1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/tcp.h> 51 #include <linux/udp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 66 #include <net/protocol.h> 67 #include <net/dst.h> 68 #include <net/sock.h> 69 #include <net/checksum.h> 70 #include <net/ip6_checksum.h> 71 #include <net/xfrm.h> 72 73 #include <asm/uaccess.h> 74 #include <trace/events/skb.h> 75 #include <linux/highmem.h> 76 77 struct kmem_cache *skbuff_head_cache __read_mostly; 78 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 79 80 /** 81 * skb_panic - private function for out-of-line support 82 * @skb: buffer 83 * @sz: size 84 * @addr: address 85 * @msg: skb_over_panic or skb_under_panic 86 * 87 * Out-of-line support for skb_put() and skb_push(). 88 * Called via the wrapper skb_over_panic() or skb_under_panic(). 89 * Keep out of line to prevent kernel bloat. 90 * __builtin_return_address is not used because it is not always reliable. 91 */ 92 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 93 const char msg[]) 94 { 95 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 96 msg, addr, skb->len, sz, skb->head, skb->data, 97 (unsigned long)skb->tail, (unsigned long)skb->end, 98 skb->dev ? skb->dev->name : "<NULL>"); 99 BUG(); 100 } 101 102 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 103 { 104 skb_panic(skb, sz, addr, __func__); 105 } 106 107 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 108 { 109 skb_panic(skb, sz, addr, __func__); 110 } 111 112 /* 113 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 114 * the caller if emergency pfmemalloc reserves are being used. If it is and 115 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 116 * may be used. Otherwise, the packet data may be discarded until enough 117 * memory is free 118 */ 119 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 120 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 121 122 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 123 unsigned long ip, bool *pfmemalloc) 124 { 125 void *obj; 126 bool ret_pfmemalloc = false; 127 128 /* 129 * Try a regular allocation, when that fails and we're not entitled 130 * to the reserves, fail. 131 */ 132 obj = kmalloc_node_track_caller(size, 133 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 134 node); 135 if (obj || !(gfp_pfmemalloc_allowed(flags))) 136 goto out; 137 138 /* Try again but now we are using pfmemalloc reserves */ 139 ret_pfmemalloc = true; 140 obj = kmalloc_node_track_caller(size, flags, node); 141 142 out: 143 if (pfmemalloc) 144 *pfmemalloc = ret_pfmemalloc; 145 146 return obj; 147 } 148 149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 150 * 'private' fields and also do memory statistics to find all the 151 * [BEEP] leaks. 152 * 153 */ 154 155 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node) 156 { 157 struct sk_buff *skb; 158 159 /* Get the HEAD */ 160 skb = kmem_cache_alloc_node(skbuff_head_cache, 161 gfp_mask & ~__GFP_DMA, node); 162 if (!skb) 163 goto out; 164 165 /* 166 * Only clear those fields we need to clear, not those that we will 167 * actually initialise below. Hence, don't put any more fields after 168 * the tail pointer in struct sk_buff! 169 */ 170 memset(skb, 0, offsetof(struct sk_buff, tail)); 171 skb->head = NULL; 172 skb->truesize = sizeof(struct sk_buff); 173 atomic_set(&skb->users, 1); 174 175 skb->mac_header = (typeof(skb->mac_header))~0U; 176 out: 177 return skb; 178 } 179 180 /** 181 * __alloc_skb - allocate a network buffer 182 * @size: size to allocate 183 * @gfp_mask: allocation mask 184 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 185 * instead of head cache and allocate a cloned (child) skb. 186 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 187 * allocations in case the data is required for writeback 188 * @node: numa node to allocate memory on 189 * 190 * Allocate a new &sk_buff. The returned buffer has no headroom and a 191 * tail room of at least size bytes. The object has a reference count 192 * of one. The return is the buffer. On a failure the return is %NULL. 193 * 194 * Buffers may only be allocated from interrupts using a @gfp_mask of 195 * %GFP_ATOMIC. 196 */ 197 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 198 int flags, int node) 199 { 200 struct kmem_cache *cache; 201 struct skb_shared_info *shinfo; 202 struct sk_buff *skb; 203 u8 *data; 204 bool pfmemalloc; 205 206 cache = (flags & SKB_ALLOC_FCLONE) 207 ? skbuff_fclone_cache : skbuff_head_cache; 208 209 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 210 gfp_mask |= __GFP_MEMALLOC; 211 212 /* Get the HEAD */ 213 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 214 if (!skb) 215 goto out; 216 prefetchw(skb); 217 218 /* We do our best to align skb_shared_info on a separate cache 219 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 220 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 221 * Both skb->head and skb_shared_info are cache line aligned. 222 */ 223 size = SKB_DATA_ALIGN(size); 224 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 225 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 226 if (!data) 227 goto nodata; 228 /* kmalloc(size) might give us more room than requested. 229 * Put skb_shared_info exactly at the end of allocated zone, 230 * to allow max possible filling before reallocation. 231 */ 232 size = SKB_WITH_OVERHEAD(ksize(data)); 233 prefetchw(data + size); 234 235 /* 236 * Only clear those fields we need to clear, not those that we will 237 * actually initialise below. Hence, don't put any more fields after 238 * the tail pointer in struct sk_buff! 239 */ 240 memset(skb, 0, offsetof(struct sk_buff, tail)); 241 /* Account for allocated memory : skb + skb->head */ 242 skb->truesize = SKB_TRUESIZE(size); 243 skb->pfmemalloc = pfmemalloc; 244 atomic_set(&skb->users, 1); 245 skb->head = data; 246 skb->data = data; 247 skb_reset_tail_pointer(skb); 248 skb->end = skb->tail + size; 249 skb->mac_header = (typeof(skb->mac_header))~0U; 250 skb->transport_header = (typeof(skb->transport_header))~0U; 251 252 /* make sure we initialize shinfo sequentially */ 253 shinfo = skb_shinfo(skb); 254 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 255 atomic_set(&shinfo->dataref, 1); 256 kmemcheck_annotate_variable(shinfo->destructor_arg); 257 258 if (flags & SKB_ALLOC_FCLONE) { 259 struct sk_buff *child = skb + 1; 260 atomic_t *fclone_ref = (atomic_t *) (child + 1); 261 262 kmemcheck_annotate_bitfield(child, flags1); 263 kmemcheck_annotate_bitfield(child, flags2); 264 skb->fclone = SKB_FCLONE_ORIG; 265 atomic_set(fclone_ref, 1); 266 267 child->fclone = SKB_FCLONE_UNAVAILABLE; 268 child->pfmemalloc = pfmemalloc; 269 } 270 out: 271 return skb; 272 nodata: 273 kmem_cache_free(cache, skb); 274 skb = NULL; 275 goto out; 276 } 277 EXPORT_SYMBOL(__alloc_skb); 278 279 /** 280 * build_skb - build a network buffer 281 * @data: data buffer provided by caller 282 * @frag_size: size of fragment, or 0 if head was kmalloced 283 * 284 * Allocate a new &sk_buff. Caller provides space holding head and 285 * skb_shared_info. @data must have been allocated by kmalloc() only if 286 * @frag_size is 0, otherwise data should come from the page allocator. 287 * The return is the new skb buffer. 288 * On a failure the return is %NULL, and @data is not freed. 289 * Notes : 290 * Before IO, driver allocates only data buffer where NIC put incoming frame 291 * Driver should add room at head (NET_SKB_PAD) and 292 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 293 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 294 * before giving packet to stack. 295 * RX rings only contains data buffers, not full skbs. 296 */ 297 struct sk_buff *build_skb(void *data, unsigned int frag_size) 298 { 299 struct skb_shared_info *shinfo; 300 struct sk_buff *skb; 301 unsigned int size = frag_size ? : ksize(data); 302 303 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 304 if (!skb) 305 return NULL; 306 307 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 308 309 memset(skb, 0, offsetof(struct sk_buff, tail)); 310 skb->truesize = SKB_TRUESIZE(size); 311 skb->head_frag = frag_size != 0; 312 atomic_set(&skb->users, 1); 313 skb->head = data; 314 skb->data = data; 315 skb_reset_tail_pointer(skb); 316 skb->end = skb->tail + size; 317 skb->mac_header = (typeof(skb->mac_header))~0U; 318 skb->transport_header = (typeof(skb->transport_header))~0U; 319 320 /* make sure we initialize shinfo sequentially */ 321 shinfo = skb_shinfo(skb); 322 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 323 atomic_set(&shinfo->dataref, 1); 324 kmemcheck_annotate_variable(shinfo->destructor_arg); 325 326 return skb; 327 } 328 EXPORT_SYMBOL(build_skb); 329 330 struct netdev_alloc_cache { 331 struct page_frag frag; 332 /* we maintain a pagecount bias, so that we dont dirty cache line 333 * containing page->_count every time we allocate a fragment. 334 */ 335 unsigned int pagecnt_bias; 336 }; 337 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache); 338 339 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 340 { 341 struct netdev_alloc_cache *nc; 342 void *data = NULL; 343 int order; 344 unsigned long flags; 345 346 local_irq_save(flags); 347 nc = &__get_cpu_var(netdev_alloc_cache); 348 if (unlikely(!nc->frag.page)) { 349 refill: 350 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) { 351 gfp_t gfp = gfp_mask; 352 353 if (order) 354 gfp |= __GFP_COMP | __GFP_NOWARN; 355 nc->frag.page = alloc_pages(gfp, order); 356 if (likely(nc->frag.page)) 357 break; 358 if (--order < 0) 359 goto end; 360 } 361 nc->frag.size = PAGE_SIZE << order; 362 recycle: 363 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS); 364 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS; 365 nc->frag.offset = 0; 366 } 367 368 if (nc->frag.offset + fragsz > nc->frag.size) { 369 /* avoid unnecessary locked operations if possible */ 370 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) || 371 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count)) 372 goto recycle; 373 goto refill; 374 } 375 376 data = page_address(nc->frag.page) + nc->frag.offset; 377 nc->frag.offset += fragsz; 378 nc->pagecnt_bias--; 379 end: 380 local_irq_restore(flags); 381 return data; 382 } 383 384 /** 385 * netdev_alloc_frag - allocate a page fragment 386 * @fragsz: fragment size 387 * 388 * Allocates a frag from a page for receive buffer. 389 * Uses GFP_ATOMIC allocations. 390 */ 391 void *netdev_alloc_frag(unsigned int fragsz) 392 { 393 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 394 } 395 EXPORT_SYMBOL(netdev_alloc_frag); 396 397 /** 398 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 399 * @dev: network device to receive on 400 * @length: length to allocate 401 * @gfp_mask: get_free_pages mask, passed to alloc_skb 402 * 403 * Allocate a new &sk_buff and assign it a usage count of one. The 404 * buffer has unspecified headroom built in. Users should allocate 405 * the headroom they think they need without accounting for the 406 * built in space. The built in space is used for optimisations. 407 * 408 * %NULL is returned if there is no free memory. 409 */ 410 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 411 unsigned int length, gfp_t gfp_mask) 412 { 413 struct sk_buff *skb = NULL; 414 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) + 415 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 416 417 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) { 418 void *data; 419 420 if (sk_memalloc_socks()) 421 gfp_mask |= __GFP_MEMALLOC; 422 423 data = __netdev_alloc_frag(fragsz, gfp_mask); 424 425 if (likely(data)) { 426 skb = build_skb(data, fragsz); 427 if (unlikely(!skb)) 428 put_page(virt_to_head_page(data)); 429 } 430 } else { 431 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 432 SKB_ALLOC_RX, NUMA_NO_NODE); 433 } 434 if (likely(skb)) { 435 skb_reserve(skb, NET_SKB_PAD); 436 skb->dev = dev; 437 } 438 return skb; 439 } 440 EXPORT_SYMBOL(__netdev_alloc_skb); 441 442 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 443 int size, unsigned int truesize) 444 { 445 skb_fill_page_desc(skb, i, page, off, size); 446 skb->len += size; 447 skb->data_len += size; 448 skb->truesize += truesize; 449 } 450 EXPORT_SYMBOL(skb_add_rx_frag); 451 452 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 453 unsigned int truesize) 454 { 455 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 456 457 skb_frag_size_add(frag, size); 458 skb->len += size; 459 skb->data_len += size; 460 skb->truesize += truesize; 461 } 462 EXPORT_SYMBOL(skb_coalesce_rx_frag); 463 464 static void skb_drop_list(struct sk_buff **listp) 465 { 466 kfree_skb_list(*listp); 467 *listp = NULL; 468 } 469 470 static inline void skb_drop_fraglist(struct sk_buff *skb) 471 { 472 skb_drop_list(&skb_shinfo(skb)->frag_list); 473 } 474 475 static void skb_clone_fraglist(struct sk_buff *skb) 476 { 477 struct sk_buff *list; 478 479 skb_walk_frags(skb, list) 480 skb_get(list); 481 } 482 483 static void skb_free_head(struct sk_buff *skb) 484 { 485 if (skb->head_frag) 486 put_page(virt_to_head_page(skb->head)); 487 else 488 kfree(skb->head); 489 } 490 491 static void skb_release_data(struct sk_buff *skb) 492 { 493 if (!skb->cloned || 494 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 495 &skb_shinfo(skb)->dataref)) { 496 if (skb_shinfo(skb)->nr_frags) { 497 int i; 498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 499 skb_frag_unref(skb, i); 500 } 501 502 /* 503 * If skb buf is from userspace, we need to notify the caller 504 * the lower device DMA has done; 505 */ 506 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 507 struct ubuf_info *uarg; 508 509 uarg = skb_shinfo(skb)->destructor_arg; 510 if (uarg->callback) 511 uarg->callback(uarg, true); 512 } 513 514 if (skb_has_frag_list(skb)) 515 skb_drop_fraglist(skb); 516 517 skb_free_head(skb); 518 } 519 } 520 521 /* 522 * Free an skbuff by memory without cleaning the state. 