, sz, addr, __func__);
119 }
120 
121 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
122 {
123 	skb_panic(skb, sz, addr, __func__);
124 }
125 
126 #define NAPI_SKB_CACHE_SIZE	64
127 #define NAPI_SKB_CACHE_BULK	16
128 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
129 
130 struct napi_alloc_cache {
131 	struct page_frag_cache page;
132 	unsigned int skb_count;
133 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
134 };
135 
136 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
137 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
138 
139 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
140 {
141 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
142 
143 	fragsz = SKB_DATA_ALIGN(fragsz);
144 
145 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
146 }
147 EXPORT_SYMBOL(__napi_alloc_frag_align);
148 
149 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
150 {
151 	void *data;
152 
153 	fragsz = SKB_DATA_ALIGN(fragsz);
154 	if (in_hardirq() || irqs_disabled()) {
155 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
156 
157 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
158 	} else {
159 		struct napi_alloc_cache *nc;
160 
161 		local_bh_disable();
162 		nc = this_cpu_ptr(&napi_alloc_cache);
163 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
164 		local_bh_enable();
165 	}
166 	return data;
167 }
168 EXPORT_SYMBOL(__netdev_alloc_frag_align);
169 
170 static struct sk_buff *napi_skb_cache_get(void)
171 {
172 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
173 	struct sk_buff *skb;
174 
175 	if (unlikely(!nc->skb_count))
176 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
177 						      GFP_ATOMIC,
178 						      NAPI_SKB_CACHE_BULK,
179 						      nc->skb_cache);
180 	if (unlikely(!nc->skb_count))
181 		return NULL;
182 
183 	skb = nc->skb_cache[--nc->skb_count];
184 	kasan_unpoison_object_data(skbuff_head_cache, skb);
185 
186 	return skb;
187 }
188 
189 /* Caller must provide SKB that is memset cleared */
190 static void __build_skb_around(struct sk_buff *skb, void *data,
191 			       unsigned int frag_size)
192 {
193 	struct skb_shared_info *shinfo;
194 	unsigned int size = frag_size ? : ksize(data);
195 
196 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
197 
198 	/* Assumes caller memset cleared SKB */
199 	skb->truesize = SKB_TRUESIZE(size);
200 	refcount_set(&skb->users, 1);
201 	skb->head = data;
202 	skb->data = data;
203 	skb_reset_tail_pointer(skb);
204 	skb->end = skb->tail + size;
205 	skb->mac_header = (typeof(skb->mac_header))~0U;
206 	skb->transport_header = (typeof(skb->transport_header))~0U;
207 
208 	/* make sure we initialize shinfo sequentially */
209 	shinfo = skb_shinfo(skb);
210 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
211 	atomic_set(&shinfo->dataref, 1);
212 
213 	skb_set_kcov_handle(skb, kcov_common_handle());
214 }
215 
216 /**
217  * __build_skb - build a network buffer
218  * @data: data buffer provided by caller
219  * @frag_size: size of data, or 0 if head was kmalloced
220  *
221  * Allocate a new &sk_buff. Caller provides space holding head and
222  * skb_shared_info. @data must have been allocated by kmalloc() only if
223  * @frag_size is 0, otherwise data should come from the page allocator
224  *  or vmalloc()
225  * The return is the new skb buffer.
226  * On a failure the return is %NULL, and @data is not freed.
227  * Notes :
228  *  Before IO, driver allocates only data buffer where NIC put incoming frame
229  *  Driver should add room at head (NET_SKB_PAD) and
230  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
231  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
232  *  before giving packet to stack.
233  *  RX rings only contains data buffers, not full skbs.
234  */
235 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
236 {
237 	struct sk_buff *skb;
238 
239 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
240 	if (unlikely(!skb))
241 		return NULL;
242 
243 	memset(skb, 0, offsetof(struct sk_buff, tail));
244 	__build_skb_around(skb, data, frag_size);
245 
246 	return skb;
247 }
248 
249 /* build_skb() is wrapper over __build_skb(), that specifically
250  * takes care of skb->head and skb->pfmemalloc
251  * This means that if @frag_size is not zero, then @data must be backed
252  * by a page fragment, not kmalloc() or vmalloc()
253  */
254 struct sk_buff *build_skb(void *data, unsigned int frag_size)
255 {
256 	struct sk_buff *skb = __build_skb(data, frag_size);
257 
258 	if (skb && frag_size) {
259 		skb->head_frag = 1;
260 		if (page_is_pfmemalloc(virt_to_head_page(data)))
261 			skb->pfmemalloc = 1;
262 	}
263 	return skb;
264 }
265 EXPORT_SYMBOL(build_skb);
266 
267 /**
268  * build_skb_around - build a network buffer around provided skb
269  * @skb: sk_buff provide by caller, must be memset cleared
270  * @data: data buffer provided by caller
271  * @frag_size: size of data, or 0 if head was kmalloced
272  */
273 struct sk_buff *build_skb_around(struct sk_buff *skb,
274 				 void *data, unsigned int frag_size)
275 {
276 	if (unlikely(!skb))
277 		return NULL;
278 
279 	__build_skb_around(skb, data, frag_size);
280 
281 	if (frag_size) {
282 		skb->head_frag = 1;
283 		if (page_is_pfmemalloc(virt_to_head_page(data)))
284 			skb->pfmemalloc = 1;
285 	}
286 	return skb;
287 }
288 EXPORT_SYMBOL(build_skb_around);
289 
290 /**
291  * __napi_build_skb - build a network buffer
292  * @data: data buffer provided by caller
293  * @frag_size: size of data, or 0 if head was kmalloced
294  *
295  * Version of __build_skb() that uses NAPI percpu caches to obtain
296  * skbuff_head instead of inplace allocation.
297  *
298  * Returns a new &sk_buff on success, %NULL on allocation failure.
299  */
300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
301 {
302 	struct sk_buff *skb;
303 
304 	skb = napi_skb_cache_get();
305 	if (unlikely(!skb))
306 		return NULL;
307 
308 	memset(skb, 0, offsetof(struct sk_buff, tail));
309 	__build_skb_around(skb, data, frag_size);
310 
311 	return skb;
312 }
313 
314 /**
315  * napi_build_skb - build a network buffer
316  * @data: data buffer provided by caller
317  * @frag_size: size of data, or 0 if head was kmalloced
318  *
319  * Version of __napi_build_skb() that takes care of skb->head_frag
320  * and skb->pfmemalloc when the data is a page or page fragment.
321  *
322  * Returns a new &sk_buff on success, %NULL on allocation failure.
323  */
324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
325 {
326 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
327 
328 	if (likely(skb) && frag_size) {
329 		skb->head_frag = 1;
330 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
331 	}
332 
333 	return skb;
334 }
335 EXPORT_SYMBOL(napi_build_skb);
336 
337 /*
338  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
339  * the caller if emergency pfmemalloc reserves are being used. If it is and
340  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
341  * may be used. Otherwise, the packet data may be discarded until enough
342  * memory is free
343  */
344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
345 			     bool *pfmemalloc)
346 {
347 	void *obj;
348 	bool ret_pfmemalloc = false;
349 
350 	/*
351 	 * Try a regular allocation, when that fails and we're not entitled
352 	 * to the reserves, fail.
353 	 */
354 	obj = kmalloc_node_track_caller(size,
355 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
356 					node);
357 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
358 		goto out;
359 
360 	/* Try again but now we are using pfmemalloc reserves */
361 	ret_pfmemalloc = true;
362 	obj = kmalloc_node_track_caller(size, flags, node);
363 
364 out:
365 	if (pfmemalloc)
366 		*pfmemalloc = ret_pfmemalloc;
367 
368 	return obj;
369 }
370 
371 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
372  *	'private' fields and also do memory statistics to find all the
373  *	[BEEP] leaks.
374  *
375  */
376 
377 /**
378  *	__alloc_skb	-	allocate a network buffer
379  *	@size: size to allocate
380  *	@gfp_mask: allocation mask
381  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
382  *		instead of head cache and allocate a cloned (child) skb.
383  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
384  *		allocations in case the data is required for writeback
385  *	@node: numa node to allocate memory on
386  *
387  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
388  *	tail room of at least size bytes. The object has a reference count
389  *	of one. The return is the buffer. On a failure the return is %NULL.
390  *
391  *	Buffers may only be allocated from interrupts using a @gfp_mask of
392  *	%GFP_ATOMIC.
393  */
394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
395 			    int flags, int node)
396 {
397 	struct kmem_cache *cache;
398 	struct sk_buff *skb;
399 	unsigned int osize;
400 	bool pfmemalloc;
401 	u8 *data;
402 
403 	cache = (flags & SKB_ALLOC_FCLONE)
404 		? skbuff_fclone_cache : skbuff_head_cache;
405 
406 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 		gfp_mask |= __GFP_MEMALLOC;
408 
409 	/* Get the HEAD */
410 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 		skb = napi_skb_cache_get();
413 	else
414 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
415 	if (unlikely(!skb))
416 		return NULL;
417 	prefetchw(skb);
418 
419 	/* We do our best to align skb_shared_info on a separate cache
420 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 	 * Both skb->head and skb_shared_info are cache line aligned.
423 	 */
424 	size = SKB_DATA_ALIGN(size);
425 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
427 	if (unlikely(!data))
428 		goto nodata;
429 	/* kmalloc(size) might give us more room than requested.
430 	 * Put skb_shared_info exactly at the end of allocated zone,
431 	 * to allow max possible filling before reallocation.
432 	 */
433 	osize = ksize(data);
434 	size = SKB_WITH_OVERHEAD(osize);
435 	prefetchw(data + size);
436 
437 	/*
438 	 * Only clear those fields we need to clear, not those that we will
439 	 * actually initialise below. Hence, don't put any more fields after
440 	 * the tail pointer in struct sk_buff!
441 	 */
442 	memset(skb, 0, offsetof(struct sk_buff, tail));
443 	__build_skb_around(skb, data, osize);
444 	skb->pfmemalloc = pfmemalloc;
445 
446 	if (flags & SKB_ALLOC_FCLONE) {
447 		struct sk_buff_fclones *fclones;
448 
449 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
450 
451 		skb->fclone = SKB_FCLONE_ORIG;
452 		refcount_set(&fclones->fclone_ref, 1);
453 
454 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
455 	}
456 
457 	return skb;
458 
459 nodata:
460 	kmem_cache_free(cache, skb);
461 	return NULL;
462 }
463 EXPORT_SYMBOL(__alloc_skb);
464 
465 /**
466  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
467  *	@dev: network device to receive on
468  *	@len: length to allocate
469  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
470  *
471  *	Allocate a new &sk_buff and assign it a usage count of one. The
472  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
473  *	the headroom they think they need without accounting for the
474  *	built in space. The built in space is used for optimisations.
475  *
476  *	%NULL is returned if there is no free memory.
477  */
478 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
479 				   gfp_t gfp_mask)
480 {
481 	struct page_frag_cache *nc;
482 	struct sk_buff *skb;
483 	bool pfmemalloc;
484 	void *data;
485 
486 	len += NET_SKB_PAD;
487 
488 	/* If requested length is either too small or too big,
489 	 * we use kmalloc() for skb->head allocation.
490 	 */
491 	if (len <= SKB_WITH_OVERHEAD(1024) ||
492 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
493 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
494 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
495 		if (!skb)
496 			goto skb_fail;
497 		goto skb_success;
498 	}
499 
500 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
501 	len = SKB_DATA_ALIGN(len);
502 
503 	if (sk_memalloc_socks())
504 		gfp_mask |= __GFP_MEMALLOC;
505 
506 	if (in_hardirq() || irqs_disabled()) {
507 		nc = this_cpu_ptr(&netdev_alloc_cache);
508 		data = page_frag_alloc(nc, len, gfp_mask);
509 		pfmemalloc = nc->pfmemalloc;
510 	} else {
511 		local_bh_disable();
512 		nc = this_cpu_ptr(&napi_alloc_cache.page);
513 		data = page_frag_alloc(nc, len, gfp_mask);
514 		pfmemalloc = nc->pfmemalloc;
515 		local_bh_enable();
516 	}
517 
518 	if (unlikely(!data))
519 		return NULL;
520 
521 	skb = __build_skb(data, len);
522 	if (unlikely(!skb)) {
523 		skb_free_frag(data);
524 		return NULL;
525 	}
526 
527 	if (pfmemalloc)
528 		skb->pfmemalloc = 1;
529 	skb->head_frag = 1;
530 
531 skb_success:
532 	skb_reserve(skb, NET_SKB_PAD);
533 	skb->dev = dev;
534 
535 skb_fail:
536 	return skb;
537 }
538 EXPORT_SYMBOL(__netdev_alloc_skb);
539 
540 /**
541  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
542  *	@napi: napi instance this buffer was allocated for
543  *	@len: length to allocate
544  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
545  *
546  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
547  *	attempt to allocate the head from a special reserved region used
548  *	only for NAPI Rx allocation.  By doing this we can save several
549  *	CPU cycles by avoiding having to disable and re-enable IRQs.
550  *
551  *	%NULL is returned if there is no free memory.
552  */
553 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
554 				 gfp_t gfp_mask)
555 {
556 	struct napi_alloc_cache *nc;
557 	struct sk_buff *skb;
558 	void *data;
559 
560 	len += NET_SKB_PAD + NET_IP_ALIGN;
561 
562 	/* If requested length is either too small or too big,
563 	 * we use kmalloc() for skb->head allocation.
564 	 */
565 	if (len <= SKB_WITH_OVERHEAD(1024) ||
566 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
567 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
568 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
569 				  NUMA_NO_NODE);
570 		if (!skb)
571 			goto skb_fail;
572 		goto skb_success;
573 	}
574 
575 	nc = this_cpu_ptr(&napi_alloc_cache);
576 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
577 	len = SKB_DATA_ALIGN(len);
578 
579 	if (sk_memalloc_socks())
580 		gfp_mask |= __GFP_MEMALLOC;
581 
582 	data = page_frag_alloc(&nc->page, len, gfp_mask);
583 	if (unlikely(!data))
584 		return NULL;
585 
586 	skb = __napi_build_skb(data, len);
587 	if (unlikely(!skb)) {
588 		skb_free_frag(data);
589 		return NULL;
590 	}
591 
592 	if (nc->page.pfmemalloc)
593 		skb->pfmemalloc = 1;
594 	skb->head_frag = 1;
595 
596 skb_success:
597 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
598 	skb->dev = napi->dev;
599 
600 skb_fail:
601 	return skb;
602 }
603 EXPORT_SYMBOL(__napi_alloc_skb);
604 
605 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
606 		     int size, unsigned int truesize)
607 {
608 	skb_fill_page_desc(skb, i, page, off, size);
609 	skb->len += size;
610 	skb->data_len += size;
611 	skb->truesize += truesize;
612 }
613 EXPORT_SYMBOL(skb_add_rx_frag);
614 
615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
616 			  unsigned int truesize)
617 {
618 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
619 
620 	skb_frag_size_add(frag, size);
621 	skb->len += size;
622 	skb->data_len += size;
623 	skb->truesize += truesize;
624 }
625 EXPORT_SYMBOL(skb_coalesce_rx_frag);
626 
627 static void skb_drop_list(struct sk_buff **listp)
628 {
629 	kfree_skb_list(*listp);
630 	*listp = NULL;
631 }
632 
633 static inline void skb_drop_fraglist(struct sk_buff *skb)
634 {
635 	skb_drop_list(&skb_shinfo(skb)->frag_list);
636 }
637 
638 static void skb_clone_fraglist(struct sk_buff *skb)
639 {
640 	struct sk_buff *list;
641 
642 	skb_walk_frags(skb, list)
643 		skb_get(list);
644 }
645 
646 static void skb_free_head(struct sk_buff *skb)
647 {
648 	unsigned char *head = skb->head;
649 
650 	if (skb->head_frag) {
651 		if (skb_pp_recycle(skb, head))
652 			return;
653 		skb_free_frag(head);
654 	} else {
655 		kfree(head);
656 	}
657 }
658 
659 static void skb_release_data(struct sk_buff *skb)
660 {
661 	struct skb_shared_info *shinfo = skb_shinfo(skb);
662 	int i;
663 
664 	if (skb->cloned &&
665 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
666 			      &shinfo->dataref))
667 		goto exit;
668 
669 	skb_zcopy_clear(skb, true);
670 
671 	for (i = 0; i < shinfo->nr_frags; i++)
672 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
673 
674 	if (shinfo->frag_list)
675 		kfree_skb_list(shinfo->frag_list);
676 
677 	skb_free_head(skb);
678 exit:
679 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
680 	 * bit is only set on the head though, so in order to avoid races
681 	 * while trying to recycle fragments on __skb_frag_unref() we need
682 	 * to make one SKB responsible for triggering the recycle path.
683 	 * So disable the recycling bit if an SKB is cloned and we have
684 	 * additional references to to the fragmented part of the SKB.
685 	 * Eventually the last SKB will have the recycling bit set and it's
686 	 * dataref set to 0, which will trigger the recycling
687 	 */
688 	skb->pp_recycle = 0;
689 }
690 
691 /*
692  *	Free an skbuff by memory without cleaning the state.
693  */
694 static void kfree_skbmem(struct sk_buff *skb)
695 {
696 	struct sk_buff_fclones *fclones;
697 
698 	switch (skb->fclone) {
699 	case SKB_FCLONE_UNAVAILABLE:
700 		kmem_cache_free(skbuff_head_cache, skb);
701 		return;
702 
703 	case SKB_FCLONE_ORIG:
704 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
705 
706 		/* We usually free the clone (TX completion) before original skb
707 		 * This test would have no chance to be true for the clone,
708 		 * while here, branch prediction will be good.
709 		 */
710 		if (refcount_read(&fclones->fclone_ref) == 1)
711 			goto fastpath;
712 		break;
713 
714 	default: /* SKB_FCLONE_CLONE */
715 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
716 		break;
717 	}
718 	if (!refcount_dec_and_test(&fclones->fclone_ref))
719 		return;
720 fastpath:
721 	kmem_cache_free(skbuff_fclone_cache, fclones);
722 }
723 
724 void skb_release_head_state(struct sk_buff *skb)
725 {
726 	skb_dst_drop(skb);
727 	if (skb->destructor) {
728 		WARN_ON(in_hardirq());
729 		skb->destructor(skb);
730 	}
731 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
732 	nf_conntrack_put(skb_nfct(skb));
733 #endif
734 	skb_ext_put(skb);
735 }
736 
737 /* Free everything but the sk_buff shell. */
738 static void skb_release_all(struct sk_buff *skb)
739 {
740 	skb_release_head_state(skb);
741 	if (likely(skb->head))
742 		skb_release_data(skb);
743 }
744 
745 /**
746  *	__kfree_skb - private function
747  *	@skb: buffer
748  *
749  *	Free an sk_buff. Release anything attached to the buffer.
750  *	Clean the state. This is an internal helper function. Users should
751  *	always call kfree_skb
752  */
753 
754 void __kfree_skb(struct sk_buff *skb)
755 {
756 	skb_release_all(skb);
757 	kfree_skbmem(skb);
758 }
759 EXPORT_SYMBOL(__kfree_skb);
760 
761 /**
762  *	kfree_skb - free an sk_buff
763  *	@skb: buffer to free
764  *
765  *	Drop a reference to the buffer and free it if the usage count has
766  *	hit zero.
767  */
768 void kfree_skb(struct sk_buff *skb)
769 {
770 	if (!skb_unref(skb))
771 		return;
772 
773 	trace_kfree_skb(skb, __builtin_return_address(0));
774 	__kfree_skb(skb);
775 }
776 EXPORT_SYMBOL(kfree_skb);
777 
778 void kfree_skb_list(struct sk_buff *segs)
779 {
780 	while (segs) {
781 		struct sk_buff *next = segs->next;
782 
783 		kfree_skb(segs);
784 		segs = next;
785 	}
786 }
787 EXPORT_SYMBOL(kfree_skb_list);
788 
789 /* Dump skb information and contents.
790  *
791  * Must only be called from net_ratelimit()-ed paths.
792  *
793  * Dumps whole packets if full_pkt, only headers otherwise.
794  */
795 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
796 {
797 	struct skb_shared_info *sh = skb_shinfo(skb);
798 	struct net_device *dev = skb->dev;
799 	struct sock *sk = skb->sk;
800 	struct sk_buff *list_skb;
801 	bool has_mac, has_trans;
802 	int headroom, tailroom;
803 	int i, len, seg_len;
804 
805 	if (full_pkt)
806 		len = skb->len;
807 	else
808 		len = min_t(int, skb->len, MAX_HEADER + 128);
809 
810 	headroom = skb_headroom(skb);
811 	tailroom = skb_tailroom(skb);
812 
813 	has_mac = skb_mac_header_was_set(skb);
814 	has_trans = skb_transport_header_was_set(skb);
815 
816 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
817 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
818 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
819 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
820 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
821 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
822 	       has_mac ? skb->mac_header : -1,
823 	       has_mac ? skb_mac_header_len(skb) : -1,
824 	       skb->network_header,
825 	       has_trans ? skb_network_header_len(skb) : -1,
826 	       has_trans ? skb->transport_header : -1,
827 	       sh->tx_flags, sh->nr_frags,
828 	       sh->gso_size, sh->gso_type, sh->gso_segs,
829 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
830 	       skb->csum_valid, skb->csum_level,
831 	       skb->hash, skb->sw_hash, skb->l4_hash,
832 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
833 
834 	if (dev)
835 		printk("%sdev name=%s feat=%pNF\n",
836 		       level, dev->name, &dev->features);
837 	if (sk)
838 		printk("%ssk family=%hu type=%u proto=%u\n",
839 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
840 
841 	if (full_pkt && headroom)
842 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
843 			       16, 1, skb->head, headroom, false);
844 
845 	seg_len = min_t(int, skb_headlen(skb), len);
846 	if (seg_len)
847 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
848 			       16, 1, skb->data, seg_len, false);
849 	len -= seg_len;
850 
851 	if (full_pkt && tailroom)
852 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
853 			       16, 1, skb_tail_pointer(skb), tailroom, false);
854 
855 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
856 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
857 		u32 p_off, p_len, copied;
858 		struct page *p;
859 		u8 *vaddr;
860 
861 		skb_frag_foreach_page(frag, skb_frag_off(frag),
862 				      skb_frag_size(frag), p, p_off, p_len,
863 				      copied) {
864 			seg_len = min_t(int, p_len, len);
865 			vaddr = kmap_atomic(p);
866 			print_hex_dump(level, "skb frag:     ",
867 				       DUMP_PREFIX_OFFSET,
868 				       16, 1, vaddr + p_off, seg_len, false);
869 			kunmap_atomic(vaddr);
870 			len -= seg_len;
871 			if (!len)
872 				break;
873 		}
874 	}
875 
876 	if (full_pkt && skb_has_frag_list(skb)) {
877 		printk("skb fraglist:\n");
878 		skb_walk_frags(skb, list_skb)
879 			skb_dump(level, list_skb, true);
880 	}
881 }
882 EXPORT_SYMBOL(skb_dump);
883 
884 /**
885  *	skb_tx_error - report an sk_buff xmit error
886  *	@skb: buffer that triggered an error
887  *
888  *	Report xmit error if a device callback is tracking this skb.
889  *	skb must be freed afterwards.
