1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/tcp.h> 51 #include <linux/udp.h> 52 #include <linux/sctp.h> 53 #include <linux/netdevice.h> 54 #ifdef CONFIG_NET_CLS_ACT 55 #include <net/pkt_sched.h> 56 #endif 57 #include <linux/string.h> 58 #include <linux/skbuff.h> 59 #include <linux/splice.h> 60 #include <linux/cache.h> 61 #include <linux/rtnetlink.h> 62 #include <linux/init.h> 63 #include <linux/scatterlist.h> 64 #include <linux/errqueue.h> 65 #include <linux/prefetch.h> 66 #include <linux/if_vlan.h> 67 68 #include <net/protocol.h> 69 #include <net/dst.h> 70 #include <net/sock.h> 71 #include <net/checksum.h> 72 #include <net/ip6_checksum.h> 73 #include <net/xfrm.h> 74 75 #include <linux/uaccess.h> 76 #include <trace/events/skb.h> 77 #include <linux/highmem.h> 78 #include <linux/capability.h> 79 #include <linux/user_namespace.h> 80 81 struct kmem_cache *skbuff_head_cache __read_mostly; 82 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 84 EXPORT_SYMBOL(sysctl_max_skb_frags); 85 86 /** 87 * skb_panic - private function for out-of-line support 88 * @skb: buffer 89 * @sz: size 90 * @addr: address 91 * @msg: skb_over_panic or skb_under_panic 92 * 93 * Out-of-line support for skb_put() and skb_push(). 94 * Called via the wrapper skb_over_panic() or skb_under_panic(). 95 * Keep out of line to prevent kernel bloat. 96 * __builtin_return_address is not used because it is not always reliable. 97 */ 98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 99 const char msg[]) 100 { 101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 102 msg, addr, skb->len, sz, skb->head, skb->data, 103 (unsigned long)skb->tail, (unsigned long)skb->end, 104 skb->dev ? skb->dev->name : "<NULL>"); 105 BUG(); 106 } 107 108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 109 { 110 skb_panic(skb, sz, addr, __func__); 111 } 112 113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 114 { 115 skb_panic(skb, sz, addr, __func__); 116 } 117 118 /* 119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 120 * the caller if emergency pfmemalloc reserves are being used. If it is and 121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 122 * may be used. Otherwise, the packet data may be discarded until enough 123 * memory is free 124 */ 125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 127 128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 129 unsigned long ip, bool *pfmemalloc) 130 { 131 void *obj; 132 bool ret_pfmemalloc = false; 133 134 /* 135 * Try a regular allocation, when that fails and we're not entitled 136 * to the reserves, fail. 137 */ 138 obj = kmalloc_node_track_caller(size, 139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 140 node); 141 if (obj || !(gfp_pfmemalloc_allowed(flags))) 142 goto out; 143 144 /* Try again but now we are using pfmemalloc reserves */ 145 ret_pfmemalloc = true; 146 obj = kmalloc_node_track_caller(size, flags, node); 147 148 out: 149 if (pfmemalloc) 150 *pfmemalloc = ret_pfmemalloc; 151 152 return obj; 153 } 154 155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 156 * 'private' fields and also do memory statistics to find all the 157 * [BEEP] leaks. 158 * 159 */ 160 161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node) 162 { 163 struct sk_buff *skb; 164 165 /* Get the HEAD */ 166 skb = kmem_cache_alloc_node(skbuff_head_cache, 167 gfp_mask & ~__GFP_DMA, node); 168 if (!skb) 169 goto out; 170 171 /* 172 * Only clear those fields we need to clear, not those that we will 173 * actually initialise below. Hence, don't put any more fields after 174 * the tail pointer in struct sk_buff! 175 */ 176 memset(skb, 0, offsetof(struct sk_buff, tail)); 177 skb->head = NULL; 178 skb->truesize = sizeof(struct sk_buff); 179 atomic_set(&skb->users, 1); 180 181 skb->mac_header = (typeof(skb->mac_header))~0U; 182 out: 183 return skb; 184 } 185 186 /** 187 * __alloc_skb - allocate a network buffer 188 * @size: size to allocate 189 * @gfp_mask: allocation mask 190 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 191 * instead of head cache and allocate a cloned (child) skb. 192 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 193 * allocations in case the data is required for writeback 194 * @node: numa node to allocate memory on 195 * 196 * Allocate a new &sk_buff. The returned buffer has no headroom and a 197 * tail room of at least size bytes. The object has a reference count 198 * of one. The return is the buffer. On a failure the return is %NULL. 199 * 200 * Buffers may only be allocated from interrupts using a @gfp_mask of 201 * %GFP_ATOMIC. 202 */ 203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 204 int flags, int node) 205 { 206 struct kmem_cache *cache; 207 struct skb_shared_info *shinfo; 208 struct sk_buff *skb; 209 u8 *data; 210 bool pfmemalloc; 211 212 cache = (flags & SKB_ALLOC_FCLONE) 213 ? skbuff_fclone_cache : skbuff_head_cache; 214 215 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 216 gfp_mask |= __GFP_MEMALLOC; 217 218 /* Get the HEAD */ 219 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 220 if (!skb) 221 goto out; 222 prefetchw(skb); 223 224 /* We do our best to align skb_shared_info on a separate cache 225 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 226 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 227 * Both skb->head and skb_shared_info are cache line aligned. 228 */ 229 size = SKB_DATA_ALIGN(size); 230 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 231 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 232 if (!data) 233 goto nodata; 234 /* kmalloc(size) might give us more room than requested. 235 * Put skb_shared_info exactly at the end of allocated zone, 236 * to allow max possible filling before reallocation. 237 */ 238 size = SKB_WITH_OVERHEAD(ksize(data)); 239 prefetchw(data + size); 240 241 /* 242 * Only clear those fields we need to clear, not those that we will 243 * actually initialise below. Hence, don't put any more fields after 244 * the tail pointer in struct sk_buff! 245 */ 246 memset(skb, 0, offsetof(struct sk_buff, tail)); 247 /* Account for allocated memory : skb + skb->head */ 248 skb->truesize = SKB_TRUESIZE(size); 249 skb->pfmemalloc = pfmemalloc; 250 atomic_set(&skb->users, 1); 251 skb->head = data; 252 skb->data = data; 253 skb_reset_tail_pointer(skb); 254 skb->end = skb->tail + size; 255 skb->mac_header = (typeof(skb->mac_header))~0U; 256 skb->transport_header = (typeof(skb->transport_header))~0U; 257 258 /* make sure we initialize shinfo sequentially */ 259 shinfo = skb_shinfo(skb); 260 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 261 atomic_set(&shinfo->dataref, 1); 262 kmemcheck_annotate_variable(shinfo->destructor_arg); 263 264 if (flags & SKB_ALLOC_FCLONE) { 265 struct sk_buff_fclones *fclones; 266 267 fclones = container_of(skb, struct sk_buff_fclones, skb1); 268 269 kmemcheck_annotate_bitfield(&fclones->skb2, flags1); 270 skb->fclone = SKB_FCLONE_ORIG; 271 atomic_set(&fclones->fclone_ref, 1); 272 273 fclones->skb2.fclone = SKB_FCLONE_CLONE; 274 } 275 out: 276 return skb; 277 nodata: 278 kmem_cache_free(cache, skb); 279 skb = NULL; 280 goto out; 281 } 282 EXPORT_SYMBOL(__alloc_skb); 283 284 /** 285 * __build_skb - build a network buffer 286 * @data: data buffer provided by caller 287 * @frag_size: size of data, or 0 if head was kmalloced 288 * 289 * Allocate a new &sk_buff. Caller provides space holding head and 290 * skb_shared_info. @data must have been allocated by kmalloc() only if 291 * @frag_size is 0, otherwise data should come from the page allocator 292 * or vmalloc() 293 * The return is the new skb buffer. 294 * On a failure the return is %NULL, and @data is not freed. 295 * Notes : 296 * Before IO, driver allocates only data buffer where NIC put incoming frame 297 * Driver should add room at head (NET_SKB_PAD) and 298 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 299 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 300 * before giving packet to stack. 301 * RX rings only contains data buffers, not full skbs. 302 */ 303 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 304 { 305 struct skb_shared_info *shinfo; 306 struct sk_buff *skb; 307 unsigned int size = frag_size ? : ksize(data); 308 309 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 310 if (!skb) 311 return NULL; 312 313 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 314 315 memset(skb, 0, offsetof(struct sk_buff, tail)); 316 skb->truesize = SKB_TRUESIZE(size); 317 atomic_set(&skb->users, 1); 318 skb->head = data; 319 skb->data = data; 320 skb_reset_tail_pointer(skb); 321 skb->end = skb->tail + size; 322 skb->mac_header = (typeof(skb->mac_header))~0U; 323 skb->transport_header = (typeof(skb->transport_header))~0U; 324 325 /* make sure we initialize shinfo sequentially */ 326 shinfo = skb_shinfo(skb); 327 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 328 atomic_set(&shinfo->dataref, 1); 329 kmemcheck_annotate_variable(shinfo->destructor_arg); 330 331 return skb; 332 } 333 334 /* build_skb() is wrapper over __build_skb(), that specifically 335 * takes care of skb->head and skb->pfmemalloc 336 * This means that if @frag_size is not zero, then @data must be backed 337 * by a page fragment, not kmalloc() or vmalloc() 338 */ 339 struct sk_buff *build_skb(void *data, unsigned int frag_size) 340 { 341 struct sk_buff *skb = __build_skb(data, frag_size); 342 343 if (skb && frag_size) { 344 skb->head_frag = 1; 345 if (page_is_pfmemalloc(virt_to_head_page(data))) 346 skb->pfmemalloc = 1; 347 } 348 return skb; 349 } 350 EXPORT_SYMBOL(build_skb); 351 352 #define NAPI_SKB_CACHE_SIZE 64 353 354 struct napi_alloc_cache { 355 struct page_frag_cache page; 356 unsigned int skb_count; 357 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 358 }; 359 360 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 361 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 362 363 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 364 { 365 struct page_frag_cache *nc; 366 unsigned long flags; 367 void *data; 368 369 local_irq_save(flags); 370 nc = this_cpu_ptr(&netdev_alloc_cache); 371 data = page_frag_alloc(nc, fragsz, gfp_mask); 372 local_irq_restore(flags); 373 return data; 374 } 375 376 /** 377 * netdev_alloc_frag - allocate a page fragment 378 * @fragsz: fragment size 379 * 380 * Allocates a frag from a page for receive buffer. 381 * Uses GFP_ATOMIC allocations. 382 */ 383 void *netdev_alloc_frag(unsigned int fragsz) 384 { 385 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 386 } 387 EXPORT_SYMBOL(netdev_alloc_frag); 388 389 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 390 { 391 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 392 393 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 394 } 395 396 void *napi_alloc_frag(unsigned int fragsz) 397 { 398 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 399 } 400 EXPORT_SYMBOL(napi_alloc_frag); 401 402 /** 403 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 404 * @dev: network device to receive on 405 * @len: length to allocate 406 * @gfp_mask: get_free_pages mask, passed to alloc_skb 407 * 408 * Allocate a new &sk_buff and assign it a usage count of one. The 409 * buffer has NET_SKB_PAD headroom built in. Users should allocate 410 * the headroom they think they need without accounting for the 411 * built in space. The built in space is used for optimisations. 412 * 413 * %NULL is returned if there is no free memory. 414 */ 415 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 416 gfp_t gfp_mask) 417 { 418 struct page_frag_cache *nc; 419 unsigned long flags; 420 struct sk_buff *skb; 421 bool pfmemalloc; 422 void *data; 423 424 len += NET_SKB_PAD; 425 426 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 427 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 428 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 429 if (!skb) 430 goto skb_fail; 431 goto skb_success; 432 } 433 434 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 435 len = SKB_DATA_ALIGN(len); 436 437 if (sk_memalloc_socks()) 438 gfp_mask |= __GFP_MEMALLOC; 439 440 local_irq_save(flags); 441 442 nc = this_cpu_ptr(&netdev_alloc_cache); 443 data = page_frag_alloc(nc, len, gfp_mask); 444 pfmemalloc = nc->pfmemalloc; 445 446 local_irq_restore(flags); 447 448 if (unlikely(!data)) 449 return NULL; 450 451 skb = __build_skb(data, len); 452 if (unlikely(!skb)) { 453 skb_free_frag(data); 454 return NULL; 455 } 456 457 /* use OR instead of assignment to avoid clearing of bits in mask */ 458 if (pfmemalloc) 459 skb->pfmemalloc = 1; 460 skb->head_frag = 1; 461 462 skb_success: 463 skb_reserve(skb, NET_SKB_PAD); 464 skb->dev = dev; 465 466 skb_fail: 467 return skb; 468 } 469 EXPORT_SYMBOL(__netdev_alloc_skb); 470 471 /** 472 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 473 * @napi: napi instance this buffer was allocated for 474 * @len: length to allocate 475 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 476 * 477 * Allocate a new sk_buff for use in NAPI receive. This buffer will 478 * attempt to allocate the head from a special reserved region used 479 * only for NAPI Rx allocation. By doing this we can save several 480 * CPU cycles by avoiding having to disable and re-enable IRQs. 481 * 482 * %NULL is returned if there is no free memory. 483 */ 484 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 485 gfp_t gfp_mask) 486 { 487 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 488 struct sk_buff *skb; 489 void *data; 490 491 len += NET_SKB_PAD + NET_IP_ALIGN; 492 493 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 494 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 495 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 496 if (!skb) 497 goto skb_fail; 498 goto skb_success; 499 } 500 501 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 502 len = SKB_DATA_ALIGN(len); 503 504 if (sk_memalloc_socks()) 505 gfp_mask |= __GFP_MEMALLOC; 506 507 data = page_frag_alloc(&nc->page, len, gfp_mask); 508 if (unlikely(!data)) 509 return NULL; 510 511 skb = __build_skb(data, len); 512 if (unlikely(!skb)) { 513 skb_free_frag(data); 514 return NULL; 515 } 516 517 /* use OR instead of assignment to avoid clearing of bits in mask */ 518 if (nc->page.pfmemalloc) 519 skb->pfmemalloc = 1; 520 skb->head_frag = 1; 521 522 skb_success: 523 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 524 skb->dev = napi->dev; 525 526 skb_fail: 527 return skb; 528 } 529 EXPORT_SYMBOL(__napi_alloc_skb); 530 531 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 532 int size, unsigned int truesize) 533 { 534 skb_fill_page_desc(skb, i, page, off, size); 535 skb->len += size; 536 skb->data_len += size; 537 skb->truesize += truesize; 538 } 539 EXPORT_SYMBOL(skb_add_rx_frag); 540 541 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 542 unsigned int truesize) 543 { 544 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 545 546 skb_frag_size_add(frag, size); 547 skb->len += size; 548 skb->data_len += size; 549 skb->truesize += truesize; 550 } 551 EXPORT_SYMBOL(skb_coalesce_rx_frag); 552 553 static void skb_drop_list(struct sk_buff **listp) 554 { 555 kfree_skb_list(*listp); 556 *listp = NULL; 557 } 558 559 static inline void skb_drop_fraglist(struct sk_buff *skb) 560 { 561 skb_drop_list(&skb_shinfo(skb)->frag_list); 562 } 563 564 static void skb_clone_fraglist(struct sk_buff *skb) 565 { 566 struct sk_buff *list; 567 568 skb_walk_frags(skb, list) 569 skb_get(list); 570 } 571 572 static void skb_free_head(struct sk_buff *skb) 573 { 574 unsigned char *head = skb->head; 575 576 if (skb->head_frag) 577 skb_free_frag(head); 578 else 579 kfree(head); 580 } 581 582 static void skb_release_data(struct sk_buff *skb) 583 { 584 struct skb_shared_info *shinfo = skb_shinfo(skb); 585 int i; 586 587 if (skb->cloned && 588 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 589 &shinfo->dataref)) 590 return; 591 592 for (i = 0; i < shinfo->nr_frags; i++) 593 __skb_frag_unref(&shinfo->frags[i]); 594 595 /* 596 * If skb buf is from userspace, we need to notify the caller 597 * the lower device DMA has done; 598 */ 599 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) { 600 struct ubuf_info *uarg; 601 602 uarg = shinfo->destructor_arg; 603 if (uarg->callback) 604 uarg->callback(uarg, true); 605 } 606 607 if (shinfo->frag_list) 608 kfree_skb_list(shinfo->frag_list); 609 610 skb_free_head(skb); 611 } 612 613 /* 614 * Free an skbuff by memory without cleaning the state. 