523 */ 524 static void kfree_skbmem(struct sk_buff *skb) 525 { 526 struct sk_buff *other; 527 atomic_t *fclone_ref; 528 529 switch (skb->fclone) { 530 case SKB_FCLONE_UNAVAILABLE: 531 kmem_cache_free(skbuff_head_cache, skb); 532 break; 533 534 case SKB_FCLONE_ORIG: 535 fclone_ref = (atomic_t *) (skb + 2); 536 if (atomic_dec_and_test(fclone_ref)) 537 kmem_cache_free(skbuff_fclone_cache, skb); 538 break; 539 540 case SKB_FCLONE_CLONE: 541 fclone_ref = (atomic_t *) (skb + 1); 542 other = skb - 1; 543 544 /* The clone portion is available for 545 * fast-cloning again. 546 */ 547 skb->fclone = SKB_FCLONE_UNAVAILABLE; 548 549 if (atomic_dec_and_test(fclone_ref)) 550 kmem_cache_free(skbuff_fclone_cache, other); 551 break; 552 } 553 } 554 555 static void skb_release_head_state(struct sk_buff *skb) 556 { 557 skb_dst_drop(skb); 558 #ifdef CONFIG_XFRM 559 secpath_put(skb->sp); 560 #endif 561 if (skb->destructor) { 562 WARN_ON(in_irq()); 563 skb->destructor(skb); 564 } 565 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 566 nf_conntrack_put(skb->nfct); 567 #endif 568 #ifdef CONFIG_BRIDGE_NETFILTER 569 nf_bridge_put(skb->nf_bridge); 570 #endif 571 /* XXX: IS this still necessary? - JHS */ 572 #ifdef CONFIG_NET_SCHED 573 skb->tc_index = 0; 574 #ifdef CONFIG_NET_CLS_ACT 575 skb->tc_verd = 0; 576 #endif 577 #endif 578 } 579 580 /* Free everything but the sk_buff shell. */ 581 static void skb_release_all(struct sk_buff *skb) 582 { 583 skb_release_head_state(skb); 584 if (likely(skb->head)) 585 skb_release_data(skb); 586 } 587 588 /** 589 * __kfree_skb - private function 590 * @skb: buffer 591 * 592 * Free an sk_buff. Release anything attached to the buffer. 593 * Clean the state. This is an internal helper function. Users should 594 * always call kfree_skb 595 */ 596 597 void __kfree_skb(struct sk_buff *skb) 598 { 599 skb_release_all(skb); 600 kfree_skbmem(skb); 601 } 602 EXPORT_SYMBOL(__kfree_skb); 603 604 /** 605 * kfree_skb - free an sk_buff 606 * @skb: buffer to free 607 * 608 * Drop a reference to the buffer and free it if the usage count has 609 * hit zero. 610 */ 611 void kfree_skb(struct sk_buff *skb) 612 { 613 if (unlikely(!skb)) 614 return; 615 if (likely(atomic_read(&skb->users) == 1)) 616 smp_rmb(); 617 else if (likely(!atomic_dec_and_test(&skb->users))) 618 return; 619 trace_kfree_skb(skb, __builtin_return_address(0)); 620 __kfree_skb(skb); 621 } 622 EXPORT_SYMBOL(kfree_skb); 623 624 void kfree_skb_list(struct sk_buff *segs) 625 { 626 while (segs) { 627 struct sk_buff *next = segs->next; 628 629 kfree_skb(segs); 630 segs = next; 631 } 632 } 633 EXPORT_SYMBOL(kfree_skb_list); 634 635 /** 636 * skb_tx_error - report an sk_buff xmit error 637 * @skb: buffer that triggered an error 638 * 639 * Report xmit error if a device callback is tracking this skb. 640 * skb must be freed afterwards. 641 */ 642 void skb_tx_error(struct sk_buff *skb) 643 { 644 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 645 struct ubuf_info *uarg; 646 647 uarg = skb_shinfo(skb)->destructor_arg; 648 if (uarg->callback) 649 uarg->callback(uarg, false); 650 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 651 } 652 } 653 EXPORT_SYMBOL(skb_tx_error); 654 655 /** 656 * consume_skb - free an skbuff 657 * @skb: buffer to free 658 * 659 * Drop a ref to the buffer and free it if the usage count has hit zero 660 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 661 * is being dropped after a failure and notes that 662 */ 663 void consume_skb(struct sk_buff *skb) 664 { 665 if (unlikely(!skb)) 666 return; 667 if (likely(atomic_read(&skb->users) == 1)) 668 smp_rmb(); 669 else if (likely(!atomic_dec_and_test(&skb->users))) 670 return; 671 trace_consume_skb(skb); 672 __kfree_skb(skb); 673 } 674 EXPORT_SYMBOL(consume_skb); 675 676 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 677 { 678 new->tstamp = old->tstamp; 679 new->dev = old->dev; 680 new->transport_header = old->transport_header; 681 new->network_header = old->network_header; 682 new->mac_header = old->mac_header; 683 new->inner_protocol = old->inner_protocol; 684 new->inner_transport_header = old->inner_transport_header; 685 new->inner_network_header = old->inner_network_header; 686 new->inner_mac_header = old->inner_mac_header; 687 skb_dst_copy(new, old); 688 skb_copy_hash(new, old); 689 new->ooo_okay = old->ooo_okay; 690 new->no_fcs = old->no_fcs; 691 new->encapsulation = old->encapsulation; 692 new->encap_hdr_csum = old->encap_hdr_csum; 693 new->csum_valid = old->csum_valid; 694 new->csum_complete_sw = old->csum_complete_sw; 695 #ifdef CONFIG_XFRM 696 new->sp = secpath_get(old->sp); 697 #endif 698 memcpy(new->cb, old->cb, sizeof(old->cb)); 699 new->csum = old->csum; 700 new->ignore_df = old->ignore_df; 701 new->pkt_type = old->pkt_type; 702 new->ip_summed = old->ip_summed; 703 skb_copy_queue_mapping(new, old); 704 new->priority = old->priority; 705 #if IS_ENABLED(CONFIG_IP_VS) 706 new->ipvs_property = old->ipvs_property; 707 #endif 708 new->pfmemalloc = old->pfmemalloc; 709 new->protocol = old->protocol; 710 new->mark = old->mark; 711 new->skb_iif = old->skb_iif; 712 __nf_copy(new, old); 713 #ifdef CONFIG_NET_SCHED 714 new->tc_index = old->tc_index; 715 #ifdef CONFIG_NET_CLS_ACT 716 new->tc_verd = old->tc_verd; 717 #endif 718 #endif 719 new->vlan_proto = old->vlan_proto; 720 new->vlan_tci = old->vlan_tci; 721 722 skb_copy_secmark(new, old); 723 724 #ifdef CONFIG_NET_RX_BUSY_POLL 725 new->napi_id = old->napi_id; 726 #endif 727 } 728 729 /* 730 * You should not add any new code to this function. Add it to 731 * __copy_skb_header above instead. 732 */ 733 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 734 { 735 #define C(x) n->x = skb->x 736 737 n->next = n->prev = NULL; 738 n->sk = NULL; 739 __copy_skb_header(n, skb); 740 741 C(len); 742 C(data_len); 743 C(mac_len); 744 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 745 n->cloned = 1; 746 n->nohdr = 0; 747 n->destructor = NULL; 748 C(tail); 749 C(end); 750 C(head); 751 C(head_frag); 752 C(data); 753 C(truesize); 754 atomic_set(&n->users, 1); 755 756 atomic_inc(&(skb_shinfo(skb)->dataref)); 757 skb->cloned = 1; 758 759 return n; 760 #undef C 761 } 762 763 /** 764 * skb_morph - morph one skb into another 765 * @dst: the skb to receive the contents 766 * @src: the skb to supply the contents 767 * 768 * This is identical to skb_clone except that the target skb is 769 * supplied by the user. 770 * 771 * The target skb is returned upon exit. 772 */ 773 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 774 { 775 skb_release_all(dst); 776 return __skb_clone(dst, src); 777 } 778 EXPORT_SYMBOL_GPL(skb_morph); 779 780 /** 781 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 782 * @skb: the skb to modify 783 * @gfp_mask: allocation priority 784 * 785 * This must be called on SKBTX_DEV_ZEROCOPY skb. 786 * It will copy all frags into kernel and drop the reference 787 * to userspace pages. 788 * 789 * If this function is called from an interrupt gfp_mask() must be 790 * %GFP_ATOMIC. 791 * 792 * Returns 0 on success or a negative error code on failure 793 * to allocate kernel memory to copy to. 794 */ 795 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 796 { 797 int i; 798 int num_frags = skb_shinfo(skb)->nr_frags; 799 struct page *page, *head = NULL; 800 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 801 802 for (i = 0; i < num_frags; i++) { 803 u8 *vaddr; 804 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 805 806 page = alloc_page(gfp_mask); 807 if (!page) { 808 while (head) { 809 struct page *next = (struct page *)page_private(head); 810 put_page(head); 811 head = next; 812 } 813 return -ENOMEM; 814 } 815 vaddr = kmap_atomic(skb_frag_page(f)); 816 memcpy(page_address(page), 817 vaddr + f->page_offset, skb_frag_size(f)); 818 kunmap_atomic(vaddr); 819 set_page_private(page, (unsigned long)head); 820 head = page; 821 } 822 823 /* skb frags release userspace buffers */ 824 for (i = 0; i < num_frags; i++) 825 skb_frag_unref(skb, i); 826 827 uarg->callback(uarg, false); 828 829 /* skb frags point to kernel buffers */ 830 for (i = num_frags - 1; i >= 0; i--) { 831 __skb_fill_page_desc(skb, i, head, 0, 832 skb_shinfo(skb)->frags[i].size); 833 head = (struct page *)page_private(head); 834 } 835 836 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 837 return 0; 838 } 839 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 840 841 /** 842 * skb_clone - duplicate an sk_buff 843 * @skb: buffer to clone 844 * @gfp_mask: allocation priority 845 * 846 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 847 * copies share the same packet data but not structure. The new 848 * buffer has a reference count of 1. If the allocation fails the 849 * function returns %NULL otherwise the new buffer is returned. 850 * 851 * If this function is called from an interrupt gfp_mask() must be 852 * %GFP_ATOMIC. 853 */ 854 855 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 856 { 857 struct sk_buff *n; 858 859 if (skb_orphan_frags(skb, gfp_mask)) 860 return NULL; 861 862 n = skb + 1; 863 if (skb->fclone == SKB_FCLONE_ORIG && 864 n->fclone == SKB_FCLONE_UNAVAILABLE) { 865 atomic_t *fclone_ref = (atomic_t *) (n + 1); 866 n->fclone = SKB_FCLONE_CLONE; 867 atomic_inc(fclone_ref); 868 } else { 869 if (skb_pfmemalloc(skb)) 870 gfp_mask |= __GFP_MEMALLOC; 871 872 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 873 if (!n) 874 return NULL; 875 876 kmemcheck_annotate_bitfield(n, flags1); 877 kmemcheck_annotate_bitfield(n, flags2); 878 n->fclone = SKB_FCLONE_UNAVAILABLE; 879 } 880 881 return __skb_clone(n, skb); 882 } 883 EXPORT_SYMBOL(skb_clone); 884 885 static void skb_headers_offset_update(struct sk_buff *skb, int off) 886 { 887 /* Only adjust this if it actually is csum_start rather than csum */ 888 if (skb->ip_summed == CHECKSUM_PARTIAL) 889 skb->csum_start += off; 890 /* {transport,network,mac}_header and tail are relative to skb->head */ 891 skb->transport_header += off; 892 skb->network_header += off; 893 if (skb_mac_header_was_set(skb)) 894 skb->mac_header += off; 895 skb->inner_transport_header += off; 896 skb->inner_network_header += off; 897 skb->inner_mac_header += off; 898 } 899 900 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 901 { 902 __copy_skb_header(new, old); 903 904 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 905 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 906 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 907 } 908 909 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 910 { 911 if (skb_pfmemalloc(skb)) 912 return SKB_ALLOC_RX; 913 return 0; 914 } 915 916 /** 917 * skb_copy - create private copy of an sk_buff 918 * @skb: buffer to copy 919 * @gfp_mask: allocation priority 920 * 921 * Make a copy of both an &sk_buff and its data. This is used when the 922 * caller wishes to modify the data and needs a private copy of the 923 * data to alter. Returns %NULL on failure or the pointer to the buffer 924 * on success. The returned buffer has a reference count of 1. 925 * 926 * As by-product this function converts non-linear &sk_buff to linear 927 * one, so that &sk_buff becomes completely private and caller is allowed 928 * to modify all the data of returned buffer. This means that this 929 * function is not recommended for use in circumstances when only 930 * header is going to be modified. Use pskb_copy() instead. 931 */ 932 933 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 934 { 935 int headerlen = skb_headroom(skb); 936 unsigned int size = skb_end_offset(skb) + skb->data_len; 937 struct sk_buff *n = __alloc_skb(size, gfp_mask, 938 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 939 940 if (!n) 941 return NULL; 942 943 /* Set the data pointer */ 944 skb_reserve(n, headerlen); 945 /* Set the tail pointer and length */ 946 skb_put(n, skb->len); 947 948 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 949 BUG(); 950 951 copy_skb_header(n, skb); 952 return n; 953 } 954 EXPORT_SYMBOL(skb_copy); 955 956 /** 957 * __pskb_copy_fclone - create copy of an sk_buff with private head. 958 * @skb: buffer to copy 959 * @headroom: headroom of new skb 960 * @gfp_mask: allocation priority 961 * @fclone: if true allocate the copy of the skb from the fclone 962 * cache instead of the head cache; it is recommended to set this 963 * to true for the cases where the copy will likely be cloned 964 * 965 * Make a copy of both an &sk_buff and part of its data, located 966 * in header. Fragmented data remain shared. This is used when 967 * the caller wishes to modify only header of &sk_buff and needs 968 * private copy of the header to alter. Returns %NULL on failure 969 * or the pointer to the buffer on success. 970 * The returned buffer has a reference count of 1. 