xref: /openbmc/linux/net/core/skbuff.c (revision 160b8e75)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
160 /**
161  *	__alloc_skb	-	allocate a network buffer
162  *	@size: size to allocate
163  *	@gfp_mask: allocation mask
164  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165  *		instead of head cache and allocate a cloned (child) skb.
166  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167  *		allocations in case the data is required for writeback
168  *	@node: numa node to allocate memory on
169  *
170  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
171  *	tail room of at least size bytes. The object has a reference count
172  *	of one. The return is the buffer. On a failure the return is %NULL.
173  *
174  *	Buffers may only be allocated from interrupts using a @gfp_mask of
175  *	%GFP_ATOMIC.
176  */
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 			    int flags, int node)
179 {
180 	struct kmem_cache *cache;
181 	struct skb_shared_info *shinfo;
182 	struct sk_buff *skb;
183 	u8 *data;
184 	bool pfmemalloc;
185 
186 	cache = (flags & SKB_ALLOC_FCLONE)
187 		? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 		gfp_mask |= __GFP_MEMALLOC;
191 
192 	/* Get the HEAD */
193 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 	if (!skb)
195 		goto out;
196 	prefetchw(skb);
197 
198 	/* We do our best to align skb_shared_info on a separate cache
199 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 	 * Both skb->head and skb_shared_info are cache line aligned.
202 	 */
203 	size = SKB_DATA_ALIGN(size);
204 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 	if (!data)
207 		goto nodata;
208 	/* kmalloc(size) might give us more room than requested.
209 	 * Put skb_shared_info exactly at the end of allocated zone,
210 	 * to allow max possible filling before reallocation.
211 	 */
212 	size = SKB_WITH_OVERHEAD(ksize(data));
213 	prefetchw(data + size);
214 
215 	/*
216 	 * Only clear those fields we need to clear, not those that we will
217 	 * actually initialise below. Hence, don't put any more fields after
218 	 * the tail pointer in struct sk_buff!
219 	 */
220 	memset(skb, 0, offsetof(struct sk_buff, tail));
221 	/* Account for allocated memory : skb + skb->head */
222 	skb->truesize = SKB_TRUESIZE(size);
223 	skb->pfmemalloc = pfmemalloc;
224 	refcount_set(&skb->users, 1);
225 	skb->head = data;
226 	skb->data = data;
227 	skb_reset_tail_pointer(skb);
228 	skb->end = skb->tail + size;
229 	skb->mac_header = (typeof(skb->mac_header))~0U;
230 	skb->transport_header = (typeof(skb->transport_header))~0U;
231 
232 	/* make sure we initialize shinfo sequentially */
233 	shinfo = skb_shinfo(skb);
234 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 	atomic_set(&shinfo->dataref, 1);
236 
237 	if (flags & SKB_ALLOC_FCLONE) {
238 		struct sk_buff_fclones *fclones;
239 
240 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
241 
242 		skb->fclone = SKB_FCLONE_ORIG;
243 		refcount_set(&fclones->fclone_ref, 1);
244 
245 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 	}
247 out:
248 	return skb;
249 nodata:
250 	kmem_cache_free(cache, skb);
251 	skb = NULL;
252 	goto out;
253 }
254 EXPORT_SYMBOL(__alloc_skb);
255 
256 /**
257  * __build_skb - build a network buffer
258  * @data: data buffer provided by caller
259  * @frag_size: size of data, or 0 if head was kmalloced
260  *
261  * Allocate a new &sk_buff. Caller provides space holding head and
262  * skb_shared_info. @data must have been allocated by kmalloc() only if
263  * @frag_size is 0, otherwise data should come from the page allocator
264  *  or vmalloc()
265  * The return is the new skb buffer.
266  * On a failure the return is %NULL, and @data is not freed.
267  * Notes :
268  *  Before IO, driver allocates only data buffer where NIC put incoming frame
269  *  Driver should add room at head (NET_SKB_PAD) and
270  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
272  *  before giving packet to stack.
273  *  RX rings only contains data buffers, not full skbs.
274  */
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276 {
277 	struct skb_shared_info *shinfo;
278 	struct sk_buff *skb;
279 	unsigned int size = frag_size ? : ksize(data);
280 
281 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 	if (!skb)
283 		return NULL;
284 
285 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286 
287 	memset(skb, 0, offsetof(struct sk_buff, tail));
288 	skb->truesize = SKB_TRUESIZE(size);
289 	refcount_set(&skb->users, 1);
290 	skb->head = data;
291 	skb->data = data;
292 	skb_reset_tail_pointer(skb);
293 	skb->end = skb->tail + size;
294 	skb->mac_header = (typeof(skb->mac_header))~0U;
295 	skb->transport_header = (typeof(skb->transport_header))~0U;
296 
297 	/* make sure we initialize shinfo sequentially */
298 	shinfo = skb_shinfo(skb);
299 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 	atomic_set(&shinfo->dataref, 1);
301 
302 	return skb;
303 }
304 
305 /* build_skb() is wrapper over __build_skb(), that specifically
306  * takes care of skb->head and skb->pfmemalloc
307  * This means that if @frag_size is not zero, then @data must be backed
308  * by a page fragment, not kmalloc() or vmalloc()
309  */
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
311 {
312 	struct sk_buff *skb = __build_skb(data, frag_size);
313 
314 	if (skb && frag_size) {
315 		skb->head_frag = 1;
316 		if (page_is_pfmemalloc(virt_to_head_page(data)))
317 			skb->pfmemalloc = 1;
318 	}
319 	return skb;
320 }
321 EXPORT_SYMBOL(build_skb);
322 
323 #define NAPI_SKB_CACHE_SIZE	64
324 
325 struct napi_alloc_cache {
326 	struct page_frag_cache page;
327 	unsigned int skb_count;
328 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
329 };
330 
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333 
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335 {
336 	struct page_frag_cache *nc;
337 	unsigned long flags;
338 	void *data;
339 
340 	local_irq_save(flags);
341 	nc = this_cpu_ptr(&netdev_alloc_cache);
342 	data = page_frag_alloc(nc, fragsz, gfp_mask);
343 	local_irq_restore(flags);
344 	return data;
345 }
346 
347 /**
348  * netdev_alloc_frag - allocate a page fragment
349  * @fragsz: fragment size
350  *
351  * Allocates a frag from a page for receive buffer.
352  * Uses GFP_ATOMIC allocations.
353  */
354 void *netdev_alloc_frag(unsigned int fragsz)
355 {
356 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
357 }
358 EXPORT_SYMBOL(netdev_alloc_frag);
359 
360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
361 {
362 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
363 
364 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
365 }
366 
367 void *napi_alloc_frag(unsigned int fragsz)
368 {
369 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
370 }
371 EXPORT_SYMBOL(napi_alloc_frag);
372 
373 /**
374  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
375  *	@dev: network device to receive on
376  *	@len: length to allocate
377  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
378  *
379  *	Allocate a new &sk_buff and assign it a usage count of one. The
380  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
381  *	the headroom they think they need without accounting for the
382  *	built in space. The built in space is used for optimisations.
383  *
384  *	%NULL is returned if there is no free memory.
385  */
386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 				   gfp_t gfp_mask)
388 {
389 	struct page_frag_cache *nc;
390 	unsigned long flags;
391 	struct sk_buff *skb;
392 	bool pfmemalloc;
393 	void *data;
394 
395 	len += NET_SKB_PAD;
396 
397 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 		if (!skb)
401 			goto skb_fail;
402 		goto skb_success;
403 	}
404 
405 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 	len = SKB_DATA_ALIGN(len);
407 
408 	if (sk_memalloc_socks())
409 		gfp_mask |= __GFP_MEMALLOC;
410 
411 	local_irq_save(flags);
412 
413 	nc = this_cpu_ptr(&netdev_alloc_cache);
414 	data = page_frag_alloc(nc, len, gfp_mask);
415 	pfmemalloc = nc->pfmemalloc;
416 
417 	local_irq_restore(flags);
418 
419 	if (unlikely(!data))
420 		return NULL;
421 
422 	skb = __build_skb(data, len);
423 	if (unlikely(!skb)) {
424 		skb_free_frag(data);
425 		return NULL;
426 	}
427 
428 	/* use OR instead of assignment to avoid clearing of bits in mask */
429 	if (pfmemalloc)
430 		skb->pfmemalloc = 1;
431 	skb->head_frag = 1;
432 
433 skb_success:
434 	skb_reserve(skb, NET_SKB_PAD);
435 	skb->dev = dev;
436 
437 skb_fail:
438 	return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441 
442 /**
443  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444  *	@napi: napi instance this buffer was allocated for
445  *	@len: length to allocate
446  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
447  *
448  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
449  *	attempt to allocate the head from a special reserved region used
450  *	only for NAPI Rx allocation.  By doing this we can save several
451  *	CPU cycles by avoiding having to disable and re-enable IRQs.
452  *
453  *	%NULL is returned if there is no free memory.
454  */
455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 				 gfp_t gfp_mask)
457 {
458 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 	struct sk_buff *skb;
460 	void *data;
461 
462 	len += NET_SKB_PAD + NET_IP_ALIGN;
463 
464 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 		if (!skb)
468 			goto skb_fail;
469 		goto skb_success;
470 	}
471 
472 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 	len = SKB_DATA_ALIGN(len);
474 
475 	if (sk_memalloc_socks())
476 		gfp_mask |= __GFP_MEMALLOC;
477 
478 	data = page_frag_alloc(&nc->page, len, gfp_mask);
479 	if (unlikely(!data))
480 		return NULL;
481 
482 	skb = __build_skb(data, len);
483 	if (unlikely(!skb)) {
484 		skb_free_frag(data);
485 		return NULL;
486 	}
487 
488 	/* use OR instead of assignment to avoid clearing of bits in mask */
489 	if (nc->page.pfmemalloc)
490 		skb->pfmemalloc = 1;
491 	skb->head_frag = 1;
492 
493 skb_success:
494 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 	skb->dev = napi->dev;
496 
497 skb_fail:
498 	return skb;
499 }
500 EXPORT_SYMBOL(__napi_alloc_skb);
501 
502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 		     int size, unsigned int truesize)
504 {
505 	skb_fill_page_desc(skb, i, page, off, size);
506 	skb->len += size;
507 	skb->data_len += size;
508 	skb->truesize += truesize;
509 }
510 EXPORT_SYMBOL(skb_add_rx_frag);
511 
512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 			  unsigned int truesize)
514 {
515 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
516 
517 	skb_frag_size_add(frag, size);
518 	skb->len += size;
519 	skb->data_len += size;
520 	skb->truesize += truesize;
521 }
522 EXPORT_SYMBOL(skb_coalesce_rx_frag);
523 
524 static void skb_drop_list(struct sk_buff **listp)
525 {
526 	kfree_skb_list(*listp);
527 	*listp = NULL;
528 }
529 
530 static inline void skb_drop_fraglist(struct sk_buff *skb)
531 {
532 	skb_drop_list(&skb_shinfo(skb)->frag_list);
533 }
534 
535 static void skb_clone_fraglist(struct sk_buff *skb)
536 {
537 	struct sk_buff *list;
538 
539 	skb_walk_frags(skb, list)
540 		skb_get(list);
541 }
542 
543 static void skb_free_head(struct sk_buff *skb)
544 {
545 	unsigned char *head = skb->head;
546 
547 	if (skb->head_frag)
548 		skb_free_frag(head);
549 	else
550 		kfree(head);
551 }
552 
553 static void skb_release_data(struct sk_buff *skb)
554 {
555 	struct skb_shared_info *shinfo = skb_shinfo(skb);
556 	int i;
557 
558 	if (skb->cloned &&
559 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 			      &shinfo->dataref))
561 		return;
562 
563 	for (i = 0; i < shinfo->nr_frags; i++)
564 		__skb_frag_unref(&shinfo->frags[i]);
565 
566 	if (shinfo->frag_list)
567 		kfree_skb_list(shinfo->frag_list);
568 
569 	skb_zcopy_clear(skb, true);
570 	skb_free_head(skb);
571 }
572 
573 /*
574  *	Free an skbuff by memory without cleaning the state.
575  */
576 static void kfree_skbmem(struct sk_buff *skb)
577 {
578 	struct sk_buff_fclones *fclones;
579 
580 	switch (skb->fclone) {
581 	case SKB_FCLONE_UNAVAILABLE:
582 		kmem_cache_free(skbuff_head_cache, skb);
583 		return;
584 
585 	case SKB_FCLONE_ORIG:
586 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
587 
588 		/* We usually free the clone (TX completion) before original skb
589 		 * This test would have no chance to be true for the clone,
590 		 * while here, branch prediction will be good.
591 		 */
592 		if (refcount_read(&fclones->fclone_ref) == 1)
593 			goto fastpath;
594 		break;
595 
596 	default: /* SKB_FCLONE_CLONE */
597 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 		break;
599 	}
600 	if (!refcount_dec_and_test(&fclones->fclone_ref))
601 		return;
602 fastpath:
603 	kmem_cache_free(skbuff_fclone_cache, fclones);
604 }
605 
606 void skb_release_head_state(struct sk_buff *skb)
607 {
608 	skb_dst_drop(skb);
609 	secpath_reset(skb);
610 	if (skb->destructor) {
611 		WARN_ON(in_irq());
612 		skb->destructor(skb);
613 	}
614 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 	nf_conntrack_put(skb_nfct(skb));
616 #endif
617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 	nf_bridge_put(skb->nf_bridge);
619 #endif
620 }
621 
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
624 {
625 	skb_release_head_state(skb);
626 	if (likely(skb->head))
627 		skb_release_data(skb);
628 }
629 
630 /**
631  *	__kfree_skb - private function
632  *	@skb: buffer
633  *
634  *	Free an sk_buff. Release anything attached to the buffer.
635  *	Clean the state. This is an internal helper function. Users should
636  *	always call kfree_skb
637  */
638 
639 void __kfree_skb(struct sk_buff *skb)
640 {
641 	skb_release_all(skb);
642 	kfree_skbmem(skb);
643 }
644 EXPORT_SYMBOL(__kfree_skb);
645 
646 /**
647  *	kfree_skb - free an sk_buff
648  *	@skb: buffer to free
649  *
650  *	Drop a reference to the buffer and free it if the usage count has
651  *	hit zero.
652  */
653 void kfree_skb(struct sk_buff *skb)
654 {
655 	if (!skb_unref(skb))
656 		return;
657 
658 	trace_kfree_skb(skb, __builtin_return_address(0));
659 	__kfree_skb(skb);
660 }
661 EXPORT_SYMBOL(kfree_skb);
662 
663 void kfree_skb_list(struct sk_buff *segs)
664 {
665 	while (segs) {
666 		struct sk_buff *next = segs->next;
667 
668 		kfree_skb(segs);
669 		segs = next;
670 	}
671 }
672 EXPORT_SYMBOL(kfree_skb_list);
673 
674 /**
675  *	skb_tx_error - report an sk_buff xmit error
676  *	@skb: buffer that triggered an error
677  *
678  *	Report xmit error if a device callback is tracking this skb.
679  *	skb must be freed afterwards.
680  */
681 void skb_tx_error(struct sk_buff *skb)
682 {
683 	skb_zcopy_clear(skb, true);
684 }
685 EXPORT_SYMBOL(skb_tx_error);
686 
687 /**
688  *	consume_skb - free an skbuff
689  *	@skb: buffer to free
690  *
691  *	Drop a ref to the buffer and free it if the usage count has hit zero
692  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
693  *	is being dropped after a failure and notes that
694  */
695 void consume_skb(struct sk_buff *skb)
696 {
697 	if (!skb_unref(skb))
698 		return;
699 
700 	trace_consume_skb(skb);
701 	__kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(consume_skb);
704 
705 /**
706  *	consume_stateless_skb - free an skbuff, assuming it is stateless
707  *	@skb: buffer to free
708  *
709  *	Alike consume_skb(), but this variant assumes that this is the last
710  *	skb reference and all the head states have been already dropped
711  */
712 void __consume_stateless_skb(struct sk_buff *skb)
713 {
714 	trace_consume_skb(skb);
715 	skb_release_data(skb);
716 	kfree_skbmem(skb);
717 }
718 
719 void __kfree_skb_flush(void)
720 {
721 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722 
723 	/* flush skb_cache if containing objects */
724 	if (nc->skb_count) {
725 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 				     nc->skb_cache);
727 		nc->skb_count = 0;
728 	}
729 }
730 
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
732 {
733 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734 
735 	/* drop skb->head and call any destructors for packet */
736 	skb_release_all(skb);
737 
738 	/* record skb to CPU local list */
739 	nc->skb_cache[nc->skb_count++] = skb;
740 
741 #ifdef CONFIG_SLUB
742 	/* SLUB writes into objects when freeing */
743 	prefetchw(skb);
744 #endif
745 
746 	/* flush skb_cache if it is filled */
747 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 				     nc->skb_cache);
750 		nc->skb_count = 0;
751 	}
752 }
753 void __kfree_skb_defer(struct sk_buff *skb)
754 {
755 	_kfree_skb_defer(skb);
756 }
757 
758 void napi_consume_skb(struct sk_buff *skb, int budget)
759 {
760 	if (unlikely(!skb))
761 		return;
762 
763 	/* Zero budget indicate non-NAPI context called us, like netpoll */
764 	if (unlikely(!budget)) {
765 		dev_consume_skb_any(skb);
766 		return;
767 	}
768 
769 	if (!skb_unref(skb))
770 		return;
771 
772 	/* if reaching here SKB is ready to free */
773 	trace_consume_skb(skb);
774 
775 	/* if SKB is a clone, don't handle this case */
776 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 		__kfree_skb(skb);
778 		return;
779 	}
780 
781 	_kfree_skb_defer(skb);
782 }
783 EXPORT_SYMBOL(napi_consume_skb);
784 
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
788 		     offsetof(struct sk_buff, headers_start));	\
789 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
790 		     offsetof(struct sk_buff, headers_end));	\
791 
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 	new->tstamp		= old->tstamp;
795 	/* We do not copy old->sk */
796 	new->dev		= old->dev;
797 	memcpy(new->cb, old->cb, sizeof(old->cb));
798 	skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 	new->sp			= secpath_get(old->sp);
801 #endif
802 	__nf_copy(new, old, false);
803 
804 	/* Note : this field could be in headers_start/headers_end section
805 	 * It is not yet because we do not want to have a 16 bit hole
806 	 */
807 	new->queue_mapping = old->queue_mapping;
808 
809 	memcpy(&new->headers_start, &old->headers_start,
810 	       offsetof(struct sk_buff, headers_end) -
811 	       offsetof(struct sk_buff, headers_start));
812 	CHECK_SKB_FIELD(protocol);
813 	CHECK_SKB_FIELD(csum);
814 	CHECK_SKB_FIELD(hash);
815 	CHECK_SKB_FIELD(priority);
816 	CHECK_SKB_FIELD(skb_iif);
817 	CHECK_SKB_FIELD(vlan_proto);
818 	CHECK_SKB_FIELD(vlan_tci);
819 	CHECK_SKB_FIELD(transport_header);
820 	CHECK_SKB_FIELD(network_header);
821 	CHECK_SKB_FIELD(mac_header);
822 	CHECK_SKB_FIELD(inner_protocol);
823 	CHECK_SKB_FIELD(inner_transport_header);
824 	CHECK_SKB_FIELD(inner_network_header);
825 	CHECK_SKB_FIELD(inner_mac_header);
826 	CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 	CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 	CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_XPS
834 	CHECK_SKB_FIELD(sender_cpu);
835 #endif
836 #ifdef CONFIG_NET_SCHED
837 	CHECK_SKB_FIELD(tc_index);
838 #endif
839 
840 }
841 
842 /*
843  * You should not add any new code to this function.  Add it to
844  * __copy_skb_header above instead.