615 */ 616 static void kfree_skbmem(struct sk_buff *skb) 617 { 618 struct sk_buff_fclones *fclones; 619 620 switch (skb->fclone) { 621 case SKB_FCLONE_UNAVAILABLE: 622 kmem_cache_free(skbuff_head_cache, skb); 623 return; 624 625 case SKB_FCLONE_ORIG: 626 fclones = container_of(skb, struct sk_buff_fclones, skb1); 627 628 /* We usually free the clone (TX completion) before original skb 629 * This test would have no chance to be true for the clone, 630 * while here, branch prediction will be good. 631 */ 632 if (atomic_read(&fclones->fclone_ref) == 1) 633 goto fastpath; 634 break; 635 636 default: /* SKB_FCLONE_CLONE */ 637 fclones = container_of(skb, struct sk_buff_fclones, skb2); 638 break; 639 } 640 if (!atomic_dec_and_test(&fclones->fclone_ref)) 641 return; 642 fastpath: 643 kmem_cache_free(skbuff_fclone_cache, fclones); 644 } 645 646 static void skb_release_head_state(struct sk_buff *skb) 647 { 648 skb_dst_drop(skb); 649 #ifdef CONFIG_XFRM 650 secpath_put(skb->sp); 651 #endif 652 if (skb->destructor) { 653 WARN_ON(in_irq()); 654 skb->destructor(skb); 655 } 656 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 657 nf_conntrack_put(skb_nfct(skb)); 658 #endif 659 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 660 nf_bridge_put(skb->nf_bridge); 661 #endif 662 } 663 664 /* Free everything but the sk_buff shell. */ 665 static void skb_release_all(struct sk_buff *skb) 666 { 667 skb_release_head_state(skb); 668 if (likely(skb->head)) 669 skb_release_data(skb); 670 } 671 672 /** 673 * __kfree_skb - private function 674 * @skb: buffer 675 * 676 * Free an sk_buff. Release anything attached to the buffer. 677 * Clean the state. This is an internal helper function. Users should 678 * always call kfree_skb 679 */ 680 681 void __kfree_skb(struct sk_buff *skb) 682 { 683 skb_release_all(skb); 684 kfree_skbmem(skb); 685 } 686 EXPORT_SYMBOL(__kfree_skb); 687 688 /** 689 * kfree_skb - free an sk_buff 690 * @skb: buffer to free 691 * 692 * Drop a reference to the buffer and free it if the usage count has 693 * hit zero. 694 */ 695 void kfree_skb(struct sk_buff *skb) 696 { 697 if (unlikely(!skb)) 698 return; 699 if (likely(atomic_read(&skb->users) == 1)) 700 smp_rmb(); 701 else if (likely(!atomic_dec_and_test(&skb->users))) 702 return; 703 trace_kfree_skb(skb, __builtin_return_address(0)); 704 __kfree_skb(skb); 705 } 706 EXPORT_SYMBOL(kfree_skb); 707 708 void kfree_skb_list(struct sk_buff *segs) 709 { 710 while (segs) { 711 struct sk_buff *next = segs->next; 712 713 kfree_skb(segs); 714 segs = next; 715 } 716 } 717 EXPORT_SYMBOL(kfree_skb_list); 718 719 /** 720 * skb_tx_error - report an sk_buff xmit error 721 * @skb: buffer that triggered an error 722 * 723 * Report xmit error if a device callback is tracking this skb. 724 * skb must be freed afterwards. 725 */ 726 void skb_tx_error(struct sk_buff *skb) 727 { 728 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 729 struct ubuf_info *uarg; 730 731 uarg = skb_shinfo(skb)->destructor_arg; 732 if (uarg->callback) 733 uarg->callback(uarg, false); 734 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 735 } 736 } 737 EXPORT_SYMBOL(skb_tx_error); 738 739 /** 740 * consume_skb - free an skbuff 741 * @skb: buffer to free 742 * 743 * Drop a ref to the buffer and free it if the usage count has hit zero 744 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 745 * is being dropped after a failure and notes that 746 */ 747 void consume_skb(struct sk_buff *skb) 748 { 749 if (unlikely(!skb)) 750 return; 751 if (likely(atomic_read(&skb->users) == 1)) 752 smp_rmb(); 753 else if (likely(!atomic_dec_and_test(&skb->users))) 754 return; 755 trace_consume_skb(skb); 756 __kfree_skb(skb); 757 } 758 EXPORT_SYMBOL(consume_skb); 759 760 void __kfree_skb_flush(void) 761 { 762 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 763 764 /* flush skb_cache if containing objects */ 765 if (nc->skb_count) { 766 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 767 nc->skb_cache); 768 nc->skb_count = 0; 769 } 770 } 771 772 static inline void _kfree_skb_defer(struct sk_buff *skb) 773 { 774 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 775 776 /* drop skb->head and call any destructors for packet */ 777 skb_release_all(skb); 778 779 /* record skb to CPU local list */ 780 nc->skb_cache[nc->skb_count++] = skb; 781 782 #ifdef CONFIG_SLUB 783 /* SLUB writes into objects when freeing */ 784 prefetchw(skb); 785 #endif 786 787 /* flush skb_cache if it is filled */ 788 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 789 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 790 nc->skb_cache); 791 nc->skb_count = 0; 792 } 793 } 794 void __kfree_skb_defer(struct sk_buff *skb) 795 { 796 _kfree_skb_defer(skb); 797 } 798 799 void napi_consume_skb(struct sk_buff *skb, int budget) 800 { 801 if (unlikely(!skb)) 802 return; 803 804 /* Zero budget indicate non-NAPI context called us, like netpoll */ 805 if (unlikely(!budget)) { 806 dev_consume_skb_any(skb); 807 return; 808 } 809 810 if (likely(atomic_read(&skb->users) == 1)) 811 smp_rmb(); 812 else if (likely(!atomic_dec_and_test(&skb->users))) 813 return; 814 /* if reaching here SKB is ready to free */ 815 trace_consume_skb(skb); 816 817 /* if SKB is a clone, don't handle this case */ 818 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 819 __kfree_skb(skb); 820 return; 821 } 822 823 _kfree_skb_defer(skb); 824 } 825 EXPORT_SYMBOL(napi_consume_skb); 826 827 /* Make sure a field is enclosed inside headers_start/headers_end section */ 828 #define CHECK_SKB_FIELD(field) \ 829 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 830 offsetof(struct sk_buff, headers_start)); \ 831 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 832 offsetof(struct sk_buff, headers_end)); \ 833 834 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 835 { 836 new->tstamp = old->tstamp; 837 /* We do not copy old->sk */ 838 new->dev = old->dev; 839 memcpy(new->cb, old->cb, sizeof(old->cb)); 840 skb_dst_copy(new, old); 841 #ifdef CONFIG_XFRM 842 new->sp = secpath_get(old->sp); 843 #endif 844 __nf_copy(new, old, false); 845 846 /* Note : this field could be in headers_start/headers_end section 847 * It is not yet because we do not want to have a 16 bit hole 848 */ 849 new->queue_mapping = old->queue_mapping; 850 851 memcpy(&new->headers_start, &old->headers_start, 852 offsetof(struct sk_buff, headers_end) - 853 offsetof(struct sk_buff, headers_start)); 854 CHECK_SKB_FIELD(protocol); 855 CHECK_SKB_FIELD(csum); 856 CHECK_SKB_FIELD(hash); 857 CHECK_SKB_FIELD(priority); 858 CHECK_SKB_FIELD(skb_iif); 859 CHECK_SKB_FIELD(vlan_proto); 860 CHECK_SKB_FIELD(vlan_tci); 861 CHECK_SKB_FIELD(transport_header); 862 CHECK_SKB_FIELD(network_header); 863 CHECK_SKB_FIELD(mac_header); 864 CHECK_SKB_FIELD(inner_protocol); 865 CHECK_SKB_FIELD(inner_transport_header); 866 CHECK_SKB_FIELD(inner_network_header); 867 CHECK_SKB_FIELD(inner_mac_header); 868 CHECK_SKB_FIELD(mark); 869 #ifdef CONFIG_NETWORK_SECMARK 870 CHECK_SKB_FIELD(secmark); 871 #endif 872 #ifdef CONFIG_NET_RX_BUSY_POLL 873 CHECK_SKB_FIELD(napi_id); 874 #endif 875 #ifdef CONFIG_XPS 876 CHECK_SKB_FIELD(sender_cpu); 877 #endif 878 #ifdef CONFIG_NET_SCHED 879 CHECK_SKB_FIELD(tc_index); 880 #endif 881 882 } 883 884 /* 885 * You should not add any new code to this function. Add it to 886 * __copy_skb_header above instead. 887 */ 888 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 889 { 890 #define C(x) n->x = skb->x 891 892 n->next = n->prev = NULL; 893 n->sk = NULL; 894 __copy_skb_header(n, skb); 895 896 C(len); 897 C(data_len); 898 C(mac_len); 899 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 900 n->cloned = 1; 901 n->nohdr = 0; 902 n->destructor = NULL; 903 C(tail); 904 C(end); 905 C(head); 906 C(head_frag); 907 C(data); 908 C(truesize); 909 atomic_set(&n->users, 1); 910 911 atomic_inc(&(skb_shinfo(skb)->dataref)); 912 skb->cloned = 1; 913 914 return n; 915 #undef C 916 } 917 918 /** 919 * skb_morph - morph one skb into another 920 * @dst: the skb to receive the contents 921 * @src: the skb to supply the contents 922 * 923 * This is identical to skb_clone except that the target skb is 924 * supplied by the user. 925 * 926 * The target skb is returned upon exit. 927 */ 928 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 929 { 930 skb_release_all(dst); 931 return __skb_clone(dst, src); 932 } 933 EXPORT_SYMBOL_GPL(skb_morph); 934 935 /** 936 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 937 * @skb: the skb to modify 938 * @gfp_mask: allocation priority 939 * 940 * This must be called on SKBTX_DEV_ZEROCOPY skb. 941 * It will copy all frags into kernel and drop the reference 942 * to userspace pages. 943 * 944 * If this function is called from an interrupt gfp_mask() must be 945 * %GFP_ATOMIC. 946 * 947 * Returns 0 on success or a negative error code on failure 948 * to allocate kernel memory to copy to. 949 */ 950 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 951 { 952 int i; 953 int num_frags = skb_shinfo(skb)->nr_frags; 954 struct page *page, *head = NULL; 955 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 956 957 for (i = 0; i < num_frags; i++) { 958 u8 *vaddr; 959 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 960 961 page = alloc_page(gfp_mask); 962 if (!page) { 963 while (head) { 964 struct page *next = (struct page *)page_private(head); 965 put_page(head); 966 head = next; 967 } 968 return -ENOMEM; 969 } 970 vaddr = kmap_atomic(skb_frag_page(f)); 971 memcpy(page_address(page), 972 vaddr + f->page_offset, skb_frag_size(f)); 973 kunmap_atomic(vaddr); 974 set_page_private(page, (unsigned long)head); 975 head = page; 976 } 977 978 /* skb frags release userspace buffers */ 979 for (i = 0; i < num_frags; i++) 980 skb_frag_unref(skb, i); 981 982 uarg->callback(uarg, false); 983 984 /* skb frags point to kernel buffers */ 985 for (i = num_frags - 1; i >= 0; i--) { 986 __skb_fill_page_desc(skb, i, head, 0, 987 skb_shinfo(skb)->frags[i].size); 988 head = (struct page *)page_private(head); 989 } 990 991 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 992 return 0; 993 } 994 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 995 996 /** 997 * skb_clone - duplicate an sk_buff 998 * @skb: buffer to clone 999 * @gfp_mask: allocation priority 1000 * 1001 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1002 * copies share the same packet data but not structure. The new 1003 * buffer has a reference count of 1. If the allocation fails the 1004 * function returns %NULL otherwise the new buffer is returned. 1005 * 1006 * If this function is called from an interrupt gfp_mask() must be 1007 * %GFP_ATOMIC. 1008 */ 1009 1010 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1011 { 1012 struct sk_buff_fclones *fclones = container_of(skb, 1013 struct sk_buff_fclones, 1014 skb1); 1015 struct sk_buff *n; 1016 1017 if (skb_orphan_frags(skb, gfp_mask)) 1018 return NULL; 1019 1020 if (skb->fclone == SKB_FCLONE_ORIG && 1021 atomic_read(&fclones->fclone_ref) == 1) { 1022 n = &fclones->skb2; 1023 atomic_set(&fclones->fclone_ref, 2); 1024 } else { 1025 if (skb_pfmemalloc(skb)) 1026 gfp_mask |= __GFP_MEMALLOC; 1027 1028 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1029 if (!n) 1030 return NULL; 1031 1032 kmemcheck_annotate_bitfield(n, flags1); 1033 n->fclone = SKB_FCLONE_UNAVAILABLE; 1034 } 1035 1036 return __skb_clone(n, skb); 1037 } 1038 EXPORT_SYMBOL(skb_clone); 1039 1040 static void skb_headers_offset_update(struct sk_buff *skb, int off) 1041 { 1042 /* Only adjust this if it actually is csum_start rather than csum */ 1043 if (skb->ip_summed == CHECKSUM_PARTIAL) 1044 skb->csum_start += off; 1045 /* {transport,network,mac}_header and tail are relative to skb->head */ 1046 skb->transport_header += off; 1047 skb->network_header += off; 1048 if (skb_mac_header_was_set(skb)) 1049 skb->mac_header += off; 1050 skb->inner_transport_header += off; 1051 skb->inner_network_header += off; 1052 skb->inner_mac_header += off; 1053 } 1054 1055 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1056 { 1057 __copy_skb_header(new, old); 1058 1059 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1060 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1061 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1062 } 1063 1064 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1065 { 1066 if (skb_pfmemalloc(skb)) 1067 return SKB_ALLOC_RX; 1068 return 0; 1069 } 1070 1071 /** 1072 * skb_copy - create private copy of an sk_buff 1073 * @skb: buffer to copy 1074 * @gfp_mask: allocation priority 1075 * 1076 * Make a copy of both an &sk_buff and its data. This is used when the 1077 * caller wishes to modify the data and needs a private copy of the 1078 * data to alter. Returns %NULL on failure or the pointer to the buffer 1079 * on success. The returned buffer has a reference count of 1. 1080 * 1081 * As by-product this function converts non-linear &sk_buff to linear 1082 * one, so that &sk_buff becomes completely private and caller is allowed 1083 * to modify all the data of returned buffer. This means that this 1084 * function is not recommended for use in circumstances when only 1085 * header is going to be modified. Use pskb_copy() instead. 1086 */ 1087 1088 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1089 { 1090 int headerlen = skb_headroom(skb); 1091 unsigned int size = skb_end_offset(skb) + skb->data_len; 1092 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1093 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1094 1095 if (!n) 1096 return NULL; 1097 1098 /* Set the data pointer */ 1099 skb_reserve(n, headerlen); 1100 /* Set the tail pointer and length */ 1101 skb_put(n, skb->len); 1102 1103 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 1104 BUG(); 1105 1106 copy_skb_header(n, skb); 1107 return n; 1108 } 1109 EXPORT_SYMBOL(skb_copy); 1110 1111 /** 1112 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1113 * @skb: buffer to copy 1114 * @headroom: headroom of new skb 1115 * @gfp_mask: allocation priority 1116 * @fclone: if true allocate the copy of the skb from the fclone 1117 * cache instead of the head cache; it is recommended to set this 1118 * to true for the cases where the copy will likely be cloned 1119 * 1120 * Make a copy of both an &sk_buff and part of its data, located 1121 * in header. Fragmented data remain shared. This is used when 1122 * the caller wishes to modify only header of &sk_buff and needs 1123 * private copy of the header to alter. Returns %NULL on failure 1124 * or the pointer to the buffer on success. 1125 * The returned buffer has a reference count of 1. 1126 */ 1127 1128 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1129 gfp_t gfp_mask, bool fclone) 1130 { 1131 unsigned int size = skb_headlen(skb) + headroom; 1132 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1133 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1134 1135 if (!n) 1136 goto out; 1137 1138 /* Set the data pointer */ 1139 skb_reserve(n, headroom); 1140 /* Set the tail pointer and length */ 1141 skb_put(n, skb_headlen(skb)); 1142 /* Copy the bytes */ 1143 skb_copy_from_linear_data(skb, n->data, n->len); 1144 1145 n->truesize += skb->data_len; 1146 n->data_len = skb->data_len; 1147 n->len = skb->len; 1148 1149 if (skb_shinfo(skb)->nr_frags) { 1150 int i; 1151 1152 if (skb_orphan_frags(skb, gfp_mask)) { 1153 kfree_skb(n); 1154 n = NULL; 1155 goto out; 1156 } 1157 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1158 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1159 skb_frag_ref(skb, i); 1160 } 1161 skb_shinfo(n)->nr_frags = i; 1162 } 1163 1164 if (skb_has_frag_list(skb)) { 1165 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1166 skb_clone_fraglist(n); 1167 } 1168 1169 copy_skb_header(n, skb); 1170 out: 1171 return n; 1172 } 1173 EXPORT_SYMBOL(__pskb_copy_fclone); 1174 1175 /** 1176 * pskb_expand_head - reallocate header of &sk_buff 1177 * @skb: buffer to reallocate 1178 * @nhead: room to add at head 1179 * @ntail: room to add at tail 1180 * @gfp_mask: allocation priority 1181 * 1182 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1183 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1184 * reference count of 1. Returns zero in the case of success or error, 1185 * if expansion failed. In the last case, &sk_buff is not changed. 1186 * 1187 * All the pointers pointing into skb header may change and must be 1188 * reloaded after call to this function. 1189 */ 1190 1191 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1192 gfp_t gfp_mask) 1193 { 1194 int i, osize = skb_end_offset(skb); 1195 int size = osize + nhead + ntail; 1196 long off; 1197 u8 *data; 1198 1199 BUG_ON(nhead < 0); 1200 1201 if (skb_shared(skb)) 1202 BUG(); 1203 1204 size = SKB_DATA_ALIGN(size); 1205 1206 if (skb_pfmemalloc(skb)) 1207 gfp_mask |= __GFP_MEMALLOC; 1208 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1209 gfp_mask, NUMA_NO_NODE, NULL); 1210 if (!data) 1211 goto nodata; 1212 size = SKB_WITH_OVERHEAD(ksize(data)); 1213 1214 /* Copy only real data... and, alas, header. This should be 1215 * optimized for the cases when header is void. 1216 */ 1217 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1218 1219 memcpy((struct skb_shared_info *)(data + size), 1220 skb_shinfo(skb), 1221 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1222 1223 /* 1224 * if shinfo is shared we must drop the old head gracefully, but if it 1225 * is not we can just drop the old head and let the existing refcount 1226 * be since all we did is relocate the values 1227 */ 1228 if (skb_cloned(skb)) { 1229 /* copy this zero copy skb frags */ 1230 if (skb_orphan_frags(skb, gfp_mask)) 1231 goto nofrags; 1232 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1233 skb_frag_ref(skb, i); 1234 1235 if (skb_has_frag_list(skb)) 1236 skb_clone_fraglist(skb); 1237 1238 skb_release_data(skb); 1239 } else { 1240 skb_free_head(skb); 1241 } 1242 off = (data + nhead) - skb->head; 1243 1244 skb->head = data; 1245 skb->head_frag = 0; 1246 skb->data += off; 1247 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1248 skb->end = size; 1249 off = nhead; 1250 #else 1251 skb->end = skb->head + size; 1252 #endif 1253 skb->tail += off; 1254 skb_headers_offset_update(skb, nhead); 1255 skb->cloned = 0; 1256 skb->hdr_len = 0; 1257 skb->nohdr = 0; 1258 atomic_set(&skb_shinfo(skb)->dataref, 1); 1259 1260 /* It is not generally safe to change skb->truesize. 