971 */ 972 973 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 974 gfp_t gfp_mask, bool fclone) 975 { 976 unsigned int size = skb_headlen(skb) + headroom; 977 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 978 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 979 980 if (!n) 981 goto out; 982 983 /* Set the data pointer */ 984 skb_reserve(n, headroom); 985 /* Set the tail pointer and length */ 986 skb_put(n, skb_headlen(skb)); 987 /* Copy the bytes */ 988 skb_copy_from_linear_data(skb, n->data, n->len); 989 990 n->truesize += skb->data_len; 991 n->data_len = skb->data_len; 992 n->len = skb->len; 993 994 if (skb_shinfo(skb)->nr_frags) { 995 int i; 996 997 if (skb_orphan_frags(skb, gfp_mask)) { 998 kfree_skb(n); 999 n = NULL; 1000 goto out; 1001 } 1002 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1003 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1004 skb_frag_ref(skb, i); 1005 } 1006 skb_shinfo(n)->nr_frags = i; 1007 } 1008 1009 if (skb_has_frag_list(skb)) { 1010 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1011 skb_clone_fraglist(n); 1012 } 1013 1014 copy_skb_header(n, skb); 1015 out: 1016 return n; 1017 } 1018 EXPORT_SYMBOL(__pskb_copy_fclone); 1019 1020 /** 1021 * pskb_expand_head - reallocate header of &sk_buff 1022 * @skb: buffer to reallocate 1023 * @nhead: room to add at head 1024 * @ntail: room to add at tail 1025 * @gfp_mask: allocation priority 1026 * 1027 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1028 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1029 * reference count of 1. Returns zero in the case of success or error, 1030 * if expansion failed. In the last case, &sk_buff is not changed. 1031 * 1032 * All the pointers pointing into skb header may change and must be 1033 * reloaded after call to this function. 1034 */ 1035 1036 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1037 gfp_t gfp_mask) 1038 { 1039 int i; 1040 u8 *data; 1041 int size = nhead + skb_end_offset(skb) + ntail; 1042 long off; 1043 1044 BUG_ON(nhead < 0); 1045 1046 if (skb_shared(skb)) 1047 BUG(); 1048 1049 size = SKB_DATA_ALIGN(size); 1050 1051 if (skb_pfmemalloc(skb)) 1052 gfp_mask |= __GFP_MEMALLOC; 1053 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1054 gfp_mask, NUMA_NO_NODE, NULL); 1055 if (!data) 1056 goto nodata; 1057 size = SKB_WITH_OVERHEAD(ksize(data)); 1058 1059 /* Copy only real data... and, alas, header. This should be 1060 * optimized for the cases when header is void. 1061 */ 1062 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1063 1064 memcpy((struct skb_shared_info *)(data + size), 1065 skb_shinfo(skb), 1066 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1067 1068 /* 1069 * if shinfo is shared we must drop the old head gracefully, but if it 1070 * is not we can just drop the old head and let the existing refcount 1071 * be since all we did is relocate the values 1072 */ 1073 if (skb_cloned(skb)) { 1074 /* copy this zero copy skb frags */ 1075 if (skb_orphan_frags(skb, gfp_mask)) 1076 goto nofrags; 1077 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1078 skb_frag_ref(skb, i); 1079 1080 if (skb_has_frag_list(skb)) 1081 skb_clone_fraglist(skb); 1082 1083 skb_release_data(skb); 1084 } else { 1085 skb_free_head(skb); 1086 } 1087 off = (data + nhead) - skb->head; 1088 1089 skb->head = data; 1090 skb->head_frag = 0; 1091 skb->data += off; 1092 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1093 skb->end = size; 1094 off = nhead; 1095 #else 1096 skb->end = skb->head + size; 1097 #endif 1098 skb->tail += off; 1099 skb_headers_offset_update(skb, nhead); 1100 skb->cloned = 0; 1101 skb->hdr_len = 0; 1102 skb->nohdr = 0; 1103 atomic_set(&skb_shinfo(skb)->dataref, 1); 1104 return 0; 1105 1106 nofrags: 1107 kfree(data); 1108 nodata: 1109 return -ENOMEM; 1110 } 1111 EXPORT_SYMBOL(pskb_expand_head); 1112 1113 /* Make private copy of skb with writable head and some headroom */ 1114 1115 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1116 { 1117 struct sk_buff *skb2; 1118 int delta = headroom - skb_headroom(skb); 1119 1120 if (delta <= 0) 1121 skb2 = pskb_copy(skb, GFP_ATOMIC); 1122 else { 1123 skb2 = skb_clone(skb, GFP_ATOMIC); 1124 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1125 GFP_ATOMIC)) { 1126 kfree_skb(skb2); 1127 skb2 = NULL; 1128 } 1129 } 1130 return skb2; 1131 } 1132 EXPORT_SYMBOL(skb_realloc_headroom); 1133 1134 /** 1135 * skb_copy_expand - copy and expand sk_buff 1136 * @skb: buffer to copy 1137 * @newheadroom: new free bytes at head 1138 * @newtailroom: new free bytes at tail 1139 * @gfp_mask: allocation priority 1140 * 1141 * Make a copy of both an &sk_buff and its data and while doing so 1142 * allocate additional space. 1143 * 1144 * This is used when the caller wishes to modify the data and needs a 1145 * private copy of the data to alter as well as more space for new fields. 1146 * Returns %NULL on failure or the pointer to the buffer 1147 * on success. The returned buffer has a reference count of 1. 1148 * 1149 * You must pass %GFP_ATOMIC as the allocation priority if this function 1150 * is called from an interrupt. 1151 */ 1152 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1153 int newheadroom, int newtailroom, 1154 gfp_t gfp_mask) 1155 { 1156 /* 1157 * Allocate the copy buffer 1158 */ 1159 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1160 gfp_mask, skb_alloc_rx_flag(skb), 1161 NUMA_NO_NODE); 1162 int oldheadroom = skb_headroom(skb); 1163 int head_copy_len, head_copy_off; 1164 1165 if (!n) 1166 return NULL; 1167 1168 skb_reserve(n, newheadroom); 1169 1170 /* Set the tail pointer and length */ 1171 skb_put(n, skb->len); 1172 1173 head_copy_len = oldheadroom; 1174 head_copy_off = 0; 1175 if (newheadroom <= head_copy_len) 1176 head_copy_len = newheadroom; 1177 else 1178 head_copy_off = newheadroom - head_copy_len; 1179 1180 /* Copy the linear header and data. */ 1181 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1182 skb->len + head_copy_len)) 1183 BUG(); 1184 1185 copy_skb_header(n, skb); 1186 1187 skb_headers_offset_update(n, newheadroom - oldheadroom); 1188 1189 return n; 1190 } 1191 EXPORT_SYMBOL(skb_copy_expand); 1192 1193 /** 1194 * skb_pad - zero pad the tail of an skb 1195 * @skb: buffer to pad 1196 * @pad: space to pad 1197 * 1198 * Ensure that a buffer is followed by a padding area that is zero 1199 * filled. Used by network drivers which may DMA or transfer data 1200 * beyond the buffer end onto the wire. 1201 * 1202 * May return error in out of memory cases. The skb is freed on error. 1203 */ 1204 1205 int skb_pad(struct sk_buff *skb, int pad) 1206 { 1207 int err; 1208 int ntail; 1209 1210 /* If the skbuff is non linear tailroom is always zero.. */ 1211 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1212 memset(skb->data+skb->len, 0, pad); 1213 return 0; 1214 } 1215 1216 ntail = skb->data_len + pad - (skb->end - skb->tail); 1217 if (likely(skb_cloned(skb) || ntail > 0)) { 1218 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1219 if (unlikely(err)) 1220 goto free_skb; 1221 } 1222 1223 /* FIXME: The use of this function with non-linear skb's really needs 1224 * to be audited. 1225 */ 1226 err = skb_linearize(skb); 1227 if (unlikely(err)) 1228 goto free_skb; 1229 1230 memset(skb->data + skb->len, 0, pad); 1231 return 0; 1232 1233 free_skb: 1234 kfree_skb(skb); 1235 return err; 1236 } 1237 EXPORT_SYMBOL(skb_pad); 1238 1239 /** 1240 * pskb_put - add data to the tail of a potentially fragmented buffer 1241 * @skb: start of the buffer to use 1242 * @tail: tail fragment of the buffer to use 1243 * @len: amount of data to add 1244 * 1245 * This function extends the used data area of the potentially 1246 * fragmented buffer. @tail must be the last fragment of @skb -- or 1247 * @skb itself. If this would exceed the total buffer size the kernel 1248 * will panic. A pointer to the first byte of the extra data is 1249 * returned. 1250 */ 1251 1252 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1253 { 1254 if (tail != skb) { 1255 skb->data_len += len; 1256 skb->len += len; 1257 } 1258 return skb_put(tail, len); 1259 } 1260 EXPORT_SYMBOL_GPL(pskb_put); 1261 1262 /** 1263 * skb_put - add data to a buffer 1264 * @skb: buffer to use 1265 * @len: amount of data to add 1266 * 1267 * This function extends the used data area of the buffer. If this would 1268 * exceed the total buffer size the kernel will panic. A pointer to the 1269 * first byte of the extra data is returned. 1270 */ 1271 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1272 { 1273 unsigned char *tmp = skb_tail_pointer(skb); 1274 SKB_LINEAR_ASSERT(skb); 1275 skb->tail += len; 1276 skb->len += len; 1277 if (unlikely(skb->tail > skb->end)) 1278 skb_over_panic(skb, len, __builtin_return_address(0)); 1279 return tmp; 1280 } 1281 EXPORT_SYMBOL(skb_put); 1282 1283 /** 1284 * skb_push - add data to the start of a buffer 1285 * @skb: buffer to use 1286 * @len: amount of data to add 1287 * 1288 * This function extends the used data area of the buffer at the buffer 1289 * start. If this would exceed the total buffer headroom the kernel will 1290 * panic. A pointer to the first byte of the extra data is returned. 1291 */ 1292 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1293 { 1294 skb->data -= len; 1295 skb->len += len; 1296 if (unlikely(skb->data<skb->head)) 1297 skb_under_panic(skb, len, __builtin_return_address(0)); 1298 return skb->data; 1299 } 1300 EXPORT_SYMBOL(skb_push); 1301 1302 /** 1303 * skb_pull - remove data from the start of a buffer 1304 * @skb: buffer to use 1305 * @len: amount of data to remove 1306 * 1307 * This function removes data from the start of a buffer, returning 1308 * the memory to the headroom. A pointer to the next data in the buffer 1309 * is returned. Once the data has been pulled future pushes will overwrite 1310 * the old data. 1311 */ 1312 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1313 { 1314 return skb_pull_inline(skb, len); 1315 } 1316 EXPORT_SYMBOL(skb_pull); 1317 1318 /** 1319 * skb_trim - remove end from a buffer 1320 * @skb: buffer to alter 1321 * @len: new length 1322 * 1323 * Cut the length of a buffer down by removing data from the tail. If 1324 * the buffer is already under the length specified it is not modified. 1325 * The skb must be linear. 1326 */ 1327 void skb_trim(struct sk_buff *skb, unsigned int len) 1328 { 1329 if (skb->len > len) 1330 __skb_trim(skb, len); 1331 } 1332 EXPORT_SYMBOL(skb_trim); 1333 1334 /* Trims skb to length len. It can change skb pointers. 1335 */ 1336 1337 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1338 { 1339 struct sk_buff **fragp; 1340 struct sk_buff *frag; 1341 int offset = skb_headlen(skb); 1342 int nfrags = skb_shinfo(skb)->nr_frags; 1343 int i; 1344 int err; 1345 1346 if (skb_cloned(skb) && 1347 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1348 return err; 1349 1350 i = 0; 1351 if (offset >= len) 1352 goto drop_pages; 1353 1354 for (; i < nfrags; i++) { 1355 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1356 1357 if (end < len) { 1358 offset = end; 1359 continue; 1360 } 1361 1362 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1363 1364 drop_pages: 1365 skb_shinfo(skb)->nr_frags = i; 1366 1367 for (; i < nfrags; i++) 1368 skb_frag_unref(skb, i); 1369 1370 if (skb_has_frag_list(skb)) 1371 skb_drop_fraglist(skb); 1372 goto done; 1373 } 1374 1375 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1376 fragp = &frag->next) { 1377 int end = offset + frag->len; 1378 1379 if (skb_shared(frag)) { 1380 struct sk_buff *nfrag; 1381 1382 nfrag = skb_clone(frag, GFP_ATOMIC); 1383 if (unlikely(!nfrag)) 1384 return -ENOMEM; 1385 1386 nfrag->next = frag->next; 1387 consume_skb(frag); 1388 frag = nfrag; 1389 *fragp = frag; 1390 } 1391 1392 if (end < len) { 1393 offset = end; 1394 continue; 1395 } 1396 1397 if (end > len && 1398 unlikely((err = pskb_trim(frag, len - offset)))) 1399 return err; 1400 1401 if (frag->next) 1402 skb_drop_list(&frag->next); 1403 break; 1404 } 1405 1406 done: 1407 if (len > skb_headlen(skb)) { 1408 skb->data_len -= skb->len - len; 1409 skb->len = len; 1410 } else { 1411 skb->len = len; 1412 skb->data_len = 0; 1413 skb_set_tail_pointer(skb, len); 1414 } 1415 1416 return 0; 1417 } 1418 EXPORT_SYMBOL(___pskb_trim); 1419 1420 /** 1421 * __pskb_pull_tail - advance tail of skb header 1422 * @skb: buffer to reallocate 1423 * @delta: number of bytes to advance tail 1424 * 1425 * The function makes a sense only on a fragmented &sk_buff, 1426 * it expands header moving its tail forward and copying necessary 1427 * data from fragmented part. 1428 * 1429 * &sk_buff MUST have reference count of 1. 1430 * 1431 * Returns %NULL (and &sk_buff does not change) if pull failed 1432 * or value of new tail of skb in the case of success. 1433 * 1434 * All the pointers pointing into skb header may change and must be 1435 * reloaded after call to this function. 1436 */ 1437 1438 /* Moves tail of skb head forward, copying data from fragmented part, 1439 * when it is necessary. 1440 * 1. It may fail due to malloc failure. 1441 * 2. It may change skb pointers. 1442 * 1443 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1444 */ 1445 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1446 { 1447 /* If skb has not enough free space at tail, get new one 1448 * plus 128 bytes for future expansions. If we have enough 1449 * room at tail, reallocate without expansion only if skb is cloned. 1450 */ 1451 int i, k, eat = (skb->tail + delta) - skb->end; 1452 1453 if (eat > 0 || skb_cloned(skb)) { 1454 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1455 GFP_ATOMIC)) 1456 return NULL; 1457 } 1458 1459 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1460 BUG(); 1461 1462 /* Optimization: no fragments, no reasons to preestimate 1463 * size of pulled pages. Superb. 1464 */ 1465 if (!skb_has_frag_list(skb)) 1466 goto pull_pages; 1467 1468 /* Estimate size of pulled pages. */ 1469 eat = delta; 1470 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1471 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1472 1473 if (size >= eat) 1474 goto pull_pages; 1475 eat -= size; 1476 } 1477 1478 /* If we need update frag list, we are in troubles. 