890  */
891 void skb_tx_error(struct sk_buff *skb)
892 {
893 	skb_zcopy_clear(skb, true);
894 }
895 EXPORT_SYMBOL(skb_tx_error);
896 
897 #ifdef CONFIG_TRACEPOINTS
898 /**
899  *	consume_skb - free an skbuff
900  *	@skb: buffer to free
901  *
902  *	Drop a ref to the buffer and free it if the usage count has hit zero
903  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
904  *	is being dropped after a failure and notes that
905  */
906 void consume_skb(struct sk_buff *skb)
907 {
908 	if (!skb_unref(skb))
909 		return;
910 
911 	trace_consume_skb(skb);
912 	__kfree_skb(skb);
913 }
914 EXPORT_SYMBOL(consume_skb);
915 #endif
916 
917 /**
918  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
919  *	@skb: buffer to free
920  *
921  *	Alike consume_skb(), but this variant assumes that this is the last
922  *	skb reference and all the head states have been already dropped
923  */
924 void __consume_stateless_skb(struct sk_buff *skb)
925 {
926 	trace_consume_skb(skb);
927 	skb_release_data(skb);
928 	kfree_skbmem(skb);
929 }
930 
931 static void napi_skb_cache_put(struct sk_buff *skb)
932 {
933 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
934 	u32 i;
935 
936 	kasan_poison_object_data(skbuff_head_cache, skb);
937 	nc->skb_cache[nc->skb_count++] = skb;
938 
939 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
940 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
941 			kasan_unpoison_object_data(skbuff_head_cache,
942 						   nc->skb_cache[i]);
943 
944 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
945 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
946 		nc->skb_count = NAPI_SKB_CACHE_HALF;
947 	}
948 }
949 
950 void __kfree_skb_defer(struct sk_buff *skb)
951 {
952 	skb_release_all(skb);
953 	napi_skb_cache_put(skb);
954 }
955 
956 void napi_skb_free_stolen_head(struct sk_buff *skb)
957 {
958 	if (unlikely(skb->slow_gro)) {
959 		nf_reset_ct(skb);
960 		skb_dst_drop(skb);
961 		skb_ext_put(skb);
962 		skb_orphan(skb);
963 		skb->slow_gro = 0;
964 	}
965 	napi_skb_cache_put(skb);
966 }
967 
968 void napi_consume_skb(struct sk_buff *skb, int budget)
969 {
970 	/* Zero budget indicate non-NAPI context called us, like netpoll */
971 	if (unlikely(!budget)) {
972 		dev_consume_skb_any(skb);
973 		return;
974 	}
975 
976 	lockdep_assert_in_softirq();
977 
978 	if (!skb_unref(skb))
979 		return;
980 
981 	/* if reaching here SKB is ready to free */
982 	trace_consume_skb(skb);
983 
984 	/* if SKB is a clone, don't handle this case */
985 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
986 		__kfree_skb(skb);
987 		return;
988 	}
989 
990 	skb_release_all(skb);
991 	napi_skb_cache_put(skb);
992 }
993 EXPORT_SYMBOL(napi_consume_skb);
994 
995 /* Make sure a field is contained by headers group */
996 #define CHECK_SKB_FIELD(field) \
997 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
998 		     offsetof(struct sk_buff, headers.field));	\
999 
1000 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1001 {
1002 	new->tstamp		= old->tstamp;
1003 	/* We do not copy old->sk */
1004 	new->dev		= old->dev;
1005 	memcpy(new->cb, old->cb, sizeof(old->cb));
1006 	skb_dst_copy(new, old);
1007 	__skb_ext_copy(new, old);
1008 	__nf_copy(new, old, false);
1009 
1010 	/* Note : this field could be in the headers group.
1011 	 * It is not yet because we do not want to have a 16 bit hole
1012 	 */
1013 	new->queue_mapping = old->queue_mapping;
1014 
1015 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1016 	CHECK_SKB_FIELD(protocol);
1017 	CHECK_SKB_FIELD(csum);
1018 	CHECK_SKB_FIELD(hash);
1019 	CHECK_SKB_FIELD(priority);
1020 	CHECK_SKB_FIELD(skb_iif);
1021 	CHECK_SKB_FIELD(vlan_proto);
1022 	CHECK_SKB_FIELD(vlan_tci);
1023 	CHECK_SKB_FIELD(transport_header);
1024 	CHECK_SKB_FIELD(network_header);
1025 	CHECK_SKB_FIELD(mac_header);
1026 	CHECK_SKB_FIELD(inner_protocol);
1027 	CHECK_SKB_FIELD(inner_transport_header);
1028 	CHECK_SKB_FIELD(inner_network_header);
1029 	CHECK_SKB_FIELD(inner_mac_header);
1030 	CHECK_SKB_FIELD(mark);
1031 #ifdef CONFIG_NETWORK_SECMARK
1032 	CHECK_SKB_FIELD(secmark);
1033 #endif
1034 #ifdef CONFIG_NET_RX_BUSY_POLL
1035 	CHECK_SKB_FIELD(napi_id);
1036 #endif
1037 #ifdef CONFIG_XPS
1038 	CHECK_SKB_FIELD(sender_cpu);
1039 #endif
1040 #ifdef CONFIG_NET_SCHED
1041 	CHECK_SKB_FIELD(tc_index);
1042 #endif
1043 
1044 }
1045 
1046 /*
1047  * You should not add any new code to this function.  Add it to
1048  * __copy_skb_header above instead.
1049  */
1050 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1051 {
1052 #define C(x) n->x = skb->x
1053 
1054 	n->next = n->prev = NULL;
1055 	n->sk = NULL;
1056 	__copy_skb_header(n, skb);
1057 
1058 	C(len);
1059 	C(data_len);
1060 	C(mac_len);
1061 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1062 	n->cloned = 1;
1063 	n->nohdr = 0;
1064 	n->peeked = 0;
1065 	C(pfmemalloc);
1066 	C(pp_recycle);
1067 	n->destructor = NULL;
1068 	C(tail);
1069 	C(end);
1070 	C(head);
1071 	C(head_frag);
1072 	C(data);
1073 	C(truesize);
1074 	refcount_set(&n->users, 1);
1075 
1076 	atomic_inc(&(skb_shinfo(skb)->dataref));
1077 	skb->cloned = 1;
1078 
1079 	return n;
1080 #undef C
1081 }
1082 
1083 /**
1084  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1085  * @first: first sk_buff of the msg
1086  */
1087 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1088 {
1089 	struct sk_buff *n;
1090 
1091 	n = alloc_skb(0, GFP_ATOMIC);
1092 	if (!n)
1093 		return NULL;
1094 
1095 	n->len = first->len;
1096 	n->data_len = first->len;
1097 	n->truesize = first->truesize;
1098 
1099 	skb_shinfo(n)->frag_list = first;
1100 
1101 	__copy_skb_header(n, first);
1102 	n->destructor = NULL;
1103 
1104 	return n;
1105 }
1106 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1107 
1108 /**
1109  *	skb_morph	-	morph one skb into another
1110  *	@dst: the skb to receive the contents
1111  *	@src: the skb to supply the contents
1112  *
1113  *	This is identical to skb_clone except that the target skb is
1114  *	supplied by the user.
1115  *
1116  *	The target skb is returned upon exit.
1117  */
1118 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1119 {
1120 	skb_release_all(dst);
1121 	return __skb_clone(dst, src);
1122 }
1123 EXPORT_SYMBOL_GPL(skb_morph);
1124 
1125 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1126 {
1127 	unsigned long max_pg, num_pg, new_pg, old_pg;
1128 	struct user_struct *user;
1129 
1130 	if (capable(CAP_IPC_LOCK) || !size)
1131 		return 0;
1132 
1133 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1134 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1135 	user = mmp->user ? : current_user();
1136 
1137 	do {
1138 		old_pg = atomic_long_read(&user->locked_vm);
1139 		new_pg = old_pg + num_pg;
1140 		if (new_pg > max_pg)
1141 			return -ENOBUFS;
1142 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1143 		 old_pg);
1144 
1145 	if (!mmp->user) {
1146 		mmp->user = get_uid(user);
1147 		mmp->num_pg = num_pg;
1148 	} else {
1149 		mmp->num_pg += num_pg;
1150 	}
1151 
1152 	return 0;
1153 }
1154 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1155 
1156 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1157 {
1158 	if (mmp->user) {
1159 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1160 		free_uid(mmp->user);
1161 	}
1162 }
1163 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1164 
1165 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1166 {
1167 	struct ubuf_info *uarg;
1168 	struct sk_buff *skb;
1169 
1170 	WARN_ON_ONCE(!in_task());
1171 
1172 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1173 	if (!skb)
1174 		return NULL;
1175 
1176 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1177 	uarg = (void *)skb->cb;
1178 	uarg->mmp.user = NULL;
1179 
1180 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1181 		kfree_skb(skb);
1182 		return NULL;
1183 	}
1184 
1185 	uarg->callback = msg_zerocopy_callback;
1186 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1187 	uarg->len = 1;
1188 	uarg->bytelen = size;
1189 	uarg->zerocopy = 1;
1190 	uarg->flags = SKBFL_ZEROCOPY_FRAG;
1191 	refcount_set(&uarg->refcnt, 1);
1192 	sock_hold(sk);
1193 
1194 	return uarg;
1195 }
1196 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1197 
1198 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1199 {
1200 	return container_of((void *)uarg, struct sk_buff, cb);
1201 }
1202 
1203 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1204 				       struct ubuf_info *uarg)
1205 {
1206 	if (uarg) {
1207 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1208 		u32 bytelen, next;
1209 
1210 		/* realloc only when socket is locked (TCP, UDP cork),
1211 		 * so uarg->len and sk_zckey access is serialized
1212 		 */
1213 		if (!sock_owned_by_user(sk)) {
1214 			WARN_ON_ONCE(1);
1215 			return NULL;
1216 		}
1217 
1218 		bytelen = uarg->bytelen + size;
1219 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1220 			/* TCP can create new skb to attach new uarg */
1221 			if (sk->sk_type == SOCK_STREAM)
1222 				goto new_alloc;
1223 			return NULL;
1224 		}
1225 
1226 		next = (u32)atomic_read(&sk->sk_zckey);
1227 		if ((u32)(uarg->id + uarg->len) == next) {
1228 			if (mm_account_pinned_pages(&uarg->mmp, size))
1229 				return NULL;
1230 			uarg->len++;
1231 			uarg->bytelen = bytelen;
1232 			atomic_set(&sk->sk_zckey, ++next);
1233 
1234 			/* no extra ref when appending to datagram (MSG_MORE) */
1235 			if (sk->sk_type == SOCK_STREAM)
1236 				net_zcopy_get(uarg);
1237 
1238 			return uarg;
1239 		}
1240 	}
1241 
1242 new_alloc:
1243 	return msg_zerocopy_alloc(sk, size);
1244 }
1245 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1246 
1247 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1248 {
1249 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1250 	u32 old_lo, old_hi;
1251 	u64 sum_len;
1252 
1253 	old_lo = serr->ee.ee_info;
1254 	old_hi = serr->ee.ee_data;
1255 	sum_len = old_hi - old_lo + 1ULL + len;
1256 
1257 	if (sum_len >= (1ULL << 32))
1258 		return false;
1259 
1260 	if (lo != old_hi + 1)
1261 		return false;
1262 
1263 	serr->ee.ee_data += len;
1264 	return true;
1265 }
1266 
1267 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1268 {
1269 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1270 	struct sock_exterr_skb *serr;
1271 	struct sock *sk = skb->sk;
1272 	struct sk_buff_head *q;
1273 	unsigned long flags;
1274 	bool is_zerocopy;
1275 	u32 lo, hi;
1276 	u16 len;
1277 
1278 	mm_unaccount_pinned_pages(&uarg->mmp);
1279 
1280 	/* if !len, there was only 1 call, and it was aborted
1281 	 * so do not queue a completion notification
1282 	 */
1283 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1284 		goto release;
1285 
1286 	len = uarg->len;
1287 	lo = uarg->id;
1288 	hi = uarg->id + len - 1;
1289 	is_zerocopy = uarg->zerocopy;
1290 
1291 	serr = SKB_EXT_ERR(skb);
1292 	memset(serr, 0, sizeof(*serr));
1293 	serr->ee.ee_errno = 0;
1294 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1295 	serr->ee.ee_data = hi;
1296 	serr->ee.ee_info = lo;
1297 	if (!is_zerocopy)
1298 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1299 
1300 	q = &sk->sk_error_queue;
1301 	spin_lock_irqsave(&q->lock, flags);
1302 	tail = skb_peek_tail(q);
1303 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1304 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1305 		__skb_queue_tail(q, skb);
1306 		skb = NULL;
1307 	}
1308 	spin_unlock_irqrestore(&q->lock, flags);
1309 
1310 	sk_error_report(sk);
1311 
1312 release:
1313 	consume_skb(skb);
1314 	sock_put(sk);
1315 }
1316 
1317 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1318 			   bool success)
1319 {
1320 	uarg->zerocopy = uarg->zerocopy & success;
1321 
1322 	if (refcount_dec_and_test(&uarg->refcnt))
1323 		__msg_zerocopy_callback(uarg);
1324 }
1325 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1326 
1327 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1328 {
1329 	struct sock *sk = skb_from_uarg(uarg)->sk;
1330 
1331 	atomic_dec(&sk->sk_zckey);
1332 	uarg->len--;
1333 
1334 	if (have_uref)
1335 		msg_zerocopy_callback(NULL, uarg, true);
1336 }
1337 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1338 
1339 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1340 {
1341 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1342 }
1343 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1344 
1345 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1346 			     struct msghdr *msg, int len,
1347 			     struct ubuf_info *uarg)
1348 {
1349 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1350 	struct iov_iter orig_iter = msg->msg_iter;
1351 	int err, orig_len = skb->len;
1352 
1353 	/* An skb can only point to one uarg. This edge case happens when
1354 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1355 	 */
1356 	if (orig_uarg && uarg != orig_uarg)
1357 		return -EEXIST;
1358 
1359 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1360 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1361 		struct sock *save_sk = skb->sk;
1362 
1363 		/* Streams do not free skb on error. Reset to prev state. */
1364 		msg->msg_iter = orig_iter;
1365 		skb->sk = sk;
1366 		___pskb_trim(skb, orig_len);
1367 		skb->sk = save_sk;
1368 		return err;
1369 	}
1370 
1371 	skb_zcopy_set(skb, uarg, NULL);
1372 	return skb->len - orig_len;
1373 }
1374 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1375 
1376 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1377 			      gfp_t gfp_mask)
1378 {
1379 	if (skb_zcopy(orig)) {
1380 		if (skb_zcopy(nskb)) {
1381 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1382 			if (!gfp_mask) {
1383 				WARN_ON_ONCE(1);
1384 				return -ENOMEM;
1385 			}
1386 			if (skb_uarg(nskb) == skb_uarg(orig))
1387 				return 0;
1388 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1389 				return -EIO;
1390 		}
1391 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1392 	}
1393 	return 0;
1394 }
1395 
1396 /**
1397  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1398  *	@skb: the skb to modify
1399  *	@gfp_mask: allocation priority
1400  *
1401  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1402  *	It will copy all frags into kernel and drop the reference
1403  *	to userspace pages.
1404  *
1405  *	If this function is called from an interrupt gfp_mask() must be
1406  *	%GFP_ATOMIC.
1407  *
1408  *	Returns 0 on success or a negative error code on failure
1409  *	to allocate kernel memory to copy to.
1410  */
1411 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1412 {
1413 	int num_frags = skb_shinfo(skb)->nr_frags;
1414 	struct page *page, *head = NULL;
1415 	int i, new_frags;
1416 	u32 d_off;
1417 
1418 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1419 		return -EINVAL;
1420 
1421 	if (!num_frags)
1422 		goto release;
1423 
1424 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1425 	for (i = 0; i < new_frags; i++) {
1426 		page = alloc_page(gfp_mask);
1427 		if (!page) {
1428 			while (head) {
1429 				struct page *next = (struct page *)page_private(head);
1430 				put_page(head);
1431 				head = next;
1432 			}
1433 			return -ENOMEM;
1434 		}
1435 		set_page_private(page, (unsigned long)head);
1436 		head = page;
1437 	}
1438 
1439 	page = head;
1440 	d_off = 0;
1441 	for (i = 0; i < num_frags; i++) {
1442 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1443 		u32 p_off, p_len, copied;
1444 		struct page *p;
1445 		u8 *vaddr;
1446 
1447 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1448 				      p, p_off, p_len, copied) {
1449 			u32 copy, done = 0;
1450 			vaddr = kmap_atomic(p);
1451 
1452 			while (done < p_len) {
1453 				if (d_off == PAGE_SIZE) {
1454 					d_off = 0;
1455 					page = (struct page *)page_private(page);
1456 				}
1457 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1458 				memcpy(page_address(page) + d_off,
1459 				       vaddr + p_off + done, copy);
1460 				done += copy;
1461 				d_off += copy;
1462 			}
1463 			kunmap_atomic(vaddr);
1464 		}
1465 	}
1466 
1467 	/* skb frags release userspace buffers */
1468 	for (i = 0; i < num_frags; i++)
1469 		skb_frag_unref(skb, i);
1470 
1471 	/* skb frags point to kernel buffers */
1472 	for (i = 0; i < new_frags - 1; i++) {
1473 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1474 		head = (struct page *)page_private(head);
1475 	}
1476 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1477 	skb_shinfo(skb)->nr_frags = new_frags;
1478 
1479 release:
1480 	skb_zcopy_clear(skb, false);
1481 	return 0;
1482 }
1483 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1484 
1485 /**
1486  *	skb_clone	-	duplicate an sk_buff
1487  *	@skb: buffer to clone
1488  *	@gfp_mask: allocation priority
1489  *
1490  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1491  *	copies share the same packet data but not structure. The new
1492  *	buffer has a reference count of 1. If the allocation fails the
1493  *	function returns %NULL otherwise the new buffer is returned.
1494  *
1495  *	If this function is called from an interrupt gfp_mask() must be
1496  *	%GFP_ATOMIC.
1497  */
1498 
1499 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1500 {
1501 	struct sk_buff_fclones *fclones = container_of(skb,
1502 						       struct sk_buff_fclones,
1503 						       skb1);
1504 	struct sk_buff *n;
1505 
1506 	if (skb_orphan_frags(skb, gfp_mask))
1507 		return NULL;
1508 
1509 	if (skb->fclone == SKB_FCLONE_ORIG &&
1510 	    refcount_read(&fclones->fclone_ref) == 1) {
1511 		n = &fclones->skb2;
1512 		refcount_set(&fclones->fclone_ref, 2);
1513 	} else {
1514 		if (skb_pfmemalloc(skb))
1515 			gfp_mask |= __GFP_MEMALLOC;
1516 
1517 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1518 		if (!n)
1519 			return NULL;
1520 
1521 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1522 	}
1523 
1524 	return __skb_clone(n, skb);
1525 }
1526 EXPORT_SYMBOL(skb_clone);
1527 
1528 void skb_headers_offset_update(struct sk_buff *skb, int off)
1529 {
1530 	/* Only adjust this if it actually is csum_start rather than csum */
1531 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1532 		skb->csum_start += off;
1533 	/* {transport,network,mac}_header and tail are relative to skb->head */
1534 	skb->transport_header += off;
1535 	skb->network_header   += off;
1536 	if (skb_mac_header_was_set(skb))
1537 		skb->mac_header += off;
1538 	skb->inner_transport_header += off;
1539 	skb->inner_network_header += off;
1540 	skb->inner_mac_header += off;
1541 }
1542 EXPORT_SYMBOL(skb_headers_offset_update);
1543 
1544 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1545 {
1546 	__copy_skb_header(new, old);
1547 
1548 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1549 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1550 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1551 }
1552 EXPORT_SYMBOL(skb_copy_header);
1553 
1554 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1555 {
1556 	if (skb_pfmemalloc(skb))
1557 		return SKB_ALLOC_RX;
1558 	return 0;
1559 }
1560 
1561 /**
1562  *	skb_copy	-	create private copy of an sk_buff
1563  *	@skb: buffer to copy
1564  *	@gfp_mask: allocation priority
1565  *
1566  *	Make a copy of both an &sk_buff and its data. This is used when the
1567  *	caller wishes to modify the data and needs a private copy of the
1568  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1569  *	on success. The returned buffer has a reference count of 1.
1570  *
1571  *	As by-product this function converts non-linear &sk_buff to linear
1572  *	one, so that &sk_buff becomes completely private and caller is allowed
1573  *	to modify all the data of returned buffer. This means that this
1574  *	function is not recommended for use in circumstances when only
1575  *	header is going to be modified. Use pskb_copy() instead.
1576  */
1577 
1578 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1579 {
1580 	int headerlen = skb_headroom(skb);
1581 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1582 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1583 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1584 
1585 	if (!n)
1586 		return NULL;
1587 
1588 	/* Set the data pointer */
1589 	skb_reserve(n, headerlen);
1590 	/* Set the tail pointer and length */
1591 	skb_put(n, skb->len);
1592 
1593 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1594 
1595 	skb_copy_header(n, skb);
1596 	return n;
1597 }
1598 EXPORT_SYMBOL(skb_copy);
1599 
1600 /**
1601  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1602  *	@skb: buffer to copy
1603  *	@headroom: headroom of new skb
1604  *	@gfp_mask: allocation priority
1605  *	@fclone: if true allocate the copy of the skb from the fclone
1606  *	cache instead of the head cache; it is recommended to set this
1607  *	to true for the cases where the copy will likely be cloned
1608  *
1609  *	Make a copy of both an &sk_buff and part of its data, located
1610  *	in header. Fragmented data remain shared. This is used when
1611  *	the caller wishes to modify only header of &sk_buff and needs
1612  *	private copy of the header to alter. Returns %NULL on failure
1613  *	or the pointer to the buffer on success.
1614  *	The returned buffer has a reference count of 1.
1615  */
1616 
1617 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1618 				   gfp_t gfp_mask, bool fclone)
1619 {
1620 	unsigned int size = skb_headlen(skb) + headroom;
1621 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1622 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1623 
1624 	if (!n)
1625 		goto out;
1626 
1627 	/* Set the data pointer */
1628 	skb_reserve(n, headroom);
1629 	/* Set the tail pointer and length */
1630 	skb_put(n, skb_headlen(skb));
1631 	/* Copy the bytes */
1632 	skb_copy_from_linear_data(skb, n->data, n->len);
1633 
1634 	n->truesize += skb->data_len;
1635 	n->data_len  = skb->data_len;
1636 	n->len	     = skb->len;
1637 
1638 	if (skb_shinfo(skb)->nr_frags) {
1639 		int i;
1640 
1641 		if (skb_orphan_frags(skb, gfp_mask) ||
1642 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1643 			kfree_skb(n);
1644 			n = NULL;
1645 			goto out;
1646 		}
1647 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1648 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1649 			skb_frag_ref(skb, i);
1650 		}
1651 		skb_shinfo(n)->nr_frags = i;
1652 	}
1653 
1654 	if (skb_has_frag_list(skb)) {
1655 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1656 		skb_clone_fraglist(n);
1657 	}
1658 
1659 	skb_copy_header(n, skb);
1660 out:
1661 	return n;
1662 }
1663 EXPORT_SYMBOL(__pskb_copy_fclone);
1664 
1665 /**
1666  *	pskb_expand_head - reallocate header of &sk_buff
1667  *	@skb: buffer to reallocate
1668  *	@nhead: room to add at head
1669  *	@ntail: room to add at tail
1670  *	@gfp_mask: allocation priority
1671  *
1672  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1673  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1674  *	reference count of 1. Returns zero in the case of success or error,
1675  *	if expansion failed. In the last case, &sk_buff is not changed.
1676  *
1677  *	All the pointers pointing into skb header may change and must be
1678  *	reloaded after call to this function.
1679  */
1680 
1681 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1682 		     gfp_t gfp_mask)
1683 {
1684 	int i, osize = skb_end_offset(skb);
1685 	int size = osize + nhead + ntail;
1686 	long off;
1687 	u8 *data;
1688 
1689 	BUG_ON(nhead < 0);
1690 
1691 	BUG_ON(skb_shared(skb));
1692 
1693 	size = SKB_DATA_ALIGN(size);
1694 
1695 	if (skb_pfmemalloc(skb))
1696 		gfp_mask |= __GFP_MEMALLOC;
1697 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1698 			       gfp_mask, NUMA_NO_NODE, NULL);
1699 	if (!data)
1700 		goto nodata;
1701 	size = SKB_WITH_OVERHEAD(ksize(data));
1702 
1703 	/* Copy only real data... and, alas, header. This should be
1704 	 * optimized for the cases when header is void.
