1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/netdevice.h> 51 #ifdef CONFIG_NET_CLS_ACT 52 #include <net/pkt_sched.h> 53 #endif 54 #include <linux/string.h> 55 #include <linux/skbuff.h> 56 #include <linux/splice.h> 57 #include <linux/cache.h> 58 #include <linux/rtnetlink.h> 59 #include <linux/init.h> 60 #include <linux/scatterlist.h> 61 #include <linux/errqueue.h> 62 #include <linux/prefetch.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/xfrm.h> 69 70 #include <asm/uaccess.h> 71 #include <trace/events/skb.h> 72 #include <linux/highmem.h> 73 74 struct kmem_cache *skbuff_head_cache __read_mostly; 75 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 76 77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 78 struct pipe_buffer *buf) 79 { 80 put_page(buf->page); 81 } 82 83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 84 struct pipe_buffer *buf) 85 { 86 get_page(buf->page); 87 } 88 89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 90 struct pipe_buffer *buf) 91 { 92 return 1; 93 } 94 95 96 /* Pipe buffer operations for a socket. */ 97 static const struct pipe_buf_operations sock_pipe_buf_ops = { 98 .can_merge = 0, 99 .map = generic_pipe_buf_map, 100 .unmap = generic_pipe_buf_unmap, 101 .confirm = generic_pipe_buf_confirm, 102 .release = sock_pipe_buf_release, 103 .steal = sock_pipe_buf_steal, 104 .get = sock_pipe_buf_get, 105 }; 106 107 /** 108 * skb_panic - private function for out-of-line support 109 * @skb: buffer 110 * @sz: size 111 * @addr: address 112 * @msg: skb_over_panic or skb_under_panic 113 * 114 * Out-of-line support for skb_put() and skb_push(). 115 * Called via the wrapper skb_over_panic() or skb_under_panic(). 116 * Keep out of line to prevent kernel bloat. 117 * __builtin_return_address is not used because it is not always reliable. 118 */ 119 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 120 const char msg[]) 121 { 122 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 123 msg, addr, skb->len, sz, skb->head, skb->data, 124 (unsigned long)skb->tail, (unsigned long)skb->end, 125 skb->dev ? skb->dev->name : "<NULL>"); 126 BUG(); 127 } 128 129 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 130 { 131 skb_panic(skb, sz, addr, __func__); 132 } 133 134 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 135 { 136 skb_panic(skb, sz, addr, __func__); 137 } 138 139 /* 140 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 141 * the caller if emergency pfmemalloc reserves are being used. If it is and 142 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 143 * may be used. Otherwise, the packet data may be discarded until enough 144 * memory is free 145 */ 146 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 147 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 148 149 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 150 unsigned long ip, bool *pfmemalloc) 151 { 152 void *obj; 153 bool ret_pfmemalloc = false; 154 155 /* 156 * Try a regular allocation, when that fails and we're not entitled 157 * to the reserves, fail. 158 */ 159 obj = kmalloc_node_track_caller(size, 160 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 161 node); 162 if (obj || !(gfp_pfmemalloc_allowed(flags))) 163 goto out; 164 165 /* Try again but now we are using pfmemalloc reserves */ 166 ret_pfmemalloc = true; 167 obj = kmalloc_node_track_caller(size, flags, node); 168 169 out: 170 if (pfmemalloc) 171 *pfmemalloc = ret_pfmemalloc; 172 173 return obj; 174 } 175 176 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 177 * 'private' fields and also do memory statistics to find all the 178 * [BEEP] leaks. 179 * 180 */ 181 182 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node) 183 { 184 struct sk_buff *skb; 185 186 /* Get the HEAD */ 187 skb = kmem_cache_alloc_node(skbuff_head_cache, 188 gfp_mask & ~__GFP_DMA, node); 189 if (!skb) 190 goto out; 191 192 /* 193 * Only clear those fields we need to clear, not those that we will 194 * actually initialise below. Hence, don't put any more fields after 195 * the tail pointer in struct sk_buff! 196 */ 197 memset(skb, 0, offsetof(struct sk_buff, tail)); 198 skb->head = NULL; 199 skb->truesize = sizeof(struct sk_buff); 200 atomic_set(&skb->users, 1); 201 202 #ifdef NET_SKBUFF_DATA_USES_OFFSET 203 skb->mac_header = ~0U; 204 #endif 205 out: 206 return skb; 207 } 208 209 /** 210 * __alloc_skb - allocate a network buffer 211 * @size: size to allocate 212 * @gfp_mask: allocation mask 213 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 214 * instead of head cache and allocate a cloned (child) skb. 215 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 216 * allocations in case the data is required for writeback 217 * @node: numa node to allocate memory on 218 * 219 * Allocate a new &sk_buff. The returned buffer has no headroom and a 220 * tail room of at least size bytes. The object has a reference count 221 * of one. The return is the buffer. On a failure the return is %NULL. 222 * 223 * Buffers may only be allocated from interrupts using a @gfp_mask of 224 * %GFP_ATOMIC. 225 */ 226 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 227 int flags, int node) 228 { 229 struct kmem_cache *cache; 230 struct skb_shared_info *shinfo; 231 struct sk_buff *skb; 232 u8 *data; 233 bool pfmemalloc; 234 235 cache = (flags & SKB_ALLOC_FCLONE) 236 ? skbuff_fclone_cache : skbuff_head_cache; 237 238 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 239 gfp_mask |= __GFP_MEMALLOC; 240 241 /* Get the HEAD */ 242 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 243 if (!skb) 244 goto out; 245 prefetchw(skb); 246 247 /* We do our best to align skb_shared_info on a separate cache 248 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 249 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 250 * Both skb->head and skb_shared_info are cache line aligned. 251 */ 252 size = SKB_DATA_ALIGN(size); 253 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 254 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 255 if (!data) 256 goto nodata; 257 /* kmalloc(size) might give us more room than requested. 258 * Put skb_shared_info exactly at the end of allocated zone, 259 * to allow max possible filling before reallocation. 260 */ 261 size = SKB_WITH_OVERHEAD(ksize(data)); 262 prefetchw(data + size); 263 264 /* 265 * Only clear those fields we need to clear, not those that we will 266 * actually initialise below. Hence, don't put any more fields after 267 * the tail pointer in struct sk_buff! 268 */ 269 memset(skb, 0, offsetof(struct sk_buff, tail)); 270 /* Account for allocated memory : skb + skb->head */ 271 skb->truesize = SKB_TRUESIZE(size); 272 skb->pfmemalloc = pfmemalloc; 273 atomic_set(&skb->users, 1); 274 skb->head = data; 275 skb->data = data; 276 skb_reset_tail_pointer(skb); 277 skb->end = skb->tail + size; 278 #ifdef NET_SKBUFF_DATA_USES_OFFSET 279 skb->mac_header = ~0U; 280 skb->transport_header = ~0U; 281 #endif 282 283 /* make sure we initialize shinfo sequentially */ 284 shinfo = skb_shinfo(skb); 285 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 286 atomic_set(&shinfo->dataref, 1); 287 kmemcheck_annotate_variable(shinfo->destructor_arg); 288 289 if (flags & SKB_ALLOC_FCLONE) { 290 struct sk_buff *child = skb + 1; 291 atomic_t *fclone_ref = (atomic_t *) (child + 1); 292 293 kmemcheck_annotate_bitfield(child, flags1); 294 kmemcheck_annotate_bitfield(child, flags2); 295 skb->fclone = SKB_FCLONE_ORIG; 296 atomic_set(fclone_ref, 1); 297 298 child->fclone = SKB_FCLONE_UNAVAILABLE; 299 child->pfmemalloc = pfmemalloc; 300 } 301 out: 302 return skb; 303 nodata: 304 kmem_cache_free(cache, skb); 305 skb = NULL; 306 goto out; 307 } 308 EXPORT_SYMBOL(__alloc_skb); 309 310 /** 311 * build_skb - build a network buffer 312 * @data: data buffer provided by caller 313 * @frag_size: size of fragment, or 0 if head was kmalloced 314 * 315 * Allocate a new &sk_buff. Caller provides space holding head and 316 * skb_shared_info. @data must have been allocated by kmalloc() 317 * The return is the new skb buffer. 318 * On a failure the return is %NULL, and @data is not freed. 319 * Notes : 320 * Before IO, driver allocates only data buffer where NIC put incoming frame 321 * Driver should add room at head (NET_SKB_PAD) and 322 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 323 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 324 * before giving packet to stack. 325 * RX rings only contains data buffers, not full skbs. 326 */ 327 struct sk_buff *build_skb(void *data, unsigned int frag_size) 328 { 329 struct skb_shared_info *shinfo; 330 struct sk_buff *skb; 331 unsigned int size = frag_size ? : ksize(data); 332 333 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 334 if (!skb) 335 return NULL; 336 337 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 338 339 memset(skb, 0, offsetof(struct sk_buff, tail)); 340 skb->truesize = SKB_TRUESIZE(size); 341 skb->head_frag = frag_size != 0; 342 atomic_set(&skb->users, 1); 343 skb->head = data; 344 skb->data = data; 345 skb_reset_tail_pointer(skb); 346 skb->end = skb->tail + size; 347 #ifdef NET_SKBUFF_DATA_USES_OFFSET 348 skb->mac_header = ~0U; 349 skb->transport_header = ~0U; 350 #endif 351 352 /* make sure we initialize shinfo sequentially */ 353 shinfo = skb_shinfo(skb); 354 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 355 atomic_set(&shinfo->dataref, 1); 356 kmemcheck_annotate_variable(shinfo->destructor_arg); 357 358 return skb; 359 } 360 EXPORT_SYMBOL(build_skb); 361 362 struct netdev_alloc_cache { 363 struct page_frag frag; 364 /* we maintain a pagecount bias, so that we dont dirty cache line 365 * containing page->_count every time we allocate a fragment. 366 */ 367 unsigned int pagecnt_bias; 368 }; 369 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache); 370 371 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 372 { 373 struct netdev_alloc_cache *nc; 374 void *data = NULL; 375 int order; 376 unsigned long flags; 377 378 local_irq_save(flags); 379 nc = &__get_cpu_var(netdev_alloc_cache); 380 if (unlikely(!nc->frag.page)) { 381 refill: 382 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) { 383 gfp_t gfp = gfp_mask; 384 385 if (order) 386 gfp |= __GFP_COMP | __GFP_NOWARN; 387 nc->frag.page = alloc_pages(gfp, order); 388 if (likely(nc->frag.page)) 389 break; 390 if (--order < 0) 391 goto end; 392 } 393 nc->frag.size = PAGE_SIZE << order; 394 recycle: 395 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS); 396 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS; 397 nc->frag.offset = 0; 398 } 399 400 if (nc->frag.offset + fragsz > nc->frag.size) { 401 /* avoid unnecessary locked operations if possible */ 402 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) || 403 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count)) 404 goto recycle; 405 goto refill; 406 } 407 408 data = page_address(nc->frag.page) + nc->frag.offset; 409 nc->frag.offset += fragsz; 410 nc->pagecnt_bias--; 411 end: 412 local_irq_restore(flags); 413 return data; 414 } 415 416 /** 417 * netdev_alloc_frag - allocate a page fragment 418 * @fragsz: fragment size 419 * 420 * Allocates a frag from a page for receive buffer. 421 * Uses GFP_ATOMIC allocations. 422 */ 423 void *netdev_alloc_frag(unsigned int fragsz) 424 { 425 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 426 } 427 EXPORT_SYMBOL(netdev_alloc_frag); 428 429 /** 430 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 431 * @dev: network device to receive on 432 * @length: length to allocate 433 * @gfp_mask: get_free_pages mask, passed to alloc_skb 434 * 435 * Allocate a new &sk_buff and assign it a usage count of one. The 436 * buffer has unspecified headroom built in. Users should allocate 437 * the headroom they think they need without accounting for the 438 * built in space. The built in space is used for optimisations. 439 * 440 * %NULL is returned if there is no free memory. 