845  */
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847 {
848 #define C(x) n->x = skb->x
849 
850 	n->next = n->prev = NULL;
851 	n->sk = NULL;
852 	__copy_skb_header(n, skb);
853 
854 	C(len);
855 	C(data_len);
856 	C(mac_len);
857 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 	n->cloned = 1;
859 	n->nohdr = 0;
860 	n->destructor = NULL;
861 	C(tail);
862 	C(end);
863 	C(head);
864 	C(head_frag);
865 	C(data);
866 	C(truesize);
867 	refcount_set(&n->users, 1);
868 
869 	atomic_inc(&(skb_shinfo(skb)->dataref));
870 	skb->cloned = 1;
871 
872 	return n;
873 #undef C
874 }
875 
876 /**
877  *	skb_morph	-	morph one skb into another
878  *	@dst: the skb to receive the contents
879  *	@src: the skb to supply the contents
880  *
881  *	This is identical to skb_clone except that the target skb is
882  *	supplied by the user.
883  *
884  *	The target skb is returned upon exit.
885  */
886 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
887 {
888 	skb_release_all(dst);
889 	return __skb_clone(dst, src);
890 }
891 EXPORT_SYMBOL_GPL(skb_morph);
892 
893 static int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
894 {
895 	unsigned long max_pg, num_pg, new_pg, old_pg;
896 	struct user_struct *user;
897 
898 	if (capable(CAP_IPC_LOCK) || !size)
899 		return 0;
900 
901 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
902 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
903 	user = mmp->user ? : current_user();
904 
905 	do {
906 		old_pg = atomic_long_read(&user->locked_vm);
907 		new_pg = old_pg + num_pg;
908 		if (new_pg > max_pg)
909 			return -ENOBUFS;
910 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
911 		 old_pg);
912 
913 	if (!mmp->user) {
914 		mmp->user = get_uid(user);
915 		mmp->num_pg = num_pg;
916 	} else {
917 		mmp->num_pg += num_pg;
918 	}
919 
920 	return 0;
921 }
922 
923 static void mm_unaccount_pinned_pages(struct mmpin *mmp)
924 {
925 	if (mmp->user) {
926 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
927 		free_uid(mmp->user);
928 	}
929 }
930 
931 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
932 {
933 	struct ubuf_info *uarg;
934 	struct sk_buff *skb;
935 
936 	WARN_ON_ONCE(!in_task());
937 
938 	if (!sock_flag(sk, SOCK_ZEROCOPY))
939 		return NULL;
940 
941 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
942 	if (!skb)
943 		return NULL;
944 
945 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
946 	uarg = (void *)skb->cb;
947 	uarg->mmp.user = NULL;
948 
949 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
950 		kfree_skb(skb);
951 		return NULL;
952 	}
953 
954 	uarg->callback = sock_zerocopy_callback;
955 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
956 	uarg->len = 1;
957 	uarg->bytelen = size;
958 	uarg->zerocopy = 1;
959 	refcount_set(&uarg->refcnt, 1);
960 	sock_hold(sk);
961 
962 	return uarg;
963 }
964 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
965 
966 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
967 {
968 	return container_of((void *)uarg, struct sk_buff, cb);
969 }
970 
971 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
972 					struct ubuf_info *uarg)
973 {
974 	if (uarg) {
975 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
976 		u32 bytelen, next;
977 
978 		/* realloc only when socket is locked (TCP, UDP cork),
979 		 * so uarg->len and sk_zckey access is serialized
980 		 */
981 		if (!sock_owned_by_user(sk)) {
982 			WARN_ON_ONCE(1);
983 			return NULL;
984 		}
985 
986 		bytelen = uarg->bytelen + size;
987 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
988 			/* TCP can create new skb to attach new uarg */
989 			if (sk->sk_type == SOCK_STREAM)
990 				goto new_alloc;
991 			return NULL;
992 		}
993 
994 		next = (u32)atomic_read(&sk->sk_zckey);
995 		if ((u32)(uarg->id + uarg->len) == next) {
996 			if (mm_account_pinned_pages(&uarg->mmp, size))
997 				return NULL;
998 			uarg->len++;
999 			uarg->bytelen = bytelen;
1000 			atomic_set(&sk->sk_zckey, ++next);
1001 			sock_zerocopy_get(uarg);
1002 			return uarg;
1003 		}
1004 	}
1005 
1006 new_alloc:
1007 	return sock_zerocopy_alloc(sk, size);
1008 }
1009 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1010 
1011 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1012 {
1013 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1014 	u32 old_lo, old_hi;
1015 	u64 sum_len;
1016 
1017 	old_lo = serr->ee.ee_info;
1018 	old_hi = serr->ee.ee_data;
1019 	sum_len = old_hi - old_lo + 1ULL + len;
1020 
1021 	if (sum_len >= (1ULL << 32))
1022 		return false;
1023 
1024 	if (lo != old_hi + 1)
1025 		return false;
1026 
1027 	serr->ee.ee_data += len;
1028 	return true;
1029 }
1030 
1031 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1032 {
1033 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1034 	struct sock_exterr_skb *serr;
1035 	struct sock *sk = skb->sk;
1036 	struct sk_buff_head *q;
1037 	unsigned long flags;
1038 	u32 lo, hi;
1039 	u16 len;
1040 
1041 	mm_unaccount_pinned_pages(&uarg->mmp);
1042 
1043 	/* if !len, there was only 1 call, and it was aborted
1044 	 * so do not queue a completion notification
1045 	 */
1046 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1047 		goto release;
1048 
1049 	len = uarg->len;
1050 	lo = uarg->id;
1051 	hi = uarg->id + len - 1;
1052 
1053 	serr = SKB_EXT_ERR(skb);
1054 	memset(serr, 0, sizeof(*serr));
1055 	serr->ee.ee_errno = 0;
1056 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1057 	serr->ee.ee_data = hi;
1058 	serr->ee.ee_info = lo;
1059 	if (!success)
1060 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1061 
1062 	q = &sk->sk_error_queue;
1063 	spin_lock_irqsave(&q->lock, flags);
1064 	tail = skb_peek_tail(q);
1065 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1066 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1067 		__skb_queue_tail(q, skb);
1068 		skb = NULL;
1069 	}
1070 	spin_unlock_irqrestore(&q->lock, flags);
1071 
1072 	sk->sk_error_report(sk);
1073 
1074 release:
1075 	consume_skb(skb);
1076 	sock_put(sk);
1077 }
1078 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1079 
1080 void sock_zerocopy_put(struct ubuf_info *uarg)
1081 {
1082 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1083 		if (uarg->callback)
1084 			uarg->callback(uarg, uarg->zerocopy);
1085 		else
1086 			consume_skb(skb_from_uarg(uarg));
1087 	}
1088 }
1089 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1090 
1091 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1092 {
1093 	if (uarg) {
1094 		struct sock *sk = skb_from_uarg(uarg)->sk;
1095 
1096 		atomic_dec(&sk->sk_zckey);
1097 		uarg->len--;
1098 
1099 		sock_zerocopy_put(uarg);
1100 	}
1101 }
1102 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1103 
1104 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1105 				   struct iov_iter *from, size_t length);
1106 
1107 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1108 			     struct msghdr *msg, int len,
1109 			     struct ubuf_info *uarg)
1110 {
1111 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1112 	struct iov_iter orig_iter = msg->msg_iter;
1113 	int err, orig_len = skb->len;
1114 
1115 	/* An skb can only point to one uarg. This edge case happens when
1116 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1117 	 */
1118 	if (orig_uarg && uarg != orig_uarg)
1119 		return -EEXIST;
1120 
1121 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1122 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1123 		struct sock *save_sk = skb->sk;
1124 
1125 		/* Streams do not free skb on error. Reset to prev state. */
1126 		msg->msg_iter = orig_iter;
1127 		skb->sk = sk;
1128 		___pskb_trim(skb, orig_len);
1129 		skb->sk = save_sk;
1130 		return err;
1131 	}
1132 
1133 	skb_zcopy_set(skb, uarg);
1134 	return skb->len - orig_len;
1135 }
1136 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1137 
1138 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1139 			      gfp_t gfp_mask)
1140 {
1141 	if (skb_zcopy(orig)) {
1142 		if (skb_zcopy(nskb)) {
1143 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1144 			if (!gfp_mask) {
1145 				WARN_ON_ONCE(1);
1146 				return -ENOMEM;
1147 			}
1148 			if (skb_uarg(nskb) == skb_uarg(orig))
1149 				return 0;
1150 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1151 				return -EIO;
1152 		}
1153 		skb_zcopy_set(nskb, skb_uarg(orig));
1154 	}
1155 	return 0;
1156 }
1157 
1158 /**
1159  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1160  *	@skb: the skb to modify
1161  *	@gfp_mask: allocation priority
1162  *
1163  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1164  *	It will copy all frags into kernel and drop the reference
1165  *	to userspace pages.
1166  *
1167  *	If this function is called from an interrupt gfp_mask() must be
1168  *	%GFP_ATOMIC.
1169  *
1170  *	Returns 0 on success or a negative error code on failure
1171  *	to allocate kernel memory to copy to.
1172  */
1173 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1174 {
1175 	int num_frags = skb_shinfo(skb)->nr_frags;
1176 	struct page *page, *head = NULL;
1177 	int i, new_frags;
1178 	u32 d_off;
1179 
1180 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1181 		return -EINVAL;
1182 
1183 	if (!num_frags)
1184 		goto release;
1185 
1186 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1187 	for (i = 0; i < new_frags; i++) {
1188 		page = alloc_page(gfp_mask);
1189 		if (!page) {
1190 			while (head) {
1191 				struct page *next = (struct page *)page_private(head);
1192 				put_page(head);
1193 				head = next;
1194 			}
1195 			return -ENOMEM;
1196 		}
1197 		set_page_private(page, (unsigned long)head);
1198 		head = page;
1199 	}
1200 
1201 	page = head;
1202 	d_off = 0;
1203 	for (i = 0; i < num_frags; i++) {
1204 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1205 		u32 p_off, p_len, copied;
1206 		struct page *p;
1207 		u8 *vaddr;
1208 
1209 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1210 				      p, p_off, p_len, copied) {
1211 			u32 copy, done = 0;
1212 			vaddr = kmap_atomic(p);
1213 
1214 			while (done < p_len) {
1215 				if (d_off == PAGE_SIZE) {
1216 					d_off = 0;
1217 					page = (struct page *)page_private(page);
1218 				}
1219 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1220 				memcpy(page_address(page) + d_off,
1221 				       vaddr + p_off + done, copy);
1222 				done += copy;
1223 				d_off += copy;
1224 			}
1225 			kunmap_atomic(vaddr);
1226 		}
1227 	}
1228 
1229 	/* skb frags release userspace buffers */
1230 	for (i = 0; i < num_frags; i++)
1231 		skb_frag_unref(skb, i);
1232 
1233 	/* skb frags point to kernel buffers */
1234 	for (i = 0; i < new_frags - 1; i++) {
1235 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1236 		head = (struct page *)page_private(head);
1237 	}
1238 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1239 	skb_shinfo(skb)->nr_frags = new_frags;
1240 
1241 release:
1242 	skb_zcopy_clear(skb, false);
1243 	return 0;
1244 }
1245 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1246 
1247 /**
1248  *	skb_clone	-	duplicate an sk_buff
1249  *	@skb: buffer to clone
1250  *	@gfp_mask: allocation priority
1251  *
1252  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1253  *	copies share the same packet data but not structure. The new
1254  *	buffer has a reference count of 1. If the allocation fails the
1255  *	function returns %NULL otherwise the new buffer is returned.
1256  *
1257  *	If this function is called from an interrupt gfp_mask() must be
1258  *	%GFP_ATOMIC.
1259  */
1260 
1261 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1262 {
1263 	struct sk_buff_fclones *fclones = container_of(skb,
1264 						       struct sk_buff_fclones,
1265 						       skb1);
1266 	struct sk_buff *n;
1267 
1268 	if (skb_orphan_frags(skb, gfp_mask))
1269 		return NULL;
1270 
1271 	if (skb->fclone == SKB_FCLONE_ORIG &&
1272 	    refcount_read(&fclones->fclone_ref) == 1) {
1273 		n = &fclones->skb2;
1274 		refcount_set(&fclones->fclone_ref, 2);
1275 	} else {
1276 		if (skb_pfmemalloc(skb))
1277 			gfp_mask |= __GFP_MEMALLOC;
1278 
1279 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1280 		if (!n)
1281 			return NULL;
1282 
1283 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1284 	}
1285 
1286 	return __skb_clone(n, skb);
1287 }
1288 EXPORT_SYMBOL(skb_clone);
1289 
1290 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1291 {
1292 	/* Only adjust this if it actually is csum_start rather than csum */
1293 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1294 		skb->csum_start += off;
1295 	/* {transport,network,mac}_header and tail are relative to skb->head */
1296 	skb->transport_header += off;
1297 	skb->network_header   += off;
1298 	if (skb_mac_header_was_set(skb))
1299 		skb->mac_header += off;
1300 	skb->inner_transport_header += off;
1301 	skb->inner_network_header += off;
1302 	skb->inner_mac_header += off;
1303 }
1304 
1305 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1306 {
1307 	__copy_skb_header(new, old);
1308 
1309 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1310 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1311 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1312 }
1313 
1314 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1315 {
1316 	if (skb_pfmemalloc(skb))
1317 		return SKB_ALLOC_RX;
1318 	return 0;
1319 }
1320 
1321 /**
1322  *	skb_copy	-	create private copy of an sk_buff
1323  *	@skb: buffer to copy
1324  *	@gfp_mask: allocation priority
1325  *
1326  *	Make a copy of both an &sk_buff and its data. This is used when the
1327  *	caller wishes to modify the data and needs a private copy of the
1328  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1329  *	on success. The returned buffer has a reference count of 1.
1330  *
1331  *	As by-product this function converts non-linear &sk_buff to linear
1332  *	one, so that &sk_buff becomes completely private and caller is allowed
1333  *	to modify all the data of returned buffer. This means that this
1334  *	function is not recommended for use in circumstances when only
1335  *	header is going to be modified. Use pskb_copy() instead.
1336  */
1337 
1338 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1339 {
1340 	int headerlen = skb_headroom(skb);
1341 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1342 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1343 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1344 
1345 	if (!n)
1346 		return NULL;
1347 
1348 	/* Set the data pointer */
1349 	skb_reserve(n, headerlen);
1350 	/* Set the tail pointer and length */
1351 	skb_put(n, skb->len);
1352 
1353 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1354 
1355 	copy_skb_header(n, skb);
1356 	return n;
1357 }
1358 EXPORT_SYMBOL(skb_copy);
1359 
1360 /**
1361  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1362  *	@skb: buffer to copy
1363  *	@headroom: headroom of new skb
1364  *	@gfp_mask: allocation priority
1365  *	@fclone: if true allocate the copy of the skb from the fclone
1366  *	cache instead of the head cache; it is recommended to set this
1367  *	to true for the cases where the copy will likely be cloned
1368  *
1369  *	Make a copy of both an &sk_buff and part of its data, located
1370  *	in header. Fragmented data remain shared. This is used when
1371  *	the caller wishes to modify only header of &sk_buff and needs
1372  *	private copy of the header to alter. Returns %NULL on failure
1373  *	or the pointer to the buffer on success.
1374  *	The returned buffer has a reference count of 1.
1375  */
1376 
1377 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1378 				   gfp_t gfp_mask, bool fclone)
1379 {
1380 	unsigned int size = skb_headlen(skb) + headroom;
1381 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1382 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1383 
1384 	if (!n)
1385 		goto out;
1386 
1387 	/* Set the data pointer */
1388 	skb_reserve(n, headroom);
1389 	/* Set the tail pointer and length */
1390 	skb_put(n, skb_headlen(skb));
1391 	/* Copy the bytes */
1392 	skb_copy_from_linear_data(skb, n->data, n->len);
1393 
1394 	n->truesize += skb->data_len;
1395 	n->data_len  = skb->data_len;
1396 	n->len	     = skb->len;
1397 
1398 	if (skb_shinfo(skb)->nr_frags) {
1399 		int i;
1400 
1401 		if (skb_orphan_frags(skb, gfp_mask) ||
1402 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1403 			kfree_skb(n);
1404 			n = NULL;
1405 			goto out;
1406 		}
1407 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1408 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1409 			skb_frag_ref(skb, i);
1410 		}
1411 		skb_shinfo(n)->nr_frags = i;
1412 	}
1413 
1414 	if (skb_has_frag_list(skb)) {
1415 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1416 		skb_clone_fraglist(n);
1417 	}
1418 
1419 	copy_skb_header(n, skb);
1420 out:
1421 	return n;
1422 }
1423 EXPORT_SYMBOL(__pskb_copy_fclone);
1424 
1425 /**
1426  *	pskb_expand_head - reallocate header of &sk_buff
1427  *	@skb: buffer to reallocate
1428  *	@nhead: room to add at head
1429  *	@ntail: room to add at tail
1430  *	@gfp_mask: allocation priority
1431  *
1432  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1433  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1434  *	reference count of 1. Returns zero in the case of success or error,
1435  *	if expansion failed. In the last case, &sk_buff is not changed.
1436  *
1437  *	All the pointers pointing into skb header may change and must be
1438  *	reloaded after call to this function.
1439  */
1440 
1441 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1442 		     gfp_t gfp_mask)
1443 {
1444 	int i, osize = skb_end_offset(skb);
1445 	int size = osize + nhead + ntail;
1446 	long off;
1447 	u8 *data;
1448 
1449 	BUG_ON(nhead < 0);
1450 
1451 	BUG_ON(skb_shared(skb));
1452 
1453 	size = SKB_DATA_ALIGN(size);
1454 
1455 	if (skb_pfmemalloc(skb))
1456 		gfp_mask |= __GFP_MEMALLOC;
1457 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1458 			       gfp_mask, NUMA_NO_NODE, NULL);
1459 	if (!data)
1460 		goto nodata;
1461 	size = SKB_WITH_OVERHEAD(ksize(data));
1462 
1463 	/* Copy only real data... and, alas, header. This should be
1464 	 * optimized for the cases when header is void.
1465 	 */
1466 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1467 
1468 	memcpy((struct skb_shared_info *)(data + size),
1469 	       skb_shinfo(skb),
1470 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1471 
1472 	/*
1473 	 * if shinfo is shared we must drop the old head gracefully, but if it
1474 	 * is not we can just drop the old head and let the existing refcount
1475 	 * be since all we did is relocate the values
1476 	 */
1477 	if (skb_cloned(skb)) {
1478 		if (skb_orphan_frags(skb, gfp_mask))
1479 			goto nofrags;
1480 		if (skb_zcopy(skb))
1481 			refcount_inc(&skb_uarg(skb)->refcnt);
1482 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1483 			skb_frag_ref(skb, i);
1484 
1485 		if (skb_has_frag_list(skb))
1486 			skb_clone_fraglist(skb);
1487 
1488 		skb_release_data(skb);
1489 	} else {
1490 		skb_free_head(skb);
1491 	}
1492 	off = (data + nhead) - skb->head;
1493 
1494 	skb->head     = data;
1495 	skb->head_frag = 0;
1496 	skb->data    += off;
1497 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1498 	skb->end      = size;
1499 	off           = nhead;
1500 #else
1501 	skb->end      = skb->head + size;
1502 #endif
1503 	skb->tail	      += off;
1504 	skb_headers_offset_update(skb, nhead);
1505 	skb->cloned   = 0;
1506 	skb->hdr_len  = 0;
1507 	skb->nohdr    = 0;
1508 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1509 
1510 	skb_metadata_clear(skb);
1511 
1512 	/* It is not generally safe to change skb->truesize.
1513 	 * For the moment, we really care of rx path, or
1514 	 * when skb is orphaned (not attached to a socket).
1515 	 */
1516 	if (!skb->sk || skb->destructor == sock_edemux)
1517 		skb->truesize += size - osize;
1518 
1519 	return 0;
1520 
1521 nofrags:
1522 	kfree(data);
1523 nodata:
1524 	return -ENOMEM;
1525 }
1526 EXPORT_SYMBOL(pskb_expand_head);
1527 
1528 /* Make private copy of skb with writable head and some headroom */
1529 
1530 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1531 {
1532 	struct sk_buff *skb2;
1533 	int delta = headroom - skb_headroom(skb);
1534 
1535 	if (delta <= 0)
1536 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1537 	else {
1538 		skb2 = skb_clone(skb, GFP_ATOMIC);
1539 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1540 					     GFP_ATOMIC)) {
1541 			kfree_skb(skb2);
1542 			skb2 = NULL;
1543 		}
1544 	}
1545 	return skb2;
1546 }
1547 EXPORT_SYMBOL(skb_realloc_headroom);
1548 
1549 /**
1550  *	skb_copy_expand	-	copy and expand sk_buff
1551  *	@skb: buffer to copy
1552  *	@newheadroom: new free bytes at head
1553  *	@newtailroom: new free bytes at tail
1554  *	@gfp_mask: allocation priority
1555  *
1556  *	Make a copy of both an &sk_buff and its data and while doing so
1557  *	allocate additional space.