1705 	 */
1706 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1707 
1708 	memcpy((struct skb_shared_info *)(data + size),
1709 	       skb_shinfo(skb),
1710 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1711 
1712 	/*
1713 	 * if shinfo is shared we must drop the old head gracefully, but if it
1714 	 * is not we can just drop the old head and let the existing refcount
1715 	 * be since all we did is relocate the values
1716 	 */
1717 	if (skb_cloned(skb)) {
1718 		if (skb_orphan_frags(skb, gfp_mask))
1719 			goto nofrags;
1720 		if (skb_zcopy(skb))
1721 			refcount_inc(&skb_uarg(skb)->refcnt);
1722 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1723 			skb_frag_ref(skb, i);
1724 
1725 		if (skb_has_frag_list(skb))
1726 			skb_clone_fraglist(skb);
1727 
1728 		skb_release_data(skb);
1729 	} else {
1730 		skb_free_head(skb);
1731 	}
1732 	off = (data + nhead) - skb->head;
1733 
1734 	skb->head     = data;
1735 	skb->head_frag = 0;
1736 	skb->data    += off;
1737 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1738 	skb->end      = size;
1739 	off           = nhead;
1740 #else
1741 	skb->end      = skb->head + size;
1742 #endif
1743 	skb->tail	      += off;
1744 	skb_headers_offset_update(skb, nhead);
1745 	skb->cloned   = 0;
1746 	skb->hdr_len  = 0;
1747 	skb->nohdr    = 0;
1748 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1749 
1750 	skb_metadata_clear(skb);
1751 
1752 	/* It is not generally safe to change skb->truesize.
1753 	 * For the moment, we really care of rx path, or
1754 	 * when skb is orphaned (not attached to a socket).
1755 	 */
1756 	if (!skb->sk || skb->destructor == sock_edemux)
1757 		skb->truesize += size - osize;
1758 
1759 	return 0;
1760 
1761 nofrags:
1762 	kfree(data);
1763 nodata:
1764 	return -ENOMEM;
1765 }
1766 EXPORT_SYMBOL(pskb_expand_head);
1767 
1768 /* Make private copy of skb with writable head and some headroom */
1769 
1770 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1771 {
1772 	struct sk_buff *skb2;
1773 	int delta = headroom - skb_headroom(skb);
1774 
1775 	if (delta <= 0)
1776 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1777 	else {
1778 		skb2 = skb_clone(skb, GFP_ATOMIC);
1779 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1780 					     GFP_ATOMIC)) {
1781 			kfree_skb(skb2);
1782 			skb2 = NULL;
1783 		}
1784 	}
1785 	return skb2;
1786 }
1787 EXPORT_SYMBOL(skb_realloc_headroom);
1788 
1789 /**
1790  *	skb_expand_head - reallocate header of &sk_buff
1791  *	@skb: buffer to reallocate
1792  *	@headroom: needed headroom
1793  *
1794  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
1795  *	if possible; copies skb->sk to new skb as needed
1796  *	and frees original skb in case of failures.
1797  *
1798  *	It expect increased headroom and generates warning otherwise.
1799  */
1800 
1801 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1802 {
1803 	int delta = headroom - skb_headroom(skb);
1804 	int osize = skb_end_offset(skb);
1805 	struct sock *sk = skb->sk;
1806 
1807 	if (WARN_ONCE(delta <= 0,
1808 		      "%s is expecting an increase in the headroom", __func__))
1809 		return skb;
1810 
1811 	delta = SKB_DATA_ALIGN(delta);
1812 	/* pskb_expand_head() might crash, if skb is shared. */
1813 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
1814 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1815 
1816 		if (unlikely(!nskb))
1817 			goto fail;
1818 
1819 		if (sk)
1820 			skb_set_owner_w(nskb, sk);
1821 		consume_skb(skb);
1822 		skb = nskb;
1823 	}
1824 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1825 		goto fail;
1826 
1827 	if (sk && is_skb_wmem(skb)) {
1828 		delta = skb_end_offset(skb) - osize;
1829 		refcount_add(delta, &sk->sk_wmem_alloc);
1830 		skb->truesize += delta;
1831 	}
1832 	return skb;
1833 
1834 fail:
1835 	kfree_skb(skb);
1836 	return NULL;
1837 }
1838 EXPORT_SYMBOL(skb_expand_head);
1839 
1840 /**
1841  *	skb_copy_expand	-	copy and expand sk_buff
1842  *	@skb: buffer to copy
1843  *	@newheadroom: new free bytes at head
1844  *	@newtailroom: new free bytes at tail
1845  *	@gfp_mask: allocation priority
1846  *
1847  *	Make a copy of both an &sk_buff and its data and while doing so
1848  *	allocate additional space.
1849  *
1850  *	This is used when the caller wishes to modify the data and needs a
1851  *	private copy of the data to alter as well as more space for new fields.
1852  *	Returns %NULL on failure or the pointer to the buffer
1853  *	on success. The returned buffer has a reference count of 1.
1854  *
1855  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1856  *	is called from an interrupt.
1857  */
1858 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1859 				int newheadroom, int newtailroom,
1860 				gfp_t gfp_mask)
1861 {
1862 	/*
1863 	 *	Allocate the copy buffer
1864 	 */
1865 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1866 					gfp_mask, skb_alloc_rx_flag(skb),
1867 					NUMA_NO_NODE);
1868 	int oldheadroom = skb_headroom(skb);
1869 	int head_copy_len, head_copy_off;
1870 
1871 	if (!n)
1872 		return NULL;
1873 
1874 	skb_reserve(n, newheadroom);
1875 
1876 	/* Set the tail pointer and length */
1877 	skb_put(n, skb->len);
1878 
1879 	head_copy_len = oldheadroom;
1880 	head_copy_off = 0;
1881 	if (newheadroom <= head_copy_len)
1882 		head_copy_len = newheadroom;
1883 	else
1884 		head_copy_off = newheadroom - head_copy_len;
1885 
1886 	/* Copy the linear header and data. */
1887 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1888 			     skb->len + head_copy_len));
1889 
1890 	skb_copy_header(n, skb);
1891 
1892 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1893 
1894 	return n;
1895 }
1896 EXPORT_SYMBOL(skb_copy_expand);
1897 
1898 /**
1899  *	__skb_pad		-	zero pad the tail of an skb
1900  *	@skb: buffer to pad
1901  *	@pad: space to pad
1902  *	@free_on_error: free buffer on error
1903  *
1904  *	Ensure that a buffer is followed by a padding area that is zero
1905  *	filled. Used by network drivers which may DMA or transfer data
1906  *	beyond the buffer end onto the wire.
1907  *
1908  *	May return error in out of memory cases. The skb is freed on error
1909  *	if @free_on_error is true.
1910  */
1911 
1912 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1913 {
1914 	int err;
1915 	int ntail;
1916 
1917 	/* If the skbuff is non linear tailroom is always zero.. */
1918 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1919 		memset(skb->data+skb->len, 0, pad);
1920 		return 0;
1921 	}
1922 
1923 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1924 	if (likely(skb_cloned(skb) || ntail > 0)) {
1925 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1926 		if (unlikely(err))
1927 			goto free_skb;
1928 	}
1929 
1930 	/* FIXME: The use of this function with non-linear skb's really needs
1931 	 * to be audited.
1932 	 */
1933 	err = skb_linearize(skb);
1934 	if (unlikely(err))
1935 		goto free_skb;
1936 
1937 	memset(skb->data + skb->len, 0, pad);
1938 	return 0;
1939 
1940 free_skb:
1941 	if (free_on_error)
1942 		kfree_skb(skb);
1943 	return err;
1944 }
1945 EXPORT_SYMBOL(__skb_pad);
1946 
1947 /**
1948  *	pskb_put - add data to the tail of a potentially fragmented buffer
1949  *	@skb: start of the buffer to use
1950  *	@tail: tail fragment of the buffer to use
1951  *	@len: amount of data to add
1952  *
1953  *	This function extends the used data area of the potentially
1954  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1955  *	@skb itself. If this would exceed the total buffer size the kernel
1956  *	will panic. A pointer to the first byte of the extra data is
1957  *	returned.
1958  */
1959 
1960 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1961 {
1962 	if (tail != skb) {
1963 		skb->data_len += len;
1964 		skb->len += len;
1965 	}
1966 	return skb_put(tail, len);
1967 }
1968 EXPORT_SYMBOL_GPL(pskb_put);
1969 
1970 /**
1971  *	skb_put - add data to a buffer
1972  *	@skb: buffer to use
1973  *	@len: amount of data to add
1974  *
1975  *	This function extends the used data area of the buffer. If this would
1976  *	exceed the total buffer size the kernel will panic. A pointer to the
1977  *	first byte of the extra data is returned.
1978  */
1979 void *skb_put(struct sk_buff *skb, unsigned int len)
1980 {
1981 	void *tmp = skb_tail_pointer(skb);
1982 	SKB_LINEAR_ASSERT(skb);
1983 	skb->tail += len;
1984 	skb->len  += len;
1985 	if (unlikely(skb->tail > skb->end))
1986 		skb_over_panic(skb, len, __builtin_return_address(0));
1987 	return tmp;
1988 }
1989 EXPORT_SYMBOL(skb_put);
1990 
1991 /**
1992  *	skb_push - add data to the start of a buffer
1993  *	@skb: buffer to use
1994  *	@len: amount of data to add
1995  *
1996  *	This function extends the used data area of the buffer at the buffer
1997  *	start. If this would exceed the total buffer headroom the kernel will
1998  *	panic. A pointer to the first byte of the extra data is returned.
1999  */
2000 void *skb_push(struct sk_buff *skb, unsigned int len)
2001 {
2002 	skb->data -= len;
2003 	skb->len  += len;
2004 	if (unlikely(skb->data < skb->head))
2005 		skb_under_panic(skb, len, __builtin_return_address(0));
2006 	return skb->data;
2007 }
2008 EXPORT_SYMBOL(skb_push);
2009 
2010 /**
2011  *	skb_pull - remove data from the start of a buffer
2012  *	@skb: buffer to use
2013  *	@len: amount of data to remove
2014  *
2015  *	This function removes data from the start of a buffer, returning
2016  *	the memory to the headroom. A pointer to the next data in the buffer
2017  *	is returned. Once the data has been pulled future pushes will overwrite
2018  *	the old data.
2019  */
2020 void *skb_pull(struct sk_buff *skb, unsigned int len)
2021 {
2022 	return skb_pull_inline(skb, len);
2023 }
2024 EXPORT_SYMBOL(skb_pull);
2025 
2026 /**
2027  *	skb_pull_data - remove data from the start of a buffer returning its
2028  *	original position.
2029  *	@skb: buffer to use
2030  *	@len: amount of data to remove
2031  *
2032  *	This function removes data from the start of a buffer, returning
2033  *	the memory to the headroom. A pointer to the original data in the buffer
2034  *	is returned after checking if there is enough data to pull. Once the
2035  *	data has been pulled future pushes will overwrite the old data.
2036  */
2037 void *skb_pull_data(struct sk_buff *skb, size_t len)
2038 {
2039 	void *data = skb->data;
2040 
2041 	if (skb->len < len)
2042 		return NULL;
2043 
2044 	skb_pull(skb, len);
2045 
2046 	return data;
2047 }
2048 EXPORT_SYMBOL(skb_pull_data);
2049 
2050 /**
2051  *	skb_trim - remove end from a buffer
2052  *	@skb: buffer to alter
2053  *	@len: new length
2054  *
2055  *	Cut the length of a buffer down by removing data from the tail. If
2056  *	the buffer is already under the length specified it is not modified.
2057  *	The skb must be linear.
2058  */
2059 void skb_trim(struct sk_buff *skb, unsigned int len)
2060 {
2061 	if (skb->len > len)
2062 		__skb_trim(skb, len);
2063 }
2064 EXPORT_SYMBOL(skb_trim);
2065 
2066 /* Trims skb to length len. It can change skb pointers.
2067  */
2068 
2069 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2070 {
2071 	struct sk_buff **fragp;
2072 	struct sk_buff *frag;
2073 	int offset = skb_headlen(skb);
2074 	int nfrags = skb_shinfo(skb)->nr_frags;
2075 	int i;
2076 	int err;
2077 
2078 	if (skb_cloned(skb) &&
2079 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2080 		return err;
2081 
2082 	i = 0;
2083 	if (offset >= len)
2084 		goto drop_pages;
2085 
2086 	for (; i < nfrags; i++) {
2087 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2088 
2089 		if (end < len) {
2090 			offset = end;
2091 			continue;
2092 		}
2093 
2094 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2095 
2096 drop_pages:
2097 		skb_shinfo(skb)->nr_frags = i;
2098 
2099 		for (; i < nfrags; i++)
2100 			skb_frag_unref(skb, i);
2101 
2102 		if (skb_has_frag_list(skb))
2103 			skb_drop_fraglist(skb);
2104 		goto done;
2105 	}
2106 
2107 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2108 	     fragp = &frag->next) {
2109 		int end = offset + frag->len;
2110 
2111 		if (skb_shared(frag)) {
2112 			struct sk_buff *nfrag;
2113 
2114 			nfrag = skb_clone(frag, GFP_ATOMIC);
2115 			if (unlikely(!nfrag))
2116 				return -ENOMEM;
2117 
2118 			nfrag->next = frag->next;
2119 			consume_skb(frag);
2120 			frag = nfrag;
2121 			*fragp = frag;
2122 		}
2123 
2124 		if (end < len) {
2125 			offset = end;
2126 			continue;
2127 		}
2128 
2129 		if (end > len &&
2130 		    unlikely((err = pskb_trim(frag, len - offset))))
2131 			return err;
2132 
2133 		if (frag->next)
2134 			skb_drop_list(&frag->next);
2135 		break;
2136 	}
2137 
2138 done:
2139 	if (len > skb_headlen(skb)) {
2140 		skb->data_len -= skb->len - len;
2141 		skb->len       = len;
2142 	} else {
2143 		skb->len       = len;
2144 		skb->data_len  = 0;
2145 		skb_set_tail_pointer(skb, len);
2146 	}
2147 
2148 	if (!skb->sk || skb->destructor == sock_edemux)
2149 		skb_condense(skb);
2150 	return 0;
2151 }
2152 EXPORT_SYMBOL(___pskb_trim);
2153 
2154 /* Note : use pskb_trim_rcsum() instead of calling this directly
2155  */
2156 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2157 {
2158 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2159 		int delta = skb->len - len;
2160 
2161 		skb->csum = csum_block_sub(skb->csum,
2162 					   skb_checksum(skb, len, delta, 0),
2163 					   len);
2164 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2165 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2166 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2167 
2168 		if (offset + sizeof(__sum16) > hdlen)
2169 			return -EINVAL;
2170 	}
2171 	return __pskb_trim(skb, len);
2172 }
2173 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2174 
2175 /**
2176  *	__pskb_pull_tail - advance tail of skb header
2177  *	@skb: buffer to reallocate
2178  *	@delta: number of bytes to advance tail
2179  *
2180  *	The function makes a sense only on a fragmented &sk_buff,
2181  *	it expands header moving its tail forward and copying necessary
2182  *	data from fragmented part.
2183  *
2184  *	&sk_buff MUST have reference count of 1.
2185  *
2186  *	Returns %NULL (and &sk_buff does not change) if pull failed
2187  *	or value of new tail of skb in the case of success.
2188  *
2189  *	All the pointers pointing into skb header may change and must be
2190  *	reloaded after call to this function.
2191  */
2192 
2193 /* Moves tail of skb head forward, copying data from fragmented part,
2194  * when it is necessary.
2195  * 1. It may fail due to malloc failure.
2196  * 2. It may change skb pointers.
2197  *
2198  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2199  */
2200 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2201 {
2202 	/* If skb has not enough free space at tail, get new one
2203 	 * plus 128 bytes for future expansions. If we have enough
2204 	 * room at tail, reallocate without expansion only if skb is cloned.
2205 	 */
2206 	int i, k, eat = (skb->tail + delta) - skb->end;
2207 
2208 	if (eat > 0 || skb_cloned(skb)) {
2209 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2210 				     GFP_ATOMIC))
2211 			return NULL;
2212 	}
2213 
2214 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2215 			     skb_tail_pointer(skb), delta));
2216 
2217 	/* Optimization: no fragments, no reasons to preestimate
2218 	 * size of pulled pages. Superb.
2219 	 */
2220 	if (!skb_has_frag_list(skb))
2221 		goto pull_pages;
2222 
2223 	/* Estimate size of pulled pages. */
2224 	eat = delta;
2225 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2226 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2227 
2228 		if (size >= eat)
2229 			goto pull_pages;
2230 		eat -= size;
2231 	}
2232 
2233 	/* If we need update frag list, we are in troubles.
2234 	 * Certainly, it is possible to add an offset to skb data,
2235 	 * but taking into account that pulling is expected to
2236 	 * be very rare operation, it is worth to fight against
2237 	 * further bloating skb head and crucify ourselves here instead.
2238 	 * Pure masohism, indeed. 8)8)
2239 	 */
2240 	if (eat) {
2241 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2242 		struct sk_buff *clone = NULL;
2243 		struct sk_buff *insp = NULL;
2244 
2245 		do {
2246 			if (list->len <= eat) {
2247 				/* Eaten as whole. */
2248 				eat -= list->len;
2249 				list = list->next;
2250 				insp = list;
2251 			} else {
2252 				/* Eaten partially. */
2253 
2254 				if (skb_shared(list)) {
2255 					/* Sucks! We need to fork list. :-( */
2256 					clone = skb_clone(list, GFP_ATOMIC);
2257 					if (!clone)
2258 						return NULL;
2259 					insp = list->next;
2260 					list = clone;
2261 				} else {
2262 					/* This may be pulled without
2263 					 * problems. */
2264 					insp = list;
2265 				}
2266 				if (!pskb_pull(list, eat)) {
2267 					kfree_skb(clone);
2268 					return NULL;
2269 				}
2270 				break;
2271 			}
2272 		} while (eat);
2273 
2274 		/* Free pulled out fragments. */
2275 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2276 			skb_shinfo(skb)->frag_list = list->next;
2277 			kfree_skb(list);
2278 		}
2279 		/* And insert new clone at head. */
2280 		if (clone) {
2281 			clone->next = list;
2282 			skb_shinfo(skb)->frag_list = clone;
2283 		}
2284 	}
2285 	/* Success! Now we may commit changes to skb data. */
2286 
2287 pull_pages:
2288 	eat = delta;
2289 	k = 0;
2290 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2291 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2292 
2293 		if (size <= eat) {
2294 			skb_frag_unref(skb, i);
2295 			eat -= size;
2296 		} else {
2297 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2298 
2299 			*frag = skb_shinfo(skb)->frags[i];
2300 			if (eat) {
2301 				skb_frag_off_add(frag, eat);
2302 				skb_frag_size_sub(frag, eat);
2303 				if (!i)
2304 					goto end;
2305 				eat = 0;
2306 			}
2307 			k++;
2308 		}
2309 	}
2310 	skb_shinfo(skb)->nr_frags = k;
2311 
2312 end:
2313 	skb->tail     += delta;
2314 	skb->data_len -= delta;
2315 
2316 	if (!skb->data_len)
2317 		skb_zcopy_clear(skb, false);
2318 
2319 	return skb_tail_pointer(skb);
2320 }
2321 EXPORT_SYMBOL(__pskb_pull_tail);
2322 
2323 /**
2324  *	skb_copy_bits - copy bits from skb to kernel buffer
2325  *	@skb: source skb
2326  *	@offset: offset in source
2327  *	@to: destination buffer
2328  *	@len: number of bytes to copy
2329  *
2330  *	Copy the specified number of bytes from the source skb to the
2331  *	destination buffer.
2332  *
2333  *	CAUTION ! :
2334  *		If its prototype is ever changed,
2335  *		check arch/{*}/net/{*}.S files,
2336  *		since it is called from BPF assembly code.
2337  */
2338 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2339 {
2340 	int start = skb_headlen(skb);
2341 	struct sk_buff *frag_iter;
2342 	int i, copy;
2343 
2344 	if (offset > (int)skb->len - len)
2345 		goto fault;
2346 
2347 	/* Copy header. */
2348 	if ((copy = start - offset) > 0) {
2349 		if (copy > len)
2350 			copy = len;
2351 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2352 		if ((len -= copy) == 0)
2353 			return 0;
2354 		offset += copy;
2355 		to     += copy;
2356 	}
2357 
2358 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2359 		int end;
2360 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2361 
2362 		WARN_ON(start > offset + len);
2363 
2364 		end = start + skb_frag_size(f);
2365 		if ((copy = end - offset) > 0) {
2366 			u32 p_off, p_len, copied;
2367 			struct page *p;
2368 			u8 *vaddr;
2369 
2370 			if (copy > len)
2371 				copy = len;
2372 
2373 			skb_frag_foreach_page(f,
2374 					      skb_frag_off(f) + offset - start,
2375 					      copy, p, p_off, p_len, copied) {
2376 				vaddr = kmap_atomic(p);
2377 				memcpy(to + copied, vaddr + p_off, p_len);
2378 				kunmap_atomic(vaddr);
2379 			}
2380 
2381 			if ((len -= copy) == 0)
2382 				return 0;
2383 			offset += copy;
2384 			to     += copy;
2385 		}
2386 		start = end;
2387 	}
2388 
2389 	skb_walk_frags(skb, frag_iter) {
2390 		int end;
2391 
2392 		WARN_ON(start > offset + len);
2393 
2394 		end = start + frag_iter->len;
2395 		if ((copy = end - offset) > 0) {
2396 			if (copy > len)
2397 				copy = len;
2398 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2399 				goto fault;
2400 			if ((len -= copy) == 0)
2401 				return 0;
2402 			offset += copy;
2403 			to     += copy;
2404 		}
2405 		start = end;
2406 	}
2407 
2408 	if (!len)
2409 		return 0;
2410 
2411 fault:
2412 	return -EFAULT;
2413 }
2414 EXPORT_SYMBOL(skb_copy_bits);
2415 
2416 /*
2417  * Callback from splice_to_pipe(), if we need to release some pages
2418  * at the end of the spd in case we error'ed out in filling the pipe.
2419  */
2420 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2421 {
2422 	put_page(spd->pages[i]);
2423 }
2424 
2425 static struct page *linear_to_page(struct page *page, unsigned int *len,
2426 				   unsigned int *offset,
2427 				   struct sock *sk)
2428 {
2429 	struct page_frag *pfrag = sk_page_frag(sk);
2430 
2431 	if (!sk_page_frag_refill(sk, pfrag))
2432 		return NULL;
2433 
2434 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2435 
2436 	memcpy(page_address(pfrag->page) + pfrag->offset,
2437 	       page_address(page) + *offset, *len);
2438 	*offset = pfrag->offset;
2439 	pfrag->offset += *len;
2440 
2441 	return pfrag->page;
2442 }
2443 
2444 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2445 			     struct page *page,
2446 			     unsigned int offset)
2447 {
2448 	return	spd->nr_pages &&
2449 		spd->pages[spd->nr_pages - 1] == page &&
2450 		(spd->partial[spd->nr_pages - 1].offset +
2451 		 spd->partial[spd->nr_pages - 1].len == offset);
2452 }
2453 
2454 /*
2455  * Fill page/offset/length into spd, if it can hold more pages.