441 */ 442 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 443 unsigned int length, gfp_t gfp_mask) 444 { 445 struct sk_buff *skb = NULL; 446 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) + 447 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 448 449 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) { 450 void *data; 451 452 if (sk_memalloc_socks()) 453 gfp_mask |= __GFP_MEMALLOC; 454 455 data = __netdev_alloc_frag(fragsz, gfp_mask); 456 457 if (likely(data)) { 458 skb = build_skb(data, fragsz); 459 if (unlikely(!skb)) 460 put_page(virt_to_head_page(data)); 461 } 462 } else { 463 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 464 SKB_ALLOC_RX, NUMA_NO_NODE); 465 } 466 if (likely(skb)) { 467 skb_reserve(skb, NET_SKB_PAD); 468 skb->dev = dev; 469 } 470 return skb; 471 } 472 EXPORT_SYMBOL(__netdev_alloc_skb); 473 474 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 475 int size, unsigned int truesize) 476 { 477 skb_fill_page_desc(skb, i, page, off, size); 478 skb->len += size; 479 skb->data_len += size; 480 skb->truesize += truesize; 481 } 482 EXPORT_SYMBOL(skb_add_rx_frag); 483 484 static void skb_drop_list(struct sk_buff **listp) 485 { 486 struct sk_buff *list = *listp; 487 488 *listp = NULL; 489 490 do { 491 struct sk_buff *this = list; 492 list = list->next; 493 kfree_skb(this); 494 } while (list); 495 } 496 497 static inline void skb_drop_fraglist(struct sk_buff *skb) 498 { 499 skb_drop_list(&skb_shinfo(skb)->frag_list); 500 } 501 502 static void skb_clone_fraglist(struct sk_buff *skb) 503 { 504 struct sk_buff *list; 505 506 skb_walk_frags(skb, list) 507 skb_get(list); 508 } 509 510 static void skb_free_head(struct sk_buff *skb) 511 { 512 if (skb->head_frag) 513 put_page(virt_to_head_page(skb->head)); 514 else 515 kfree(skb->head); 516 } 517 518 static void skb_release_data(struct sk_buff *skb) 519 { 520 if (!skb->cloned || 521 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 522 &skb_shinfo(skb)->dataref)) { 523 if (skb_shinfo(skb)->nr_frags) { 524 int i; 525 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 526 skb_frag_unref(skb, i); 527 } 528 529 /* 530 * If skb buf is from userspace, we need to notify the caller 531 * the lower device DMA has done; 532 */ 533 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 534 struct ubuf_info *uarg; 535 536 uarg = skb_shinfo(skb)->destructor_arg; 537 if (uarg->callback) 538 uarg->callback(uarg, true); 539 } 540 541 if (skb_has_frag_list(skb)) 542 skb_drop_fraglist(skb); 543 544 skb_free_head(skb); 545 } 546 } 547 548 /* 549 * Free an skbuff by memory without cleaning the state. 550 */ 551 static void kfree_skbmem(struct sk_buff *skb) 552 { 553 struct sk_buff *other; 554 atomic_t *fclone_ref; 555 556 switch (skb->fclone) { 557 case SKB_FCLONE_UNAVAILABLE: 558 kmem_cache_free(skbuff_head_cache, skb); 559 break; 560 561 case SKB_FCLONE_ORIG: 562 fclone_ref = (atomic_t *) (skb + 2); 563 if (atomic_dec_and_test(fclone_ref)) 564 kmem_cache_free(skbuff_fclone_cache, skb); 565 break; 566 567 case SKB_FCLONE_CLONE: 568 fclone_ref = (atomic_t *) (skb + 1); 569 other = skb - 1; 570 571 /* The clone portion is available for 572 * fast-cloning again. 573 */ 574 skb->fclone = SKB_FCLONE_UNAVAILABLE; 575 576 if (atomic_dec_and_test(fclone_ref)) 577 kmem_cache_free(skbuff_fclone_cache, other); 578 break; 579 } 580 } 581 582 static void skb_release_head_state(struct sk_buff *skb) 583 { 584 skb_dst_drop(skb); 585 #ifdef CONFIG_XFRM 586 secpath_put(skb->sp); 587 #endif 588 if (skb->destructor) { 589 WARN_ON(in_irq()); 590 skb->destructor(skb); 591 } 592 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 593 nf_conntrack_put(skb->nfct); 594 #endif 595 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 596 nf_conntrack_put_reasm(skb->nfct_reasm); 597 #endif 598 #ifdef CONFIG_BRIDGE_NETFILTER 599 nf_bridge_put(skb->nf_bridge); 600 #endif 601 /* XXX: IS this still necessary? - JHS */ 602 #ifdef CONFIG_NET_SCHED 603 skb->tc_index = 0; 604 #ifdef CONFIG_NET_CLS_ACT 605 skb->tc_verd = 0; 606 #endif 607 #endif 608 } 609 610 /* Free everything but the sk_buff shell. */ 611 static void skb_release_all(struct sk_buff *skb) 612 { 613 skb_release_head_state(skb); 614 if (likely(skb->head)) 615 skb_release_data(skb); 616 } 617 618 /** 619 * __kfree_skb - private function 620 * @skb: buffer 621 * 622 * Free an sk_buff. Release anything attached to the buffer. 623 * Clean the state. This is an internal helper function. Users should 624 * always call kfree_skb 625 */ 626 627 void __kfree_skb(struct sk_buff *skb) 628 { 629 skb_release_all(skb); 630 kfree_skbmem(skb); 631 } 632 EXPORT_SYMBOL(__kfree_skb); 633 634 /** 635 * kfree_skb - free an sk_buff 636 * @skb: buffer to free 637 * 638 * Drop a reference to the buffer and free it if the usage count has 639 * hit zero. 640 */ 641 void kfree_skb(struct sk_buff *skb) 642 { 643 if (unlikely(!skb)) 644 return; 645 if (likely(atomic_read(&skb->users) == 1)) 646 smp_rmb(); 647 else if (likely(!atomic_dec_and_test(&skb->users))) 648 return; 649 trace_kfree_skb(skb, __builtin_return_address(0)); 650 __kfree_skb(skb); 651 } 652 EXPORT_SYMBOL(kfree_skb); 653 654 /** 655 * skb_tx_error - report an sk_buff xmit error 656 * @skb: buffer that triggered an error 657 * 658 * Report xmit error if a device callback is tracking this skb. 659 * skb must be freed afterwards. 660 */ 661 void skb_tx_error(struct sk_buff *skb) 662 { 663 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 664 struct ubuf_info *uarg; 665 666 uarg = skb_shinfo(skb)->destructor_arg; 667 if (uarg->callback) 668 uarg->callback(uarg, false); 669 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 670 } 671 } 672 EXPORT_SYMBOL(skb_tx_error); 673 674 /** 675 * consume_skb - free an skbuff 676 * @skb: buffer to free 677 * 678 * Drop a ref to the buffer and free it if the usage count has hit zero 679 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 680 * is being dropped after a failure and notes that 681 */ 682 void consume_skb(struct sk_buff *skb) 683 { 684 if (unlikely(!skb)) 685 return; 686 if (likely(atomic_read(&skb->users) == 1)) 687 smp_rmb(); 688 else if (likely(!atomic_dec_and_test(&skb->users))) 689 return; 690 trace_consume_skb(skb); 691 __kfree_skb(skb); 692 } 693 EXPORT_SYMBOL(consume_skb); 694 695 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 696 { 697 new->tstamp = old->tstamp; 698 new->dev = old->dev; 699 new->transport_header = old->transport_header; 700 new->network_header = old->network_header; 701 new->mac_header = old->mac_header; 702 new->inner_transport_header = old->inner_transport_header; 703 new->inner_network_header = old->inner_network_header; 704 new->inner_mac_header = old->inner_mac_header; 705 skb_dst_copy(new, old); 706 new->rxhash = old->rxhash; 707 new->ooo_okay = old->ooo_okay; 708 new->l4_rxhash = old->l4_rxhash; 709 new->no_fcs = old->no_fcs; 710 new->encapsulation = old->encapsulation; 711 #ifdef CONFIG_XFRM 712 new->sp = secpath_get(old->sp); 713 #endif 714 memcpy(new->cb, old->cb, sizeof(old->cb)); 715 new->csum = old->csum; 716 new->local_df = old->local_df; 717 new->pkt_type = old->pkt_type; 718 new->ip_summed = old->ip_summed; 719 skb_copy_queue_mapping(new, old); 720 new->priority = old->priority; 721 #if IS_ENABLED(CONFIG_IP_VS) 722 new->ipvs_property = old->ipvs_property; 723 #endif 724 new->pfmemalloc = old->pfmemalloc; 725 new->protocol = old->protocol; 726 new->mark = old->mark; 727 new->skb_iif = old->skb_iif; 728 __nf_copy(new, old); 729 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) 730 new->nf_trace = old->nf_trace; 731 #endif 732 #ifdef CONFIG_NET_SCHED 733 new->tc_index = old->tc_index; 734 #ifdef CONFIG_NET_CLS_ACT 735 new->tc_verd = old->tc_verd; 736 #endif 737 #endif 738 new->vlan_proto = old->vlan_proto; 739 new->vlan_tci = old->vlan_tci; 740 741 skb_copy_secmark(new, old); 742 } 743 744 /* 745 * You should not add any new code to this function. Add it to 746 * __copy_skb_header above instead. 747 */ 748 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 749 { 750 #define C(x) n->x = skb->x 751 752 n->next = n->prev = NULL; 753 n->sk = NULL; 754 __copy_skb_header(n, skb); 755 756 C(len); 757 C(data_len); 758 C(mac_len); 759 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 760 n->cloned = 1; 761 n->nohdr = 0; 762 n->destructor = NULL; 763 C(tail); 764 C(end); 765 C(head); 766 C(head_frag); 767 C(data); 768 C(truesize); 769 atomic_set(&n->users, 1); 770 771 atomic_inc(&(skb_shinfo(skb)->dataref)); 772 skb->cloned = 1; 773 774 return n; 775 #undef C 776 } 777 778 /** 779 * skb_morph - morph one skb into another 780 * @dst: the skb to receive the contents 781 * @src: the skb to supply the contents 782 * 783 * This is identical to skb_clone except that the target skb is 784 * supplied by the user. 785 * 786 * The target skb is returned upon exit. 787 */ 788 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 789 { 790 skb_release_all(dst); 791 return __skb_clone(dst, src); 792 } 793 EXPORT_SYMBOL_GPL(skb_morph); 794 795 /** 796 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 797 * @skb: the skb to modify 798 * @gfp_mask: allocation priority 799 * 800 * This must be called on SKBTX_DEV_ZEROCOPY skb. 801 * It will copy all frags into kernel and drop the reference 802 * to userspace pages. 803 * 804 * If this function is called from an interrupt gfp_mask() must be 805 * %GFP_ATOMIC. 806 * 807 * Returns 0 on success or a negative error code on failure 808 * to allocate kernel memory to copy to. 809 */ 810 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 811 { 812 int i; 813 int num_frags = skb_shinfo(skb)->nr_frags; 814 struct page *page, *head = NULL; 815 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 816 817 for (i = 0; i < num_frags; i++) { 818 u8 *vaddr; 819 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 820 821 page = alloc_page(gfp_mask); 822 if (!page) { 823 while (head) { 824 struct page *next = (struct page *)head->private; 825 put_page(head); 826 head = next; 827 } 828 return -ENOMEM; 829 } 830 vaddr = kmap_atomic(skb_frag_page(f)); 831 memcpy(page_address(page), 832 vaddr + f->page_offset, skb_frag_size(f)); 833 kunmap_atomic(vaddr); 834 page->private = (unsigned long)head; 835 head = page; 836 } 837 838 /* skb frags release userspace buffers */ 839 for (i = 0; i < num_frags; i++) 840 skb_frag_unref(skb, i); 841 842 uarg->callback(uarg, false); 843 844 /* skb frags point to kernel buffers */ 845 for (i = num_frags - 1; i >= 0; i--) { 846 __skb_fill_page_desc(skb, i, head, 0, 847 skb_shinfo(skb)->frags[i].size); 848 head = (struct page *)head->private; 849 } 850 851 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 852 return 0; 853 } 854 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 855 856 /** 857 * skb_clone - duplicate an sk_buff 858 * @skb: buffer to clone 859 * @gfp_mask: allocation priority 860 * 861 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 862 * copies share the same packet data but not structure. The new 863 * buffer has a reference count of 1. If the allocation fails the 864 * function returns %NULL otherwise the new buffer is returned. 865 * 866 * If this function is called from an interrupt gfp_mask() must be 867 * %GFP_ATOMIC. 