1479 * Certainly, it possible to add an offset to skb data, 1480 * but taking into account that pulling is expected to 1481 * be very rare operation, it is worth to fight against 1482 * further bloating skb head and crucify ourselves here instead. 1483 * Pure masohism, indeed. 8)8) 1484 */ 1485 if (eat) { 1486 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1487 struct sk_buff *clone = NULL; 1488 struct sk_buff *insp = NULL; 1489 1490 do { 1491 BUG_ON(!list); 1492 1493 if (list->len <= eat) { 1494 /* Eaten as whole. */ 1495 eat -= list->len; 1496 list = list->next; 1497 insp = list; 1498 } else { 1499 /* Eaten partially. */ 1500 1501 if (skb_shared(list)) { 1502 /* Sucks! We need to fork list. :-( */ 1503 clone = skb_clone(list, GFP_ATOMIC); 1504 if (!clone) 1505 return NULL; 1506 insp = list->next; 1507 list = clone; 1508 } else { 1509 /* This may be pulled without 1510 * problems. */ 1511 insp = list; 1512 } 1513 if (!pskb_pull(list, eat)) { 1514 kfree_skb(clone); 1515 return NULL; 1516 } 1517 break; 1518 } 1519 } while (eat); 1520 1521 /* Free pulled out fragments. */ 1522 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1523 skb_shinfo(skb)->frag_list = list->next; 1524 kfree_skb(list); 1525 } 1526 /* And insert new clone at head. */ 1527 if (clone) { 1528 clone->next = list; 1529 skb_shinfo(skb)->frag_list = clone; 1530 } 1531 } 1532 /* Success! Now we may commit changes to skb data. */ 1533 1534 pull_pages: 1535 eat = delta; 1536 k = 0; 1537 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1538 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1539 1540 if (size <= eat) { 1541 skb_frag_unref(skb, i); 1542 eat -= size; 1543 } else { 1544 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1545 if (eat) { 1546 skb_shinfo(skb)->frags[k].page_offset += eat; 1547 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1548 eat = 0; 1549 } 1550 k++; 1551 } 1552 } 1553 skb_shinfo(skb)->nr_frags = k; 1554 1555 skb->tail += delta; 1556 skb->data_len -= delta; 1557 1558 return skb_tail_pointer(skb); 1559 } 1560 EXPORT_SYMBOL(__pskb_pull_tail); 1561 1562 /** 1563 * skb_copy_bits - copy bits from skb to kernel buffer 1564 * @skb: source skb 1565 * @offset: offset in source 1566 * @to: destination buffer 1567 * @len: number of bytes to copy 1568 * 1569 * Copy the specified number of bytes from the source skb to the 1570 * destination buffer. 1571 * 1572 * CAUTION ! : 1573 * If its prototype is ever changed, 1574 * check arch/{*}/net/{*}.S files, 1575 * since it is called from BPF assembly code. 1576 */ 1577 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1578 { 1579 int start = skb_headlen(skb); 1580 struct sk_buff *frag_iter; 1581 int i, copy; 1582 1583 if (offset > (int)skb->len - len) 1584 goto fault; 1585 1586 /* Copy header. */ 1587 if ((copy = start - offset) > 0) { 1588 if (copy > len) 1589 copy = len; 1590 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1591 if ((len -= copy) == 0) 1592 return 0; 1593 offset += copy; 1594 to += copy; 1595 } 1596 1597 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1598 int end; 1599 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1600 1601 WARN_ON(start > offset + len); 1602 1603 end = start + skb_frag_size(f); 1604 if ((copy = end - offset) > 0) { 1605 u8 *vaddr; 1606 1607 if (copy > len) 1608 copy = len; 1609 1610 vaddr = kmap_atomic(skb_frag_page(f)); 1611 memcpy(to, 1612 vaddr + f->page_offset + offset - start, 1613 copy); 1614 kunmap_atomic(vaddr); 1615 1616 if ((len -= copy) == 0) 1617 return 0; 1618 offset += copy; 1619 to += copy; 1620 } 1621 start = end; 1622 } 1623 1624 skb_walk_frags(skb, frag_iter) { 1625 int end; 1626 1627 WARN_ON(start > offset + len); 1628 1629 end = start + frag_iter->len; 1630 if ((copy = end - offset) > 0) { 1631 if (copy > len) 1632 copy = len; 1633 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1634 goto fault; 1635 if ((len -= copy) == 0) 1636 return 0; 1637 offset += copy; 1638 to += copy; 1639 } 1640 start = end; 1641 } 1642 1643 if (!len) 1644 return 0; 1645 1646 fault: 1647 return -EFAULT; 1648 } 1649 EXPORT_SYMBOL(skb_copy_bits); 1650 1651 /* 1652 * Callback from splice_to_pipe(), if we need to release some pages 1653 * at the end of the spd in case we error'ed out in filling the pipe. 1654 */ 1655 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1656 { 1657 put_page(spd->pages[i]); 1658 } 1659 1660 static struct page *linear_to_page(struct page *page, unsigned int *len, 1661 unsigned int *offset, 1662 struct sock *sk) 1663 { 1664 struct page_frag *pfrag = sk_page_frag(sk); 1665 1666 if (!sk_page_frag_refill(sk, pfrag)) 1667 return NULL; 1668 1669 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 1670 1671 memcpy(page_address(pfrag->page) + pfrag->offset, 1672 page_address(page) + *offset, *len); 1673 *offset = pfrag->offset; 1674 pfrag->offset += *len; 1675 1676 return pfrag->page; 1677 } 1678 1679 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 1680 struct page *page, 1681 unsigned int offset) 1682 { 1683 return spd->nr_pages && 1684 spd->pages[spd->nr_pages - 1] == page && 1685 (spd->partial[spd->nr_pages - 1].offset + 1686 spd->partial[spd->nr_pages - 1].len == offset); 1687 } 1688 1689 /* 1690 * Fill page/offset/length into spd, if it can hold more pages. 1691 */ 1692 static bool spd_fill_page(struct splice_pipe_desc *spd, 1693 struct pipe_inode_info *pipe, struct page *page, 1694 unsigned int *len, unsigned int offset, 1695 bool linear, 1696 struct sock *sk) 1697 { 1698 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 1699 return true; 1700 1701 if (linear) { 1702 page = linear_to_page(page, len, &offset, sk); 1703 if (!page) 1704 return true; 1705 } 1706 if (spd_can_coalesce(spd, page, offset)) { 1707 spd->partial[spd->nr_pages - 1].len += *len; 1708 return false; 1709 } 1710 get_page(page); 1711 spd->pages[spd->nr_pages] = page; 1712 spd->partial[spd->nr_pages].len = *len; 1713 spd->partial[spd->nr_pages].offset = offset; 1714 spd->nr_pages++; 1715 1716 return false; 1717 } 1718 1719 static bool __splice_segment(struct page *page, unsigned int poff, 1720 unsigned int plen, unsigned int *off, 1721 unsigned int *len, 1722 struct splice_pipe_desc *spd, bool linear, 1723 struct sock *sk, 1724 struct pipe_inode_info *pipe) 1725 { 1726 if (!*len) 1727 return true; 1728 1729 /* skip this segment if already processed */ 1730 if (*off >= plen) { 1731 *off -= plen; 1732 return false; 1733 } 1734 1735 /* ignore any bits we already processed */ 1736 poff += *off; 1737 plen -= *off; 1738 *off = 0; 1739 1740 do { 1741 unsigned int flen = min(*len, plen); 1742 1743 if (spd_fill_page(spd, pipe, page, &flen, poff, 1744 linear, sk)) 1745 return true; 1746 poff += flen; 1747 plen -= flen; 1748 *len -= flen; 1749 } while (*len && plen); 1750 1751 return false; 1752 } 1753 1754 /* 1755 * Map linear and fragment data from the skb to spd. It reports true if the 1756 * pipe is full or if we already spliced the requested length. 1757 */ 1758 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1759 unsigned int *offset, unsigned int *len, 1760 struct splice_pipe_desc *spd, struct sock *sk) 1761 { 1762 int seg; 1763 1764 /* map the linear part : 1765 * If skb->head_frag is set, this 'linear' part is backed by a 1766 * fragment, and if the head is not shared with any clones then 1767 * we can avoid a copy since we own the head portion of this page. 1768 */ 1769 if (__splice_segment(virt_to_page(skb->data), 1770 (unsigned long) skb->data & (PAGE_SIZE - 1), 1771 skb_headlen(skb), 1772 offset, len, spd, 1773 skb_head_is_locked(skb), 1774 sk, pipe)) 1775 return true; 1776 1777 /* 1778 * then map the fragments 1779 */ 1780 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1781 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1782 1783 if (__splice_segment(skb_frag_page(f), 1784 f->page_offset, skb_frag_size(f), 1785 offset, len, spd, false, sk, pipe)) 1786 return true; 1787 } 1788 1789 return false; 1790 } 1791 1792 /* 1793 * Map data from the skb to a pipe. Should handle both the linear part, 1794 * the fragments, and the frag list. It does NOT handle frag lists within 1795 * the frag list, if such a thing exists. We'd probably need to recurse to 1796 * handle that cleanly. 1797 */ 1798 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1799 struct pipe_inode_info *pipe, unsigned int tlen, 1800 unsigned int flags) 1801 { 1802 struct partial_page partial[MAX_SKB_FRAGS]; 1803 struct page *pages[MAX_SKB_FRAGS]; 1804 struct splice_pipe_desc spd = { 1805 .pages = pages, 1806 .partial = partial, 1807 .nr_pages_max = MAX_SKB_FRAGS, 1808 .flags = flags, 1809 .ops = &nosteal_pipe_buf_ops, 1810 .spd_release = sock_spd_release, 1811 }; 1812 struct sk_buff *frag_iter; 1813 struct sock *sk = skb->sk; 1814 int ret = 0; 1815 1816 /* 1817 * __skb_splice_bits() only fails if the output has no room left, 1818 * so no point in going over the frag_list for the error case. 1819 */ 1820 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) 1821 goto done; 1822 else if (!tlen) 1823 goto done; 1824 1825 /* 1826 * now see if we have a frag_list to map 1827 */ 1828 skb_walk_frags(skb, frag_iter) { 1829 if (!tlen) 1830 break; 1831 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) 1832 break; 1833 } 1834 1835 done: 1836 if (spd.nr_pages) { 1837 /* 1838 * Drop the socket lock, otherwise we have reverse 1839 * locking dependencies between sk_lock and i_mutex 1840 * here as compared to sendfile(). We enter here 1841 * with the socket lock held, and splice_to_pipe() will 1842 * grab the pipe inode lock. For sendfile() emulation, 1843 * we call into ->sendpage() with the i_mutex lock held 1844 * and networking will grab the socket lock. 1845 */ 1846 release_sock(sk); 1847 ret = splice_to_pipe(pipe, &spd); 1848 lock_sock(sk); 1849 } 1850 1851 return ret; 1852 } 1853 1854 /** 1855 * skb_store_bits - store bits from kernel buffer to skb 1856 * @skb: destination buffer 1857 * @offset: offset in destination 1858 * @from: source buffer 1859 * @len: number of bytes to copy 1860 * 1861 * Copy the specified number of bytes from the source buffer to the 1862 * destination skb. This function handles all the messy bits of 1863 * traversing fragment lists and such. 1864 */ 1865 1866 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1867 { 1868 int start = skb_headlen(skb); 1869 struct sk_buff *frag_iter; 1870 int i, copy; 1871 1872 if (offset > (int)skb->len - len) 1873 goto fault; 1874 1875 if ((copy = start - offset) > 0) { 1876 if (copy > len) 1877 copy = len; 1878 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1879 if ((len -= copy) == 0) 1880 return 0; 1881 offset += copy; 1882 from += copy; 1883 } 1884 1885 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1886 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1887 int end; 1888 1889 WARN_ON(start > offset + len); 1890 1891 end = start + skb_frag_size(frag); 1892 if ((copy = end - offset) > 0) { 1893 u8 *vaddr; 1894 1895 if (copy > len) 1896 copy = len; 1897 1898 vaddr = kmap_atomic(skb_frag_page(frag)); 1899 memcpy(vaddr + frag->page_offset + offset - start, 1900 from, copy); 1901 kunmap_atomic(vaddr); 1902 1903 if ((len -= copy) == 0) 1904 return 0; 1905 offset += copy; 1906 from += copy; 1907 } 1908 start = end; 1909 } 1910 1911 skb_walk_frags(skb, frag_iter) { 1912 int end; 1913 1914 WARN_ON(start > offset + len); 1915 1916 end = start + frag_iter->len; 1917 if ((copy = end - offset) > 0) { 1918 if (copy > len) 1919 copy = len; 1920 if (skb_store_bits(frag_iter, offset - start, 1921 from, copy)) 1922 goto fault; 1923 if ((len -= copy) == 0) 1924 return 0; 1925 offset += copy; 1926 from += copy; 1927 } 1928 start = end; 1929 } 1930 if (!len) 1931 return 0; 1932 1933 fault: 1934 return -EFAULT; 1935 } 1936 EXPORT_SYMBOL(skb_store_bits); 1937 1938 /* Checksum skb data. */ 1939 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 1940 __wsum csum, const struct skb_checksum_ops *ops) 1941 { 1942 int start = skb_headlen(skb); 1943 int i, copy = start - offset; 1944 struct sk_buff *frag_iter; 1945 int pos = 0; 1946 1947 /* Checksum header. */ 1948 if (copy > 0) { 1949 if (copy > len) 1950 copy = len; 1951 csum = ops->update(skb->data + offset, copy, csum); 1952 if ((len -= copy) == 0) 1953 return csum; 1954 offset += copy; 1955 pos = copy; 1956 } 1957 1958 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1959 int end; 1960 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1961 1962 WARN_ON(start > offset + len); 1963 1964 end = start + skb_frag_size(frag); 1965 if ((copy = end - offset) > 0) { 1966 __wsum csum2; 1967 u8 *vaddr; 1968 1969 if (copy > len) 1970 copy = len; 1971 vaddr = kmap_atomic(skb_frag_page(frag)); 1972 csum2 = ops->update(vaddr + frag->page_offset + 1973 offset - start, copy, 0); 1974 kunmap_atomic(vaddr); 1975 csum = ops->combine(csum, csum2, pos, copy); 1976 if (!