2456  */
2457 static bool spd_fill_page(struct splice_pipe_desc *spd,
2458 			  struct pipe_inode_info *pipe, struct page *page,
2459 			  unsigned int *len, unsigned int offset,
2460 			  bool linear,
2461 			  struct sock *sk)
2462 {
2463 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2464 		return true;
2465 
2466 	if (linear) {
2467 		page = linear_to_page(page, len, &offset, sk);
2468 		if (!page)
2469 			return true;
2470 	}
2471 	if (spd_can_coalesce(spd, page, offset)) {
2472 		spd->partial[spd->nr_pages - 1].len += *len;
2473 		return false;
2474 	}
2475 	get_page(page);
2476 	spd->pages[spd->nr_pages] = page;
2477 	spd->partial[spd->nr_pages].len = *len;
2478 	spd->partial[spd->nr_pages].offset = offset;
2479 	spd->nr_pages++;
2480 
2481 	return false;
2482 }
2483 
2484 static bool __splice_segment(struct page *page, unsigned int poff,
2485 			     unsigned int plen, unsigned int *off,
2486 			     unsigned int *len,
2487 			     struct splice_pipe_desc *spd, bool linear,
2488 			     struct sock *sk,
2489 			     struct pipe_inode_info *pipe)
2490 {
2491 	if (!*len)
2492 		return true;
2493 
2494 	/* skip this segment if already processed */
2495 	if (*off >= plen) {
2496 		*off -= plen;
2497 		return false;
2498 	}
2499 
2500 	/* ignore any bits we already processed */
2501 	poff += *off;
2502 	plen -= *off;
2503 	*off = 0;
2504 
2505 	do {
2506 		unsigned int flen = min(*len, plen);
2507 
2508 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2509 				  linear, sk))
2510 			return true;
2511 		poff += flen;
2512 		plen -= flen;
2513 		*len -= flen;
2514 	} while (*len && plen);
2515 
2516 	return false;
2517 }
2518 
2519 /*
2520  * Map linear and fragment data from the skb to spd. It reports true if the
2521  * pipe is full or if we already spliced the requested length.
2522  */
2523 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2524 			      unsigned int *offset, unsigned int *len,
2525 			      struct splice_pipe_desc *spd, struct sock *sk)
2526 {
2527 	int seg;
2528 	struct sk_buff *iter;
2529 
2530 	/* map the linear part :
2531 	 * If skb->head_frag is set, this 'linear' part is backed by a
2532 	 * fragment, and if the head is not shared with any clones then
2533 	 * we can avoid a copy since we own the head portion of this page.
2534 	 */
2535 	if (__splice_segment(virt_to_page(skb->data),
2536 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2537 			     skb_headlen(skb),
2538 			     offset, len, spd,
2539 			     skb_head_is_locked(skb),
2540 			     sk, pipe))
2541 		return true;
2542 
2543 	/*
2544 	 * then map the fragments
2545 	 */
2546 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2547 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2548 
2549 		if (__splice_segment(skb_frag_page(f),
2550 				     skb_frag_off(f), skb_frag_size(f),
2551 				     offset, len, spd, false, sk, pipe))
2552 			return true;
2553 	}
2554 
2555 	skb_walk_frags(skb, iter) {
2556 		if (*offset >= iter->len) {
2557 			*offset -= iter->len;
2558 			continue;
2559 		}
2560 		/* __skb_splice_bits() only fails if the output has no room
2561 		 * left, so no point in going over the frag_list for the error
2562 		 * case.
2563 		 */
2564 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2565 			return true;
2566 	}
2567 
2568 	return false;
2569 }
2570 
2571 /*
2572  * Map data from the skb to a pipe. Should handle both the linear part,
2573  * the fragments, and the frag list.
2574  */
2575 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2576 		    struct pipe_inode_info *pipe, unsigned int tlen,
2577 		    unsigned int flags)
2578 {
2579 	struct partial_page partial[MAX_SKB_FRAGS];
2580 	struct page *pages[MAX_SKB_FRAGS];
2581 	struct splice_pipe_desc spd = {
2582 		.pages = pages,
2583 		.partial = partial,
2584 		.nr_pages_max = MAX_SKB_FRAGS,
2585 		.ops = &nosteal_pipe_buf_ops,
2586 		.spd_release = sock_spd_release,
2587 	};
2588 	int ret = 0;
2589 
2590 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2591 
2592 	if (spd.nr_pages)
2593 		ret = splice_to_pipe(pipe, &spd);
2594 
2595 	return ret;
2596 }
2597 EXPORT_SYMBOL_GPL(skb_splice_bits);
2598 
2599 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2600 			    struct kvec *vec, size_t num, size_t size)
2601 {
2602 	struct socket *sock = sk->sk_socket;
2603 
2604 	if (!sock)
2605 		return -EINVAL;
2606 	return kernel_sendmsg(sock, msg, vec, num, size);
2607 }
2608 
2609 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2610 			     size_t size, int flags)
2611 {
2612 	struct socket *sock = sk->sk_socket;
2613 
2614 	if (!sock)
2615 		return -EINVAL;
2616 	return kernel_sendpage(sock, page, offset, size, flags);
2617 }
2618 
2619 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2620 			    struct kvec *vec, size_t num, size_t size);
2621 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2622 			     size_t size, int flags);
2623 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2624 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2625 {
2626 	unsigned int orig_len = len;
2627 	struct sk_buff *head = skb;
2628 	unsigned short fragidx;
2629 	int slen, ret;
2630 
2631 do_frag_list:
2632 
2633 	/* Deal with head data */
2634 	while (offset < skb_headlen(skb) && len) {
2635 		struct kvec kv;
2636 		struct msghdr msg;
2637 
2638 		slen = min_t(int, len, skb_headlen(skb) - offset);
2639 		kv.iov_base = skb->data + offset;
2640 		kv.iov_len = slen;
2641 		memset(&msg, 0, sizeof(msg));
2642 		msg.msg_flags = MSG_DONTWAIT;
2643 
2644 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2645 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2646 		if (ret <= 0)
2647 			goto error;
2648 
2649 		offset += ret;
2650 		len -= ret;
2651 	}
2652 
2653 	/* All the data was skb head? */
2654 	if (!len)
2655 		goto out;
2656 
2657 	/* Make offset relative to start of frags */
2658 	offset -= skb_headlen(skb);
2659 
2660 	/* Find where we are in frag list */
2661 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2662 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2663 
2664 		if (offset < skb_frag_size(frag))
2665 			break;
2666 
2667 		offset -= skb_frag_size(frag);
2668 	}
2669 
2670 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2671 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2672 
2673 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2674 
2675 		while (slen) {
2676 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2677 					      sendpage_unlocked, sk,
2678 					      skb_frag_page(frag),
2679 					      skb_frag_off(frag) + offset,
2680 					      slen, MSG_DONTWAIT);
2681 			if (ret <= 0)
2682 				goto error;
2683 
2684 			len -= ret;
2685 			offset += ret;
2686 			slen -= ret;
2687 		}
2688 
2689 		offset = 0;
2690 	}
2691 
2692 	if (len) {
2693 		/* Process any frag lists */
2694 
2695 		if (skb == head) {
2696 			if (skb_has_frag_list(skb)) {
2697 				skb = skb_shinfo(skb)->frag_list;
2698 				goto do_frag_list;
2699 			}
2700 		} else if (skb->next) {
2701 			skb = skb->next;
2702 			goto do_frag_list;
2703 		}
2704 	}
2705 
2706 out:
2707 	return orig_len - len;
2708 
2709 error:
2710 	return orig_len == len ? ret : orig_len - len;
2711 }
2712 
2713 /* Send skb data on a socket. Socket must be locked. */
2714 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2715 			 int len)
2716 {
2717 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2718 			       kernel_sendpage_locked);
2719 }
2720 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2721 
2722 /* Send skb data on a socket. Socket must be unlocked. */
2723 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2724 {
2725 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2726 			       sendpage_unlocked);
2727 }
2728 
2729 /**
2730  *	skb_store_bits - store bits from kernel buffer to skb
2731  *	@skb: destination buffer
2732  *	@offset: offset in destination
2733  *	@from: source buffer
2734  *	@len: number of bytes to copy
2735  *
2736  *	Copy the specified number of bytes from the source buffer to the
2737  *	destination skb.  This function handles all the messy bits of
2738  *	traversing fragment lists and such.
2739  */
2740 
2741 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2742 {
2743 	int start = skb_headlen(skb);
2744 	struct sk_buff *frag_iter;
2745 	int i, copy;
2746 
2747 	if (offset > (int)skb->len - len)
2748 		goto fault;
2749 
2750 	if ((copy = start - offset) > 0) {
2751 		if (copy > len)
2752 			copy = len;
2753 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2754 		if ((len -= copy) == 0)
2755 			return 0;
2756 		offset += copy;
2757 		from += copy;
2758 	}
2759 
2760 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2761 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2762 		int end;
2763 
2764 		WARN_ON(start > offset + len);
2765 
2766 		end = start + skb_frag_size(frag);
2767 		if ((copy = end - offset) > 0) {
2768 			u32 p_off, p_len, copied;
2769 			struct page *p;
2770 			u8 *vaddr;
2771 
2772 			if (copy > len)
2773 				copy = len;
2774 
2775 			skb_frag_foreach_page(frag,
2776 					      skb_frag_off(frag) + offset - start,
2777 					      copy, p, p_off, p_len, copied) {
2778 				vaddr = kmap_atomic(p);
2779 				memcpy(vaddr + p_off, from + copied, p_len);
2780 				kunmap_atomic(vaddr);
2781 			}
2782 
2783 			if ((len -= copy) == 0)
2784 				return 0;
2785 			offset += copy;
2786 			from += copy;
2787 		}
2788 		start = end;
2789 	}
2790 
2791 	skb_walk_frags(skb, frag_iter) {
2792 		int end;
2793 
2794 		WARN_ON(start > offset + len);
2795 
2796 		end = start + frag_iter->len;
2797 		if ((copy = end - offset) > 0) {
2798 			if (copy > len)
2799 				copy = len;
2800 			if (skb_store_bits(frag_iter, offset - start,
2801 					   from, copy))
2802 				goto fault;
2803 			if ((len -= copy) == 0)
2804 				return 0;
2805 			offset += copy;
2806 			from += copy;
2807 		}
2808 		start = end;
2809 	}
2810 	if (!len)
2811 		return 0;
2812 
2813 fault:
2814 	return -EFAULT;
2815 }
2816 EXPORT_SYMBOL(skb_store_bits);
2817 
2818 /* Checksum skb data. */
2819 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2820 		      __wsum csum, const struct skb_checksum_ops *ops)
2821 {
2822 	int start = skb_headlen(skb);
2823 	int i, copy = start - offset;
2824 	struct sk_buff *frag_iter;
2825 	int pos = 0;
2826 
2827 	/* Checksum header. */
2828 	if (copy > 0) {
2829 		if (copy > len)
2830 			copy = len;
2831 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2832 				       skb->data + offset, copy, csum);
2833 		if ((len -= copy) == 0)
2834 			return csum;
2835 		offset += copy;
2836 		pos	= copy;
2837 	}
2838 
2839 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2840 		int end;
2841 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2842 
2843 		WARN_ON(start > offset + len);
2844 
2845 		end = start + skb_frag_size(frag);
2846 		if ((copy = end - offset) > 0) {
2847 			u32 p_off, p_len, copied;
2848 			struct page *p;
2849 			__wsum csum2;
2850 			u8 *vaddr;
2851 
2852 			if (copy > len)
2853 				copy = len;
2854 
2855 			skb_frag_foreach_page(frag,
2856 					      skb_frag_off(frag) + offset - start,
2857 					      copy, p, p_off, p_len, copied) {
2858 				vaddr = kmap_atomic(p);
2859 				csum2 = INDIRECT_CALL_1(ops->update,
2860 							csum_partial_ext,
2861 							vaddr + p_off, p_len, 0);
2862 				kunmap_atomic(vaddr);
2863 				csum = INDIRECT_CALL_1(ops->combine,
2864 						       csum_block_add_ext, csum,
2865 						       csum2, pos, p_len);
2866 				pos += p_len;
2867 			}
2868 
2869 			if (!(len -= copy))
2870 				return csum;
2871 			offset += copy;
2872 		}
2873 		start = end;
2874 	}
2875 
2876 	skb_walk_frags(skb, frag_iter) {
2877 		int end;
2878 
2879 		WARN_ON(start > offset + len);
2880 
2881 		end = start + frag_iter->len;
2882 		if ((copy = end - offset) > 0) {
2883 			__wsum csum2;
2884 			if (copy > len)
2885 				copy = len;
2886 			csum2 = __skb_checksum(frag_iter, offset - start,
2887 					       copy, 0, ops);
2888 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2889 					       csum, csum2, pos, copy);
2890 			if ((len -= copy) == 0)
2891 				return csum;
2892 			offset += copy;
2893 			pos    += copy;
2894 		}
2895 		start = end;
2896 	}
2897 	BUG_ON(len);
2898 
2899 	return csum;
2900 }
2901 EXPORT_SYMBOL(__skb_checksum);
2902 
2903 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2904 		    int len, __wsum csum)
2905 {
2906 	const struct skb_checksum_ops ops = {
2907 		.update  = csum_partial_ext,
2908 		.combine = csum_block_add_ext,
2909 	};
2910 
2911 	return __skb_checksum(skb, offset, len, csum, &ops);
2912 }
2913 EXPORT_SYMBOL(skb_checksum);
2914 
2915 /* Both of above in one bottle. */
2916 
2917 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2918 				    u8 *to, int len)
2919 {
2920 	int start = skb_headlen(skb);
2921 	int i, copy = start - offset;
2922 	struct sk_buff *frag_iter;
2923 	int pos = 0;
2924 	__wsum csum = 0;
2925 
2926 	/* Copy header. */
2927 	if (copy > 0) {
2928 		if (copy > len)
2929 			copy = len;
2930 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2931 						 copy);
2932 		if ((len -= copy) == 0)
2933 			return csum;
2934 		offset += copy;
2935 		to     += copy;
2936 		pos	= copy;
2937 	}
2938 
2939 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2940 		int end;
2941 
2942 		WARN_ON(start > offset + len);
2943 
2944 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2945 		if ((copy = end - offset) > 0) {
2946 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2947 			u32 p_off, p_len, copied;
2948 			struct page *p;
2949 			__wsum csum2;
2950 			u8 *vaddr;
2951 
2952 			if (copy > len)
2953 				copy = len;
2954 
2955 			skb_frag_foreach_page(frag,
2956 					      skb_frag_off(frag) + offset - start,
2957 					      copy, p, p_off, p_len, copied) {
2958 				vaddr = kmap_atomic(p);
2959 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2960 								  to + copied,
2961 								  p_len);
2962 				kunmap_atomic(vaddr);
2963 				csum = csum_block_add(csum, csum2, pos);
2964 				pos += p_len;
2965 			}
2966 
2967 			if (!(len -= copy))
2968 				return csum;
2969 			offset += copy;
2970 			to     += copy;
2971 		}
2972 		start = end;
2973 	}
2974 
2975 	skb_walk_frags(skb, frag_iter) {
2976 		__wsum csum2;
2977 		int end;
2978 
2979 		WARN_ON(start > offset + len);
2980 
2981 		end = start + frag_iter->len;
2982 		if ((copy = end - offset) > 0) {
2983 			if (copy > len)
2984 				copy = len;
2985 			csum2 = skb_copy_and_csum_bits(frag_iter,
2986 						       offset - start,
2987 						       to, copy);
2988 			csum = csum_block_add(csum, csum2, pos);
2989 			if ((len -= copy) == 0)
2990 				return csum;
2991 			offset += copy;
2992 			to     += copy;
2993 			pos    += copy;
2994 		}
2995 		start = end;
2996 	}
2997 	BUG_ON(len);
2998 	return csum;
2999 }
3000 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3001 
3002 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3003 {
3004 	__sum16 sum;
3005 
3006 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3007 	/* See comments in __skb_checksum_complete(). */
3008 	if (likely(!sum)) {
3009 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3010 		    !skb->csum_complete_sw)
3011 			netdev_rx_csum_fault(skb->dev, skb);
3012 	}
3013 	if (!skb_shared(skb))
3014 		skb->csum_valid = !sum;
3015 	return sum;
3016 }
3017 EXPORT_SYMBOL(__skb_checksum_complete_head);
3018 
3019 /* This function assumes skb->csum already holds pseudo header's checksum,
3020  * which has been changed from the hardware checksum, for example, by
3021  * __skb_checksum_validate_complete(). And, the original skb->csum must
3022  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3023  *
3024  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3025  * zero. The new checksum is stored back into skb->csum unless the skb is
3026  * shared.
3027  */
3028 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3029 {
3030 	__wsum csum;
3031 	__sum16 sum;
3032 
3033 	csum = skb_checksum(skb, 0, skb->len, 0);
3034 
3035 	sum = csum_fold(csum_add(skb->csum, csum));
3036 	/* This check is inverted, because we already knew the hardware
3037 	 * checksum is invalid before calling this function. So, if the
3038 	 * re-computed checksum is valid instead, then we have a mismatch
3039 	 * between the original skb->csum and skb_checksum(). This means either
3040 	 * the original hardware checksum is incorrect or we screw up skb->csum
3041 	 * when moving skb->data around.
3042 	 */
3043 	if (likely(!sum)) {
3044 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3045 		    !skb->csum_complete_sw)
3046 			netdev_rx_csum_fault(skb->dev, skb);
3047 	}
3048 
3049 	if (!skb_shared(skb)) {
3050 		/* Save full packet checksum */
3051 		skb->csum = csum;
3052 		skb->ip_summed = CHECKSUM_COMPLETE;
3053 		skb->csum_complete_sw = 1;
3054 		skb->csum_valid = !sum;
3055 	}
3056 
3057 	return sum;
3058 }
3059 EXPORT_SYMBOL(__skb_checksum_complete);
3060 
3061 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3062 {
3063 	net_warn_ratelimited(
3064 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3065 		__func__);
3066 	return 0;
3067 }
3068 
3069 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3070 				       int offset, int len)
3071 {
3072 	net_warn_ratelimited(
3073 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3074 		__func__);
3075 	return 0;
3076 }
3077 
3078 static const struct skb_checksum_ops default_crc32c_ops = {
3079 	.update  = warn_crc32c_csum_update,
3080 	.combine = warn_crc32c_csum_combine,
3081 };
3082 
3083 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3084 	&default_crc32c_ops;
3085 EXPORT_SYMBOL(crc32c_csum_stub);
3086 
3087  /**
3088  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3089  *	@from: source buffer
3090  *
3091  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3092  *	into skb_zerocopy().
3093  */
3094 unsigned int
3095 skb_zerocopy_headlen(const struct sk_buff *from)
3096 {
3097 	unsigned int hlen = 0;
3098 
3099 	if (!from->head_frag ||
3100 	    skb_headlen(from) < L1_CACHE_BYTES ||
3101 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3102 		hlen = skb_headlen(from);
3103 		if (!hlen)
3104 			hlen = from->len;
3105 	}
3106 
3107 	if (skb_has_frag_list(from))
3108 		hlen = from->len;
3109 
3110 	return hlen;
3111 }
3112 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3113 
3114 /**
3115  *	skb_zerocopy - Zero copy skb to skb
3116  *	@to: destination buffer
3117  *	@from: source buffer
3118  *	@len: number of bytes to copy from source buffer
3119  *	@hlen: size of linear headroom in destination buffer
3120  *
3121  *	Copies up to `len` bytes from `from` to `to` by creating references
3122  *	to the frags in the source buffer.
3123  *
3124  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3125  *	headroom in the `to` buffer.
3126  *
3127  *	Return value:
3128  *	0: everything is OK
3129  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3130  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3131  */
3132 int
3133 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3134 {
3135 	int i, j = 0;
3136 	int plen = 0; /* length of skb->head fragment */
3137 	int ret;
3138 	struct page *page;
3139 	unsigned int offset;
3140 
3141 	BUG_ON(!from->head_frag && !hlen);
3142 
3143 	/* dont bother with small payloads */
3144 	if (len <= skb_tailroom(to))
3145 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3146 
3147 	if (hlen) {
3148 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3149 		if (unlikely(ret))
3150 			return ret;
3151 		len -= hlen;
3152 	} else {
3153 		plen = min_t(int, skb_headlen(from), len);
3154 		if (plen) {
3155 			page = virt_to_head_page(from->head);
3156 			offset = from->data - (unsigned char *)page_address(page);
3157 			__skb_fill_page_desc(to, 0, page, offset, plen);
3158 			get_page(page);
3159 			j = 1;
3160 			len -= plen;
3161 		}
3162 	}
3163 
3164 	to->truesize += len + plen;
3165 	to->len += len + plen;
3166 	to->data_len += len + plen;
3167 
3168 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3169 		skb_tx_error(from);
3170 		return -ENOMEM;
3171 	}
3172 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3173 
3174 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3175 		int size;
3176 
3177 		if (!len)
3178 			break;
3179 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3180 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3181 					len);
3182 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3183 		len -= size;
3184 		skb_frag_ref(to, j);
3185 		j++;
3186 	}
3187 	skb_shinfo(to)->nr_frags = j;
3188 
3189 	return 0;
3190 }
3191 EXPORT_SYMBOL_GPL(skb_zerocopy);
3192 
3193 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3194 {
3195 	__wsum csum;
3196 	long csstart;
3197 
3198 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3199 		csstart = skb_checksum_start_offset(skb);
3200 	else
3201 		csstart = skb_headlen(skb);
3202 
3203 	BUG_ON(csstart > skb_headlen(skb));
3204 
3205 	skb_copy_from_linear_data(skb, to, csstart);
3206 
3207 	csum = 0;
3208 	if (csstart != skb->len)
3209 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3210 					      skb->len - csstart);
3211 
3212 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3213 		long csstuff = csstart + skb->csum_offset;
3214 
3215 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3216 	}
3217 }
3218 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3219 
3220 /**
3221  *	skb_dequeue - remove from the head of the queue
3222  *	@list: list to dequeue from
3223  *
3224  *	Remove the head of the list. The list lock is taken so the function
3225  *	may be used safely with other locking list functions. The head item is
3226  *	returned or %NULL if the list is empty.
3227  */
3228 
3229 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3230 {
3231 	unsigned long flags;
3232 	struct sk_buff *result;
3233 
3234 	spin_lock_irqsave(&list->lock, flags);
3235 	result = __skb_dequeue(list);
3236 	spin_unlock_irqrestore(&list->lock, flags);
3237 	return result;
3238 }
3239 EXPORT_SYMBOL(skb_dequeue);
3240 
3241 /**
3242  *	skb_dequeue_tail - remove from the tail of the queue
3243  *	@list: list to dequeue from
3244  *
3245  *	Remove the tail of the list. The list lock is taken so the function
3246  *	may be used safely with other locking list functions. The tail item is
3247  *	returned or %NULL if the list is empty.
3248  */
3249 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3250 {
3251 	unsigned long flags;
3252 	struct sk_buff *result;
3253 
3254 	spin_lock_irqsave(&list->lock, flags);
3255 	result = __skb_dequeue_tail(list);
3256 	spin_unlock_irqrestore(&list->lock, flags);
3257 	return result;
3258 }
3259 EXPORT_SYMBOL(skb_dequeue_tail);
3260 
3261 /**
3262  *	skb_queue_purge - empty a list
3263  *	@list: list to empty
3264  *
3265  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3266  *	the list and one reference dropped. This function takes the list
3267  *	lock and is atomic with respect to other list locking functions.
3268  */
3269 void skb_queue_purge(struct sk_buff_head *list)
3270 {
3271 	struct sk_buff *skb;
3272 	while ((skb = skb_dequeue(list)) != NULL)
3273 		kfree_skb(skb);
3274 }
3275 EXPORT_SYMBOL(skb_queue_purge);
3276 
3277 /**
3278  *	skb_rbtree_purge - empty a skb rbtree
3279  *	@root: root of the rbtree to empty
3280  *	Return value: the sum of truesizes of all purged skbs.