1261 * For the moment, we really care of rx path, or 1262 * when skb is orphaned (not attached to a socket). 1263 */ 1264 if (!skb->sk || skb->destructor == sock_edemux) 1265 skb->truesize += size - osize; 1266 1267 return 0; 1268 1269 nofrags: 1270 kfree(data); 1271 nodata: 1272 return -ENOMEM; 1273 } 1274 EXPORT_SYMBOL(pskb_expand_head); 1275 1276 /* Make private copy of skb with writable head and some headroom */ 1277 1278 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1279 { 1280 struct sk_buff *skb2; 1281 int delta = headroom - skb_headroom(skb); 1282 1283 if (delta <= 0) 1284 skb2 = pskb_copy(skb, GFP_ATOMIC); 1285 else { 1286 skb2 = skb_clone(skb, GFP_ATOMIC); 1287 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1288 GFP_ATOMIC)) { 1289 kfree_skb(skb2); 1290 skb2 = NULL; 1291 } 1292 } 1293 return skb2; 1294 } 1295 EXPORT_SYMBOL(skb_realloc_headroom); 1296 1297 /** 1298 * skb_copy_expand - copy and expand sk_buff 1299 * @skb: buffer to copy 1300 * @newheadroom: new free bytes at head 1301 * @newtailroom: new free bytes at tail 1302 * @gfp_mask: allocation priority 1303 * 1304 * Make a copy of both an &sk_buff and its data and while doing so 1305 * allocate additional space. 1306 * 1307 * This is used when the caller wishes to modify the data and needs a 1308 * private copy of the data to alter as well as more space for new fields. 1309 * Returns %NULL on failure or the pointer to the buffer 1310 * on success. The returned buffer has a reference count of 1. 1311 * 1312 * You must pass %GFP_ATOMIC as the allocation priority if this function 1313 * is called from an interrupt. 1314 */ 1315 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1316 int newheadroom, int newtailroom, 1317 gfp_t gfp_mask) 1318 { 1319 /* 1320 * Allocate the copy buffer 1321 */ 1322 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1323 gfp_mask, skb_alloc_rx_flag(skb), 1324 NUMA_NO_NODE); 1325 int oldheadroom = skb_headroom(skb); 1326 int head_copy_len, head_copy_off; 1327 1328 if (!n) 1329 return NULL; 1330 1331 skb_reserve(n, newheadroom); 1332 1333 /* Set the tail pointer and length */ 1334 skb_put(n, skb->len); 1335 1336 head_copy_len = oldheadroom; 1337 head_copy_off = 0; 1338 if (newheadroom <= head_copy_len) 1339 head_copy_len = newheadroom; 1340 else 1341 head_copy_off = newheadroom - head_copy_len; 1342 1343 /* Copy the linear header and data. */ 1344 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1345 skb->len + head_copy_len)) 1346 BUG(); 1347 1348 copy_skb_header(n, skb); 1349 1350 skb_headers_offset_update(n, newheadroom - oldheadroom); 1351 1352 return n; 1353 } 1354 EXPORT_SYMBOL(skb_copy_expand); 1355 1356 /** 1357 * skb_pad - zero pad the tail of an skb 1358 * @skb: buffer to pad 1359 * @pad: space to pad 1360 * 1361 * Ensure that a buffer is followed by a padding area that is zero 1362 * filled. Used by network drivers which may DMA or transfer data 1363 * beyond the buffer end onto the wire. 1364 * 1365 * May return error in out of memory cases. The skb is freed on error. 1366 */ 1367 1368 int skb_pad(struct sk_buff *skb, int pad) 1369 { 1370 int err; 1371 int ntail; 1372 1373 /* If the skbuff is non linear tailroom is always zero.. */ 1374 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1375 memset(skb->data+skb->len, 0, pad); 1376 return 0; 1377 } 1378 1379 ntail = skb->data_len + pad - (skb->end - skb->tail); 1380 if (likely(skb_cloned(skb) || ntail > 0)) { 1381 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1382 if (unlikely(err)) 1383 goto free_skb; 1384 } 1385 1386 /* FIXME: The use of this function with non-linear skb's really needs 1387 * to be audited. 1388 */ 1389 err = skb_linearize(skb); 1390 if (unlikely(err)) 1391 goto free_skb; 1392 1393 memset(skb->data + skb->len, 0, pad); 1394 return 0; 1395 1396 free_skb: 1397 kfree_skb(skb); 1398 return err; 1399 } 1400 EXPORT_SYMBOL(skb_pad); 1401 1402 /** 1403 * pskb_put - add data to the tail of a potentially fragmented buffer 1404 * @skb: start of the buffer to use 1405 * @tail: tail fragment of the buffer to use 1406 * @len: amount of data to add 1407 * 1408 * This function extends the used data area of the potentially 1409 * fragmented buffer. @tail must be the last fragment of @skb -- or 1410 * @skb itself. If this would exceed the total buffer size the kernel 1411 * will panic. A pointer to the first byte of the extra data is 1412 * returned. 1413 */ 1414 1415 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1416 { 1417 if (tail != skb) { 1418 skb->data_len += len; 1419 skb->len += len; 1420 } 1421 return skb_put(tail, len); 1422 } 1423 EXPORT_SYMBOL_GPL(pskb_put); 1424 1425 /** 1426 * skb_put - add data to a buffer 1427 * @skb: buffer to use 1428 * @len: amount of data to add 1429 * 1430 * This function extends the used data area of the buffer. If this would 1431 * exceed the total buffer size the kernel will panic. A pointer to the 1432 * first byte of the extra data is returned. 1433 */ 1434 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1435 { 1436 unsigned char *tmp = skb_tail_pointer(skb); 1437 SKB_LINEAR_ASSERT(skb); 1438 skb->tail += len; 1439 skb->len += len; 1440 if (unlikely(skb->tail > skb->end)) 1441 skb_over_panic(skb, len, __builtin_return_address(0)); 1442 return tmp; 1443 } 1444 EXPORT_SYMBOL(skb_put); 1445 1446 /** 1447 * skb_push - add data to the start of a buffer 1448 * @skb: buffer to use 1449 * @len: amount of data to add 1450 * 1451 * This function extends the used data area of the buffer at the buffer 1452 * start. If this would exceed the total buffer headroom the kernel will 1453 * panic. A pointer to the first byte of the extra data is returned. 1454 */ 1455 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1456 { 1457 skb->data -= len; 1458 skb->len += len; 1459 if (unlikely(skb->data<skb->head)) 1460 skb_under_panic(skb, len, __builtin_return_address(0)); 1461 return skb->data; 1462 } 1463 EXPORT_SYMBOL(skb_push); 1464 1465 /** 1466 * skb_pull - remove data from the start of a buffer 1467 * @skb: buffer to use 1468 * @len: amount of data to remove 1469 * 1470 * This function removes data from the start of a buffer, returning 1471 * the memory to the headroom. A pointer to the next data in the buffer 1472 * is returned. Once the data has been pulled future pushes will overwrite 1473 * the old data. 1474 */ 1475 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1476 { 1477 return skb_pull_inline(skb, len); 1478 } 1479 EXPORT_SYMBOL(skb_pull); 1480 1481 /** 1482 * skb_trim - remove end from a buffer 1483 * @skb: buffer to alter 1484 * @len: new length 1485 * 1486 * Cut the length of a buffer down by removing data from the tail. If 1487 * the buffer is already under the length specified it is not modified. 1488 * The skb must be linear. 1489 */ 1490 void skb_trim(struct sk_buff *skb, unsigned int len) 1491 { 1492 if (skb->len > len) 1493 __skb_trim(skb, len); 1494 } 1495 EXPORT_SYMBOL(skb_trim); 1496 1497 /* Trims skb to length len. It can change skb pointers. 1498 */ 1499 1500 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1501 { 1502 struct sk_buff **fragp; 1503 struct sk_buff *frag; 1504 int offset = skb_headlen(skb); 1505 int nfrags = skb_shinfo(skb)->nr_frags; 1506 int i; 1507 int err; 1508 1509 if (skb_cloned(skb) && 1510 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1511 return err; 1512 1513 i = 0; 1514 if (offset >= len) 1515 goto drop_pages; 1516 1517 for (; i < nfrags; i++) { 1518 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1519 1520 if (end < len) { 1521 offset = end; 1522 continue; 1523 } 1524 1525 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1526 1527 drop_pages: 1528 skb_shinfo(skb)->nr_frags = i; 1529 1530 for (; i < nfrags; i++) 1531 skb_frag_unref(skb, i); 1532 1533 if (skb_has_frag_list(skb)) 1534 skb_drop_fraglist(skb); 1535 goto done; 1536 } 1537 1538 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1539 fragp = &frag->next) { 1540 int end = offset + frag->len; 1541 1542 if (skb_shared(frag)) { 1543 struct sk_buff *nfrag; 1544 1545 nfrag = skb_clone(frag, GFP_ATOMIC); 1546 if (unlikely(!nfrag)) 1547 return -ENOMEM; 1548 1549 nfrag->next = frag->next; 1550 consume_skb(frag); 1551 frag = nfrag; 1552 *fragp = frag; 1553 } 1554 1555 if (end < len) { 1556 offset = end; 1557 continue; 1558 } 1559 1560 if (end > len && 1561 unlikely((err = pskb_trim(frag, len - offset)))) 1562 return err; 1563 1564 if (frag->next) 1565 skb_drop_list(&frag->next); 1566 break; 1567 } 1568 1569 done: 1570 if (len > skb_headlen(skb)) { 1571 skb->data_len -= skb->len - len; 1572 skb->len = len; 1573 } else { 1574 skb->len = len; 1575 skb->data_len = 0; 1576 skb_set_tail_pointer(skb, len); 1577 } 1578 1579 if (!skb->sk || skb->destructor == sock_edemux) 1580 skb_condense(skb); 1581 return 0; 1582 } 1583 EXPORT_SYMBOL(___pskb_trim); 1584 1585 /** 1586 * __pskb_pull_tail - advance tail of skb header 1587 * @skb: buffer to reallocate 1588 * @delta: number of bytes to advance tail 1589 * 1590 * The function makes a sense only on a fragmented &sk_buff, 1591 * it expands header moving its tail forward and copying necessary 1592 * data from fragmented part. 1593 * 1594 * &sk_buff MUST have reference count of 1. 1595 * 1596 * Returns %NULL (and &sk_buff does not change) if pull failed 1597 * or value of new tail of skb in the case of success. 1598 * 1599 * All the pointers pointing into skb header may change and must be 1600 * reloaded after call to this function. 1601 */ 1602 1603 /* Moves tail of skb head forward, copying data from fragmented part, 1604 * when it is necessary. 1605 * 1. It may fail due to malloc failure. 1606 * 2. It may change skb pointers. 1607 * 1608 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1609 */ 1610 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1611 { 1612 /* If skb has not enough free space at tail, get new one 1613 * plus 128 bytes for future expansions. If we have enough 1614 * room at tail, reallocate without expansion only if skb is cloned. 1615 */ 1616 int i, k, eat = (skb->tail + delta) - skb->end; 1617 1618 if (eat > 0 || skb_cloned(skb)) { 1619 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1620 GFP_ATOMIC)) 1621 return NULL; 1622 } 1623 1624 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1625 BUG(); 1626 1627 /* Optimization: no fragments, no reasons to preestimate 1628 * size of pulled pages. Superb. 1629 */ 1630 if (!skb_has_frag_list(skb)) 1631 goto pull_pages; 1632 1633 /* Estimate size of pulled pages. */ 1634 eat = delta; 1635 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1636 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1637 1638 if (size >= eat) 1639 goto pull_pages; 1640 eat -= size; 1641 } 1642 1643 /* If we need update frag list, we are in troubles. 1644 * Certainly, it possible to add an offset to skb data, 1645 * but taking into account that pulling is expected to 1646 * be very rare operation, it is worth to fight against 1647 * further bloating skb head and crucify ourselves here instead. 1648 * Pure masohism, indeed. 8)8) 1649 */ 1650 if (eat) { 1651 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1652 struct sk_buff *clone = NULL; 1653 struct sk_buff *insp = NULL; 1654 1655 do { 1656 BUG_ON(!list); 1657 1658 if (list->len <= eat) { 1659 /* Eaten as whole. */ 1660 eat -= list->len; 1661 list = list->next; 1662 insp = list; 1663 } else { 1664 /* Eaten partially. */ 1665 1666 if (skb_shared(list)) { 1667 /* Sucks! We need to fork list. :-( */ 1668 clone = skb_clone(list, GFP_ATOMIC); 1669 if (!clone) 1670 return NULL; 1671 insp = list->next; 1672 list = clone; 1673 } else { 1674 /* This may be pulled without 1675 * problems. */ 1676 insp = list; 1677 } 1678 if (!pskb_pull(list, eat)) { 1679 kfree_skb(clone); 1680 return NULL; 1681 } 1682 break; 1683 } 1684 } while (eat); 1685 1686 /* Free pulled out fragments. */ 1687 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1688 skb_shinfo(skb)->frag_list = list->next; 1689 kfree_skb(list); 1690 } 1691 /* And insert new clone at head. */ 1692 if (clone) { 1693 clone->next = list; 1694 skb_shinfo(skb)->frag_list = clone; 1695 } 1696 } 1697 /* Success! Now we may commit changes to skb data. */ 1698 1699 pull_pages: 1700 eat = delta; 1701 k = 0; 1702 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1703 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1704 1705 if (size <= eat) { 1706 skb_frag_unref(skb, i); 1707 eat -= size; 1708 } else { 1709 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1710 if (eat) { 1711 skb_shinfo(skb)->frags[k].page_offset += eat; 1712 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1713 eat = 0; 1714 } 1715 k++; 1716 } 1717 } 1718 skb_shinfo(skb)->nr_frags = k; 1719 1720 skb->tail += delta; 1721 skb->data_len -= delta; 1722 1723 return skb_tail_pointer(skb); 1724 } 1725 EXPORT_SYMBOL(__pskb_pull_tail); 1726 1727 /** 1728 * skb_copy_bits - copy bits from skb to kernel buffer 1729 * @skb: source skb 1730 * @offset: offset in source 1731 * @to: destination buffer 1732 * @len: number of bytes to copy 1733 * 1734 * Copy the specified number of bytes from the source skb to the 1735 * destination buffer. 1736 * 1737 * CAUTION ! : 1738 * If its prototype is ever changed, 1739 * check arch/{*}/net/{*}.S files, 1740 * since it is called from BPF assembly code. 1741 */ 1742 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1743 { 1744 int start = skb_headlen(skb); 1745 struct sk_buff *frag_iter; 1746 int i, copy; 1747 1748 if (offset > (int)skb->len - len) 1749 goto fault; 1750 1751 /* Copy header. */ 1752 if ((copy = start - offset) > 0) { 1753 if (copy > len) 1754 copy = len; 1755 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1756 if ((len -= copy) == 0) 1757 return 0; 1758 offset += copy; 1759 to += copy; 1760 } 1761 1762 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1763 int end; 1764 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1765 1766 WARN_ON(start > offset + len); 1767 1768 end = start + skb_frag_size(f); 1769 if ((copy = end - offset) > 0) { 1770 u8 *vaddr; 1771 1772 if (copy > len) 1773 copy = len; 1774 1775 vaddr = kmap_atomic(skb_frag_page(f)); 1776 memcpy(to, 1777 vaddr + f->page_offset + offset - start, 1778 copy); 1779 kunmap_atomic(vaddr); 1780 1781 if ((len -= copy) == 0) 1782 return 0; 1783 offset += copy; 1784 to += copy; 1785 } 1786 start = end; 1787 } 1788 1789 skb_walk_frags(skb, frag_iter) { 1790 int end; 1791 1792 WARN_ON(start > offset + len); 1793 1794 end = start + frag_iter->len; 1795 if ((copy = end - offset) > 0) { 1796 if (copy > len) 1797 copy = len; 1798 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1799 goto fault; 1800 if ((len -= copy) == 0) 1801 return 0; 1802 offset += copy; 1803 to += copy; 1804 } 1805 start = end; 1806 } 1807 1808 if (!len) 1809 return 0; 1810 1811 fault: 1812 return -EFAULT; 1813 } 1814 EXPORT_SYMBOL(skb_copy_bits); 1815 1816 /* 1817 * Callback from splice_to_pipe(), if we need to release some pages 1818 * at the end of the spd in case we error'ed out in filling the pipe. 1819 */ 1820 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1821 { 1822 put_page(spd->pages[i]); 1823 } 1824 1825 static struct page *linear_to_page(struct page *page, unsigned int *len, 1826 unsigned int *offset, 1827 struct sock *sk) 1828 { 1829 struct page_frag *pfrag = sk_page_frag(sk); 1830 1831 if (!sk_page_frag_refill(sk, pfrag)) 1832 return NULL; 1833 1834 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 1835 1836 memcpy(page_address(pfrag->page) + pfrag->offset, 1837 page_address(page) + *offset, *len); 1838 *offset = pfrag->offset; 1839 pfrag->offset += *len; 1840 1841 return pfrag->page; 1842 } 1843 1844 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 1845 struct page *page, 1846 unsigned int offset) 1847 { 1848 return spd->nr_pages && 1849 spd->pages[spd->nr_pages - 1] == page && 1850 (spd->partial[spd->nr_pages - 1].offset + 1851 spd->partial[spd->nr_pages - 1].len == offset); 1852 } 1853 1854 /* 1855 * Fill page/offset/length into spd, if it can hold more pages. 1856 */ 1857 static bool spd_fill_page(struct splice_pipe_desc *spd, 1858 struct pipe_inode_info *pipe, struct page *page, 1859 unsigned int *len, unsigned int offset, 1860 bool linear, 1861 struct sock *sk) 1862 { 1863 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 1864 return true; 1865 1866 if (linear) { 1867 page = linear_to_page(page, len, &offset, sk); 1868 if (!page) 1869 return true; 1870 } 1871 if (spd_can_coalesce(spd, page, offset)) { 1872 spd->partial[spd->nr_pages - 1].len += *len; 1873 return false; 1874 } 1875 get_page(page); 1876 spd->pages[spd->nr_pages] = page; 1877 spd->partial[spd->nr_pages].len = *len; 1878 spd->partial[spd->nr_pages].offset = offset; 1879 spd->nr_pages++; 1880 1881 return false; 1882 } 1883 1884 static bool __splice_segment(struct page *page, unsigned int poff, 1885 unsigned int plen, unsigned int *off, 1886 unsigned int *len, 1887 struct splice_pipe_desc *spd, bool linear, 1888 struct sock *sk, 1889 struct pipe_inode_info *pipe) 1890 { 1891 if (!