1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/tcp.h> 50 #include <linux/udp.h> 51 #include <linux/sctp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 #include <linux/if_vlan.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 74 #include <linux/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 80 struct kmem_cache *skbuff_head_cache __read_mostly; 81 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 83 EXPORT_SYMBOL(sysctl_max_skb_frags); 84 85 /** 86 * skb_panic - private function for out-of-line support 87 * @skb: buffer 88 * @sz: size 89 * @addr: address 90 * @msg: skb_over_panic or skb_under_panic 91 * 92 * Out-of-line support for skb_put() and skb_push(). 93 * Called via the wrapper skb_over_panic() or skb_under_panic(). 94 * Keep out of line to prevent kernel bloat. 95 * __builtin_return_address is not used because it is not always reliable. 96 */ 97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 98 const char msg[]) 99 { 100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 101 msg, addr, skb->len, sz, skb->head, skb->data, 102 (unsigned long)skb->tail, (unsigned long)skb->end, 103 skb->dev ? skb->dev->name : "<NULL>"); 104 BUG(); 105 } 106 107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 108 { 109 skb_panic(skb, sz, addr, __func__); 110 } 111 112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 /* 118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 119 * the caller if emergency pfmemalloc reserves are being used. If it is and 120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 121 * may be used. Otherwise, the packet data may be discarded until enough 122 * memory is free 123 */ 124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 126 127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 128 unsigned long ip, bool *pfmemalloc) 129 { 130 void *obj; 131 bool ret_pfmemalloc = false; 132 133 /* 134 * Try a regular allocation, when that fails and we're not entitled 135 * to the reserves, fail. 136 */ 137 obj = kmalloc_node_track_caller(size, 138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 139 node); 140 if (obj || !(gfp_pfmemalloc_allowed(flags))) 141 goto out; 142 143 /* Try again but now we are using pfmemalloc reserves */ 144 ret_pfmemalloc = true; 145 obj = kmalloc_node_track_caller(size, flags, node); 146 147 out: 148 if (pfmemalloc) 149 *pfmemalloc = ret_pfmemalloc; 150 151 return obj; 152 } 153 154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 155 * 'private' fields and also do memory statistics to find all the 156 * [BEEP] leaks. 157 * 158 */ 159 160 /** 161 * __alloc_skb - allocate a network buffer 162 * @size: size to allocate 163 * @gfp_mask: allocation mask 164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 165 * instead of head cache and allocate a cloned (child) skb. 166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 167 * allocations in case the data is required for writeback 168 * @node: numa node to allocate memory on 169 * 170 * Allocate a new &sk_buff. The returned buffer has no headroom and a 171 * tail room of at least size bytes. The object has a reference count 172 * of one. The return is the buffer. On a failure the return is %NULL. 173 * 174 * Buffers may only be allocated from interrupts using a @gfp_mask of 175 * %GFP_ATOMIC. 176 */ 177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 178 int flags, int node) 179 { 180 struct kmem_cache *cache; 181 struct skb_shared_info *shinfo; 182 struct sk_buff *skb; 183 u8 *data; 184 bool pfmemalloc; 185 186 cache = (flags & SKB_ALLOC_FCLONE) 187 ? skbuff_fclone_cache : skbuff_head_cache; 188 189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 190 gfp_mask |= __GFP_MEMALLOC; 191 192 /* Get the HEAD */ 193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 194 if (!skb) 195 goto out; 196 prefetchw(skb); 197 198 /* We do our best to align skb_shared_info on a separate cache 199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 200 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 201 * Both skb->head and skb_shared_info are cache line aligned. 202 */ 203 size = SKB_DATA_ALIGN(size); 204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 206 if (!data) 207 goto nodata; 208 /* kmalloc(size) might give us more room than requested. 209 * Put skb_shared_info exactly at the end of allocated zone, 210 * to allow max possible filling before reallocation. 211 */ 212 size = SKB_WITH_OVERHEAD(ksize(data)); 213 prefetchw(data + size); 214 215 /* 216 * Only clear those fields we need to clear, not those that we will 217 * actually initialise below. Hence, don't put any more fields after 218 * the tail pointer in struct sk_buff! 219 */ 220 memset(skb, 0, offsetof(struct sk_buff, tail)); 221 /* Account for allocated memory : skb + skb->head */ 222 skb->truesize = SKB_TRUESIZE(size); 223 skb->pfmemalloc = pfmemalloc; 224 refcount_set(&skb->users, 1); 225 skb->head = data; 226 skb->data = data; 227 skb_reset_tail_pointer(skb); 228 skb->end = skb->tail + size; 229 skb->mac_header = (typeof(skb->mac_header))~0U; 230 skb->transport_header = (typeof(skb->transport_header))~0U; 231 232 /* make sure we initialize shinfo sequentially */ 233 shinfo = skb_shinfo(skb); 234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 235 atomic_set(&shinfo->dataref, 1); 236 237 if (flags & SKB_ALLOC_FCLONE) { 238 struct sk_buff_fclones *fclones; 239 240 fclones = container_of(skb, struct sk_buff_fclones, skb1); 241 242 skb->fclone = SKB_FCLONE_ORIG; 243 refcount_set(&fclones->fclone_ref, 1); 244 245 fclones->skb2.fclone = SKB_FCLONE_CLONE; 246 } 247 out: 248 return skb; 249 nodata: 250 kmem_cache_free(cache, skb); 251 skb = NULL; 252 goto out; 253 } 254 EXPORT_SYMBOL(__alloc_skb); 255 256 /** 257 * __build_skb - build a network buffer 258 * @data: data buffer provided by caller 259 * @frag_size: size of data, or 0 if head was kmalloced 260 * 261 * Allocate a new &sk_buff. Caller provides space holding head and 262 * skb_shared_info. @data must have been allocated by kmalloc() only if 263 * @frag_size is 0, otherwise data should come from the page allocator 264 * or vmalloc() 265 * The return is the new skb buffer. 266 * On a failure the return is %NULL, and @data is not freed. 267 * Notes : 268 * Before IO, driver allocates only data buffer where NIC put incoming frame 269 * Driver should add room at head (NET_SKB_PAD) and 270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 272 * before giving packet to stack. 273 * RX rings only contains data buffers, not full skbs. 274 */ 275 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 276 { 277 struct skb_shared_info *shinfo; 278 struct sk_buff *skb; 279 unsigned int size = frag_size ? : ksize(data); 280 281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 282 if (!skb) 283 return NULL; 284 285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 286 287 memset(skb, 0, offsetof(struct sk_buff, tail)); 288 skb->truesize = SKB_TRUESIZE(size); 289 refcount_set(&skb->users, 1); 290 skb->head = data; 291 skb->data = data; 292 skb_reset_tail_pointer(skb); 293 skb->end = skb->tail + size; 294 skb->mac_header = (typeof(skb->mac_header))~0U; 295 skb->transport_header = (typeof(skb->transport_header))~0U; 296 297 /* make sure we initialize shinfo sequentially */ 298 shinfo = skb_shinfo(skb); 299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 300 atomic_set(&shinfo->dataref, 1); 301 302 return skb; 303 } 304 305 /* build_skb() is wrapper over __build_skb(), that specifically 306 * takes care of skb->head and skb->pfmemalloc 307 * This means that if @frag_size is not zero, then @data must be backed 308 * by a page fragment, not kmalloc() or vmalloc() 309 */ 310 struct sk_buff *build_skb(void *data, unsigned int frag_size) 311 { 312 struct sk_buff *skb = __build_skb(data, frag_size); 313 314 if (skb && frag_size) { 315 skb->head_frag = 1; 316 if (page_is_pfmemalloc(virt_to_head_page(data))) 317 skb->pfmemalloc = 1; 318 } 319 return skb; 320 } 321 EXPORT_SYMBOL(build_skb); 322 323 #define NAPI_SKB_CACHE_SIZE 64 324 325 struct napi_alloc_cache { 326 struct page_frag_cache page; 327 unsigned int skb_count; 328 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 329 }; 330 331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 333 334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 335 { 336 struct page_frag_cache *nc; 337 unsigned long flags; 338 void *data; 339 340 local_irq_save(flags); 341 nc = this_cpu_ptr(&netdev_alloc_cache); 342 data = page_frag_alloc(nc, fragsz, gfp_mask); 343 local_irq_restore(flags); 344 return data; 345 } 346 347 /** 348 * netdev_alloc_frag - allocate a page fragment 349 * @fragsz: fragment size 350 * 351 * Allocates a frag from a page for receive buffer. 