3281  *
3282  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3283  *	the list and one reference dropped. This function does not take
3284  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3285  *	out-of-order queue is protected by the socket lock).
3286  */
3287 unsigned int skb_rbtree_purge(struct rb_root *root)
3288 {
3289 	struct rb_node *p = rb_first(root);
3290 	unsigned int sum = 0;
3291 
3292 	while (p) {
3293 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3294 
3295 		p = rb_next(p);
3296 		rb_erase(&skb->rbnode, root);
3297 		sum += skb->truesize;
3298 		kfree_skb(skb);
3299 	}
3300 	return sum;
3301 }
3302 
3303 /**
3304  *	skb_queue_head - queue a buffer at the list head
3305  *	@list: list to use
3306  *	@newsk: buffer to queue
3307  *
3308  *	Queue a buffer at the start of the list. This function takes the
3309  *	list lock and can be used safely with other locking &sk_buff functions
3310  *	safely.
3311  *
3312  *	A buffer cannot be placed on two lists at the same time.
3313  */
3314 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3315 {
3316 	unsigned long flags;
3317 
3318 	spin_lock_irqsave(&list->lock, flags);
3319 	__skb_queue_head(list, newsk);
3320 	spin_unlock_irqrestore(&list->lock, flags);
3321 }
3322 EXPORT_SYMBOL(skb_queue_head);
3323 
3324 /**
3325  *	skb_queue_tail - queue a buffer at the list tail
3326  *	@list: list to use
3327  *	@newsk: buffer to queue
3328  *
3329  *	Queue a buffer at the tail of the list. This function takes the
3330  *	list lock and can be used safely with other locking &sk_buff functions
3331  *	safely.
3332  *
3333  *	A buffer cannot be placed on two lists at the same time.
3334  */
3335 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3336 {
3337 	unsigned long flags;
3338 
3339 	spin_lock_irqsave(&list->lock, flags);
3340 	__skb_queue_tail(list, newsk);
3341 	spin_unlock_irqrestore(&list->lock, flags);
3342 }
3343 EXPORT_SYMBOL(skb_queue_tail);
3344 
3345 /**
3346  *	skb_unlink	-	remove a buffer from a list
3347  *	@skb: buffer to remove
3348  *	@list: list to use
3349  *
3350  *	Remove a packet from a list. The list locks are taken and this
3351  *	function is atomic with respect to other list locked calls
3352  *
3353  *	You must know what list the SKB is on.
3354  */
3355 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3356 {
3357 	unsigned long flags;
3358 
3359 	spin_lock_irqsave(&list->lock, flags);
3360 	__skb_unlink(skb, list);
3361 	spin_unlock_irqrestore(&list->lock, flags);
3362 }
3363 EXPORT_SYMBOL(skb_unlink);
3364 
3365 /**
3366  *	skb_append	-	append a buffer
3367  *	@old: buffer to insert after
3368  *	@newsk: buffer to insert
3369  *	@list: list to use
3370  *
3371  *	Place a packet after a given packet in a list. The list locks are taken
3372  *	and this function is atomic with respect to other list locked calls.
3373  *	A buffer cannot be placed on two lists at the same time.
3374  */
3375 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3376 {
3377 	unsigned long flags;
3378 
3379 	spin_lock_irqsave(&list->lock, flags);
3380 	__skb_queue_after(list, old, newsk);
3381 	spin_unlock_irqrestore(&list->lock, flags);
3382 }
3383 EXPORT_SYMBOL(skb_append);
3384 
3385 static inline void skb_split_inside_header(struct sk_buff *skb,
3386 					   struct sk_buff* skb1,
3387 					   const u32 len, const int pos)
3388 {
3389 	int i;
3390 
3391 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3392 					 pos - len);
3393 	/* And move data appendix as is. */
3394 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3395 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3396 
3397 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3398 	skb_shinfo(skb)->nr_frags  = 0;
3399 	skb1->data_len		   = skb->data_len;
3400 	skb1->len		   += skb1->data_len;
3401 	skb->data_len		   = 0;
3402 	skb->len		   = len;
3403 	skb_set_tail_pointer(skb, len);
3404 }
3405 
3406 static inline void skb_split_no_header(struct sk_buff *skb,
3407 				       struct sk_buff* skb1,
3408 				       const u32 len, int pos)
3409 {
3410 	int i, k = 0;
3411 	const int nfrags = skb_shinfo(skb)->nr_frags;
3412 
3413 	skb_shinfo(skb)->nr_frags = 0;
3414 	skb1->len		  = skb1->data_len = skb->len - len;
3415 	skb->len		  = len;
3416 	skb->data_len		  = len - pos;
3417 
3418 	for (i = 0; i < nfrags; i++) {
3419 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3420 
3421 		if (pos + size > len) {
3422 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3423 
3424 			if (pos < len) {
3425 				/* Split frag.
3426 				 * We have two variants in this case:
3427 				 * 1. Move all the frag to the second
3428 				 *    part, if it is possible. F.e.
3429 				 *    this approach is mandatory for TUX,
3430 				 *    where splitting is expensive.
3431 				 * 2. Split is accurately. We make this.
3432 				 */
3433 				skb_frag_ref(skb, i);
3434 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3435 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3436 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3437 				skb_shinfo(skb)->nr_frags++;
3438 			}
3439 			k++;
3440 		} else
3441 			skb_shinfo(skb)->nr_frags++;
3442 		pos += size;
3443 	}
3444 	skb_shinfo(skb1)->nr_frags = k;
3445 }
3446 
3447 /**
3448  * skb_split - Split fragmented skb to two parts at length len.
3449  * @skb: the buffer to split
3450  * @skb1: the buffer to receive the second part
3451  * @len: new length for skb
3452  */
3453 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3454 {
3455 	int pos = skb_headlen(skb);
3456 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3457 
3458 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3459 	skb_zerocopy_clone(skb1, skb, 0);
3460 	if (len < pos)	/* Split line is inside header. */
3461 		skb_split_inside_header(skb, skb1, len, pos);
3462 	else		/* Second chunk has no header, nothing to copy. */
3463 		skb_split_no_header(skb, skb1, len, pos);
3464 }
3465 EXPORT_SYMBOL(skb_split);
3466 
3467 /* Shifting from/to a cloned skb is a no-go.
3468  *
3469  * Caller cannot keep skb_shinfo related pointers past calling here!
3470  */
3471 static int skb_prepare_for_shift(struct sk_buff *skb)
3472 {
3473 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3474 }
3475 
3476 /**
3477  * skb_shift - Shifts paged data partially from skb to another
3478  * @tgt: buffer into which tail data gets added
3479  * @skb: buffer from which the paged data comes from
3480  * @shiftlen: shift up to this many bytes
3481  *
3482  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3483  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3484  * It's up to caller to free skb if everything was shifted.
3485  *
3486  * If @tgt runs out of frags, the whole operation is aborted.
3487  *
3488  * Skb cannot include anything else but paged data while tgt is allowed
3489  * to have non-paged data as well.
3490  *
3491  * TODO: full sized shift could be optimized but that would need
3492  * specialized skb free'er to handle frags without up-to-date nr_frags.
3493  */
3494 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3495 {
3496 	int from, to, merge, todo;
3497 	skb_frag_t *fragfrom, *fragto;
3498 
3499 	BUG_ON(shiftlen > skb->len);
3500 
3501 	if (skb_headlen(skb))
3502 		return 0;
3503 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3504 		return 0;
3505 
3506 	todo = shiftlen;
3507 	from = 0;
3508 	to = skb_shinfo(tgt)->nr_frags;
3509 	fragfrom = &skb_shinfo(skb)->frags[from];
3510 
3511 	/* Actual merge is delayed until the point when we know we can
3512 	 * commit all, so that we don't have to undo partial changes
3513 	 */
3514 	if (!to ||
3515 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3516 			      skb_frag_off(fragfrom))) {
3517 		merge = -1;
3518 	} else {
3519 		merge = to - 1;
3520 
3521 		todo -= skb_frag_size(fragfrom);
3522 		if (todo < 0) {
3523 			if (skb_prepare_for_shift(skb) ||
3524 			    skb_prepare_for_shift(tgt))
3525 				return 0;
3526 
3527 			/* All previous frag pointers might be stale! */
3528 			fragfrom = &skb_shinfo(skb)->frags[from];
3529 			fragto = &skb_shinfo(tgt)->frags[merge];
3530 
3531 			skb_frag_size_add(fragto, shiftlen);
3532 			skb_frag_size_sub(fragfrom, shiftlen);
3533 			skb_frag_off_add(fragfrom, shiftlen);
3534 
3535 			goto onlymerged;
3536 		}
3537 
3538 		from++;
3539 	}
3540 
3541 	/* Skip full, not-fitting skb to avoid expensive operations */
3542 	if ((shiftlen == skb->len) &&
3543 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3544 		return 0;
3545 
3546 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3547 		return 0;
3548 
3549 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3550 		if (to == MAX_SKB_FRAGS)
3551 			return 0;
3552 
3553 		fragfrom = &skb_shinfo(skb)->frags[from];
3554 		fragto = &skb_shinfo(tgt)->frags[to];
3555 
3556 		if (todo >= skb_frag_size(fragfrom)) {
3557 			*fragto = *fragfrom;
3558 			todo -= skb_frag_size(fragfrom);
3559 			from++;
3560 			to++;
3561 
3562 		} else {
3563 			__skb_frag_ref(fragfrom);
3564 			skb_frag_page_copy(fragto, fragfrom);
3565 			skb_frag_off_copy(fragto, fragfrom);
3566 			skb_frag_size_set(fragto, todo);
3567 
3568 			skb_frag_off_add(fragfrom, todo);
3569 			skb_frag_size_sub(fragfrom, todo);
3570 			todo = 0;
3571 
3572 			to++;
3573 			break;
3574 		}
3575 	}
3576 
3577 	/* Ready to "commit" this state change to tgt */
3578 	skb_shinfo(tgt)->nr_frags = to;
3579 
3580 	if (merge >= 0) {
3581 		fragfrom = &skb_shinfo(skb)->frags[0];
3582 		fragto = &skb_shinfo(tgt)->frags[merge];
3583 
3584 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3585 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3586 	}
3587 
3588 	/* Reposition in the original skb */
3589 	to = 0;
3590 	while (from < skb_shinfo(skb)->nr_frags)
3591 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3592 	skb_shinfo(skb)->nr_frags = to;
3593 
3594 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3595 
3596 onlymerged:
3597 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3598 	 * the other hand might need it if it needs to be resent
3599 	 */
3600 	tgt->ip_summed = CHECKSUM_PARTIAL;
3601 	skb->ip_summed = CHECKSUM_PARTIAL;
3602 
3603 	/* Yak, is it really working this way? Some helper please? */
3604 	skb->len -= shiftlen;
3605 	skb->data_len -= shiftlen;
3606 	skb->truesize -= shiftlen;
3607 	tgt->len += shiftlen;
3608 	tgt->data_len += shiftlen;
3609 	tgt->truesize += shiftlen;
3610 
3611 	return shiftlen;
3612 }
3613 
3614 /**
3615  * skb_prepare_seq_read - Prepare a sequential read of skb data
3616  * @skb: the buffer to read
3617  * @from: lower offset of data to be read
3618  * @to: upper offset of data to be read
3619  * @st: state variable
3620  *
3621  * Initializes the specified state variable. Must be called before
3622  * invoking skb_seq_read() for the first time.
3623  */
3624 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3625 			  unsigned int to, struct skb_seq_state *st)
3626 {
3627 	st->lower_offset = from;
3628 	st->upper_offset = to;
3629 	st->root_skb = st->cur_skb = skb;
3630 	st->frag_idx = st->stepped_offset = 0;
3631 	st->frag_data = NULL;
3632 	st->frag_off = 0;
3633 }
3634 EXPORT_SYMBOL(skb_prepare_seq_read);
3635 
3636 /**
3637  * skb_seq_read - Sequentially read skb data
3638  * @consumed: number of bytes consumed by the caller so far
3639  * @data: destination pointer for data to be returned
3640  * @st: state variable
3641  *
3642  * Reads a block of skb data at @consumed relative to the
3643  * lower offset specified to skb_prepare_seq_read(). Assigns
3644  * the head of the data block to @data and returns the length
3645  * of the block or 0 if the end of the skb data or the upper
3646  * offset has been reached.
3647  *
3648  * The caller is not required to consume all of the data
3649  * returned, i.e. @consumed is typically set to the number
3650  * of bytes already consumed and the next call to
3651  * skb_seq_read() will return the remaining part of the block.
3652  *
3653  * Note 1: The size of each block of data returned can be arbitrary,
3654  *       this limitation is the cost for zerocopy sequential
3655  *       reads of potentially non linear data.
3656  *
3657  * Note 2: Fragment lists within fragments are not implemented
3658  *       at the moment, state->root_skb could be replaced with
3659  *       a stack for this purpose.
3660  */
3661 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3662 			  struct skb_seq_state *st)
3663 {
3664 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3665 	skb_frag_t *frag;
3666 
3667 	if (unlikely(abs_offset >= st->upper_offset)) {
3668 		if (st->frag_data) {
3669 			kunmap_atomic(st->frag_data);
3670 			st->frag_data = NULL;
3671 		}
3672 		return 0;
3673 	}
3674 
3675 next_skb:
3676 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3677 
3678 	if (abs_offset < block_limit && !st->frag_data) {
3679 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3680 		return block_limit - abs_offset;
3681 	}
3682 
3683 	if (st->frag_idx == 0 && !st->frag_data)
3684 		st->stepped_offset += skb_headlen(st->cur_skb);
3685 
3686 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3687 		unsigned int pg_idx, pg_off, pg_sz;
3688 
3689 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3690 
3691 		pg_idx = 0;
3692 		pg_off = skb_frag_off(frag);
3693 		pg_sz = skb_frag_size(frag);
3694 
3695 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3696 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3697 			pg_off = offset_in_page(pg_off + st->frag_off);
3698 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3699 						    PAGE_SIZE - pg_off);
3700 		}
3701 
3702 		block_limit = pg_sz + st->stepped_offset;
3703 		if (abs_offset < block_limit) {
3704 			if (!st->frag_data)
3705 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3706 
3707 			*data = (u8 *)st->frag_data + pg_off +
3708 				(abs_offset - st->stepped_offset);
3709 
3710 			return block_limit - abs_offset;
3711 		}
3712 
3713 		if (st->frag_data) {
3714 			kunmap_atomic(st->frag_data);
3715 			st->frag_data = NULL;
3716 		}
3717 
3718 		st->stepped_offset += pg_sz;
3719 		st->frag_off += pg_sz;
3720 		if (st->frag_off == skb_frag_size(frag)) {
3721 			st->frag_off = 0;
3722 			st->frag_idx++;
3723 		}
3724 	}
3725 
3726 	if (st->frag_data) {
3727 		kunmap_atomic(st->frag_data);
3728 		st->frag_data = NULL;
3729 	}
3730 
3731 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3732 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3733 		st->frag_idx = 0;
3734 		goto next_skb;
3735 	} else if (st->cur_skb->next) {
3736 		st->cur_skb = st->cur_skb->next;
3737 		st->frag_idx = 0;
3738 		goto next_skb;
3739 	}
3740 
3741 	return 0;
3742 }
3743 EXPORT_SYMBOL(skb_seq_read);
3744 
3745 /**
3746  * skb_abort_seq_read - Abort a sequential read of skb data
3747  * @st: state variable
3748  *
3749  * Must be called if skb_seq_read() was not called until it
3750  * returned 0.
3751  */
3752 void skb_abort_seq_read(struct skb_seq_state *st)
3753 {
3754 	if (st->frag_data)
3755 		kunmap_atomic(st->frag_data);
3756 }
3757 EXPORT_SYMBOL(skb_abort_seq_read);
3758 
3759 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3760 
3761 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3762 					  struct ts_config *conf,
3763 					  struct ts_state *state)
3764 {
3765 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3766 }
3767 
3768 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3769 {
3770 	skb_abort_seq_read(TS_SKB_CB(state));
3771 }
3772 
3773 /**
3774  * skb_find_text - Find a text pattern in skb data
3775  * @skb: the buffer to look in
3776  * @from: search offset
3777  * @to: search limit
3778  * @config: textsearch configuration
3779  *
3780  * Finds a pattern in the skb data according to the specified
3781  * textsearch configuration. Use textsearch_next() to retrieve
3782  * subsequent occurrences of the pattern. Returns the offset
3783  * to the first occurrence or UINT_MAX if no match was found.
3784  */
3785 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3786 			   unsigned int to, struct ts_config *config)
3787 {
3788 	struct ts_state state;
3789 	unsigned int ret;
3790 
3791 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3792 
3793 	config->get_next_block = skb_ts_get_next_block;
3794 	config->finish = skb_ts_finish;
3795 
3796 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3797 
3798 	ret = textsearch_find(config, &state);
3799 	return (ret <= to - from ? ret : UINT_MAX);
3800 }
3801 EXPORT_SYMBOL(skb_find_text);
3802 
3803 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3804 			 int offset, size_t size)
3805 {
3806 	int i = skb_shinfo(skb)->nr_frags;
3807 
3808 	if (skb_can_coalesce(skb, i, page, offset)) {
3809 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3810 	} else if (i < MAX_SKB_FRAGS) {
3811 		get_page(page);
3812 		skb_fill_page_desc(skb, i, page, offset, size);
3813 	} else {
3814 		return -EMSGSIZE;
3815 	}
3816 
3817 	return 0;
3818 }
3819 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3820 
3821 /**
3822  *	skb_pull_rcsum - pull skb and update receive checksum
3823  *	@skb: buffer to update
3824  *	@len: length of data pulled
3825  *
3826  *	This function performs an skb_pull on the packet and updates
3827  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3828  *	receive path processing instead of skb_pull unless you know
3829  *	that the checksum difference is zero (e.g., a valid IP header)
3830  *	or you are setting ip_summed to CHECKSUM_NONE.
3831  */
3832 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3833 {
3834 	unsigned char *data = skb->data;
3835 
3836 	BUG_ON(len > skb->len);
3837 	__skb_pull(skb, len);
3838 	skb_postpull_rcsum(skb, data, len);
3839 	return skb->data;
3840 }
3841 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3842 
3843 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3844 {
3845 	skb_frag_t head_frag;
3846 	struct page *page;
3847 
3848 	page = virt_to_head_page(frag_skb->head);
3849 	__skb_frag_set_page(&head_frag, page);
3850 	skb_frag_off_set(&head_frag, frag_skb->data -
3851 			 (unsigned char *)page_address(page));
3852 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3853 	return head_frag;
3854 }
3855 
3856 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3857 				 netdev_features_t features,
3858 				 unsigned int offset)
3859 {
3860 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3861 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3862 	unsigned int delta_truesize = 0;
3863 	unsigned int delta_len = 0;
3864 	struct sk_buff *tail = NULL;
3865 	struct sk_buff *nskb, *tmp;
3866 	int err;
3867 
3868 	skb_push(skb, -skb_network_offset(skb) + offset);
3869 
3870 	skb_shinfo(skb)->frag_list = NULL;
3871 
3872 	do {
3873 		nskb = list_skb;
3874 		list_skb = list_skb->next;
3875 
3876 		err = 0;
3877 		if (skb_shared(nskb)) {
3878 			tmp = skb_clone(nskb, GFP_ATOMIC);
3879 			if (tmp) {
3880 				consume_skb(nskb);
3881 				nskb = tmp;
3882 				err = skb_unclone(nskb, GFP_ATOMIC);
3883 			} else {
3884 				err = -ENOMEM;
3885 			}
3886 		}
3887 
3888 		if (!tail)
3889 			skb->next = nskb;
3890 		else
3891 			tail->next = nskb;
3892 
3893 		if (unlikely(err)) {
3894 			nskb->next = list_skb;
3895 			goto err_linearize;
3896 		}
3897 
3898 		tail = nskb;
3899 
3900 		delta_len += nskb->len;
3901 		delta_truesize += nskb->truesize;
3902 
3903 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3904 
3905 		skb_release_head_state(nskb);
3906 		__copy_skb_header(nskb, skb);
3907 
3908 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3909 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3910 						 nskb->data - tnl_hlen,
3911 						 offset + tnl_hlen);
3912 
3913 		if (skb_needs_linearize(nskb, features) &&
3914 		    __skb_linearize(nskb))
3915 			goto err_linearize;
3916 
3917 	} while (list_skb);
3918 
3919 	skb->truesize = skb->truesize - delta_truesize;
3920 	skb->data_len = skb->data_len - delta_len;
3921 	skb->len = skb->len - delta_len;
3922 
3923 	skb_gso_reset(skb);
3924 
3925 	skb->prev = tail;
3926 
3927 	if (skb_needs_linearize(skb, features) &&
3928 	    __skb_linearize(skb))
3929 		goto err_linearize;
3930 
3931 	skb_get(skb);
3932 
3933 	return skb;
3934 
3935 err_linearize:
3936 	kfree_skb_list(skb->next);
3937 	skb->next = NULL;
3938 	return ERR_PTR(-ENOMEM);
3939 }
3940 EXPORT_SYMBOL_GPL(skb_segment_list);
3941 
3942 /**
3943  *	skb_segment - Perform protocol segmentation on skb.
3944  *	@head_skb: buffer to segment
3945  *	@features: features for the output path (see dev->features)
3946  *
3947  *	This function performs segmentation on the given skb.  It returns
3948  *	a pointer to the first in a list of new skbs for the segments.
3949  *	In case of error it returns ERR_PTR(err).
3950  */
3951 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3952 			    netdev_features_t features)
3953 {
3954 	struct sk_buff *segs = NULL;
3955 	struct sk_buff *tail = NULL;
3956 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3957 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3958 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3959 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3960 	struct sk_buff *frag_skb = head_skb;
3961 	unsigned int offset = doffset;
3962 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3963 	unsigned int partial_segs = 0;
3964 	unsigned int headroom;
3965 	unsigned int len = head_skb->len;
3966 	__be16 proto;
3967 	bool csum, sg;
3968 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3969 	int err = -ENOMEM;
3970 	int i = 0;
3971 	int pos;
3972 
3973 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3974 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3975 		/* gso_size is untrusted, and we have a frag_list with a linear
3976 		 * non head_frag head.
3977 		 *
3978 		 * (we assume checking the first list_skb member suffices;
3979 		 * i.e if either of the list_skb members have non head_frag
3980 		 * head, then the first one has too).
3981 		 *
3982 		 * If head_skb's headlen does not fit requested gso_size, it
3983 		 * means that the frag_list members do NOT terminate on exact
3984 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3985 		 * sharing. Therefore we must fallback to copying the frag_list
3986 		 * skbs; we do so by disabling SG.
3987 		 */
3988 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3989 			features &= ~NETIF_F_SG;
3990 	}
3991 
3992 	__skb_push(head_skb, doffset);
3993 	proto = skb_network_protocol(head_skb, NULL);
3994 	if (unlikely(!proto))
3995 		return ERR_PTR(-EINVAL);
3996 
3997 	sg = !!(features & NETIF_F_SG);
3998 	csum = !!can_checksum_protocol(features, proto);
3999 
4000 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4001 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4002 			struct sk_buff *iter;
4003 			unsigned int frag_len;
4004 
4005 			if (!list_skb ||
4006 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4007 				goto normal;
4008 
4009 			/* If we get here then all the required
4010 			 * GSO features except frag_list are supported.
4011 			 * Try to split the SKB to multiple GSO SKBs
4012 			 * with no frag_list.
4013 			 * Currently we can do that only when the buffers don't
4014 			 * have a linear part and all the buffers except
4015 			 * the last are of the same length.