*len) 1892 return true; 1893 1894 /* skip this segment if already processed */ 1895 if (*off >= plen) { 1896 *off -= plen; 1897 return false; 1898 } 1899 1900 /* ignore any bits we already processed */ 1901 poff += *off; 1902 plen -= *off; 1903 *off = 0; 1904 1905 do { 1906 unsigned int flen = min(*len, plen); 1907 1908 if (spd_fill_page(spd, pipe, page, &flen, poff, 1909 linear, sk)) 1910 return true; 1911 poff += flen; 1912 plen -= flen; 1913 *len -= flen; 1914 } while (*len && plen); 1915 1916 return false; 1917 } 1918 1919 /* 1920 * Map linear and fragment data from the skb to spd. It reports true if the 1921 * pipe is full or if we already spliced the requested length. 1922 */ 1923 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1924 unsigned int *offset, unsigned int *len, 1925 struct splice_pipe_desc *spd, struct sock *sk) 1926 { 1927 int seg; 1928 struct sk_buff *iter; 1929 1930 /* map the linear part : 1931 * If skb->head_frag is set, this 'linear' part is backed by a 1932 * fragment, and if the head is not shared with any clones then 1933 * we can avoid a copy since we own the head portion of this page. 1934 */ 1935 if (__splice_segment(virt_to_page(skb->data), 1936 (unsigned long) skb->data & (PAGE_SIZE - 1), 1937 skb_headlen(skb), 1938 offset, len, spd, 1939 skb_head_is_locked(skb), 1940 sk, pipe)) 1941 return true; 1942 1943 /* 1944 * then map the fragments 1945 */ 1946 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1947 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1948 1949 if (__splice_segment(skb_frag_page(f), 1950 f->page_offset, skb_frag_size(f), 1951 offset, len, spd, false, sk, pipe)) 1952 return true; 1953 } 1954 1955 skb_walk_frags(skb, iter) { 1956 if (*offset >= iter->len) { 1957 *offset -= iter->len; 1958 continue; 1959 } 1960 /* __skb_splice_bits() only fails if the output has no room 1961 * left, so no point in going over the frag_list for the error 1962 * case. 1963 */ 1964 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 1965 return true; 1966 } 1967 1968 return false; 1969 } 1970 1971 /* 1972 * Map data from the skb to a pipe. Should handle both the linear part, 1973 * the fragments, and the frag list. 1974 */ 1975 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 1976 struct pipe_inode_info *pipe, unsigned int tlen, 1977 unsigned int flags) 1978 { 1979 struct partial_page partial[MAX_SKB_FRAGS]; 1980 struct page *pages[MAX_SKB_FRAGS]; 1981 struct splice_pipe_desc spd = { 1982 .pages = pages, 1983 .partial = partial, 1984 .nr_pages_max = MAX_SKB_FRAGS, 1985 .ops = &nosteal_pipe_buf_ops, 1986 .spd_release = sock_spd_release, 1987 }; 1988 int ret = 0; 1989 1990 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 1991 1992 if (spd.nr_pages) 1993 ret = splice_to_pipe(pipe, &spd); 1994 1995 return ret; 1996 } 1997 EXPORT_SYMBOL_GPL(skb_splice_bits); 1998 1999 /** 2000 * skb_store_bits - store bits from kernel buffer to skb 2001 * @skb: destination buffer 2002 * @offset: offset in destination 2003 * @from: source buffer 2004 * @len: number of bytes to copy 2005 * 2006 * Copy the specified number of bytes from the source buffer to the 2007 * destination skb. This function handles all the messy bits of 2008 * traversing fragment lists and such. 2009 */ 2010 2011 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2012 { 2013 int start = skb_headlen(skb); 2014 struct sk_buff *frag_iter; 2015 int i, copy; 2016 2017 if (offset > (int)skb->len - len) 2018 goto fault; 2019 2020 if ((copy = start - offset) > 0) { 2021 if (copy > len) 2022 copy = len; 2023 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2024 if ((len -= copy) == 0) 2025 return 0; 2026 offset += copy; 2027 from += copy; 2028 } 2029 2030 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2031 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2032 int end; 2033 2034 WARN_ON(start > offset + len); 2035 2036 end = start + skb_frag_size(frag); 2037 if ((copy = end - offset) > 0) { 2038 u8 *vaddr; 2039 2040 if (copy > len) 2041 copy = len; 2042 2043 vaddr = kmap_atomic(skb_frag_page(frag)); 2044 memcpy(vaddr + frag->page_offset + offset - start, 2045 from, copy); 2046 kunmap_atomic(vaddr); 2047 2048 if ((len -= copy) == 0) 2049 return 0; 2050 offset += copy; 2051 from += copy; 2052 } 2053 start = end; 2054 } 2055 2056 skb_walk_frags(skb, frag_iter) { 2057 int end; 2058 2059 WARN_ON(start > offset + len); 2060 2061 end = start + frag_iter->len; 2062 if ((copy = end - offset) > 0) { 2063 if (copy > len) 2064 copy = len; 2065 if (skb_store_bits(frag_iter, offset - start, 2066 from, copy)) 2067 goto fault; 2068 if ((len -= copy) == 0) 2069 return 0; 2070 offset += copy; 2071 from += copy; 2072 } 2073 start = end; 2074 } 2075 if (!len) 2076 return 0; 2077 2078 fault: 2079 return -EFAULT; 2080 } 2081 EXPORT_SYMBOL(skb_store_bits); 2082 2083 /* Checksum skb data. */ 2084 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2085 __wsum csum, const struct skb_checksum_ops *ops) 2086 { 2087 int start = skb_headlen(skb); 2088 int i, copy = start - offset; 2089 struct sk_buff *frag_iter; 2090 int pos = 0; 2091 2092 /* Checksum header. */ 2093 if (copy > 0) { 2094 if (copy > len) 2095 copy = len; 2096 csum = ops->update(skb->data + offset, copy, csum); 2097 if ((len -= copy) == 0) 2098 return csum; 2099 offset += copy; 2100 pos = copy; 2101 } 2102 2103 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2104 int end; 2105 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2106 2107 WARN_ON(start > offset + len); 2108 2109 end = start + skb_frag_size(frag); 2110 if ((copy = end - offset) > 0) { 2111 __wsum csum2; 2112 u8 *vaddr; 2113 2114 if (copy > len) 2115 copy = len; 2116 vaddr = kmap_atomic(skb_frag_page(frag)); 2117 csum2 = ops->update(vaddr + frag->page_offset + 2118 offset - start, copy, 0); 2119 kunmap_atomic(vaddr); 2120 csum = ops->combine(csum, csum2, pos, copy); 2121 if (!(len -= copy)) 2122 return csum; 2123 offset += copy; 2124 pos += copy; 2125 } 2126 start = end; 2127 } 2128 2129 skb_walk_frags(skb, frag_iter) { 2130 int end; 2131 2132 WARN_ON(start > offset + len); 2133 2134 end = start + frag_iter->len; 2135 if ((copy = end - offset) > 0) { 2136 __wsum csum2; 2137 if (copy > len) 2138 copy = len; 2139 csum2 = __skb_checksum(frag_iter, offset - start, 2140 copy, 0, ops); 2141 csum = ops->combine(csum, csum2, pos, copy); 2142 if ((len -= copy) == 0) 2143 return csum; 2144 offset += copy; 2145 pos += copy; 2146 } 2147 start = end; 2148 } 2149 BUG_ON(len); 2150 2151 return csum; 2152 } 2153 EXPORT_SYMBOL(__skb_checksum); 2154 2155 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2156 int len, __wsum csum) 2157 { 2158 const struct skb_checksum_ops ops = { 2159 .update = csum_partial_ext, 2160 .combine = csum_block_add_ext, 2161 }; 2162 2163 return __skb_checksum(skb, offset, len, csum, &ops); 2164 } 2165 EXPORT_SYMBOL(skb_checksum); 2166 2167 /* Both of above in one bottle. */ 2168 2169 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2170 u8 *to, int len, __wsum csum) 2171 { 2172 int start = skb_headlen(skb); 2173 int i, copy = start - offset; 2174 struct sk_buff *frag_iter; 2175 int pos = 0; 2176 2177 /* Copy header. */ 2178 if (copy > 0) { 2179 if (copy > len) 2180 copy = len; 2181 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2182 copy, csum); 2183 if ((len -= copy) == 0) 2184 return csum; 2185 offset += copy; 2186 to += copy; 2187 pos = copy; 2188 } 2189 2190 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2191 int end; 2192 2193 WARN_ON(start > offset + len); 2194 2195 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2196 if ((copy = end - offset) > 0) { 2197 __wsum csum2; 2198 u8 *vaddr; 2199 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2200 2201 if (copy > len) 2202 copy = len; 2203 vaddr = kmap_atomic(skb_frag_page(frag)); 2204 csum2 = csum_partial_copy_nocheck(vaddr + 2205 frag->page_offset + 2206 offset - start, to, 2207 copy, 0); 2208 kunmap_atomic(vaddr); 2209 csum = csum_block_add(csum, csum2, pos); 2210 if (!(len -= copy)) 2211 return csum; 2212 offset += copy; 2213 to += copy; 2214 pos += copy; 2215 } 2216 start = end; 2217 } 2218 2219 skb_walk_frags(skb, frag_iter) { 2220 __wsum csum2; 2221 int end; 2222 2223 WARN_ON(start > offset + len); 2224 2225 end = start + frag_iter->len; 2226 if ((copy = end - offset) > 0) { 2227 if (copy > len) 2228 copy = len; 2229 csum2 = skb_copy_and_csum_bits(frag_iter, 2230 offset - start, 2231 to, copy, 0); 2232 csum = csum_block_add(csum, csum2, pos); 2233 if ((len -= copy) == 0) 2234 return csum; 2235 offset += copy; 2236 to += copy; 2237 pos += copy; 2238 } 2239 start = end; 2240 } 2241 BUG_ON(len); 2242 return csum; 2243 } 2244 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2245 2246 /** 2247 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2248 * @from: source buffer 2249 * 2250 * Calculates the amount of linear headroom needed in the 'to' skb passed 2251 * into skb_zerocopy(). 2252 */ 2253 unsigned int 2254 skb_zerocopy_headlen(const struct sk_buff *from) 2255 { 2256 unsigned int hlen = 0; 2257 2258 if (!from->head_frag || 2259 skb_headlen(from) < L1_CACHE_BYTES || 2260 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2261 hlen = skb_headlen(from); 2262 2263 if (skb_has_frag_list(from)) 2264 hlen = from->len; 2265 2266 return hlen; 2267 } 2268 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2269 2270 /** 2271 * skb_zerocopy - Zero copy skb to skb 2272 * @to: destination buffer 2273 * @from: source buffer 2274 * @len: number of bytes to copy from source buffer 2275 * @hlen: size of linear headroom in destination buffer 2276 * 2277 * Copies up to `len` bytes from `from` to `to` by creating references 2278 * to the frags in the source buffer. 2279 * 2280 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2281 * headroom in the `to` buffer. 2282 * 2283 * Return value: 2284 * 0: everything is OK 2285 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2286 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2287 */ 2288 int 2289 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2290 { 2291 int i, j = 0; 2292 int plen = 0; /* length of skb->head fragment */ 2293 int ret; 2294 struct page *page; 2295 unsigned int offset; 2296 2297 BUG_ON(!from->head_frag && !hlen); 2298 2299 /* dont bother with small payloads */ 2300 if (len <= skb_tailroom(to)) 2301 return skb_copy_bits(from, 0, skb_put(to, len), len); 2302 2303 if (hlen) { 2304 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2305 if (unlikely(ret)) 2306 return ret; 2307 len -= hlen; 2308 } else { 2309 plen = min_t(int, skb_headlen(from), len); 2310 if (plen) { 2311 page = virt_to_head_page(from->head); 2312 offset = from->data - (unsigned char *)page_address(page); 2313 __skb_fill_page_desc(to, 0, page, offset, plen); 2314 get_page(page); 2315 j = 1; 2316 len -= plen; 2317 } 2318 } 2319 2320 to->truesize += len + plen; 2321 to->len += len + plen; 2322 to->data_len += len + plen; 2323 2324 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2325 skb_tx_error(from); 2326 return -ENOMEM; 2327 } 2328 2329 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2330 if (!len) 2331 break; 2332 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2333 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2334 len -= skb_shinfo(to)->frags[j].size; 2335 skb_frag_ref(to, j); 2336 j++; 2337 } 2338 skb_shinfo(to)->nr_frags = j; 2339 2340 return 0; 2341 } 2342 EXPORT_SYMBOL_GPL(skb_zerocopy); 2343 2344 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2345 { 2346 __wsum csum; 2347 long csstart; 2348 2349 if (skb->ip_summed == CHECKSUM_PARTIAL) 2350 csstart = skb_checksum_start_offset(skb); 2351 else 2352 csstart = skb_headlen(skb); 2353 2354 BUG_ON(csstart > skb_headlen(skb)); 2355 2356 skb_copy_from_linear_data(skb, to, csstart); 2357 2358 csum = 0; 2359 if (csstart != skb->len) 2360 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2361 skb->len - csstart, 0); 2362 2363 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2364 long csstuff = csstart + skb->csum_offset; 2365 2366 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2367 } 2368 } 2369 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2370 2371 /** 2372 * skb_dequeue - remove from the head of the queue 2373 * @list: list to dequeue from 2374 * 2375 * Remove the head of the list. The list lock is taken so the function 2376 * may be used safely with other locking list functions. The head item is 2377 * returned or %NULL if the list is empty. 2378 */ 2379 2380 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2381 { 2382 unsigned long flags; 2383 struct sk_buff *result; 2384 2385 spin_lock_irqsave(&list->lock, flags); 2386 result = __skb_dequeue(list); 2387 spin_unlock_irqrestore(&list->lock, flags); 2388 return result; 2389 } 2390 EXPORT_SYMBOL(skb_dequeue); 2391 2392 /** 2393 * skb_dequeue_tail - remove from the tail of the queue 2394 * @list: list to dequeue from 2395 * 2396 * Remove the tail of the list. The list lock is taken so the function 2397 * may be used safely with other locking list functions. The tail item is 2398 * returned or %NULL if the list is empty. 2399 */ 2400 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2401 { 2402 unsigned long flags; 2403 struct sk_buff *result; 2404 2405 spin_lock_irqsave(&list->lock, flags); 2406 result = __skb_dequeue_tail(list); 2407 spin_unlock_irqrestore(&list->lock, flags); 2408 return result; 2409 } 2410 EXPORT_SYMBOL(skb_dequeue_tail); 2411 2412 /** 2413 * skb_queue_purge - empty a list 2414 * @list: list to empty 2415 * 2416 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2417 * the list and one reference dropped. This function takes the list 2418 * lock and is atomic with respect to other list locking functions. 2419 */ 2420 void skb_queue_purge(struct sk_buff_head *list) 2421 { 2422 struct sk_buff *skb; 2423 while ((skb = skb_dequeue(list)) != NULL) 2424 kfree_skb(skb); 2425 } 2426 EXPORT_SYMBOL(skb_queue_purge); 2427 2428 /** 2429 * skb_rbtree_purge - empty a skb rbtree 2430 * @root: root of the rbtree to empty 2431 * 2432 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2433 * the list and one reference dropped. This function does not take 2434 * any lock. Synchronization should be handled by the caller (e.g., TCP 2435 * out-of-order queue is protected by the socket lock). 2436 */ 2437 void skb_rbtree_purge(struct rb_root *root) 2438 { 2439 struct sk_buff *skb, *next; 2440 2441 rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode) 2442 kfree_skb(skb); 2443 2444 *root = RB_ROOT; 2445 } 2446 2447 /** 2448 * skb_queue_head - queue a buffer at the list head 2449 * @list: list to use 2450 * @newsk: buffer to queue 2451 * 2452 * Queue a buffer at the start of the list. This function takes the 2453 * list lock and can be used safely with other locking &sk_buff functions 2454 * safely. 2455 * 2456 * A buffer cannot be placed on two lists at the same time. 2457 */ 2458 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2459 { 2460 unsigned long flags; 2461 2462 spin_lock_irqsave(&list->lock, flags); 2463 __skb_queue_head(list, newsk); 2464 spin_unlock_irqrestore(&list->lock, flags); 2465 } 2466 EXPORT_SYMBOL(skb_queue_head); 2467 2468 /** 2469 * skb_queue_tail - queue a buffer at the list tail 2470 * @list: list to use 2471 * @newsk: buffer to queue 2472 * 2473 * Queue a buffer at the tail of the list. This function takes the 2474 * list lock and can be used safely with other locking &sk_buff functions 2475 * safely. 2476 * 2477 * A buffer cannot be placed on two lists at the same time. 2478 */ 2479 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2480 { 2481 unsigned long flags; 2482 2483 spin_lock_irqsave(&list->lock, flags); 2484 __skb_queue_tail(list, newsk); 2485 spin_unlock_irqrestore(&list->lock, flags); 2486 } 2487 EXPORT_SYMBOL(skb_queue_tail); 2488 2489 /** 2490 * skb_unlink - remove a buffer from a list 2491 * @skb: buffer to remove 2492 * @list: list to use 2493 * 2494 * Remove a packet from a list. The list locks are taken and this 2495 * function is atomic with respect to other list locked calls 2496 * 2497 * You must know what list the SKB is on. 2498 */ 2499 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2500 { 2501 unsigned long flags; 2502 2503 spin_lock_irqsave(&list->lock, flags); 2504 __skb_unlink(skb, list); 2505 spin_unlock_irqrestore(&list->lock, flags); 2506 } 2507 EXPORT_SYMBOL(skb_unlink); 2508 2509 /** 2510 * skb_append - append a buffer 2511 * @old: buffer to insert after 2512 * @newsk: buffer to insert 2513 * @list: list to use 2514 * 2515 * Place a packet after a given packet in a list. The list locks are taken 2516 * and this function is atomic with respect to other list locked calls. 2517 * A buffer cannot be placed on two lists at the same time. 2518 */ 2519 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2520 { 2521 unsigned long flags; 2522 2523 spin_lock_irqsave(&list->lock, flags); 2524 __skb_queue_after(list, old, newsk); 2525 spin_unlock_irqrestore(&list->lock, flags); 2526 } 2527 EXPORT_SYMBOL(skb_append); 2528 2529 /** 2530 * skb_insert - insert a buffer 2531 * @old: buffer to insert before 2532 * @newsk: buffer to insert 2533 * @list: list to use 2534 * 2535 * Place a packet before a given packet in a list. The list locks are 2536 * taken and this function is atomic with respect to other list locked 2537 * calls. 