868 */ 869 870 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 871 { 872 struct sk_buff *n; 873 874 if (skb_orphan_frags(skb, gfp_mask)) 875 return NULL; 876 877 n = skb + 1; 878 if (skb->fclone == SKB_FCLONE_ORIG && 879 n->fclone == SKB_FCLONE_UNAVAILABLE) { 880 atomic_t *fclone_ref = (atomic_t *) (n + 1); 881 n->fclone = SKB_FCLONE_CLONE; 882 atomic_inc(fclone_ref); 883 } else { 884 if (skb_pfmemalloc(skb)) 885 gfp_mask |= __GFP_MEMALLOC; 886 887 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 888 if (!n) 889 return NULL; 890 891 kmemcheck_annotate_bitfield(n, flags1); 892 kmemcheck_annotate_bitfield(n, flags2); 893 n->fclone = SKB_FCLONE_UNAVAILABLE; 894 } 895 896 return __skb_clone(n, skb); 897 } 898 EXPORT_SYMBOL(skb_clone); 899 900 static void skb_headers_offset_update(struct sk_buff *skb, int off) 901 { 902 /* {transport,network,mac}_header and tail are relative to skb->head */ 903 skb->transport_header += off; 904 skb->network_header += off; 905 if (skb_mac_header_was_set(skb)) 906 skb->mac_header += off; 907 skb->inner_transport_header += off; 908 skb->inner_network_header += off; 909 skb->inner_mac_header += off; 910 } 911 912 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 913 { 914 #ifndef NET_SKBUFF_DATA_USES_OFFSET 915 /* 916 * Shift between the two data areas in bytes 917 */ 918 unsigned long offset = new->data - old->data; 919 #endif 920 921 __copy_skb_header(new, old); 922 923 #ifndef NET_SKBUFF_DATA_USES_OFFSET 924 skb_headers_offset_update(new, offset); 925 #endif 926 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 927 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 928 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 929 } 930 931 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 932 { 933 if (skb_pfmemalloc(skb)) 934 return SKB_ALLOC_RX; 935 return 0; 936 } 937 938 /** 939 * skb_copy - create private copy of an sk_buff 940 * @skb: buffer to copy 941 * @gfp_mask: allocation priority 942 * 943 * Make a copy of both an &sk_buff and its data. This is used when the 944 * caller wishes to modify the data and needs a private copy of the 945 * data to alter. Returns %NULL on failure or the pointer to the buffer 946 * on success. The returned buffer has a reference count of 1. 947 * 948 * As by-product this function converts non-linear &sk_buff to linear 949 * one, so that &sk_buff becomes completely private and caller is allowed 950 * to modify all the data of returned buffer. This means that this 951 * function is not recommended for use in circumstances when only 952 * header is going to be modified. Use pskb_copy() instead. 953 */ 954 955 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 956 { 957 int headerlen = skb_headroom(skb); 958 unsigned int size = skb_end_offset(skb) + skb->data_len; 959 struct sk_buff *n = __alloc_skb(size, gfp_mask, 960 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 961 962 if (!n) 963 return NULL; 964 965 /* Set the data pointer */ 966 skb_reserve(n, headerlen); 967 /* Set the tail pointer and length */ 968 skb_put(n, skb->len); 969 970 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 971 BUG(); 972 973 copy_skb_header(n, skb); 974 return n; 975 } 976 EXPORT_SYMBOL(skb_copy); 977 978 /** 979 * __pskb_copy - create copy of an sk_buff with private head. 980 * @skb: buffer to copy 981 * @headroom: headroom of new skb 982 * @gfp_mask: allocation priority 983 * 984 * Make a copy of both an &sk_buff and part of its data, located 985 * in header. Fragmented data remain shared. This is used when 986 * the caller wishes to modify only header of &sk_buff and needs 987 * private copy of the header to alter. Returns %NULL on failure 988 * or the pointer to the buffer on success. 989 * The returned buffer has a reference count of 1. 990 */ 991 992 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask) 993 { 994 unsigned int size = skb_headlen(skb) + headroom; 995 struct sk_buff *n = __alloc_skb(size, gfp_mask, 996 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 997 998 if (!n) 999 goto out; 1000 1001 /* Set the data pointer */ 1002 skb_reserve(n, headroom); 1003 /* Set the tail pointer and length */ 1004 skb_put(n, skb_headlen(skb)); 1005 /* Copy the bytes */ 1006 skb_copy_from_linear_data(skb, n->data, n->len); 1007 1008 n->truesize += skb->data_len; 1009 n->data_len = skb->data_len; 1010 n->len = skb->len; 1011 1012 if (skb_shinfo(skb)->nr_frags) { 1013 int i; 1014 1015 if (skb_orphan_frags(skb, gfp_mask)) { 1016 kfree_skb(n); 1017 n = NULL; 1018 goto out; 1019 } 1020 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1021 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1022 skb_frag_ref(skb, i); 1023 } 1024 skb_shinfo(n)->nr_frags = i; 1025 } 1026 1027 if (skb_has_frag_list(skb)) { 1028 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1029 skb_clone_fraglist(n); 1030 } 1031 1032 copy_skb_header(n, skb); 1033 out: 1034 return n; 1035 } 1036 EXPORT_SYMBOL(__pskb_copy); 1037 1038 /** 1039 * pskb_expand_head - reallocate header of &sk_buff 1040 * @skb: buffer to reallocate 1041 * @nhead: room to add at head 1042 * @ntail: room to add at tail 1043 * @gfp_mask: allocation priority 1044 * 1045 * Expands (or creates identical copy, if &nhead and &ntail are zero) 1046 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 1047 * reference count of 1. Returns zero in the case of success or error, 1048 * if expansion failed. In the last case, &sk_buff is not changed. 1049 * 1050 * All the pointers pointing into skb header may change and must be 1051 * reloaded after call to this function. 1052 */ 1053 1054 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1055 gfp_t gfp_mask) 1056 { 1057 int i; 1058 u8 *data; 1059 int size = nhead + skb_end_offset(skb) + ntail; 1060 long off; 1061 1062 BUG_ON(nhead < 0); 1063 1064 if (skb_shared(skb)) 1065 BUG(); 1066 1067 size = SKB_DATA_ALIGN(size); 1068 1069 if (skb_pfmemalloc(skb)) 1070 gfp_mask |= __GFP_MEMALLOC; 1071 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1072 gfp_mask, NUMA_NO_NODE, NULL); 1073 if (!data) 1074 goto nodata; 1075 size = SKB_WITH_OVERHEAD(ksize(data)); 1076 1077 /* Copy only real data... and, alas, header. This should be 1078 * optimized for the cases when header is void. 1079 */ 1080 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1081 1082 memcpy((struct skb_shared_info *)(data + size), 1083 skb_shinfo(skb), 1084 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1085 1086 /* 1087 * if shinfo is shared we must drop the old head gracefully, but if it 1088 * is not we can just drop the old head and let the existing refcount 1089 * be since all we did is relocate the values 1090 */ 1091 if (skb_cloned(skb)) { 1092 /* copy this zero copy skb frags */ 1093 if (skb_orphan_frags(skb, gfp_mask)) 1094 goto nofrags; 1095 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1096 skb_frag_ref(skb, i); 1097 1098 if (skb_has_frag_list(skb)) 1099 skb_clone_fraglist(skb); 1100 1101 skb_release_data(skb); 1102 } else { 1103 skb_free_head(skb); 1104 } 1105 off = (data + nhead) - skb->head; 1106 1107 skb->head = data; 1108 skb->head_frag = 0; 1109 skb->data += off; 1110 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1111 skb->end = size; 1112 off = nhead; 1113 #else 1114 skb->end = skb->head + size; 1115 #endif 1116 skb->tail += off; 1117 skb_headers_offset_update(skb, off); 1118 /* Only adjust this if it actually is csum_start rather than csum */ 1119 if (skb->ip_summed == CHECKSUM_PARTIAL) 1120 skb->csum_start += nhead; 1121 skb->cloned = 0; 1122 skb->hdr_len = 0; 1123 skb->nohdr = 0; 1124 atomic_set(&skb_shinfo(skb)->dataref, 1); 1125 return 0; 1126 1127 nofrags: 1128 kfree(data); 1129 nodata: 1130 return -ENOMEM; 1131 } 1132 EXPORT_SYMBOL(pskb_expand_head); 1133 1134 /* Make private copy of skb with writable head and some headroom */ 1135 1136 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1137 { 1138 struct sk_buff *skb2; 1139 int delta = headroom - skb_headroom(skb); 1140 1141 if (delta <= 0) 1142 skb2 = pskb_copy(skb, GFP_ATOMIC); 1143 else { 1144 skb2 = skb_clone(skb, GFP_ATOMIC); 1145 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1146 GFP_ATOMIC)) { 1147 kfree_skb(skb2); 1148 skb2 = NULL; 1149 } 1150 } 1151 return skb2; 1152 } 1153 EXPORT_SYMBOL(skb_realloc_headroom); 1154 1155 /** 1156 * skb_copy_expand - copy and expand sk_buff 1157 * @skb: buffer to copy 1158 * @newheadroom: new free bytes at head 1159 * @newtailroom: new free bytes at tail 1160 * @gfp_mask: allocation priority 1161 * 1162 * Make a copy of both an &sk_buff and its data and while doing so 1163 * allocate additional space. 1164 * 1165 * This is used when the caller wishes to modify the data and needs a 1166 * private copy of the data to alter as well as more space for new fields. 1167 * Returns %NULL on failure or the pointer to the buffer 1168 * on success. The returned buffer has a reference count of 1. 1169 * 1170 * You must pass %GFP_ATOMIC as the allocation priority if this function 1171 * is called from an interrupt. 1172 */ 1173 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1174 int newheadroom, int newtailroom, 1175 gfp_t gfp_mask) 1176 { 1177 /* 1178 * Allocate the copy buffer 1179 */ 1180 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1181 gfp_mask, skb_alloc_rx_flag(skb), 1182 NUMA_NO_NODE); 1183 int oldheadroom = skb_headroom(skb); 1184 int head_copy_len, head_copy_off; 1185 int off; 1186 1187 if (!n) 1188 return NULL; 1189 1190 skb_reserve(n, newheadroom); 1191 1192 /* Set the tail pointer and length */ 1193 skb_put(n, skb->len); 1194 1195 head_copy_len = oldheadroom; 1196 head_copy_off = 0; 1197 if (newheadroom <= head_copy_len) 1198 head_copy_len = newheadroom; 1199 else 1200 head_copy_off = newheadroom - head_copy_len; 1201 1202 /* Copy the linear header and data. */ 1203 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1204 skb->len + head_copy_len)) 1205 BUG(); 1206 1207 copy_skb_header(n, skb); 1208 1209 off = newheadroom - oldheadroom; 1210 if (n->ip_summed == CHECKSUM_PARTIAL) 1211 n->csum_start += off; 1212 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1213 skb_headers_offset_update(n, off); 1214 #endif 1215 1216 return n; 1217 } 1218 EXPORT_SYMBOL(skb_copy_expand); 1219 1220 /** 1221 * skb_pad - zero pad the tail of an skb 1222 * @skb: buffer to pad 1223 * @pad: space to pad 1224 * 1225 * Ensure that a buffer is followed by a padding area that is zero 1226 * filled. Used by network drivers which may DMA or transfer data 1227 * beyond the buffer end onto the wire. 1228 * 1229 * May return error in out of memory cases. The skb is freed on error. 1230 */ 1231 1232 int skb_pad(struct sk_buff *skb, int pad) 1233 { 1234 int err; 1235 int ntail; 1236 1237 /* If the skbuff is non linear tailroom is always zero.. */ 1238 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1239 memset(skb->data+skb->len, 0, pad); 1240 return 0; 1241 } 1242 1243 ntail = skb->data_len + pad - (skb->end - skb->tail); 1244 if (likely(skb_cloned(skb) || ntail > 0)) { 1245 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1246 if (unlikely(err)) 1247 goto free_skb; 1248 } 1249 1250 /* FIXME: The use of this function with non-linear skb's really needs 1251 * to be audited. 1252 */ 1253 err = skb_linearize(skb); 1254 if (unlikely(err)) 1255 goto free_skb; 1256 1257 memset(skb->data + skb->len, 0, pad); 1258 return 0; 1259 1260 free_skb: 1261 kfree_skb(skb); 1262 return err; 1263 } 1264 EXPORT_SYMBOL(skb_pad); 1265 1266 /** 1267 * skb_put - add data to a buffer 1268 * @skb: buffer to use 1269 * @len: amount of data to add 1270 * 1271 * This function extends the used data area of the buffer. If this would 1272 * exceed the total buffer size the kernel will panic. A pointer to the 1273 * first byte of the extra data is returned. 1274 */ 1275 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1276 { 1277 unsigned char *tmp = skb_tail_pointer(skb); 1278 SKB_LINEAR_ASSERT(skb); 1279 skb->tail += len; 1280 skb->len += len; 1281 if (unlikely(skb->tail > skb->end)) 1282 skb_over_panic(skb, len, __builtin_return_address(0)); 1283 return tmp; 1284 } 1285 EXPORT_SYMBOL(skb_put); 1286 1287 /** 1288 * skb_push - add data to the start of a buffer 1289 * @skb: buffer to use 1290 * @len: amount of data to add 1291 * 1292 * This function extends the used data area of the buffer at the buffer 1293 * start. If this would exceed the total buffer headroom the kernel will 1294 * panic. A pointer to the first byte of the extra data is returned. 1295 */ 1296 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1297 { 1298 skb->data -= len; 1299 skb->len += len; 1300 if (unlikely(skb->data<skb->head)) 1301 skb_under_panic(skb, len, __builtin_return_address(0)); 1302 return skb->data; 1303 } 1304 EXPORT_SYMBOL(skb_push); 1305 1306 /** 1307 * skb_pull - remove data from the start of a buffer 1308 * @skb: buffer to use 1309 * @len: amount of data to remove 1310 * 1311 * This function removes data from the start of a buffer, returning 1312 * the memory to the headroom. A pointer to the next data in the buffer 1313 * is returned. Once the data has been pulled future pushes will overwrite 1314 * the old data. 1315 */ 1316 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1317 { 1318 return skb_pull_inline(skb, len); 1319 } 1320 EXPORT_SYMBOL(skb_pull); 1321 1322 /** 1323 * skb_trim - remove end from a buffer 1324 * @skb: buffer to alter 1325 * @len: new length 1326 * 1327 * Cut the length of a buffer down by removing data from the tail. If 1328 * the buffer is already under the length specified it is not modified. 