4016 			 */
4017 			frag_len = list_skb->len;
4018 			skb_walk_frags(head_skb, iter) {
4019 				if (frag_len != iter->len && iter->next)
4020 					goto normal;
4021 				if (skb_headlen(iter) && !iter->head_frag)
4022 					goto normal;
4023 
4024 				len -= iter->len;
4025 			}
4026 
4027 			if (len != frag_len)
4028 				goto normal;
4029 		}
4030 
4031 		/* GSO partial only requires that we trim off any excess that
4032 		 * doesn't fit into an MSS sized block, so take care of that
4033 		 * now.
4034 		 */
4035 		partial_segs = len / mss;
4036 		if (partial_segs > 1)
4037 			mss *= partial_segs;
4038 		else
4039 			partial_segs = 0;
4040 	}
4041 
4042 normal:
4043 	headroom = skb_headroom(head_skb);
4044 	pos = skb_headlen(head_skb);
4045 
4046 	do {
4047 		struct sk_buff *nskb;
4048 		skb_frag_t *nskb_frag;
4049 		int hsize;
4050 		int size;
4051 
4052 		if (unlikely(mss == GSO_BY_FRAGS)) {
4053 			len = list_skb->len;
4054 		} else {
4055 			len = head_skb->len - offset;
4056 			if (len > mss)
4057 				len = mss;
4058 		}
4059 
4060 		hsize = skb_headlen(head_skb) - offset;
4061 
4062 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4063 		    (skb_headlen(list_skb) == len || sg)) {
4064 			BUG_ON(skb_headlen(list_skb) > len);
4065 
4066 			i = 0;
4067 			nfrags = skb_shinfo(list_skb)->nr_frags;
4068 			frag = skb_shinfo(list_skb)->frags;
4069 			frag_skb = list_skb;
4070 			pos += skb_headlen(list_skb);
4071 
4072 			while (pos < offset + len) {
4073 				BUG_ON(i >= nfrags);
4074 
4075 				size = skb_frag_size(frag);
4076 				if (pos + size > offset + len)
4077 					break;
4078 
4079 				i++;
4080 				pos += size;
4081 				frag++;
4082 			}
4083 
4084 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4085 			list_skb = list_skb->next;
4086 
4087 			if (unlikely(!nskb))
4088 				goto err;
4089 
4090 			if (unlikely(pskb_trim(nskb, len))) {
4091 				kfree_skb(nskb);
4092 				goto err;
4093 			}
4094 
4095 			hsize = skb_end_offset(nskb);
4096 			if (skb_cow_head(nskb, doffset + headroom)) {
4097 				kfree_skb(nskb);
4098 				goto err;
4099 			}
4100 
4101 			nskb->truesize += skb_end_offset(nskb) - hsize;
4102 			skb_release_head_state(nskb);
4103 			__skb_push(nskb, doffset);
4104 		} else {
4105 			if (hsize < 0)
4106 				hsize = 0;
4107 			if (hsize > len || !sg)
4108 				hsize = len;
4109 
4110 			nskb = __alloc_skb(hsize + doffset + headroom,
4111 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4112 					   NUMA_NO_NODE);
4113 
4114 			if (unlikely(!nskb))
4115 				goto err;
4116 
4117 			skb_reserve(nskb, headroom);
4118 			__skb_put(nskb, doffset);
4119 		}
4120 
4121 		if (segs)
4122 			tail->next = nskb;
4123 		else
4124 			segs = nskb;
4125 		tail = nskb;
4126 
4127 		__copy_skb_header(nskb, head_skb);
4128 
4129 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4130 		skb_reset_mac_len(nskb);
4131 
4132 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4133 						 nskb->data - tnl_hlen,
4134 						 doffset + tnl_hlen);
4135 
4136 		if (nskb->len == len + doffset)
4137 			goto perform_csum_check;
4138 
4139 		if (!sg) {
4140 			if (!csum) {
4141 				if (!nskb->remcsum_offload)
4142 					nskb->ip_summed = CHECKSUM_NONE;
4143 				SKB_GSO_CB(nskb)->csum =
4144 					skb_copy_and_csum_bits(head_skb, offset,
4145 							       skb_put(nskb,
4146 								       len),
4147 							       len);
4148 				SKB_GSO_CB(nskb)->csum_start =
4149 					skb_headroom(nskb) + doffset;
4150 			} else {
4151 				skb_copy_bits(head_skb, offset,
4152 					      skb_put(nskb, len),
4153 					      len);
4154 			}
4155 			continue;
4156 		}
4157 
4158 		nskb_frag = skb_shinfo(nskb)->frags;
4159 
4160 		skb_copy_from_linear_data_offset(head_skb, offset,
4161 						 skb_put(nskb, hsize), hsize);
4162 
4163 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4164 					   SKBFL_SHARED_FRAG;
4165 
4166 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4167 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4168 			goto err;
4169 
4170 		while (pos < offset + len) {
4171 			if (i >= nfrags) {
4172 				i = 0;
4173 				nfrags = skb_shinfo(list_skb)->nr_frags;
4174 				frag = skb_shinfo(list_skb)->frags;
4175 				frag_skb = list_skb;
4176 				if (!skb_headlen(list_skb)) {
4177 					BUG_ON(!nfrags);
4178 				} else {
4179 					BUG_ON(!list_skb->head_frag);
4180 
4181 					/* to make room for head_frag. */
4182 					i--;
4183 					frag--;
4184 				}
4185 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4186 				    skb_zerocopy_clone(nskb, frag_skb,
4187 						       GFP_ATOMIC))
4188 					goto err;
4189 
4190 				list_skb = list_skb->next;
4191 			}
4192 
4193 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4194 				     MAX_SKB_FRAGS)) {
4195 				net_warn_ratelimited(
4196 					"skb_segment: too many frags: %u %u\n",
4197 					pos, mss);
4198 				err = -EINVAL;
4199 				goto err;
4200 			}
4201 
4202 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4203 			__skb_frag_ref(nskb_frag);
4204 			size = skb_frag_size(nskb_frag);
4205 
4206 			if (pos < offset) {
4207 				skb_frag_off_add(nskb_frag, offset - pos);
4208 				skb_frag_size_sub(nskb_frag, offset - pos);
4209 			}
4210 
4211 			skb_shinfo(nskb)->nr_frags++;
4212 
4213 			if (pos + size <= offset + len) {
4214 				i++;
4215 				frag++;
4216 				pos += size;
4217 			} else {
4218 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4219 				goto skip_fraglist;
4220 			}
4221 
4222 			nskb_frag++;
4223 		}
4224 
4225 skip_fraglist:
4226 		nskb->data_len = len - hsize;
4227 		nskb->len += nskb->data_len;
4228 		nskb->truesize += nskb->data_len;
4229 
4230 perform_csum_check:
4231 		if (!csum) {
4232 			if (skb_has_shared_frag(nskb) &&
4233 			    __skb_linearize(nskb))
4234 				goto err;
4235 
4236 			if (!nskb->remcsum_offload)
4237 				nskb->ip_summed = CHECKSUM_NONE;
4238 			SKB_GSO_CB(nskb)->csum =
4239 				skb_checksum(nskb, doffset,
4240 					     nskb->len - doffset, 0);
4241 			SKB_GSO_CB(nskb)->csum_start =
4242 				skb_headroom(nskb) + doffset;
4243 		}
4244 	} while ((offset += len) < head_skb->len);
4245 
4246 	/* Some callers want to get the end of the list.
4247 	 * Put it in segs->prev to avoid walking the list.
4248 	 * (see validate_xmit_skb_list() for example)
4249 	 */
4250 	segs->prev = tail;
4251 
4252 	if (partial_segs) {
4253 		struct sk_buff *iter;
4254 		int type = skb_shinfo(head_skb)->gso_type;
4255 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4256 
4257 		/* Update type to add partial and then remove dodgy if set */
4258 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4259 		type &= ~SKB_GSO_DODGY;
4260 
4261 		/* Update GSO info and prepare to start updating headers on
4262 		 * our way back down the stack of protocols.
4263 		 */
4264 		for (iter = segs; iter; iter = iter->next) {
4265 			skb_shinfo(iter)->gso_size = gso_size;
4266 			skb_shinfo(iter)->gso_segs = partial_segs;
4267 			skb_shinfo(iter)->gso_type = type;
4268 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4269 		}
4270 
4271 		if (tail->len - doffset <= gso_size)
4272 			skb_shinfo(tail)->gso_size = 0;
4273 		else if (tail != segs)
4274 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4275 	}
4276 
4277 	/* Following permits correct backpressure, for protocols
4278 	 * using skb_set_owner_w().
4279 	 * Idea is to tranfert ownership from head_skb to last segment.
4280 	 */
4281 	if (head_skb->destructor == sock_wfree) {
4282 		swap(tail->truesize, head_skb->truesize);
4283 		swap(tail->destructor, head_skb->destructor);
4284 		swap(tail->sk, head_skb->sk);
4285 	}
4286 	return segs;
4287 
4288 err:
4289 	kfree_skb_list(segs);
4290 	return ERR_PTR(err);
4291 }
4292 EXPORT_SYMBOL_GPL(skb_segment);
4293 
4294 #ifdef CONFIG_SKB_EXTENSIONS
4295 #define SKB_EXT_ALIGN_VALUE	8
4296 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4297 
4298 static const u8 skb_ext_type_len[] = {
4299 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4300 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4301 #endif
4302 #ifdef CONFIG_XFRM
4303 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4304 #endif
4305 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4306 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4307 #endif
4308 #if IS_ENABLED(CONFIG_MPTCP)
4309 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4310 #endif
4311 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4312 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4313 #endif
4314 };
4315 
4316 static __always_inline unsigned int skb_ext_total_length(void)
4317 {
4318 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4319 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4320 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4321 #endif
4322 #ifdef CONFIG_XFRM
4323 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4324 #endif
4325 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4326 		skb_ext_type_len[TC_SKB_EXT] +
4327 #endif
4328 #if IS_ENABLED(CONFIG_MPTCP)
4329 		skb_ext_type_len[SKB_EXT_MPTCP] +
4330 #endif
4331 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4332 		skb_ext_type_len[SKB_EXT_MCTP] +
4333 #endif
4334 		0;
4335 }
4336 
4337 static void skb_extensions_init(void)
4338 {
4339 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4340 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4341 
4342 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4343 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4344 					     0,
4345 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4346 					     NULL);
4347 }
4348 #else
4349 static void skb_extensions_init(void) {}
4350 #endif
4351 
4352 void __init skb_init(void)
4353 {
4354 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4355 					      sizeof(struct sk_buff),
4356 					      0,
4357 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4358 					      offsetof(struct sk_buff, cb),
4359 					      sizeof_field(struct sk_buff, cb),
4360 					      NULL);
4361 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4362 						sizeof(struct sk_buff_fclones),
4363 						0,
4364 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4365 						NULL);
4366 	skb_extensions_init();
4367 }
4368 
4369 static int
4370 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4371 	       unsigned int recursion_level)
4372 {
4373 	int start = skb_headlen(skb);
4374 	int i, copy = start - offset;
4375 	struct sk_buff *frag_iter;
4376 	int elt = 0;
4377 
4378 	if (unlikely(recursion_level >= 24))
4379 		return -EMSGSIZE;
4380 
4381 	if (copy > 0) {
4382 		if (copy > len)
4383 			copy = len;
4384 		sg_set_buf(sg, skb->data + offset, copy);
4385 		elt++;
4386 		if ((len -= copy) == 0)
4387 			return elt;
4388 		offset += copy;
4389 	}
4390 
4391 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4392 		int end;
4393 
4394 		WARN_ON(start > offset + len);
4395 
4396 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4397 		if ((copy = end - offset) > 0) {
4398 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4399 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4400 				return -EMSGSIZE;
4401 
4402 			if (copy > len)
4403 				copy = len;
4404 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4405 				    skb_frag_off(frag) + offset - start);
4406 			elt++;
4407 			if (!(len -= copy))
4408 				return elt;
4409 			offset += copy;
4410 		}
4411 		start = end;
4412 	}
4413 
4414 	skb_walk_frags(skb, frag_iter) {
4415 		int end, ret;
4416 
4417 		WARN_ON(start > offset + len);
4418 
4419 		end = start + frag_iter->len;
4420 		if ((copy = end - offset) > 0) {
4421 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4422 				return -EMSGSIZE;
4423 
4424 			if (copy > len)
4425 				copy = len;
4426 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4427 					      copy, recursion_level + 1);
4428 			if (unlikely(ret < 0))
4429 				return ret;
4430 			elt += ret;
4431 			if ((len -= copy) == 0)
4432 				return elt;
4433 			offset += copy;
4434 		}
4435 		start = end;
4436 	}
4437 	BUG_ON(len);
4438 	return elt;
4439 }
4440 
4441 /**
4442  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4443  *	@skb: Socket buffer containing the buffers to be mapped
4444  *	@sg: The scatter-gather list to map into
4445  *	@offset: The offset into the buffer's contents to start mapping
4446  *	@len: Length of buffer space to be mapped
4447  *
4448  *	Fill the specified scatter-gather list with mappings/pointers into a
4449  *	region of the buffer space attached to a socket buffer. Returns either
4450  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4451  *	could not fit.
4452  */
4453 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4454 {
4455 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4456 
4457 	if (nsg <= 0)
4458 		return nsg;
4459 
4460 	sg_mark_end(&sg[nsg - 1]);
4461 
4462 	return nsg;
4463 }
4464 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4465 
4466 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4467  * sglist without mark the sg which contain last skb data as the end.
4468  * So the caller can mannipulate sg list as will when padding new data after
4469  * the first call without calling sg_unmark_end to expend sg list.
4470  *
4471  * Scenario to use skb_to_sgvec_nomark:
4472  * 1. sg_init_table
4473  * 2. skb_to_sgvec_nomark(payload1)
4474  * 3. skb_to_sgvec_nomark(payload2)
4475  *
4476  * This is equivalent to:
4477  * 1. sg_init_table
4478  * 2. skb_to_sgvec(payload1)
4479  * 3. sg_unmark_end
4480  * 4. skb_to_sgvec(payload2)
4481  *
4482  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4483  * is more preferable.
4484  */
4485 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4486 			int offset, int len)
4487 {
4488 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4489 }
4490 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4491 
4492 
4493 
4494 /**
4495  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4496  *	@skb: The socket buffer to check.
4497  *	@tailbits: Amount of trailing space to be added
4498  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4499  *
4500  *	Make sure that the data buffers attached to a socket buffer are
4501  *	writable. If they are not, private copies are made of the data buffers
4502  *	and the socket buffer is set to use these instead.
4503  *
4504  *	If @tailbits is given, make sure that there is space to write @tailbits
4505  *	bytes of data beyond current end of socket buffer.  @trailer will be
4506  *	set to point to the skb in which this space begins.
4507  *
4508  *	The number of scatterlist elements required to completely map the
4509  *	COW'd and extended socket buffer will be returned.
4510  */
4511 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4512 {
4513 	int copyflag;
4514 	int elt;
4515 	struct sk_buff *skb1, **skb_p;
4516 
4517 	/* If skb is cloned or its head is paged, reallocate
4518 	 * head pulling out all the pages (pages are considered not writable
4519 	 * at the moment even if they are anonymous).
4520 	 */
4521 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4522 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4523 		return -ENOMEM;
4524 
4525 	/* Easy case. Most of packets will go this way. */
4526 	if (!skb_has_frag_list(skb)) {
4527 		/* A little of trouble, not enough of space for trailer.
4528 		 * This should not happen, when stack is tuned to generate
4529 		 * good frames. OK, on miss we reallocate and reserve even more
4530 		 * space, 128 bytes is fair. */
4531 
4532 		if (skb_tailroom(skb) < tailbits &&
4533 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4534 			return -ENOMEM;
4535 
4536 		/* Voila! */
4537 		*trailer = skb;
4538 		return 1;
4539 	}
4540 
4541 	/* Misery. We are in troubles, going to mincer fragments... */
4542 
4543 	elt = 1;
4544 	skb_p = &skb_shinfo(skb)->frag_list;
4545 	copyflag = 0;
4546 
4547 	while ((skb1 = *skb_p) != NULL) {
4548 		int ntail = 0;
4549 
4550 		/* The fragment is partially pulled by someone,
4551 		 * this can happen on input. Copy it and everything
4552 		 * after it. */
4553 
4554 		if (skb_shared(skb1))
4555 			copyflag = 1;
4556 
4557 		/* If the skb is the last, worry about trailer. */
4558 
4559 		if (skb1->next == NULL && tailbits) {
4560 			if (skb_shinfo(skb1)->nr_frags ||
4561 			    skb_has_frag_list(skb1) ||
4562 			    skb_tailroom(skb1) < tailbits)
4563 				ntail = tailbits + 128;
4564 		}
4565 
4566 		if (copyflag ||
4567 		    skb_cloned(skb1) ||
4568 		    ntail ||
4569 		    skb_shinfo(skb1)->nr_frags ||
4570 		    skb_has_frag_list(skb1)) {
4571 			struct sk_buff *skb2;
4572 
4573 			/* Fuck, we are miserable poor guys... */
4574 			if (ntail == 0)
4575 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4576 			else
4577 				skb2 = skb_copy_expand(skb1,
4578 						       skb_headroom(skb1),
4579 						       ntail,
4580 						       GFP_ATOMIC);
4581 			if (unlikely(skb2 == NULL))
4582 				return -ENOMEM;
4583 
4584 			if (skb1->sk)
4585 				skb_set_owner_w(skb2, skb1->sk);
4586 
4587 			/* Looking around. Are we still alive?
4588 			 * OK, link new skb, drop old one */
4589 
4590 			skb2->next = skb1->next;
4591 			*skb_p = skb2;
4592 			kfree_skb(skb1);
4593 			skb1 = skb2;
4594 		}
4595 		elt++;
4596 		*trailer = skb1;
4597 		skb_p = &skb1->next;
4598 	}
4599 
4600 	return elt;
4601 }
4602 EXPORT_SYMBOL_GPL(skb_cow_data);
4603 
4604 static void sock_rmem_free(struct sk_buff *skb)
4605 {
4606 	struct sock *sk = skb->sk;
4607 
4608 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4609 }
4610 
4611 static void skb_set_err_queue(struct sk_buff *skb)
4612 {
4613 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4614 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4615 	 */
4616 	skb->pkt_type = PACKET_OUTGOING;
4617 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4618 }
4619 
4620 /*
4621  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4622  */
4623 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4624 {
4625 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4626 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4627 		return -ENOMEM;
4628 
4629 	skb_orphan(skb);
4630 	skb->sk = sk;
4631 	skb->destructor = sock_rmem_free;
4632 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4633 	skb_set_err_queue(skb);
4634 
4635 	/* before exiting rcu section, make sure dst is refcounted */
4636 	skb_dst_force(skb);
4637 
4638 	skb_queue_tail(&sk->sk_error_queue, skb);
4639 	if (!sock_flag(sk, SOCK_DEAD))
4640 		sk_error_report(sk);
4641 	return 0;
4642 }
4643 EXPORT_SYMBOL(sock_queue_err_skb);
4644 
4645 static bool is_icmp_err_skb(const struct sk_buff *skb)
4646 {
4647 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4648 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4649 }
4650 
4651 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4652 {
4653 	struct sk_buff_head *q = &sk->sk_error_queue;
4654 	struct sk_buff *skb, *skb_next = NULL;
4655 	bool icmp_next = false;
4656 	unsigned long flags;
4657 
4658 	spin_lock_irqsave(&q->lock, flags);
4659 	skb = __skb_dequeue(q);
4660 	if (skb && (skb_next = skb_peek(q))) {
4661 		icmp_next = is_icmp_err_skb(skb_next);
4662 		if (icmp_next)
4663 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4664 	}
4665 	spin_unlock_irqrestore(&q->lock, flags);
4666 
4667 	if (is_icmp_err_skb(skb) && !icmp_next)
4668 		sk->sk_err = 0;
4669 
4670 	if (skb_next)
4671 		sk_error_report(sk);
4672 
4673 	return skb;
4674 }
4675 EXPORT_SYMBOL(sock_dequeue_err_skb);
4676 
4677 /**
4678  * skb_clone_sk - create clone of skb, and take reference to socket
4679  * @skb: the skb to clone
4680  *
4681  * This function creates a clone of a buffer that holds a reference on
4682  * sk_refcnt.  Buffers created via this function are meant to be
4683  * returned using sock_queue_err_skb, or free via kfree_skb.
4684  *
4685  * When passing buffers allocated with this function to sock_queue_err_skb
4686  * it is necessary to wrap the call with sock_hold/sock_put in order to
4687  * prevent the socket from being released prior to being enqueued on
4688  * the sk_error_queue.
4689  */
4690 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4691 {
4692 	struct sock *sk = skb->sk;
4693 	struct sk_buff *clone;
4694 
4695 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4696 		return NULL;
4697 
4698 	clone = skb_clone(skb, GFP_ATOMIC);
4699 	if (!clone) {
4700 		sock_put(sk);
4701 		return NULL;
4702 	}
4703 
4704 	clone->sk = sk;
4705 	clone->destructor = sock_efree;
4706 
4707 	return clone;
4708 }
4709 EXPORT_SYMBOL(skb_clone_sk);
4710 
4711 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4712 					struct sock *sk,
4713 					int tstype,
4714 					bool opt_stats)
4715 {
4716 	struct sock_exterr_skb *serr;
4717 	int err;
4718 
4719 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4720 
4721 	serr = SKB_EXT_ERR(skb);
4722 	memset(serr, 0, sizeof(*serr));
4723 	serr->ee.ee_errno = ENOMSG;
4724 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4725 	serr->ee.ee_info = tstype;
4726 	serr->opt_stats = opt_stats;
4727 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4728 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4729 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4730 		if (sk_is_tcp(sk))
4731 			serr->ee.ee_data -= sk->sk_tskey;
4732 	}
4733 
4734 	err = sock_queue_err_skb(sk, skb);
4735 
4736 	if (err)
4737 		kfree_skb(skb);
4738 }
4739 
4740 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4741 {
4742 	bool ret;
4743 
4744 	if (likely(sysctl_tstamp_allow_data || tsonly))
4745 		return true;
4746 
4747 	read_lock_bh(&sk->sk_callback_lock);
4748 	ret = sk->sk_socket && sk->sk_socket->file &&
4749 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4750 	read_unlock_bh(&sk->sk_callback_lock);
4751 	return ret;
4752 }
4753 
4754 void skb_complete_tx_timestamp(struct sk_buff *skb,
4755 			       struct skb_shared_hwtstamps *hwtstamps)
4756 {
4757 	struct sock *sk = skb->sk;
4758 
4759 	if (!skb_may_tx_timestamp(sk, false))
4760 		goto err;
4761 
4762 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4763 	 * but only if the socket refcount is not zero.