2538 * 2539 * A buffer cannot be placed on two lists at the same time. 2540 */ 2541 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2542 { 2543 unsigned long flags; 2544 2545 spin_lock_irqsave(&list->lock, flags); 2546 __skb_insert(newsk, old->prev, old, list); 2547 spin_unlock_irqrestore(&list->lock, flags); 2548 } 2549 EXPORT_SYMBOL(skb_insert); 2550 2551 static inline void skb_split_inside_header(struct sk_buff *skb, 2552 struct sk_buff* skb1, 2553 const u32 len, const int pos) 2554 { 2555 int i; 2556 2557 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2558 pos - len); 2559 /* And move data appendix as is. */ 2560 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2561 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2562 2563 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2564 skb_shinfo(skb)->nr_frags = 0; 2565 skb1->data_len = skb->data_len; 2566 skb1->len += skb1->data_len; 2567 skb->data_len = 0; 2568 skb->len = len; 2569 skb_set_tail_pointer(skb, len); 2570 } 2571 2572 static inline void skb_split_no_header(struct sk_buff *skb, 2573 struct sk_buff* skb1, 2574 const u32 len, int pos) 2575 { 2576 int i, k = 0; 2577 const int nfrags = skb_shinfo(skb)->nr_frags; 2578 2579 skb_shinfo(skb)->nr_frags = 0; 2580 skb1->len = skb1->data_len = skb->len - len; 2581 skb->len = len; 2582 skb->data_len = len - pos; 2583 2584 for (i = 0; i < nfrags; i++) { 2585 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2586 2587 if (pos + size > len) { 2588 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2589 2590 if (pos < len) { 2591 /* Split frag. 2592 * We have two variants in this case: 2593 * 1. Move all the frag to the second 2594 * part, if it is possible. F.e. 2595 * this approach is mandatory for TUX, 2596 * where splitting is expensive. 2597 * 2. Split is accurately. We make this. 2598 */ 2599 skb_frag_ref(skb, i); 2600 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2601 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2602 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2603 skb_shinfo(skb)->nr_frags++; 2604 } 2605 k++; 2606 } else 2607 skb_shinfo(skb)->nr_frags++; 2608 pos += size; 2609 } 2610 skb_shinfo(skb1)->nr_frags = k; 2611 } 2612 2613 /** 2614 * skb_split - Split fragmented skb to two parts at length len. 2615 * @skb: the buffer to split 2616 * @skb1: the buffer to receive the second part 2617 * @len: new length for skb 2618 */ 2619 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2620 { 2621 int pos = skb_headlen(skb); 2622 2623 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2624 if (len < pos) /* Split line is inside header. */ 2625 skb_split_inside_header(skb, skb1, len, pos); 2626 else /* Second chunk has no header, nothing to copy. */ 2627 skb_split_no_header(skb, skb1, len, pos); 2628 } 2629 EXPORT_SYMBOL(skb_split); 2630 2631 /* Shifting from/to a cloned skb is a no-go. 2632 * 2633 * Caller cannot keep skb_shinfo related pointers past calling here! 2634 */ 2635 static int skb_prepare_for_shift(struct sk_buff *skb) 2636 { 2637 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2638 } 2639 2640 /** 2641 * skb_shift - Shifts paged data partially from skb to another 2642 * @tgt: buffer into which tail data gets added 2643 * @skb: buffer from which the paged data comes from 2644 * @shiftlen: shift up to this many bytes 2645 * 2646 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2647 * the length of the skb, from skb to tgt. Returns number bytes shifted. 2648 * It's up to caller to free skb if everything was shifted. 2649 * 2650 * If @tgt runs out of frags, the whole operation is aborted. 2651 * 2652 * Skb cannot include anything else but paged data while tgt is allowed 2653 * to have non-paged data as well. 2654 * 2655 * TODO: full sized shift could be optimized but that would need 2656 * specialized skb free'er to handle frags without up-to-date nr_frags. 2657 */ 2658 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2659 { 2660 int from, to, merge, todo; 2661 struct skb_frag_struct *fragfrom, *fragto; 2662 2663 BUG_ON(shiftlen > skb->len); 2664 2665 if (skb_headlen(skb)) 2666 return 0; 2667 2668 todo = shiftlen; 2669 from = 0; 2670 to = skb_shinfo(tgt)->nr_frags; 2671 fragfrom = &skb_shinfo(skb)->frags[from]; 2672 2673 /* Actual merge is delayed until the point when we know we can 2674 * commit all, so that we don't have to undo partial changes 2675 */ 2676 if (!to || 2677 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2678 fragfrom->page_offset)) { 2679 merge = -1; 2680 } else { 2681 merge = to - 1; 2682 2683 todo -= skb_frag_size(fragfrom); 2684 if (todo < 0) { 2685 if (skb_prepare_for_shift(skb) || 2686 skb_prepare_for_shift(tgt)) 2687 return 0; 2688 2689 /* All previous frag pointers might be stale! */ 2690 fragfrom = &skb_shinfo(skb)->frags[from]; 2691 fragto = &skb_shinfo(tgt)->frags[merge]; 2692 2693 skb_frag_size_add(fragto, shiftlen); 2694 skb_frag_size_sub(fragfrom, shiftlen); 2695 fragfrom->page_offset += shiftlen; 2696 2697 goto onlymerged; 2698 } 2699 2700 from++; 2701 } 2702 2703 /* Skip full, not-fitting skb to avoid expensive operations */ 2704 if ((shiftlen == skb->len) && 2705 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2706 return 0; 2707 2708 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2709 return 0; 2710 2711 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2712 if (to == MAX_SKB_FRAGS) 2713 return 0; 2714 2715 fragfrom = &skb_shinfo(skb)->frags[from]; 2716 fragto = &skb_shinfo(tgt)->frags[to]; 2717 2718 if (todo >= skb_frag_size(fragfrom)) { 2719 *fragto = *fragfrom; 2720 todo -= skb_frag_size(fragfrom); 2721 from++; 2722 to++; 2723 2724 } else { 2725 __skb_frag_ref(fragfrom); 2726 fragto->page = fragfrom->page; 2727 fragto->page_offset = fragfrom->page_offset; 2728 skb_frag_size_set(fragto, todo); 2729 2730 fragfrom->page_offset += todo; 2731 skb_frag_size_sub(fragfrom, todo); 2732 todo = 0; 2733 2734 to++; 2735 break; 2736 } 2737 } 2738 2739 /* Ready to "commit" this state change to tgt */ 2740 skb_shinfo(tgt)->nr_frags = to; 2741 2742 if (merge >= 0) { 2743 fragfrom = &skb_shinfo(skb)->frags[0]; 2744 fragto = &skb_shinfo(tgt)->frags[merge]; 2745 2746 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2747 __skb_frag_unref(fragfrom); 2748 } 2749 2750 /* Reposition in the original skb */ 2751 to = 0; 2752 while (from < skb_shinfo(skb)->nr_frags) 2753 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2754 skb_shinfo(skb)->nr_frags = to; 2755 2756 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2757 2758 onlymerged: 2759 /* Most likely the tgt won't ever need its checksum anymore, skb on 2760 * the other hand might need it if it needs to be resent 2761 */ 2762 tgt->ip_summed = CHECKSUM_PARTIAL; 2763 skb->ip_summed = CHECKSUM_PARTIAL; 2764 2765 /* Yak, is it really working this way? Some helper please? */ 2766 skb->len -= shiftlen; 2767 skb->data_len -= shiftlen; 2768 skb->truesize -= shiftlen; 2769 tgt->len += shiftlen; 2770 tgt->data_len += shiftlen; 2771 tgt->truesize += shiftlen; 2772 2773 return shiftlen; 2774 } 2775 2776 /** 2777 * skb_prepare_seq_read - Prepare a sequential read of skb data 2778 * @skb: the buffer to read 2779 * @from: lower offset of data to be read 2780 * @to: upper offset of data to be read 2781 * @st: state variable 2782 * 2783 * Initializes the specified state variable. Must be called before 2784 * invoking skb_seq_read() for the first time. 2785 */ 2786 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2787 unsigned int to, struct skb_seq_state *st) 2788 { 2789 st->lower_offset = from; 2790 st->upper_offset = to; 2791 st->root_skb = st->cur_skb = skb; 2792 st->frag_idx = st->stepped_offset = 0; 2793 st->frag_data = NULL; 2794 } 2795 EXPORT_SYMBOL(skb_prepare_seq_read); 2796 2797 /** 2798 * skb_seq_read - Sequentially read skb data 2799 * @consumed: number of bytes consumed by the caller so far 2800 * @data: destination pointer for data to be returned 2801 * @st: state variable 2802 * 2803 * Reads a block of skb data at @consumed relative to the 2804 * lower offset specified to skb_prepare_seq_read(). Assigns 2805 * the head of the data block to @data and returns the length 2806 * of the block or 0 if the end of the skb data or the upper 2807 * offset has been reached. 2808 * 2809 * The caller is not required to consume all of the data 2810 * returned, i.e. @consumed is typically set to the number 2811 * of bytes already consumed and the next call to 2812 * skb_seq_read() will return the remaining part of the block. 2813 * 2814 * Note 1: The size of each block of data returned can be arbitrary, 2815 * this limitation is the cost for zerocopy sequential 2816 * reads of potentially non linear data. 2817 * 2818 * Note 2: Fragment lists within fragments are not implemented 2819 * at the moment, state->root_skb could be replaced with 2820 * a stack for this purpose. 2821 */ 2822 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2823 struct skb_seq_state *st) 2824 { 2825 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2826 skb_frag_t *frag; 2827 2828 if (unlikely(abs_offset >= st->upper_offset)) { 2829 if (st->frag_data) { 2830 kunmap_atomic(st->frag_data); 2831 st->frag_data = NULL; 2832 } 2833 return 0; 2834 } 2835 2836 next_skb: 2837 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2838 2839 if (abs_offset < block_limit && !st->frag_data) { 2840 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2841 return block_limit - abs_offset; 2842 } 2843 2844 if (st->frag_idx == 0 && !st->frag_data) 2845 st->stepped_offset += skb_headlen(st->cur_skb); 2846 2847 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2848 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2849 block_limit = skb_frag_size(frag) + st->stepped_offset; 2850 2851 if (abs_offset < block_limit) { 2852 if (!st->frag_data) 2853 st->frag_data = kmap_atomic(skb_frag_page(frag)); 2854 2855 *data = (u8 *) st->frag_data + frag->page_offset + 2856 (abs_offset - st->stepped_offset); 2857 2858 return block_limit - abs_offset; 2859 } 2860 2861 if (st->frag_data) { 2862 kunmap_atomic(st->frag_data); 2863 st->frag_data = NULL; 2864 } 2865 2866 st->frag_idx++; 2867 st->stepped_offset += skb_frag_size(frag); 2868 } 2869 2870 if (st->frag_data) { 2871 kunmap_atomic(st->frag_data); 2872 st->frag_data = NULL; 2873 } 2874 2875 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2876 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2877 st->frag_idx = 0; 2878 goto next_skb; 2879 } else if (st->cur_skb->next) { 2880 st->cur_skb = st->cur_skb->next; 2881 st->frag_idx = 0; 2882 goto next_skb; 2883 } 2884 2885 return 0; 2886 } 2887 EXPORT_SYMBOL(skb_seq_read); 2888 2889 /** 2890 * skb_abort_seq_read - Abort a sequential read of skb data 2891 * @st: state variable 2892 * 2893 * Must be called if skb_seq_read() was not called until it 2894 * returned 0. 2895 */ 2896 void skb_abort_seq_read(struct skb_seq_state *st) 2897 { 2898 if (st->frag_data) 2899 kunmap_atomic(st->frag_data); 2900 } 2901 EXPORT_SYMBOL(skb_abort_seq_read); 2902 2903 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2904 2905 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2906 struct ts_config *conf, 2907 struct ts_state *state) 2908 { 2909 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2910 } 2911 2912 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2913 { 2914 skb_abort_seq_read(TS_SKB_CB(state)); 2915 } 2916 2917 /** 2918 * skb_find_text - Find a text pattern in skb data 2919 * @skb: the buffer to look in 2920 * @from: search offset 2921 * @to: search limit 2922 * @config: textsearch configuration 2923 * 2924 * Finds a pattern in the skb data according to the specified 2925 * textsearch configuration. Use textsearch_next() to retrieve 2926 * subsequent occurrences of the pattern. Returns the offset 2927 * to the first occurrence or UINT_MAX if no match was found. 2928 */ 2929 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2930 unsigned int to, struct ts_config *config) 2931 { 2932 struct ts_state state; 2933 unsigned int ret; 2934 2935 config->get_next_block = skb_ts_get_next_block; 2936 config->finish = skb_ts_finish; 2937 2938 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 2939 2940 ret = textsearch_find(config, &state); 2941 return (ret <= to - from ? ret : UINT_MAX); 2942 } 2943 EXPORT_SYMBOL(skb_find_text); 2944 2945 /** 2946 * skb_append_datato_frags - append the user data to a skb 2947 * @sk: sock structure 2948 * @skb: skb structure to be appended with user data. 2949 * @getfrag: call back function to be used for getting the user data 2950 * @from: pointer to user message iov 2951 * @length: length of the iov message 2952 * 2953 * Description: This procedure append the user data in the fragment part 2954 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2955 */ 2956 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2957 int (*getfrag)(void *from, char *to, int offset, 2958 int len, int odd, struct sk_buff *skb), 2959 void *from, int length) 2960 { 2961 int frg_cnt = skb_shinfo(skb)->nr_frags; 2962 int copy; 2963 int offset = 0; 2964 int ret; 2965 struct page_frag *pfrag = ¤t->task_frag; 2966 2967 do { 2968 /* Return error if we don't have space for new frag */ 2969 if (frg_cnt >= MAX_SKB_FRAGS) 2970 return -EMSGSIZE; 2971 2972 if (!sk_page_frag_refill(sk, pfrag)) 2973 return -ENOMEM; 2974 2975 /* copy the user data to page */ 2976 copy = min_t(int, length, pfrag->size - pfrag->offset); 2977 2978 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 2979 offset, copy, 0, skb); 2980 if (ret < 0) 2981 return -EFAULT; 2982 2983 /* copy was successful so update the size parameters */ 2984 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 2985 copy); 2986 frg_cnt++; 2987 pfrag->offset += copy; 2988 get_page(pfrag->page); 2989 2990 skb->truesize += copy; 2991 atomic_add(copy, &sk->sk_wmem_alloc); 2992 skb->len += copy; 2993 skb->data_len += copy; 2994 offset += copy; 2995 length -= copy; 2996 2997 } while (length > 0); 2998 2999 return 0; 3000 } 3001 EXPORT_SYMBOL(skb_append_datato_frags); 3002 3003 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3004 int offset, size_t size) 3005 { 3006 int i = skb_shinfo(skb)->nr_frags; 3007 3008 if (skb_can_coalesce(skb, i, page, offset)) { 3009 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3010 } else if (i < MAX_SKB_FRAGS) { 3011 get_page(page); 3012 skb_fill_page_desc(skb, i, page, offset, size); 3013 } else { 3014 return -EMSGSIZE; 3015 } 3016 3017 return 0; 3018 } 3019 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3020 3021 /** 3022 * skb_pull_rcsum - pull skb and update receive checksum 3023 * @skb: buffer to update 3024 * @len: length of data pulled 3025 * 3026 * This function performs an skb_pull on the packet and updates 3027 * the CHECKSUM_COMPLETE checksum. It should be used on 3028 * receive path processing instead of skb_pull unless you know 3029 * that the checksum difference is zero (e.g., a valid IP header) 3030 * or you are setting ip_summed to CHECKSUM_NONE. 3031 */ 3032 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3033 { 3034 unsigned char *data = skb->data; 3035 3036 BUG_ON(len > skb->len); 3037 __skb_pull(skb, len); 3038 skb_postpull_rcsum(skb, data, len); 3039 return skb->data; 3040 } 3041 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3042 3043 /** 3044 * skb_segment - Perform protocol segmentation on skb. 3045 * @head_skb: buffer to segment 3046 * @features: features for the output path (see dev->features) 3047 * 3048 * This function performs segmentation on the given skb. It returns 3049 * a pointer to the first in a list of new skbs for the segments. 3050 * In case of error it returns ERR_PTR(err). 3051 */ 3052 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3053 netdev_features_t features) 3054 { 3055 struct sk_buff *segs = NULL; 3056 struct sk_buff *tail = NULL; 3057 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3058 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3059 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3060 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3061 struct sk_buff *frag_skb = head_skb; 3062 unsigned int offset = doffset; 3063 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3064 unsigned int partial_segs = 0; 3065 unsigned int headroom; 3066 unsigned int len = head_skb->len; 3067 __be16 proto; 3068 bool csum, sg; 3069 int nfrags = skb_shinfo(head_skb)->nr_frags; 3070 int err = -ENOMEM; 3071 int i = 0; 3072 int pos; 3073 int dummy; 3074 3075 __skb_push(head_skb, doffset); 3076 proto = skb_network_protocol(head_skb, &dummy); 3077 if (unlikely(!proto)) 3078 return ERR_PTR(-EINVAL); 3079 3080 sg = !!(features & NETIF_F_SG); 3081 csum = !!can_checksum_protocol(features, proto); 3082 3083 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3084 if (!