1329 * The skb must be linear. 1330 */ 1331 void skb_trim(struct sk_buff *skb, unsigned int len) 1332 { 1333 if (skb->len > len) 1334 __skb_trim(skb, len); 1335 } 1336 EXPORT_SYMBOL(skb_trim); 1337 1338 /* Trims skb to length len. It can change skb pointers. 1339 */ 1340 1341 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1342 { 1343 struct sk_buff **fragp; 1344 struct sk_buff *frag; 1345 int offset = skb_headlen(skb); 1346 int nfrags = skb_shinfo(skb)->nr_frags; 1347 int i; 1348 int err; 1349 1350 if (skb_cloned(skb) && 1351 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1352 return err; 1353 1354 i = 0; 1355 if (offset >= len) 1356 goto drop_pages; 1357 1358 for (; i < nfrags; i++) { 1359 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1360 1361 if (end < len) { 1362 offset = end; 1363 continue; 1364 } 1365 1366 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1367 1368 drop_pages: 1369 skb_shinfo(skb)->nr_frags = i; 1370 1371 for (; i < nfrags; i++) 1372 skb_frag_unref(skb, i); 1373 1374 if (skb_has_frag_list(skb)) 1375 skb_drop_fraglist(skb); 1376 goto done; 1377 } 1378 1379 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1380 fragp = &frag->next) { 1381 int end = offset + frag->len; 1382 1383 if (skb_shared(frag)) { 1384 struct sk_buff *nfrag; 1385 1386 nfrag = skb_clone(frag, GFP_ATOMIC); 1387 if (unlikely(!nfrag)) 1388 return -ENOMEM; 1389 1390 nfrag->next = frag->next; 1391 consume_skb(frag); 1392 frag = nfrag; 1393 *fragp = frag; 1394 } 1395 1396 if (end < len) { 1397 offset = end; 1398 continue; 1399 } 1400 1401 if (end > len && 1402 unlikely((err = pskb_trim(frag, len - offset)))) 1403 return err; 1404 1405 if (frag->next) 1406 skb_drop_list(&frag->next); 1407 break; 1408 } 1409 1410 done: 1411 if (len > skb_headlen(skb)) { 1412 skb->data_len -= skb->len - len; 1413 skb->len = len; 1414 } else { 1415 skb->len = len; 1416 skb->data_len = 0; 1417 skb_set_tail_pointer(skb, len); 1418 } 1419 1420 return 0; 1421 } 1422 EXPORT_SYMBOL(___pskb_trim); 1423 1424 /** 1425 * __pskb_pull_tail - advance tail of skb header 1426 * @skb: buffer to reallocate 1427 * @delta: number of bytes to advance tail 1428 * 1429 * The function makes a sense only on a fragmented &sk_buff, 1430 * it expands header moving its tail forward and copying necessary 1431 * data from fragmented part. 1432 * 1433 * &sk_buff MUST have reference count of 1. 1434 * 1435 * Returns %NULL (and &sk_buff does not change) if pull failed 1436 * or value of new tail of skb in the case of success. 1437 * 1438 * All the pointers pointing into skb header may change and must be 1439 * reloaded after call to this function. 1440 */ 1441 1442 /* Moves tail of skb head forward, copying data from fragmented part, 1443 * when it is necessary. 1444 * 1. It may fail due to malloc failure. 1445 * 2. It may change skb pointers. 1446 * 1447 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1448 */ 1449 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1450 { 1451 /* If skb has not enough free space at tail, get new one 1452 * plus 128 bytes for future expansions. If we have enough 1453 * room at tail, reallocate without expansion only if skb is cloned. 1454 */ 1455 int i, k, eat = (skb->tail + delta) - skb->end; 1456 1457 if (eat > 0 || skb_cloned(skb)) { 1458 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1459 GFP_ATOMIC)) 1460 return NULL; 1461 } 1462 1463 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1464 BUG(); 1465 1466 /* Optimization: no fragments, no reasons to preestimate 1467 * size of pulled pages. Superb. 1468 */ 1469 if (!skb_has_frag_list(skb)) 1470 goto pull_pages; 1471 1472 /* Estimate size of pulled pages. */ 1473 eat = delta; 1474 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1475 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1476 1477 if (size >= eat) 1478 goto pull_pages; 1479 eat -= size; 1480 } 1481 1482 /* If we need update frag list, we are in troubles. 1483 * Certainly, it possible to add an offset to skb data, 1484 * but taking into account that pulling is expected to 1485 * be very rare operation, it is worth to fight against 1486 * further bloating skb head and crucify ourselves here instead. 1487 * Pure masohism, indeed. 8)8) 1488 */ 1489 if (eat) { 1490 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1491 struct sk_buff *clone = NULL; 1492 struct sk_buff *insp = NULL; 1493 1494 do { 1495 BUG_ON(!list); 1496 1497 if (list->len <= eat) { 1498 /* Eaten as whole. */ 1499 eat -= list->len; 1500 list = list->next; 1501 insp = list; 1502 } else { 1503 /* Eaten partially. */ 1504 1505 if (skb_shared(list)) { 1506 /* Sucks! We need to fork list. :-( */ 1507 clone = skb_clone(list, GFP_ATOMIC); 1508 if (!clone) 1509 return NULL; 1510 insp = list->next; 1511 list = clone; 1512 } else { 1513 /* This may be pulled without 1514 * problems. */ 1515 insp = list; 1516 } 1517 if (!pskb_pull(list, eat)) { 1518 kfree_skb(clone); 1519 return NULL; 1520 } 1521 break; 1522 } 1523 } while (eat); 1524 1525 /* Free pulled out fragments. */ 1526 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1527 skb_shinfo(skb)->frag_list = list->next; 1528 kfree_skb(list); 1529 } 1530 /* And insert new clone at head. */ 1531 if (clone) { 1532 clone->next = list; 1533 skb_shinfo(skb)->frag_list = clone; 1534 } 1535 } 1536 /* Success! Now we may commit changes to skb data. */ 1537 1538 pull_pages: 1539 eat = delta; 1540 k = 0; 1541 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1542 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1543 1544 if (size <= eat) { 1545 skb_frag_unref(skb, i); 1546 eat -= size; 1547 } else { 1548 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1549 if (eat) { 1550 skb_shinfo(skb)->frags[k].page_offset += eat; 1551 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1552 eat = 0; 1553 } 1554 k++; 1555 } 1556 } 1557 skb_shinfo(skb)->nr_frags = k; 1558 1559 skb->tail += delta; 1560 skb->data_len -= delta; 1561 1562 return skb_tail_pointer(skb); 1563 } 1564 EXPORT_SYMBOL(__pskb_pull_tail); 1565 1566 /** 1567 * skb_copy_bits - copy bits from skb to kernel buffer 1568 * @skb: source skb 1569 * @offset: offset in source 1570 * @to: destination buffer 1571 * @len: number of bytes to copy 1572 * 1573 * Copy the specified number of bytes from the source skb to the 1574 * destination buffer. 1575 * 1576 * CAUTION ! : 1577 * If its prototype is ever changed, 1578 * check arch/{*}/net/{*}.S files, 1579 * since it is called from BPF assembly code. 1580 */ 1581 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1582 { 1583 int start = skb_headlen(skb); 1584 struct sk_buff *frag_iter; 1585 int i, copy; 1586 1587 if (offset > (int)skb->len - len) 1588 goto fault; 1589 1590 /* Copy header. */ 1591 if ((copy = start - offset) > 0) { 1592 if (copy > len) 1593 copy = len; 1594 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1595 if ((len -= copy) == 0) 1596 return 0; 1597 offset += copy; 1598 to += copy; 1599 } 1600 1601 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1602 int end; 1603 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1604 1605 WARN_ON(start > offset + len); 1606 1607 end = start + skb_frag_size(f); 1608 if ((copy = end - offset) > 0) { 1609 u8 *vaddr; 1610 1611 if (copy > len) 1612 copy = len; 1613 1614 vaddr = kmap_atomic(skb_frag_page(f)); 1615 memcpy(to, 1616 vaddr + f->page_offset + offset - start, 1617 copy); 1618 kunmap_atomic(vaddr); 1619 1620 if ((len -= copy) == 0) 1621 return 0; 1622 offset += copy; 1623 to += copy; 1624 } 1625 start = end; 1626 } 1627 1628 skb_walk_frags(skb, frag_iter) { 1629 int end; 1630 1631 WARN_ON(start > offset + len); 1632 1633 end = start + frag_iter->len; 1634 if ((copy = end - offset) > 0) { 1635 if (copy > len) 1636 copy = len; 1637 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1638 goto fault; 1639 if ((len -= copy) == 0) 1640 return 0; 1641 offset += copy; 1642 to += copy; 1643 } 1644 start = end; 1645 } 1646 1647 if (!len) 1648 return 0; 1649 1650 fault: 1651 return -EFAULT; 1652 } 1653 EXPORT_SYMBOL(skb_copy_bits); 1654 1655 /* 1656 * Callback from splice_to_pipe(), if we need to release some pages 1657 * at the end of the spd in case we error'ed out in filling the pipe. 1658 */ 1659 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1660 { 1661 put_page(spd->pages[i]); 1662 } 1663 1664 static struct page *linear_to_page(struct page *page, unsigned int *len, 1665 unsigned int *offset, 1666 struct sock *sk) 1667 { 1668 struct page_frag *pfrag = sk_page_frag(sk); 1669 1670 if (!sk_page_frag_refill(sk, pfrag)) 1671 return NULL; 1672 1673 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 1674 1675 memcpy(page_address(pfrag->page) + pfrag->offset, 1676 page_address(page) + *offset, *len); 1677 *offset = pfrag->offset; 1678 pfrag->offset += *len; 1679 1680 return pfrag->page; 1681 } 1682 1683 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 1684 struct page *page, 1685 unsigned int offset) 1686 { 1687 return spd->nr_pages && 1688 spd->pages[spd->nr_pages - 1] == page && 1689 (spd->partial[spd->nr_pages - 1].offset + 1690 spd->partial[spd->nr_pages - 1].len == offset); 1691 } 1692 1693 /* 1694 * Fill page/offset/length into spd, if it can hold more pages. 1695 */ 1696 static bool spd_fill_page(struct splice_pipe_desc *spd, 1697 struct pipe_inode_info *pipe, struct page *page, 1698 unsigned int *len, unsigned int offset, 1699 bool linear, 1700 struct sock *sk) 1701 { 1702 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 1703 return true; 1704 1705 if (linear) { 1706 page = linear_to_page(page, len, &offset, sk); 1707 if (!page) 1708 return true; 1709 } 1710 if (spd_can_coalesce(spd, page, offset)) { 1711 spd->partial[spd->nr_pages - 1].len += *len; 1712 return false; 1713 } 1714 get_page(page); 1715 spd->pages[spd->nr_pages] = page; 1716 spd->partial[spd->nr_pages].len = *len; 1717 spd->partial[spd->nr_pages].offset = offset; 1718 spd->nr_pages++; 1719 1720 return false; 1721 } 1722 1723 static bool __splice_segment(struct page *page, unsigned int poff, 1724 unsigned int plen, unsigned int *off, 1725 unsigned int *len, 1726 struct splice_pipe_desc *spd, bool linear, 1727 struct sock *sk, 1728 struct pipe_inode_info *pipe) 1729 { 1730 if (!*len) 1731 return true; 1732 1733 /* skip this segment if already processed */ 1734 if (*off >= plen) { 1735 *off -= plen; 1736 return false; 1737 } 1738 1739 /* ignore any bits we already processed */ 1740 poff += *off; 1741 plen -= *off; 1742 *off = 0; 1743 1744 do { 1745 unsigned int flen = min(*len, plen); 1746 1747 if (spd_fill_page(spd, pipe, page, &flen, poff, 1748 linear, sk)) 1749 return true; 1750 poff += flen; 1751 plen -= flen; 1752 *len -= flen; 1753 } while (*len && plen); 1754 1755 return false; 1756 } 1757 1758 /* 1759 * Map linear and fragment data from the skb to spd. It reports true if the 1760 * pipe is full or if we already spliced the requested length. 1761 */ 1762 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1763 unsigned int *offset, unsigned int *len, 1764 struct splice_pipe_desc *spd, struct sock *sk) 1765 { 1766 int seg; 1767 1768 /* map the linear part : 1769 * If skb->head_frag is set, this 'linear' part is backed by a 1770 * fragment, and if the head is not shared with any clones then 1771 * we can avoid a copy since we own the head portion of this page. 1772 */ 1773 if (__splice_segment(virt_to_page(skb->data), 1774 (unsigned long) skb->data & (PAGE_SIZE - 1), 1775 skb_headlen(skb), 1776 offset, len, spd, 1777 skb_head_is_locked(skb), 1778 sk, pipe)) 1779 return true; 1780 1781 /* 1782 * then map the fragments 1783 */ 1784 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1785 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1786 1787 if (__splice_segment(skb_frag_page(f), 1788 f->page_offset, skb_frag_size(f), 1789 offset, len, spd, false, sk, pipe)) 1790 return true; 1791 } 1792 1793 return false; 1794 } 1795 1796 /* 1797 * Map data from the skb to a pipe. Should handle both the linear part, 1798 * the fragments, and the frag list. It does NOT handle frag lists within 1799 * the frag list, if such a thing exists. We'd probably need to recurse to 1800 * handle that cleanly. 