4764 	 */
4765 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4766 		*skb_hwtstamps(skb) = *hwtstamps;
4767 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4768 		sock_put(sk);
4769 		return;
4770 	}
4771 
4772 err:
4773 	kfree_skb(skb);
4774 }
4775 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4776 
4777 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4778 		     const struct sk_buff *ack_skb,
4779 		     struct skb_shared_hwtstamps *hwtstamps,
4780 		     struct sock *sk, int tstype)
4781 {
4782 	struct sk_buff *skb;
4783 	bool tsonly, opt_stats = false;
4784 
4785 	if (!sk)
4786 		return;
4787 
4788 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4789 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4790 		return;
4791 
4792 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4793 	if (!skb_may_tx_timestamp(sk, tsonly))
4794 		return;
4795 
4796 	if (tsonly) {
4797 #ifdef CONFIG_INET
4798 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4799 		    sk_is_tcp(sk)) {
4800 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4801 							     ack_skb);
4802 			opt_stats = true;
4803 		} else
4804 #endif
4805 			skb = alloc_skb(0, GFP_ATOMIC);
4806 	} else {
4807 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4808 	}
4809 	if (!skb)
4810 		return;
4811 
4812 	if (tsonly) {
4813 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4814 					     SKBTX_ANY_TSTAMP;
4815 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4816 	}
4817 
4818 	if (hwtstamps)
4819 		*skb_hwtstamps(skb) = *hwtstamps;
4820 	else
4821 		skb->tstamp = ktime_get_real();
4822 
4823 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4824 }
4825 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4826 
4827 void skb_tstamp_tx(struct sk_buff *orig_skb,
4828 		   struct skb_shared_hwtstamps *hwtstamps)
4829 {
4830 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4831 			       SCM_TSTAMP_SND);
4832 }
4833 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4834 
4835 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4836 {
4837 	struct sock *sk = skb->sk;
4838 	struct sock_exterr_skb *serr;
4839 	int err = 1;
4840 
4841 	skb->wifi_acked_valid = 1;
4842 	skb->wifi_acked = acked;
4843 
4844 	serr = SKB_EXT_ERR(skb);
4845 	memset(serr, 0, sizeof(*serr));
4846 	serr->ee.ee_errno = ENOMSG;
4847 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4848 
4849 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4850 	 * but only if the socket refcount is not zero.
4851 	 */
4852 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4853 		err = sock_queue_err_skb(sk, skb);
4854 		sock_put(sk);
4855 	}
4856 	if (err)
4857 		kfree_skb(skb);
4858 }
4859 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4860 
4861 /**
4862  * skb_partial_csum_set - set up and verify partial csum values for packet
4863  * @skb: the skb to set
4864  * @start: the number of bytes after skb->data to start checksumming.
4865  * @off: the offset from start to place the checksum.
4866  *
4867  * For untrusted partially-checksummed packets, we need to make sure the values
4868  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4869  *
4870  * This function checks and sets those values and skb->ip_summed: if this
4871  * returns false you should drop the packet.
4872  */
4873 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4874 {
4875 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4876 	u32 csum_start = skb_headroom(skb) + (u32)start;
4877 
4878 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4879 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4880 				     start, off, skb_headroom(skb), skb_headlen(skb));
4881 		return false;
4882 	}
4883 	skb->ip_summed = CHECKSUM_PARTIAL;
4884 	skb->csum_start = csum_start;
4885 	skb->csum_offset = off;
4886 	skb_set_transport_header(skb, start);
4887 	return true;
4888 }
4889 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4890 
4891 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4892 			       unsigned int max)
4893 {
4894 	if (skb_headlen(skb) >= len)
4895 		return 0;
4896 
4897 	/* If we need to pullup then pullup to the max, so we
4898 	 * won't need to do it again.
4899 	 */
4900 	if (max > skb->len)
4901 		max = skb->len;
4902 
4903 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4904 		return -ENOMEM;
4905 
4906 	if (skb_headlen(skb) < len)
4907 		return -EPROTO;
4908 
4909 	return 0;
4910 }
4911 
4912 #define MAX_TCP_HDR_LEN (15 * 4)
4913 
4914 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4915 				      typeof(IPPROTO_IP) proto,
4916 				      unsigned int off)
4917 {
4918 	int err;
4919 
4920 	switch (proto) {
4921 	case IPPROTO_TCP:
4922 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4923 					  off + MAX_TCP_HDR_LEN);
4924 		if (!err && !skb_partial_csum_set(skb, off,
4925 						  offsetof(struct tcphdr,
4926 							   check)))
4927 			err = -EPROTO;
4928 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4929 
4930 	case IPPROTO_UDP:
4931 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4932 					  off + sizeof(struct udphdr));
4933 		if (!err && !skb_partial_csum_set(skb, off,
4934 						  offsetof(struct udphdr,
4935 							   check)))
4936 			err = -EPROTO;
4937 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4938 	}
4939 
4940 	return ERR_PTR(-EPROTO);
4941 }
4942 
4943 /* This value should be large enough to cover a tagged ethernet header plus
4944  * maximally sized IP and TCP or UDP headers.
4945  */
4946 #define MAX_IP_HDR_LEN 128
4947 
4948 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4949 {
4950 	unsigned int off;
4951 	bool fragment;
4952 	__sum16 *csum;
4953 	int err;
4954 
4955 	fragment = false;
4956 
4957 	err = skb_maybe_pull_tail(skb,
4958 				  sizeof(struct iphdr),
4959 				  MAX_IP_HDR_LEN);
4960 	if (err < 0)
4961 		goto out;
4962 
4963 	if (ip_is_fragment(ip_hdr(skb)))
4964 		fragment = true;
4965 
4966 	off = ip_hdrlen(skb);
4967 
4968 	err = -EPROTO;
4969 
4970 	if (fragment)
4971 		goto out;
4972 
4973 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4974 	if (IS_ERR(csum))
4975 		return PTR_ERR(csum);
4976 
4977 	if (recalculate)
4978 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4979 					   ip_hdr(skb)->daddr,
4980 					   skb->len - off,
4981 					   ip_hdr(skb)->protocol, 0);
4982 	err = 0;
4983 
4984 out:
4985 	return err;
4986 }
4987 
4988 /* This value should be large enough to cover a tagged ethernet header plus
4989  * an IPv6 header, all options, and a maximal TCP or UDP header.
4990  */
4991 #define MAX_IPV6_HDR_LEN 256
4992 
4993 #define OPT_HDR(type, skb, off) \
4994 	(type *)(skb_network_header(skb) + (off))
4995 
4996 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4997 {
4998 	int err;
4999 	u8 nexthdr;
5000 	unsigned int off;
5001 	unsigned int len;
5002 	bool fragment;
5003 	bool done;
5004 	__sum16 *csum;
5005 
5006 	fragment = false;
5007 	done = false;
5008 
5009 	off = sizeof(struct ipv6hdr);
5010 
5011 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5012 	if (err < 0)
5013 		goto out;
5014 
5015 	nexthdr = ipv6_hdr(skb)->nexthdr;
5016 
5017 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5018 	while (off <= len && !done) {
5019 		switch (nexthdr) {
5020 		case IPPROTO_DSTOPTS:
5021 		case IPPROTO_HOPOPTS:
5022 		case IPPROTO_ROUTING: {
5023 			struct ipv6_opt_hdr *hp;
5024 
5025 			err = skb_maybe_pull_tail(skb,
5026 						  off +
5027 						  sizeof(struct ipv6_opt_hdr),
5028 						  MAX_IPV6_HDR_LEN);
5029 			if (err < 0)
5030 				goto out;
5031 
5032 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5033 			nexthdr = hp->nexthdr;
5034 			off += ipv6_optlen(hp);
5035 			break;
5036 		}
5037 		case IPPROTO_AH: {
5038 			struct ip_auth_hdr *hp;
5039 
5040 			err = skb_maybe_pull_tail(skb,
5041 						  off +
5042 						  sizeof(struct ip_auth_hdr),
5043 						  MAX_IPV6_HDR_LEN);
5044 			if (err < 0)
5045 				goto out;
5046 
5047 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5048 			nexthdr = hp->nexthdr;
5049 			off += ipv6_authlen(hp);
5050 			break;
5051 		}
5052 		case IPPROTO_FRAGMENT: {
5053 			struct frag_hdr *hp;
5054 
5055 			err = skb_maybe_pull_tail(skb,
5056 						  off +
5057 						  sizeof(struct frag_hdr),
5058 						  MAX_IPV6_HDR_LEN);
5059 			if (err < 0)
5060 				goto out;
5061 
5062 			hp = OPT_HDR(struct frag_hdr, skb, off);
5063 
5064 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5065 				fragment = true;
5066 
5067 			nexthdr = hp->nexthdr;
5068 			off += sizeof(struct frag_hdr);
5069 			break;
5070 		}
5071 		default:
5072 			done = true;
5073 			break;
5074 		}
5075 	}
5076 
5077 	err = -EPROTO;
5078 
5079 	if (!done || fragment)
5080 		goto out;
5081 
5082 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5083 	if (IS_ERR(csum))
5084 		return PTR_ERR(csum);
5085 
5086 	if (recalculate)
5087 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5088 					 &ipv6_hdr(skb)->daddr,
5089 					 skb->len - off, nexthdr, 0);
5090 	err = 0;
5091 
5092 out:
5093 	return err;
5094 }
5095 
5096 /**
5097  * skb_checksum_setup - set up partial checksum offset
5098  * @skb: the skb to set up
5099  * @recalculate: if true the pseudo-header checksum will be recalculated
5100  */
5101 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5102 {
5103 	int err;
5104 
5105 	switch (skb->protocol) {
5106 	case htons(ETH_P_IP):
5107 		err = skb_checksum_setup_ipv4(skb, recalculate);
5108 		break;
5109 
5110 	case htons(ETH_P_IPV6):
5111 		err = skb_checksum_setup_ipv6(skb, recalculate);
5112 		break;
5113 
5114 	default:
5115 		err = -EPROTO;
5116 		break;
5117 	}
5118 
5119 	return err;
5120 }
5121 EXPORT_SYMBOL(skb_checksum_setup);
5122 
5123 /**
5124  * skb_checksum_maybe_trim - maybe trims the given skb
5125  * @skb: the skb to check
5126  * @transport_len: the data length beyond the network header
5127  *
5128  * Checks whether the given skb has data beyond the given transport length.
5129  * If so, returns a cloned skb trimmed to this transport length.
5130  * Otherwise returns the provided skb. Returns NULL in error cases
5131  * (e.g. transport_len exceeds skb length or out-of-memory).
5132  *
5133  * Caller needs to set the skb transport header and free any returned skb if it
5134  * differs from the provided skb.
5135  */
5136 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5137 					       unsigned int transport_len)
5138 {
5139 	struct sk_buff *skb_chk;
5140 	unsigned int len = skb_transport_offset(skb) + transport_len;
5141 	int ret;
5142 
5143 	if (skb->len < len)
5144 		return NULL;
5145 	else if (skb->len == len)
5146 		return skb;
5147 
5148 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5149 	if (!skb_chk)
5150 		return NULL;
5151 
5152 	ret = pskb_trim_rcsum(skb_chk, len);
5153 	if (ret) {
5154 		kfree_skb(skb_chk);
5155 		return NULL;
5156 	}
5157 
5158 	return skb_chk;
5159 }
5160 
5161 /**
5162  * skb_checksum_trimmed - validate checksum of an skb
5163  * @skb: the skb to check
5164  * @transport_len: the data length beyond the network header
5165  * @skb_chkf: checksum function to use
5166  *
5167  * Applies the given checksum function skb_chkf to the provided skb.
5168  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5169  *
5170  * If the skb has data beyond the given transport length, then a
5171  * trimmed & cloned skb is checked and returned.
5172  *
5173  * Caller needs to set the skb transport header and free any returned skb if it
5174  * differs from the provided skb.
5175  */
5176 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5177 				     unsigned int transport_len,
5178 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5179 {
5180 	struct sk_buff *skb_chk;
5181 	unsigned int offset = skb_transport_offset(skb);
5182 	__sum16 ret;
5183 
5184 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5185 	if (!skb_chk)
5186 		goto err;
5187 
5188 	if (!pskb_may_pull(skb_chk, offset))
5189 		goto err;
5190 
5191 	skb_pull_rcsum(skb_chk, offset);
5192 	ret = skb_chkf(skb_chk);
5193 	skb_push_rcsum(skb_chk, offset);
5194 
5195 	if (ret)
5196 		goto err;
5197 
5198 	return skb_chk;
5199 
5200 err:
5201 	if (skb_chk && skb_chk != skb)
5202 		kfree_skb(skb_chk);
5203 
5204 	return NULL;
5205 
5206 }
5207 EXPORT_SYMBOL(skb_checksum_trimmed);
5208 
5209 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5210 {
5211 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5212 			     skb->dev->name);
5213 }
5214 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5215 
5216 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5217 {
5218 	if (head_stolen) {
5219 		skb_release_head_state(skb);
5220 		kmem_cache_free(skbuff_head_cache, skb);
5221 	} else {
5222 		__kfree_skb(skb);
5223 	}
5224 }
5225 EXPORT_SYMBOL(kfree_skb_partial);
5226 
5227 /**
5228  * skb_try_coalesce - try to merge skb to prior one
5229  * @to: prior buffer
5230  * @from: buffer to add
5231  * @fragstolen: pointer to boolean
5232  * @delta_truesize: how much more was allocated than was requested
5233  */
5234 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5235 		      bool *fragstolen, int *delta_truesize)
5236 {
5237 	struct skb_shared_info *to_shinfo, *from_shinfo;
5238 	int i, delta, len = from->len;
5239 
5240 	*fragstolen = false;
5241 
5242 	if (skb_cloned(to))
5243 		return false;
5244 
5245 	/* The page pool signature of struct page will eventually figure out
5246 	 * which pages can be recycled or not but for now let's prohibit slab
5247 	 * allocated and page_pool allocated SKBs from being coalesced.
5248 	 */
5249 	if (to->pp_recycle != from->pp_recycle)
5250 		return false;
5251 
5252 	if (len <= skb_tailroom(to)) {
5253 		if (len)
5254 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5255 		*delta_truesize = 0;
5256 		return true;
5257 	}
5258 
5259 	to_shinfo = skb_shinfo(to);
5260 	from_shinfo = skb_shinfo(from);
5261 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5262 		return false;
5263 	if (skb_zcopy(to) || skb_zcopy(from))
5264 		return false;
5265 
5266 	if (skb_headlen(from) != 0) {
5267 		struct page *page;
5268 		unsigned int offset;
5269 
5270 		if (to_shinfo->nr_frags +
5271 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5272 			return false;
5273 
5274 		if (skb_head_is_locked(from))
5275 			return false;
5276 
5277 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5278 
5279 		page = virt_to_head_page(from->head);
5280 		offset = from->data - (unsigned char *)page_address(page);
5281 
5282 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5283 				   page, offset, skb_headlen(from));
5284 		*fragstolen = true;
5285 	} else {
5286 		if (to_shinfo->nr_frags +
5287 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5288 			return false;
5289 
5290 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5291 	}
5292 
5293 	WARN_ON_ONCE(delta < len);
5294 
5295 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5296 	       from_shinfo->frags,
5297 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5298 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5299 
5300 	if (!skb_cloned(from))
5301 		from_shinfo->nr_frags = 0;
5302 
5303 	/* if the skb is not cloned this does nothing
5304 	 * since we set nr_frags to 0.
5305 	 */
5306 	for (i = 0; i < from_shinfo->nr_frags; i++)
5307 		__skb_frag_ref(&from_shinfo->frags[i]);
5308 
5309 	to->truesize += delta;
5310 	to->len += len;
5311 	to->data_len += len;
5312 
5313 	*delta_truesize = delta;
5314 	return true;
5315 }
5316 EXPORT_SYMBOL(skb_try_coalesce);
5317 
5318 /**
5319  * skb_scrub_packet - scrub an skb
5320  *
5321  * @skb: buffer to clean
5322  * @xnet: packet is crossing netns
5323  *
5324  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5325  * into/from a tunnel. Some information have to be cleared during these
5326  * operations.
5327  * skb_scrub_packet can also be used to clean a skb before injecting it in
5328  * another namespace (@xnet == true). We have to clear all information in the
5329  * skb that could impact namespace isolation.
5330  */
5331 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5332 {
5333 	skb->pkt_type = PACKET_HOST;
5334 	skb->skb_iif = 0;
5335 	skb->ignore_df = 0;
5336 	skb_dst_drop(skb);
5337 	skb_ext_reset(skb);
5338 	nf_reset_ct(skb);
5339 	nf_reset_trace(skb);
5340 
5341 #ifdef CONFIG_NET_SWITCHDEV
5342 	skb->offload_fwd_mark = 0;
5343 	skb->offload_l3_fwd_mark = 0;
5344 #endif
5345 
5346 	if (!xnet)
5347 		return;
5348 
5349 	ipvs_reset(skb);
5350 	skb->mark = 0;
5351 	skb->tstamp = 0;
5352 }
5353 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5354 
5355 /**
5356  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5357  *
5358  * @skb: GSO skb
5359  *
5360  * skb_gso_transport_seglen is used to determine the real size of the
5361  * individual segments, including Layer4 headers (TCP/UDP).
5362  *
5363  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5364  */
5365 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5366 {
5367 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5368 	unsigned int thlen = 0;
5369 
5370 	if (skb->encapsulation) {
5371 		thlen = skb_inner_transport_header(skb) -
5372 			skb_transport_header(skb);
5373 
5374 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5375 			thlen += inner_tcp_hdrlen(skb);
5376 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5377 		thlen = tcp_hdrlen(skb);
5378 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5379 		thlen = sizeof(struct sctphdr);
5380 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5381 		thlen = sizeof(struct udphdr);
5382 	}
5383 	/* UFO sets gso_size to the size of the fragmentation
5384 	 * payload, i.e. the size of the L4 (UDP) header is already
5385 	 * accounted for.
5386 	 */
5387 	return thlen + shinfo->gso_size;
5388 }
5389 
5390 /**
5391  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5392  *
5393  * @skb: GSO skb
5394  *
5395  * skb_gso_network_seglen is used to determine the real size of the
5396  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5397  *
5398  * The MAC/L2 header is not accounted for.
5399  */
5400 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5401 {
5402 	unsigned int hdr_len = skb_transport_header(skb) -
5403 			       skb_network_header(skb);
5404 
5405 	return hdr_len + skb_gso_transport_seglen(skb);
5406 }
5407 
5408 /**
5409  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5410  *
5411  * @skb: GSO skb
5412  *
5413  * skb_gso_mac_seglen is used to determine the real size of the
5414  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5415  * headers (TCP/UDP).
5416  */
5417 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5418 {
5419 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5420 
5421 	return hdr_len + skb_gso_transport_seglen(skb);
5422 }
5423 
5424 /**
5425  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5426  *
5427  * There are a couple of instances where we have a GSO skb, and we
5428  * want to determine what size it would be after it is segmented.
5429  *
5430  * We might want to check:
5431  * -    L3+L4+payload size (e.g. IP forwarding)
5432  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5433  *
5434  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5435  *
5436  * @skb: GSO skb
5437  *
5438  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5439  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5440  *
5441  * @max_len: The maximum permissible length.
5442  *
5443  * Returns true if the segmented length <= max length.
5444  */
5445 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5446 				      unsigned int seg_len,
5447 				      unsigned int max_len) {
5448 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5449 	const struct sk_buff *iter;
5450 
5451 	if (shinfo->gso_size != GSO_BY_FRAGS)
5452 		return seg_len <= max_len;
5453 
5454 	/* Undo this so we can re-use header sizes */
5455 	seg_len -= GSO_BY_FRAGS;
5456 
5457 	skb_walk_frags(skb, iter) {
5458 		if (seg_len + skb_headlen(iter) > max_len)
5459 			return false;
5460 	}
5461 
5462 	return true;
5463 }
5464 
5465 /**
5466  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5467  *
5468  * @skb: GSO skb
5469  * @mtu: MTU to validate against
5470  *
5471  * skb_gso_validate_network_len validates if a given skb will fit a
5472  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5473  * payload.
5474  */
5475 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5476 {
5477 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5478 }
5479 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5480 
5481 /**
5482  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5483  *
5484  * @skb: GSO skb
5485  * @len: length to validate against
5486  *
5487  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5488  * length once split, including L2, L3 and L4 headers and the payload.
5489  */
5490 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5491 {
5492 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5493 }
5494 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5495 
5496 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5497 {
5498 	int mac_len, meta_len;
5499 	void *meta;
5500 
5501 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5502 		kfree_skb(skb);
5503 		return NULL;
5504 	}
5505 
5506 	mac_len = skb->data - skb_mac_header(skb);
5507 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5508 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5509 			mac_len - VLAN_HLEN - ETH_TLEN);
5510 	}
5511 
5512 	meta_len = skb_metadata_len(skb);
5513 	if (meta_len) {
5514 		meta = skb_metadata_end(skb) - meta_len;
5515 		memmove(meta + VLAN_HLEN, meta, meta_len);
5516 	}
5517 
5518 	skb->mac_header += VLAN_HLEN;
5519 	return skb;
5520 }
5521 
5522 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5523 {
5524 	struct vlan_hdr *vhdr;
5525 	u16 vlan_tci;
5526 
5527 	if (unlikely(skb_vlan_tag_present(skb))) {
5528 		/* vlan_tci is already set-up so leave this for another time */
5529 		return skb;
5530 	}
5531 
5532 	skb = skb_share_check(skb, GFP_ATOMIC);
5533 	if (unlikely(!skb))
5534 		goto err_free;
5535 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5536 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5537 		goto err_free;
5538 
5539 	vhdr = (struct vlan_hdr *)skb->data;
5540 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5541 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5542 
5543 	skb_pull_rcsum(skb, VLAN_HLEN);
5544 	vlan_set_encap_proto(skb, vhdr);
5545 
5546 	skb = skb_reorder_vlan_header(skb);
5547 	if (unlikely(!skb))
5548 		goto err_free;
5549 
5550 	skb_reset_network_header(skb);
5551 	if (!skb_transport_header_was_set(skb))
5552 		skb_reset_transport_header(skb);
5553 	skb_reset_mac_len(skb);
5554 
5555 	return skb;
5556 
5557 err_free:
5558 	kfree_skb(skb);
5559 	return NULL;
5560 }
5561 EXPORT_SYMBOL(skb_vlan_untag);
5562 
5563 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5564 {
5565 	if (!pskb_may_pull(skb, write_len))
5566 		return -ENOMEM;
5567 
5568 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5569 		return 0;
5570 
5571 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5572 }
5573 EXPORT_SYMBOL(skb_ensure_writable);
5574 
5575 /* remove VLAN header from packet and update csum accordingly.
5576  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5577  */
5578 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5579 {
5580 	struct vlan_hdr *vhdr;
5581 	int offset = skb->data - skb_mac_header(skb);
5582 	int err;
5583 
5584 	if (WARN_ONCE(offset,
5585 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5586 		      offset)) {
5587 		return -EINVAL;
5588 	}
5589 
5590 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5591 	if (unlikely(err))
5592 		return err;
5593 
5594 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5595 
5596 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5597 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5598 
5599 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5600 	__skb_pull(skb, VLAN_HLEN);
5601 
5602 	vlan_set_encap_proto(skb, vhdr);
5603 	skb->mac_header += VLAN_HLEN;
5604 
5605 	if (skb_network_offset(skb) < ETH_HLEN)
5606 		skb_set_network_header(skb, ETH_HLEN);
5607 
5608 	skb_reset_mac_len(skb);
5609 
5610 	return err;
5611 }
5612 EXPORT_SYMBOL(__skb_vlan_pop);
5613 
5614 /* Pop a vlan tag either from hwaccel or from payload.
5615  * Expects skb->data at mac header.
5616  */
5617 int skb_vlan_pop(struct sk_buff *skb)
5618 {
5619 	u16 vlan_tci;
5620 	__be16 vlan_proto;
5621 	int err;
5622 
5623 	if (likely(skb_vlan_tag_present(skb))) {
5624 		__vlan_hwaccel_clear_tag(skb);
5625 	} else {
5626 		if (unlikely(!eth_type_vlan(skb->protocol)))
5627 			return 0;
5628 
5629 		err = __skb_vlan_pop(skb, &vlan_tci);
5630 		if (err)
5631 			return err;
5632 	}
5633 	/* move next vlan tag to hw accel tag */
5634 	if (likely(!eth_type_vlan(skb->protocol)))
5635 		return 0;
5636 
5637 	vlan_proto = skb->protocol;
5638 	err = __skb_vlan_pop(skb, &vlan_tci);
5639 	if (unlikely(err))
5640 		return err;
5641 
5642 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5643 	return 0;
5644 }
5645 EXPORT_SYMBOL(skb_vlan_pop);
5646 
5647 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5648  * Expects skb->data at mac header.