1558  *
1559  *	This is used when the caller wishes to modify the data and needs a
1560  *	private copy of the data to alter as well as more space for new fields.
1561  *	Returns %NULL on failure or the pointer to the buffer
1562  *	on success. The returned buffer has a reference count of 1.
1563  *
1564  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1565  *	is called from an interrupt.
1566  */
1567 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1568 				int newheadroom, int newtailroom,
1569 				gfp_t gfp_mask)
1570 {
1571 	/*
1572 	 *	Allocate the copy buffer
1573 	 */
1574 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1575 					gfp_mask, skb_alloc_rx_flag(skb),
1576 					NUMA_NO_NODE);
1577 	int oldheadroom = skb_headroom(skb);
1578 	int head_copy_len, head_copy_off;
1579 
1580 	if (!n)
1581 		return NULL;
1582 
1583 	skb_reserve(n, newheadroom);
1584 
1585 	/* Set the tail pointer and length */
1586 	skb_put(n, skb->len);
1587 
1588 	head_copy_len = oldheadroom;
1589 	head_copy_off = 0;
1590 	if (newheadroom <= head_copy_len)
1591 		head_copy_len = newheadroom;
1592 	else
1593 		head_copy_off = newheadroom - head_copy_len;
1594 
1595 	/* Copy the linear header and data. */
1596 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1597 			     skb->len + head_copy_len));
1598 
1599 	copy_skb_header(n, skb);
1600 
1601 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1602 
1603 	return n;
1604 }
1605 EXPORT_SYMBOL(skb_copy_expand);
1606 
1607 /**
1608  *	__skb_pad		-	zero pad the tail of an skb
1609  *	@skb: buffer to pad
1610  *	@pad: space to pad
1611  *	@free_on_error: free buffer on error
1612  *
1613  *	Ensure that a buffer is followed by a padding area that is zero
1614  *	filled. Used by network drivers which may DMA or transfer data
1615  *	beyond the buffer end onto the wire.
1616  *
1617  *	May return error in out of memory cases. The skb is freed on error
1618  *	if @free_on_error is true.
1619  */
1620 
1621 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1622 {
1623 	int err;
1624 	int ntail;
1625 
1626 	/* If the skbuff is non linear tailroom is always zero.. */
1627 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1628 		memset(skb->data+skb->len, 0, pad);
1629 		return 0;
1630 	}
1631 
1632 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1633 	if (likely(skb_cloned(skb) || ntail > 0)) {
1634 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1635 		if (unlikely(err))
1636 			goto free_skb;
1637 	}
1638 
1639 	/* FIXME: The use of this function with non-linear skb's really needs
1640 	 * to be audited.
1641 	 */
1642 	err = skb_linearize(skb);
1643 	if (unlikely(err))
1644 		goto free_skb;
1645 
1646 	memset(skb->data + skb->len, 0, pad);
1647 	return 0;
1648 
1649 free_skb:
1650 	if (free_on_error)
1651 		kfree_skb(skb);
1652 	return err;
1653 }
1654 EXPORT_SYMBOL(__skb_pad);
1655 
1656 /**
1657  *	pskb_put - add data to the tail of a potentially fragmented buffer
1658  *	@skb: start of the buffer to use
1659  *	@tail: tail fragment of the buffer to use
1660  *	@len: amount of data to add
1661  *
1662  *	This function extends the used data area of the potentially
1663  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1664  *	@skb itself. If this would exceed the total buffer size the kernel
1665  *	will panic. A pointer to the first byte of the extra data is
1666  *	returned.
1667  */
1668 
1669 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1670 {
1671 	if (tail != skb) {
1672 		skb->data_len += len;
1673 		skb->len += len;
1674 	}
1675 	return skb_put(tail, len);
1676 }
1677 EXPORT_SYMBOL_GPL(pskb_put);
1678 
1679 /**
1680  *	skb_put - add data to a buffer
1681  *	@skb: buffer to use
1682  *	@len: amount of data to add
1683  *
1684  *	This function extends the used data area of the buffer. If this would
1685  *	exceed the total buffer size the kernel will panic. A pointer to the
1686  *	first byte of the extra data is returned.
1687  */
1688 void *skb_put(struct sk_buff *skb, unsigned int len)
1689 {
1690 	void *tmp = skb_tail_pointer(skb);
1691 	SKB_LINEAR_ASSERT(skb);
1692 	skb->tail += len;
1693 	skb->len  += len;
1694 	if (unlikely(skb->tail > skb->end))
1695 		skb_over_panic(skb, len, __builtin_return_address(0));
1696 	return tmp;
1697 }
1698 EXPORT_SYMBOL(skb_put);
1699 
1700 /**
1701  *	skb_push - add data to the start of a buffer
1702  *	@skb: buffer to use
1703  *	@len: amount of data to add
1704  *
1705  *	This function extends the used data area of the buffer at the buffer
1706  *	start. If this would exceed the total buffer headroom the kernel will
1707  *	panic. A pointer to the first byte of the extra data is returned.
1708  */
1709 void *skb_push(struct sk_buff *skb, unsigned int len)
1710 {
1711 	skb->data -= len;
1712 	skb->len  += len;
1713 	if (unlikely(skb->data<skb->head))
1714 		skb_under_panic(skb, len, __builtin_return_address(0));
1715 	return skb->data;
1716 }
1717 EXPORT_SYMBOL(skb_push);
1718 
1719 /**
1720  *	skb_pull - remove data from the start of a buffer
1721  *	@skb: buffer to use
1722  *	@len: amount of data to remove
1723  *
1724  *	This function removes data from the start of a buffer, returning
1725  *	the memory to the headroom. A pointer to the next data in the buffer
1726  *	is returned. Once the data has been pulled future pushes will overwrite
1727  *	the old data.
1728  */
1729 void *skb_pull(struct sk_buff *skb, unsigned int len)
1730 {
1731 	return skb_pull_inline(skb, len);
1732 }
1733 EXPORT_SYMBOL(skb_pull);
1734 
1735 /**
1736  *	skb_trim - remove end from a buffer
1737  *	@skb: buffer to alter
1738  *	@len: new length
1739  *
1740  *	Cut the length of a buffer down by removing data from the tail. If
1741  *	the buffer is already under the length specified it is not modified.
1742  *	The skb must be linear.
1743  */
1744 void skb_trim(struct sk_buff *skb, unsigned int len)
1745 {
1746 	if (skb->len > len)
1747 		__skb_trim(skb, len);
1748 }
1749 EXPORT_SYMBOL(skb_trim);
1750 
1751 /* Trims skb to length len. It can change skb pointers.
1752  */
1753 
1754 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1755 {
1756 	struct sk_buff **fragp;
1757 	struct sk_buff *frag;
1758 	int offset = skb_headlen(skb);
1759 	int nfrags = skb_shinfo(skb)->nr_frags;
1760 	int i;
1761 	int err;
1762 
1763 	if (skb_cloned(skb) &&
1764 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1765 		return err;
1766 
1767 	i = 0;
1768 	if (offset >= len)
1769 		goto drop_pages;
1770 
1771 	for (; i < nfrags; i++) {
1772 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1773 
1774 		if (end < len) {
1775 			offset = end;
1776 			continue;
1777 		}
1778 
1779 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1780 
1781 drop_pages:
1782 		skb_shinfo(skb)->nr_frags = i;
1783 
1784 		for (; i < nfrags; i++)
1785 			skb_frag_unref(skb, i);
1786 
1787 		if (skb_has_frag_list(skb))
1788 			skb_drop_fraglist(skb);
1789 		goto done;
1790 	}
1791 
1792 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1793 	     fragp = &frag->next) {
1794 		int end = offset + frag->len;
1795 
1796 		if (skb_shared(frag)) {
1797 			struct sk_buff *nfrag;
1798 
1799 			nfrag = skb_clone(frag, GFP_ATOMIC);
1800 			if (unlikely(!nfrag))
1801 				return -ENOMEM;
1802 
1803 			nfrag->next = frag->next;
1804 			consume_skb(frag);
1805 			frag = nfrag;
1806 			*fragp = frag;
1807 		}
1808 
1809 		if (end < len) {
1810 			offset = end;
1811 			continue;
1812 		}
1813 
1814 		if (end > len &&
1815 		    unlikely((err = pskb_trim(frag, len - offset))))
1816 			return err;
1817 
1818 		if (frag->next)
1819 			skb_drop_list(&frag->next);
1820 		break;
1821 	}
1822 
1823 done:
1824 	if (len > skb_headlen(skb)) {
1825 		skb->data_len -= skb->len - len;
1826 		skb->len       = len;
1827 	} else {
1828 		skb->len       = len;
1829 		skb->data_len  = 0;
1830 		skb_set_tail_pointer(skb, len);
1831 	}
1832 
1833 	if (!skb->sk || skb->destructor == sock_edemux)
1834 		skb_condense(skb);
1835 	return 0;
1836 }
1837 EXPORT_SYMBOL(___pskb_trim);
1838 
1839 /**
1840  *	__pskb_pull_tail - advance tail of skb header
1841  *	@skb: buffer to reallocate
1842  *	@delta: number of bytes to advance tail
1843  *
1844  *	The function makes a sense only on a fragmented &sk_buff,
1845  *	it expands header moving its tail forward and copying necessary
1846  *	data from fragmented part.
1847  *
1848  *	&sk_buff MUST have reference count of 1.
1849  *
1850  *	Returns %NULL (and &sk_buff does not change) if pull failed
1851  *	or value of new tail of skb in the case of success.
1852  *
1853  *	All the pointers pointing into skb header may change and must be
1854  *	reloaded after call to this function.
1855  */
1856 
1857 /* Moves tail of skb head forward, copying data from fragmented part,
1858  * when it is necessary.
1859  * 1. It may fail due to malloc failure.
1860  * 2. It may change skb pointers.
1861  *
1862  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1863  */
1864 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1865 {
1866 	/* If skb has not enough free space at tail, get new one
1867 	 * plus 128 bytes for future expansions. If we have enough
1868 	 * room at tail, reallocate without expansion only if skb is cloned.
1869 	 */
1870 	int i, k, eat = (skb->tail + delta) - skb->end;
1871 
1872 	if (eat > 0 || skb_cloned(skb)) {
1873 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1874 				     GFP_ATOMIC))
1875 			return NULL;
1876 	}
1877 
1878 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1879 			     skb_tail_pointer(skb), delta));
1880 
1881 	/* Optimization: no fragments, no reasons to preestimate
1882 	 * size of pulled pages. Superb.
1883 	 */
1884 	if (!skb_has_frag_list(skb))
1885 		goto pull_pages;
1886 
1887 	/* Estimate size of pulled pages. */
1888 	eat = delta;
1889 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1890 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1891 
1892 		if (size >= eat)
1893 			goto pull_pages;
1894 		eat -= size;
1895 	}
1896 
1897 	/* If we need update frag list, we are in troubles.
1898 	 * Certainly, it is possible to add an offset to skb data,
1899 	 * but taking into account that pulling is expected to
1900 	 * be very rare operation, it is worth to fight against
1901 	 * further bloating skb head and crucify ourselves here instead.
1902 	 * Pure masohism, indeed. 8)8)
1903 	 */
1904 	if (eat) {
1905 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1906 		struct sk_buff *clone = NULL;
1907 		struct sk_buff *insp = NULL;
1908 
1909 		do {
1910 			BUG_ON(!list);
1911 
1912 			if (list->len <= eat) {
1913 				/* Eaten as whole. */
1914 				eat -= list->len;
1915 				list = list->next;
1916 				insp = list;
1917 			} else {
1918 				/* Eaten partially. */
1919 
1920 				if (skb_shared(list)) {
1921 					/* Sucks! We need to fork list. :-( */
1922 					clone = skb_clone(list, GFP_ATOMIC);
1923 					if (!clone)
1924 						return NULL;
1925 					insp = list->next;
1926 					list = clone;
1927 				} else {
1928 					/* This may be pulled without
1929 					 * problems. */
1930 					insp = list;
1931 				}
1932 				if (!pskb_pull(list, eat)) {
1933 					kfree_skb(clone);
1934 					return NULL;
1935 				}
1936 				break;
1937 			}
1938 		} while (eat);
1939 
1940 		/* Free pulled out fragments. */
1941 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1942 			skb_shinfo(skb)->frag_list = list->next;
1943 			kfree_skb(list);
1944 		}
1945 		/* And insert new clone at head. */
1946 		if (clone) {
1947 			clone->next = list;
1948 			skb_shinfo(skb)->frag_list = clone;
1949 		}
1950 	}
1951 	/* Success! Now we may commit changes to skb data. */
1952 
1953 pull_pages:
1954 	eat = delta;
1955 	k = 0;
1956 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1957 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1958 
1959 		if (size <= eat) {
1960 			skb_frag_unref(skb, i);
1961 			eat -= size;
1962 		} else {
1963 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1964 			if (eat) {
1965 				skb_shinfo(skb)->frags[k].page_offset += eat;
1966 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1967 				if (!i)
1968 					goto end;
1969 				eat = 0;
1970 			}
1971 			k++;
1972 		}
1973 	}
1974 	skb_shinfo(skb)->nr_frags = k;
1975 
1976 end:
1977 	skb->tail     += delta;
1978 	skb->data_len -= delta;
1979 
1980 	if (!skb->data_len)
1981 		skb_zcopy_clear(skb, false);
1982 
1983 	return skb_tail_pointer(skb);
1984 }
1985 EXPORT_SYMBOL(__pskb_pull_tail);
1986 
1987 /**
1988  *	skb_copy_bits - copy bits from skb to kernel buffer
1989  *	@skb: source skb
1990  *	@offset: offset in source
1991  *	@to: destination buffer
1992  *	@len: number of bytes to copy
1993  *
1994  *	Copy the specified number of bytes from the source skb to the
1995  *	destination buffer.
1996  *
1997  *	CAUTION ! :
1998  *		If its prototype is ever changed,
1999  *		check arch/{*}/net/{*}.S files,
2000  *		since it is called from BPF assembly code.
2001  */
2002 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2003 {
2004 	int start = skb_headlen(skb);
2005 	struct sk_buff *frag_iter;
2006 	int i, copy;
2007 
2008 	if (offset > (int)skb->len - len)
2009 		goto fault;
2010 
2011 	/* Copy header. */
2012 	if ((copy = start - offset) > 0) {
2013 		if (copy > len)
2014 			copy = len;
2015 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2016 		if ((len -= copy) == 0)
2017 			return 0;
2018 		offset += copy;
2019 		to     += copy;
2020 	}
2021 
2022 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2023 		int end;
2024 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2025 
2026 		WARN_ON(start > offset + len);
2027 
2028 		end = start + skb_frag_size(f);
2029 		if ((copy = end - offset) > 0) {
2030 			u32 p_off, p_len, copied;
2031 			struct page *p;
2032 			u8 *vaddr;
2033 
2034 			if (copy > len)
2035 				copy = len;
2036 
2037 			skb_frag_foreach_page(f,
2038 					      f->page_offset + offset - start,
2039 					      copy, p, p_off, p_len, copied) {
2040 				vaddr = kmap_atomic(p);
2041 				memcpy(to + copied, vaddr + p_off, p_len);
2042 				kunmap_atomic(vaddr);
2043 			}
2044 
2045 			if ((len -= copy) == 0)
2046 				return 0;
2047 			offset += copy;
2048 			to     += copy;
2049 		}
2050 		start = end;
2051 	}
2052 
2053 	skb_walk_frags(skb, frag_iter) {
2054 		int end;
2055 
2056 		WARN_ON(start > offset + len);
2057 
2058 		end = start + frag_iter->len;
2059 		if ((copy = end - offset) > 0) {
2060 			if (copy > len)
2061 				copy = len;
2062 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2063 				goto fault;
2064 			if ((len -= copy) == 0)
2065 				return 0;
2066 			offset += copy;
2067 			to     += copy;
2068 		}
2069 		start = end;
2070 	}
2071 
2072 	if (!len)
2073 		return 0;
2074 
2075 fault:
2076 	return -EFAULT;
2077 }
2078 EXPORT_SYMBOL(skb_copy_bits);
2079 
2080 /*
2081  * Callback from splice_to_pipe(), if we need to release some pages
2082  * at the end of the spd in case we error'ed out in filling the pipe.
2083  */
2084 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2085 {
2086 	put_page(spd->pages[i]);
2087 }
2088 
2089 static struct page *linear_to_page(struct page *page, unsigned int *len,
2090 				   unsigned int *offset,
2091 				   struct sock *sk)
2092 {
2093 	struct page_frag *pfrag = sk_page_frag(sk);
2094 
2095 	if (!sk_page_frag_refill(sk, pfrag))
2096 		return NULL;
2097 
2098 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2099 
2100 	memcpy(page_address(pfrag->page) + pfrag->offset,
2101 	       page_address(page) + *offset, *len);
2102 	*offset = pfrag->offset;
2103 	pfrag->offset += *len;
2104 
2105 	return pfrag->page;
2106 }
2107 
2108 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2109 			     struct page *page,
2110 			     unsigned int offset)
2111 {
2112 	return	spd->nr_pages &&
2113 		spd->pages[spd->nr_pages - 1] == page &&
2114 		(spd->partial[spd->nr_pages - 1].offset +
2115 		 spd->partial[spd->nr_pages - 1].len == offset);
2116 }
2117 
2118 /*
2119  * Fill page/offset/length into spd, if it can hold more pages.
2120  */
2121 static bool spd_fill_page(struct splice_pipe_desc *spd,
2122 			  struct pipe_inode_info *pipe, struct page *page,
2123 			  unsigned int *len, unsigned int offset,
2124 			  bool linear,
2125 			  struct sock *sk)
2126 {
2127 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2128 		return true;
2129 
2130 	if (linear) {
2131 		page = linear_to_page(page, len, &offset, sk);
2132 		if (!page)
2133 			return true;
2134 	}
2135 	if (spd_can_coalesce(spd, page, offset)) {
2136 		spd->partial[spd->nr_pages - 1].len += *len;
2137 		return false;
2138 	}
2139 	get_page(page);
2140 	spd->pages[spd->nr_pages] = page;
2141 	spd->partial[spd->nr_pages].len = *len;
2142 	spd->partial[spd->nr_pages].offset = offset;
2143 	spd->nr_pages++;
2144 
2145 	return false;
2146 }
2147 
2148 static bool __splice_segment(struct page *page, unsigned int poff,
2149 			     unsigned int plen, unsigned int *off,
2150 			     unsigned int *len,
2151 			     struct splice_pipe_desc *spd, bool linear,
2152 			     struct sock *sk,
2153 			     struct pipe_inode_info *pipe)
2154 {
2155 	if (!*len)
2156 		return true;
2157 
2158 	/* skip this segment if already processed */
2159 	if (*off >= plen) {
2160 		*off -= plen;
2161 		return false;
2162 	}
2163 
2164 	/* ignore any bits we already processed */
2165 	poff += *off;
2166 	plen -= *off;
2167 	*off = 0;
2168 
2169 	do {
2170 		unsigned int flen = min(*len, plen);
2171 
2172 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2173 				  linear, sk))
2174 			return true;
2175 		poff += flen;
2176 		plen -= flen;
2177 		*len -= flen;
2178 	} while (*len && plen);
2179 
2180 	return false;
2181 }
2182 
2183 /*
2184  * Map linear and fragment data from the skb to spd. It reports true if the
2185  * pipe is full or if we already spliced the requested length.