1801 */ 1802 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1803 struct pipe_inode_info *pipe, unsigned int tlen, 1804 unsigned int flags) 1805 { 1806 struct partial_page partial[MAX_SKB_FRAGS]; 1807 struct page *pages[MAX_SKB_FRAGS]; 1808 struct splice_pipe_desc spd = { 1809 .pages = pages, 1810 .partial = partial, 1811 .nr_pages_max = MAX_SKB_FRAGS, 1812 .flags = flags, 1813 .ops = &sock_pipe_buf_ops, 1814 .spd_release = sock_spd_release, 1815 }; 1816 struct sk_buff *frag_iter; 1817 struct sock *sk = skb->sk; 1818 int ret = 0; 1819 1820 /* 1821 * __skb_splice_bits() only fails if the output has no room left, 1822 * so no point in going over the frag_list for the error case. 1823 */ 1824 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) 1825 goto done; 1826 else if (!tlen) 1827 goto done; 1828 1829 /* 1830 * now see if we have a frag_list to map 1831 */ 1832 skb_walk_frags(skb, frag_iter) { 1833 if (!tlen) 1834 break; 1835 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) 1836 break; 1837 } 1838 1839 done: 1840 if (spd.nr_pages) { 1841 /* 1842 * Drop the socket lock, otherwise we have reverse 1843 * locking dependencies between sk_lock and i_mutex 1844 * here as compared to sendfile(). We enter here 1845 * with the socket lock held, and splice_to_pipe() will 1846 * grab the pipe inode lock. For sendfile() emulation, 1847 * we call into ->sendpage() with the i_mutex lock held 1848 * and networking will grab the socket lock. 1849 */ 1850 release_sock(sk); 1851 ret = splice_to_pipe(pipe, &spd); 1852 lock_sock(sk); 1853 } 1854 1855 return ret; 1856 } 1857 1858 /** 1859 * skb_store_bits - store bits from kernel buffer to skb 1860 * @skb: destination buffer 1861 * @offset: offset in destination 1862 * @from: source buffer 1863 * @len: number of bytes to copy 1864 * 1865 * Copy the specified number of bytes from the source buffer to the 1866 * destination skb. This function handles all the messy bits of 1867 * traversing fragment lists and such. 1868 */ 1869 1870 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1871 { 1872 int start = skb_headlen(skb); 1873 struct sk_buff *frag_iter; 1874 int i, copy; 1875 1876 if (offset > (int)skb->len - len) 1877 goto fault; 1878 1879 if ((copy = start - offset) > 0) { 1880 if (copy > len) 1881 copy = len; 1882 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1883 if ((len -= copy) == 0) 1884 return 0; 1885 offset += copy; 1886 from += copy; 1887 } 1888 1889 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1890 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1891 int end; 1892 1893 WARN_ON(start > offset + len); 1894 1895 end = start + skb_frag_size(frag); 1896 if ((copy = end - offset) > 0) { 1897 u8 *vaddr; 1898 1899 if (copy > len) 1900 copy = len; 1901 1902 vaddr = kmap_atomic(skb_frag_page(frag)); 1903 memcpy(vaddr + frag->page_offset + offset - start, 1904 from, copy); 1905 kunmap_atomic(vaddr); 1906 1907 if ((len -= copy) == 0) 1908 return 0; 1909 offset += copy; 1910 from += copy; 1911 } 1912 start = end; 1913 } 1914 1915 skb_walk_frags(skb, frag_iter) { 1916 int end; 1917 1918 WARN_ON(start > offset + len); 1919 1920 end = start + frag_iter->len; 1921 if ((copy = end - offset) > 0) { 1922 if (copy > len) 1923 copy = len; 1924 if (skb_store_bits(frag_iter, offset - start, 1925 from, copy)) 1926 goto fault; 1927 if ((len -= copy) == 0) 1928 return 0; 1929 offset += copy; 1930 from += copy; 1931 } 1932 start = end; 1933 } 1934 if (!len) 1935 return 0; 1936 1937 fault: 1938 return -EFAULT; 1939 } 1940 EXPORT_SYMBOL(skb_store_bits); 1941 1942 /* Checksum skb data. */ 1943 1944 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1945 int len, __wsum csum) 1946 { 1947 int start = skb_headlen(skb); 1948 int i, copy = start - offset; 1949 struct sk_buff *frag_iter; 1950 int pos = 0; 1951 1952 /* Checksum header. */ 1953 if (copy > 0) { 1954 if (copy > len) 1955 copy = len; 1956 csum = csum_partial(skb->data + offset, copy, csum); 1957 if ((len -= copy) == 0) 1958 return csum; 1959 offset += copy; 1960 pos = copy; 1961 } 1962 1963 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1964 int end; 1965 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1966 1967 WARN_ON(start > offset + len); 1968 1969 end = start + skb_frag_size(frag); 1970 if ((copy = end - offset) > 0) { 1971 __wsum csum2; 1972 u8 *vaddr; 1973 1974 if (copy > len) 1975 copy = len; 1976 vaddr = kmap_atomic(skb_frag_page(frag)); 1977 csum2 = csum_partial(vaddr + frag->page_offset + 1978 offset - start, copy, 0); 1979 kunmap_atomic(vaddr); 1980 csum = csum_block_add(csum, csum2, pos); 1981 if (!(len -= copy)) 1982 return csum; 1983 offset += copy; 1984 pos += copy; 1985 } 1986 start = end; 1987 } 1988 1989 skb_walk_frags(skb, frag_iter) { 1990 int end; 1991 1992 WARN_ON(start > offset + len); 1993 1994 end = start + frag_iter->len; 1995 if ((copy = end - offset) > 0) { 1996 __wsum csum2; 1997 if (copy > len) 1998 copy = len; 1999 csum2 = skb_checksum(frag_iter, offset - start, 2000 copy, 0); 2001 csum = csum_block_add(csum, csum2, pos); 2002 if ((len -= copy) == 0) 2003 return csum; 2004 offset += copy; 2005 pos += copy; 2006 } 2007 start = end; 2008 } 2009 BUG_ON(len); 2010 2011 return csum; 2012 } 2013 EXPORT_SYMBOL(skb_checksum); 2014 2015 /* Both of above in one bottle. */ 2016 2017 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2018 u8 *to, int len, __wsum csum) 2019 { 2020 int start = skb_headlen(skb); 2021 int i, copy = start - offset; 2022 struct sk_buff *frag_iter; 2023 int pos = 0; 2024 2025 /* Copy header. */ 2026 if (copy > 0) { 2027 if (copy > len) 2028 copy = len; 2029 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2030 copy, csum); 2031 if ((len -= copy) == 0) 2032 return csum; 2033 offset += copy; 2034 to += copy; 2035 pos = copy; 2036 } 2037 2038 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2039 int end; 2040 2041 WARN_ON(start > offset + len); 2042 2043 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2044 if ((copy = end - offset) > 0) { 2045 __wsum csum2; 2046 u8 *vaddr; 2047 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2048 2049 if (copy > len) 2050 copy = len; 2051 vaddr = kmap_atomic(skb_frag_page(frag)); 2052 csum2 = csum_partial_copy_nocheck(vaddr + 2053 frag->page_offset + 2054 offset - start, to, 2055 copy, 0); 2056 kunmap_atomic(vaddr); 2057 csum = csum_block_add(csum, csum2, pos); 2058 if (!(len -= copy)) 2059 return csum; 2060 offset += copy; 2061 to += copy; 2062 pos += copy; 2063 } 2064 start = end; 2065 } 2066 2067 skb_walk_frags(skb, frag_iter) { 2068 __wsum csum2; 2069 int end; 2070 2071 WARN_ON(start > offset + len); 2072 2073 end = start + frag_iter->len; 2074 if ((copy = end - offset) > 0) { 2075 if (copy > len) 2076 copy = len; 2077 csum2 = skb_copy_and_csum_bits(frag_iter, 2078 offset - start, 2079 to, copy, 0); 2080 csum = csum_block_add(csum, csum2, pos); 2081 if ((len -= copy) == 0) 2082 return csum; 2083 offset += copy; 2084 to += copy; 2085 pos += copy; 2086 } 2087 start = end; 2088 } 2089 BUG_ON(len); 2090 return csum; 2091 } 2092 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2093 2094 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2095 { 2096 __wsum csum; 2097 long csstart; 2098 2099 if (skb->ip_summed == CHECKSUM_PARTIAL) 2100 csstart = skb_checksum_start_offset(skb); 2101 else 2102 csstart = skb_headlen(skb); 2103 2104 BUG_ON(csstart > skb_headlen(skb)); 2105 2106 skb_copy_from_linear_data(skb, to, csstart); 2107 2108 csum = 0; 2109 if (csstart != skb->len) 2110 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2111 skb->len - csstart, 0); 2112 2113 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2114 long csstuff = csstart + skb->csum_offset; 2115 2116 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2117 } 2118 } 2119 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2120 2121 /** 2122 * skb_dequeue - remove from the head of the queue 2123 * @list: list to dequeue from 2124 * 2125 * Remove the head of the list. The list lock is taken so the function 2126 * may be used safely with other locking list functions. The head item is 2127 * returned or %NULL if the list is empty. 2128 */ 2129 2130 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2131 { 2132 unsigned long flags; 2133 struct sk_buff *result; 2134 2135 spin_lock_irqsave(&list->lock, flags); 2136 result = __skb_dequeue(list); 2137 spin_unlock_irqrestore(&list->lock, flags); 2138 return result; 2139 } 2140 EXPORT_SYMBOL(skb_dequeue); 2141 2142 /** 2143 * skb_dequeue_tail - remove from the tail of the queue 2144 * @list: list to dequeue from 2145 * 2146 * Remove the tail of the list. The list lock is taken so the function 2147 * may be used safely with other locking list functions. The tail item is 2148 * returned or %NULL if the list is empty. 2149 */ 2150 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2151 { 2152 unsigned long flags; 2153 struct sk_buff *result; 2154 2155 spin_lock_irqsave(&list->lock, flags); 2156 result = __skb_dequeue_tail(list); 2157 spin_unlock_irqrestore(&list->lock, flags); 2158 return result; 2159 } 2160 EXPORT_SYMBOL(skb_dequeue_tail); 2161 2162 /** 2163 * skb_queue_purge - empty a list 2164 * @list: list to empty 2165 * 2166 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2167 * the list and one reference dropped. This function takes the list 2168 * lock and is atomic with respect to other list locking functions. 2169 */ 2170 void skb_queue_purge(struct sk_buff_head *list) 2171 { 2172 struct sk_buff *skb; 2173 while ((skb = skb_dequeue(list)) != NULL) 2174 kfree_skb(skb); 2175 } 2176 EXPORT_SYMBOL(skb_queue_purge); 2177 2178 /** 2179 * skb_queue_head - queue a buffer at the list head 2180 * @list: list to use 2181 * @newsk: buffer to queue 2182 * 2183 * Queue a buffer at the start of the list. This function takes the 2184 * list lock and can be used safely with other locking &sk_buff functions 2185 * safely. 2186 * 2187 * A buffer cannot be placed on two lists at the same time. 2188 */ 2189 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2190 { 2191 unsigned long flags; 2192 2193 spin_lock_irqsave(&list->lock, flags); 2194 __skb_queue_head(list, newsk); 2195 spin_unlock_irqrestore(&list->lock, flags); 2196 } 2197 EXPORT_SYMBOL(skb_queue_head); 2198 2199 /** 2200 * skb_queue_tail - queue a buffer at the list tail 2201 * @list: list to use 2202 * @newsk: buffer to queue 2203 * 2204 * Queue a buffer at the tail of the list. This function takes the 2205 * list lock and can be used safely with other locking &sk_buff functions 2206 * safely. 2207 * 2208 * A buffer cannot be placed on two lists at the same time. 2209 */ 2210 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2211 { 2212 unsigned long flags; 2213 2214 spin_lock_irqsave(&list->lock, flags); 2215 __skb_queue_tail(list, newsk); 2216 spin_unlock_irqrestore(&list->lock, flags); 2217 } 2218 EXPORT_SYMBOL(skb_queue_tail); 2219 2220 /** 2221 * skb_unlink - remove a buffer from a list 2222 * @skb: buffer to remove 2223 * @list: list to use 2224 * 2225 * Remove a packet from a list. The list locks are taken and this 2226 * function is atomic with respect to other list locked calls 2227 * 2228 * You must know what list the SKB is on. 2229 */ 2230 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2231 { 2232 unsigned long flags; 2233 2234 spin_lock_irqsave(&list->lock, flags); 2235 __skb_unlink(skb, list); 2236 spin_unlock_irqrestore(&list->lock, flags); 2237 } 2238 EXPORT_SYMBOL(skb_unlink); 2239 2240 /** 2241 * skb_append - append a buffer 2242 * @old: buffer to insert after 2243 * @newsk: buffer to insert 2244 * @list: list to use 2245 * 2246 * Place a packet after a given packet in a list. The list locks are taken 2247 * and this function is atomic with respect to other list locked calls. 