5649  */
5650 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5651 {
5652 	if (skb_vlan_tag_present(skb)) {
5653 		int offset = skb->data - skb_mac_header(skb);
5654 		int err;
5655 
5656 		if (WARN_ONCE(offset,
5657 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5658 			      offset)) {
5659 			return -EINVAL;
5660 		}
5661 
5662 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5663 					skb_vlan_tag_get(skb));
5664 		if (err)
5665 			return err;
5666 
5667 		skb->protocol = skb->vlan_proto;
5668 		skb->mac_len += VLAN_HLEN;
5669 
5670 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5671 	}
5672 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5673 	return 0;
5674 }
5675 EXPORT_SYMBOL(skb_vlan_push);
5676 
5677 /**
5678  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5679  *
5680  * @skb: Socket buffer to modify
5681  *
5682  * Drop the Ethernet header of @skb.
5683  *
5684  * Expects that skb->data points to the mac header and that no VLAN tags are
5685  * present.
5686  *
5687  * Returns 0 on success, -errno otherwise.
5688  */
5689 int skb_eth_pop(struct sk_buff *skb)
5690 {
5691 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5692 	    skb_network_offset(skb) < ETH_HLEN)
5693 		return -EPROTO;
5694 
5695 	skb_pull_rcsum(skb, ETH_HLEN);
5696 	skb_reset_mac_header(skb);
5697 	skb_reset_mac_len(skb);
5698 
5699 	return 0;
5700 }
5701 EXPORT_SYMBOL(skb_eth_pop);
5702 
5703 /**
5704  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5705  *
5706  * @skb: Socket buffer to modify
5707  * @dst: Destination MAC address of the new header
5708  * @src: Source MAC address of the new header
5709  *
5710  * Prepend @skb with a new Ethernet header.
5711  *
5712  * Expects that skb->data points to the mac header, which must be empty.
5713  *
5714  * Returns 0 on success, -errno otherwise.
5715  */
5716 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5717 		 const unsigned char *src)
5718 {
5719 	struct ethhdr *eth;
5720 	int err;
5721 
5722 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5723 		return -EPROTO;
5724 
5725 	err = skb_cow_head(skb, sizeof(*eth));
5726 	if (err < 0)
5727 		return err;
5728 
5729 	skb_push(skb, sizeof(*eth));
5730 	skb_reset_mac_header(skb);
5731 	skb_reset_mac_len(skb);
5732 
5733 	eth = eth_hdr(skb);
5734 	ether_addr_copy(eth->h_dest, dst);
5735 	ether_addr_copy(eth->h_source, src);
5736 	eth->h_proto = skb->protocol;
5737 
5738 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5739 
5740 	return 0;
5741 }
5742 EXPORT_SYMBOL(skb_eth_push);
5743 
5744 /* Update the ethertype of hdr and the skb csum value if required. */
5745 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5746 			     __be16 ethertype)
5747 {
5748 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5749 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5750 
5751 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5752 	}
5753 
5754 	hdr->h_proto = ethertype;
5755 }
5756 
5757 /**
5758  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5759  *                   the packet
5760  *
5761  * @skb: buffer
5762  * @mpls_lse: MPLS label stack entry to push
5763  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5764  * @mac_len: length of the MAC header
5765  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5766  *            ethernet
5767  *
5768  * Expects skb->data at mac header.
5769  *
5770  * Returns 0 on success, -errno otherwise.
5771  */
5772 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5773 		  int mac_len, bool ethernet)
5774 {
5775 	struct mpls_shim_hdr *lse;
5776 	int err;
5777 
5778 	if (unlikely(!eth_p_mpls(mpls_proto)))
5779 		return -EINVAL;
5780 
5781 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5782 	if (skb->encapsulation)
5783 		return -EINVAL;
5784 
5785 	err = skb_cow_head(skb, MPLS_HLEN);
5786 	if (unlikely(err))
5787 		return err;
5788 
5789 	if (!skb->inner_protocol) {
5790 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5791 		skb_set_inner_protocol(skb, skb->protocol);
5792 	}
5793 
5794 	skb_push(skb, MPLS_HLEN);
5795 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5796 		mac_len);
5797 	skb_reset_mac_header(skb);
5798 	skb_set_network_header(skb, mac_len);
5799 	skb_reset_mac_len(skb);
5800 
5801 	lse = mpls_hdr(skb);
5802 	lse->label_stack_entry = mpls_lse;
5803 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5804 
5805 	if (ethernet && mac_len >= ETH_HLEN)
5806 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5807 	skb->protocol = mpls_proto;
5808 
5809 	return 0;
5810 }
5811 EXPORT_SYMBOL_GPL(skb_mpls_push);
5812 
5813 /**
5814  * skb_mpls_pop() - pop the outermost MPLS header
5815  *
5816  * @skb: buffer
5817  * @next_proto: ethertype of header after popped MPLS header
5818  * @mac_len: length of the MAC header
5819  * @ethernet: flag to indicate if the packet is ethernet
5820  *
5821  * Expects skb->data at mac header.
5822  *
5823  * Returns 0 on success, -errno otherwise.
5824  */
5825 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5826 		 bool ethernet)
5827 {
5828 	int err;
5829 
5830 	if (unlikely(!eth_p_mpls(skb->protocol)))
5831 		return 0;
5832 
5833 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5834 	if (unlikely(err))
5835 		return err;
5836 
5837 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5838 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5839 		mac_len);
5840 
5841 	__skb_pull(skb, MPLS_HLEN);
5842 	skb_reset_mac_header(skb);
5843 	skb_set_network_header(skb, mac_len);
5844 
5845 	if (ethernet && mac_len >= ETH_HLEN) {
5846 		struct ethhdr *hdr;
5847 
5848 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5849 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5850 		skb_mod_eth_type(skb, hdr, next_proto);
5851 	}
5852 	skb->protocol = next_proto;
5853 
5854 	return 0;
5855 }
5856 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5857 
5858 /**
5859  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5860  *
5861  * @skb: buffer
5862  * @mpls_lse: new MPLS label stack entry to update to
5863  *
5864  * Expects skb->data at mac header.
5865  *
5866  * Returns 0 on success, -errno otherwise.
5867  */
5868 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5869 {
5870 	int err;
5871 
5872 	if (unlikely(!eth_p_mpls(skb->protocol)))
5873 		return -EINVAL;
5874 
5875 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5876 	if (unlikely(err))
5877 		return err;
5878 
5879 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5880 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5881 
5882 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5883 	}
5884 
5885 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5886 
5887 	return 0;
5888 }
5889 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5890 
5891 /**
5892  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5893  *
5894  * @skb: buffer
5895  *
5896  * Expects skb->data at mac header.
5897  *
5898  * Returns 0 on success, -errno otherwise.
5899  */
5900 int skb_mpls_dec_ttl(struct sk_buff *skb)
5901 {
5902 	u32 lse;
5903 	u8 ttl;
5904 
5905 	if (unlikely(!eth_p_mpls(skb->protocol)))
5906 		return -EINVAL;
5907 
5908 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5909 		return -ENOMEM;
5910 
5911 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5912 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5913 	if (!--ttl)
5914 		return -EINVAL;
5915 
5916 	lse &= ~MPLS_LS_TTL_MASK;
5917 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5918 
5919 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5920 }
5921 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5922 
5923 /**
5924  * alloc_skb_with_frags - allocate skb with page frags
5925  *
5926  * @header_len: size of linear part
5927  * @data_len: needed length in frags
5928  * @max_page_order: max page order desired.
5929  * @errcode: pointer to error code if any
5930  * @gfp_mask: allocation mask
5931  *
5932  * This can be used to allocate a paged skb, given a maximal order for frags.
5933  */
5934 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5935 				     unsigned long data_len,
5936 				     int max_page_order,
5937 				     int *errcode,
5938 				     gfp_t gfp_mask)
5939 {
5940 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5941 	unsigned long chunk;
5942 	struct sk_buff *skb;
5943 	struct page *page;
5944 	int i;
5945 
5946 	*errcode = -EMSGSIZE;
5947 	/* Note this test could be relaxed, if we succeed to allocate
5948 	 * high order pages...
5949 	 */
5950 	if (npages > MAX_SKB_FRAGS)
5951 		return NULL;
5952 
5953 	*errcode = -ENOBUFS;
5954 	skb = alloc_skb(header_len, gfp_mask);
5955 	if (!skb)
5956 		return NULL;
5957 
5958 	skb->truesize += npages << PAGE_SHIFT;
5959 
5960 	for (i = 0; npages > 0; i++) {
5961 		int order = max_page_order;
5962 
5963 		while (order) {
5964 			if (npages >= 1 << order) {
5965 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5966 						   __GFP_COMP |
5967 						   __GFP_NOWARN,
5968 						   order);
5969 				if (page)
5970 					goto fill_page;
5971 				/* Do not retry other high order allocations */
5972 				order = 1;
5973 				max_page_order = 0;
5974 			}
5975 			order--;
5976 		}
5977 		page = alloc_page(gfp_mask);
5978 		if (!page)
5979 			goto failure;
5980 fill_page:
5981 		chunk = min_t(unsigned long, data_len,
5982 			      PAGE_SIZE << order);
5983 		skb_fill_page_desc(skb, i, page, 0, chunk);
5984 		data_len -= chunk;
5985 		npages -= 1 << order;
5986 	}
5987 	return skb;
5988 
5989 failure:
5990 	kfree_skb(skb);
5991 	return NULL;
5992 }
5993 EXPORT_SYMBOL(alloc_skb_with_frags);
5994 
5995 /* carve out the first off bytes from skb when off < headlen */
5996 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5997 				    const int headlen, gfp_t gfp_mask)
5998 {
5999 	int i;
6000 	int size = skb_end_offset(skb);
6001 	int new_hlen = headlen - off;
6002 	u8 *data;
6003 
6004 	size = SKB_DATA_ALIGN(size);
6005 
6006 	if (skb_pfmemalloc(skb))
6007 		gfp_mask |= __GFP_MEMALLOC;
6008 	data = kmalloc_reserve(size +
6009 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6010 			       gfp_mask, NUMA_NO_NODE, NULL);
6011 	if (!data)
6012 		return -ENOMEM;
6013 
6014 	size = SKB_WITH_OVERHEAD(ksize(data));
6015 
6016 	/* Copy real data, and all frags */
6017 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6018 	skb->len -= off;
6019 
6020 	memcpy((struct skb_shared_info *)(data + size),
6021 	       skb_shinfo(skb),
6022 	       offsetof(struct skb_shared_info,
6023 			frags[skb_shinfo(skb)->nr_frags]));
6024 	if (skb_cloned(skb)) {
6025 		/* drop the old head gracefully */
6026 		if (skb_orphan_frags(skb, gfp_mask)) {
6027 			kfree(data);
6028 			return -ENOMEM;
6029 		}
6030 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6031 			skb_frag_ref(skb, i);
6032 		if (skb_has_frag_list(skb))
6033 			skb_clone_fraglist(skb);
6034 		skb_release_data(skb);
6035 	} else {
6036 		/* we can reuse existing recount- all we did was
6037 		 * relocate values
6038 		 */
6039 		skb_free_head(skb);
6040 	}
6041 
6042 	skb->head = data;
6043 	skb->data = data;
6044 	skb->head_frag = 0;
6045 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6046 	skb->end = size;
6047 #else
6048 	skb->end = skb->head + size;
6049 #endif
6050 	skb_set_tail_pointer(skb, skb_headlen(skb));
6051 	skb_headers_offset_update(skb, 0);
6052 	skb->cloned = 0;
6053 	skb->hdr_len = 0;
6054 	skb->nohdr = 0;
6055 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6056 
6057 	return 0;
6058 }
6059 
6060 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6061 
6062 /* carve out the first eat bytes from skb's frag_list. May recurse into
6063  * pskb_carve()
6064  */
6065 static int pskb_carve_frag_list(struct sk_buff *skb,
6066 				struct skb_shared_info *shinfo, int eat,
6067 				gfp_t gfp_mask)
6068 {
6069 	struct sk_buff *list = shinfo->frag_list;
6070 	struct sk_buff *clone = NULL;
6071 	struct sk_buff *insp = NULL;
6072 
6073 	do {
6074 		if (!list) {
6075 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6076 			return -EFAULT;
6077 		}
6078 		if (list->len <= eat) {
6079 			/* Eaten as whole. */
6080 			eat -= list->len;
6081 			list = list->next;
6082 			insp = list;
6083 		} else {
6084 			/* Eaten partially. */
6085 			if (skb_shared(list)) {
6086 				clone = skb_clone(list, gfp_mask);
6087 				if (!clone)
6088 					return -ENOMEM;
6089 				insp = list->next;
6090 				list = clone;
6091 			} else {
6092 				/* This may be pulled without problems. */
6093 				insp = list;
6094 			}
6095 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6096 				kfree_skb(clone);
6097 				return -ENOMEM;
6098 			}
6099 			break;
6100 		}
6101 	} while (eat);
6102 
6103 	/* Free pulled out fragments. */
6104 	while ((list = shinfo->frag_list) != insp) {
6105 		shinfo->frag_list = list->next;
6106 		kfree_skb(list);
6107 	}
6108 	/* And insert new clone at head. */
6109 	if (clone) {
6110 		clone->next = list;
6111 		shinfo->frag_list = clone;
6112 	}
6113 	return 0;
6114 }
6115 
6116 /* carve off first len bytes from skb. Split line (off) is in the
6117  * non-linear part of skb
6118  */
6119 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6120 				       int pos, gfp_t gfp_mask)
6121 {
6122 	int i, k = 0;
6123 	int size = skb_end_offset(skb);
6124 	u8 *data;
6125 	const int nfrags = skb_shinfo(skb)->nr_frags;
6126 	struct skb_shared_info *shinfo;
6127 
6128 	size = SKB_DATA_ALIGN(size);
6129 
6130 	if (skb_pfmemalloc(skb))
6131 		gfp_mask |= __GFP_MEMALLOC;
6132 	data = kmalloc_reserve(size +
6133 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6134 			       gfp_mask, NUMA_NO_NODE, NULL);
6135 	if (!data)
6136 		return -ENOMEM;
6137 
6138 	size = SKB_WITH_OVERHEAD(ksize(data));
6139 
6140 	memcpy((struct skb_shared_info *)(data + size),
6141 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6142 	if (skb_orphan_frags(skb, gfp_mask)) {
6143 		kfree(data);
6144 		return -ENOMEM;
6145 	}
6146 	shinfo = (struct skb_shared_info *)(data + size);
6147 	for (i = 0; i < nfrags; i++) {
6148 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6149 
6150 		if (pos + fsize > off) {
6151 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6152 
6153 			if (pos < off) {
6154 				/* Split frag.
6155 				 * We have two variants in this case:
6156 				 * 1. Move all the frag to the second
6157 				 *    part, if it is possible. F.e.
6158 				 *    this approach is mandatory for TUX,
6159 				 *    where splitting is expensive.
6160 				 * 2. Split is accurately. We make this.
6161 				 */
6162 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6163 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6164 			}
6165 			skb_frag_ref(skb, i);
6166 			k++;
6167 		}
6168 		pos += fsize;
6169 	}
6170 	shinfo->nr_frags = k;
6171 	if (skb_has_frag_list(skb))
6172 		skb_clone_fraglist(skb);
6173 
6174 	/* split line is in frag list */
6175 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6176 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6177 		if (skb_has_frag_list(skb))
6178 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6179 		kfree(data);
6180 		return -ENOMEM;
6181 	}
6182 	skb_release_data(skb);
6183 
6184 	skb->head = data;
6185 	skb->head_frag = 0;
6186 	skb->data = data;
6187 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6188 	skb->end = size;
6189 #else
6190 	skb->end = skb->head + size;
6191 #endif
6192 	skb_reset_tail_pointer(skb);
6193 	skb_headers_offset_update(skb, 0);
6194 	skb->cloned   = 0;
6195 	skb->hdr_len  = 0;
6196 	skb->nohdr    = 0;
6197 	skb->len -= off;
6198 	skb->data_len = skb->len;
6199 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6200 	return 0;
6201 }
6202 
6203 /* remove len bytes from the beginning of the skb */
6204 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6205 {
6206 	int headlen = skb_headlen(skb);
6207 
6208 	if (len < headlen)
6209 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6210 	else
6211 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6212 }
6213 
6214 /* Extract to_copy bytes starting at off from skb, and return this in
6215  * a new skb
6216  */
6217 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6218 			     int to_copy, gfp_t gfp)
6219 {
6220 	struct sk_buff  *clone = skb_clone(skb, gfp);
6221 
6222 	if (!clone)
6223 		return NULL;
6224 
6225 	if (pskb_carve(clone, off, gfp) < 0 ||
6226 	    pskb_trim(clone, to_copy)) {
6227 		kfree_skb(clone);
6228 		return NULL;
6229 	}
6230 	return clone;
6231 }
6232 EXPORT_SYMBOL(pskb_extract);
6233 
6234 /**
6235  * skb_condense - try to get rid of fragments/frag_list if possible
6236  * @skb: buffer
6237  *
6238  * Can be used to save memory before skb is added to a busy queue.
6239  * If packet has bytes in frags and enough tail room in skb->head,
6240  * pull all of them, so that we can free the frags right now and adjust
6241  * truesize.
6242  * Notes:
6243  *	We do not reallocate skb->head thus can not fail.
6244  *	Caller must re-evaluate skb->truesize if needed.
6245  */
6246 void skb_condense(struct sk_buff *skb)
6247 {
6248 	if (skb->data_len) {
6249 		if (skb->data_len > skb->end - skb->tail ||
6250 		    skb_cloned(skb))
6251 			return;
6252 
6253 		/* Nice, we can free page frag(s) right now */
6254 		__pskb_pull_tail(skb, skb->data_len);
6255 	}
6256 	/* At this point, skb->truesize might be over estimated,
6257 	 * because skb had a fragment, and fragments do not tell
6258 	 * their truesize.
6259 	 * When we pulled its content into skb->head, fragment
6260 	 * was freed, but __pskb_pull_tail() could not possibly
6261 	 * adjust skb->truesize, not knowing the frag truesize.
6262 	 */
6263 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6264 }
6265 
6266 #ifdef CONFIG_SKB_EXTENSIONS
6267 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6268 {
6269 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6270 }
6271 
6272 /**
6273  * __skb_ext_alloc - allocate a new skb extensions storage
6274  *
6275  * @flags: See kmalloc().
6276  *
6277  * Returns the newly allocated pointer. The pointer can later attached to a
6278  * skb via __skb_ext_set().
6279  * Note: caller must handle the skb_ext as an opaque data.
6280  */
6281 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6282 {
6283 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6284 
6285 	if (new) {
6286 		memset(new->offset, 0, sizeof(new->offset));
6287 		refcount_set(&new->refcnt, 1);
6288 	}
6289 
6290 	return new;
6291 }
6292 
6293 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6294 					 unsigned int old_active)
6295 {
6296 	struct skb_ext *new;
6297 
6298 	if (refcount_read(&old->refcnt) == 1)
6299 		return old;
6300 
6301 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6302 	if (!new)
6303 		return NULL;
6304 
6305 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6306 	refcount_set(&new->refcnt, 1);
6307 
6308 #ifdef CONFIG_XFRM
6309 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6310 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6311 		unsigned int i;
6312 
6313 		for (i = 0; i < sp->len; i++)
6314 			xfrm_state_hold(sp->xvec[i]);
6315 	}
6316 #endif
6317 	__skb_ext_put(old);
6318 	return new;
6319 }
6320 
6321 /**
6322  * __skb_ext_set - attach the specified extension storage to this skb
6323  * @skb: buffer
6324  * @id: extension id
6325  * @ext: extension storage previously allocated via __skb_ext_alloc()
6326  *
6327  * Existing extensions, if any, are cleared.
6328  *
6329  * Returns the pointer to the extension.
6330  */
6331 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6332 		    struct skb_ext *ext)
6333 {
6334 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6335 
6336 	skb_ext_put(skb);
6337 	newlen = newoff + skb_ext_type_len[id];
6338 	ext->chunks = newlen;
6339 	ext->offset[id] = newoff;
6340 	skb->extensions = ext;
6341 	skb->active_extensions = 1 << id;
6342 	return skb_ext_get_ptr(ext, id);
6343 }
6344 
6345 /**
6346  * skb_ext_add - allocate space for given extension, COW if needed
6347  * @skb: buffer
6348  * @id: extension to allocate space for
6349  *
6350  * Allocates enough space for the given extension.
6351  * If the extension is already present, a pointer to that extension
6352  * is returned.
6353  *
6354  * If the skb was cloned, COW applies and the returned memory can be
6355  * modified without changing the extension space of clones buffers.
6356  *
6357  * Returns pointer to the extension or NULL on allocation failure.
6358  */
6359 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6360 {
6361 	struct skb_ext *new, *old = NULL;
6362 	unsigned int newlen, newoff;
6363 
6364 	if (skb->active_extensions) {
6365 		old = skb->extensions;
6366 
6367 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6368 		if (!new)
6369 			return NULL;
6370 
6371 		if (__skb_ext_exist(new, id))
6372 			goto set_active;
6373 
6374 		newoff = new->chunks;
6375 	} else {
6376 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6377 
6378 		new = __skb_ext_alloc(GFP_ATOMIC);
6379 		if (!new)
6380 			return NULL;
6381 	}
6382 
6383 	newlen = newoff + skb_ext_type_len[id];
6384 	new->chunks = newlen;
6385 	new->offset[id] = newoff;
6386 set_active:
6387 	skb->slow_gro = 1;
6388 	skb->extensions = new;
6389 	skb->active_extensions |= 1 << id;
6390 	return skb_ext_get_ptr(new, id);
6391 }
6392 EXPORT_SYMBOL(skb_ext_add);
6393 
6394 #ifdef CONFIG_XFRM
6395 static void skb_ext_put_sp(struct sec_path *sp)
6396 {
6397 	unsigned int i;
6398 
6399 	for (i = 0; i < sp->len; i++)
6400 		xfrm_state_put(sp->xvec[i]);
6401 }
6402 #endif
6403 
6404 #ifdef CONFIG_MCTP_FLOWS
6405 static void skb_ext_put_mctp(struct mctp_flow *flow)
6406 {
6407 	if (flow->key)
6408 		mctp_key_unref(flow->key);
6409 }
6410 #endif
6411 
6412 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6413 {
6414 	struct skb_ext *ext = skb->extensions;
6415 
6416 	skb->active_extensions &= ~(1 << id);
6417 	if (skb->active_extensions == 0) {
6418 		skb->extensions = NULL;
6419 		__skb_ext_put(ext);
6420 #ifdef CONFIG_XFRM
6421 	} else if (id == SKB_EXT_SEC_PATH &&
6422 		   refcount_read(&ext->refcnt) == 1) {
6423 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6424 
6425 		skb_ext_put_sp(sp);
6426 		sp->len = 0;
6427 #endif
6428 	}
6429 }
6430 EXPORT_SYMBOL(__skb_ext_del);
6431 
6432 void __skb_ext_put(struct skb_ext *ext)
6433 {
6434 	/* If this is last clone, nothing can increment
6435 	 * it after check passes.  Avoids one atomic op.
6436 	 */
6437 	if (refcount_read(&ext->refcnt) == 1)
6438 		goto free_now;
6439 
6440 	if (!refcount_dec_and_test(&ext->refcnt))
6441 		return;
6442 free_now:
6443 #ifdef CONFIG_XFRM
6444 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6445 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6446 #endif
6447 #ifdef CONFIG_MCTP_FLOWS
6448 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6449 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6450 #endif
6451 
6452 	kmem_cache_free(skbuff_ext_cache, ext);
6453 }
6454 EXPORT_SYMBOL(__skb_ext_put);
6455 #endif /* CONFIG_SKB_EXTENSIONS */
6456