2186  */
2187 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2188 			      unsigned int *offset, unsigned int *len,
2189 			      struct splice_pipe_desc *spd, struct sock *sk)
2190 {
2191 	int seg;
2192 	struct sk_buff *iter;
2193 
2194 	/* map the linear part :
2195 	 * If skb->head_frag is set, this 'linear' part is backed by a
2196 	 * fragment, and if the head is not shared with any clones then
2197 	 * we can avoid a copy since we own the head portion of this page.
2198 	 */
2199 	if (__splice_segment(virt_to_page(skb->data),
2200 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2201 			     skb_headlen(skb),
2202 			     offset, len, spd,
2203 			     skb_head_is_locked(skb),
2204 			     sk, pipe))
2205 		return true;
2206 
2207 	/*
2208 	 * then map the fragments
2209 	 */
2210 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2211 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2212 
2213 		if (__splice_segment(skb_frag_page(f),
2214 				     f->page_offset, skb_frag_size(f),
2215 				     offset, len, spd, false, sk, pipe))
2216 			return true;
2217 	}
2218 
2219 	skb_walk_frags(skb, iter) {
2220 		if (*offset >= iter->len) {
2221 			*offset -= iter->len;
2222 			continue;
2223 		}
2224 		/* __skb_splice_bits() only fails if the output has no room
2225 		 * left, so no point in going over the frag_list for the error
2226 		 * case.
2227 		 */
2228 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2229 			return true;
2230 	}
2231 
2232 	return false;
2233 }
2234 
2235 /*
2236  * Map data from the skb to a pipe. Should handle both the linear part,
2237  * the fragments, and the frag list.
2238  */
2239 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2240 		    struct pipe_inode_info *pipe, unsigned int tlen,
2241 		    unsigned int flags)
2242 {
2243 	struct partial_page partial[MAX_SKB_FRAGS];
2244 	struct page *pages[MAX_SKB_FRAGS];
2245 	struct splice_pipe_desc spd = {
2246 		.pages = pages,
2247 		.partial = partial,
2248 		.nr_pages_max = MAX_SKB_FRAGS,
2249 		.ops = &nosteal_pipe_buf_ops,
2250 		.spd_release = sock_spd_release,
2251 	};
2252 	int ret = 0;
2253 
2254 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2255 
2256 	if (spd.nr_pages)
2257 		ret = splice_to_pipe(pipe, &spd);
2258 
2259 	return ret;
2260 }
2261 EXPORT_SYMBOL_GPL(skb_splice_bits);
2262 
2263 /* Send skb data on a socket. Socket must be locked. */
2264 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2265 			 int len)
2266 {
2267 	unsigned int orig_len = len;
2268 	struct sk_buff *head = skb;
2269 	unsigned short fragidx;
2270 	int slen, ret;
2271 
2272 do_frag_list:
2273 
2274 	/* Deal with head data */
2275 	while (offset < skb_headlen(skb) && len) {
2276 		struct kvec kv;
2277 		struct msghdr msg;
2278 
2279 		slen = min_t(int, len, skb_headlen(skb) - offset);
2280 		kv.iov_base = skb->data + offset;
2281 		kv.iov_len = slen;
2282 		memset(&msg, 0, sizeof(msg));
2283 
2284 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2285 		if (ret <= 0)
2286 			goto error;
2287 
2288 		offset += ret;
2289 		len -= ret;
2290 	}
2291 
2292 	/* All the data was skb head? */
2293 	if (!len)
2294 		goto out;
2295 
2296 	/* Make offset relative to start of frags */
2297 	offset -= skb_headlen(skb);
2298 
2299 	/* Find where we are in frag list */
2300 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2301 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2302 
2303 		if (offset < frag->size)
2304 			break;
2305 
2306 		offset -= frag->size;
2307 	}
2308 
2309 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2310 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2311 
2312 		slen = min_t(size_t, len, frag->size - offset);
2313 
2314 		while (slen) {
2315 			ret = kernel_sendpage_locked(sk, frag->page.p,
2316 						     frag->page_offset + offset,
2317 						     slen, MSG_DONTWAIT);
2318 			if (ret <= 0)
2319 				goto error;
2320 
2321 			len -= ret;
2322 			offset += ret;
2323 			slen -= ret;
2324 		}
2325 
2326 		offset = 0;
2327 	}
2328 
2329 	if (len) {
2330 		/* Process any frag lists */
2331 
2332 		if (skb == head) {
2333 			if (skb_has_frag_list(skb)) {
2334 				skb = skb_shinfo(skb)->frag_list;
2335 				goto do_frag_list;
2336 			}
2337 		} else if (skb->next) {
2338 			skb = skb->next;
2339 			goto do_frag_list;
2340 		}
2341 	}
2342 
2343 out:
2344 	return orig_len - len;
2345 
2346 error:
2347 	return orig_len == len ? ret : orig_len - len;
2348 }
2349 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2350 
2351 /* Send skb data on a socket. */
2352 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2353 {
2354 	int ret = 0;
2355 
2356 	lock_sock(sk);
2357 	ret = skb_send_sock_locked(sk, skb, offset, len);
2358 	release_sock(sk);
2359 
2360 	return ret;
2361 }
2362 EXPORT_SYMBOL_GPL(skb_send_sock);
2363 
2364 /**
2365  *	skb_store_bits - store bits from kernel buffer to skb
2366  *	@skb: destination buffer
2367  *	@offset: offset in destination
2368  *	@from: source buffer
2369  *	@len: number of bytes to copy
2370  *
2371  *	Copy the specified number of bytes from the source buffer to the
2372  *	destination skb.  This function handles all the messy bits of
2373  *	traversing fragment lists and such.
2374  */
2375 
2376 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2377 {
2378 	int start = skb_headlen(skb);
2379 	struct sk_buff *frag_iter;
2380 	int i, copy;
2381 
2382 	if (offset > (int)skb->len - len)
2383 		goto fault;
2384 
2385 	if ((copy = start - offset) > 0) {
2386 		if (copy > len)
2387 			copy = len;
2388 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2389 		if ((len -= copy) == 0)
2390 			return 0;
2391 		offset += copy;
2392 		from += copy;
2393 	}
2394 
2395 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2396 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2397 		int end;
2398 
2399 		WARN_ON(start > offset + len);
2400 
2401 		end = start + skb_frag_size(frag);
2402 		if ((copy = end - offset) > 0) {
2403 			u32 p_off, p_len, copied;
2404 			struct page *p;
2405 			u8 *vaddr;
2406 
2407 			if (copy > len)
2408 				copy = len;
2409 
2410 			skb_frag_foreach_page(frag,
2411 					      frag->page_offset + offset - start,
2412 					      copy, p, p_off, p_len, copied) {
2413 				vaddr = kmap_atomic(p);
2414 				memcpy(vaddr + p_off, from + copied, p_len);
2415 				kunmap_atomic(vaddr);
2416 			}
2417 
2418 			if ((len -= copy) == 0)
2419 				return 0;
2420 			offset += copy;
2421 			from += copy;
2422 		}
2423 		start = end;
2424 	}
2425 
2426 	skb_walk_frags(skb, frag_iter) {
2427 		int end;
2428 
2429 		WARN_ON(start > offset + len);
2430 
2431 		end = start + frag_iter->len;
2432 		if ((copy = end - offset) > 0) {
2433 			if (copy > len)
2434 				copy = len;
2435 			if (skb_store_bits(frag_iter, offset - start,
2436 					   from, copy))
2437 				goto fault;
2438 			if ((len -= copy) == 0)
2439 				return 0;
2440 			offset += copy;
2441 			from += copy;
2442 		}
2443 		start = end;
2444 	}
2445 	if (!len)
2446 		return 0;
2447 
2448 fault:
2449 	return -EFAULT;
2450 }
2451 EXPORT_SYMBOL(skb_store_bits);
2452 
2453 /* Checksum skb data. */
2454 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2455 		      __wsum csum, const struct skb_checksum_ops *ops)
2456 {
2457 	int start = skb_headlen(skb);
2458 	int i, copy = start - offset;
2459 	struct sk_buff *frag_iter;
2460 	int pos = 0;
2461 
2462 	/* Checksum header. */
2463 	if (copy > 0) {
2464 		if (copy > len)
2465 			copy = len;
2466 		csum = ops->update(skb->data + offset, copy, csum);
2467 		if ((len -= copy) == 0)
2468 			return csum;
2469 		offset += copy;
2470 		pos	= copy;
2471 	}
2472 
2473 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2474 		int end;
2475 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2476 
2477 		WARN_ON(start > offset + len);
2478 
2479 		end = start + skb_frag_size(frag);
2480 		if ((copy = end - offset) > 0) {
2481 			u32 p_off, p_len, copied;
2482 			struct page *p;
2483 			__wsum csum2;
2484 			u8 *vaddr;
2485 
2486 			if (copy > len)
2487 				copy = len;
2488 
2489 			skb_frag_foreach_page(frag,
2490 					      frag->page_offset + offset - start,
2491 					      copy, p, p_off, p_len, copied) {
2492 				vaddr = kmap_atomic(p);
2493 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2494 				kunmap_atomic(vaddr);
2495 				csum = ops->combine(csum, csum2, pos, p_len);
2496 				pos += p_len;
2497 			}
2498 
2499 			if (!(len -= copy))
2500 				return csum;
2501 			offset += copy;
2502 		}
2503 		start = end;
2504 	}
2505 
2506 	skb_walk_frags(skb, frag_iter) {
2507 		int end;
2508 
2509 		WARN_ON(start > offset + len);
2510 
2511 		end = start + frag_iter->len;
2512 		if ((copy = end - offset) > 0) {
2513 			__wsum csum2;
2514 			if (copy > len)
2515 				copy = len;
2516 			csum2 = __skb_checksum(frag_iter, offset - start,
2517 					       copy, 0, ops);
2518 			csum = ops->combine(csum, csum2, pos, copy);
2519 			if ((len -= copy) == 0)
2520 				return csum;
2521 			offset += copy;
2522 			pos    += copy;
2523 		}
2524 		start = end;
2525 	}
2526 	BUG_ON(len);
2527 
2528 	return csum;
2529 }
2530 EXPORT_SYMBOL(__skb_checksum);
2531 
2532 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2533 		    int len, __wsum csum)
2534 {
2535 	const struct skb_checksum_ops ops = {
2536 		.update  = csum_partial_ext,
2537 		.combine = csum_block_add_ext,
2538 	};
2539 
2540 	return __skb_checksum(skb, offset, len, csum, &ops);
2541 }
2542 EXPORT_SYMBOL(skb_checksum);
2543 
2544 /* Both of above in one bottle. */
2545 
2546 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2547 				    u8 *to, int len, __wsum csum)
2548 {
2549 	int start = skb_headlen(skb);
2550 	int i, copy = start - offset;
2551 	struct sk_buff *frag_iter;
2552 	int pos = 0;
2553 
2554 	/* Copy header. */
2555 	if (copy > 0) {
2556 		if (copy > len)
2557 			copy = len;
2558 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2559 						 copy, csum);
2560 		if ((len -= copy) == 0)
2561 			return csum;
2562 		offset += copy;
2563 		to     += copy;
2564 		pos	= copy;
2565 	}
2566 
2567 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2568 		int end;
2569 
2570 		WARN_ON(start > offset + len);
2571 
2572 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2573 		if ((copy = end - offset) > 0) {
2574 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575 			u32 p_off, p_len, copied;
2576 			struct page *p;
2577 			__wsum csum2;
2578 			u8 *vaddr;
2579 
2580 			if (copy > len)
2581 				copy = len;
2582 
2583 			skb_frag_foreach_page(frag,
2584 					      frag->page_offset + offset - start,
2585 					      copy, p, p_off, p_len, copied) {
2586 				vaddr = kmap_atomic(p);
2587 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2588 								  to + copied,
2589 								  p_len, 0);
2590 				kunmap_atomic(vaddr);
2591 				csum = csum_block_add(csum, csum2, pos);
2592 				pos += p_len;
2593 			}
2594 
2595 			if (!(len -= copy))
2596 				return csum;
2597 			offset += copy;
2598 			to     += copy;
2599 		}
2600 		start = end;
2601 	}
2602 
2603 	skb_walk_frags(skb, frag_iter) {
2604 		__wsum csum2;
2605 		int end;
2606 
2607 		WARN_ON(start > offset + len);
2608 
2609 		end = start + frag_iter->len;
2610 		if ((copy = end - offset) > 0) {
2611 			if (copy > len)
2612 				copy = len;
2613 			csum2 = skb_copy_and_csum_bits(frag_iter,
2614 						       offset - start,
2615 						       to, copy, 0);
2616 			csum = csum_block_add(csum, csum2, pos);
2617 			if ((len -= copy) == 0)
2618 				return csum;
2619 			offset += copy;
2620 			to     += copy;
2621 			pos    += copy;
2622 		}
2623 		start = end;
2624 	}
2625 	BUG_ON(len);
2626 	return csum;
2627 }
2628 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2629 
2630 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2631 {
2632 	net_warn_ratelimited(
2633 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2634 		__func__);
2635 	return 0;
2636 }
2637 
2638 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2639 				       int offset, int len)
2640 {
2641 	net_warn_ratelimited(
2642 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2643 		__func__);
2644 	return 0;
2645 }
2646 
2647 static const struct skb_checksum_ops default_crc32c_ops = {
2648 	.update  = warn_crc32c_csum_update,
2649 	.combine = warn_crc32c_csum_combine,
2650 };
2651 
2652 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2653 	&default_crc32c_ops;
2654 EXPORT_SYMBOL(crc32c_csum_stub);
2655 
2656  /**
2657  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2658  *	@from: source buffer
2659  *
2660  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2661  *	into skb_zerocopy().
2662  */
2663 unsigned int
2664 skb_zerocopy_headlen(const struct sk_buff *from)
2665 {
2666 	unsigned int hlen = 0;
2667 
2668 	if (!from->head_frag ||
2669 	    skb_headlen(from) < L1_CACHE_BYTES ||
2670 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2671 		hlen = skb_headlen(from);
2672 
2673 	if (skb_has_frag_list(from))
2674 		hlen = from->len;
2675 
2676 	return hlen;
2677 }
2678 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2679 
2680 /**
2681  *	skb_zerocopy - Zero copy skb to skb
2682  *	@to: destination buffer
2683  *	@from: source buffer
2684  *	@len: number of bytes to copy from source buffer
2685  *	@hlen: size of linear headroom in destination buffer
2686  *
2687  *	Copies up to `len` bytes from `from` to `to` by creating references
2688  *	to the frags in the source buffer.
2689  *
2690  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2691  *	headroom in the `to` buffer.
2692  *
2693  *	Return value:
2694  *	0: everything is OK
2695  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2696  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2697  */
2698 int
2699 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2700 {
2701 	int i, j = 0;
2702 	int plen = 0; /* length of skb->head fragment */
2703 	int ret;
2704 	struct page *page;
2705 	unsigned int offset;
2706 
2707 	BUG_ON(!from->head_frag && !hlen);
2708 
2709 	/* dont bother with small payloads */
2710 	if (len <= skb_tailroom(to))
2711 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2712 
2713 	if (hlen) {
2714 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2715 		if (unlikely(ret))
2716 			return ret;
2717 		len -= hlen;
2718 	} else {
2719 		plen = min_t(int, skb_headlen(from), len);
2720 		if (plen) {
2721 			page = virt_to_head_page(from->head);
2722 			offset = from->data - (unsigned char *)page_address(page);
2723 			__skb_fill_page_desc(to, 0, page, offset, plen);
2724 			get_page(page);
2725 			j = 1;
2726 			len -= plen;
2727 		}
2728 	}
2729 
2730 	to->truesize += len + plen;
2731 	to->len += len + plen;
2732 	to->data_len += len + plen;
2733 
2734 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2735 		skb_tx_error(from);
2736 		return -ENOMEM;
2737 	}
2738 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2739 
2740 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2741 		if (!len)
2742 			break;
2743 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2744 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2745 		len -= skb_shinfo(to)->frags[j].size;
2746 		skb_frag_ref(to, j);
2747 		j++;
2748 	}
2749 	skb_shinfo(to)->nr_frags = j;
2750 
2751 	return 0;
2752 }
2753 EXPORT_SYMBOL_GPL(skb_zerocopy);
2754 
2755 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2756 {
2757 	__wsum csum;
2758 	long csstart;
2759 
2760 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2761 		csstart = skb_checksum_start_offset(skb);
2762 	else
2763 		csstart = skb_headlen(skb);
2764 
2765 	BUG_ON(csstart > skb_headlen(skb));
2766 
2767 	skb_copy_from_linear_data(skb, to, csstart);
2768 
2769 	csum = 0;
2770 	if (csstart != skb->len)
2771 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2772 					      skb->len - csstart, 0);
2773 
2774 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2775 		long csstuff = csstart + skb->csum_offset;
2776 
2777 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2778 	}
2779 }
2780 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2781 
2782 /**
2783  *	skb_dequeue - remove from the head of the queue
2784  *	@list: list to dequeue from
2785  *
2786  *	Remove the head of the list. The list lock is taken so the function
2787  *	may be used safely with other locking list functions. The head item is
2788  *	returned or %NULL if the list is empty.
2789  */
2790 
2791 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2792 {
2793 	unsigned long flags;
2794 	struct sk_buff *result;
2795 
2796 	spin_lock_irqsave(&list->lock, flags);
2797 	result = __skb_dequeue(list);
2798 	spin_unlock_irqrestore(&list->lock, flags);
2799 	return result;
2800 }
2801 EXPORT_SYMBOL(skb_dequeue);
2802 
2803 /**
2804  *	skb_dequeue_tail - remove from the tail of the queue
2805  *	@list: list to dequeue from
2806  *
2807  *	Remove the tail of the list. The list lock is taken so the function
2808  *	may be used safely with other locking list functions. The tail item is
2809  *	returned or %NULL if the list is empty.
2810  */
2811 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2812 {
2813 	unsigned long flags;
2814 	struct sk_buff *result;
2815 
2816 	spin_lock_irqsave(&list->lock, flags);
2817 	result = __skb_dequeue_tail(list);
2818 	spin_unlock_irqrestore(&list->lock, flags);
2819 	return result;
2820 }
2821 EXPORT_SYMBOL(skb_dequeue_tail);
2822 
2823 /**
2824  *	skb_queue_purge - empty a list
2825  *	@list: list to empty
2826  *
2827  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2828  *	the list and one reference dropped. This function takes the list
2829  *	lock and is atomic with respect to other list locking functions.
2830  */
2831 void skb_queue_purge(struct sk_buff_head *list)
2832 {
2833 	struct sk_buff *skb;
2834 	while ((skb = skb_dequeue(list)) != NULL)
2835 		kfree_skb(skb);
2836 }
2837 EXPORT_SYMBOL(skb_queue_purge);
2838 
2839 /**
2840  *	skb_rbtree_purge - empty a skb rbtree
2841  *	@root: root of the rbtree to empty
2842  *
2843  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2844  *	the list and one reference dropped. This function does not take
2845  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2846  *	out-of-order queue is protected by the socket lock).
2847  */
2848 void skb_rbtree_purge(struct rb_root *root)
2849 {
2850 	struct rb_node *p = rb_first(root);
2851 
2852 	while (p) {
2853 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2854 
2855 		p = rb_next(p);
2856 		rb_erase(&skb->rbnode, root);
2857 		kfree_skb(skb);
2858 	}
2859 }
2860 
2861 /**
2862  *	skb_queue_head - queue a buffer at the list head
2863  *	@list: list to use
2864  *	@newsk: buffer to queue
2865  *
2866  *	Queue a buffer at the start of the list. This function takes the
2867  *	list lock and can be used safely with other locking &sk_buff functions
2868  *	safely.
2869  *
2870  *	A buffer cannot be placed on two lists at the same time.
2871  */
2872 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2873 {
2874 	unsigned long flags;
2875 
2876 	spin_lock_irqsave(&list->lock, flags);
2877 	__skb_queue_head(list, newsk);
2878 	spin_unlock_irqrestore(&list->lock, flags);
2879 }
2880 EXPORT_SYMBOL(skb_queue_head);
2881 
2882 /**
2883  *	skb_queue_tail - queue a buffer at the list tail
2884  *	@list: list to use
2885  *	@newsk: buffer to queue
2886  *
2887  *	Queue a buffer at the tail of the list. This function takes the
2888  *	list lock and can be used safely with other locking &sk_buff functions
2889  *	safely.