2248 * A buffer cannot be placed on two lists at the same time. 2249 */ 2250 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2251 { 2252 unsigned long flags; 2253 2254 spin_lock_irqsave(&list->lock, flags); 2255 __skb_queue_after(list, old, newsk); 2256 spin_unlock_irqrestore(&list->lock, flags); 2257 } 2258 EXPORT_SYMBOL(skb_append); 2259 2260 /** 2261 * skb_insert - insert a buffer 2262 * @old: buffer to insert before 2263 * @newsk: buffer to insert 2264 * @list: list to use 2265 * 2266 * Place a packet before a given packet in a list. The list locks are 2267 * taken and this function is atomic with respect to other list locked 2268 * calls. 2269 * 2270 * A buffer cannot be placed on two lists at the same time. 2271 */ 2272 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2273 { 2274 unsigned long flags; 2275 2276 spin_lock_irqsave(&list->lock, flags); 2277 __skb_insert(newsk, old->prev, old, list); 2278 spin_unlock_irqrestore(&list->lock, flags); 2279 } 2280 EXPORT_SYMBOL(skb_insert); 2281 2282 static inline void skb_split_inside_header(struct sk_buff *skb, 2283 struct sk_buff* skb1, 2284 const u32 len, const int pos) 2285 { 2286 int i; 2287 2288 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2289 pos - len); 2290 /* And move data appendix as is. */ 2291 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2292 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2293 2294 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2295 skb_shinfo(skb)->nr_frags = 0; 2296 skb1->data_len = skb->data_len; 2297 skb1->len += skb1->data_len; 2298 skb->data_len = 0; 2299 skb->len = len; 2300 skb_set_tail_pointer(skb, len); 2301 } 2302 2303 static inline void skb_split_no_header(struct sk_buff *skb, 2304 struct sk_buff* skb1, 2305 const u32 len, int pos) 2306 { 2307 int i, k = 0; 2308 const int nfrags = skb_shinfo(skb)->nr_frags; 2309 2310 skb_shinfo(skb)->nr_frags = 0; 2311 skb1->len = skb1->data_len = skb->len - len; 2312 skb->len = len; 2313 skb->data_len = len - pos; 2314 2315 for (i = 0; i < nfrags; i++) { 2316 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2317 2318 if (pos + size > len) { 2319 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2320 2321 if (pos < len) { 2322 /* Split frag. 2323 * We have two variants in this case: 2324 * 1. Move all the frag to the second 2325 * part, if it is possible. F.e. 2326 * this approach is mandatory for TUX, 2327 * where splitting is expensive. 2328 * 2. Split is accurately. We make this. 2329 */ 2330 skb_frag_ref(skb, i); 2331 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2332 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2333 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2334 skb_shinfo(skb)->nr_frags++; 2335 } 2336 k++; 2337 } else 2338 skb_shinfo(skb)->nr_frags++; 2339 pos += size; 2340 } 2341 skb_shinfo(skb1)->nr_frags = k; 2342 } 2343 2344 /** 2345 * skb_split - Split fragmented skb to two parts at length len. 2346 * @skb: the buffer to split 2347 * @skb1: the buffer to receive the second part 2348 * @len: new length for skb 2349 */ 2350 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2351 { 2352 int pos = skb_headlen(skb); 2353 2354 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2355 if (len < pos) /* Split line is inside header. */ 2356 skb_split_inside_header(skb, skb1, len, pos); 2357 else /* Second chunk has no header, nothing to copy. */ 2358 skb_split_no_header(skb, skb1, len, pos); 2359 } 2360 EXPORT_SYMBOL(skb_split); 2361 2362 /* Shifting from/to a cloned skb is a no-go. 2363 * 2364 * Caller cannot keep skb_shinfo related pointers past calling here! 2365 */ 2366 static int skb_prepare_for_shift(struct sk_buff *skb) 2367 { 2368 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2369 } 2370 2371 /** 2372 * skb_shift - Shifts paged data partially from skb to another 2373 * @tgt: buffer into which tail data gets added 2374 * @skb: buffer from which the paged data comes from 2375 * @shiftlen: shift up to this many bytes 2376 * 2377 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2378 * the length of the skb, from skb to tgt. Returns number bytes shifted. 2379 * It's up to caller to free skb if everything was shifted. 2380 * 2381 * If @tgt runs out of frags, the whole operation is aborted. 2382 * 2383 * Skb cannot include anything else but paged data while tgt is allowed 2384 * to have non-paged data as well. 2385 * 2386 * TODO: full sized shift could be optimized but that would need 2387 * specialized skb free'er to handle frags without up-to-date nr_frags. 2388 */ 2389 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2390 { 2391 int from, to, merge, todo; 2392 struct skb_frag_struct *fragfrom, *fragto; 2393 2394 BUG_ON(shiftlen > skb->len); 2395 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2396 2397 todo = shiftlen; 2398 from = 0; 2399 to = skb_shinfo(tgt)->nr_frags; 2400 fragfrom = &skb_shinfo(skb)->frags[from]; 2401 2402 /* Actual merge is delayed until the point when we know we can 2403 * commit all, so that we don't have to undo partial changes 2404 */ 2405 if (!to || 2406 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2407 fragfrom->page_offset)) { 2408 merge = -1; 2409 } else { 2410 merge = to - 1; 2411 2412 todo -= skb_frag_size(fragfrom); 2413 if (todo < 0) { 2414 if (skb_prepare_for_shift(skb) || 2415 skb_prepare_for_shift(tgt)) 2416 return 0; 2417 2418 /* All previous frag pointers might be stale! */ 2419 fragfrom = &skb_shinfo(skb)->frags[from]; 2420 fragto = &skb_shinfo(tgt)->frags[merge]; 2421 2422 skb_frag_size_add(fragto, shiftlen); 2423 skb_frag_size_sub(fragfrom, shiftlen); 2424 fragfrom->page_offset += shiftlen; 2425 2426 goto onlymerged; 2427 } 2428 2429 from++; 2430 } 2431 2432 /* Skip full, not-fitting skb to avoid expensive operations */ 2433 if ((shiftlen == skb->len) && 2434 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2435 return 0; 2436 2437 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2438 return 0; 2439 2440 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2441 if (to == MAX_SKB_FRAGS) 2442 return 0; 2443 2444 fragfrom = &skb_shinfo(skb)->frags[from]; 2445 fragto = &skb_shinfo(tgt)->frags[to]; 2446 2447 if (todo >= skb_frag_size(fragfrom)) { 2448 *fragto = *fragfrom; 2449 todo -= skb_frag_size(fragfrom); 2450 from++; 2451 to++; 2452 2453 } else { 2454 __skb_frag_ref(fragfrom); 2455 fragto->page = fragfrom->page; 2456 fragto->page_offset = fragfrom->page_offset; 2457 skb_frag_size_set(fragto, todo); 2458 2459 fragfrom->page_offset += todo; 2460 skb_frag_size_sub(fragfrom, todo); 2461 todo = 0; 2462 2463 to++; 2464 break; 2465 } 2466 } 2467 2468 /* Ready to "commit" this state change to tgt */ 2469 skb_shinfo(tgt)->nr_frags = to; 2470 2471 if (merge >= 0) { 2472 fragfrom = &skb_shinfo(skb)->frags[0]; 2473 fragto = &skb_shinfo(tgt)->frags[merge]; 2474 2475 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2476 __skb_frag_unref(fragfrom); 2477 } 2478 2479 /* Reposition in the original skb */ 2480 to = 0; 2481 while (from < skb_shinfo(skb)->nr_frags) 2482 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2483 skb_shinfo(skb)->nr_frags = to; 2484 2485 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2486 2487 onlymerged: 2488 /* Most likely the tgt won't ever need its checksum anymore, skb on 2489 * the other hand might need it if it needs to be resent 2490 */ 2491 tgt->ip_summed = CHECKSUM_PARTIAL; 2492 skb->ip_summed = CHECKSUM_PARTIAL; 2493 2494 /* Yak, is it really working this way? Some helper please? */ 2495 skb->len -= shiftlen; 2496 skb->data_len -= shiftlen; 2497 skb->truesize -= shiftlen; 2498 tgt->len += shiftlen; 2499 tgt->data_len += shiftlen; 2500 tgt->truesize += shiftlen; 2501 2502 return shiftlen; 2503 } 2504 2505 /** 2506 * skb_prepare_seq_read - Prepare a sequential read of skb data 2507 * @skb: the buffer to read 2508 * @from: lower offset of data to be read 2509 * @to: upper offset of data to be read 2510 * @st: state variable 2511 * 2512 * Initializes the specified state variable. Must be called before 2513 * invoking skb_seq_read() for the first time. 2514 */ 2515 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2516 unsigned int to, struct skb_seq_state *st) 2517 { 2518 st->lower_offset = from; 2519 st->upper_offset = to; 2520 st->root_skb = st->cur_skb = skb; 2521 st->frag_idx = st->stepped_offset = 0; 2522 st->frag_data = NULL; 2523 } 2524 EXPORT_SYMBOL(skb_prepare_seq_read); 2525 2526 /** 2527 * skb_seq_read - Sequentially read skb data 2528 * @consumed: number of bytes consumed by the caller so far 2529 * @data: destination pointer for data to be returned 2530 * @st: state variable 2531 * 2532 * Reads a block of skb data at &consumed relative to the 2533 * lower offset specified to skb_prepare_seq_read(). Assigns 2534 * the head of the data block to &data and returns the length 2535 * of the block or 0 if the end of the skb data or the upper 2536 * offset has been reached. 2537 * 2538 * The caller is not required to consume all of the data 2539 * returned, i.e. &consumed is typically set to the number 2540 * of bytes already consumed and the next call to 2541 * skb_seq_read() will return the remaining part of the block. 2542 * 2543 * Note 1: The size of each block of data returned can be arbitrary, 2544 * this limitation is the cost for zerocopy seqeuental 2545 * reads of potentially non linear data. 2546 * 2547 * Note 2: Fragment lists within fragments are not implemented 2548 * at the moment, state->root_skb could be replaced with 2549 * a stack for this purpose. 2550 */ 2551 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2552 struct skb_seq_state *st) 2553 { 2554 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2555 skb_frag_t *frag; 2556 2557 if (unlikely(abs_offset >= st->upper_offset)) 2558 return 0; 2559 2560 next_skb: 2561 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2562 2563 if (abs_offset < block_limit && !st->frag_data) { 2564 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2565 return block_limit - abs_offset; 2566 } 2567 2568 if (st->frag_idx == 0 && !st->frag_data) 2569 st->stepped_offset += skb_headlen(st->cur_skb); 2570 2571 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2572 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2573 block_limit = skb_frag_size(frag) + st->stepped_offset; 2574 2575 if (abs_offset < block_limit) { 2576 if (!st->frag_data) 2577 st->frag_data = kmap_atomic(skb_frag_page(frag)); 2578 2579 *data = (u8 *) st->frag_data + frag->page_offset + 2580 (abs_offset - st->stepped_offset); 2581 2582 return block_limit - abs_offset; 2583 } 2584 2585 if (st->frag_data) { 2586 kunmap_atomic(st->frag_data); 2587 st->frag_data = NULL; 2588 } 2589 2590 st->frag_idx++; 2591 st->stepped_offset += skb_frag_size(frag); 2592 } 2593 2594 if (st->frag_data) { 2595 kunmap_atomic(st->frag_data); 2596 st->frag_data = NULL; 2597 } 2598 2599 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2600 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2601 st->frag_idx = 0; 2602 goto next_skb; 2603 } else if (st->cur_skb->next) { 2604 st->cur_skb = st->cur_skb->next; 2605 st->frag_idx = 0; 2606 goto next_skb; 2607 } 2608 2609 return 0; 2610 } 2611 EXPORT_SYMBOL(skb_seq_read); 2612 2613 /** 2614 * skb_abort_seq_read - Abort a sequential read of skb data 2615 * @st: state variable 2616 * 2617 * Must be called if skb_seq_read() was not called until it 2618 * returned 0. 