(features & NETIF_F_GSO_PARTIAL)) { 3085 struct sk_buff *iter; 3086 unsigned int frag_len; 3087 3088 if (!list_skb || 3089 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3090 goto normal; 3091 3092 /* If we get here then all the required 3093 * GSO features except frag_list are supported. 3094 * Try to split the SKB to multiple GSO SKBs 3095 * with no frag_list. 3096 * Currently we can do that only when the buffers don't 3097 * have a linear part and all the buffers except 3098 * the last are of the same length. 3099 */ 3100 frag_len = list_skb->len; 3101 skb_walk_frags(head_skb, iter) { 3102 if (frag_len != iter->len && iter->next) 3103 goto normal; 3104 if (skb_headlen(iter) && !iter->head_frag) 3105 goto normal; 3106 3107 len -= iter->len; 3108 } 3109 3110 if (len != frag_len) 3111 goto normal; 3112 } 3113 3114 /* GSO partial only requires that we trim off any excess that 3115 * doesn't fit into an MSS sized block, so take care of that 3116 * now. 3117 */ 3118 partial_segs = len / mss; 3119 if (partial_segs > 1) 3120 mss *= partial_segs; 3121 else 3122 partial_segs = 0; 3123 } 3124 3125 normal: 3126 headroom = skb_headroom(head_skb); 3127 pos = skb_headlen(head_skb); 3128 3129 do { 3130 struct sk_buff *nskb; 3131 skb_frag_t *nskb_frag; 3132 int hsize; 3133 int size; 3134 3135 if (unlikely(mss == GSO_BY_FRAGS)) { 3136 len = list_skb->len; 3137 } else { 3138 len = head_skb->len - offset; 3139 if (len > mss) 3140 len = mss; 3141 } 3142 3143 hsize = skb_headlen(head_skb) - offset; 3144 if (hsize < 0) 3145 hsize = 0; 3146 if (hsize > len || !sg) 3147 hsize = len; 3148 3149 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3150 (skb_headlen(list_skb) == len || sg)) { 3151 BUG_ON(skb_headlen(list_skb) > len); 3152 3153 i = 0; 3154 nfrags = skb_shinfo(list_skb)->nr_frags; 3155 frag = skb_shinfo(list_skb)->frags; 3156 frag_skb = list_skb; 3157 pos += skb_headlen(list_skb); 3158 3159 while (pos < offset + len) { 3160 BUG_ON(i >= nfrags); 3161 3162 size = skb_frag_size(frag); 3163 if (pos + size > offset + len) 3164 break; 3165 3166 i++; 3167 pos += size; 3168 frag++; 3169 } 3170 3171 nskb = skb_clone(list_skb, GFP_ATOMIC); 3172 list_skb = list_skb->next; 3173 3174 if (unlikely(!nskb)) 3175 goto err; 3176 3177 if (unlikely(pskb_trim(nskb, len))) { 3178 kfree_skb(nskb); 3179 goto err; 3180 } 3181 3182 hsize = skb_end_offset(nskb); 3183 if (skb_cow_head(nskb, doffset + headroom)) { 3184 kfree_skb(nskb); 3185 goto err; 3186 } 3187 3188 nskb->truesize += skb_end_offset(nskb) - hsize; 3189 skb_release_head_state(nskb); 3190 __skb_push(nskb, doffset); 3191 } else { 3192 nskb = __alloc_skb(hsize + doffset + headroom, 3193 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3194 NUMA_NO_NODE); 3195 3196 if (unlikely(!nskb)) 3197 goto err; 3198 3199 skb_reserve(nskb, headroom); 3200 __skb_put(nskb, doffset); 3201 } 3202 3203 if (segs) 3204 tail->next = nskb; 3205 else 3206 segs = nskb; 3207 tail = nskb; 3208 3209 __copy_skb_header(nskb, head_skb); 3210 3211 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3212 skb_reset_mac_len(nskb); 3213 3214 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3215 nskb->data - tnl_hlen, 3216 doffset + tnl_hlen); 3217 3218 if (nskb->len == len + doffset) 3219 goto perform_csum_check; 3220 3221 if (!sg) { 3222 if (!nskb->remcsum_offload) 3223 nskb->ip_summed = CHECKSUM_NONE; 3224 SKB_GSO_CB(nskb)->csum = 3225 skb_copy_and_csum_bits(head_skb, offset, 3226 skb_put(nskb, len), 3227 len, 0); 3228 SKB_GSO_CB(nskb)->csum_start = 3229 skb_headroom(nskb) + doffset; 3230 continue; 3231 } 3232 3233 nskb_frag = skb_shinfo(nskb)->frags; 3234 3235 skb_copy_from_linear_data_offset(head_skb, offset, 3236 skb_put(nskb, hsize), hsize); 3237 3238 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags & 3239 SKBTX_SHARED_FRAG; 3240 3241 while (pos < offset + len) { 3242 if (i >= nfrags) { 3243 BUG_ON(skb_headlen(list_skb)); 3244 3245 i = 0; 3246 nfrags = skb_shinfo(list_skb)->nr_frags; 3247 frag = skb_shinfo(list_skb)->frags; 3248 frag_skb = list_skb; 3249 3250 BUG_ON(!nfrags); 3251 3252 list_skb = list_skb->next; 3253 } 3254 3255 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3256 MAX_SKB_FRAGS)) { 3257 net_warn_ratelimited( 3258 "skb_segment: too many frags: %u %u\n", 3259 pos, mss); 3260 goto err; 3261 } 3262 3263 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC))) 3264 goto err; 3265 3266 *nskb_frag = *frag; 3267 __skb_frag_ref(nskb_frag); 3268 size = skb_frag_size(nskb_frag); 3269 3270 if (pos < offset) { 3271 nskb_frag->page_offset += offset - pos; 3272 skb_frag_size_sub(nskb_frag, offset - pos); 3273 } 3274 3275 skb_shinfo(nskb)->nr_frags++; 3276 3277 if (pos + size <= offset + len) { 3278 i++; 3279 frag++; 3280 pos += size; 3281 } else { 3282 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3283 goto skip_fraglist; 3284 } 3285 3286 nskb_frag++; 3287 } 3288 3289 skip_fraglist: 3290 nskb->data_len = len - hsize; 3291 nskb->len += nskb->data_len; 3292 nskb->truesize += nskb->data_len; 3293 3294 perform_csum_check: 3295 if (!csum) { 3296 if (skb_has_shared_frag(nskb)) { 3297 err = __skb_linearize(nskb); 3298 if (err) 3299 goto err; 3300 } 3301 if (!nskb->remcsum_offload) 3302 nskb->ip_summed = CHECKSUM_NONE; 3303 SKB_GSO_CB(nskb)->csum = 3304 skb_checksum(nskb, doffset, 3305 nskb->len - doffset, 0); 3306 SKB_GSO_CB(nskb)->csum_start = 3307 skb_headroom(nskb) + doffset; 3308 } 3309 } while ((offset += len) < head_skb->len); 3310 3311 /* Some callers want to get the end of the list. 3312 * Put it in segs->prev to avoid walking the list. 3313 * (see validate_xmit_skb_list() for example) 3314 */ 3315 segs->prev = tail; 3316 3317 if (partial_segs) { 3318 struct sk_buff *iter; 3319 int type = skb_shinfo(head_skb)->gso_type; 3320 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3321 3322 /* Update type to add partial and then remove dodgy if set */ 3323 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3324 type &= ~SKB_GSO_DODGY; 3325 3326 /* Update GSO info and prepare to start updating headers on 3327 * our way back down the stack of protocols. 3328 */ 3329 for (iter = segs; iter; iter = iter->next) { 3330 skb_shinfo(iter)->gso_size = gso_size; 3331 skb_shinfo(iter)->gso_segs = partial_segs; 3332 skb_shinfo(iter)->gso_type = type; 3333 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3334 } 3335 3336 if (tail->len - doffset <= gso_size) 3337 skb_shinfo(tail)->gso_size = 0; 3338 else if (tail != segs) 3339 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3340 } 3341 3342 /* Following permits correct backpressure, for protocols 3343 * using skb_set_owner_w(). 3344 * Idea is to tranfert ownership from head_skb to last segment. 3345 */ 3346 if (head_skb->destructor == sock_wfree) { 3347 swap(tail->truesize, head_skb->truesize); 3348 swap(tail->destructor, head_skb->destructor); 3349 swap(tail->sk, head_skb->sk); 3350 } 3351 return segs; 3352 3353 err: 3354 kfree_skb_list(segs); 3355 return ERR_PTR(err); 3356 } 3357 EXPORT_SYMBOL_GPL(skb_segment); 3358 3359 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3360 { 3361 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3362 unsigned int offset = skb_gro_offset(skb); 3363 unsigned int headlen = skb_headlen(skb); 3364 unsigned int len = skb_gro_len(skb); 3365 struct sk_buff *lp, *p = *head; 3366 unsigned int delta_truesize; 3367 3368 if (unlikely(p->len + len >= 65536)) 3369 return -E2BIG; 3370 3371 lp = NAPI_GRO_CB(p)->last; 3372 pinfo = skb_shinfo(lp); 3373 3374 if (headlen <= offset) { 3375 skb_frag_t *frag; 3376 skb_frag_t *frag2; 3377 int i = skbinfo->nr_frags; 3378 int nr_frags = pinfo->nr_frags + i; 3379 3380 if (nr_frags > MAX_SKB_FRAGS) 3381 goto merge; 3382 3383 offset -= headlen; 3384 pinfo->nr_frags = nr_frags; 3385 skbinfo->nr_frags = 0; 3386 3387 frag = pinfo->frags + nr_frags; 3388 frag2 = skbinfo->frags + i; 3389 do { 3390 *--frag = *--frag2; 3391 } while (--i); 3392 3393 frag->page_offset += offset; 3394 skb_frag_size_sub(frag, offset); 3395 3396 /* all fragments truesize : remove (head size + sk_buff) */ 3397 delta_truesize = skb->truesize - 3398 SKB_TRUESIZE(skb_end_offset(skb)); 3399 3400 skb->truesize -= skb->data_len; 3401 skb->len -= skb->data_len; 3402 skb->data_len = 0; 3403 3404 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3405 goto done; 3406 } else if (skb->head_frag) { 3407 int nr_frags = pinfo->nr_frags; 3408 skb_frag_t *frag = pinfo->frags + nr_frags; 3409 struct page *page = virt_to_head_page(skb->head); 3410 unsigned int first_size = headlen - offset; 3411 unsigned int first_offset; 3412 3413 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3414 goto merge; 3415 3416 first_offset = skb->data - 3417 (unsigned char *)page_address(page) + 3418 offset; 3419 3420 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3421 3422 frag->page.p = page; 3423 frag->page_offset = first_offset; 3424 skb_frag_size_set(frag, first_size); 3425 3426 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3427 /* We dont need to clear skbinfo->nr_frags here */ 3428 3429 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3430 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3431 goto done; 3432 } 3433 3434 merge: 3435 delta_truesize = skb->truesize; 3436 if (offset > headlen) { 3437 unsigned int eat = offset - headlen; 3438 3439 skbinfo->frags[0].page_offset += eat; 3440 skb_frag_size_sub(&skbinfo->frags[0], eat); 3441 skb->data_len -= eat; 3442 skb->len -= eat; 3443 offset = headlen; 3444 } 3445 3446 __skb_pull(skb, offset); 3447 3448 if (NAPI_GRO_CB(p)->last == p) 3449 skb_shinfo(p)->frag_list = skb; 3450 else 3451 NAPI_GRO_CB(p)->last->next = skb; 3452 NAPI_GRO_CB(p)->last = skb; 3453 __skb_header_release(skb); 3454 lp = p; 3455 3456 done: 3457 NAPI_GRO_CB(p)->count++; 3458 p->data_len += len; 3459 p->truesize += delta_truesize; 3460 p->len += len; 3461 if (lp != p) { 3462 lp->data_len += len; 3463 lp->truesize += delta_truesize; 3464 lp->len += len; 3465 } 3466 NAPI_GRO_CB(skb)->same_flow = 1; 3467 return 0; 3468 } 3469 EXPORT_SYMBOL_GPL(skb_gro_receive); 3470 3471 void __init skb_init(void) 3472 { 3473 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3474 sizeof(struct sk_buff), 3475 0, 3476 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3477 NULL); 3478 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3479 sizeof(struct sk_buff_fclones), 3480 0, 3481 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3482 NULL); 3483 } 3484 3485 /** 3486 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3487 * @skb: Socket buffer containing the buffers to be mapped 3488 * @sg: The scatter-gather list to map into 3489 * @offset: The offset into the buffer's contents to start mapping 3490 * @len: Length of buffer space to be mapped 3491 * 3492 * Fill the specified scatter-gather list with mappings/pointers into a 3493 * region of the buffer space attached to a socket buffer. 3494 */ 3495 static int 3496 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3497 { 3498 int start = skb_headlen(skb); 3499 int i, copy = start - offset; 3500 struct sk_buff *frag_iter; 3501 int elt = 0; 3502 3503 if (copy > 0) { 3504 if (copy > len) 3505 copy = len; 3506 sg_set_buf(sg, skb->data + offset, copy); 3507 elt++; 3508 if ((len -= copy) == 0) 3509 return elt; 3510 offset += copy; 3511 } 3512 3513 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3514 int end; 3515 3516 WARN_ON(start > offset + len); 3517 3518 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3519 if ((copy = end - offset) > 0) { 3520 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3521 3522 if (copy > len) 3523 copy = len; 3524 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3525 frag->page_offset+offset-start); 3526 elt++; 3527 if (!(len -= copy)) 3528 return elt; 3529 offset += copy; 3530 } 3531 start = end; 3532 } 3533 3534 skb_walk_frags(skb, frag_iter) { 3535 int end; 3536 3537 WARN_ON(start > offset + len); 3538 3539 end = start + frag_iter->len; 3540 if ((copy = end - offset) > 0) { 3541 if (copy > len) 3542 copy = len; 3543 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3544 copy); 3545 if ((len -= copy) == 0) 3546 return elt; 3547 offset += copy; 3548 } 3549 start = end; 3550 } 3551 BUG_ON(len); 3552 return elt; 3553 } 3554 3555 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 3556 * sglist without mark the sg which contain last skb data as the end. 3557 * So the caller can mannipulate sg list as will when padding new data after 3558 * the first call without calling sg_unmark_end to expend sg list. 3559 * 3560 * Scenario to use skb_to_sgvec_nomark: 3561 * 1. sg_init_table 3562 * 2. skb_to_sgvec_nomark(payload1) 3563 * 3. skb_to_sgvec_nomark(payload2) 3564 * 3565 * This is equivalent to: 3566 * 1. sg_init_table 3567 * 2. skb_to_sgvec(payload1) 3568 * 3. sg_unmark_end 3569 * 4. skb_to_sgvec(payload2) 3570 * 3571 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 3572 * is more preferable. 3573 */ 3574 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 3575 int offset, int len) 3576 { 3577 return __skb_to_sgvec(skb, sg, offset, len); 3578 } 3579 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 3580 3581 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3582 { 3583 int nsg = __skb_to_sgvec(skb, sg, offset, len); 3584 3585 sg_mark_end(&sg[nsg - 1]); 3586 3587 return nsg; 3588 } 3589 EXPORT_SYMBOL_GPL(skb_to_sgvec); 3590 3591 /** 3592 * skb_cow_data - Check that a socket buffer's data buffers are writable 3593 * @skb: The socket buffer to check. 3594 * @tailbits: Amount of trailing space to be added 3595 * @trailer: Returned pointer to the skb where the @tailbits space begins 3596 * 3597 * Make sure that the data buffers attached to a socket buffer are 3598 * writable. If they are not, private copies are made of the data buffers 3599 * and the socket buffer is set to use these instead. 3600 * 3601 * If @tailbits is given, make sure that there is space to write @tailbits 3602 * bytes of data beyond current end of socket buffer. @trailer will be 3603 * set to point to the skb in which this space begins. 3604 * 3605 * The number of scatterlist elements required to completely map the 3606 * COW'd and extended socket buffer will be returned. 3607 */ 3608 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3609 { 3610 int copyflag; 3611 int elt; 3612 struct sk_buff *skb1, **skb_p; 3613 3614 /* If skb is cloned or its head is paged, reallocate 3615 * head pulling out all the pages (pages are considered not writable 3616 * at the moment even if they are anonymous). 3617 */ 3618 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3619 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3620 return -ENOMEM; 3621 3622 /* Easy case. Most of packets will go this way. */ 3623 if (!skb_has_frag_list(skb)) { 3624 /* A little of trouble, not enough of space for trailer. 3625 * This should not happen, when stack is tuned to generate 3626 * good frames. OK, on miss we reallocate and reserve even more 3627 * space, 128 bytes is fair. */ 3628 3629 if (skb_tailroom(skb) < tailbits && 3630 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3631 return -ENOMEM; 3632 3633 /* Voila! */ 3634 *trailer = skb; 3635 return 1; 3636 } 3637 3638 /* Misery. We are in troubles, going to mincer fragments... */ 3639 3640 elt = 1; 3641 skb_p = &skb_shinfo(skb)->frag_list; 3642 copyflag = 0; 3643 3644 while ((skb1 = *skb_p) != NULL) { 3645 int ntail = 0; 3646 3647 /* The fragment is partially pulled by someone, 3648 * this can happen on input. Copy it and everything 3649 * after it. */ 3650 3651 if (skb_shared(skb1)) 3652 copyflag = 1; 3653 3654 /* If the skb is the last, worry about trailer. */ 3655 3656 if (skb1->next == NULL && tailbits) { 3657 if (skb_shinfo(skb1)->nr_frags || 3658 skb_has_frag_list(skb1) || 3659 skb_tailroom(skb1) < tailbits) 3660 ntail = tailbits + 128; 3661 } 3662 3663 if (copyflag || 3664 skb_cloned(skb1) || 3665 ntail || 3666 skb_shinfo(skb1)->nr_frags || 3667 skb_has_frag_list(skb1)) { 3668 struct sk_buff *skb2; 3669 3670 /* Fuck, we are miserable poor guys... */ 3671 if (ntail == 0) 3672 skb2 = skb_copy(skb1, GFP_ATOMIC); 3673 else 3674 skb2 = skb_copy_expand(skb1, 3675 skb_headroom(skb1), 3676 ntail, 3677 GFP_ATOMIC); 3678 if (unlikely(skb2 == NULL)) 3679 return -ENOMEM; 3680 3681 if (skb1->sk) 3682 skb_set_owner_w(skb2, skb1->sk); 3683 3684 /* Looking around. Are we still alive? 3685 * OK, link new skb, drop old one */ 3686 3687 skb2->next = skb1->next; 3688 *skb_p = skb2; 3689 kfree_skb(skb1); 3690 skb1 = skb2; 3691 } 3692 elt++; 3693 *trailer = skb1; 3694 skb_p = &skb1->next; 3695 } 3696 3697 return elt; 3698 } 3699 EXPORT_SYMBOL_GPL(skb_cow_data); 3700 3701 static void sock_rmem_free(struct sk_buff *skb) 3702 { 3703 struct sock *sk = skb->sk; 3704 3705 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3706 } 3707 3708 static void skb_set_err_queue(struct sk_buff *skb) 3709 { 3710 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 3711 * So, it is safe to (mis)use it to mark skbs on the error queue. 