2890  *
2891  *	A buffer cannot be placed on two lists at the same time.
2892  */
2893 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2894 {
2895 	unsigned long flags;
2896 
2897 	spin_lock_irqsave(&list->lock, flags);
2898 	__skb_queue_tail(list, newsk);
2899 	spin_unlock_irqrestore(&list->lock, flags);
2900 }
2901 EXPORT_SYMBOL(skb_queue_tail);
2902 
2903 /**
2904  *	skb_unlink	-	remove a buffer from a list
2905  *	@skb: buffer to remove
2906  *	@list: list to use
2907  *
2908  *	Remove a packet from a list. The list locks are taken and this
2909  *	function is atomic with respect to other list locked calls
2910  *
2911  *	You must know what list the SKB is on.
2912  */
2913 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2914 {
2915 	unsigned long flags;
2916 
2917 	spin_lock_irqsave(&list->lock, flags);
2918 	__skb_unlink(skb, list);
2919 	spin_unlock_irqrestore(&list->lock, flags);
2920 }
2921 EXPORT_SYMBOL(skb_unlink);
2922 
2923 /**
2924  *	skb_append	-	append a buffer
2925  *	@old: buffer to insert after
2926  *	@newsk: buffer to insert
2927  *	@list: list to use
2928  *
2929  *	Place a packet after a given packet in a list. The list locks are taken
2930  *	and this function is atomic with respect to other list locked calls.
2931  *	A buffer cannot be placed on two lists at the same time.
2932  */
2933 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2934 {
2935 	unsigned long flags;
2936 
2937 	spin_lock_irqsave(&list->lock, flags);
2938 	__skb_queue_after(list, old, newsk);
2939 	spin_unlock_irqrestore(&list->lock, flags);
2940 }
2941 EXPORT_SYMBOL(skb_append);
2942 
2943 /**
2944  *	skb_insert	-	insert a buffer
2945  *	@old: buffer to insert before
2946  *	@newsk: buffer to insert
2947  *	@list: list to use
2948  *
2949  *	Place a packet before a given packet in a list. The list locks are
2950  * 	taken and this function is atomic with respect to other list locked
2951  *	calls.
2952  *
2953  *	A buffer cannot be placed on two lists at the same time.
2954  */
2955 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2956 {
2957 	unsigned long flags;
2958 
2959 	spin_lock_irqsave(&list->lock, flags);
2960 	__skb_insert(newsk, old->prev, old, list);
2961 	spin_unlock_irqrestore(&list->lock, flags);
2962 }
2963 EXPORT_SYMBOL(skb_insert);
2964 
2965 static inline void skb_split_inside_header(struct sk_buff *skb,
2966 					   struct sk_buff* skb1,
2967 					   const u32 len, const int pos)
2968 {
2969 	int i;
2970 
2971 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2972 					 pos - len);
2973 	/* And move data appendix as is. */
2974 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2975 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2976 
2977 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2978 	skb_shinfo(skb)->nr_frags  = 0;
2979 	skb1->data_len		   = skb->data_len;
2980 	skb1->len		   += skb1->data_len;
2981 	skb->data_len		   = 0;
2982 	skb->len		   = len;
2983 	skb_set_tail_pointer(skb, len);
2984 }
2985 
2986 static inline void skb_split_no_header(struct sk_buff *skb,
2987 				       struct sk_buff* skb1,
2988 				       const u32 len, int pos)
2989 {
2990 	int i, k = 0;
2991 	const int nfrags = skb_shinfo(skb)->nr_frags;
2992 
2993 	skb_shinfo(skb)->nr_frags = 0;
2994 	skb1->len		  = skb1->data_len = skb->len - len;
2995 	skb->len		  = len;
2996 	skb->data_len		  = len - pos;
2997 
2998 	for (i = 0; i < nfrags; i++) {
2999 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3000 
3001 		if (pos + size > len) {
3002 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3003 
3004 			if (pos < len) {
3005 				/* Split frag.
3006 				 * We have two variants in this case:
3007 				 * 1. Move all the frag to the second
3008 				 *    part, if it is possible. F.e.
3009 				 *    this approach is mandatory for TUX,
3010 				 *    where splitting is expensive.
3011 				 * 2. Split is accurately. We make this.
3012 				 */
3013 				skb_frag_ref(skb, i);
3014 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3015 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3016 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3017 				skb_shinfo(skb)->nr_frags++;
3018 			}
3019 			k++;
3020 		} else
3021 			skb_shinfo(skb)->nr_frags++;
3022 		pos += size;
3023 	}
3024 	skb_shinfo(skb1)->nr_frags = k;
3025 }
3026 
3027 /**
3028  * skb_split - Split fragmented skb to two parts at length len.
3029  * @skb: the buffer to split
3030  * @skb1: the buffer to receive the second part
3031  * @len: new length for skb
3032  */
3033 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3034 {
3035 	int pos = skb_headlen(skb);
3036 
3037 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3038 				      SKBTX_SHARED_FRAG;
3039 	skb_zerocopy_clone(skb1, skb, 0);
3040 	if (len < pos)	/* Split line is inside header. */
3041 		skb_split_inside_header(skb, skb1, len, pos);
3042 	else		/* Second chunk has no header, nothing to copy. */
3043 		skb_split_no_header(skb, skb1, len, pos);
3044 }
3045 EXPORT_SYMBOL(skb_split);
3046 
3047 /* Shifting from/to a cloned skb is a no-go.
3048  *
3049  * Caller cannot keep skb_shinfo related pointers past calling here!
3050  */
3051 static int skb_prepare_for_shift(struct sk_buff *skb)
3052 {
3053 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3054 }
3055 
3056 /**
3057  * skb_shift - Shifts paged data partially from skb to another
3058  * @tgt: buffer into which tail data gets added
3059  * @skb: buffer from which the paged data comes from
3060  * @shiftlen: shift up to this many bytes
3061  *
3062  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3063  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3064  * It's up to caller to free skb if everything was shifted.
3065  *
3066  * If @tgt runs out of frags, the whole operation is aborted.
3067  *
3068  * Skb cannot include anything else but paged data while tgt is allowed
3069  * to have non-paged data as well.
3070  *
3071  * TODO: full sized shift could be optimized but that would need
3072  * specialized skb free'er to handle frags without up-to-date nr_frags.
3073  */
3074 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3075 {
3076 	int from, to, merge, todo;
3077 	struct skb_frag_struct *fragfrom, *fragto;
3078 
3079 	BUG_ON(shiftlen > skb->len);
3080 
3081 	if (skb_headlen(skb))
3082 		return 0;
3083 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3084 		return 0;
3085 
3086 	todo = shiftlen;
3087 	from = 0;
3088 	to = skb_shinfo(tgt)->nr_frags;
3089 	fragfrom = &skb_shinfo(skb)->frags[from];
3090 
3091 	/* Actual merge is delayed until the point when we know we can
3092 	 * commit all, so that we don't have to undo partial changes
3093 	 */
3094 	if (!to ||
3095 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3096 			      fragfrom->page_offset)) {
3097 		merge = -1;
3098 	} else {
3099 		merge = to - 1;
3100 
3101 		todo -= skb_frag_size(fragfrom);
3102 		if (todo < 0) {
3103 			if (skb_prepare_for_shift(skb) ||
3104 			    skb_prepare_for_shift(tgt))
3105 				return 0;
3106 
3107 			/* All previous frag pointers might be stale! */
3108 			fragfrom = &skb_shinfo(skb)->frags[from];
3109 			fragto = &skb_shinfo(tgt)->frags[merge];
3110 
3111 			skb_frag_size_add(fragto, shiftlen);
3112 			skb_frag_size_sub(fragfrom, shiftlen);
3113 			fragfrom->page_offset += shiftlen;
3114 
3115 			goto onlymerged;
3116 		}
3117 
3118 		from++;
3119 	}
3120 
3121 	/* Skip full, not-fitting skb to avoid expensive operations */
3122 	if ((shiftlen == skb->len) &&
3123 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3124 		return 0;
3125 
3126 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3127 		return 0;
3128 
3129 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3130 		if (to == MAX_SKB_FRAGS)
3131 			return 0;
3132 
3133 		fragfrom = &skb_shinfo(skb)->frags[from];
3134 		fragto = &skb_shinfo(tgt)->frags[to];
3135 
3136 		if (todo >= skb_frag_size(fragfrom)) {
3137 			*fragto = *fragfrom;
3138 			todo -= skb_frag_size(fragfrom);
3139 			from++;
3140 			to++;
3141 
3142 		} else {
3143 			__skb_frag_ref(fragfrom);
3144 			fragto->page = fragfrom->page;
3145 			fragto->page_offset = fragfrom->page_offset;
3146 			skb_frag_size_set(fragto, todo);
3147 
3148 			fragfrom->page_offset += todo;
3149 			skb_frag_size_sub(fragfrom, todo);
3150 			todo = 0;
3151 
3152 			to++;
3153 			break;
3154 		}
3155 	}
3156 
3157 	/* Ready to "commit" this state change to tgt */
3158 	skb_shinfo(tgt)->nr_frags = to;
3159 
3160 	if (merge >= 0) {
3161 		fragfrom = &skb_shinfo(skb)->frags[0];
3162 		fragto = &skb_shinfo(tgt)->frags[merge];
3163 
3164 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3165 		__skb_frag_unref(fragfrom);
3166 	}
3167 
3168 	/* Reposition in the original skb */
3169 	to = 0;
3170 	while (from < skb_shinfo(skb)->nr_frags)
3171 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3172 	skb_shinfo(skb)->nr_frags = to;
3173 
3174 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3175 
3176 onlymerged:
3177 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3178 	 * the other hand might need it if it needs to be resent
3179 	 */
3180 	tgt->ip_summed = CHECKSUM_PARTIAL;
3181 	skb->ip_summed = CHECKSUM_PARTIAL;
3182 
3183 	/* Yak, is it really working this way? Some helper please? */
3184 	skb->len -= shiftlen;
3185 	skb->data_len -= shiftlen;
3186 	skb->truesize -= shiftlen;
3187 	tgt->len += shiftlen;
3188 	tgt->data_len += shiftlen;
3189 	tgt->truesize += shiftlen;
3190 
3191 	return shiftlen;
3192 }
3193 
3194 /**
3195  * skb_prepare_seq_read - Prepare a sequential read of skb data
3196  * @skb: the buffer to read
3197  * @from: lower offset of data to be read
3198  * @to: upper offset of data to be read
3199  * @st: state variable
3200  *
3201  * Initializes the specified state variable. Must be called before
3202  * invoking skb_seq_read() for the first time.
3203  */
3204 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3205 			  unsigned int to, struct skb_seq_state *st)
3206 {
3207 	st->lower_offset = from;
3208 	st->upper_offset = to;
3209 	st->root_skb = st->cur_skb = skb;
3210 	st->frag_idx = st->stepped_offset = 0;
3211 	st->frag_data = NULL;
3212 }
3213 EXPORT_SYMBOL(skb_prepare_seq_read);
3214 
3215 /**
3216  * skb_seq_read - Sequentially read skb data
3217  * @consumed: number of bytes consumed by the caller so far
3218  * @data: destination pointer for data to be returned
3219  * @st: state variable
3220  *
3221  * Reads a block of skb data at @consumed relative to the
3222  * lower offset specified to skb_prepare_seq_read(). Assigns
3223  * the head of the data block to @data and returns the length
3224  * of the block or 0 if the end of the skb data or the upper
3225  * offset has been reached.
3226  *
3227  * The caller is not required to consume all of the data
3228  * returned, i.e. @consumed is typically set to the number
3229  * of bytes already consumed and the next call to
3230  * skb_seq_read() will return the remaining part of the block.
3231  *
3232  * Note 1: The size of each block of data returned can be arbitrary,
3233  *       this limitation is the cost for zerocopy sequential
3234  *       reads of potentially non linear data.
3235  *
3236  * Note 2: Fragment lists within fragments are not implemented
3237  *       at the moment, state->root_skb could be replaced with
3238  *       a stack for this purpose.
3239  */
3240 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3241 			  struct skb_seq_state *st)
3242 {
3243 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3244 	skb_frag_t *frag;
3245 
3246 	if (unlikely(abs_offset >= st->upper_offset)) {
3247 		if (st->frag_data) {
3248 			kunmap_atomic(st->frag_data);
3249 			st->frag_data = NULL;
3250 		}
3251 		return 0;
3252 	}
3253 
3254 next_skb:
3255 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3256 
3257 	if (abs_offset < block_limit && !st->frag_data) {
3258 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3259 		return block_limit - abs_offset;
3260 	}
3261 
3262 	if (st->frag_idx == 0 && !st->frag_data)
3263 		st->stepped_offset += skb_headlen(st->cur_skb);
3264 
3265 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3266 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3267 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3268 
3269 		if (abs_offset < block_limit) {
3270 			if (!st->frag_data)
3271 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3272 
3273 			*data = (u8 *) st->frag_data + frag->page_offset +
3274 				(abs_offset - st->stepped_offset);
3275 
3276 			return block_limit - abs_offset;
3277 		}
3278 
3279 		if (st->frag_data) {
3280 			kunmap_atomic(st->frag_data);
3281 			st->frag_data = NULL;
3282 		}
3283 
3284 		st->frag_idx++;
3285 		st->stepped_offset += skb_frag_size(frag);
3286 	}
3287 
3288 	if (st->frag_data) {
3289 		kunmap_atomic(st->frag_data);
3290 		st->frag_data = NULL;
3291 	}
3292 
3293 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3294 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3295 		st->frag_idx = 0;
3296 		goto next_skb;
3297 	} else if (st->cur_skb->next) {
3298 		st->cur_skb = st->cur_skb->next;
3299 		st->frag_idx = 0;
3300 		goto next_skb;
3301 	}
3302 
3303 	return 0;
3304 }
3305 EXPORT_SYMBOL(skb_seq_read);
3306 
3307 /**
3308  * skb_abort_seq_read - Abort a sequential read of skb data
3309  * @st: state variable
3310  *
3311  * Must be called if skb_seq_read() was not called until it
3312  * returned 0.
3313  */
3314 void skb_abort_seq_read(struct skb_seq_state *st)
3315 {
3316 	if (st->frag_data)
3317 		kunmap_atomic(st->frag_data);
3318 }
3319 EXPORT_SYMBOL(skb_abort_seq_read);
3320 
3321 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3322 
3323 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3324 					  struct ts_config *conf,
3325 					  struct ts_state *state)
3326 {
3327 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3328 }
3329 
3330 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3331 {
3332 	skb_abort_seq_read(TS_SKB_CB(state));
3333 }
3334 
3335 /**
3336  * skb_find_text - Find a text pattern in skb data
3337  * @skb: the buffer to look in
3338  * @from: search offset
3339  * @to: search limit
3340  * @config: textsearch configuration
3341  *
3342  * Finds a pattern in the skb data according to the specified
3343  * textsearch configuration. Use textsearch_next() to retrieve
3344  * subsequent occurrences of the pattern. Returns the offset
3345  * to the first occurrence or UINT_MAX if no match was found.
3346  */
3347 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3348 			   unsigned int to, struct ts_config *config)
3349 {
3350 	struct ts_state state;
3351 	unsigned int ret;
3352 
3353 	config->get_next_block = skb_ts_get_next_block;
3354 	config->finish = skb_ts_finish;
3355 
3356 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3357 
3358 	ret = textsearch_find(config, &state);
3359 	return (ret <= to - from ? ret : UINT_MAX);
3360 }
3361 EXPORT_SYMBOL(skb_find_text);
3362 
3363 /**
3364  * skb_append_datato_frags - append the user data to a skb
3365  * @sk: sock  structure
3366  * @skb: skb structure to be appended with user data.
3367  * @getfrag: call back function to be used for getting the user data
3368  * @from: pointer to user message iov
3369  * @length: length of the iov message
3370  *
3371  * Description: This procedure append the user data in the fragment part
3372  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
3373  */
3374 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3375 			int (*getfrag)(void *from, char *to, int offset,
3376 					int len, int odd, struct sk_buff *skb),
3377 			void *from, int length)
3378 {
3379 	int frg_cnt = skb_shinfo(skb)->nr_frags;
3380 	int copy;
3381 	int offset = 0;
3382 	int ret;
3383 	struct page_frag *pfrag = &current->task_frag;
3384 
3385 	do {
3386 		/* Return error if we don't have space for new frag */
3387 		if (frg_cnt >= MAX_SKB_FRAGS)
3388 			return -EMSGSIZE;
3389 
3390 		if (!sk_page_frag_refill(sk, pfrag))
3391 			return -ENOMEM;
3392 
3393 		/* copy the user data to page */
3394 		copy = min_t(int, length, pfrag->size - pfrag->offset);
3395 
3396 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3397 			      offset, copy, 0, skb);
3398 		if (ret < 0)
3399 			return -EFAULT;
3400 
3401 		/* copy was successful so update the size parameters */
3402 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3403 				   copy);
3404 		frg_cnt++;
3405 		pfrag->offset += copy;
3406 		get_page(pfrag->page);
3407 
3408 		skb->truesize += copy;
3409 		refcount_add(copy, &sk->sk_wmem_alloc);
3410 		skb->len += copy;
3411 		skb->data_len += copy;
3412 		offset += copy;
3413 		length -= copy;
3414 
3415 	} while (length > 0);
3416 
3417 	return 0;
3418 }
3419 EXPORT_SYMBOL(skb_append_datato_frags);
3420 
3421 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3422 			 int offset, size_t size)
3423 {
3424 	int i = skb_shinfo(skb)->nr_frags;
3425 
3426 	if (skb_can_coalesce(skb, i, page, offset)) {
3427 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3428 	} else if (i < MAX_SKB_FRAGS) {
3429 		get_page(page);
3430 		skb_fill_page_desc(skb, i, page, offset, size);
3431 	} else {
3432 		return -EMSGSIZE;
3433 	}
3434 
3435 	return 0;
3436 }
3437 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3438 
3439 /**
3440  *	skb_pull_rcsum - pull skb and update receive checksum
3441  *	@skb: buffer to update
3442  *	@len: length of data pulled
3443  *
3444  *	This function performs an skb_pull on the packet and updates
3445  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3446  *	receive path processing instead of skb_pull unless you know
3447  *	that the checksum difference is zero (e.g., a valid IP header)
3448  *	or you are setting ip_summed to CHECKSUM_NONE.
3449  */
3450 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3451 {
3452 	unsigned char *data = skb->data;
3453 
3454 	BUG_ON(len > skb->len);
3455 	__skb_pull(skb, len);
3456 	skb_postpull_rcsum(skb, data, len);
3457 	return skb->data;
3458 }
3459 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3460 
3461 /**
3462  *	skb_segment - Perform protocol segmentation on skb.
3463  *	@head_skb: buffer to segment
3464  *	@features: features for the output path (see dev->features)
3465  *
3466  *	This function performs segmentation on the given skb.  It returns
3467  *	a pointer to the first in a list of new skbs for the segments.
3468  *	In case of error it returns ERR_PTR(err).
3469  */
3470 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3471 			    netdev_features_t features)
3472 {
3473 	struct sk_buff *segs = NULL;
3474 	struct sk_buff *tail = NULL;
3475 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3476 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3477 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3478 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3479 	struct sk_buff *frag_skb = head_skb;
3480 	unsigned int offset = doffset;
3481 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3482 	unsigned int partial_segs = 0;
3483 	unsigned int headroom;
3484 	unsigned int len = head_skb->len;
3485 	__be16 proto;
3486 	bool csum, sg;
3487 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3488 	int err = -ENOMEM;
3489 	int i = 0;
3490 	int pos;
3491 	int dummy;
3492 
3493 	__skb_push(head_skb, doffset);
3494 	proto = skb_network_protocol(head_skb, &dummy);
3495 	if (unlikely(!proto))
3496 		return ERR_PTR(-EINVAL);
3497 
3498 	sg = !!(features & NETIF_F_SG);
3499 	csum = !!can_checksum_protocol(features, proto);
3500 
3501 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3502 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3503 			struct sk_buff *iter;
3504 			unsigned int frag_len;
3505 
3506 			if (!list_skb ||
3507 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3508 				goto normal;
3509 
3510 			/* If we get here then all the required
3511 			 * GSO features except frag_list are supported.