(len -= copy)) 1977 return csum; 1978 offset += copy; 1979 pos += copy; 1980 } 1981 start = end; 1982 } 1983 1984 skb_walk_frags(skb, frag_iter) { 1985 int end; 1986 1987 WARN_ON(start > offset + len); 1988 1989 end = start + frag_iter->len; 1990 if ((copy = end - offset) > 0) { 1991 __wsum csum2; 1992 if (copy > len) 1993 copy = len; 1994 csum2 = __skb_checksum(frag_iter, offset - start, 1995 copy, 0, ops); 1996 csum = ops->combine(csum, csum2, pos, copy); 1997 if ((len -= copy) == 0) 1998 return csum; 1999 offset += copy; 2000 pos += copy; 2001 } 2002 start = end; 2003 } 2004 BUG_ON(len); 2005 2006 return csum; 2007 } 2008 EXPORT_SYMBOL(__skb_checksum); 2009 2010 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2011 int len, __wsum csum) 2012 { 2013 const struct skb_checksum_ops ops = { 2014 .update = csum_partial_ext, 2015 .combine = csum_block_add_ext, 2016 }; 2017 2018 return __skb_checksum(skb, offset, len, csum, &ops); 2019 } 2020 EXPORT_SYMBOL(skb_checksum); 2021 2022 /* Both of above in one bottle. */ 2023 2024 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2025 u8 *to, int len, __wsum csum) 2026 { 2027 int start = skb_headlen(skb); 2028 int i, copy = start - offset; 2029 struct sk_buff *frag_iter; 2030 int pos = 0; 2031 2032 /* Copy header. */ 2033 if (copy > 0) { 2034 if (copy > len) 2035 copy = len; 2036 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2037 copy, csum); 2038 if ((len -= copy) == 0) 2039 return csum; 2040 offset += copy; 2041 to += copy; 2042 pos = copy; 2043 } 2044 2045 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2046 int end; 2047 2048 WARN_ON(start > offset + len); 2049 2050 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2051 if ((copy = end - offset) > 0) { 2052 __wsum csum2; 2053 u8 *vaddr; 2054 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2055 2056 if (copy > len) 2057 copy = len; 2058 vaddr = kmap_atomic(skb_frag_page(frag)); 2059 csum2 = csum_partial_copy_nocheck(vaddr + 2060 frag->page_offset + 2061 offset - start, to, 2062 copy, 0); 2063 kunmap_atomic(vaddr); 2064 csum = csum_block_add(csum, csum2, pos); 2065 if (!(len -= copy)) 2066 return csum; 2067 offset += copy; 2068 to += copy; 2069 pos += copy; 2070 } 2071 start = end; 2072 } 2073 2074 skb_walk_frags(skb, frag_iter) { 2075 __wsum csum2; 2076 int end; 2077 2078 WARN_ON(start > offset + len); 2079 2080 end = start + frag_iter->len; 2081 if ((copy = end - offset) > 0) { 2082 if (copy > len) 2083 copy = len; 2084 csum2 = skb_copy_and_csum_bits(frag_iter, 2085 offset - start, 2086 to, copy, 0); 2087 csum = csum_block_add(csum, csum2, pos); 2088 if ((len -= copy) == 0) 2089 return csum; 2090 offset += copy; 2091 to += copy; 2092 pos += copy; 2093 } 2094 start = end; 2095 } 2096 BUG_ON(len); 2097 return csum; 2098 } 2099 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2100 2101 /** 2102 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2103 * @from: source buffer 2104 * 2105 * Calculates the amount of linear headroom needed in the 'to' skb passed 2106 * into skb_zerocopy(). 2107 */ 2108 unsigned int 2109 skb_zerocopy_headlen(const struct sk_buff *from) 2110 { 2111 unsigned int hlen = 0; 2112 2113 if (!from->head_frag || 2114 skb_headlen(from) < L1_CACHE_BYTES || 2115 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2116 hlen = skb_headlen(from); 2117 2118 if (skb_has_frag_list(from)) 2119 hlen = from->len; 2120 2121 return hlen; 2122 } 2123 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2124 2125 /** 2126 * skb_zerocopy - Zero copy skb to skb 2127 * @to: destination buffer 2128 * @from: source buffer 2129 * @len: number of bytes to copy from source buffer 2130 * @hlen: size of linear headroom in destination buffer 2131 * 2132 * Copies up to `len` bytes from `from` to `to` by creating references 2133 * to the frags in the source buffer. 2134 * 2135 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2136 * headroom in the `to` buffer. 2137 * 2138 * Return value: 2139 * 0: everything is OK 2140 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2141 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2142 */ 2143 int 2144 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2145 { 2146 int i, j = 0; 2147 int plen = 0; /* length of skb->head fragment */ 2148 int ret; 2149 struct page *page; 2150 unsigned int offset; 2151 2152 BUG_ON(!from->head_frag && !hlen); 2153 2154 /* dont bother with small payloads */ 2155 if (len <= skb_tailroom(to)) 2156 return skb_copy_bits(from, 0, skb_put(to, len), len); 2157 2158 if (hlen) { 2159 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2160 if (unlikely(ret)) 2161 return ret; 2162 len -= hlen; 2163 } else { 2164 plen = min_t(int, skb_headlen(from), len); 2165 if (plen) { 2166 page = virt_to_head_page(from->head); 2167 offset = from->data - (unsigned char *)page_address(page); 2168 __skb_fill_page_desc(to, 0, page, offset, plen); 2169 get_page(page); 2170 j = 1; 2171 len -= plen; 2172 } 2173 } 2174 2175 to->truesize += len + plen; 2176 to->len += len + plen; 2177 to->data_len += len + plen; 2178 2179 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2180 skb_tx_error(from); 2181 return -ENOMEM; 2182 } 2183 2184 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2185 if (!len) 2186 break; 2187 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2188 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2189 len -= skb_shinfo(to)->frags[j].size; 2190 skb_frag_ref(to, j); 2191 j++; 2192 } 2193 skb_shinfo(to)->nr_frags = j; 2194 2195 return 0; 2196 } 2197 EXPORT_SYMBOL_GPL(skb_zerocopy); 2198 2199 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2200 { 2201 __wsum csum; 2202 long csstart; 2203 2204 if (skb->ip_summed == CHECKSUM_PARTIAL) 2205 csstart = skb_checksum_start_offset(skb); 2206 else 2207 csstart = skb_headlen(skb); 2208 2209 BUG_ON(csstart > skb_headlen(skb)); 2210 2211 skb_copy_from_linear_data(skb, to, csstart); 2212 2213 csum = 0; 2214 if (csstart != skb->len) 2215 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2216 skb->len - csstart, 0); 2217 2218 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2219 long csstuff = csstart + skb->csum_offset; 2220 2221 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2222 } 2223 } 2224 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2225 2226 /** 2227 * skb_dequeue - remove from the head of the queue 2228 * @list: list to dequeue from 2229 * 2230 * Remove the head of the list. The list lock is taken so the function 2231 * may be used safely with other locking list functions. The head item is 2232 * returned or %NULL if the list is empty. 2233 */ 2234 2235 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2236 { 2237 unsigned long flags; 2238 struct sk_buff *result; 2239 2240 spin_lock_irqsave(&list->lock, flags); 2241 result = __skb_dequeue(list); 2242 spin_unlock_irqrestore(&list->lock, flags); 2243 return result; 2244 } 2245 EXPORT_SYMBOL(skb_dequeue); 2246 2247 /** 2248 * skb_dequeue_tail - remove from the tail of the queue 2249 * @list: list to dequeue from 2250 * 2251 * Remove the tail of the list. The list lock is taken so the function 2252 * may be used safely with other locking list functions. The tail item is 2253 * returned or %NULL if the list is empty. 2254 */ 2255 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2256 { 2257 unsigned long flags; 2258 struct sk_buff *result; 2259 2260 spin_lock_irqsave(&list->lock, flags); 2261 result = __skb_dequeue_tail(list); 2262 spin_unlock_irqrestore(&list->lock, flags); 2263 return result; 2264 } 2265 EXPORT_SYMBOL(skb_dequeue_tail); 2266 2267 /** 2268 * skb_queue_purge - empty a list 2269 * @list: list to empty 2270 * 2271 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2272 * the list and one reference dropped. This function takes the list 2273 * lock and is atomic with respect to other list locking functions. 2274 */ 2275 void skb_queue_purge(struct sk_buff_head *list) 2276 { 2277 struct sk_buff *skb; 2278 while ((skb = skb_dequeue(list)) != NULL) 2279 kfree_skb(skb); 2280 } 2281 EXPORT_SYMBOL(skb_queue_purge); 2282 2283 /** 2284 * skb_queue_head - queue a buffer at the list head 2285 * @list: list to use 2286 * @newsk: buffer to queue 2287 * 2288 * Queue a buffer at the start of the list. This function takes the 2289 * list lock and can be used safely with other locking &sk_buff functions 2290 * safely. 2291 * 2292 * A buffer cannot be placed on two lists at the same time. 2293 */ 2294 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2295 { 2296 unsigned long flags; 2297 2298 spin_lock_irqsave(&list->lock, flags); 2299 __skb_queue_head(list, newsk); 2300 spin_unlock_irqrestore(&list->lock, flags); 2301 } 2302 EXPORT_SYMBOL(skb_queue_head); 2303 2304 /** 2305 * skb_queue_tail - queue a buffer at the list tail 2306 * @list: list to use 2307 * @newsk: buffer to queue 2308 * 2309 * Queue a buffer at the tail of the list. This function takes the 2310 * list lock and can be used safely with other locking &sk_buff functions 2311 * safely. 2312 * 2313 * A buffer cannot be placed on two lists at the same time. 2314 */ 2315 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2316 { 2317 unsigned long flags; 2318 2319 spin_lock_irqsave(&list->lock, flags); 2320 __skb_queue_tail(list, newsk); 2321 spin_unlock_irqrestore(&list->lock, flags); 2322 } 2323 EXPORT_SYMBOL(skb_queue_tail); 2324 2325 /** 2326 * skb_unlink - remove a buffer from a list 2327 * @skb: buffer to remove 2328 * @list: list to use 2329 * 2330 * Remove a packet from a list. The list locks are taken and this 2331 * function is atomic with respect to other list locked calls 2332 * 2333 * You must know what list the SKB is on. 2334 */ 2335 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2336 { 2337 unsigned long flags; 2338 2339 spin_lock_irqsave(&list->lock, flags); 2340 __skb_unlink(skb, list); 2341 spin_unlock_irqrestore(&list->lock, flags); 2342 } 2343 EXPORT_SYMBOL(skb_unlink); 2344 2345 /** 2346 * skb_append - append a buffer 2347 * @old: buffer to insert after 2348 * @newsk: buffer to insert 2349 * @list: list to use 2350 * 2351 * Place a packet after a given packet in a list. The list locks are taken 2352 * and this function is atomic with respect to other list locked calls. 2353 * A buffer cannot be placed on two lists at the same time. 2354 */ 2355 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2356 { 2357 unsigned long flags; 2358 2359 spin_lock_irqsave(&list->lock, flags); 2360 __skb_queue_after(list, old, newsk); 2361 spin_unlock_irqrestore(&list->lock, flags); 2362 } 2363 EXPORT_SYMBOL(skb_append); 2364 2365 /** 2366 * skb_insert - insert a buffer 2367 * @old: buffer to insert before 2368 * @newsk: buffer to insert 2369 * @list: list to use 2370 * 2371 * Place a packet before a given packet in a list. The list locks are 2372 * taken and this function is atomic with respect to other list locked 2373 * calls. 2374 * 2375 * A buffer cannot be placed on two lists at the same time. 2376 */ 2377 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2378 { 2379 unsigned long flags; 2380 2381 spin_lock_irqsave(&list->lock, flags); 2382 __skb_insert(newsk, old->prev, old, list); 2383 spin_unlock_irqrestore(&list->lock, flags); 2384 } 2385 EXPORT_SYMBOL(skb_insert); 2386 2387 static inline void skb_split_inside_header(struct sk_buff *skb, 2388 struct sk_buff* skb1, 2389 const u32 len, const int pos) 2390 { 2391 int i; 2392 2393 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2394 pos - len); 2395 /* And move data appendix as is. */ 2396 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2397 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2398 2399 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2400 skb_shinfo(skb)->nr_frags = 0; 2401 skb1->data_len = skb->data_len; 2402 skb1->len += skb1->data_len; 2403 skb->data_len = 0; 2404 skb->len = len; 2405 skb_set_tail_pointer(skb, len); 2406 } 2407 2408 static inline void skb_split_no_header(struct sk_buff *skb, 2409 struct sk_buff* skb1, 2410 const u32 len, int pos) 2411 { 2412 int i, k = 0; 2413 const int nfrags = skb_shinfo(skb)->nr_frags; 2414 2415 skb_shinfo(skb)->nr_frags = 0; 2416 skb1->len = skb1->data_len = skb->len - len; 2417 skb->len = len; 2418 skb->data_len = len - pos; 2419 2420 for (i = 0; i < nfrags; i++) { 2421 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2422 2423 if (pos + size > len) { 2424 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2425 2426 if (pos < len) { 2427 /* Split frag. 2428 * We have two variants in this case: 2429 * 1. Move all the frag to the second 2430 * part, if it is possible. F.e. 2431 * this approach is mandatory for TUX, 2432 * where splitting is expensive. 2433 * 2. Split is accurately. We make this. 2434 */ 2435 skb_frag_ref(skb, i); 2436 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2437 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2438 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2439 skb_shinfo(skb)->nr_frags++; 2440 } 2441 k++; 2442 } else 2443 skb_shinfo(skb)->nr_frags++; 2444 pos += size; 2445 } 2446 skb_shinfo(skb1)->nr_frags = k; 2447 } 2448 2449 /** 2450 * skb_split - Split fragmented skb to two parts at length len. 2451 * @skb: the buffer to split 2452 * @skb1: the buffer to receive the second part 2453 * @len: new length for skb 2454 */ 2455 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2456 { 2457 int pos = skb_headlen(skb); 2458 2459 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2460 if (len < pos) /* Split line is inside header. */ 2461 skb_split_inside_header(skb, skb1, len, pos); 2462 else /* Second chunk has no header, nothing to copy. */ 2463 skb_split_no_header(skb, skb1, len, pos); 2464 } 2465 EXPORT_SYMBOL(skb_split); 2466 2467 /* Shifting from/to a cloned skb is a no-go. 2468 * 2469 * Caller cannot keep skb_shinfo related pointers past calling here! 2470 */ 2471 static int skb_prepare_for_shift(struct sk_buff *skb) 2472 { 2473 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2474 } 2475 2476 /** 2477 * skb_shift - Shifts paged data partially from skb to another 2478 * @tgt: buffer into which tail data gets added 2479 * @skb: buffer from which the paged data comes from 2480 * @shiftlen: shift up to this many bytes 2481 * 2482 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2483 * the length of the skb, from skb to tgt. Returns number bytes shifted. 