352 * Uses GFP_ATOMIC allocations. 353 */ 354 void *netdev_alloc_frag(unsigned int fragsz) 355 { 356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC); 357 } 358 EXPORT_SYMBOL(netdev_alloc_frag); 359 360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 361 { 362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 363 364 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 365 } 366 367 void *napi_alloc_frag(unsigned int fragsz) 368 { 369 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 370 } 371 EXPORT_SYMBOL(napi_alloc_frag); 372 373 /** 374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 375 * @dev: network device to receive on 376 * @len: length to allocate 377 * @gfp_mask: get_free_pages mask, passed to alloc_skb 378 * 379 * Allocate a new &sk_buff and assign it a usage count of one. The 380 * buffer has NET_SKB_PAD headroom built in. Users should allocate 381 * the headroom they think they need without accounting for the 382 * built in space. The built in space is used for optimisations. 383 * 384 * %NULL is returned if there is no free memory. 385 */ 386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 387 gfp_t gfp_mask) 388 { 389 struct page_frag_cache *nc; 390 unsigned long flags; 391 struct sk_buff *skb; 392 bool pfmemalloc; 393 void *data; 394 395 len += NET_SKB_PAD; 396 397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 400 if (!skb) 401 goto skb_fail; 402 goto skb_success; 403 } 404 405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 406 len = SKB_DATA_ALIGN(len); 407 408 if (sk_memalloc_socks()) 409 gfp_mask |= __GFP_MEMALLOC; 410 411 local_irq_save(flags); 412 413 nc = this_cpu_ptr(&netdev_alloc_cache); 414 data = page_frag_alloc(nc, len, gfp_mask); 415 pfmemalloc = nc->pfmemalloc; 416 417 local_irq_restore(flags); 418 419 if (unlikely(!data)) 420 return NULL; 421 422 skb = __build_skb(data, len); 423 if (unlikely(!skb)) { 424 skb_free_frag(data); 425 return NULL; 426 } 427 428 /* use OR instead of assignment to avoid clearing of bits in mask */ 429 if (pfmemalloc) 430 skb->pfmemalloc = 1; 431 skb->head_frag = 1; 432 433 skb_success: 434 skb_reserve(skb, NET_SKB_PAD); 435 skb->dev = dev; 436 437 skb_fail: 438 return skb; 439 } 440 EXPORT_SYMBOL(__netdev_alloc_skb); 441 442 /** 443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 444 * @napi: napi instance this buffer was allocated for 445 * @len: length to allocate 446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 447 * 448 * Allocate a new sk_buff for use in NAPI receive. This buffer will 449 * attempt to allocate the head from a special reserved region used 450 * only for NAPI Rx allocation. By doing this we can save several 451 * CPU cycles by avoiding having to disable and re-enable IRQs. 452 * 453 * %NULL is returned if there is no free memory. 454 */ 455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 456 gfp_t gfp_mask) 457 { 458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 459 struct sk_buff *skb; 460 void *data; 461 462 len += NET_SKB_PAD + NET_IP_ALIGN; 463 464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 467 if (!skb) 468 goto skb_fail; 469 goto skb_success; 470 } 471 472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 473 len = SKB_DATA_ALIGN(len); 474 475 if (sk_memalloc_socks()) 476 gfp_mask |= __GFP_MEMALLOC; 477 478 data = page_frag_alloc(&nc->page, len, gfp_mask); 479 if (unlikely(!data)) 480 return NULL; 481 482 skb = __build_skb(data, len); 483 if (unlikely(!skb)) { 484 skb_free_frag(data); 485 return NULL; 486 } 487 488 /* use OR instead of assignment to avoid clearing of bits in mask */ 489 if (nc->page.pfmemalloc) 490 skb->pfmemalloc = 1; 491 skb->head_frag = 1; 492 493 skb_success: 494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 495 skb->dev = napi->dev; 496 497 skb_fail: 498 return skb; 499 } 500 EXPORT_SYMBOL(__napi_alloc_skb); 501 502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 503 int size, unsigned int truesize) 504 { 505 skb_fill_page_desc(skb, i, page, off, size); 506 skb->len += size; 507 skb->data_len += size; 508 skb->truesize += truesize; 509 } 510 EXPORT_SYMBOL(skb_add_rx_frag); 511 512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 513 unsigned int truesize) 514 { 515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 516 517 skb_frag_size_add(frag, size); 518 skb->len += size; 519 skb->data_len += size; 520 skb->truesize += truesize; 521 } 522 EXPORT_SYMBOL(skb_coalesce_rx_frag); 523 524 static void skb_drop_list(struct sk_buff **listp) 525 { 526 kfree_skb_list(*listp); 527 *listp = NULL; 528 } 529 530 static inline void skb_drop_fraglist(struct sk_buff *skb) 531 { 532 skb_drop_list(&skb_shinfo(skb)->frag_list); 533 } 534 535 static void skb_clone_fraglist(struct sk_buff *skb) 536 { 537 struct sk_buff *list; 538 539 skb_walk_frags(skb, list) 540 skb_get(list); 541 } 542 543 static void skb_free_head(struct sk_buff *skb) 544 { 545 unsigned char *head = skb->head; 546 547 if (skb->head_frag) 548 skb_free_frag(head); 549 else 550 kfree(head); 551 } 552 553 static void skb_release_data(struct sk_buff *skb) 554 { 555 struct skb_shared_info *shinfo = skb_shinfo(skb); 556 int i; 557 558 if (skb->cloned && 559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 560 &shinfo->dataref)) 561 return; 562 563 for (i = 0; i < shinfo->nr_frags; i++) 564 __skb_frag_unref(&shinfo->frags[i]); 565 566 if (shinfo->frag_list) 567 kfree_skb_list(shinfo->frag_list); 568 569 skb_zcopy_clear(skb, true); 570 skb_free_head(skb); 571 } 572 573 /* 574 * Free an skbuff by memory without cleaning the state. 575 */ 576 static void kfree_skbmem(struct sk_buff *skb) 577 { 578 struct sk_buff_fclones *fclones; 579 580 switch (skb->fclone) { 581 case SKB_FCLONE_UNAVAILABLE: 582 kmem_cache_free(skbuff_head_cache, skb); 583 return; 584 585 case SKB_FCLONE_ORIG: 586 fclones = container_of(skb, struct sk_buff_fclones, skb1); 587 588 /* We usually free the clone (TX completion) before original skb 589 * This test would have no chance to be true for the clone, 590 * while here, branch prediction will be good. 591 */ 592 if (refcount_read(&fclones->fclone_ref) == 1) 593 goto fastpath; 594 break; 595 596 default: /* SKB_FCLONE_CLONE */ 597 fclones = container_of(skb, struct sk_buff_fclones, skb2); 598 break; 599 } 600 if (!refcount_dec_and_test(&fclones->fclone_ref)) 601 return; 602 fastpath: 603 kmem_cache_free(skbuff_fclone_cache, fclones); 604 } 605 606 void skb_release_head_state(struct sk_buff *skb) 607 { 608 skb_dst_drop(skb); 609 secpath_reset(skb); 610 if (skb->destructor) { 611 WARN_ON(in_irq()); 612 skb->destructor(skb); 613 } 614 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 615 nf_conntrack_put(skb_nfct(skb)); 616 #endif 617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 618 nf_bridge_put(skb->nf_bridge); 619 #endif 620 } 621 622 /* Free everything but the sk_buff shell. */ 623 static void skb_release_all(struct sk_buff *skb) 624 { 625 skb_release_head_state(skb); 626 if (likely(skb->head)) 627 skb_release_data(skb); 628 } 629 630 /** 631 * __kfree_skb - private function 632 * @skb: buffer 633 * 634 * Free an sk_buff. Release anything attached to the buffer. 635 * Clean the state. This is an internal helper function. Users should 636 * always call kfree_skb 637 */ 638 639 void __kfree_skb(struct sk_buff *skb) 640 { 641 skb_release_all(skb); 642 kfree_skbmem(skb); 643 } 644 EXPORT_SYMBOL(__kfree_skb); 645 646 /** 647 * kfree_skb - free an sk_buff 648 * @skb: buffer to free 649 * 650 * Drop a reference to the buffer and free it if the usage count has 651 * hit zero. 652 */ 653 void kfree_skb(struct sk_buff *skb) 654 { 655 if (!skb_unref(skb)) 656 return; 657 658 trace_kfree_skb(skb, __builtin_return_address(0)); 659 __kfree_skb(skb); 660 } 661 EXPORT_SYMBOL(kfree_skb); 662 663 void kfree_skb_list(struct sk_buff *segs) 664 { 665 while (segs) { 666 struct sk_buff *next = segs->next; 667 668 kfree_skb(segs); 669 segs = next; 670 } 671 } 672 EXPORT_SYMBOL(kfree_skb_list); 673 674 /** 675 * skb_tx_error - report an sk_buff xmit error 676 * @skb: buffer that triggered an error 677 * 678 * Report xmit error if a device callback is tracking this skb. 679 * skb must be freed afterwards. 