3512 			 * Try to split the SKB to multiple GSO SKBs
3513 			 * with no frag_list.
3514 			 * Currently we can do that only when the buffers don't
3515 			 * have a linear part and all the buffers except
3516 			 * the last are of the same length.
3517 			 */
3518 			frag_len = list_skb->len;
3519 			skb_walk_frags(head_skb, iter) {
3520 				if (frag_len != iter->len && iter->next)
3521 					goto normal;
3522 				if (skb_headlen(iter) && !iter->head_frag)
3523 					goto normal;
3524 
3525 				len -= iter->len;
3526 			}
3527 
3528 			if (len != frag_len)
3529 				goto normal;
3530 		}
3531 
3532 		/* GSO partial only requires that we trim off any excess that
3533 		 * doesn't fit into an MSS sized block, so take care of that
3534 		 * now.
3535 		 */
3536 		partial_segs = len / mss;
3537 		if (partial_segs > 1)
3538 			mss *= partial_segs;
3539 		else
3540 			partial_segs = 0;
3541 	}
3542 
3543 normal:
3544 	headroom = skb_headroom(head_skb);
3545 	pos = skb_headlen(head_skb);
3546 
3547 	do {
3548 		struct sk_buff *nskb;
3549 		skb_frag_t *nskb_frag;
3550 		int hsize;
3551 		int size;
3552 
3553 		if (unlikely(mss == GSO_BY_FRAGS)) {
3554 			len = list_skb->len;
3555 		} else {
3556 			len = head_skb->len - offset;
3557 			if (len > mss)
3558 				len = mss;
3559 		}
3560 
3561 		hsize = skb_headlen(head_skb) - offset;
3562 		if (hsize < 0)
3563 			hsize = 0;
3564 		if (hsize > len || !sg)
3565 			hsize = len;
3566 
3567 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3568 		    (skb_headlen(list_skb) == len || sg)) {
3569 			BUG_ON(skb_headlen(list_skb) > len);
3570 
3571 			i = 0;
3572 			nfrags = skb_shinfo(list_skb)->nr_frags;
3573 			frag = skb_shinfo(list_skb)->frags;
3574 			frag_skb = list_skb;
3575 			pos += skb_headlen(list_skb);
3576 
3577 			while (pos < offset + len) {
3578 				BUG_ON(i >= nfrags);
3579 
3580 				size = skb_frag_size(frag);
3581 				if (pos + size > offset + len)
3582 					break;
3583 
3584 				i++;
3585 				pos += size;
3586 				frag++;
3587 			}
3588 
3589 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3590 			list_skb = list_skb->next;
3591 
3592 			if (unlikely(!nskb))
3593 				goto err;
3594 
3595 			if (unlikely(pskb_trim(nskb, len))) {
3596 				kfree_skb(nskb);
3597 				goto err;
3598 			}
3599 
3600 			hsize = skb_end_offset(nskb);
3601 			if (skb_cow_head(nskb, doffset + headroom)) {
3602 				kfree_skb(nskb);
3603 				goto err;
3604 			}
3605 
3606 			nskb->truesize += skb_end_offset(nskb) - hsize;
3607 			skb_release_head_state(nskb);
3608 			__skb_push(nskb, doffset);
3609 		} else {
3610 			nskb = __alloc_skb(hsize + doffset + headroom,
3611 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3612 					   NUMA_NO_NODE);
3613 
3614 			if (unlikely(!nskb))
3615 				goto err;
3616 
3617 			skb_reserve(nskb, headroom);
3618 			__skb_put(nskb, doffset);
3619 		}
3620 
3621 		if (segs)
3622 			tail->next = nskb;
3623 		else
3624 			segs = nskb;
3625 		tail = nskb;
3626 
3627 		__copy_skb_header(nskb, head_skb);
3628 
3629 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3630 		skb_reset_mac_len(nskb);
3631 
3632 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3633 						 nskb->data - tnl_hlen,
3634 						 doffset + tnl_hlen);
3635 
3636 		if (nskb->len == len + doffset)
3637 			goto perform_csum_check;
3638 
3639 		if (!sg) {
3640 			if (!nskb->remcsum_offload)
3641 				nskb->ip_summed = CHECKSUM_NONE;
3642 			SKB_GSO_CB(nskb)->csum =
3643 				skb_copy_and_csum_bits(head_skb, offset,
3644 						       skb_put(nskb, len),
3645 						       len, 0);
3646 			SKB_GSO_CB(nskb)->csum_start =
3647 				skb_headroom(nskb) + doffset;
3648 			continue;
3649 		}
3650 
3651 		nskb_frag = skb_shinfo(nskb)->frags;
3652 
3653 		skb_copy_from_linear_data_offset(head_skb, offset,
3654 						 skb_put(nskb, hsize), hsize);
3655 
3656 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3657 					      SKBTX_SHARED_FRAG;
3658 
3659 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3660 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3661 			goto err;
3662 
3663 		while (pos < offset + len) {
3664 			if (i >= nfrags) {
3665 				BUG_ON(skb_headlen(list_skb));
3666 
3667 				i = 0;
3668 				nfrags = skb_shinfo(list_skb)->nr_frags;
3669 				frag = skb_shinfo(list_skb)->frags;
3670 				frag_skb = list_skb;
3671 
3672 				BUG_ON(!nfrags);
3673 
3674 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3675 				    skb_zerocopy_clone(nskb, frag_skb,
3676 						       GFP_ATOMIC))
3677 					goto err;
3678 
3679 				list_skb = list_skb->next;
3680 			}
3681 
3682 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3683 				     MAX_SKB_FRAGS)) {
3684 				net_warn_ratelimited(
3685 					"skb_segment: too many frags: %u %u\n",
3686 					pos, mss);
3687 				goto err;
3688 			}
3689 
3690 			*nskb_frag = *frag;
3691 			__skb_frag_ref(nskb_frag);
3692 			size = skb_frag_size(nskb_frag);
3693 
3694 			if (pos < offset) {
3695 				nskb_frag->page_offset += offset - pos;
3696 				skb_frag_size_sub(nskb_frag, offset - pos);
3697 			}
3698 
3699 			skb_shinfo(nskb)->nr_frags++;
3700 
3701 			if (pos + size <= offset + len) {
3702 				i++;
3703 				frag++;
3704 				pos += size;
3705 			} else {
3706 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3707 				goto skip_fraglist;
3708 			}
3709 
3710 			nskb_frag++;
3711 		}
3712 
3713 skip_fraglist:
3714 		nskb->data_len = len - hsize;
3715 		nskb->len += nskb->data_len;
3716 		nskb->truesize += nskb->data_len;
3717 
3718 perform_csum_check:
3719 		if (!csum) {
3720 			if (skb_has_shared_frag(nskb)) {
3721 				err = __skb_linearize(nskb);
3722 				if (err)
3723 					goto err;
3724 			}
3725 			if (!nskb->remcsum_offload)
3726 				nskb->ip_summed = CHECKSUM_NONE;
3727 			SKB_GSO_CB(nskb)->csum =
3728 				skb_checksum(nskb, doffset,
3729 					     nskb->len - doffset, 0);
3730 			SKB_GSO_CB(nskb)->csum_start =
3731 				skb_headroom(nskb) + doffset;
3732 		}
3733 	} while ((offset += len) < head_skb->len);
3734 
3735 	/* Some callers want to get the end of the list.
3736 	 * Put it in segs->prev to avoid walking the list.
3737 	 * (see validate_xmit_skb_list() for example)
3738 	 */
3739 	segs->prev = tail;
3740 
3741 	if (partial_segs) {
3742 		struct sk_buff *iter;
3743 		int type = skb_shinfo(head_skb)->gso_type;
3744 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3745 
3746 		/* Update type to add partial and then remove dodgy if set */
3747 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3748 		type &= ~SKB_GSO_DODGY;
3749 
3750 		/* Update GSO info and prepare to start updating headers on
3751 		 * our way back down the stack of protocols.
3752 		 */
3753 		for (iter = segs; iter; iter = iter->next) {
3754 			skb_shinfo(iter)->gso_size = gso_size;
3755 			skb_shinfo(iter)->gso_segs = partial_segs;
3756 			skb_shinfo(iter)->gso_type = type;
3757 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3758 		}
3759 
3760 		if (tail->len - doffset <= gso_size)
3761 			skb_shinfo(tail)->gso_size = 0;
3762 		else if (tail != segs)
3763 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3764 	}
3765 
3766 	/* Following permits correct backpressure, for protocols
3767 	 * using skb_set_owner_w().
3768 	 * Idea is to tranfert ownership from head_skb to last segment.
3769 	 */
3770 	if (head_skb->destructor == sock_wfree) {
3771 		swap(tail->truesize, head_skb->truesize);
3772 		swap(tail->destructor, head_skb->destructor);
3773 		swap(tail->sk, head_skb->sk);
3774 	}
3775 	return segs;
3776 
3777 err:
3778 	kfree_skb_list(segs);
3779 	return ERR_PTR(err);
3780 }
3781 EXPORT_SYMBOL_GPL(skb_segment);
3782 
3783 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3784 {
3785 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3786 	unsigned int offset = skb_gro_offset(skb);
3787 	unsigned int headlen = skb_headlen(skb);
3788 	unsigned int len = skb_gro_len(skb);
3789 	struct sk_buff *lp, *p = *head;
3790 	unsigned int delta_truesize;
3791 
3792 	if (unlikely(p->len + len >= 65536))
3793 		return -E2BIG;
3794 
3795 	lp = NAPI_GRO_CB(p)->last;
3796 	pinfo = skb_shinfo(lp);
3797 
3798 	if (headlen <= offset) {
3799 		skb_frag_t *frag;
3800 		skb_frag_t *frag2;
3801 		int i = skbinfo->nr_frags;
3802 		int nr_frags = pinfo->nr_frags + i;
3803 
3804 		if (nr_frags > MAX_SKB_FRAGS)
3805 			goto merge;
3806 
3807 		offset -= headlen;
3808 		pinfo->nr_frags = nr_frags;
3809 		skbinfo->nr_frags = 0;
3810 
3811 		frag = pinfo->frags + nr_frags;
3812 		frag2 = skbinfo->frags + i;
3813 		do {
3814 			*--frag = *--frag2;
3815 		} while (--i);
3816 
3817 		frag->page_offset += offset;
3818 		skb_frag_size_sub(frag, offset);
3819 
3820 		/* all fragments truesize : remove (head size + sk_buff) */
3821 		delta_truesize = skb->truesize -
3822 				 SKB_TRUESIZE(skb_end_offset(skb));
3823 
3824 		skb->truesize -= skb->data_len;
3825 		skb->len -= skb->data_len;
3826 		skb->data_len = 0;
3827 
3828 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3829 		goto done;
3830 	} else if (skb->head_frag) {
3831 		int nr_frags = pinfo->nr_frags;
3832 		skb_frag_t *frag = pinfo->frags + nr_frags;
3833 		struct page *page = virt_to_head_page(skb->head);
3834 		unsigned int first_size = headlen - offset;
3835 		unsigned int first_offset;
3836 
3837 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3838 			goto merge;
3839 
3840 		first_offset = skb->data -
3841 			       (unsigned char *)page_address(page) +
3842 			       offset;
3843 
3844 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3845 
3846 		frag->page.p	  = page;
3847 		frag->page_offset = first_offset;
3848 		skb_frag_size_set(frag, first_size);
3849 
3850 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3851 		/* We dont need to clear skbinfo->nr_frags here */
3852 
3853 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3854 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3855 		goto done;
3856 	}
3857 
3858 merge:
3859 	delta_truesize = skb->truesize;
3860 	if (offset > headlen) {
3861 		unsigned int eat = offset - headlen;
3862 
3863 		skbinfo->frags[0].page_offset += eat;
3864 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3865 		skb->data_len -= eat;
3866 		skb->len -= eat;
3867 		offset = headlen;
3868 	}
3869 
3870 	__skb_pull(skb, offset);
3871 
3872 	if (NAPI_GRO_CB(p)->last == p)
3873 		skb_shinfo(p)->frag_list = skb;
3874 	else
3875 		NAPI_GRO_CB(p)->last->next = skb;
3876 	NAPI_GRO_CB(p)->last = skb;
3877 	__skb_header_release(skb);
3878 	lp = p;
3879 
3880 done:
3881 	NAPI_GRO_CB(p)->count++;
3882 	p->data_len += len;
3883 	p->truesize += delta_truesize;
3884 	p->len += len;
3885 	if (lp != p) {
3886 		lp->data_len += len;
3887 		lp->truesize += delta_truesize;
3888 		lp->len += len;
3889 	}
3890 	NAPI_GRO_CB(skb)->same_flow = 1;
3891 	return 0;
3892 }
3893 EXPORT_SYMBOL_GPL(skb_gro_receive);
3894 
3895 void __init skb_init(void)
3896 {
3897 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3898 					      sizeof(struct sk_buff),
3899 					      0,
3900 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3901 					      offsetof(struct sk_buff, cb),
3902 					      sizeof_field(struct sk_buff, cb),
3903 					      NULL);
3904 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3905 						sizeof(struct sk_buff_fclones),
3906 						0,
3907 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3908 						NULL);
3909 }
3910 
3911 static int
3912 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3913 	       unsigned int recursion_level)
3914 {
3915 	int start = skb_headlen(skb);
3916 	int i, copy = start - offset;
3917 	struct sk_buff *frag_iter;
3918 	int elt = 0;
3919 
3920 	if (unlikely(recursion_level >= 24))
3921 		return -EMSGSIZE;
3922 
3923 	if (copy > 0) {
3924 		if (copy > len)
3925 			copy = len;
3926 		sg_set_buf(sg, skb->data + offset, copy);
3927 		elt++;
3928 		if ((len -= copy) == 0)
3929 			return elt;
3930 		offset += copy;
3931 	}
3932 
3933 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3934 		int end;
3935 
3936 		WARN_ON(start > offset + len);
3937 
3938 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3939 		if ((copy = end - offset) > 0) {
3940 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3941 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3942 				return -EMSGSIZE;
3943 
3944 			if (copy > len)
3945 				copy = len;
3946 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3947 					frag->page_offset+offset-start);
3948 			elt++;
3949 			if (!(len -= copy))
3950 				return elt;
3951 			offset += copy;
3952 		}
3953 		start = end;
3954 	}
3955 
3956 	skb_walk_frags(skb, frag_iter) {
3957 		int end, ret;
3958 
3959 		WARN_ON(start > offset + len);
3960 
3961 		end = start + frag_iter->len;
3962 		if ((copy = end - offset) > 0) {
3963 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3964 				return -EMSGSIZE;
3965 
3966 			if (copy > len)
3967 				copy = len;
3968 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3969 					      copy, recursion_level + 1);
3970 			if (unlikely(ret < 0))
3971 				return ret;
3972 			elt += ret;
3973 			if ((len -= copy) == 0)
3974 				return elt;
3975 			offset += copy;
3976 		}
3977 		start = end;
3978 	}
3979 	BUG_ON(len);
3980 	return elt;
3981 }
3982 
3983 /**
3984  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3985  *	@skb: Socket buffer containing the buffers to be mapped
3986  *	@sg: The scatter-gather list to map into
3987  *	@offset: The offset into the buffer's contents to start mapping
3988  *	@len: Length of buffer space to be mapped
3989  *
3990  *	Fill the specified scatter-gather list with mappings/pointers into a
3991  *	region of the buffer space attached to a socket buffer. Returns either
3992  *	the number of scatterlist items used, or -EMSGSIZE if the contents
3993  *	could not fit.
3994  */
3995 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3996 {
3997 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3998 
3999 	if (nsg <= 0)
4000 		return nsg;
4001 
4002 	sg_mark_end(&sg[nsg - 1]);
4003 
4004 	return nsg;
4005 }
4006 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4007 
4008 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4009  * sglist without mark the sg which contain last skb data as the end.
4010  * So the caller can mannipulate sg list as will when padding new data after
4011  * the first call without calling sg_unmark_end to expend sg list.
4012  *
4013  * Scenario to use skb_to_sgvec_nomark:
4014  * 1. sg_init_table
4015  * 2. skb_to_sgvec_nomark(payload1)
4016  * 3. skb_to_sgvec_nomark(payload2)
4017  *
4018  * This is equivalent to:
4019  * 1. sg_init_table
4020  * 2. skb_to_sgvec(payload1)
4021  * 3. sg_unmark_end
4022  * 4. skb_to_sgvec(payload2)
4023  *
4024  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4025  * is more preferable.
4026  */
4027 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4028 			int offset, int len)
4029 {
4030 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4031 }
4032 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4033 
4034 
4035 
4036 /**
4037  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4038  *	@skb: The socket buffer to check.
4039  *	@tailbits: Amount of trailing space to be added
4040  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4041  *
4042  *	Make sure that the data buffers attached to a socket buffer are
4043  *	writable. If they are not, private copies are made of the data buffers
4044  *	and the socket buffer is set to use these instead.
4045  *
4046  *	If @tailbits is given, make sure that there is space to write @tailbits
4047  *	bytes of data beyond current end of socket buffer.  @trailer will be
4048  *	set to point to the skb in which this space begins.
4049  *
4050  *	The number of scatterlist elements required to completely map the
4051  *	COW'd and extended socket buffer will be returned.
4052  */
4053 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4054 {
4055 	int copyflag;
4056 	int elt;
4057 	struct sk_buff *skb1, **skb_p;
4058 
4059 	/* If skb is cloned or its head is paged, reallocate
4060 	 * head pulling out all the pages (pages are considered not writable
4061 	 * at the moment even if they are anonymous).
4062 	 */
4063 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4064 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4065 		return -ENOMEM;
4066 
4067 	/* Easy case. Most of packets will go this way. */
4068 	if (!skb_has_frag_list(skb)) {
4069 		/* A little of trouble, not enough of space for trailer.
4070 		 * This should not happen, when stack is tuned to generate
4071 		 * good frames. OK, on miss we reallocate and reserve even more
4072 		 * space, 128 bytes is fair. */
4073 
4074 		if (skb_tailroom(skb) < tailbits &&
4075 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4076 			return -ENOMEM;
4077 
4078 		/* Voila! */
4079 		*trailer = skb;
4080 		return 1;
4081 	}
4082 
4083 	/* Misery. We are in troubles, going to mincer fragments... */
4084 
4085 	elt = 1;
4086 	skb_p = &skb_shinfo(skb)->frag_list;
4087 	copyflag = 0;
4088 
4089 	while ((skb1 = *skb_p) != NULL) {
4090 		int ntail = 0;
4091 
4092 		/* The fragment is partially pulled by someone,
4093 		 * this can happen on input. Copy it and everything
4094 		 * after it. */
4095 
4096 		if (skb_shared(skb1))
4097 			copyflag = 1;
4098 
4099 		/* If the skb is the last, worry about trailer. */
4100 
4101 		if (skb1->next == NULL && tailbits) {
4102 			if (skb_shinfo(skb1)->nr_frags ||
4103 			    skb_has_frag_list(skb1) ||
4104 			    skb_tailroom(skb1) < tailbits)
4105 				ntail = tailbits + 128;
4106 		}
4107 
4108 		if (copyflag ||
4109 		    skb_cloned(skb1) ||
4110 		    ntail ||
4111 		    skb_shinfo(skb1)->nr_frags ||
4112 		    skb_has_frag_list(skb1)) {
4113 			struct sk_buff *skb2;
4114 
4115 			/* Fuck, we are miserable poor guys... */
4116 			if (ntail == 0)
4117 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4118 			else
4119 				skb2 = skb_copy_expand(skb1,
4120 						       skb_headroom(skb1),
4121 						       ntail,
4122 						       GFP_ATOMIC);
4123 			if (unlikely(skb2 == NULL))
4124 				return -ENOMEM;
4125 
4126 			if (skb1->sk)
4127 				skb_set_owner_w(skb2, skb1->sk);
4128 
4129 			/* Looking around. Are we still alive?