2484 * It's up to caller to free skb if everything was shifted. 2485 * 2486 * If @tgt runs out of frags, the whole operation is aborted. 2487 * 2488 * Skb cannot include anything else but paged data while tgt is allowed 2489 * to have non-paged data as well. 2490 * 2491 * TODO: full sized shift could be optimized but that would need 2492 * specialized skb free'er to handle frags without up-to-date nr_frags. 2493 */ 2494 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2495 { 2496 int from, to, merge, todo; 2497 struct skb_frag_struct *fragfrom, *fragto; 2498 2499 BUG_ON(shiftlen > skb->len); 2500 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2501 2502 todo = shiftlen; 2503 from = 0; 2504 to = skb_shinfo(tgt)->nr_frags; 2505 fragfrom = &skb_shinfo(skb)->frags[from]; 2506 2507 /* Actual merge is delayed until the point when we know we can 2508 * commit all, so that we don't have to undo partial changes 2509 */ 2510 if (!to || 2511 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2512 fragfrom->page_offset)) { 2513 merge = -1; 2514 } else { 2515 merge = to - 1; 2516 2517 todo -= skb_frag_size(fragfrom); 2518 if (todo < 0) { 2519 if (skb_prepare_for_shift(skb) || 2520 skb_prepare_for_shift(tgt)) 2521 return 0; 2522 2523 /* All previous frag pointers might be stale! */ 2524 fragfrom = &skb_shinfo(skb)->frags[from]; 2525 fragto = &skb_shinfo(tgt)->frags[merge]; 2526 2527 skb_frag_size_add(fragto, shiftlen); 2528 skb_frag_size_sub(fragfrom, shiftlen); 2529 fragfrom->page_offset += shiftlen; 2530 2531 goto onlymerged; 2532 } 2533 2534 from++; 2535 } 2536 2537 /* Skip full, not-fitting skb to avoid expensive operations */ 2538 if ((shiftlen == skb->len) && 2539 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2540 return 0; 2541 2542 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2543 return 0; 2544 2545 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2546 if (to == MAX_SKB_FRAGS) 2547 return 0; 2548 2549 fragfrom = &skb_shinfo(skb)->frags[from]; 2550 fragto = &skb_shinfo(tgt)->frags[to]; 2551 2552 if (todo >= skb_frag_size(fragfrom)) { 2553 *fragto = *fragfrom; 2554 todo -= skb_frag_size(fragfrom); 2555 from++; 2556 to++; 2557 2558 } else { 2559 __skb_frag_ref(fragfrom); 2560 fragto->page = fragfrom->page; 2561 fragto->page_offset = fragfrom->page_offset; 2562 skb_frag_size_set(fragto, todo); 2563 2564 fragfrom->page_offset += todo; 2565 skb_frag_size_sub(fragfrom, todo); 2566 todo = 0; 2567 2568 to++; 2569 break; 2570 } 2571 } 2572 2573 /* Ready to "commit" this state change to tgt */ 2574 skb_shinfo(tgt)->nr_frags = to; 2575 2576 if (merge >= 0) { 2577 fragfrom = &skb_shinfo(skb)->frags[0]; 2578 fragto = &skb_shinfo(tgt)->frags[merge]; 2579 2580 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2581 __skb_frag_unref(fragfrom); 2582 } 2583 2584 /* Reposition in the original skb */ 2585 to = 0; 2586 while (from < skb_shinfo(skb)->nr_frags) 2587 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2588 skb_shinfo(skb)->nr_frags = to; 2589 2590 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2591 2592 onlymerged: 2593 /* Most likely the tgt won't ever need its checksum anymore, skb on 2594 * the other hand might need it if it needs to be resent 2595 */ 2596 tgt->ip_summed = CHECKSUM_PARTIAL; 2597 skb->ip_summed = CHECKSUM_PARTIAL; 2598 2599 /* Yak, is it really working this way? Some helper please? */ 2600 skb->len -= shiftlen; 2601 skb->data_len -= shiftlen; 2602 skb->truesize -= shiftlen; 2603 tgt->len += shiftlen; 2604 tgt->data_len += shiftlen; 2605 tgt->truesize += shiftlen; 2606 2607 return shiftlen; 2608 } 2609 2610 /** 2611 * skb_prepare_seq_read - Prepare a sequential read of skb data 2612 * @skb: the buffer to read 2613 * @from: lower offset of data to be read 2614 * @to: upper offset of data to be read 2615 * @st: state variable 2616 * 2617 * Initializes the specified state variable. Must be called before 2618 * invoking skb_seq_read() for the first time. 2619 */ 2620 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2621 unsigned int to, struct skb_seq_state *st) 2622 { 2623 st->lower_offset = from; 2624 st->upper_offset = to; 2625 st->root_skb = st->cur_skb = skb; 2626 st->frag_idx = st->stepped_offset = 0; 2627 st->frag_data = NULL; 2628 } 2629 EXPORT_SYMBOL(skb_prepare_seq_read); 2630 2631 /** 2632 * skb_seq_read - Sequentially read skb data 2633 * @consumed: number of bytes consumed by the caller so far 2634 * @data: destination pointer for data to be returned 2635 * @st: state variable 2636 * 2637 * Reads a block of skb data at @consumed relative to the 2638 * lower offset specified to skb_prepare_seq_read(). Assigns 2639 * the head of the data block to @data and returns the length 2640 * of the block or 0 if the end of the skb data or the upper 2641 * offset has been reached. 2642 * 2643 * The caller is not required to consume all of the data 2644 * returned, i.e. @consumed is typically set to the number 2645 * of bytes already consumed and the next call to 2646 * skb_seq_read() will return the remaining part of the block. 2647 * 2648 * Note 1: The size of each block of data returned can be arbitrary, 2649 * this limitation is the cost for zerocopy seqeuental 2650 * reads of potentially non linear data. 2651 * 2652 * Note 2: Fragment lists within fragments are not implemented 2653 * at the moment, state->root_skb could be replaced with 2654 * a stack for this purpose. 2655 */ 2656 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2657 struct skb_seq_state *st) 2658 { 2659 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2660 skb_frag_t *frag; 2661 2662 if (unlikely(abs_offset >= st->upper_offset)) { 2663 if (st->frag_data) { 2664 kunmap_atomic(st->frag_data); 2665 st->frag_data = NULL; 2666 } 2667 return 0; 2668 } 2669 2670 next_skb: 2671 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2672 2673 if (abs_offset < block_limit && !st->frag_data) { 2674 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2675 return block_limit - abs_offset; 2676 } 2677 2678 if (st->frag_idx == 0 && !st->frag_data) 2679 st->stepped_offset += skb_headlen(st->cur_skb); 2680 2681 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2682 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2683 block_limit = skb_frag_size(frag) + st->stepped_offset; 2684 2685 if (abs_offset < block_limit) { 2686 if (!st->frag_data) 2687 st->frag_data = kmap_atomic(skb_frag_page(frag)); 2688 2689 *data = (u8 *) st->frag_data + frag->page_offset + 2690 (abs_offset - st->stepped_offset); 2691 2692 return block_limit - abs_offset; 2693 } 2694 2695 if (st->frag_data) { 2696 kunmap_atomic(st->frag_data); 2697 st->frag_data = NULL; 2698 } 2699 2700 st->frag_idx++; 2701 st->stepped_offset += skb_frag_size(frag); 2702 } 2703 2704 if (st->frag_data) { 2705 kunmap_atomic(st->frag_data); 2706 st->frag_data = NULL; 2707 } 2708 2709 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2710 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2711 st->frag_idx = 0; 2712 goto next_skb; 2713 } else if (st->cur_skb->next) { 2714 st->cur_skb = st->cur_skb->next; 2715 st->frag_idx = 0; 2716 goto next_skb; 2717 } 2718 2719 return 0; 2720 } 2721 EXPORT_SYMBOL(skb_seq_read); 2722 2723 /** 2724 * skb_abort_seq_read - Abort a sequential read of skb data 2725 * @st: state variable 2726 * 2727 * Must be called if skb_seq_read() was not called until it 2728 * returned 0. 2729 */ 2730 void skb_abort_seq_read(struct skb_seq_state *st) 2731 { 2732 if (st->frag_data) 2733 kunmap_atomic(st->frag_data); 2734 } 2735 EXPORT_SYMBOL(skb_abort_seq_read); 2736 2737 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2738 2739 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2740 struct ts_config *conf, 2741 struct ts_state *state) 2742 { 2743 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2744 } 2745 2746 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2747 { 2748 skb_abort_seq_read(TS_SKB_CB(state)); 2749 } 2750 2751 /** 2752 * skb_find_text - Find a text pattern in skb data 2753 * @skb: the buffer to look in 2754 * @from: search offset 2755 * @to: search limit 2756 * @config: textsearch configuration 2757 * @state: uninitialized textsearch state variable 2758 * 2759 * Finds a pattern in the skb data according to the specified 2760 * textsearch configuration. Use textsearch_next() to retrieve 2761 * subsequent occurrences of the pattern. Returns the offset 2762 * to the first occurrence or UINT_MAX if no match was found. 2763 */ 2764 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2765 unsigned int to, struct ts_config *config, 2766 struct ts_state *state) 2767 { 2768 unsigned int ret; 2769 2770 config->get_next_block = skb_ts_get_next_block; 2771 config->finish = skb_ts_finish; 2772 2773 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2774 2775 ret = textsearch_find(config, state); 2776 return (ret <= to - from ? ret : UINT_MAX); 2777 } 2778 EXPORT_SYMBOL(skb_find_text); 2779 2780 /** 2781 * skb_append_datato_frags - append the user data to a skb 2782 * @sk: sock structure 2783 * @skb: skb structure to be appened with user data. 2784 * @getfrag: call back function to be used for getting the user data 2785 * @from: pointer to user message iov 2786 * @length: length of the iov message 2787 * 2788 * Description: This procedure append the user data in the fragment part 2789 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2790 */ 2791 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2792 int (*getfrag)(void *from, char *to, int offset, 2793 int len, int odd, struct sk_buff *skb), 2794 void *from, int length) 2795 { 2796 int frg_cnt = skb_shinfo(skb)->nr_frags; 2797 int copy; 2798 int offset = 0; 2799 int ret; 2800 struct page_frag *pfrag = ¤t->task_frag; 2801 2802 do { 2803 /* Return error if we don't have space for new frag */ 2804 if (frg_cnt >= MAX_SKB_FRAGS) 2805 return -EMSGSIZE; 2806 2807 if (!sk_page_frag_refill(sk, pfrag)) 2808 return -ENOMEM; 2809 2810 /* copy the user data to page */ 2811 copy = min_t(int, length, pfrag->size - pfrag->offset); 2812 2813 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 2814 offset, copy, 0, skb); 2815 if (ret < 0) 2816 return -EFAULT; 2817 2818 /* copy was successful so update the size parameters */ 2819 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 2820 copy); 2821 frg_cnt++; 2822 pfrag->offset += copy; 2823 get_page(pfrag->page); 2824 2825 skb->truesize += copy; 2826 atomic_add(copy, &sk->sk_wmem_alloc); 2827 skb->len += copy; 2828 skb->data_len += copy; 2829 offset += copy; 2830 length -= copy; 2831 2832 } while (length > 0); 2833 2834 return 0; 2835 } 2836 EXPORT_SYMBOL(skb_append_datato_frags); 2837 2838 /** 2839 * skb_pull_rcsum - pull skb and update receive checksum 2840 * @skb: buffer to update 2841 * @len: length of data pulled 2842 * 2843 * This function performs an skb_pull on the packet and updates 2844 * the CHECKSUM_COMPLETE checksum. It should be used on 2845 * receive path processing instead of skb_pull unless you know 2846 * that the checksum difference is zero (e.g., a valid IP header) 2847 * or you are setting ip_summed to CHECKSUM_NONE. 2848 */ 2849 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2850 { 2851 BUG_ON(len > skb->len); 2852 skb->len -= len; 2853 BUG_ON(skb->len < skb->data_len); 2854 skb_postpull_rcsum(skb, skb->data, len); 2855 return skb->data += len; 2856 } 2857 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2858 2859 /** 2860 * skb_segment - Perform protocol segmentation on skb. 2861 * @head_skb: buffer to segment 2862 * @features: features for the output path (see dev->features) 2863 * 2864 * This function performs segmentation on the given skb. It returns 2865 * a pointer to the first in a list of new skbs for the segments. 2866 * In case of error it returns ERR_PTR(err). 2867 */ 2868 struct sk_buff *skb_segment(struct sk_buff *head_skb, 2869 netdev_features_t features) 2870 { 2871 struct sk_buff *segs = NULL; 2872 struct sk_buff *tail = NULL; 2873 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 2874 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 2875 unsigned int mss = skb_shinfo(head_skb)->gso_size; 2876 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 2877 struct sk_buff *frag_skb = head_skb; 2878 unsigned int offset = doffset; 2879 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 2880 unsigned int headroom; 2881 unsigned int len; 2882 __be16 proto; 2883 bool csum; 2884 int sg = !!