3712 */ 3713 skb->pkt_type = PACKET_OUTGOING; 3714 BUILD_BUG_ON(PACKET_OUTGOING == 0); 3715 } 3716 3717 /* 3718 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3719 */ 3720 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3721 { 3722 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3723 (unsigned int)sk->sk_rcvbuf) 3724 return -ENOMEM; 3725 3726 skb_orphan(skb); 3727 skb->sk = sk; 3728 skb->destructor = sock_rmem_free; 3729 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3730 skb_set_err_queue(skb); 3731 3732 /* before exiting rcu section, make sure dst is refcounted */ 3733 skb_dst_force(skb); 3734 3735 skb_queue_tail(&sk->sk_error_queue, skb); 3736 if (!sock_flag(sk, SOCK_DEAD)) 3737 sk->sk_data_ready(sk); 3738 return 0; 3739 } 3740 EXPORT_SYMBOL(sock_queue_err_skb); 3741 3742 static bool is_icmp_err_skb(const struct sk_buff *skb) 3743 { 3744 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 3745 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 3746 } 3747 3748 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 3749 { 3750 struct sk_buff_head *q = &sk->sk_error_queue; 3751 struct sk_buff *skb, *skb_next = NULL; 3752 bool icmp_next = false; 3753 unsigned long flags; 3754 3755 spin_lock_irqsave(&q->lock, flags); 3756 skb = __skb_dequeue(q); 3757 if (skb && (skb_next = skb_peek(q))) 3758 icmp_next = is_icmp_err_skb(skb_next); 3759 spin_unlock_irqrestore(&q->lock, flags); 3760 3761 if (is_icmp_err_skb(skb) && !icmp_next) 3762 sk->sk_err = 0; 3763 3764 if (skb_next) 3765 sk->sk_error_report(sk); 3766 3767 return skb; 3768 } 3769 EXPORT_SYMBOL(sock_dequeue_err_skb); 3770 3771 /** 3772 * skb_clone_sk - create clone of skb, and take reference to socket 3773 * @skb: the skb to clone 3774 * 3775 * This function creates a clone of a buffer that holds a reference on 3776 * sk_refcnt. Buffers created via this function are meant to be 3777 * returned using sock_queue_err_skb, or free via kfree_skb. 3778 * 3779 * When passing buffers allocated with this function to sock_queue_err_skb 3780 * it is necessary to wrap the call with sock_hold/sock_put in order to 3781 * prevent the socket from being released prior to being enqueued on 3782 * the sk_error_queue. 3783 */ 3784 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 3785 { 3786 struct sock *sk = skb->sk; 3787 struct sk_buff *clone; 3788 3789 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt)) 3790 return NULL; 3791 3792 clone = skb_clone(skb, GFP_ATOMIC); 3793 if (!clone) { 3794 sock_put(sk); 3795 return NULL; 3796 } 3797 3798 clone->sk = sk; 3799 clone->destructor = sock_efree; 3800 3801 return clone; 3802 } 3803 EXPORT_SYMBOL(skb_clone_sk); 3804 3805 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 3806 struct sock *sk, 3807 int tstype, 3808 bool opt_stats) 3809 { 3810 struct sock_exterr_skb *serr; 3811 int err; 3812 3813 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 3814 3815 serr = SKB_EXT_ERR(skb); 3816 memset(serr, 0, sizeof(*serr)); 3817 serr->ee.ee_errno = ENOMSG; 3818 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3819 serr->ee.ee_info = tstype; 3820 serr->opt_stats = opt_stats; 3821 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 3822 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 3823 serr->ee.ee_data = skb_shinfo(skb)->tskey; 3824 if (sk->sk_protocol == IPPROTO_TCP && 3825 sk->sk_type == SOCK_STREAM) 3826 serr->ee.ee_data -= sk->sk_tskey; 3827 } 3828 3829 err = sock_queue_err_skb(sk, skb); 3830 3831 if (err) 3832 kfree_skb(skb); 3833 } 3834 3835 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 3836 { 3837 bool ret; 3838 3839 if (likely(sysctl_tstamp_allow_data || tsonly)) 3840 return true; 3841 3842 read_lock_bh(&sk->sk_callback_lock); 3843 ret = sk->sk_socket && sk->sk_socket->file && 3844 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 3845 read_unlock_bh(&sk->sk_callback_lock); 3846 return ret; 3847 } 3848 3849 void skb_complete_tx_timestamp(struct sk_buff *skb, 3850 struct skb_shared_hwtstamps *hwtstamps) 3851 { 3852 struct sock *sk = skb->sk; 3853 3854 if (!skb_may_tx_timestamp(sk, false)) 3855 return; 3856 3857 /* Take a reference to prevent skb_orphan() from freeing the socket, 3858 * but only if the socket refcount is not zero. 3859 */ 3860 if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) { 3861 *skb_hwtstamps(skb) = *hwtstamps; 3862 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 3863 sock_put(sk); 3864 } 3865 } 3866 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 3867 3868 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3869 struct skb_shared_hwtstamps *hwtstamps, 3870 struct sock *sk, int tstype) 3871 { 3872 struct sk_buff *skb; 3873 bool tsonly, opt_stats = false; 3874 3875 if (!sk) 3876 return; 3877 3878 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 3879 if (!skb_may_tx_timestamp(sk, tsonly)) 3880 return; 3881 3882 if (tsonly) { 3883 #ifdef CONFIG_INET 3884 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 3885 sk->sk_protocol == IPPROTO_TCP && 3886 sk->sk_type == SOCK_STREAM) { 3887 skb = tcp_get_timestamping_opt_stats(sk); 3888 opt_stats = true; 3889 } else 3890 #endif 3891 skb = alloc_skb(0, GFP_ATOMIC); 3892 } else { 3893 skb = skb_clone(orig_skb, GFP_ATOMIC); 3894 } 3895 if (!skb) 3896 return; 3897 3898 if (tsonly) { 3899 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags; 3900 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 3901 } 3902 3903 if (hwtstamps) 3904 *skb_hwtstamps(skb) = *hwtstamps; 3905 else 3906 skb->tstamp = ktime_get_real(); 3907 3908 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 3909 } 3910 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 3911 3912 void skb_tstamp_tx(struct sk_buff *orig_skb, 3913 struct skb_shared_hwtstamps *hwtstamps) 3914 { 3915 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 3916 SCM_TSTAMP_SND); 3917 } 3918 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3919 3920 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 3921 { 3922 struct sock *sk = skb->sk; 3923 struct sock_exterr_skb *serr; 3924 int err = 1; 3925 3926 skb->wifi_acked_valid = 1; 3927 skb->wifi_acked = acked; 3928 3929 serr = SKB_EXT_ERR(skb); 3930 memset(serr, 0, sizeof(*serr)); 3931 serr->ee.ee_errno = ENOMSG; 3932 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 3933 3934 /* Take a reference to prevent skb_orphan() from freeing the socket, 3935 * but only if the socket refcount is not zero. 3936 */ 3937 if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) { 3938 err = sock_queue_err_skb(sk, skb); 3939 sock_put(sk); 3940 } 3941 if (err) 3942 kfree_skb(skb); 3943 } 3944 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 3945 3946 /** 3947 * skb_partial_csum_set - set up and verify partial csum values for packet 3948 * @skb: the skb to set 3949 * @start: the number of bytes after skb->data to start checksumming. 3950 * @off: the offset from start to place the checksum. 3951 * 3952 * For untrusted partially-checksummed packets, we need to make sure the values 3953 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3954 * 3955 * This function checks and sets those values and skb->ip_summed: if this 3956 * returns false you should drop the packet. 3957 */ 3958 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3959 { 3960 if (unlikely(start > skb_headlen(skb)) || 3961 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3962 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 3963 start, off, skb_headlen(skb)); 3964 return false; 3965 } 3966 skb->ip_summed = CHECKSUM_PARTIAL; 3967 skb->csum_start = skb_headroom(skb) + start; 3968 skb->csum_offset = off; 3969 skb_set_transport_header(skb, start); 3970 return true; 3971 } 3972 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3973 3974 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 3975 unsigned int max) 3976 { 3977 if (skb_headlen(skb) >= len) 3978 return 0; 3979 3980 /* If we need to pullup then pullup to the max, so we 3981 * won't need to do it again. 3982 */ 3983 if (max > skb->len) 3984 max = skb->len; 3985 3986 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 3987 return -ENOMEM; 3988 3989 if (skb_headlen(skb) < len) 3990 return -EPROTO; 3991 3992 return 0; 3993 } 3994 3995 #define MAX_TCP_HDR_LEN (15 * 4) 3996 3997 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 3998 typeof(IPPROTO_IP) proto, 3999 unsigned int off) 4000 { 4001 switch (proto) { 4002 int err; 4003 4004 case IPPROTO_TCP: 4005 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4006 off + MAX_TCP_HDR_LEN); 4007 if (!err && !skb_partial_csum_set(skb, off, 4008 offsetof(struct tcphdr, 4009 check))) 4010 err = -EPROTO; 4011 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4012 4013 case IPPROTO_UDP: 4014 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4015 off + sizeof(struct udphdr)); 4016 if (!err && !skb_partial_csum_set(skb, off, 4017 offsetof(struct udphdr, 4018 check))) 4019 err = -EPROTO; 4020 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4021 } 4022 4023 return ERR_PTR(-EPROTO); 4024 } 4025 4026 /* This value should be large enough to cover a tagged ethernet header plus 4027 * maximally sized IP and TCP or UDP headers. 4028 */ 4029 #define MAX_IP_HDR_LEN 128 4030 4031 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4032 { 4033 unsigned int off; 4034 bool fragment; 4035 __sum16 *csum; 4036 int err; 4037 4038 fragment = false; 4039 4040 err = skb_maybe_pull_tail(skb, 4041 sizeof(struct iphdr), 4042 MAX_IP_HDR_LEN); 4043 if (err < 0) 4044 goto out; 4045 4046 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4047 fragment = true; 4048 4049 off = ip_hdrlen(skb); 4050 4051 err = -EPROTO; 4052 4053 if (fragment) 4054 goto out; 4055 4056 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4057 if (IS_ERR(csum)) 4058 return PTR_ERR(csum); 4059 4060 if (recalculate) 4061 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4062 ip_hdr(skb)->daddr, 4063 skb->len - off, 4064 ip_hdr(skb)->protocol, 0); 4065 err = 0; 4066 4067 out: 4068 return err; 4069 } 4070 4071 /* This value should be large enough to cover a tagged ethernet header plus 4072 * an IPv6 header, all options, and a maximal TCP or UDP header. 4073 */ 4074 #define MAX_IPV6_HDR_LEN 256 4075 4076 #define OPT_HDR(type, skb, off) \ 4077 (type *)(skb_network_header(skb) + (off)) 4078 4079 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4080 { 4081 int err; 4082 u8 nexthdr; 4083 unsigned int off; 4084 unsigned int len; 4085 bool fragment; 4086 bool done; 4087 __sum16 *csum; 4088 4089 fragment = false; 4090 done = false; 4091 4092 off = sizeof(struct ipv6hdr); 4093 4094 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4095 if (err < 0) 4096 goto out; 4097 4098 nexthdr = ipv6_hdr(skb)->nexthdr; 4099 4100 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4101 while (off <= len && !done) { 4102 switch (nexthdr) { 4103 case IPPROTO_DSTOPTS: 4104 case IPPROTO_HOPOPTS: 4105 case IPPROTO_ROUTING: { 4106 struct ipv6_opt_hdr *hp; 4107 4108 err = skb_maybe_pull_tail(skb, 4109 off + 4110 sizeof(struct ipv6_opt_hdr), 4111 MAX_IPV6_HDR_LEN); 4112 if (err < 0) 4113 goto out; 4114 4115 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4116 nexthdr = hp->nexthdr; 4117 off += ipv6_optlen(hp); 4118 break; 4119 } 4120 case IPPROTO_AH: { 4121 struct ip_auth_hdr *hp; 4122 4123 err = skb_maybe_pull_tail(skb, 4124 off + 4125 sizeof(struct ip_auth_hdr), 4126 MAX_IPV6_HDR_LEN); 4127 if (err < 0) 4128 goto out; 4129 4130 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4131 nexthdr = hp->nexthdr; 4132 off += ipv6_authlen(hp); 4133 break; 4134 } 4135 case IPPROTO_FRAGMENT: { 4136 struct frag_hdr *hp; 4137 4138 err = skb_maybe_pull_tail(skb, 4139 off + 4140 sizeof(struct frag_hdr), 4141 MAX_IPV6_HDR_LEN); 4142 if (err < 0) 4143 goto out; 4144 4145 hp = OPT_HDR(struct frag_hdr, skb, off); 4146 4147 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4148 fragment = true; 4149 4150 nexthdr = hp->nexthdr; 4151 off += sizeof(struct frag_hdr); 4152 break; 4153 } 4154 default: 4155 done = true; 4156 break; 4157 } 4158 } 4159 4160 err = -EPROTO; 4161 4162 if (!done || fragment) 4163 goto out; 4164 4165 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4166 if (IS_ERR(csum)) 4167 return PTR_ERR(csum); 4168 4169 if (recalculate) 4170 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4171 &ipv6_hdr(skb)->daddr, 4172 skb->len - off, nexthdr, 0); 4173 err = 0; 4174 4175 out: 4176 return err; 4177 } 4178 4179 /** 4180 * skb_checksum_setup - set up partial checksum offset 4181 * @skb: the skb to set up 4182 * @recalculate: if true the pseudo-header checksum will be recalculated 4183 */ 4184 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4185 { 4186 int err; 4187 4188 switch (skb->protocol) { 4189 case htons(ETH_P_IP): 4190 err = skb_checksum_setup_ipv4(skb, recalculate); 4191 break; 4192 4193 case htons(ETH_P_IPV6): 4194 err = skb_checksum_setup_ipv6(skb, recalculate); 4195 break; 4196 4197 default: 4198 err = -EPROTO; 4199 break; 4200 } 4201 4202 return err; 4203 } 4204 EXPORT_SYMBOL(skb_checksum_setup); 4205 4206 /** 4207 * skb_checksum_maybe_trim - maybe trims the given skb 4208 * @skb: the skb to check 4209 * @transport_len: the data length beyond the network header 4210 * 4211 * Checks whether the given skb has data beyond the given transport length. 4212 * If so, returns a cloned skb trimmed to this transport length. 4213 * Otherwise returns the provided skb. Returns NULL in error cases 4214 * (e.g. transport_len exceeds skb length or out-of-memory). 4215 * 4216 * Caller needs to set the skb transport header and free any returned skb if it 4217 * differs from the provided skb. 4218 */ 4219 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4220 unsigned int transport_len) 4221 { 4222 struct sk_buff *skb_chk; 4223 unsigned int len = skb_transport_offset(skb) + transport_len; 4224 int ret; 4225 4226 if (skb->len < len) 4227 return NULL; 4228 else if (skb->len == len) 4229 return skb; 4230 4231 skb_chk = skb_clone(skb, GFP_ATOMIC); 4232 if (!skb_chk) 4233 return NULL; 4234 4235 ret = pskb_trim_rcsum(skb_chk, len); 4236 if (ret) { 4237 kfree_skb(skb_chk); 4238 return NULL; 4239 } 4240 4241 return skb_chk; 4242 } 4243 4244 /** 4245 * skb_checksum_trimmed - validate checksum of an skb 4246 * @skb: the skb to check 4247 * @transport_len: the data length beyond the network header 4248 * @skb_chkf: checksum function to use 4249 * 4250 * Applies the given checksum function skb_chkf to the provided skb. 4251 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4252 * 4253 * If the skb has data beyond the given transport length, then a 4254 * trimmed & cloned skb is checked and returned. 4255 * 4256 * Caller needs to set the skb transport header and free any returned skb if it 4257 * differs from the provided skb. 4258 */ 4259 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4260 unsigned int transport_len, 4261 __sum16(*skb_chkf)(struct sk_buff *skb)) 4262 { 4263 struct sk_buff *skb_chk; 4264 unsigned int offset = skb_transport_offset(skb); 4265 __sum16 ret; 4266 4267 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4268 if (!skb_chk) 4269 goto err; 4270 4271 if (!pskb_may_pull(skb_chk, offset)) 4272 goto err; 4273 4274 skb_pull_rcsum(skb_chk, offset); 4275 ret = skb_chkf(skb_chk); 4276 skb_push_rcsum(skb_chk, offset); 4277 4278 if (ret) 4279 goto err; 4280 4281 return skb_chk; 4282 4283 err: 4284 if (skb_chk && skb_chk != skb) 4285 kfree_skb(skb_chk); 4286 4287 return NULL; 4288 4289 } 4290 EXPORT_SYMBOL(skb_checksum_trimmed); 4291 4292 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4293 { 4294 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4295 skb->dev->name); 4296 } 4297 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4298 4299 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4300 { 4301 if (head_stolen) { 4302 skb_release_head_state(skb); 4303 kmem_cache_free(skbuff_head_cache, skb); 4304 } else { 4305 __kfree_skb(skb); 4306 } 4307 } 4308 EXPORT_SYMBOL(kfree_skb_partial); 4309 4310 /** 4311 * skb_try_coalesce - try to merge skb to prior one 4312 * @to: prior buffer 4313 * @from: buffer to add 4314 * @fragstolen: pointer to boolean 4315 * @delta_truesize: how much more was allocated than was requested 4316 */ 4317 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4318 bool *fragstolen, int *delta_truesize) 4319 { 4320 int i, delta, len = from->len; 4321 4322 *fragstolen = false; 4323 4324 if (skb_cloned(to)) 4325 return false; 4326 4327 if (len <= skb_tailroom(to)) { 4328 if (len) 4329 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4330 *delta_truesize = 0; 4331 return true; 4332 } 4333 4334 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 4335 return false; 4336 4337 if (skb_headlen(from) != 0) { 4338 struct page *page; 4339 unsigned int offset; 4340 4341 if (skb_shinfo(to)->nr_frags + 4342 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 4343 return false; 4344 4345 if (skb_head_is_locked(from)) 4346 return false; 4347 4348 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4349 4350 page = virt_to_head_page(from->head); 4351 offset = from->data - (unsigned char *)page_address(page); 4352 4353 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 4354 page, offset, skb_headlen(from)); 4355 *fragstolen = true; 4356 } else { 4357 if (skb_shinfo(to)->nr_frags + 4358 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 4359 return false; 4360 4361 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4362 } 4363 4364 WARN_ON_ONCE(delta < len); 4365 4366 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 4367 skb_shinfo(from)->frags, 4368 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 4369 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 4370 4371 if (!skb_cloned(from)) 4372 skb_shinfo(from)->nr_frags = 0; 4373 4374 /* if the skb is not cloned this does nothing 4375 * since we set nr_frags to 0. 