4130 			 * OK, link new skb, drop old one */
4131 
4132 			skb2->next = skb1->next;
4133 			*skb_p = skb2;
4134 			kfree_skb(skb1);
4135 			skb1 = skb2;
4136 		}
4137 		elt++;
4138 		*trailer = skb1;
4139 		skb_p = &skb1->next;
4140 	}
4141 
4142 	return elt;
4143 }
4144 EXPORT_SYMBOL_GPL(skb_cow_data);
4145 
4146 static void sock_rmem_free(struct sk_buff *skb)
4147 {
4148 	struct sock *sk = skb->sk;
4149 
4150 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4151 }
4152 
4153 static void skb_set_err_queue(struct sk_buff *skb)
4154 {
4155 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4156 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4157 	 */
4158 	skb->pkt_type = PACKET_OUTGOING;
4159 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4160 }
4161 
4162 /*
4163  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4164  */
4165 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4166 {
4167 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4168 	    (unsigned int)sk->sk_rcvbuf)
4169 		return -ENOMEM;
4170 
4171 	skb_orphan(skb);
4172 	skb->sk = sk;
4173 	skb->destructor = sock_rmem_free;
4174 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4175 	skb_set_err_queue(skb);
4176 
4177 	/* before exiting rcu section, make sure dst is refcounted */
4178 	skb_dst_force(skb);
4179 
4180 	skb_queue_tail(&sk->sk_error_queue, skb);
4181 	if (!sock_flag(sk, SOCK_DEAD))
4182 		sk->sk_data_ready(sk);
4183 	return 0;
4184 }
4185 EXPORT_SYMBOL(sock_queue_err_skb);
4186 
4187 static bool is_icmp_err_skb(const struct sk_buff *skb)
4188 {
4189 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4190 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4191 }
4192 
4193 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4194 {
4195 	struct sk_buff_head *q = &sk->sk_error_queue;
4196 	struct sk_buff *skb, *skb_next = NULL;
4197 	bool icmp_next = false;
4198 	unsigned long flags;
4199 
4200 	spin_lock_irqsave(&q->lock, flags);
4201 	skb = __skb_dequeue(q);
4202 	if (skb && (skb_next = skb_peek(q))) {
4203 		icmp_next = is_icmp_err_skb(skb_next);
4204 		if (icmp_next)
4205 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4206 	}
4207 	spin_unlock_irqrestore(&q->lock, flags);
4208 
4209 	if (is_icmp_err_skb(skb) && !icmp_next)
4210 		sk->sk_err = 0;
4211 
4212 	if (skb_next)
4213 		sk->sk_error_report(sk);
4214 
4215 	return skb;
4216 }
4217 EXPORT_SYMBOL(sock_dequeue_err_skb);
4218 
4219 /**
4220  * skb_clone_sk - create clone of skb, and take reference to socket
4221  * @skb: the skb to clone
4222  *
4223  * This function creates a clone of a buffer that holds a reference on
4224  * sk_refcnt.  Buffers created via this function are meant to be
4225  * returned using sock_queue_err_skb, or free via kfree_skb.
4226  *
4227  * When passing buffers allocated with this function to sock_queue_err_skb
4228  * it is necessary to wrap the call with sock_hold/sock_put in order to
4229  * prevent the socket from being released prior to being enqueued on
4230  * the sk_error_queue.
4231  */
4232 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4233 {
4234 	struct sock *sk = skb->sk;
4235 	struct sk_buff *clone;
4236 
4237 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4238 		return NULL;
4239 
4240 	clone = skb_clone(skb, GFP_ATOMIC);
4241 	if (!clone) {
4242 		sock_put(sk);
4243 		return NULL;
4244 	}
4245 
4246 	clone->sk = sk;
4247 	clone->destructor = sock_efree;
4248 
4249 	return clone;
4250 }
4251 EXPORT_SYMBOL(skb_clone_sk);
4252 
4253 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4254 					struct sock *sk,
4255 					int tstype,
4256 					bool opt_stats)
4257 {
4258 	struct sock_exterr_skb *serr;
4259 	int err;
4260 
4261 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4262 
4263 	serr = SKB_EXT_ERR(skb);
4264 	memset(serr, 0, sizeof(*serr));
4265 	serr->ee.ee_errno = ENOMSG;
4266 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4267 	serr->ee.ee_info = tstype;
4268 	serr->opt_stats = opt_stats;
4269 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4270 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4271 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4272 		if (sk->sk_protocol == IPPROTO_TCP &&
4273 		    sk->sk_type == SOCK_STREAM)
4274 			serr->ee.ee_data -= sk->sk_tskey;
4275 	}
4276 
4277 	err = sock_queue_err_skb(sk, skb);
4278 
4279 	if (err)
4280 		kfree_skb(skb);
4281 }
4282 
4283 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4284 {
4285 	bool ret;
4286 
4287 	if (likely(sysctl_tstamp_allow_data || tsonly))
4288 		return true;
4289 
4290 	read_lock_bh(&sk->sk_callback_lock);
4291 	ret = sk->sk_socket && sk->sk_socket->file &&
4292 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4293 	read_unlock_bh(&sk->sk_callback_lock);
4294 	return ret;
4295 }
4296 
4297 void skb_complete_tx_timestamp(struct sk_buff *skb,
4298 			       struct skb_shared_hwtstamps *hwtstamps)
4299 {
4300 	struct sock *sk = skb->sk;
4301 
4302 	if (!skb_may_tx_timestamp(sk, false))
4303 		goto err;
4304 
4305 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4306 	 * but only if the socket refcount is not zero.
4307 	 */
4308 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4309 		*skb_hwtstamps(skb) = *hwtstamps;
4310 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4311 		sock_put(sk);
4312 		return;
4313 	}
4314 
4315 err:
4316 	kfree_skb(skb);
4317 }
4318 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4319 
4320 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4321 		     struct skb_shared_hwtstamps *hwtstamps,
4322 		     struct sock *sk, int tstype)
4323 {
4324 	struct sk_buff *skb;
4325 	bool tsonly, opt_stats = false;
4326 
4327 	if (!sk)
4328 		return;
4329 
4330 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4331 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4332 		return;
4333 
4334 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4335 	if (!skb_may_tx_timestamp(sk, tsonly))
4336 		return;
4337 
4338 	if (tsonly) {
4339 #ifdef CONFIG_INET
4340 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4341 		    sk->sk_protocol == IPPROTO_TCP &&
4342 		    sk->sk_type == SOCK_STREAM) {
4343 			skb = tcp_get_timestamping_opt_stats(sk);
4344 			opt_stats = true;
4345 		} else
4346 #endif
4347 			skb = alloc_skb(0, GFP_ATOMIC);
4348 	} else {
4349 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4350 	}
4351 	if (!skb)
4352 		return;
4353 
4354 	if (tsonly) {
4355 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4356 					     SKBTX_ANY_TSTAMP;
4357 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4358 	}
4359 
4360 	if (hwtstamps)
4361 		*skb_hwtstamps(skb) = *hwtstamps;
4362 	else
4363 		skb->tstamp = ktime_get_real();
4364 
4365 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4366 }
4367 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4368 
4369 void skb_tstamp_tx(struct sk_buff *orig_skb,
4370 		   struct skb_shared_hwtstamps *hwtstamps)
4371 {
4372 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4373 			       SCM_TSTAMP_SND);
4374 }
4375 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4376 
4377 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4378 {
4379 	struct sock *sk = skb->sk;
4380 	struct sock_exterr_skb *serr;
4381 	int err = 1;
4382 
4383 	skb->wifi_acked_valid = 1;
4384 	skb->wifi_acked = acked;
4385 
4386 	serr = SKB_EXT_ERR(skb);
4387 	memset(serr, 0, sizeof(*serr));
4388 	serr->ee.ee_errno = ENOMSG;
4389 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4390 
4391 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4392 	 * but only if the socket refcount is not zero.
4393 	 */
4394 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4395 		err = sock_queue_err_skb(sk, skb);
4396 		sock_put(sk);
4397 	}
4398 	if (err)
4399 		kfree_skb(skb);
4400 }
4401 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4402 
4403 /**
4404  * skb_partial_csum_set - set up and verify partial csum values for packet
4405  * @skb: the skb to set
4406  * @start: the number of bytes after skb->data to start checksumming.
4407  * @off: the offset from start to place the checksum.
4408  *
4409  * For untrusted partially-checksummed packets, we need to make sure the values
4410  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4411  *
4412  * This function checks and sets those values and skb->ip_summed: if this
4413  * returns false you should drop the packet.
4414  */
4415 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4416 {
4417 	if (unlikely(start > skb_headlen(skb)) ||
4418 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
4419 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4420 				     start, off, skb_headlen(skb));
4421 		return false;
4422 	}
4423 	skb->ip_summed = CHECKSUM_PARTIAL;
4424 	skb->csum_start = skb_headroom(skb) + start;
4425 	skb->csum_offset = off;
4426 	skb_set_transport_header(skb, start);
4427 	return true;
4428 }
4429 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4430 
4431 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4432 			       unsigned int max)
4433 {
4434 	if (skb_headlen(skb) >= len)
4435 		return 0;
4436 
4437 	/* If we need to pullup then pullup to the max, so we
4438 	 * won't need to do it again.
4439 	 */
4440 	if (max > skb->len)
4441 		max = skb->len;
4442 
4443 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4444 		return -ENOMEM;
4445 
4446 	if (skb_headlen(skb) < len)
4447 		return -EPROTO;
4448 
4449 	return 0;
4450 }
4451 
4452 #define MAX_TCP_HDR_LEN (15 * 4)
4453 
4454 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4455 				      typeof(IPPROTO_IP) proto,
4456 				      unsigned int off)
4457 {
4458 	switch (proto) {
4459 		int err;
4460 
4461 	case IPPROTO_TCP:
4462 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4463 					  off + MAX_TCP_HDR_LEN);
4464 		if (!err && !skb_partial_csum_set(skb, off,
4465 						  offsetof(struct tcphdr,
4466 							   check)))
4467 			err = -EPROTO;
4468 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4469 
4470 	case IPPROTO_UDP:
4471 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4472 					  off + sizeof(struct udphdr));
4473 		if (!err && !skb_partial_csum_set(skb, off,
4474 						  offsetof(struct udphdr,
4475 							   check)))
4476 			err = -EPROTO;
4477 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4478 	}
4479 
4480 	return ERR_PTR(-EPROTO);
4481 }
4482 
4483 /* This value should be large enough to cover a tagged ethernet header plus
4484  * maximally sized IP and TCP or UDP headers.
4485  */
4486 #define MAX_IP_HDR_LEN 128
4487 
4488 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4489 {
4490 	unsigned int off;
4491 	bool fragment;
4492 	__sum16 *csum;
4493 	int err;
4494 
4495 	fragment = false;
4496 
4497 	err = skb_maybe_pull_tail(skb,
4498 				  sizeof(struct iphdr),
4499 				  MAX_IP_HDR_LEN);
4500 	if (err < 0)
4501 		goto out;
4502 
4503 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4504 		fragment = true;
4505 
4506 	off = ip_hdrlen(skb);
4507 
4508 	err = -EPROTO;
4509 
4510 	if (fragment)
4511 		goto out;
4512 
4513 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4514 	if (IS_ERR(csum))
4515 		return PTR_ERR(csum);
4516 
4517 	if (recalculate)
4518 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4519 					   ip_hdr(skb)->daddr,
4520 					   skb->len - off,
4521 					   ip_hdr(skb)->protocol, 0);
4522 	err = 0;
4523 
4524 out:
4525 	return err;
4526 }
4527 
4528 /* This value should be large enough to cover a tagged ethernet header plus
4529  * an IPv6 header, all options, and a maximal TCP or UDP header.
4530  */
4531 #define MAX_IPV6_HDR_LEN 256
4532 
4533 #define OPT_HDR(type, skb, off) \
4534 	(type *)(skb_network_header(skb) + (off))
4535 
4536 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4537 {
4538 	int err;
4539 	u8 nexthdr;
4540 	unsigned int off;
4541 	unsigned int len;
4542 	bool fragment;
4543 	bool done;
4544 	__sum16 *csum;
4545 
4546 	fragment = false;
4547 	done = false;
4548 
4549 	off = sizeof(struct ipv6hdr);
4550 
4551 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4552 	if (err < 0)
4553 		goto out;
4554 
4555 	nexthdr = ipv6_hdr(skb)->nexthdr;
4556 
4557 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4558 	while (off <= len && !done) {
4559 		switch (nexthdr) {
4560 		case IPPROTO_DSTOPTS:
4561 		case IPPROTO_HOPOPTS:
4562 		case IPPROTO_ROUTING: {
4563 			struct ipv6_opt_hdr *hp;
4564 
4565 			err = skb_maybe_pull_tail(skb,
4566 						  off +
4567 						  sizeof(struct ipv6_opt_hdr),
4568 						  MAX_IPV6_HDR_LEN);
4569 			if (err < 0)
4570 				goto out;
4571 
4572 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4573 			nexthdr = hp->nexthdr;
4574 			off += ipv6_optlen(hp);
4575 			break;
4576 		}
4577 		case IPPROTO_AH: {
4578 			struct ip_auth_hdr *hp;
4579 
4580 			err = skb_maybe_pull_tail(skb,
4581 						  off +
4582 						  sizeof(struct ip_auth_hdr),
4583 						  MAX_IPV6_HDR_LEN);
4584 			if (err < 0)
4585 				goto out;
4586 
4587 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4588 			nexthdr = hp->nexthdr;
4589 			off += ipv6_authlen(hp);
4590 			break;
4591 		}
4592 		case IPPROTO_FRAGMENT: {
4593 			struct frag_hdr *hp;
4594 
4595 			err = skb_maybe_pull_tail(skb,
4596 						  off +
4597 						  sizeof(struct frag_hdr),
4598 						  MAX_IPV6_HDR_LEN);
4599 			if (err < 0)
4600 				goto out;
4601 
4602 			hp = OPT_HDR(struct frag_hdr, skb, off);
4603 
4604 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4605 				fragment = true;
4606 
4607 			nexthdr = hp->nexthdr;
4608 			off += sizeof(struct frag_hdr);
4609 			break;
4610 		}
4611 		default:
4612 			done = true;
4613 			break;
4614 		}
4615 	}
4616 
4617 	err = -EPROTO;
4618 
4619 	if (!done || fragment)
4620 		goto out;
4621 
4622 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4623 	if (IS_ERR(csum))
4624 		return PTR_ERR(csum);
4625 
4626 	if (recalculate)
4627 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4628 					 &ipv6_hdr(skb)->daddr,
4629 					 skb->len - off, nexthdr, 0);
4630 	err = 0;
4631 
4632 out:
4633 	return err;
4634 }
4635 
4636 /**
4637  * skb_checksum_setup - set up partial checksum offset
4638  * @skb: the skb to set up
4639  * @recalculate: if true the pseudo-header checksum will be recalculated
4640  */
4641 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4642 {
4643 	int err;
4644 
4645 	switch (skb->protocol) {
4646 	case htons(ETH_P_IP):
4647 		err = skb_checksum_setup_ipv4(skb, recalculate);
4648 		break;
4649 
4650 	case htons(ETH_P_IPV6):
4651 		err = skb_checksum_setup_ipv6(skb, recalculate);
4652 		break;
4653 
4654 	default:
4655 		err = -EPROTO;
4656 		break;
4657 	}
4658 
4659 	return err;
4660 }
4661 EXPORT_SYMBOL(skb_checksum_setup);
4662 
4663 /**
4664  * skb_checksum_maybe_trim - maybe trims the given skb
4665  * @skb: the skb to check
4666  * @transport_len: the data length beyond the network header
4667  *
4668  * Checks whether the given skb has data beyond the given transport length.
4669  * If so, returns a cloned skb trimmed to this transport length.
4670  * Otherwise returns the provided skb. Returns NULL in error cases
4671  * (e.g. transport_len exceeds skb length or out-of-memory).
4672  *
4673  * Caller needs to set the skb transport header and free any returned skb if it
4674  * differs from the provided skb.
4675  */
4676 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4677 					       unsigned int transport_len)
4678 {
4679 	struct sk_buff *skb_chk;
4680 	unsigned int len = skb_transport_offset(skb) + transport_len;
4681 	int ret;
4682 
4683 	if (skb->len < len)
4684 		return NULL;
4685 	else if (skb->len == len)
4686 		return skb;
4687 
4688 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4689 	if (!skb_chk)
4690 		return NULL;
4691 
4692 	ret = pskb_trim_rcsum(skb_chk, len);
4693 	if (ret) {
4694 		kfree_skb(skb_chk);
4695 		return NULL;
4696 	}
4697 
4698 	return skb_chk;
4699 }
4700 
4701 /**
4702  * skb_checksum_trimmed - validate checksum of an skb
4703  * @skb: the skb to check
4704  * @transport_len: the data length beyond the network header
4705  * @skb_chkf: checksum function to use
4706  *
4707  * Applies the given checksum function skb_chkf to the provided skb.
4708  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4709  *
4710  * If the skb has data beyond the given transport length, then a
4711  * trimmed & cloned skb is checked and returned.
4712  *
4713  * Caller needs to set the skb transport header and free any returned skb if it
4714  * differs from the provided skb.
4715  */
4716 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4717 				     unsigned int transport_len,
4718 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4719 {
4720 	struct sk_buff *skb_chk;
4721 	unsigned int offset = skb_transport_offset(skb);
4722 	__sum16 ret;
4723 
4724 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4725 	if (!skb_chk)
4726 		goto err;
4727 
4728 	if (!pskb_may_pull(skb_chk, offset))
4729 		goto err;
4730 
4731 	skb_pull_rcsum(skb_chk, offset);
4732 	ret = skb_chkf(skb_chk);
4733 	skb_push_rcsum(skb_chk, offset);
4734 
4735 	if (ret)
4736 		goto err;
4737 
4738 	return skb_chk;
4739 
4740 err:
4741 	if (skb_chk && skb_chk != skb)
4742 		kfree_skb(skb_chk);
4743 
4744 	return NULL;
4745 
4746 }
4747 EXPORT_SYMBOL(skb_checksum_trimmed);
4748 
4749 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4750 {
4751 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4752 			     skb->dev->name);
4753 }
4754 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4755 
4756 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4757 {
4758 	if (head_stolen) {
4759 		skb_release_head_state(skb);
4760 		kmem_cache_free(skbuff_head_cache, skb);
4761 	} else {
4762 		__kfree_skb(skb);
4763 	}
4764 }
4765 EXPORT_SYMBOL(kfree_skb_partial);
4766 
4767 /**
4768  * skb_try_coalesce - try to merge skb to prior one
4769  * @to: prior buffer
4770  * @from: buffer to add
4771  * @fragstolen: pointer to boolean
4772  * @delta_truesize: how much more was allocated than was requested
4773  */
4774 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4775 		      bool *fragstolen, int *delta_truesize)
4776 {
4777 	struct skb_shared_info *to_shinfo, *from_shinfo;
4778 	int i, delta, len = from->len;
4779 
4780 	*fragstolen = false;
4781 
4782 	if (skb_cloned(to))
4783 		return false;
4784 
4785 	if (len <= skb_tailroom(to)) {
4786 		if (len)
4787 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4788 		*delta_truesize = 0;
4789 		return true;
4790 	}
4791 
4792 	to_shinfo = skb_shinfo(to);
4793 	from_shinfo = skb_shinfo(from);
4794 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4795 		return false;
4796 	if (skb_zcopy(to) || skb_zcopy(from))
4797 		return false;
4798 
4799 	if (skb_headlen(from) != 0) {
4800 		struct page *page;
4801 		unsigned int offset;
4802 
4803 		if (to_shinfo->nr_frags +
4804 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4805 			return false;
4806 
4807 		if (skb_head_is_locked(from))
4808 			return false;
4809 
4810 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4811 
4812 		page = virt_to_head_page(from->head);
4813 		offset = from->data - (unsigned char *)page_address(page);
4814 
4815 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4816 				   page, offset, skb_headlen(from));
4817 		*fragstolen = true;
4818 	} else {
4819 		if (to_shinfo->nr_frags +
4820 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4821 			return false;
4822 
4823 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4824 	}
4825 
4826 	WARN_ON_ONCE(delta < len);
4827 
4828 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4829 	       from_shinfo->frags,
4830 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4831 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4832 
4833 	if (!skb_cloned(from))
4834 		from_shinfo->nr_frags = 0;
4835 
4836 	/* if the skb is not cloned this does nothing
4837 	 * since we set nr_frags to 0.