680 */ 681 void skb_tx_error(struct sk_buff *skb) 682 { 683 skb_zcopy_clear(skb, true); 684 } 685 EXPORT_SYMBOL(skb_tx_error); 686 687 /** 688 * consume_skb - free an skbuff 689 * @skb: buffer to free 690 * 691 * Drop a ref to the buffer and free it if the usage count has hit zero 692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 693 * is being dropped after a failure and notes that 694 */ 695 void consume_skb(struct sk_buff *skb) 696 { 697 if (!skb_unref(skb)) 698 return; 699 700 trace_consume_skb(skb); 701 __kfree_skb(skb); 702 } 703 EXPORT_SYMBOL(consume_skb); 704 705 /** 706 * consume_stateless_skb - free an skbuff, assuming it is stateless 707 * @skb: buffer to free 708 * 709 * Alike consume_skb(), but this variant assumes that this is the last 710 * skb reference and all the head states have been already dropped 711 */ 712 void __consume_stateless_skb(struct sk_buff *skb) 713 { 714 trace_consume_skb(skb); 715 skb_release_data(skb); 716 kfree_skbmem(skb); 717 } 718 719 void __kfree_skb_flush(void) 720 { 721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 722 723 /* flush skb_cache if containing objects */ 724 if (nc->skb_count) { 725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 726 nc->skb_cache); 727 nc->skb_count = 0; 728 } 729 } 730 731 static inline void _kfree_skb_defer(struct sk_buff *skb) 732 { 733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 734 735 /* drop skb->head and call any destructors for packet */ 736 skb_release_all(skb); 737 738 /* record skb to CPU local list */ 739 nc->skb_cache[nc->skb_count++] = skb; 740 741 #ifdef CONFIG_SLUB 742 /* SLUB writes into objects when freeing */ 743 prefetchw(skb); 744 #endif 745 746 /* flush skb_cache if it is filled */ 747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 749 nc->skb_cache); 750 nc->skb_count = 0; 751 } 752 } 753 void __kfree_skb_defer(struct sk_buff *skb) 754 { 755 _kfree_skb_defer(skb); 756 } 757 758 void napi_consume_skb(struct sk_buff *skb, int budget) 759 { 760 if (unlikely(!skb)) 761 return; 762 763 /* Zero budget indicate non-NAPI context called us, like netpoll */ 764 if (unlikely(!budget)) { 765 dev_consume_skb_any(skb); 766 return; 767 } 768 769 if (!skb_unref(skb)) 770 return; 771 772 /* if reaching here SKB is ready to free */ 773 trace_consume_skb(skb); 774 775 /* if SKB is a clone, don't handle this case */ 776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 777 __kfree_skb(skb); 778 return; 779 } 780 781 _kfree_skb_defer(skb); 782 } 783 EXPORT_SYMBOL(napi_consume_skb); 784 785 /* Make sure a field is enclosed inside headers_start/headers_end section */ 786 #define CHECK_SKB_FIELD(field) \ 787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 788 offsetof(struct sk_buff, headers_start)); \ 789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 790 offsetof(struct sk_buff, headers_end)); \ 791 792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 793 { 794 new->tstamp = old->tstamp; 795 /* We do not copy old->sk */ 796 new->dev = old->dev; 797 memcpy(new->cb, old->cb, sizeof(old->cb)); 798 skb_dst_copy(new, old); 799 #ifdef CONFIG_XFRM 800 new->sp = secpath_get(old->sp); 801 #endif 802 __nf_copy(new, old, false); 803 804 /* Note : this field could be in headers_start/headers_end section 805 * It is not yet because we do not want to have a 16 bit hole 806 */ 807 new->queue_mapping = old->queue_mapping; 808 809 memcpy(&new->headers_start, &old->headers_start, 810 offsetof(struct sk_buff, headers_end) - 811 offsetof(struct sk_buff, headers_start)); 812 CHECK_SKB_FIELD(protocol); 813 CHECK_SKB_FIELD(csum); 814 CHECK_SKB_FIELD(hash); 815 CHECK_SKB_FIELD(priority); 816 CHECK_SKB_FIELD(skb_iif); 817 CHECK_SKB_FIELD(vlan_proto); 818 CHECK_SKB_FIELD(vlan_tci); 819 CHECK_SKB_FIELD(transport_header); 820 CHECK_SKB_FIELD(network_header); 821 CHECK_SKB_FIELD(mac_header); 822 CHECK_SKB_FIELD(inner_protocol); 823 CHECK_SKB_FIELD(inner_transport_header); 824 CHECK_SKB_FIELD(inner_network_header); 825 CHECK_SKB_FIELD(inner_mac_header); 826 CHECK_SKB_FIELD(mark); 827 #ifdef CONFIG_NETWORK_SECMARK 828 CHECK_SKB_FIELD(secmark); 829 #endif 830 #ifdef CONFIG_NET_RX_BUSY_POLL 831 CHECK_SKB_FIELD(napi_id); 832 #endif 833 #ifdef CONFIG_XPS 834 CHECK_SKB_FIELD(sender_cpu); 835 #endif 836 #ifdef CONFIG_NET_SCHED 837 CHECK_SKB_FIELD(tc_index); 838 #endif 839 840 } 841 842 /* 843 * You should not add any new code to this function. Add it to 844 * __copy_skb_header above instead. 845 */ 846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 847 { 848 #define C(x) n->x = skb->x 849 850 n->next = n->prev = NULL; 851 n->sk = NULL; 852 __copy_skb_header(n, skb); 853 854 C(len); 855 C(data_len); 856 C(mac_len); 857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 858 n->cloned = 1; 859 n->nohdr = 0; 860 n->destructor = NULL; 861 C(tail); 862 C(end); 863 C(head); 864 C(head_frag); 865 C(data); 866 C(truesize); 867 refcount_set(&n->users, 1); 868 869 atomic_inc(&(skb_shinfo(skb)->dataref)); 870 skb->cloned = 1; 871 872 return n; 873 #undef C 874 } 875 876 /** 877 * skb_morph - morph one skb into another 878 * @dst: the skb to receive the contents 879 * @src: the skb to supply the contents 880 * 881 * This is identical to skb_clone except that the target skb is 882 * supplied by the user. 883 * 884 * The target skb is returned upon exit. 885 */ 886 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 887 { 888 skb_release_all(dst); 889 return __skb_clone(dst, src); 890 } 891 EXPORT_SYMBOL_GPL(skb_morph); 892 893 static int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 894 { 895 unsigned long max_pg, num_pg, new_pg, old_pg; 896 struct user_struct *user; 897 898 if (capable(CAP_IPC_LOCK) || !size) 899 return 0; 900 901 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 902 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 903 user = mmp->user ? : current_user(); 904 905 do { 906 old_pg = atomic_long_read(&user->locked_vm); 907 new_pg = old_pg + num_pg; 908 if (new_pg > max_pg) 909 return -ENOBUFS; 910 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 911 old_pg); 912 913 if (!mmp->user) { 914 mmp->user = get_uid(user); 915 mmp->num_pg = num_pg; 916 } else { 917 mmp->num_pg += num_pg; 918 } 919 920 return 0; 921 } 922 923 static void mm_unaccount_pinned_pages(struct mmpin *mmp) 924 { 925 if (mmp->user) { 926 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 927 free_uid(mmp->user); 928 } 929 } 930 931 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 932 { 933 struct ubuf_info *uarg; 934 struct sk_buff *skb; 935 936 WARN_ON_ONCE(!in_task()); 937 938 if (!sock_flag(sk, SOCK_ZEROCOPY)) 939 return NULL; 940 941 skb = sock_omalloc(sk, 0, GFP_KERNEL); 942 if (!skb) 943 return NULL; 944 945 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 946 uarg = (void *)skb->cb; 947 uarg->mmp.user = NULL; 948 949 if (mm_account_pinned_pages(&uarg->mmp, size)) { 950 kfree_skb(skb); 951 return NULL; 952 } 953 954 uarg->callback = sock_zerocopy_callback; 955 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 956 uarg->len = 1; 957 uarg->bytelen = size; 958 uarg->zerocopy = 1; 959 refcount_set(&uarg->refcnt, 1); 960 sock_hold(sk); 961 962 return uarg; 963 } 964 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 965 966 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 967 { 968 return container_of((void *)uarg, struct sk_buff, cb); 969 } 970 971 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 972 struct ubuf_info *uarg) 973 { 974 if (uarg) { 975 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 976 u32 bytelen, next; 977 978 /* realloc only when socket is locked (TCP, UDP cork), 979 * so uarg->len and sk_zckey access is serialized 980 */ 981 if (!sock_owned_by_user(sk)) { 982 WARN_ON_ONCE(1); 983 return NULL; 984 } 985 986 bytelen = uarg->bytelen + size; 987 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 988 /* TCP can create new skb to attach new uarg */ 989 if (sk->sk_type == SOCK_STREAM) 990 goto new_alloc; 991 return NULL; 992 } 993 994 next = (u32)atomic_read(&sk->sk_zckey); 995 if ((u32)(uarg->id + uarg->len) == next) { 996 if (mm_account_pinned_pages(&uarg->mmp, size)) 997 return NULL; 998 uarg->len++; 999 uarg->bytelen = bytelen; 1000 atomic_set(&sk->sk_zckey, ++next); 1001 sock_zerocopy_get(uarg); 1002 return uarg; 1003 } 1004 } 1005 1006 new_alloc: 1007 return sock_zerocopy_alloc(sk, size); 1008 } 1009 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1010 1011 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1012 { 1013 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1014 u32 old_lo, old_hi; 1015 u64 sum_len; 1016 1017 old_lo = serr->ee.ee_info; 1018 old_hi = serr->ee.ee_data; 1019 sum_len = old_hi - old_lo + 1ULL + len; 1020 1021 if (sum_len >= (1ULL << 32)) 1022 return false; 1023 1024 if (lo != old_hi + 1) 1025 return false; 1026 1027 serr->ee.ee_data += len; 1028 return true; 1029 } 1030 1031 