4376 */ 4377 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 4378 skb_frag_ref(from, i); 4379 4380 to->truesize += delta; 4381 to->len += len; 4382 to->data_len += len; 4383 4384 *delta_truesize = delta; 4385 return true; 4386 } 4387 EXPORT_SYMBOL(skb_try_coalesce); 4388 4389 /** 4390 * skb_scrub_packet - scrub an skb 4391 * 4392 * @skb: buffer to clean 4393 * @xnet: packet is crossing netns 4394 * 4395 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4396 * into/from a tunnel. Some information have to be cleared during these 4397 * operations. 4398 * skb_scrub_packet can also be used to clean a skb before injecting it in 4399 * another namespace (@xnet == true). We have to clear all information in the 4400 * skb that could impact namespace isolation. 4401 */ 4402 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4403 { 4404 skb->tstamp = 0; 4405 skb->pkt_type = PACKET_HOST; 4406 skb->skb_iif = 0; 4407 skb->ignore_df = 0; 4408 skb_dst_drop(skb); 4409 secpath_reset(skb); 4410 nf_reset(skb); 4411 nf_reset_trace(skb); 4412 4413 if (!xnet) 4414 return; 4415 4416 skb_orphan(skb); 4417 skb->mark = 0; 4418 } 4419 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4420 4421 /** 4422 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4423 * 4424 * @skb: GSO skb 4425 * 4426 * skb_gso_transport_seglen is used to determine the real size of the 4427 * individual segments, including Layer4 headers (TCP/UDP). 4428 * 4429 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4430 */ 4431 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4432 { 4433 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4434 unsigned int thlen = 0; 4435 4436 if (skb->encapsulation) { 4437 thlen = skb_inner_transport_header(skb) - 4438 skb_transport_header(skb); 4439 4440 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4441 thlen += inner_tcp_hdrlen(skb); 4442 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4443 thlen = tcp_hdrlen(skb); 4444 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) { 4445 thlen = sizeof(struct sctphdr); 4446 } 4447 /* UFO sets gso_size to the size of the fragmentation 4448 * payload, i.e. the size of the L4 (UDP) header is already 4449 * accounted for. 4450 */ 4451 return thlen + shinfo->gso_size; 4452 } 4453 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen); 4454 4455 /** 4456 * skb_gso_validate_mtu - Return in case such skb fits a given MTU 4457 * 4458 * @skb: GSO skb 4459 * @mtu: MTU to validate against 4460 * 4461 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU 4462 * once split. 4463 */ 4464 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu) 4465 { 4466 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4467 const struct sk_buff *iter; 4468 unsigned int hlen; 4469 4470 hlen = skb_gso_network_seglen(skb); 4471 4472 if (shinfo->gso_size != GSO_BY_FRAGS) 4473 return hlen <= mtu; 4474 4475 /* Undo this so we can re-use header sizes */ 4476 hlen -= GSO_BY_FRAGS; 4477 4478 skb_walk_frags(skb, iter) { 4479 if (hlen + skb_headlen(iter) > mtu) 4480 return false; 4481 } 4482 4483 return true; 4484 } 4485 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu); 4486 4487 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 4488 { 4489 if (skb_cow(skb, skb_headroom(skb)) < 0) { 4490 kfree_skb(skb); 4491 return NULL; 4492 } 4493 4494 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN, 4495 2 * ETH_ALEN); 4496 skb->mac_header += VLAN_HLEN; 4497 return skb; 4498 } 4499 4500 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 4501 { 4502 struct vlan_hdr *vhdr; 4503 u16 vlan_tci; 4504 4505 if (unlikely(skb_vlan_tag_present(skb))) { 4506 /* vlan_tci is already set-up so leave this for another time */ 4507 return skb; 4508 } 4509 4510 skb = skb_share_check(skb, GFP_ATOMIC); 4511 if (unlikely(!skb)) 4512 goto err_free; 4513 4514 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 4515 goto err_free; 4516 4517 vhdr = (struct vlan_hdr *)skb->data; 4518 vlan_tci = ntohs(vhdr->h_vlan_TCI); 4519 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 4520 4521 skb_pull_rcsum(skb, VLAN_HLEN); 4522 vlan_set_encap_proto(skb, vhdr); 4523 4524 skb = skb_reorder_vlan_header(skb); 4525 if (unlikely(!skb)) 4526 goto err_free; 4527 4528 skb_reset_network_header(skb); 4529 skb_reset_transport_header(skb); 4530 skb_reset_mac_len(skb); 4531 4532 return skb; 4533 4534 err_free: 4535 kfree_skb(skb); 4536 return NULL; 4537 } 4538 EXPORT_SYMBOL(skb_vlan_untag); 4539 4540 int skb_ensure_writable(struct sk_buff *skb, int write_len) 4541 { 4542 if (!pskb_may_pull(skb, write_len)) 4543 return -ENOMEM; 4544 4545 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 4546 return 0; 4547 4548 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 4549 } 4550 EXPORT_SYMBOL(skb_ensure_writable); 4551 4552 /* remove VLAN header from packet and update csum accordingly. 4553 * expects a non skb_vlan_tag_present skb with a vlan tag payload 4554 */ 4555 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 4556 { 4557 struct vlan_hdr *vhdr; 4558 int offset = skb->data - skb_mac_header(skb); 4559 int err; 4560 4561 if (WARN_ONCE(offset, 4562 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 4563 offset)) { 4564 return -EINVAL; 4565 } 4566 4567 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 4568 if (unlikely(err)) 4569 return err; 4570 4571 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 4572 4573 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 4574 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 4575 4576 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 4577 __skb_pull(skb, VLAN_HLEN); 4578 4579 vlan_set_encap_proto(skb, vhdr); 4580 skb->mac_header += VLAN_HLEN; 4581 4582 if (skb_network_offset(skb) < ETH_HLEN) 4583 skb_set_network_header(skb, ETH_HLEN); 4584 4585 skb_reset_mac_len(skb); 4586 4587 return err; 4588 } 4589 EXPORT_SYMBOL(__skb_vlan_pop); 4590 4591 /* Pop a vlan tag either from hwaccel or from payload. 4592 * Expects skb->data at mac header. 4593 */ 4594 int skb_vlan_pop(struct sk_buff *skb) 4595 { 4596 u16 vlan_tci; 4597 __be16 vlan_proto; 4598 int err; 4599 4600 if (likely(skb_vlan_tag_present(skb))) { 4601 skb->vlan_tci = 0; 4602 } else { 4603 if (unlikely(!eth_type_vlan(skb->protocol))) 4604 return 0; 4605 4606 err = __skb_vlan_pop(skb, &vlan_tci); 4607 if (err) 4608 return err; 4609 } 4610 /* move next vlan tag to hw accel tag */ 4611 if (likely(!eth_type_vlan(skb->protocol))) 4612 return 0; 4613 4614 vlan_proto = skb->protocol; 4615 err = __skb_vlan_pop(skb, &vlan_tci); 4616 if (unlikely(err)) 4617 return err; 4618 4619 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 4620 return 0; 4621 } 4622 EXPORT_SYMBOL(skb_vlan_pop); 4623 4624 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 4625 * Expects skb->data at mac header. 4626 */ 4627 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 4628 { 4629 if (skb_vlan_tag_present(skb)) { 4630 int offset = skb->data - skb_mac_header(skb); 4631 int err; 4632 4633 if (WARN_ONCE(offset, 4634 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 4635 offset)) { 4636 return -EINVAL; 4637 } 4638 4639 err = __vlan_insert_tag(skb, skb->vlan_proto, 4640 skb_vlan_tag_get(skb)); 4641 if (err) 4642 return err; 4643 4644 skb->protocol = skb->vlan_proto; 4645 skb->mac_len += VLAN_HLEN; 4646 4647 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 4648 } 4649 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 4650 return 0; 4651 } 4652 EXPORT_SYMBOL(skb_vlan_push); 4653 4654 /** 4655 * alloc_skb_with_frags - allocate skb with page frags 4656 * 4657 * @header_len: size of linear part 4658 * @data_len: needed length in frags 4659 * @max_page_order: max page order desired. 4660 * @errcode: pointer to error code if any 4661 * @gfp_mask: allocation mask 4662 * 4663 * This can be used to allocate a paged skb, given a maximal order for frags. 4664 */ 4665 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 4666 unsigned long data_len, 4667 int max_page_order, 4668 int *errcode, 4669 gfp_t gfp_mask) 4670 { 4671 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 4672 unsigned long chunk; 4673 struct sk_buff *skb; 4674 struct page *page; 4675 gfp_t gfp_head; 4676 int i; 4677 4678 *errcode = -EMSGSIZE; 4679 /* Note this test could be relaxed, if we succeed to allocate 4680 * high order pages... 4681 */ 4682 if (npages > MAX_SKB_FRAGS) 4683 return NULL; 4684 4685 gfp_head = gfp_mask; 4686 if (gfp_head & __GFP_DIRECT_RECLAIM) 4687 gfp_head |= __GFP_REPEAT; 4688 4689 *errcode = -ENOBUFS; 4690 skb = alloc_skb(header_len, gfp_head); 4691 if (!skb) 4692 return NULL; 4693 4694 skb->truesize += npages << PAGE_SHIFT; 4695 4696 for (i = 0; npages > 0; i++) { 4697 int order = max_page_order; 4698 4699 while (order) { 4700 if (npages >= 1 << order) { 4701 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 4702 __GFP_COMP | 4703 __GFP_NOWARN | 4704 __GFP_NORETRY, 4705 order); 4706 if (page) 4707 goto fill_page; 4708 /* Do not retry other high order allocations */ 4709 order = 1; 4710 max_page_order = 0; 4711 } 4712 order--; 4713 } 4714 page = alloc_page(gfp_mask); 4715 if (!page) 4716 goto failure; 4717 fill_page: 4718 chunk = min_t(unsigned long, data_len, 4719 PAGE_SIZE << order); 4720 skb_fill_page_desc(skb, i, page, 0, chunk); 4721 data_len -= chunk; 4722 npages -= 1 << order; 4723 } 4724 return skb; 4725 4726 failure: 4727 kfree_skb(skb); 4728 return NULL; 4729 } 4730 EXPORT_SYMBOL(alloc_skb_with_frags); 4731 4732 /* carve out the first off bytes from skb when off < headlen */ 4733 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 4734 const int headlen, gfp_t gfp_mask) 4735 { 4736 int i; 4737 int size = skb_end_offset(skb); 4738 int new_hlen = headlen - off; 4739 u8 *data; 4740 4741 size = SKB_DATA_ALIGN(size); 4742 4743 if (skb_pfmemalloc(skb)) 4744 gfp_mask |= __GFP_MEMALLOC; 4745 data = kmalloc_reserve(size + 4746 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 4747 gfp_mask, NUMA_NO_NODE, NULL); 4748 if (!data) 4749 return -ENOMEM; 4750 4751 size = SKB_WITH_OVERHEAD(ksize(data)); 4752 4753 /* Copy real data, and all frags */ 4754 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 4755 skb->len -= off; 4756 4757 memcpy((struct skb_shared_info *)(data + size), 4758 skb_shinfo(skb), 4759 offsetof(struct skb_shared_info, 4760 frags[skb_shinfo(skb)->nr_frags])); 4761 if (skb_cloned(skb)) { 4762 /* drop the old head gracefully */ 4763 if (skb_orphan_frags(skb, gfp_mask)) { 4764 kfree(data); 4765 return -ENOMEM; 4766 } 4767 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4768 skb_frag_ref(skb, i); 4769 if (skb_has_frag_list(skb)) 4770 skb_clone_fraglist(skb); 4771 skb_release_data(skb); 4772 } else { 4773 /* we can reuse existing recount- all we did was 4774 * relocate values 4775 */ 4776 skb_free_head(skb); 4777 } 4778 4779 skb->head = data; 4780 skb->data = data; 4781 skb->head_frag = 0; 4782 #ifdef NET_SKBUFF_DATA_USES_OFFSET 4783 skb->end = size; 4784 #else 4785 skb->end = skb->head + size; 4786 #endif 4787 skb_set_tail_pointer(skb, skb_headlen(skb)); 4788 skb_headers_offset_update(skb, 0); 4789 skb->cloned = 0; 4790 skb->hdr_len = 0; 4791 skb->nohdr = 0; 4792 atomic_set(&skb_shinfo(skb)->dataref, 1); 4793 4794 return 0; 4795 } 4796 4797 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 4798 4799 /* carve out the first eat bytes from skb's frag_list. May recurse into 4800 * pskb_carve() 4801 */ 4802 static int pskb_carve_frag_list(struct sk_buff *skb, 4803 struct skb_shared_info *shinfo, int eat, 4804 gfp_t gfp_mask) 4805 { 4806 struct sk_buff *list = shinfo->frag_list; 4807 struct sk_buff *clone = NULL; 4808 struct sk_buff *insp = NULL; 4809 4810 do { 4811 if (!list) { 4812 pr_err("Not enough bytes to eat. Want %d\n", eat); 4813 return -EFAULT; 4814 } 4815 if (list->len <= eat) { 4816 /* Eaten as whole. */ 4817 eat -= list->len; 4818 list = list->next; 4819 insp = list; 4820 } else { 4821 /* Eaten partially. */ 4822 if (skb_shared(list)) { 4823 clone = skb_clone(list, gfp_mask); 4824 if (!clone) 4825 return -ENOMEM; 4826 insp = list->next; 4827 list = clone; 4828 } else { 4829 /* This may be pulled without problems. */ 4830 insp = list; 4831 } 4832 if (pskb_carve(list, eat, gfp_mask) < 0) { 4833 kfree_skb(clone); 4834 return -ENOMEM; 4835 } 4836 break; 4837 } 4838 } while (eat); 4839 4840 /* Free pulled out fragments. */ 4841 while ((list = shinfo->frag_list) != insp) { 4842 shinfo->frag_list = list->next; 4843 kfree_skb(list); 4844 } 4845 /* And insert new clone at head. */ 4846 if (clone) { 4847 clone->next = list; 4848 shinfo->frag_list = clone; 4849 } 4850 return 0; 4851 } 4852 4853 /* carve off first len bytes from skb. Split line (off) is in the 4854 * non-linear part of skb 4855 */ 4856 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 4857 int pos, gfp_t gfp_mask) 4858 { 4859 int i, k = 0; 4860 int size = skb_end_offset(skb); 4861 u8 *data; 4862 const int nfrags = skb_shinfo(skb)->nr_frags; 4863 struct skb_shared_info *shinfo; 4864 4865 size = SKB_DATA_ALIGN(size); 4866 4867 if (skb_pfmemalloc(skb)) 4868 gfp_mask |= __GFP_MEMALLOC; 4869 data = kmalloc_reserve(size + 4870 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 4871 gfp_mask, NUMA_NO_NODE, NULL); 4872 if (!data) 4873 return -ENOMEM; 4874 4875 size = SKB_WITH_OVERHEAD(ksize(data)); 4876 4877 memcpy((struct skb_shared_info *)(data + size), 4878 skb_shinfo(skb), offsetof(struct skb_shared_info, 4879 frags[skb_shinfo(skb)->nr_frags])); 4880 if (skb_orphan_frags(skb, gfp_mask)) { 4881 kfree(data); 4882 return -ENOMEM; 4883 } 4884 shinfo = (struct skb_shared_info *)(data + size); 4885 for (i = 0; i < nfrags; i++) { 4886 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4887 4888 if (pos + fsize > off) { 4889 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 4890 4891 if (pos < off) { 4892 /* Split frag. 4893 * We have two variants in this case: 4894 * 1. Move all the frag to the second 4895 * part, if it is possible. F.e. 4896 * this approach is mandatory for TUX, 4897 * where splitting is expensive. 4898 * 2. Split is accurately. We make this. 4899 */ 4900 shinfo->frags[0].page_offset += off - pos; 4901 skb_frag_size_sub(&shinfo->frags[0], off - pos); 4902 } 4903 skb_frag_ref(skb, i); 4904 k++; 4905 } 4906 pos += fsize; 4907 } 4908 shinfo->nr_frags = k; 4909 if (skb_has_frag_list(skb)) 4910 skb_clone_fraglist(skb); 4911 4912 if (k == 0) { 4913 /* split line is in frag list */ 4914 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 4915 } 4916 skb_release_data(skb); 4917 4918 skb->head = data; 4919 skb->head_frag = 0; 4920 skb->data = data; 4921 #ifdef NET_SKBUFF_DATA_USES_OFFSET 4922 skb->end = size; 4923 #else 4924 skb->end = skb->head + size; 4925 #endif 4926 skb_reset_tail_pointer(skb); 4927 skb_headers_offset_update(skb, 0); 4928 skb->cloned = 0; 4929 skb->hdr_len = 0; 4930 skb->nohdr = 0; 4931 skb->len -= off; 4932 skb->data_len = skb->len; 4933 atomic_set(&skb_shinfo(skb)->dataref, 1); 4934 return 0; 4935 } 4936 4937 /* remove len bytes from the beginning of the skb */ 4938 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 4939 { 4940 int headlen = skb_headlen(skb); 4941 4942 if (len < headlen) 4943 return pskb_carve_inside_header(skb, len, headlen, gfp); 4944 else 4945 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 4946 } 4947 4948 /* Extract to_copy bytes starting at off from skb, and return this in 4949 * a new skb 4950 */ 4951 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 4952 int to_copy, gfp_t gfp) 4953 { 4954 struct sk_buff *clone = skb_clone(skb, gfp); 4955 4956 if (!clone) 4957 return NULL; 4958 4959 if (pskb_carve(clone, off, gfp) < 0 || 4960 pskb_trim(clone, to_copy)) { 4961 kfree_skb(clone); 4962 return NULL; 4963 } 4964 return clone; 4965 } 4966 EXPORT_SYMBOL(pskb_extract); 4967 4968 /** 4969 * skb_condense - try to get rid of fragments/frag_list if possible 4970 * @skb: buffer 4971 * 4972 * Can be used to save memory before skb is added to a busy queue. 4973 * If packet has bytes in frags and enough tail room in skb->head, 4974 * pull all of them, so that we can free the frags right now and adjust 4975 * truesize. 4976 * Notes: 4977 * We do not reallocate skb->head thus can not fail. 4978 * Caller must re-evaluate skb->truesize if needed. 4979 */ 4980 void skb_condense(struct sk_buff *skb) 4981 { 4982 if (skb->data_len) { 4983 if (skb->data_len > skb->end - skb->tail || 4984 skb_cloned(skb)) 4985 return; 4986 4987 /* Nice, we can free page frag(s) right now */ 4988 __pskb_pull_tail(skb, skb->data_len); 4989 } 4990 /* At this point, skb->truesize might be over estimated, 4991 * because skb had a fragment, and fragments do not tell 4992 * their truesize. 4993 * When we pulled its content into skb->head, fragment 4994 * was freed, but __pskb_pull_tail() could not possibly 4995 * adjust skb->truesize, not knowing the frag truesize. 4996 */ 4997 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4998 } 4999