4838 	 */
4839 	for (i = 0; i < from_shinfo->nr_frags; i++)
4840 		__skb_frag_ref(&from_shinfo->frags[i]);
4841 
4842 	to->truesize += delta;
4843 	to->len += len;
4844 	to->data_len += len;
4845 
4846 	*delta_truesize = delta;
4847 	return true;
4848 }
4849 EXPORT_SYMBOL(skb_try_coalesce);
4850 
4851 /**
4852  * skb_scrub_packet - scrub an skb
4853  *
4854  * @skb: buffer to clean
4855  * @xnet: packet is crossing netns
4856  *
4857  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4858  * into/from a tunnel. Some information have to be cleared during these
4859  * operations.
4860  * skb_scrub_packet can also be used to clean a skb before injecting it in
4861  * another namespace (@xnet == true). We have to clear all information in the
4862  * skb that could impact namespace isolation.
4863  */
4864 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4865 {
4866 	skb->tstamp = 0;
4867 	skb->pkt_type = PACKET_HOST;
4868 	skb->skb_iif = 0;
4869 	skb->ignore_df = 0;
4870 	skb_dst_drop(skb);
4871 	secpath_reset(skb);
4872 	nf_reset(skb);
4873 	nf_reset_trace(skb);
4874 
4875 	if (!xnet)
4876 		return;
4877 
4878 	ipvs_reset(skb);
4879 	skb_orphan(skb);
4880 	skb->mark = 0;
4881 }
4882 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4883 
4884 /**
4885  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4886  *
4887  * @skb: GSO skb
4888  *
4889  * skb_gso_transport_seglen is used to determine the real size of the
4890  * individual segments, including Layer4 headers (TCP/UDP).
4891  *
4892  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4893  */
4894 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4895 {
4896 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4897 	unsigned int thlen = 0;
4898 
4899 	if (skb->encapsulation) {
4900 		thlen = skb_inner_transport_header(skb) -
4901 			skb_transport_header(skb);
4902 
4903 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4904 			thlen += inner_tcp_hdrlen(skb);
4905 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4906 		thlen = tcp_hdrlen(skb);
4907 	} else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4908 		thlen = sizeof(struct sctphdr);
4909 	}
4910 	/* UFO sets gso_size to the size of the fragmentation
4911 	 * payload, i.e. the size of the L4 (UDP) header is already
4912 	 * accounted for.
4913 	 */
4914 	return thlen + shinfo->gso_size;
4915 }
4916 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4917 
4918 /**
4919  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4920  *
4921  * There are a couple of instances where we have a GSO skb, and we
4922  * want to determine what size it would be after it is segmented.
4923  *
4924  * We might want to check:
4925  * -    L3+L4+payload size (e.g. IP forwarding)
4926  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4927  *
4928  * This is a helper to do that correctly considering GSO_BY_FRAGS.
4929  *
4930  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
4931  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
4932  *
4933  * @max_len: The maximum permissible length.
4934  *
4935  * Returns true if the segmented length <= max length.
4936  */
4937 static inline bool skb_gso_size_check(const struct sk_buff *skb,
4938 				      unsigned int seg_len,
4939 				      unsigned int max_len) {
4940 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4941 	const struct sk_buff *iter;
4942 
4943 	if (shinfo->gso_size != GSO_BY_FRAGS)
4944 		return seg_len <= max_len;
4945 
4946 	/* Undo this so we can re-use header sizes */
4947 	seg_len -= GSO_BY_FRAGS;
4948 
4949 	skb_walk_frags(skb, iter) {
4950 		if (seg_len + skb_headlen(iter) > max_len)
4951 			return false;
4952 	}
4953 
4954 	return true;
4955 }
4956 
4957 /**
4958  * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4959  *
4960  * @skb: GSO skb
4961  * @mtu: MTU to validate against
4962  *
4963  * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4964  * once split.
4965  */
4966 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4967 {
4968 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
4969 }
4970 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4971 
4972 /**
4973  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
4974  *
4975  * @skb: GSO skb
4976  * @len: length to validate against
4977  *
4978  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
4979  * length once split, including L2, L3 and L4 headers and the payload.
4980  */
4981 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
4982 {
4983 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
4984 }
4985 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
4986 
4987 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4988 {
4989 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4990 		kfree_skb(skb);
4991 		return NULL;
4992 	}
4993 
4994 	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4995 		2 * ETH_ALEN);
4996 	skb->mac_header += VLAN_HLEN;
4997 	return skb;
4998 }
4999 
5000 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5001 {
5002 	struct vlan_hdr *vhdr;
5003 	u16 vlan_tci;
5004 
5005 	if (unlikely(skb_vlan_tag_present(skb))) {
5006 		/* vlan_tci is already set-up so leave this for another time */
5007 		return skb;
5008 	}
5009 
5010 	skb = skb_share_check(skb, GFP_ATOMIC);
5011 	if (unlikely(!skb))
5012 		goto err_free;
5013 
5014 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5015 		goto err_free;
5016 
5017 	vhdr = (struct vlan_hdr *)skb->data;
5018 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5019 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5020 
5021 	skb_pull_rcsum(skb, VLAN_HLEN);
5022 	vlan_set_encap_proto(skb, vhdr);
5023 
5024 	skb = skb_reorder_vlan_header(skb);
5025 	if (unlikely(!skb))
5026 		goto err_free;
5027 
5028 	skb_reset_network_header(skb);
5029 	skb_reset_transport_header(skb);
5030 	skb_reset_mac_len(skb);
5031 
5032 	return skb;
5033 
5034 err_free:
5035 	kfree_skb(skb);
5036 	return NULL;
5037 }
5038 EXPORT_SYMBOL(skb_vlan_untag);
5039 
5040 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5041 {
5042 	if (!pskb_may_pull(skb, write_len))
5043 		return -ENOMEM;
5044 
5045 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5046 		return 0;
5047 
5048 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5049 }
5050 EXPORT_SYMBOL(skb_ensure_writable);
5051 
5052 /* remove VLAN header from packet and update csum accordingly.
5053  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5054  */
5055 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5056 {
5057 	struct vlan_hdr *vhdr;
5058 	int offset = skb->data - skb_mac_header(skb);
5059 	int err;
5060 
5061 	if (WARN_ONCE(offset,
5062 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5063 		      offset)) {
5064 		return -EINVAL;
5065 	}
5066 
5067 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5068 	if (unlikely(err))
5069 		return err;
5070 
5071 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5072 
5073 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5074 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5075 
5076 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5077 	__skb_pull(skb, VLAN_HLEN);
5078 
5079 	vlan_set_encap_proto(skb, vhdr);
5080 	skb->mac_header += VLAN_HLEN;
5081 
5082 	if (skb_network_offset(skb) < ETH_HLEN)
5083 		skb_set_network_header(skb, ETH_HLEN);
5084 
5085 	skb_reset_mac_len(skb);
5086 
5087 	return err;
5088 }
5089 EXPORT_SYMBOL(__skb_vlan_pop);
5090 
5091 /* Pop a vlan tag either from hwaccel or from payload.
5092  * Expects skb->data at mac header.
5093  */
5094 int skb_vlan_pop(struct sk_buff *skb)
5095 {
5096 	u16 vlan_tci;
5097 	__be16 vlan_proto;
5098 	int err;
5099 
5100 	if (likely(skb_vlan_tag_present(skb))) {
5101 		skb->vlan_tci = 0;
5102 	} else {
5103 		if (unlikely(!eth_type_vlan(skb->protocol)))
5104 			return 0;
5105 
5106 		err = __skb_vlan_pop(skb, &vlan_tci);
5107 		if (err)
5108 			return err;
5109 	}
5110 	/* move next vlan tag to hw accel tag */
5111 	if (likely(!eth_type_vlan(skb->protocol)))
5112 		return 0;
5113 
5114 	vlan_proto = skb->protocol;
5115 	err = __skb_vlan_pop(skb, &vlan_tci);
5116 	if (unlikely(err))
5117 		return err;
5118 
5119 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5120 	return 0;
5121 }
5122 EXPORT_SYMBOL(skb_vlan_pop);
5123 
5124 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5125  * Expects skb->data at mac header.
5126  */
5127 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5128 {
5129 	if (skb_vlan_tag_present(skb)) {
5130 		int offset = skb->data - skb_mac_header(skb);
5131 		int err;
5132 
5133 		if (WARN_ONCE(offset,
5134 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5135 			      offset)) {
5136 			return -EINVAL;
5137 		}
5138 
5139 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5140 					skb_vlan_tag_get(skb));
5141 		if (err)
5142 			return err;
5143 
5144 		skb->protocol = skb->vlan_proto;
5145 		skb->mac_len += VLAN_HLEN;
5146 
5147 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5148 	}
5149 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5150 	return 0;
5151 }
5152 EXPORT_SYMBOL(skb_vlan_push);
5153 
5154 /**
5155  * alloc_skb_with_frags - allocate skb with page frags
5156  *
5157  * @header_len: size of linear part
5158  * @data_len: needed length in frags
5159  * @max_page_order: max page order desired.
5160  * @errcode: pointer to error code if any
5161  * @gfp_mask: allocation mask
5162  *
5163  * This can be used to allocate a paged skb, given a maximal order for frags.
5164  */
5165 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5166 				     unsigned long data_len,
5167 				     int max_page_order,
5168 				     int *errcode,
5169 				     gfp_t gfp_mask)
5170 {
5171 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5172 	unsigned long chunk;
5173 	struct sk_buff *skb;
5174 	struct page *page;
5175 	gfp_t gfp_head;
5176 	int i;
5177 
5178 	*errcode = -EMSGSIZE;
5179 	/* Note this test could be relaxed, if we succeed to allocate
5180 	 * high order pages...
5181 	 */
5182 	if (npages > MAX_SKB_FRAGS)
5183 		return NULL;
5184 
5185 	gfp_head = gfp_mask;
5186 	if (gfp_head & __GFP_DIRECT_RECLAIM)
5187 		gfp_head |= __GFP_RETRY_MAYFAIL;
5188 
5189 	*errcode = -ENOBUFS;
5190 	skb = alloc_skb(header_len, gfp_head);
5191 	if (!skb)
5192 		return NULL;
5193 
5194 	skb->truesize += npages << PAGE_SHIFT;
5195 
5196 	for (i = 0; npages > 0; i++) {
5197 		int order = max_page_order;
5198 
5199 		while (order) {
5200 			if (npages >= 1 << order) {
5201 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5202 						   __GFP_COMP |
5203 						   __GFP_NOWARN |
5204 						   __GFP_NORETRY,
5205 						   order);
5206 				if (page)
5207 					goto fill_page;
5208 				/* Do not retry other high order allocations */
5209 				order = 1;
5210 				max_page_order = 0;
5211 			}
5212 			order--;
5213 		}
5214 		page = alloc_page(gfp_mask);
5215 		if (!page)
5216 			goto failure;
5217 fill_page:
5218 		chunk = min_t(unsigned long, data_len,
5219 			      PAGE_SIZE << order);
5220 		skb_fill_page_desc(skb, i, page, 0, chunk);
5221 		data_len -= chunk;
5222 		npages -= 1 << order;
5223 	}
5224 	return skb;
5225 
5226 failure:
5227 	kfree_skb(skb);
5228 	return NULL;
5229 }
5230 EXPORT_SYMBOL(alloc_skb_with_frags);
5231 
5232 /* carve out the first off bytes from skb when off < headlen */
5233 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5234 				    const int headlen, gfp_t gfp_mask)
5235 {
5236 	int i;
5237 	int size = skb_end_offset(skb);
5238 	int new_hlen = headlen - off;
5239 	u8 *data;
5240 
5241 	size = SKB_DATA_ALIGN(size);
5242 
5243 	if (skb_pfmemalloc(skb))
5244 		gfp_mask |= __GFP_MEMALLOC;
5245 	data = kmalloc_reserve(size +
5246 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5247 			       gfp_mask, NUMA_NO_NODE, NULL);
5248 	if (!data)
5249 		return -ENOMEM;
5250 
5251 	size = SKB_WITH_OVERHEAD(ksize(data));
5252 
5253 	/* Copy real data, and all frags */
5254 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5255 	skb->len -= off;
5256 
5257 	memcpy((struct skb_shared_info *)(data + size),
5258 	       skb_shinfo(skb),
5259 	       offsetof(struct skb_shared_info,
5260 			frags[skb_shinfo(skb)->nr_frags]));
5261 	if (skb_cloned(skb)) {
5262 		/* drop the old head gracefully */
5263 		if (skb_orphan_frags(skb, gfp_mask)) {
5264 			kfree(data);
5265 			return -ENOMEM;
5266 		}
5267 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5268 			skb_frag_ref(skb, i);
5269 		if (skb_has_frag_list(skb))
5270 			skb_clone_fraglist(skb);
5271 		skb_release_data(skb);
5272 	} else {
5273 		/* we can reuse existing recount- all we did was
5274 		 * relocate values
5275 		 */
5276 		skb_free_head(skb);
5277 	}
5278 
5279 	skb->head = data;
5280 	skb->data = data;
5281 	skb->head_frag = 0;
5282 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5283 	skb->end = size;
5284 #else
5285 	skb->end = skb->head + size;
5286 #endif
5287 	skb_set_tail_pointer(skb, skb_headlen(skb));
5288 	skb_headers_offset_update(skb, 0);
5289 	skb->cloned = 0;
5290 	skb->hdr_len = 0;
5291 	skb->nohdr = 0;
5292 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5293 
5294 	return 0;
5295 }
5296 
5297 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5298 
5299 /* carve out the first eat bytes from skb's frag_list. May recurse into
5300  * pskb_carve()
5301  */
5302 static int pskb_carve_frag_list(struct sk_buff *skb,
5303 				struct skb_shared_info *shinfo, int eat,
5304 				gfp_t gfp_mask)
5305 {
5306 	struct sk_buff *list = shinfo->frag_list;
5307 	struct sk_buff *clone = NULL;
5308 	struct sk_buff *insp = NULL;
5309 
5310 	do {
5311 		if (!list) {
5312 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5313 			return -EFAULT;
5314 		}
5315 		if (list->len <= eat) {
5316 			/* Eaten as whole. */
5317 			eat -= list->len;
5318 			list = list->next;
5319 			insp = list;
5320 		} else {
5321 			/* Eaten partially. */
5322 			if (skb_shared(list)) {
5323 				clone = skb_clone(list, gfp_mask);
5324 				if (!clone)
5325 					return -ENOMEM;
5326 				insp = list->next;
5327 				list = clone;
5328 			} else {
5329 				/* This may be pulled without problems. */
5330 				insp = list;
5331 			}
5332 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5333 				kfree_skb(clone);
5334 				return -ENOMEM;
5335 			}
5336 			break;
5337 		}
5338 	} while (eat);
5339 
5340 	/* Free pulled out fragments. */
5341 	while ((list = shinfo->frag_list) != insp) {
5342 		shinfo->frag_list = list->next;
5343 		kfree_skb(list);
5344 	}
5345 	/* And insert new clone at head. */
5346 	if (clone) {
5347 		clone->next = list;
5348 		shinfo->frag_list = clone;
5349 	}
5350 	return 0;
5351 }
5352 
5353 /* carve off first len bytes from skb. Split line (off) is in the
5354  * non-linear part of skb
5355  */
5356 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5357 				       int pos, gfp_t gfp_mask)
5358 {
5359 	int i, k = 0;
5360 	int size = skb_end_offset(skb);
5361 	u8 *data;
5362 	const int nfrags = skb_shinfo(skb)->nr_frags;
5363 	struct skb_shared_info *shinfo;
5364 
5365 	size = SKB_DATA_ALIGN(size);
5366 
5367 	if (skb_pfmemalloc(skb))
5368 		gfp_mask |= __GFP_MEMALLOC;
5369 	data = kmalloc_reserve(size +
5370 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5371 			       gfp_mask, NUMA_NO_NODE, NULL);
5372 	if (!data)
5373 		return -ENOMEM;
5374 
5375 	size = SKB_WITH_OVERHEAD(ksize(data));
5376 
5377 	memcpy((struct skb_shared_info *)(data + size),
5378 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5379 					 frags[skb_shinfo(skb)->nr_frags]));
5380 	if (skb_orphan_frags(skb, gfp_mask)) {
5381 		kfree(data);
5382 		return -ENOMEM;
5383 	}
5384 	shinfo = (struct skb_shared_info *)(data + size);
5385 	for (i = 0; i < nfrags; i++) {
5386 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5387 
5388 		if (pos + fsize > off) {
5389 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5390 
5391 			if (pos < off) {
5392 				/* Split frag.
5393 				 * We have two variants in this case:
5394 				 * 1. Move all the frag to the second
5395 				 *    part, if it is possible. F.e.
5396 				 *    this approach is mandatory for TUX,
5397 				 *    where splitting is expensive.
5398 				 * 2. Split is accurately. We make this.
5399 				 */
5400 				shinfo->frags[0].page_offset += off - pos;
5401 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5402 			}
5403 			skb_frag_ref(skb, i);
5404 			k++;
5405 		}
5406 		pos += fsize;
5407 	}
5408 	shinfo->nr_frags = k;
5409 	if (skb_has_frag_list(skb))
5410 		skb_clone_fraglist(skb);
5411 
5412 	if (k == 0) {
5413 		/* split line is in frag list */
5414 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5415 	}
5416 	skb_release_data(skb);
5417 
5418 	skb->head = data;
5419 	skb->head_frag = 0;
5420 	skb->data = data;
5421 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5422 	skb->end = size;
5423 #else
5424 	skb->end = skb->head + size;
5425 #endif
5426 	skb_reset_tail_pointer(skb);
5427 	skb_headers_offset_update(skb, 0);
5428 	skb->cloned   = 0;
5429 	skb->hdr_len  = 0;
5430 	skb->nohdr    = 0;
5431 	skb->len -= off;
5432 	skb->data_len = skb->len;
5433 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5434 	return 0;
5435 }
5436 
5437 /* remove len bytes from the beginning of the skb */
5438 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5439 {
5440 	int headlen = skb_headlen(skb);
5441 
5442 	if (len < headlen)
5443 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5444 	else
5445 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5446 }
5447 
5448 /* Extract to_copy bytes starting at off from skb, and return this in
5449  * a new skb
5450  */
5451 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5452 			     int to_copy, gfp_t gfp)
5453 {
5454 	struct sk_buff  *clone = skb_clone(skb, gfp);
5455 
5456 	if (!clone)
5457 		return NULL;
5458 
5459 	if (pskb_carve(clone, off, gfp) < 0 ||
5460 	    pskb_trim(clone, to_copy)) {
5461 		kfree_skb(clone);
5462 		return NULL;
5463 	}
5464 	return clone;
5465 }
5466 EXPORT_SYMBOL(pskb_extract);
5467 
5468 /**
5469  * skb_condense - try to get rid of fragments/frag_list if possible
5470  * @skb: buffer
5471  *
5472  * Can be used to save memory before skb is added to a busy queue.
5473  * If packet has bytes in frags and enough tail room in skb->head,
5474  * pull all of them, so that we can free the frags right now and adjust
5475  * truesize.
5476  * Notes:
5477  *	We do not reallocate skb->head thus can not fail.
5478  *	Caller must re-evaluate skb->truesize if needed.
5479  */
5480 void skb_condense(struct sk_buff *skb)
5481 {
5482 	if (skb->data_len) {
5483 		if (skb->data_len > skb->end - skb->tail ||
5484 		    skb_cloned(skb))
5485 			return;
5486 
5487 		/* Nice, we can free page frag(s) right now */
5488 		__pskb_pull_tail(skb, skb->data_len);
5489 	}
5490 	/* At this point, skb->truesize might be over estimated,
5491 	 * because skb had a fragment, and fragments do not tell
5492 	 * their truesize.
5493 	 * When we pulled its content into skb->head, fragment
5494 	 * was freed, but __pskb_pull_tail() could not possibly
5495 	 * adjust skb->truesize, not knowing the frag truesize.
5496 	 */
5497 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5498 }
5499