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1032 { 1033 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1034 struct sock_exterr_skb *serr; 1035 struct sock *sk = skb->sk; 1036 struct sk_buff_head *q; 1037 unsigned long flags; 1038 u32 lo, hi; 1039 u16 len; 1040 1041 mm_unaccount_pinned_pages(&uarg->mmp); 1042 1043 /* if !len, there was only 1 call, and it was aborted 1044 * so do not queue a completion notification 1045 */ 1046 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1047 goto release; 1048 1049 len = uarg->len; 1050 lo = uarg->id; 1051 hi = uarg->id + len - 1; 1052 1053 serr = SKB_EXT_ERR(skb); 1054 memset(serr, 0, sizeof(*serr)); 1055 serr->ee.ee_errno = 0; 1056 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1057 serr->ee.ee_data = hi; 1058 serr->ee.ee_info = lo; 1059 if (!success) 1060 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1061 1062 q = &sk->sk_error_queue; 1063 spin_lock_irqsave(&q->lock, flags); 1064 tail = skb_peek_tail(q); 1065 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1066 !skb_zerocopy_notify_extend(tail, lo, len)) { 1067 __skb_queue_tail(q, skb); 1068 skb = NULL; 1069 } 1070 spin_unlock_irqrestore(&q->lock, flags); 1071 1072 sk->sk_error_report(sk); 1073 1074 release: 1075 consume_skb(skb); 1076 sock_put(sk); 1077 } 1078 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1079 1080 void sock_zerocopy_put(struct ubuf_info *uarg) 1081 { 1082 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1083 if (uarg->callback) 1084 uarg->callback(uarg, uarg->zerocopy); 1085 else 1086 consume_skb(skb_from_uarg(uarg)); 1087 } 1088 } 1089 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1090 1091 void sock_zerocopy_put_abort(struct ubuf_info *uarg) 1092 { 1093 if (uarg) { 1094 struct sock *sk = skb_from_uarg(uarg)->sk; 1095 1096 atomic_dec(&sk->sk_zckey); 1097 uarg->len--; 1098 1099 sock_zerocopy_put(uarg); 1100 } 1101 } 1102 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1103 1104 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1105 struct iov_iter *from, size_t length); 1106 1107 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1108 struct msghdr *msg, int len, 1109 struct ubuf_info *uarg) 1110 { 1111 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1112 struct iov_iter orig_iter = msg->msg_iter; 1113 int err, orig_len = skb->len; 1114 1115 /* An skb can only point to one uarg. This edge case happens when 1116 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1117 */ 1118 if (orig_uarg && uarg != orig_uarg) 1119 return -EEXIST; 1120 1121 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1122 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1123 struct sock *save_sk = skb->sk; 1124 1125 /* Streams do not free skb on error. Reset to prev state. */ 1126 msg->msg_iter = orig_iter; 1127 skb->sk = sk; 1128 ___pskb_trim(skb, orig_len); 1129 skb->sk = save_sk; 1130 return err; 1131 } 1132 1133 skb_zcopy_set(skb, uarg); 1134 return skb->len - orig_len; 1135 } 1136 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1137 1138 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1139 gfp_t gfp_mask) 1140 { 1141 if (skb_zcopy(orig)) { 1142 if (skb_zcopy(nskb)) { 1143 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1144 if (!gfp_mask) { 1145 WARN_ON_ONCE(1); 1146 return -ENOMEM; 1147 } 1148 if (skb_uarg(nskb) == skb_uarg(orig)) 1149 return 0; 1150 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1151 return -EIO; 1152 } 1153 skb_zcopy_set(nskb, skb_uarg(orig)); 1154 } 1155 return 0; 1156 } 1157 1158 /** 1159 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1160 * @skb: the skb to modify 1161 * @gfp_mask: allocation priority 1162 * 1163 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1164 * It will copy all frags into kernel and drop the reference 1165 * to userspace pages. 1166 * 1167 * If this function is called from an interrupt gfp_mask() must be 1168 * %GFP_ATOMIC. 1169 * 1170 * Returns 0 on success or a negative error code on failure 1171 * to allocate kernel memory to copy to. 1172 */ 1173 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1174 { 1175 int num_frags = skb_shinfo(skb)->nr_frags; 1176 struct page *page, *head = NULL; 1177 int i, new_frags; 1178 u32 d_off; 1179 1180 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1181 return -EINVAL; 1182 1183 if (!num_frags) 1184 goto release; 1185 1186 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1187 for (i = 0; i < new_frags; i++) { 1188 page = alloc_page(gfp_mask); 1189 if (!page) { 1190 while (head) { 1191 struct page *next = (struct page *)page_private(head); 1192 put_page(head); 1193 head = next; 1194 } 1195 return -ENOMEM; 1196 } 1197 set_page_private(page, (unsigned long)head); 1198 head = page; 1199 } 1200 1201 page = head; 1202 d_off = 0; 1203 for (i = 0; i < num_frags; i++) { 1204 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1205 u32 p_off, p_len, copied; 1206 struct page *p; 1207 u8 *vaddr; 1208 1209 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1210 p, p_off, p_len, copied) { 1211 u32 copy, done = 0; 1212 vaddr = kmap_atomic(p); 1213 1214 while (done < p_len) { 1215 if (d_off == PAGE_SIZE) { 1216 d_off = 0; 1217 page = (struct page *)page_private(page); 1218 } 1219 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1220 memcpy(page_address(page) + d_off, 1221 vaddr + p_off + done, copy); 1222 done += copy; 1223 d_off += copy; 1224 } 1225 kunmap_atomic(vaddr); 1226 } 1227 } 1228 1229 /* skb frags release userspace buffers */ 1230 for (i = 0; i < num_frags; i++) 1231 skb_frag_unref(skb, i); 1232 1233 /* skb frags point to kernel buffers */ 1234 for (i = 0; i < new_frags - 1; i++) { 1235 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1236 head = (struct page *)page_private(head); 1237 } 1238 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1239 skb_shinfo(skb)->nr_frags = new_frags; 1240 1241 release: 1242 skb_zcopy_clear(skb, false); 1243 return 0; 1244 } 1245 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1246 1247 /** 1248 * skb_clone - duplicate an sk_buff 1249 * @skb: buffer to clone 1250 * @gfp_mask: allocation priority 1251 * 1252 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1253 * copies share the same packet data but not structure. The new 1254 * buffer has a reference count of 1. If the allocation fails the 1255 * function returns %NULL otherwise the new buffer is returned. 1256 * 1257 * If this function is called from an interrupt gfp_mask() must be 1258 * %GFP_ATOMIC. 1259 */ 1260 1261 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1262 { 1263 struct sk_buff_fclones *fclones = container_of(skb, 1264 struct sk_buff_fclones, 1265 skb1); 1266 struct sk_buff *n; 1267 1268 if (skb_orphan_frags(skb, gfp_mask)) 1269 return NULL; 1270 1271 if (skb->fclone == SKB_FCLONE_ORIG && 1272 refcount_read(&fclones->fclone_ref) == 1) { 1273 n = &fclones->skb2; 1274 refcount_set(&fclones->fclone_ref, 2); 1275 } else { 1276 if (skb_pfmemalloc(skb)) 1277 gfp_mask |= __GFP_MEMALLOC; 1278 1279 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1280 if (!n) 1281 return NULL; 1282 1283 n->fclone = SKB_FCLONE_UNAVAILABLE; 1284 } 1285 1286 return __skb_clone(n, skb); 1287 } 1288 EXPORT_SYMBOL(skb_clone); 1289 1290 static void skb_headers_offset_update(struct sk_buff *skb, int off) 1291 { 1292 /* Only adjust this if it actually is csum_start rather than csum */ 1293 if (skb->ip_summed == CHECKSUM_PARTIAL) 1294 skb->csum_start += off; 1295 /* {transport,network,mac}_header and tail are relative to skb->head */ 1296 skb->transport_header += off; 1297 skb->network_header += off; 1298 if (skb_mac_header_was_set(skb)) 1299 skb->mac_header += off; 1300 skb->inner_transport_header += off; 1301 skb->inner_network_header += off; 1302 skb->inner_mac_header += off; 1303 } 1304 1305 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1306 { 1307 __copy_skb_header(new, old); 1308 1309 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1310 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1311 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1312 } 1313 1314 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1315 { 1316 if (skb_pfmemalloc(skb)) 1317 return SKB_ALLOC_RX; 1318 return 0; 1319 } 1320 1321 /** 1322 * skb_copy - create private copy of an sk_buff 1323 * @skb: buffer to copy 1324 * @gfp_mask: allocation priority 1325 * 1326 * Make a copy of both an &sk_buff and its data. This is used when the 1327 * caller wishes to modify the data and needs a private copy of the 1328 * data to alter. Returns %NULL on failure or the pointer to the buffer 1329 * on success. The returned buffer has a reference count of 1. 