(features & NETIF_F_SG); 2885 int nfrags = skb_shinfo(head_skb)->nr_frags; 2886 int err = -ENOMEM; 2887 int i = 0; 2888 int pos; 2889 int dummy; 2890 2891 __skb_push(head_skb, doffset); 2892 proto = skb_network_protocol(head_skb, &dummy); 2893 if (unlikely(!proto)) 2894 return ERR_PTR(-EINVAL); 2895 2896 csum = !head_skb->encap_hdr_csum && 2897 !!can_checksum_protocol(features, proto); 2898 2899 headroom = skb_headroom(head_skb); 2900 pos = skb_headlen(head_skb); 2901 2902 do { 2903 struct sk_buff *nskb; 2904 skb_frag_t *nskb_frag; 2905 int hsize; 2906 int size; 2907 2908 len = head_skb->len - offset; 2909 if (len > mss) 2910 len = mss; 2911 2912 hsize = skb_headlen(head_skb) - offset; 2913 if (hsize < 0) 2914 hsize = 0; 2915 if (hsize > len || !sg) 2916 hsize = len; 2917 2918 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 2919 (skb_headlen(list_skb) == len || sg)) { 2920 BUG_ON(skb_headlen(list_skb) > len); 2921 2922 i = 0; 2923 nfrags = skb_shinfo(list_skb)->nr_frags; 2924 frag = skb_shinfo(list_skb)->frags; 2925 frag_skb = list_skb; 2926 pos += skb_headlen(list_skb); 2927 2928 while (pos < offset + len) { 2929 BUG_ON(i >= nfrags); 2930 2931 size = skb_frag_size(frag); 2932 if (pos + size > offset + len) 2933 break; 2934 2935 i++; 2936 pos += size; 2937 frag++; 2938 } 2939 2940 nskb = skb_clone(list_skb, GFP_ATOMIC); 2941 list_skb = list_skb->next; 2942 2943 if (unlikely(!nskb)) 2944 goto err; 2945 2946 if (unlikely(pskb_trim(nskb, len))) { 2947 kfree_skb(nskb); 2948 goto err; 2949 } 2950 2951 hsize = skb_end_offset(nskb); 2952 if (skb_cow_head(nskb, doffset + headroom)) { 2953 kfree_skb(nskb); 2954 goto err; 2955 } 2956 2957 nskb->truesize += skb_end_offset(nskb) - hsize; 2958 skb_release_head_state(nskb); 2959 __skb_push(nskb, doffset); 2960 } else { 2961 nskb = __alloc_skb(hsize + doffset + headroom, 2962 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 2963 NUMA_NO_NODE); 2964 2965 if (unlikely(!nskb)) 2966 goto err; 2967 2968 skb_reserve(nskb, headroom); 2969 __skb_put(nskb, doffset); 2970 } 2971 2972 if (segs) 2973 tail->next = nskb; 2974 else 2975 segs = nskb; 2976 tail = nskb; 2977 2978 __copy_skb_header(nskb, head_skb); 2979 nskb->mac_len = head_skb->mac_len; 2980 2981 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 2982 2983 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 2984 nskb->data - tnl_hlen, 2985 doffset + tnl_hlen); 2986 2987 if (nskb->len == len + doffset) 2988 goto perform_csum_check; 2989 2990 if (!sg) { 2991 nskb->ip_summed = CHECKSUM_NONE; 2992 nskb->csum = skb_copy_and_csum_bits(head_skb, offset, 2993 skb_put(nskb, len), 2994 len, 0); 2995 SKB_GSO_CB(nskb)->csum_start = 2996 skb_headroom(nskb) + offset; 2997 continue; 2998 } 2999 3000 nskb_frag = skb_shinfo(nskb)->frags; 3001 3002 skb_copy_from_linear_data_offset(head_skb, offset, 3003 skb_put(nskb, hsize), hsize); 3004 3005 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags & 3006 SKBTX_SHARED_FRAG; 3007 3008 while (pos < offset + len) { 3009 if (i >= nfrags) { 3010 BUG_ON(skb_headlen(list_skb)); 3011 3012 i = 0; 3013 nfrags = skb_shinfo(list_skb)->nr_frags; 3014 frag = skb_shinfo(list_skb)->frags; 3015 frag_skb = list_skb; 3016 3017 BUG_ON(!nfrags); 3018 3019 list_skb = list_skb->next; 3020 } 3021 3022 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3023 MAX_SKB_FRAGS)) { 3024 net_warn_ratelimited( 3025 "skb_segment: too many frags: %u %u\n", 3026 pos, mss); 3027 goto err; 3028 } 3029 3030 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC))) 3031 goto err; 3032 3033 *nskb_frag = *frag; 3034 __skb_frag_ref(nskb_frag); 3035 size = skb_frag_size(nskb_frag); 3036 3037 if (pos < offset) { 3038 nskb_frag->page_offset += offset - pos; 3039 skb_frag_size_sub(nskb_frag, offset - pos); 3040 } 3041 3042 skb_shinfo(nskb)->nr_frags++; 3043 3044 if (pos + size <= offset + len) { 3045 i++; 3046 frag++; 3047 pos += size; 3048 } else { 3049 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3050 goto skip_fraglist; 3051 } 3052 3053 nskb_frag++; 3054 } 3055 3056 skip_fraglist: 3057 nskb->data_len = len - hsize; 3058 nskb->len += nskb->data_len; 3059 nskb->truesize += nskb->data_len; 3060 3061 perform_csum_check: 3062 if (!csum) { 3063 nskb->csum = skb_checksum(nskb, doffset, 3064 nskb->len - doffset, 0); 3065 nskb->ip_summed = CHECKSUM_NONE; 3066 SKB_GSO_CB(nskb)->csum_start = 3067 skb_headroom(nskb) + doffset; 3068 } 3069 } while ((offset += len) < head_skb->len); 3070 3071 return segs; 3072 3073 err: 3074 kfree_skb_list(segs); 3075 return ERR_PTR(err); 3076 } 3077 EXPORT_SYMBOL_GPL(skb_segment); 3078 3079 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3080 { 3081 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3082 unsigned int offset = skb_gro_offset(skb); 3083 unsigned int headlen = skb_headlen(skb); 3084 struct sk_buff *nskb, *lp, *p = *head; 3085 unsigned int len = skb_gro_len(skb); 3086 unsigned int delta_truesize; 3087 unsigned int headroom; 3088 3089 if (unlikely(p->len + len >= 65536)) 3090 return -E2BIG; 3091 3092 lp = NAPI_GRO_CB(p)->last; 3093 pinfo = skb_shinfo(lp); 3094 3095 if (headlen <= offset) { 3096 skb_frag_t *frag; 3097 skb_frag_t *frag2; 3098 int i = skbinfo->nr_frags; 3099 int nr_frags = pinfo->nr_frags + i; 3100 3101 if (nr_frags > MAX_SKB_FRAGS) 3102 goto merge; 3103 3104 offset -= headlen; 3105 pinfo->nr_frags = nr_frags; 3106 skbinfo->nr_frags = 0; 3107 3108 frag = pinfo->frags + nr_frags; 3109 frag2 = skbinfo->frags + i; 3110 do { 3111 *--frag = *--frag2; 3112 } while (--i); 3113 3114 frag->page_offset += offset; 3115 skb_frag_size_sub(frag, offset); 3116 3117 /* all fragments truesize : remove (head size + sk_buff) */ 3118 delta_truesize = skb->truesize - 3119 SKB_TRUESIZE(skb_end_offset(skb)); 3120 3121 skb->truesize -= skb->data_len; 3122 skb->len -= skb->data_len; 3123 skb->data_len = 0; 3124 3125 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3126 goto done; 3127 } else if (skb->head_frag) { 3128 int nr_frags = pinfo->nr_frags; 3129 skb_frag_t *frag = pinfo->frags + nr_frags; 3130 struct page *page = virt_to_head_page(skb->head); 3131 unsigned int first_size = headlen - offset; 3132 unsigned int first_offset; 3133 3134 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3135 goto merge; 3136 3137 first_offset = skb->data - 3138 (unsigned char *)page_address(page) + 3139 offset; 3140 3141 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3142 3143 frag->page.p = page; 3144 frag->page_offset = first_offset; 3145 skb_frag_size_set(frag, first_size); 3146 3147 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3148 /* We dont need to clear skbinfo->nr_frags here */ 3149 3150 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3151 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3152 goto done; 3153 } 3154 if (pinfo->frag_list) 3155 goto merge; 3156 if (skb_gro_len(p) != pinfo->gso_size) 3157 return -E2BIG; 3158 3159 headroom = skb_headroom(p); 3160 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC); 3161 if (unlikely(!nskb)) 3162 return -ENOMEM; 3163 3164 __copy_skb_header(nskb, p); 3165 nskb->mac_len = p->mac_len; 3166 3167 skb_reserve(nskb, headroom); 3168 __skb_put(nskb, skb_gro_offset(p)); 3169 3170 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 3171 skb_set_network_header(nskb, skb_network_offset(p)); 3172 skb_set_transport_header(nskb, skb_transport_offset(p)); 3173 3174 __skb_pull(p, skb_gro_offset(p)); 3175 memcpy(skb_mac_header(nskb), skb_mac_header(p), 3176 p->data - skb_mac_header(p)); 3177 3178 skb_shinfo(nskb)->frag_list = p; 3179 skb_shinfo(nskb)->gso_size = pinfo->gso_size; 3180 pinfo->gso_size = 0; 3181 skb_header_release(p); 3182 NAPI_GRO_CB(nskb)->last = p; 3183 3184 nskb->data_len += p->len; 3185 nskb->truesize += p->truesize; 3186 nskb->len += p->len; 3187 3188 *head = nskb; 3189 nskb->next = p->next; 3190 p->next = NULL; 3191 3192 p = nskb; 3193 3194 merge: 3195 delta_truesize = skb->truesize; 3196 if (offset > headlen) { 3197 unsigned int eat = offset - headlen; 3198 3199 skbinfo->frags[0].page_offset += eat; 3200 skb_frag_size_sub(&skbinfo->frags[0], eat); 3201 skb->data_len -= eat; 3202 skb->len -= eat; 3203 offset = headlen; 3204 } 3205 3206 __skb_pull(skb, offset); 3207 3208 if (NAPI_GRO_CB(p)->last == p) 3209 skb_shinfo(p)->frag_list = skb; 3210 else 3211 NAPI_GRO_CB(p)->last->next = skb; 3212 NAPI_GRO_CB(p)->last = skb; 3213 skb_header_release(skb); 3214 lp = p; 3215 3216 done: 3217 NAPI_GRO_CB(p)->count++; 3218 p->data_len += len; 3219 p->truesize += delta_truesize; 3220 p->len += len; 3221 if (lp != p) { 3222 lp->data_len += len; 3223 lp->truesize += delta_truesize; 3224 lp->len += len; 3225 } 3226 NAPI_GRO_CB(skb)->same_flow = 1; 3227 return 0; 3228 } 3229 EXPORT_SYMBOL_GPL(skb_gro_receive); 3230 3231 void __init skb_init(void) 3232 { 3233 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3234 sizeof(struct sk_buff), 3235 0, 3236 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3237 NULL); 3238 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3239 (2*sizeof(struct sk_buff)) + 3240 sizeof(atomic_t), 3241 0, 3242 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3243 NULL); 3244 } 3245 3246 /** 3247 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3248 * @skb: Socket buffer containing the buffers to be mapped 3249 * @sg: The scatter-gather list to map into 3250 * @offset: The offset into the buffer's contents to start mapping 3251 * @len: Length of buffer space to be mapped 3252 * 3253 * Fill the specified scatter-gather list with mappings/pointers into a 3254 * region of the buffer space attached to a socket buffer. 3255 */ 3256 static int 3257 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3258 { 3259 int start = skb_headlen(skb); 3260 int i, copy = start - offset; 3261 struct sk_buff *frag_iter; 3262 int elt = 0; 3263 3264 if (copy > 0) { 3265 if (copy > len) 3266 copy = len; 3267 sg_set_buf(sg, skb->data + offset, copy); 3268 elt++; 3269 if ((len -= copy) == 0) 3270 return elt; 3271 offset += copy; 3272 } 3273 3274 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3275 int end; 3276 3277 WARN_ON(start > offset + len); 3278 3279 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3280 if ((copy = end - offset) > 0) { 3281 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3282 3283 if (copy > len) 3284 copy = len; 3285 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3286 frag->page_offset+offset-start); 3287 elt++; 3288 if (!(len -= copy)) 3289 return elt; 3290 offset += copy; 3291 } 3292 start = end; 3293 } 3294 3295 skb_walk_frags(skb, frag_iter) { 3296 int end; 3297 3298 WARN_ON(start > offset + len); 3299 3300 end = start + frag_iter->len; 3301 if ((copy = end - offset) > 0) { 3302 if (copy > len) 3303 copy = len; 3304 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3305 copy); 3306 if ((len -= copy) == 0) 3307 return elt; 3308 offset += copy; 3309 } 3310 start = end; 3311 } 3312 BUG_ON(len); 3313 return elt; 3314 } 3315 3316 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 3317 * sglist without mark the sg which contain last skb data as the end. 3318 * So the caller can mannipulate sg list as will when padding new data after 3319 * the first call without calling sg_unmark_end to expend sg list. 3320 * 3321 * Scenario to use skb_to_sgvec_nomark: 3322 * 1. sg_init_table 3323 * 2. skb_to_sgvec_nomark(payload1) 3324 * 3. skb_to_sgvec_nomark(payload2) 3325 * 3326 * This is equivalent to: 3327 * 1. sg_init_table 3328 * 2. skb_to_sgvec(payload1) 3329 * 3. sg_unmark_end 3330 * 4. skb_to_sgvec(payload2) 3331 * 3332 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 3333 * is more preferable. 3334 */ 3335 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 3336 int offset, int len) 3337 { 3338 return __skb_to_sgvec(skb, sg, offset, len); 3339 } 3340 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 3341 3342 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3343 { 3344 int nsg = __skb_to_sgvec(skb, sg, offset, len); 3345 3346 sg_mark_end(&sg[nsg - 1]); 3347 3348 return nsg; 3349 } 3350 EXPORT_SYMBOL_GPL(skb_to_sgvec); 3351 3352 /** 3353 * skb_cow_data - Check that a socket buffer's data buffers are writable 3354 * @skb: The socket buffer to check. 3355 * @tailbits: Amount of trailing space to be added 3356 * @trailer: Returned pointer to the skb where the @tailbits space begins 3357 * 3358 * Make sure that the data buffers attached to a socket buffer are 3359 * writable. If they are not, private copies are made of the data buffers 3360 * and the socket buffer is set to use these instead. 3361 * 3362 * If @tailbits is given, make sure that there is space to write @tailbits 3363 * bytes of data beyond current end of socket buffer. @trailer will be 3364 * set to point to the skb in which this space begins. 3365 * 3366 * The number of scatterlist elements required to completely map the 3367 * COW'd and extended socket buffer will be returned. 3368 */ 3369 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3370 { 3371 int copyflag; 3372 int elt; 3373 struct sk_buff *skb1, **skb_p; 3374 3375 /* If skb is cloned or its head is paged, reallocate 3376 * head pulling out all the pages (pages are considered not writable 3377 * at the moment even if they are anonymous). 3378 */ 3379 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3380 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3381 return -ENOMEM; 3382 3383 /* Easy case. Most of packets will go this way. */ 3384 if (!skb_has_frag_list(skb)) { 3385 /* A little of trouble, not enough of space for trailer. 3386 * This should not happen, when stack is tuned to generate 3387 * good frames. OK, on miss we reallocate and reserve even more 3388 * space, 128 bytes is fair. */ 3389 3390 if (skb_tailroom(skb) < tailbits && 3391 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3392 return -ENOMEM; 3393 3394 /* Voila! */ 3395 *trailer = skb; 3396 return 1; 3397 } 3398 3399 /* Misery. We are in troubles, going to mincer fragments... */ 3400 3401 elt = 1; 3402 skb_p = &skb_shinfo(skb)->frag_list; 3403 copyflag = 0; 3404 3405 while ((skb1 = *skb_p) != NULL) { 3406 int ntail = 0; 3407 3408 /* The fragment is partially pulled by someone, 3409 * this can happen on input. Copy it and everything 3410 * after it. */ 3411 3412 if (skb_shared(skb1)) 3413 copyflag = 1; 3414 3415 /* If the skb is the last, worry about trailer. */ 3416 3417 if (skb1->next == NULL && tailbits) { 3418 if (skb_shinfo(skb1)->nr_frags || 3419 skb_has_frag_list(skb1) || 3420 skb_tailroom(skb1) < tailbits) 3421 ntail = tailbits + 128; 3422 } 3423 3424 if (copyflag || 3425 skb_cloned(skb1) || 3426 ntail || 3427 skb_shinfo(skb1)->nr_frags || 3428 skb_has_frag_list(skb1)) { 3429 struct sk_buff *skb2; 3430 3431 /* Fuck, we are miserable poor guys... */ 3432 if (ntail == 0) 3433 skb2 = skb_copy(skb1, GFP_ATOMIC); 3434 else 3435 skb2 = skb_copy_expand(skb1, 3436 skb_headroom(skb1), 3437 ntail, 3438 GFP_ATOMIC); 3439 if (unlikely(skb2 == NULL)) 3440 return -ENOMEM; 3441 3442 if (skb1->sk) 3443 skb_set_owner_w(skb2, skb1->sk); 3444 3445 /* Looking around. Are we still alive? 