2619 */ 2620 void skb_abort_seq_read(struct skb_seq_state *st) 2621 { 2622 if (st->frag_data) 2623 kunmap_atomic(st->frag_data); 2624 } 2625 EXPORT_SYMBOL(skb_abort_seq_read); 2626 2627 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2628 2629 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2630 struct ts_config *conf, 2631 struct ts_state *state) 2632 { 2633 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2634 } 2635 2636 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2637 { 2638 skb_abort_seq_read(TS_SKB_CB(state)); 2639 } 2640 2641 /** 2642 * skb_find_text - Find a text pattern in skb data 2643 * @skb: the buffer to look in 2644 * @from: search offset 2645 * @to: search limit 2646 * @config: textsearch configuration 2647 * @state: uninitialized textsearch state variable 2648 * 2649 * Finds a pattern in the skb data according to the specified 2650 * textsearch configuration. Use textsearch_next() to retrieve 2651 * subsequent occurrences of the pattern. Returns the offset 2652 * to the first occurrence or UINT_MAX if no match was found. 2653 */ 2654 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2655 unsigned int to, struct ts_config *config, 2656 struct ts_state *state) 2657 { 2658 unsigned int ret; 2659 2660 config->get_next_block = skb_ts_get_next_block; 2661 config->finish = skb_ts_finish; 2662 2663 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2664 2665 ret = textsearch_find(config, state); 2666 return (ret <= to - from ? ret : UINT_MAX); 2667 } 2668 EXPORT_SYMBOL(skb_find_text); 2669 2670 /** 2671 * skb_append_datato_frags - append the user data to a skb 2672 * @sk: sock structure 2673 * @skb: skb structure to be appened with user data. 2674 * @getfrag: call back function to be used for getting the user data 2675 * @from: pointer to user message iov 2676 * @length: length of the iov message 2677 * 2678 * Description: This procedure append the user data in the fragment part 2679 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2680 */ 2681 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2682 int (*getfrag)(void *from, char *to, int offset, 2683 int len, int odd, struct sk_buff *skb), 2684 void *from, int length) 2685 { 2686 int frg_cnt = skb_shinfo(skb)->nr_frags; 2687 int copy; 2688 int offset = 0; 2689 int ret; 2690 struct page_frag *pfrag = ¤t->task_frag; 2691 2692 do { 2693 /* Return error if we don't have space for new frag */ 2694 if (frg_cnt >= MAX_SKB_FRAGS) 2695 return -EMSGSIZE; 2696 2697 if (!sk_page_frag_refill(sk, pfrag)) 2698 return -ENOMEM; 2699 2700 /* copy the user data to page */ 2701 copy = min_t(int, length, pfrag->size - pfrag->offset); 2702 2703 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 2704 offset, copy, 0, skb); 2705 if (ret < 0) 2706 return -EFAULT; 2707 2708 /* copy was successful so update the size parameters */ 2709 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 2710 copy); 2711 frg_cnt++; 2712 pfrag->offset += copy; 2713 get_page(pfrag->page); 2714 2715 skb->truesize += copy; 2716 atomic_add(copy, &sk->sk_wmem_alloc); 2717 skb->len += copy; 2718 skb->data_len += copy; 2719 offset += copy; 2720 length -= copy; 2721 2722 } while (length > 0); 2723 2724 return 0; 2725 } 2726 EXPORT_SYMBOL(skb_append_datato_frags); 2727 2728 /** 2729 * skb_pull_rcsum - pull skb and update receive checksum 2730 * @skb: buffer to update 2731 * @len: length of data pulled 2732 * 2733 * This function performs an skb_pull on the packet and updates 2734 * the CHECKSUM_COMPLETE checksum. It should be used on 2735 * receive path processing instead of skb_pull unless you know 2736 * that the checksum difference is zero (e.g., a valid IP header) 2737 * or you are setting ip_summed to CHECKSUM_NONE. 2738 */ 2739 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2740 { 2741 BUG_ON(len > skb->len); 2742 skb->len -= len; 2743 BUG_ON(skb->len < skb->data_len); 2744 skb_postpull_rcsum(skb, skb->data, len); 2745 return skb->data += len; 2746 } 2747 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2748 2749 /** 2750 * skb_segment - Perform protocol segmentation on skb. 2751 * @skb: buffer to segment 2752 * @features: features for the output path (see dev->features) 2753 * 2754 * This function performs segmentation on the given skb. It returns 2755 * a pointer to the first in a list of new skbs for the segments. 2756 * In case of error it returns ERR_PTR(err). 2757 */ 2758 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features) 2759 { 2760 struct sk_buff *segs = NULL; 2761 struct sk_buff *tail = NULL; 2762 struct sk_buff *fskb = skb_shinfo(skb)->frag_list; 2763 unsigned int mss = skb_shinfo(skb)->gso_size; 2764 unsigned int doffset = skb->data - skb_mac_header(skb); 2765 unsigned int offset = doffset; 2766 unsigned int tnl_hlen = skb_tnl_header_len(skb); 2767 unsigned int headroom; 2768 unsigned int len; 2769 __be16 proto; 2770 bool csum; 2771 int sg = !!(features & NETIF_F_SG); 2772 int nfrags = skb_shinfo(skb)->nr_frags; 2773 int err = -ENOMEM; 2774 int i = 0; 2775 int pos; 2776 2777 proto = skb_network_protocol(skb); 2778 if (unlikely(!proto)) 2779 return ERR_PTR(-EINVAL); 2780 2781 csum = !!can_checksum_protocol(features, proto); 2782 __skb_push(skb, doffset); 2783 headroom = skb_headroom(skb); 2784 pos = skb_headlen(skb); 2785 2786 do { 2787 struct sk_buff *nskb; 2788 skb_frag_t *frag; 2789 int hsize; 2790 int size; 2791 2792 len = skb->len - offset; 2793 if (len > mss) 2794 len = mss; 2795 2796 hsize = skb_headlen(skb) - offset; 2797 if (hsize < 0) 2798 hsize = 0; 2799 if (hsize > len || !sg) 2800 hsize = len; 2801 2802 if (!hsize && i >= nfrags) { 2803 BUG_ON(fskb->len != len); 2804 2805 pos += len; 2806 nskb = skb_clone(fskb, GFP_ATOMIC); 2807 fskb = fskb->next; 2808 2809 if (unlikely(!nskb)) 2810 goto err; 2811 2812 hsize = skb_end_offset(nskb); 2813 if (skb_cow_head(nskb, doffset + headroom)) { 2814 kfree_skb(nskb); 2815 goto err; 2816 } 2817 2818 nskb->truesize += skb_end_offset(nskb) - hsize; 2819 skb_release_head_state(nskb); 2820 __skb_push(nskb, doffset); 2821 } else { 2822 nskb = __alloc_skb(hsize + doffset + headroom, 2823 GFP_ATOMIC, skb_alloc_rx_flag(skb), 2824 NUMA_NO_NODE); 2825 2826 if (unlikely(!nskb)) 2827 goto err; 2828 2829 skb_reserve(nskb, headroom); 2830 __skb_put(nskb, doffset); 2831 } 2832 2833 if (segs) 2834 tail->next = nskb; 2835 else 2836 segs = nskb; 2837 tail = nskb; 2838 2839 __copy_skb_header(nskb, skb); 2840 nskb->mac_len = skb->mac_len; 2841 2842 /* nskb and skb might have different headroom */ 2843 if (nskb->ip_summed == CHECKSUM_PARTIAL) 2844 nskb->csum_start += skb_headroom(nskb) - headroom; 2845 2846 skb_reset_mac_header(nskb); 2847 skb_set_network_header(nskb, skb->mac_len); 2848 nskb->transport_header = (nskb->network_header + 2849 skb_network_header_len(skb)); 2850 2851 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 2852 nskb->data - tnl_hlen, 2853 doffset + tnl_hlen); 2854 2855 if (fskb != skb_shinfo(skb)->frag_list) 2856 continue; 2857 2858 if (!sg) { 2859 nskb->ip_summed = CHECKSUM_NONE; 2860 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2861 skb_put(nskb, len), 2862 len, 0); 2863 continue; 2864 } 2865 2866 frag = skb_shinfo(nskb)->frags; 2867 2868 skb_copy_from_linear_data_offset(skb, offset, 2869 skb_put(nskb, hsize), hsize); 2870 2871 skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2872 2873 while (pos < offset + len && i < nfrags) { 2874 *frag = skb_shinfo(skb)->frags[i]; 2875 __skb_frag_ref(frag); 2876 size = skb_frag_size(frag); 2877 2878 if (pos < offset) { 2879 frag->page_offset += offset - pos; 2880 skb_frag_size_sub(frag, offset - pos); 2881 } 2882 2883 skb_shinfo(nskb)->nr_frags++; 2884 2885 if (pos + size <= offset + len) { 2886 i++; 2887 pos += size; 2888 } else { 2889 skb_frag_size_sub(frag, pos + size - (offset + len)); 2890 goto skip_fraglist; 2891 } 2892 2893 frag++; 2894 } 2895 2896 if (pos < offset + len) { 2897 struct sk_buff *fskb2 = fskb; 2898 2899 BUG_ON(pos + fskb->len != offset + len); 2900 2901 pos += fskb->len; 2902 fskb = fskb->next; 2903 2904 if (fskb2->next) { 2905 fskb2 = skb_clone(fskb2, GFP_ATOMIC); 2906 if (!fskb2) 2907 goto err; 2908 } else 2909 skb_get(fskb2); 2910 2911 SKB_FRAG_ASSERT(nskb); 2912 skb_shinfo(nskb)->frag_list = fskb2; 2913 } 2914 2915 skip_fraglist: 2916 nskb->data_len = len - hsize; 2917 nskb->len += nskb->data_len; 2918 nskb->truesize += nskb->data_len; 2919 2920 if (!csum) { 2921 nskb->csum = skb_checksum(nskb, doffset, 2922 nskb->len - doffset, 0); 2923 nskb->ip_summed = CHECKSUM_NONE; 2924 } 2925 } while ((offset += len) < skb->len); 2926 2927 return segs; 2928 2929 err: 2930 while ((skb = segs)) { 2931 segs = skb->next; 2932 kfree_skb(skb); 2933 } 2934 return ERR_PTR(err); 2935 } 2936 EXPORT_SYMBOL_GPL(skb_segment); 2937 2938 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2939 { 2940 struct sk_buff *p = *head; 2941 struct sk_buff *nskb; 2942 struct skb_shared_info *skbinfo = skb_shinfo(skb); 2943 struct skb_shared_info *pinfo = skb_shinfo(p); 2944 unsigned int headroom; 2945 unsigned int len = skb_gro_len(skb); 2946 unsigned int offset = skb_gro_offset(skb); 2947 unsigned int headlen = skb_headlen(skb); 2948 unsigned int delta_truesize; 2949 2950 if (p->len + len >= 65536) 2951 return -E2BIG; 2952 2953 if (pinfo->frag_list) 2954 goto merge; 2955 else if (headlen <= offset) { 2956 skb_frag_t *frag; 2957 skb_frag_t *frag2; 2958 int i = skbinfo->nr_frags; 2959 int nr_frags = pinfo->nr_frags + i; 2960 2961 offset -= headlen; 2962 2963 if (nr_frags > MAX_SKB_FRAGS) 2964 return -E2BIG; 2965 2966 pinfo->nr_frags = nr_frags; 2967 skbinfo->nr_frags = 0; 2968 2969 frag = pinfo->frags + nr_frags; 2970 frag2 = skbinfo->frags + i; 2971 do { 2972 *--frag = *--frag2; 2973 } while (--i); 2974 2975 frag->page_offset += offset; 2976 skb_frag_size_sub(frag, offset); 2977 2978 /* all fragments truesize : remove (head size + sk_buff) */ 2979 delta_truesize = skb->truesize - 2980 SKB_TRUESIZE(skb_end_offset(skb)); 2981 2982 skb->truesize -= skb->data_len; 2983 skb->len -= skb->data_len; 2984 skb->data_len = 0; 2985 2986 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 2987 goto done; 2988 } else if (skb->head_frag) { 2989 int nr_frags = pinfo->nr_frags; 2990 skb_frag_t *frag = pinfo->frags + nr_frags; 2991 struct page *page = virt_to_head_page(skb->head); 2992 unsigned int first_size = headlen - offset; 2993 unsigned int first_offset; 2994 2995 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 2996 return -E2BIG; 2997 2998 first_offset = skb->data - 2999 (unsigned char *)page_address(page) + 3000 offset; 3001 3002 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3003 3004 frag->page.p = page; 3005 frag->page_offset = first_offset; 3006 skb_frag_size_set(frag, first_size); 3007 3008 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3009 /* We dont need to clear skbinfo->nr_frags here */ 3010 3011 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3012 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3013 goto done; 3014 } else if (skb_gro_len(p) != pinfo->gso_size) 3015 return -E2BIG; 3016 3017 headroom = skb_headroom(p); 3018 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC); 3019 if (unlikely(!nskb)) 3020 return -ENOMEM; 3021 3022 __copy_skb_header(nskb, p); 3023 nskb->mac_len = p->mac_len; 3024 3025 skb_reserve(nskb, headroom); 3026 __skb_put(nskb, skb_gro_offset(p)); 3027 3028 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 3029 skb_set_network_header(nskb, skb_network_offset(p)); 3030 skb_set_transport_header(nskb, skb_transport_offset(p)); 3031 3032 __skb_pull(p, skb_gro_offset(p)); 3033 memcpy(skb_mac_header(nskb), skb_mac_header(p), 3034 p->data - skb_mac_header(p)); 3035 3036 skb_shinfo(nskb)->frag_list = p; 3037 skb_shinfo(nskb)->gso_size = pinfo->gso_size; 3038 pinfo->gso_size = 0; 3039 skb_header_release(p); 3040 NAPI_GRO_CB(nskb)->last = p; 3041 3042 nskb->data_len += p->len; 3043 nskb->truesize += p->truesize; 3044 nskb->len += p->len; 3045 3046 *head = nskb; 3047 nskb->next = p->next; 3048 p->next = NULL; 3049 3050 p = nskb; 3051 3052 merge: 3053 delta_truesize = skb->truesize; 3054 if (offset > headlen) { 3055 unsigned int eat = offset - headlen; 3056 3057 skbinfo->frags[0].page_offset += eat; 3058 skb_frag_size_sub(&skbinfo->frags[0], eat); 3059 skb->data_len -= eat; 3060 skb->len -= eat; 3061 offset = headlen; 3062 } 3063 3064 __skb_pull(skb, offset); 3065 3066 NAPI_GRO_CB(p)->last->next = skb; 3067 NAPI_GRO_CB(p)->last = skb; 3068 skb_header_release(skb); 3069 3070 done: 3071 NAPI_GRO_CB(p)->count++; 3072 p->data_len += len; 3073 p->truesize += delta_truesize; 3074 p->len += len; 3075 3076 NAPI_GRO_CB(skb)->same_flow = 1; 3077 return 0; 3078 } 3079 EXPORT_SYMBOL_GPL(skb_gro_receive); 3080 3081 void __init skb_init(void) 3082 { 3083 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3084 sizeof(struct sk_buff), 3085 0, 3086 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3087 NULL); 3088 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3089 (2*sizeof(struct sk_buff)) + 3090 sizeof(atomic_t), 3091 0, 3092 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3093 NULL); 3094 } 3095 3096 /** 3097 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3098 * @skb: Socket buffer containing the buffers to be mapped 3099 * @sg: The scatter-gather list to map into 3100 * @offset: The offset into the buffer's contents to start mapping 3101 * @len: Length of buffer space to be mapped 3102 * 3103 * Fill the specified scatter-gather list with mappings/pointers into a 3104 * region of the buffer space attached to a socket buffer. 