1330 * 1331 * As by-product this function converts non-linear &sk_buff to linear 1332 * one, so that &sk_buff becomes completely private and caller is allowed 1333 * to modify all the data of returned buffer. This means that this 1334 * function is not recommended for use in circumstances when only 1335 * header is going to be modified. Use pskb_copy() instead. 1336 */ 1337 1338 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1339 { 1340 int headerlen = skb_headroom(skb); 1341 unsigned int size = skb_end_offset(skb) + skb->data_len; 1342 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1343 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1344 1345 if (!n) 1346 return NULL; 1347 1348 /* Set the data pointer */ 1349 skb_reserve(n, headerlen); 1350 /* Set the tail pointer and length */ 1351 skb_put(n, skb->len); 1352 1353 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1354 1355 copy_skb_header(n, skb); 1356 return n; 1357 } 1358 EXPORT_SYMBOL(skb_copy); 1359 1360 /** 1361 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1362 * @skb: buffer to copy 1363 * @headroom: headroom of new skb 1364 * @gfp_mask: allocation priority 1365 * @fclone: if true allocate the copy of the skb from the fclone 1366 * cache instead of the head cache; it is recommended to set this 1367 * to true for the cases where the copy will likely be cloned 1368 * 1369 * Make a copy of both an &sk_buff and part of its data, located 1370 * in header. Fragmented data remain shared. This is used when 1371 * the caller wishes to modify only header of &sk_buff and needs 1372 * private copy of the header to alter. Returns %NULL on failure 1373 * or the pointer to the buffer on success. 1374 * The returned buffer has a reference count of 1. 1375 */ 1376 1377 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1378 gfp_t gfp_mask, bool fclone) 1379 { 1380 unsigned int size = skb_headlen(skb) + headroom; 1381 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1382 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1383 1384 if (!n) 1385 goto out; 1386 1387 /* Set the data pointer */ 1388 skb_reserve(n, headroom); 1389 /* Set the tail pointer and length */ 1390 skb_put(n, skb_headlen(skb)); 1391 /* Copy the bytes */ 1392 skb_copy_from_linear_data(skb, n->data, n->len); 1393 1394 n->truesize += skb->data_len; 1395 n->data_len = skb->data_len; 1396 n->len = skb->len; 1397 1398 if (skb_shinfo(skb)->nr_frags) { 1399 int i; 1400 1401 if (skb_orphan_frags(skb, gfp_mask) || 1402 skb_zerocopy_clone(n, skb, gfp_mask)) { 1403 kfree_skb(n); 1404 n = NULL; 1405 goto out; 1406 } 1407 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1408 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1409 skb_frag_ref(skb, i); 1410 } 1411 skb_shinfo(n)->nr_frags = i; 1412 } 1413 1414 if (skb_has_frag_list(skb)) { 1415 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1416 skb_clone_fraglist(n); 1417 } 1418 1419 copy_skb_header(n, skb); 1420 out: 1421 return n; 1422 } 1423 EXPORT_SYMBOL(__pskb_copy_fclone); 1424 1425 /** 1426 * pskb_expand_head - reallocate header of &sk_buff 1427 * @skb: buffer to reallocate 1428 * @nhead: room to add at head 1429 * @ntail: room to add at tail 1430 * @gfp_mask: allocation priority 1431 * 1432 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1433 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1434 * reference count of 1. Returns zero in the case of success or error, 1435 * if expansion failed. In the last case, &sk_buff is not changed. 1436 * 1437 * All the pointers pointing into skb header may change and must be 1438 * reloaded after call to this function. 1439 */ 1440 1441 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1442 gfp_t gfp_mask) 1443 { 1444 int i, osize = skb_end_offset(skb); 1445 int size = osize + nhead + ntail; 1446 long off; 1447 u8 *data; 1448 1449 BUG_ON(nhead < 0); 1450 1451 BUG_ON(skb_shared(skb)); 1452 1453 size = SKB_DATA_ALIGN(size); 1454 1455 if (skb_pfmemalloc(skb)) 1456 gfp_mask |= __GFP_MEMALLOC; 1457 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1458 gfp_mask, NUMA_NO_NODE, NULL); 1459 if (!data) 1460 goto nodata; 1461 size = SKB_WITH_OVERHEAD(ksize(data)); 1462 1463 /* Copy only real data... and, alas, header. This should be 1464 * optimized for the cases when header is void. 1465 */ 1466 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1467 1468 memcpy((struct skb_shared_info *)(data + size), 1469 skb_shinfo(skb), 1470 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1471 1472 /* 1473 * if shinfo is shared we must drop the old head gracefully, but if it 1474 * is not we can just drop the old head and let the existing refcount 1475 * be since all we did is relocate the values 1476 */ 1477 if (skb_cloned(skb)) { 1478 if (skb_orphan_frags(skb, gfp_mask)) 1479 goto nofrags; 1480 if (skb_zcopy(skb)) 1481 refcount_inc(&skb_uarg(skb)->refcnt); 1482 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1483 skb_frag_ref(skb, i); 1484 1485 if (skb_has_frag_list(skb)) 1486 skb_clone_fraglist(skb); 1487 1488 skb_release_data(skb); 1489 } else { 1490 skb_free_head(skb); 1491 } 1492 off = (data + nhead) - skb->head; 1493 1494 skb->head = data; 1495 skb->head_frag = 0; 1496 skb->data += off; 1497 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1498 skb->end = size; 1499 off = nhead; 1500 #else 1501 skb->end = skb->head + size; 1502 #endif 1503 skb->tail += off; 1504 skb_headers_offset_update(skb, nhead); 1505 skb->cloned = 0; 1506 skb->hdr_len = 0; 1507 skb->nohdr = 0; 1508 atomic_set(&skb_shinfo(skb)->dataref, 1); 1509 1510 skb_metadata_clear(skb); 1511 1512 /* It is not generally safe to change skb->truesize. 1513 * For the moment, we really care of rx path, or 1514 * when skb is orphaned (not attached to a socket). 1515 */ 1516 if (!skb->sk || skb->destructor == sock_edemux) 1517 skb->truesize += size - osize; 1518 1519 return 0; 1520 1521 nofrags: 1522 kfree(data); 1523 nodata: 1524 return -ENOMEM; 1525 } 1526 EXPORT_SYMBOL(pskb_expand_head); 1527 1528 /* Make private copy of skb with writable head and some headroom */ 1529 1530 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1531 { 1532 struct sk_buff *skb2; 1533 int delta = headroom - skb_headroom(skb); 1534 1535 if (delta <= 0) 1536 skb2 = pskb_copy(skb, GFP_ATOMIC); 1537 else { 1538 skb2 = skb_clone(skb, GFP_ATOMIC); 1539 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1540 GFP_ATOMIC)) { 1541 kfree_skb(skb2); 1542 skb2 = NULL; 1543 } 1544 } 1545 return skb2; 1546 } 1547 EXPORT_SYMBOL(skb_realloc_headroom); 1548 1549 /** 1550 * skb_copy_expand - copy and expand sk_buff 1551 * @skb: buffer to copy 1552 * @newheadroom: new free bytes at head 1553 * @newtailroom: new free bytes at tail 1554 * @gfp_mask: allocation priority 1555 * 1556 * Make a copy of both an &sk_buff and its data and while doing so 1557 * allocate additional space. 1558 * 1559 * This is used when the caller wishes to modify the data and needs a 1560 * private copy of the data to alter as well as more space for new fields. 1561 * Returns %NULL on failure or the pointer to the buffer 1562 * on success. The returned buffer has a reference count of 1. 1563 * 1564 * You must pass %GFP_ATOMIC as the allocation priority if this function 1565 * is called from an interrupt. 1566 */ 1567 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1568 int newheadroom, int newtailroom, 1569 gfp_t gfp_mask) 1570 { 1571 /* 1572 * Allocate the copy buffer 1573 */ 1574 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1575 gfp_mask, skb_alloc_rx_flag(skb), 1576 NUMA_NO_NODE); 1577 int oldheadroom = skb_headroom(skb); 1578 int head_copy_len, head_copy_off; 1579 1580 if (!n) 1581 return NULL; 1582 1583 skb_reserve(n, newheadroom); 1584 1585 /* Set the tail pointer and length */ 1586 skb_put(n, skb->len); 1587 1588 head_copy_len = oldheadroom; 1589 head_copy_off = 0; 1590 if (newheadroom <= head_copy_len) 1591 head_copy_len = newheadroom; 1592 else 1593 head_copy_off = newheadroom - head_copy_len; 1594 1595 /* Copy the linear header and data. */ 1596 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1597 skb->len + head_copy_len)); 1598 1599 copy_skb_header(n, skb); 1600 1601 skb_headers_offset_update(n, newheadroom - oldheadroom); 1602 1603 return n; 1604 } 1605 EXPORT_SYMBOL(skb_copy_expand); 1606 1607 /** 1608 * __skb_pad - zero pad the tail of an skb 1609 * @skb: buffer to pad 1610 * @pad: space to pad 1611 * @free_on_error: free buffer on error 1612 * 1613 * Ensure that a buffer is followed by a padding area that is zero 1614 * filled. Used by network drivers which may DMA or transfer data 1615 * beyond the buffer end onto the wire. 1616 * 1617 * May return error in out of memory cases. The skb is freed on error 1618 * if @free_on_error is true. 1619 */ 1620 1621 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1622 { 1623 int err; 1624 int ntail; 1625 1626 /* If the skbuff is non linear tailroom is always zero.. */ 1627 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1628 memset(skb->data+skb->len, 0, pad); 1629 return 0; 1630 } 1631 1632 ntail = skb->data_len + pad - (skb->end - skb->tail); 1633 if (likely(skb_cloned(skb) || ntail > 0)) { 1634 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1635 if (unlikely(err)) 1636 goto free_skb; 1637 } 1638 1639 /* FIXME: The use of this function with non-linear skb's really needs 1640 * to be audited. 