3446 * OK, link new skb, drop old one */ 3447 3448 skb2->next = skb1->next; 3449 *skb_p = skb2; 3450 kfree_skb(skb1); 3451 skb1 = skb2; 3452 } 3453 elt++; 3454 *trailer = skb1; 3455 skb_p = &skb1->next; 3456 } 3457 3458 return elt; 3459 } 3460 EXPORT_SYMBOL_GPL(skb_cow_data); 3461 3462 static void sock_rmem_free(struct sk_buff *skb) 3463 { 3464 struct sock *sk = skb->sk; 3465 3466 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3467 } 3468 3469 /* 3470 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3471 */ 3472 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3473 { 3474 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3475 (unsigned int)sk->sk_rcvbuf) 3476 return -ENOMEM; 3477 3478 skb_orphan(skb); 3479 skb->sk = sk; 3480 skb->destructor = sock_rmem_free; 3481 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3482 3483 /* before exiting rcu section, make sure dst is refcounted */ 3484 skb_dst_force(skb); 3485 3486 skb_queue_tail(&sk->sk_error_queue, skb); 3487 if (!sock_flag(sk, SOCK_DEAD)) 3488 sk->sk_data_ready(sk); 3489 return 0; 3490 } 3491 EXPORT_SYMBOL(sock_queue_err_skb); 3492 3493 void skb_tstamp_tx(struct sk_buff *orig_skb, 3494 struct skb_shared_hwtstamps *hwtstamps) 3495 { 3496 struct sock *sk = orig_skb->sk; 3497 struct sock_exterr_skb *serr; 3498 struct sk_buff *skb; 3499 int err; 3500 3501 if (!sk) 3502 return; 3503 3504 if (hwtstamps) { 3505 *skb_hwtstamps(orig_skb) = 3506 *hwtstamps; 3507 } else { 3508 /* 3509 * no hardware time stamps available, 3510 * so keep the shared tx_flags and only 3511 * store software time stamp 3512 */ 3513 orig_skb->tstamp = ktime_get_real(); 3514 } 3515 3516 skb = skb_clone(orig_skb, GFP_ATOMIC); 3517 if (!skb) 3518 return; 3519 3520 serr = SKB_EXT_ERR(skb); 3521 memset(serr, 0, sizeof(*serr)); 3522 serr->ee.ee_errno = ENOMSG; 3523 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3524 3525 err = sock_queue_err_skb(sk, skb); 3526 3527 if (err) 3528 kfree_skb(skb); 3529 } 3530 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3531 3532 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 3533 { 3534 struct sock *sk = skb->sk; 3535 struct sock_exterr_skb *serr; 3536 int err; 3537 3538 skb->wifi_acked_valid = 1; 3539 skb->wifi_acked = acked; 3540 3541 serr = SKB_EXT_ERR(skb); 3542 memset(serr, 0, sizeof(*serr)); 3543 serr->ee.ee_errno = ENOMSG; 3544 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 3545 3546 err = sock_queue_err_skb(sk, skb); 3547 if (err) 3548 kfree_skb(skb); 3549 } 3550 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 3551 3552 3553 /** 3554 * skb_partial_csum_set - set up and verify partial csum values for packet 3555 * @skb: the skb to set 3556 * @start: the number of bytes after skb->data to start checksumming. 3557 * @off: the offset from start to place the checksum. 3558 * 3559 * For untrusted partially-checksummed packets, we need to make sure the values 3560 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3561 * 3562 * This function checks and sets those values and skb->ip_summed: if this 3563 * returns false you should drop the packet. 3564 */ 3565 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3566 { 3567 if (unlikely(start > skb_headlen(skb)) || 3568 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3569 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 3570 start, off, skb_headlen(skb)); 3571 return false; 3572 } 3573 skb->ip_summed = CHECKSUM_PARTIAL; 3574 skb->csum_start = skb_headroom(skb) + start; 3575 skb->csum_offset = off; 3576 skb_set_transport_header(skb, start); 3577 return true; 3578 } 3579 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3580 3581 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 3582 unsigned int max) 3583 { 3584 if (skb_headlen(skb) >= len) 3585 return 0; 3586 3587 /* If we need to pullup then pullup to the max, so we 3588 * won't need to do it again. 3589 */ 3590 if (max > skb->len) 3591 max = skb->len; 3592 3593 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 3594 return -ENOMEM; 3595 3596 if (skb_headlen(skb) < len) 3597 return -EPROTO; 3598 3599 return 0; 3600 } 3601 3602 #define MAX_TCP_HDR_LEN (15 * 4) 3603 3604 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 3605 typeof(IPPROTO_IP) proto, 3606 unsigned int off) 3607 { 3608 switch (proto) { 3609 int err; 3610 3611 case IPPROTO_TCP: 3612 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 3613 off + MAX_TCP_HDR_LEN); 3614 if (!err && !skb_partial_csum_set(skb, off, 3615 offsetof(struct tcphdr, 3616 check))) 3617 err = -EPROTO; 3618 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 3619 3620 case IPPROTO_UDP: 3621 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 3622 off + sizeof(struct udphdr)); 3623 if (!err && !skb_partial_csum_set(skb, off, 3624 offsetof(struct udphdr, 3625 check))) 3626 err = -EPROTO; 3627 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 3628 } 3629 3630 return ERR_PTR(-EPROTO); 3631 } 3632 3633 /* This value should be large enough to cover a tagged ethernet header plus 3634 * maximally sized IP and TCP or UDP headers. 3635 */ 3636 #define MAX_IP_HDR_LEN 128 3637 3638 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 3639 { 3640 unsigned int off; 3641 bool fragment; 3642 __sum16 *csum; 3643 int err; 3644 3645 fragment = false; 3646 3647 err = skb_maybe_pull_tail(skb, 3648 sizeof(struct iphdr), 3649 MAX_IP_HDR_LEN); 3650 if (err < 0) 3651 goto out; 3652 3653 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 3654 fragment = true; 3655 3656 off = ip_hdrlen(skb); 3657 3658 err = -EPROTO; 3659 3660 if (fragment) 3661 goto out; 3662 3663 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 3664 if (IS_ERR(csum)) 3665 return PTR_ERR(csum); 3666 3667 if (recalculate) 3668 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3669 ip_hdr(skb)->daddr, 3670 skb->len - off, 3671 ip_hdr(skb)->protocol, 0); 3672 err = 0; 3673 3674 out: 3675 return err; 3676 } 3677 3678 /* This value should be large enough to cover a tagged ethernet header plus 3679 * an IPv6 header, all options, and a maximal TCP or UDP header. 3680 */ 3681 #define MAX_IPV6_HDR_LEN 256 3682 3683 #define OPT_HDR(type, skb, off) \ 3684 (type *)(skb_network_header(skb) + (off)) 3685 3686 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 3687 { 3688 int err; 3689 u8 nexthdr; 3690 unsigned int off; 3691 unsigned int len; 3692 bool fragment; 3693 bool done; 3694 __sum16 *csum; 3695 3696 fragment = false; 3697 done = false; 3698 3699 off = sizeof(struct ipv6hdr); 3700 3701 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 3702 if (err < 0) 3703 goto out; 3704 3705 nexthdr = ipv6_hdr(skb)->nexthdr; 3706 3707 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 3708 while (off <= len && !done) { 3709 switch (nexthdr) { 3710 case IPPROTO_DSTOPTS: 3711 case IPPROTO_HOPOPTS: 3712 case IPPROTO_ROUTING: { 3713 struct ipv6_opt_hdr *hp; 3714 3715 err = skb_maybe_pull_tail(skb, 3716 off + 3717 sizeof(struct ipv6_opt_hdr), 3718 MAX_IPV6_HDR_LEN); 3719 if (err < 0) 3720 goto out; 3721 3722 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 3723 nexthdr = hp->nexthdr; 3724 off += ipv6_optlen(hp); 3725 break; 3726 } 3727 case IPPROTO_AH: { 3728 struct ip_auth_hdr *hp; 3729 3730 err = skb_maybe_pull_tail(skb, 3731 off + 3732 sizeof(struct ip_auth_hdr), 3733 MAX_IPV6_HDR_LEN); 3734 if (err < 0) 3735 goto out; 3736 3737 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 3738 nexthdr = hp->nexthdr; 3739 off += ipv6_authlen(hp); 3740 break; 3741 } 3742 case IPPROTO_FRAGMENT: { 3743 struct frag_hdr *hp; 3744 3745 err = skb_maybe_pull_tail(skb, 3746 off + 3747 sizeof(struct frag_hdr), 3748 MAX_IPV6_HDR_LEN); 3749 if (err < 0) 3750 goto out; 3751 3752 hp = OPT_HDR(struct frag_hdr, skb, off); 3753 3754 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 3755 fragment = true; 3756 3757 nexthdr = hp->nexthdr; 3758 off += sizeof(struct frag_hdr); 3759 break; 3760 } 3761 default: 3762 done = true; 3763 break; 3764 } 3765 } 3766 3767 err = -EPROTO; 3768 3769 if (!done || fragment) 3770 goto out; 3771 3772 csum = skb_checksum_setup_ip(skb, nexthdr, off); 3773 if (IS_ERR(csum)) 3774 return PTR_ERR(csum); 3775 3776 if (recalculate) 3777 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3778 &ipv6_hdr(skb)->daddr, 3779 skb->len - off, nexthdr, 0); 3780 err = 0; 3781 3782 out: 3783 return err; 3784 } 3785 3786 /** 3787 * skb_checksum_setup - set up partial checksum offset 3788 * @skb: the skb to set up 3789 * @recalculate: if true the pseudo-header checksum will be recalculated 3790 */ 3791 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 3792 { 3793 int err; 3794 3795 switch (skb->protocol) { 3796 case htons(ETH_P_IP): 3797 err = skb_checksum_setup_ipv4(skb, recalculate); 3798 break; 3799 3800 case htons(ETH_P_IPV6): 3801 err = skb_checksum_setup_ipv6(skb, recalculate); 3802 break; 3803 3804 default: 3805 err = -EPROTO; 3806 break; 3807 } 3808 3809 return err; 3810 } 3811 EXPORT_SYMBOL(skb_checksum_setup); 3812 3813 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3814 { 3815 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 3816 skb->dev->name); 3817 } 3818 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3819 3820 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 3821 { 3822 if (head_stolen) { 3823 skb_release_head_state(skb); 3824 kmem_cache_free(skbuff_head_cache, skb); 3825 } else { 3826 __kfree_skb(skb); 3827 } 3828 } 3829 EXPORT_SYMBOL(kfree_skb_partial); 3830 3831 /** 3832 * skb_try_coalesce - try to merge skb to prior one 3833 * @to: prior buffer 3834 * @from: buffer to add 3835 * @fragstolen: pointer to boolean 3836 * @delta_truesize: how much more was allocated than was requested 3837 */ 3838 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 3839 bool *fragstolen, int *delta_truesize) 3840 { 3841 int i, delta, len = from->len; 3842 3843 *fragstolen = false; 3844 3845 if (skb_cloned(to)) 3846 return false; 3847 3848 if (len <= skb_tailroom(to)) { 3849 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 3850 *delta_truesize = 0; 3851 return true; 3852 } 3853 3854 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 3855 return false; 3856 3857 if (skb_headlen(from) != 0) { 3858 struct page *page; 3859 unsigned int offset; 3860 3861 if (skb_shinfo(to)->nr_frags + 3862 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 3863 return false; 3864 3865 if (skb_head_is_locked(from)) 3866 return false; 3867 3868 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3869 3870 page = virt_to_head_page(from->head); 3871 offset = from->data - (unsigned char *)page_address(page); 3872 3873 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 3874 page, offset, skb_headlen(from)); 3875 *fragstolen = true; 3876 } else { 3877 if (skb_shinfo(to)->nr_frags + 3878 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 3879 return false; 3880 3881 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 3882 } 3883 3884 WARN_ON_ONCE(delta < len); 3885 3886 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 3887 skb_shinfo(from)->frags, 3888 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 3889 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 3890 3891 if (!skb_cloned(from)) 3892 skb_shinfo(from)->nr_frags = 0; 3893 3894 /* if the skb is not cloned this does nothing 3895 * since we set nr_frags to 0. 3896 */ 3897 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 3898 skb_frag_ref(from, i); 3899 3900 to->truesize += delta; 3901 to->len += len; 3902 to->data_len += len; 3903 3904 *delta_truesize = delta; 3905 return true; 3906 } 3907 EXPORT_SYMBOL(skb_try_coalesce); 3908 3909 /** 3910 * skb_scrub_packet - scrub an skb 3911 * 3912 * @skb: buffer to clean 3913 * @xnet: packet is crossing netns 3914 * 3915 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 3916 * into/from a tunnel. Some information have to be cleared during these 3917 * operations. 3918 * skb_scrub_packet can also be used to clean a skb before injecting it in 3919 * another namespace (@xnet == true). We have to clear all information in the 3920 * skb that could impact namespace isolation. 3921 */ 3922 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 3923 { 3924 if (xnet) 3925 skb_orphan(skb); 3926 skb->tstamp.tv64 = 0; 3927 skb->pkt_type = PACKET_HOST; 3928 skb->skb_iif = 0; 3929 skb->ignore_df = 0; 3930 skb_dst_drop(skb); 3931 skb->mark = 0; 3932 secpath_reset(skb); 3933 nf_reset(skb); 3934 nf_reset_trace(skb); 3935 } 3936 EXPORT_SYMBOL_GPL(skb_scrub_packet); 3937 3938 /** 3939 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 3940 * 3941 * @skb: GSO skb 3942 * 3943 * skb_gso_transport_seglen is used to determine the real size of the 3944 * individual segments, including Layer4 headers (TCP/UDP). 3945 * 3946 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 3947 */ 3948 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 3949 { 3950 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3951 3952 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3953 return tcp_hdrlen(skb) + shinfo->gso_size; 3954 3955 /* UFO sets gso_size to the size of the fragmentation 3956 * payload, i.e. the size of the L4 (UDP) header is already 3957 * accounted for. 3958 */ 3959 return shinfo->gso_size; 3960 } 3961 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen); 3962