3105 */ 3106 static int 3107 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3108 { 3109 int start = skb_headlen(skb); 3110 int i, copy = start - offset; 3111 struct sk_buff *frag_iter; 3112 int elt = 0; 3113 3114 if (copy > 0) { 3115 if (copy > len) 3116 copy = len; 3117 sg_set_buf(sg, skb->data + offset, copy); 3118 elt++; 3119 if ((len -= copy) == 0) 3120 return elt; 3121 offset += copy; 3122 } 3123 3124 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3125 int end; 3126 3127 WARN_ON(start > offset + len); 3128 3129 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3130 if ((copy = end - offset) > 0) { 3131 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3132 3133 if (copy > len) 3134 copy = len; 3135 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3136 frag->page_offset+offset-start); 3137 elt++; 3138 if (!(len -= copy)) 3139 return elt; 3140 offset += copy; 3141 } 3142 start = end; 3143 } 3144 3145 skb_walk_frags(skb, frag_iter) { 3146 int end; 3147 3148 WARN_ON(start > offset + len); 3149 3150 end = start + frag_iter->len; 3151 if ((copy = end - offset) > 0) { 3152 if (copy > len) 3153 copy = len; 3154 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3155 copy); 3156 if ((len -= copy) == 0) 3157 return elt; 3158 offset += copy; 3159 } 3160 start = end; 3161 } 3162 BUG_ON(len); 3163 return elt; 3164 } 3165 3166 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3167 { 3168 int nsg = __skb_to_sgvec(skb, sg, offset, len); 3169 3170 sg_mark_end(&sg[nsg - 1]); 3171 3172 return nsg; 3173 } 3174 EXPORT_SYMBOL_GPL(skb_to_sgvec); 3175 3176 /** 3177 * skb_cow_data - Check that a socket buffer's data buffers are writable 3178 * @skb: The socket buffer to check. 3179 * @tailbits: Amount of trailing space to be added 3180 * @trailer: Returned pointer to the skb where the @tailbits space begins 3181 * 3182 * Make sure that the data buffers attached to a socket buffer are 3183 * writable. If they are not, private copies are made of the data buffers 3184 * and the socket buffer is set to use these instead. 3185 * 3186 * If @tailbits is given, make sure that there is space to write @tailbits 3187 * bytes of data beyond current end of socket buffer. @trailer will be 3188 * set to point to the skb in which this space begins. 3189 * 3190 * The number of scatterlist elements required to completely map the 3191 * COW'd and extended socket buffer will be returned. 3192 */ 3193 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3194 { 3195 int copyflag; 3196 int elt; 3197 struct sk_buff *skb1, **skb_p; 3198 3199 /* If skb is cloned or its head is paged, reallocate 3200 * head pulling out all the pages (pages are considered not writable 3201 * at the moment even if they are anonymous). 3202 */ 3203 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3204 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3205 return -ENOMEM; 3206 3207 /* Easy case. Most of packets will go this way. */ 3208 if (!skb_has_frag_list(skb)) { 3209 /* A little of trouble, not enough of space for trailer. 3210 * This should not happen, when stack is tuned to generate 3211 * good frames. OK, on miss we reallocate and reserve even more 3212 * space, 128 bytes is fair. */ 3213 3214 if (skb_tailroom(skb) < tailbits && 3215 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3216 return -ENOMEM; 3217 3218 /* Voila! */ 3219 *trailer = skb; 3220 return 1; 3221 } 3222 3223 /* Misery. We are in troubles, going to mincer fragments... */ 3224 3225 elt = 1; 3226 skb_p = &skb_shinfo(skb)->frag_list; 3227 copyflag = 0; 3228 3229 while ((skb1 = *skb_p) != NULL) { 3230 int ntail = 0; 3231 3232 /* The fragment is partially pulled by someone, 3233 * this can happen on input. Copy it and everything 3234 * after it. */ 3235 3236 if (skb_shared(skb1)) 3237 copyflag = 1; 3238 3239 /* If the skb is the last, worry about trailer. */ 3240 3241 if (skb1->next == NULL && tailbits) { 3242 if (skb_shinfo(skb1)->nr_frags || 3243 skb_has_frag_list(skb1) || 3244 skb_tailroom(skb1) < tailbits) 3245 ntail = tailbits + 128; 3246 } 3247 3248 if (copyflag || 3249 skb_cloned(skb1) || 3250 ntail || 3251 skb_shinfo(skb1)->nr_frags || 3252 skb_has_frag_list(skb1)) { 3253 struct sk_buff *skb2; 3254 3255 /* Fuck, we are miserable poor guys... */ 3256 if (ntail == 0) 3257 skb2 = skb_copy(skb1, GFP_ATOMIC); 3258 else 3259 skb2 = skb_copy_expand(skb1, 3260 skb_headroom(skb1), 3261 ntail, 3262 GFP_ATOMIC); 3263 if (unlikely(skb2 == NULL)) 3264 return -ENOMEM; 3265 3266 if (skb1->sk) 3267 skb_set_owner_w(skb2, skb1->sk); 3268 3269 /* Looking around. Are we still alive? 3270 * OK, link new skb, drop old one */ 3271 3272 skb2->next = skb1->next; 3273 *skb_p = skb2; 3274 kfree_skb(skb1); 3275 skb1 = skb2; 3276 } 3277 elt++; 3278 *trailer = skb1; 3279 skb_p = &skb1->next; 3280 } 3281 3282 return elt; 3283 } 3284 EXPORT_SYMBOL_GPL(skb_cow_data); 3285 3286 static void sock_rmem_free(struct sk_buff *skb) 3287 { 3288 struct sock *sk = skb->sk; 3289 3290 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3291 } 3292 3293 /* 3294 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3295 */ 3296 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3297 { 3298 int len = skb->len; 3299 3300 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3301 (unsigned int)sk->sk_rcvbuf) 3302 return -ENOMEM; 3303 3304 skb_orphan(skb); 3305 skb->sk = sk; 3306 skb->destructor = sock_rmem_free; 3307 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3308 3309 /* before exiting rcu section, make sure dst is refcounted */ 3310 skb_dst_force(skb); 3311 3312 skb_queue_tail(&sk->sk_error_queue, skb); 3313 if (!sock_flag(sk, SOCK_DEAD)) 3314 sk->sk_data_ready(sk, len); 3315 return 0; 3316 } 3317 EXPORT_SYMBOL(sock_queue_err_skb); 3318 3319 void skb_tstamp_tx(struct sk_buff *orig_skb, 3320 struct skb_shared_hwtstamps *hwtstamps) 3321 { 3322 struct sock *sk = orig_skb->sk; 3323 struct sock_exterr_skb *serr; 3324 struct sk_buff *skb; 3325 int err; 3326 3327 if (!sk) 3328 return; 3329 3330 if (hwtstamps) { 3331 *skb_hwtstamps(orig_skb) = 3332 *hwtstamps; 3333 } else { 3334 /* 3335 * no hardware time stamps available, 3336 * so keep the shared tx_flags and only 3337 * store software time stamp 3338 */ 3339 orig_skb->tstamp = ktime_get_real(); 3340 } 3341 3342 skb = skb_clone(orig_skb, GFP_ATOMIC); 3343 if (!skb) 3344 return; 3345 3346 serr = SKB_EXT_ERR(skb); 3347 memset(serr, 0, sizeof(*serr)); 3348 serr->ee.ee_errno = ENOMSG; 3349 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3350 3351 err = sock_queue_err_skb(sk, skb); 3352 3353 if (err) 3354 kfree_skb(skb); 3355 } 3356 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3357 3358 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 3359 { 3360 struct sock *sk = skb->sk; 3361 struct sock_exterr_skb *serr; 3362 int err; 3363 3364 skb->wifi_acked_valid = 1; 3365 skb->wifi_acked = acked; 3366 3367 serr = SKB_EXT_ERR(skb); 3368 memset(serr, 0, sizeof(*serr)); 3369 serr->ee.ee_errno = ENOMSG; 3370 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 3371 3372 err = sock_queue_err_skb(sk, skb); 3373 if (err) 3374 kfree_skb(skb); 3375 } 3376 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 3377 3378 3379 /** 3380 * skb_partial_csum_set - set up and verify partial csum values for packet 3381 * @skb: the skb to set 3382 * @start: the number of bytes after skb->data to start checksumming. 3383 * @off: the offset from start to place the checksum. 3384 * 3385 * For untrusted partially-checksummed packets, we need to make sure the values 3386 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3387 * 3388 * This function checks and sets those values and skb->ip_summed: if this 3389 * returns false you should drop the packet. 3390 */ 3391 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3392 { 3393 if (unlikely(start > skb_headlen(skb)) || 3394 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3395 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 3396 start, off, skb_headlen(skb)); 3397 return false; 3398 } 3399 skb->ip_summed = CHECKSUM_PARTIAL; 3400 skb->csum_start = skb_headroom(skb) + start; 3401 skb->csum_offset = off; 3402 skb_set_transport_header(skb, start); 3403 return true; 3404 } 3405 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3406 3407 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3408 { 3409 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 3410 skb->dev->name); 3411 } 3412 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3413 3414 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 3415 { 3416 if (head_stolen) { 3417 skb_release_head_state(skb); 3418 kmem_cache_free(skbuff_head_cache, skb); 3419 } else { 3420 __kfree_skb(skb); 3421 } 3422 } 3423 EXPORT_SYMBOL(kfree_skb_partial); 3424 3425 /** 3426 * skb_try_coalesce - try to merge skb to prior one 3427 * @to: prior buffer 3428 * @from: buffer to add 3429 * @fragstolen: pointer to boolean 3430 * @delta_truesize: how much more was allocated than was requested 3431 */ 3432 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 3433 bool *fragstolen, int *delta_truesize) 3434 { 3435 int i, delta, len = from->len; 3436 3437 *fragstolen = false; 3438 3439 if (skb_cloned(to)) 3440 return false; 3441 3442 if (len <= skb_tailroom(to)) { 3443 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 3444 *delta_truesize = 0; 3445 return true; 3446 } 3447 3448 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 3449 return false; 3450 3451 if (skb_headlen(from) != 0) { 3452 struct page *page; 3453 unsigned int offset; 3454 3455 if (skb_shinfo(to)->nr_frags + 3456 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 3457 return false; 3458 3459 if (skb_head_is_locked(from)) 3460 return false; 3461 3462 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3463 3464 page = virt_to_head_page(from->head); 3465 offset = from->data - (unsigned char *)page_address(page); 3466 3467 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 3468 page, offset, skb_headlen(from)); 3469 *fragstolen = true; 3470 } else { 3471 if (skb_shinfo(to)->nr_frags + 3472 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 3473 return false; 3474 3475 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 3476 } 3477 3478 WARN_ON_ONCE(delta < len); 3479 3480 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 3481 skb_shinfo(from)->frags, 3482 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 3483 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 3484 3485 if (!skb_cloned(from)) 3486 skb_shinfo(from)->nr_frags = 0; 3487 3488 /* if the skb is not cloned this does nothing 3489 * since we set nr_frags to 0. 3490 */ 3491 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 3492 skb_frag_ref(from, i); 3493 3494 to->truesize += delta; 3495 to->len += len; 3496 to->data_len += len; 3497 3498 *delta_truesize = delta; 3499 return true; 3500 } 3501 EXPORT_SYMBOL(skb_try_coalesce); 3502