1641 */ 1642 err = skb_linearize(skb); 1643 if (unlikely(err)) 1644 goto free_skb; 1645 1646 memset(skb->data + skb->len, 0, pad); 1647 return 0; 1648 1649 free_skb: 1650 if (free_on_error) 1651 kfree_skb(skb); 1652 return err; 1653 } 1654 EXPORT_SYMBOL(__skb_pad); 1655 1656 /** 1657 * pskb_put - add data to the tail of a potentially fragmented buffer 1658 * @skb: start of the buffer to use 1659 * @tail: tail fragment of the buffer to use 1660 * @len: amount of data to add 1661 * 1662 * This function extends the used data area of the potentially 1663 * fragmented buffer. @tail must be the last fragment of @skb -- or 1664 * @skb itself. If this would exceed the total buffer size the kernel 1665 * will panic. A pointer to the first byte of the extra data is 1666 * returned. 1667 */ 1668 1669 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1670 { 1671 if (tail != skb) { 1672 skb->data_len += len; 1673 skb->len += len; 1674 } 1675 return skb_put(tail, len); 1676 } 1677 EXPORT_SYMBOL_GPL(pskb_put); 1678 1679 /** 1680 * skb_put - add data to a buffer 1681 * @skb: buffer to use 1682 * @len: amount of data to add 1683 * 1684 * This function extends the used data area of the buffer. If this would 1685 * exceed the total buffer size the kernel will panic. A pointer to the 1686 * first byte of the extra data is returned. 1687 */ 1688 void *skb_put(struct sk_buff *skb, unsigned int len) 1689 { 1690 void *tmp = skb_tail_pointer(skb); 1691 SKB_LINEAR_ASSERT(skb); 1692 skb->tail += len; 1693 skb->len += len; 1694 if (unlikely(skb->tail > skb->end)) 1695 skb_over_panic(skb, len, __builtin_return_address(0)); 1696 return tmp; 1697 } 1698 EXPORT_SYMBOL(skb_put); 1699 1700 /** 1701 * skb_push - add data to the start of a buffer 1702 * @skb: buffer to use 1703 * @len: amount of data to add 1704 * 1705 * This function extends the used data area of the buffer at the buffer 1706 * start. If this would exceed the total buffer headroom the kernel will 1707 * panic. A pointer to the first byte of the extra data is returned. 1708 */ 1709 void *skb_push(struct sk_buff *skb, unsigned int len) 1710 { 1711 skb->data -= len; 1712 skb->len += len; 1713 if (unlikely(skb->data<skb->head)) 1714 skb_under_panic(skb, len, __builtin_return_address(0)); 1715 return skb->data; 1716 } 1717 EXPORT_SYMBOL(skb_push); 1718 1719 /** 1720 * skb_pull - remove data from the start of a buffer 1721 * @skb: buffer to use 1722 * @len: amount of data to remove 1723 * 1724 * This function removes data from the start of a buffer, returning 1725 * the memory to the headroom. A pointer to the next data in the buffer 1726 * is returned. Once the data has been pulled future pushes will overwrite 1727 * the old data. 1728 */ 1729 void *skb_pull(struct sk_buff *skb, unsigned int len) 1730 { 1731 return skb_pull_inline(skb, len); 1732 } 1733 EXPORT_SYMBOL(skb_pull); 1734 1735 /** 1736 * skb_trim - remove end from a buffer 1737 * @skb: buffer to alter 1738 * @len: new length 1739 * 1740 * Cut the length of a buffer down by removing data from the tail. If 1741 * the buffer is already under the length specified it is not modified. 1742 * The skb must be linear. 1743 */ 1744 void skb_trim(struct sk_buff *skb, unsigned int len) 1745 { 1746 if (skb->len > len) 1747 __skb_trim(skb, len); 1748 } 1749 EXPORT_SYMBOL(skb_trim); 1750 1751 /* Trims skb to length len. It can change skb pointers. 1752 */ 1753 1754 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1755 { 1756 struct sk_buff **fragp; 1757 struct sk_buff *frag; 1758 int offset = skb_headlen(skb); 1759 int nfrags = skb_shinfo(skb)->nr_frags; 1760 int i; 1761 int err; 1762 1763 if (skb_cloned(skb) && 1764 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1765 return err; 1766 1767 i = 0; 1768 if (offset >= len) 1769 goto drop_pages; 1770 1771 for (; i < nfrags; i++) { 1772 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1773 1774 if (end < len) { 1775 offset = end; 1776 continue; 1777 } 1778 1779 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1780 1781 drop_pages: 1782 skb_shinfo(skb)->nr_frags = i; 1783 1784 for (; i < nfrags; i++) 1785 skb_frag_unref(skb, i); 1786 1787 if (skb_has_frag_list(skb)) 1788 skb_drop_fraglist(skb); 1789 goto done; 1790 } 1791 1792 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1793 fragp = &frag->next) { 1794 int end = offset + frag->len; 1795 1796 if (skb_shared(frag)) { 1797 struct sk_buff *nfrag; 1798 1799 nfrag = skb_clone(frag, GFP_ATOMIC); 1800 if (unlikely(!nfrag)) 1801 return -ENOMEM; 1802 1803 nfrag->next = frag->next; 1804 consume_skb(frag); 1805 frag = nfrag; 1806 *fragp = frag; 1807 } 1808 1809 if (end < len) { 1810 offset = end; 1811 continue; 1812 } 1813 1814 if (end > len && 1815 unlikely((err = pskb_trim(frag, len - offset)))) 1816 return err; 1817 1818 if (frag->next) 1819 skb_drop_list(&frag->next); 1820 break; 1821 } 1822 1823 done: 1824 if (len > skb_headlen(skb)) { 1825 skb->data_len -= skb->len - len; 1826 skb->len = len; 1827 } else { 1828 skb->len = len; 1829 skb->data_len = 0; 1830 skb_set_tail_pointer(skb, len); 1831 } 1832 1833 if (!skb->sk || skb->destructor == sock_edemux) 1834 skb_condense(skb); 1835 return 0; 1836 } 1837 EXPORT_SYMBOL(___pskb_trim); 1838 1839 /** 1840 * __pskb_pull_tail - advance tail of skb header 1841 * @skb: buffer to reallocate 1842 * @delta: number of bytes to advance tail 1843 * 1844 * The function makes a sense only on a fragmented &sk_buff, 1845 * it expands header moving its tail forward and copying necessary 1846 * data from fragmented part. 1847 * 1848 * &sk_buff MUST have reference count of 1. 1849 * 1850 * Returns %NULL (and &sk_buff does not change) if pull failed 1851 * or value of new tail of skb in the case of success. 1852 * 1853 * All the pointers pointing into skb header may change and must be 1854 * reloaded after call to this function. 1855 */ 1856 1857 /* Moves tail of skb head forward, copying data from fragmented part, 1858 * when it is necessary. 1859 * 1. It may fail due to malloc failure. 1860 * 2. It may change skb pointers. 1861 * 1862 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1863 */ 1864 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1865 { 1866 /* If skb has not enough free space at tail, get new one 1867 * plus 128 bytes for future expansions. If we have enough 1868 * room at tail, reallocate without expansion only if skb is cloned. 1869 */ 1870 int i, k, eat = (skb->tail + delta) - skb->end; 1871 1872 if (eat > 0 || skb_cloned(skb)) { 1873 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1874 GFP_ATOMIC)) 1875 return NULL; 1876 } 1877 1878 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 1879 skb_tail_pointer(skb), delta)); 1880 1881 /* Optimization: no fragments, no reasons to preestimate 1882 * size of pulled pages. Superb. 1883 */ 1884 if (!skb_has_frag_list(skb)) 1885 goto pull_pages; 1886 1887 /* Estimate size of pulled pages. */ 1888 eat = delta; 1889 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1890 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1891 1892 if (size >= eat) 1893 goto pull_pages; 1894 eat -= size; 1895 } 1896 1897 /* If we need update frag list, we are in troubles. 1898 * Certainly, it is possible to add an offset to skb data, 1899 * but taking into account that pulling is expected to 1900 * be very rare operation, it is worth to fight against 1901 * further bloating skb head and crucify ourselves here instead. 1902 * Pure masohism, indeed. 8)8) 1903 */ 1904 if (eat) { 1905 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1906 struct sk_buff *clone = NULL; 1907 struct sk_buff *insp = NULL; 1908 1909 do { 1910 BUG_ON(!list); 1911 1912 if (list->len <= eat) { 1913 /* Eaten as whole. */ 1914 eat -= list->len; 1915 list = list->next; 1916 insp = list; 1917 } else { 1918 /* Eaten partially. */ 1919 1920 if (skb_shared(list)) { 1921 /* Sucks! We need to fork list. :-( */ 1922 clone = skb_clone(list, GFP_ATOMIC); 1923 if (!clone) 1924 return NULL; 1925 insp = list->next; 1926 list = clone; 1927 } else { 1928 /* This may be pulled without 1929 * problems. */ 1930 insp = list; 1931 } 1932 if (!pskb_pull(list, eat)) { 1933 kfree_skb(clone); 1934 return NULL; 1935 } 1936 break; 1937 } 1938 } while (eat); 1939 1940 /* Free pulled out fragments. */ 1941 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1942 skb_shinfo(skb)->frag_list = list->next; 1943 kfree_skb(list); 1944 } 1945 /* And insert new clone at head. */ 1946 if (clone) { 1947 clone->next = list; 1948 skb_shinfo(skb)->frag_list = clone; 1949 } 1950 } 1951 /* Success! Now we may commit changes to skb data. */ 1952 1953 pull_pages: 1954 eat = delta; 1955 k = 0; 1956 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1957 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1958 1959 if (size <= eat) { 1960 skb_frag_unref(skb, i); 1961 eat -= size; 1962 } else { 1963 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1964 if (eat) { 1965 skb_shinfo(skb)->frags[k].page_offset += eat; 1966 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1967 if (!i) 1968 goto end; 1969 eat = 0; 1970 } 1971 k++; 1972 } 1973 } 1974 skb_shinfo(skb)->nr_frags = k; 1975 1976 end: 1977 skb->tail += delta; 1978 skb->data_len -= delta; 1979 1980 if (!skb->data_len) 1981 skb_zcopy_clear(skb, false); 1982 1983 return skb_tail_pointer(skb); 1984 } 1985 EXPORT_SYMBOL(__pskb_pull_tail); 1986 1987 /** 1988 * skb_copy_bits - copy bits from skb to kernel buffer 1989 * @skb: source skb 1990 * @offset: offset in source 1991 * @to: destination buffer 1992 * @len: number of bytes to copy 1993 * 1994 * Copy the specified number of bytes from the source skb to the 1995 * destination buffer. 1996 * 1997 * CAUTION ! : 1998 * If its prototype is ever changed, 1999 * check arch/{*}/net/{*}.S files, 2000 * since it is called from BPF assembly code. 2001 */ 2002 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2003 { 2004 int start = skb_headlen(skb); 2005 struct sk_buff *frag_iter; 2006 int i, copy; 2007 2008 if (offset > (int)skb->len - len) 2009 goto fault; 2010 2011 /* Copy header. */ 2012 if ((copy = start - offset) > 0) { 2013 if (copy > len) 2014 copy = len; 2015 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2016 if ((len -= copy) == 0) 2017 return 0; 2018 offset += copy; 2019 to += copy; 2020 } 2021 2022 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2023 int end; 2024 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2025 2026 WARN_ON(start > offset + len); 2027 2028 end = start + skb_frag_size(f); 2029 if ((copy = end - offset) > 0) { 2030 u32 p_off, p_len, copied; 2031 struct page *p; 2032 u8 *vaddr; 2033 2034 if (copy > len) 2035 copy = len; 2036 2037 skb_frag_foreach_page(f, 2038 f->page_offset + offset - start, 2039 copy, p, p_off, p_len, copied) { 2040 vaddr = kmap_atomic(p); 2041 memcpy(to + copied, vaddr + p_off, p_len); 2042 kunmap_atomic(vaddr); 2043 } 2044 2045 if ((len -= copy) == 0) 2046 return 0; 2047 offset += copy; 2048 to += copy; 2049 } 2050 start = end; 2051 } 2052 2053 skb_walk_frags(skb, frag_iter) { 2054 int end; 2055 2056 WARN_ON(start > offset + len); 2057 2058 end = start + frag_iter->len; 2059 if ((copy = end - offset) > 0) { 2060 if (copy > len) 2061 copy = len; 2062 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2063 goto fault; 2064 if ((len -= copy) == 0) 2065 return 0; 2066 offset += copy; 2067 to += copy; 2068 } 2069 start = end; 2070 } 2071 2072 if (!len) 2073 return 0; 2074 2075 fault: 2076 return -EFAULT; 2077 } 2078 EXPORT_SYMBOL(skb_copy_bits); 2079 2080 /* 2081 * Callback from splice_to_pipe(), if we need to release some pages 2082 * at the end of the spd in case we error'ed out in filling the pipe. 2083 */ 2084 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2085 { 2086 put_page(spd->pages[i]); 2087 } 2088 2089 static struct page *linear_to_page(struct page *page, unsigned int *len, 2090 unsigned int *offset, 2091 struct sock *sk) 2092 { 2093 struct page_frag *pfrag = sk_page_frag(sk); 2094 2095 if (!sk_page_frag_refill(sk, pfrag)) 2096 return NULL; 2097 2098 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2099 2100 memcpy(page_address(pfrag->page) + pfrag->offset, 2101 page_address(page) + *offset, *len); 2102 *offset = pfrag->offset; 2103 pfrag->offset += *len; 2104 2105 return pfrag->page; 2106 } 2107 2108 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2109 struct page *page, 2110 unsigned int offset) 2111 { 2112 return spd->nr_pages && 2113 spd->pages[spd->nr_pages - 1] == page && 2114 (spd->partial[spd->nr_pages - 1].offset + 2115 spd->partial[spd->nr_pages - 1].len == offset); 2116 } 2117 2118 /* 2119 * Fill page/offset/length into spd, if it can hold more pages. 2120 */ 2121 static bool spd_fill_page(struct splice_pipe_desc *spd, 2122 struct pipe_inode_info *pipe, struct page *page, 2123 unsigned int *len, unsigned int offset, 2124 bool linear, 2125 struct sock *sk) 2126 { 2127 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2128 return true; 2129 2130 if (linear) { 2131 page = linear_to_page(page, len, &offset, sk); 2132 if (!page) 2133 return true; 2134 } 2135 if (spd_can_coalesce(spd, page, offset)) { 2136 spd->partial[spd->nr_pages - 1].len += *len; 2137 return false; 2138 } 2139 get_page(page); 2140 spd->pages[spd->nr_pages] = page; 2141 spd->partial[spd->nr_pages].len = *len; 2142 spd->partial[spd->nr_pages].offset = offset; 2143 spd->nr_pages++; 2144 2145 return false; 2146 } 2147 2148 static bool __splice_segment(struct page *page, unsigned int poff, 2149 unsigned int plen, unsigned int *off, 2150 unsigned int *len, 2151 struct splice_pipe_desc *spd, bool linear, 2152 struct sock *sk, 2153 struct pipe_inode_info *pipe) 2154 { 2155 if (!*len) 2156 return true; 2157 2158 /* skip this segment if already processed */ 2159 if (*off >= plen) { 2160 *off -= plen; 2161 return false; 2162 } 2163 2164 /* ignore any bits we already processed */ 2165 poff += *off; 2166 plen -= *off; 2167 *off = 0; 2168 2169 do { 2170 unsigned int flen = min(*len, plen); 2171 2172 if (spd_fill_page(spd, pipe, page, &flen, poff, 2173 linear, sk)) 2174 return true; 2175 poff += flen; 2176 plen -= flen; 2177 *len -= flen; 2178 } while (*len && plen); 2179 2180 return false; 2181 } 2182 2183 /* 2184 * Map linear and fragment data from the skb to spd. It reports true if the 2185 * pipe is full or if we already spliced the requested length. 2186 */ 2187 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2188 unsigned int *offset, unsigned int *len, 2189 struct splice_pipe_desc *spd, struct sock *sk) 2190 { 2191 int seg; 2192 struct sk_buff *iter; 2193 2194 /* map the linear part : 2195 * If skb->head_frag is set, this 'linear' part is backed by a 2196 * fragment, and if the head is not shared with any clones then 2197 * we can avoid a copy since we own the head portion of this page. 2198 */ 2199 if (__splice_segment(virt_to_page(skb->data), 2200 (unsigned long) skb->data & (PAGE_SIZE - 1), 2201 skb_headlen(skb), 2202 offset, len, spd, 2203 skb_head_is_locked(skb), 2204 sk, pipe)) 2205 return true; 2206 2207 /* 2208 * then map the fragments 2209 */ 2210 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2211 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2212 2213 if (__splice_segment(skb_frag_page(f), 2214 f->page_offset, skb_frag_size(f), 2215 offset, len, spd, false, sk, pipe)) 2216 return true; 2217 } 2218 2219 skb_walk_frags(skb, iter) { 2220 if (*offset >= iter->len) { 2221 *offset -= iter->len; 2222 continue; 2223 } 2224 /* __skb_splice_bits() only fails if the output has no room 2225 * left, so no point in going over the frag_list for the error 2226 * case. 2227 */ 2228 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2229 return true; 2230 } 2231 2232 return false; 2233 } 2234 2235 /* 2236 * Map data from the skb to a pipe. Should handle both the linear part, 2237 * the fragments, and the frag list. 2238 */ 2239 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2240 struct pipe_inode_info *pipe, unsigned int tlen, 2241 unsigned int flags) 2242 { 2243 struct partial_page partial[MAX_SKB_FRAGS]; 2244 struct page *pages[MAX_SKB_FRAGS]; 2245 struct splice_pipe_desc spd = { 2246 .pages = pages, 2247 .partial = partial, 2248 .nr_pages_max = MAX_SKB_FRAGS, 2249 .ops = &nosteal_pipe_buf_ops, 2250 .spd_release = sock_spd_release, 2251 }; 2252 int ret = 0; 2253 2254 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2255 2256 if (spd.nr_pages) 2257 ret = splice_to_pipe(pipe, &spd); 2258 2259 return ret; 2260 } 2261 EXPORT_SYMBOL_GPL(skb_splice_bits); 2262 2263 /* Send skb data on a socket. Socket must be locked. */ 2264 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2265 int len) 2266 { 2267 unsigned int orig_len = len; 2268 struct sk_buff *head = skb; 2269 unsigned short fragidx; 2270 int slen, ret; 2271 2272 do_frag_list: 2273 2274 /* Deal with head data */ 2275 while (offset < skb_headlen(skb) && len) { 2276 struct kvec kv; 2277 struct msghdr msg; 2278 2279 slen = min_t(int, len, skb_headlen(skb) - offset); 2280 kv.iov_base = skb->data + offset; 2281 kv.iov_len = slen; 2282 memset(&msg, 0, sizeof(msg)); 2283 2284 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2285 if (ret <= 0) 2286 goto error; 2287 2288 offset += ret; 2289 len -= ret; 2290 } 2291 2292 /* All the data was skb head? */ 2293 if (!len) 2294 goto out; 2295 2296 /* Make offset relative to start of frags */ 2297 offset -= skb_headlen(skb); 2298 2299 /* Find where we are in frag list */ 2300 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2301 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2302 2303 if (offset < frag->size) 2304 break; 2305 2306 offset -= frag->size; 2307 } 2308 2309 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2310 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2311 2312 slen = min_t(size_t, len, frag->size - offset); 2313 2314 while (slen) { 2315 ret = kernel_sendpage_locked(sk, frag->page.p, 2316 frag->page_offset + offset, 2317 slen, MSG_DONTWAIT); 2318 if (ret <= 0) 2319 goto error; 2320 2321 len -= ret; 2322 offset += ret; 2323 slen -= ret; 2324 } 2325 2326 offset = 0; 2327 } 2328 2329 if (len) { 2330 /* Process any frag lists */ 2331 2332 if (skb == head) { 2333 if (skb_has_frag_list(skb)) { 2334 skb = skb_shinfo(skb)->frag_list; 2335 goto do_frag_list; 2336 } 2337 } else if (skb->next) { 2338 skb = skb->next; 2339 goto do_frag_list; 2340 } 2341 } 2342 2343 out: 2344 return orig_len - len; 2345 2346 error: 2347 return orig_len == len ? ret : orig_len - len; 2348 } 2349 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2350 2351 /* Send skb data on a socket. */ 2352 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2353 { 2354 int ret = 0; 2355 2356 lock_sock(sk); 2357 ret = skb_send_sock_locked(sk, skb, offset, len); 2358 release_sock(sk); 2359 2360 return ret; 2361 } 2362 EXPORT_SYMBOL_GPL(skb_send_sock); 2363 2364 /** 2365 * skb_store_bits - store bits from kernel buffer to skb 2366 * @skb: destination buffer 2367 * @offset: offset in destination 2368 * @from: source buffer 2369 * @len: number of bytes to copy 2370 * 2371 * Copy the specified number of bytes from the source buffer to the 2372 * destination skb. This function handles all the messy bits of 2373 * traversing fragment lists and such. 2374 */ 2375 2376 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2377 { 2378 int start = skb_headlen(skb); 2379 struct sk_buff *frag_iter; 2380 int i, copy; 2381 2382 if (offset > (int)skb->len - len) 2383 goto fault; 2384 2385 if ((copy = start - offset) > 0) { 2386 if (copy > len) 2387 copy = len; 2388 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2389 if ((len -= copy) == 0) 2390 return 0; 2391 offset += copy; 2392 from += copy; 2393 } 2394 2395 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2396 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2397 int end; 2398 2399 WARN_ON(start > offset + len); 2400 2401 end = start + skb_frag_size(frag); 2402 if ((copy = end - offset) > 0) { 2403 u32 p_off, p_len, copied; 2404 struct page *p; 2405 u8 *vaddr; 2406 2407 if (copy > len) 2408 copy = len; 2409 2410 skb_frag_foreach_page(frag, 2411 frag->page_offset + offset - start, 2412 copy, p, p_off, p_len, copied) { 2413 vaddr = kmap_atomic(p); 2414 memcpy(vaddr + p_off, from + copied, p_len); 2415 kunmap_atomic(vaddr); 2416 } 2417 2418 if ((len -= copy) == 0) 2419 return 0; 2420 offset += copy; 2421 from += copy; 2422 } 2423 start = end; 2424 } 2425 2426 skb_walk_frags(skb, frag_iter) { 2427 int end; 2428 2429 WARN_ON(start > offset + len); 2430 2431 end = start + frag_iter->len; 2432 if ((copy = end - offset) > 0) { 2433 if (copy > len) 2434 copy = len; 2435 if (skb_store_bits(frag_iter, offset - start, 2436 from, copy)) 2437 goto fault; 2438 if ((len -= copy) == 0) 2439 return 0; 2440 offset += copy; 2441 from += copy; 2442 } 2443 start = end; 2444 } 2445 if (!len) 2446 return 0; 2447 2448 fault: 2449 return -EFAULT; 2450 } 2451 EXPORT_SYMBOL(skb_store_bits); 2452 2453 /* Checksum skb data. */ 2454 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2455 __wsum csum, const struct skb_checksum_ops *ops) 2456 { 2457 int start = skb_headlen(skb); 2458 int i, copy = start - offset; 2459 struct sk_buff *frag_iter; 2460 int pos = 0; 2461 2462 /* Checksum header. */ 2463 if (copy > 0) { 2464 if (copy > len) 2465 copy = len; 2466 csum = ops->update(skb->data + offset, copy, csum); 2467 if ((len -= copy) == 0) 2468 return csum; 2469 offset += copy; 2470 pos = copy; 2471 } 2472 2473 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2474 int end; 2475 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2476 2477 WARN_ON(start > offset + len); 2478 2479 end = start + skb_frag_size(frag); 2480 if ((copy = end - offset) > 0) { 2481 u32 p_off, p_len, copied; 2482 struct page *p; 2483 __wsum csum2; 2484 u8 *vaddr; 2485 2486 if (copy > len) 2487 copy = len; 2488 2489 skb_frag_foreach_page(frag, 2490 frag->page_offset + offset - start, 2491 copy, p, p_off, p_len, copied) { 2492 vaddr = kmap_atomic(p); 2493 csum2 = ops->update(vaddr + p_off, p_len, 0); 2494 kunmap_atomic(vaddr); 2495 csum = ops->combine(csum, csum2, pos, p_len); 2496 pos += p_len; 2497 } 2498 2499 if (!(len -= copy)) 2500 return csum; 2501 offset += copy; 2502 } 2503 start = end; 2504 } 2505 2506 skb_walk_frags(skb, frag_iter) { 2507 int end; 2508 2509 WARN_ON(start > offset + len); 2510 2511 end = start + frag_iter->len; 2512 if ((copy = end - offset) > 0) { 2513 __wsum csum2; 2514 if (copy > len) 2515 copy = len; 2516 csum2 = __skb_checksum(frag_iter, offset - start, 2517 copy, 0, ops); 2518 csum = ops->combine(csum, csum2, pos, copy); 2519 if ((len -= copy) == 0) 2520 return csum; 2521 offset += copy; 2522 pos += copy; 2523 } 2524 start = end; 2525 } 2526 BUG_ON(len); 2527 2528 return csum; 2529 } 2530 EXPORT_SYMBOL(__skb_checksum); 2531 2532 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2533 int len, __wsum csum) 2534 { 2535 const struct skb_checksum_ops ops = { 2536 .update = csum_partial_ext, 2537 .combine = csum_block_add_ext, 2538 }; 2539 2540 return __skb_checksum(skb, offset, len, csum, &ops); 2541 } 2542 EXPORT_SYMBOL(skb_checksum); 2543 2544 /* Both of above in one bottle. */ 2545 2546 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2547 u8 *to, int len, __wsum csum) 2548 { 2549 int start = skb_headlen(skb); 2550 int i, copy = start - offset; 2551 struct sk_buff *frag_iter; 2552 int pos = 0; 2553 2554 /* Copy header. */ 2555 if (copy > 0) { 2556 if (copy > len) 2557 copy = len; 2558 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2559 copy, csum); 2560 if ((len -= copy) == 0) 2561 return csum; 2562 offset += copy; 2563 to += copy; 2564 pos = copy; 2565 } 2566 2567 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2568 int end; 2569 2570 WARN_ON(start > offset + len); 2571 2572 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2573 if ((copy = end - offset) > 0) { 2574 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2575 u32 p_off, p_len, copied; 2576 struct page *p; 2577 __wsum csum2; 2578 u8 *vaddr; 2579 2580 if (copy > len) 2581 copy = len; 2582 2583 skb_frag_foreach_page(frag, 2584 frag->page_offset + offset - start, 2585 copy, p, p_off, p_len, copied) { 2586 vaddr = kmap_atomic(p); 2587 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2588 to + copied, 2589 p_len, 0); 2590 kunmap_atomic(vaddr); 2591 csum = csum_block_add(csum, csum2, pos); 2592 pos += p_len; 2593 } 2594 2595 if (!(len -= copy)) 2596 return csum; 2597 offset += copy; 2598 to += copy; 2599 } 2600 start = end; 2601 } 2602 2603 skb_walk_frags(skb, frag_iter) { 2604 __wsum csum2; 2605 int end; 2606 2607 WARN_ON(start > offset + len); 2608 2609 end = start + frag_iter->len; 2610 if ((copy = end - offset) > 0) { 2611 if (copy > len) 2612 copy = len; 2613 csum2 = skb_copy_and_csum_bits(frag_iter, 2614 offset - start, 2615 to, copy, 0); 2616 csum = csum_block_add(csum, csum2, pos); 2617 if ((len -= copy) == 0) 2618 return csum; 2619 offset += copy; 2620 to += copy; 2621 pos += copy; 2622 } 2623 start = end; 2624 } 2625 BUG_ON(len); 2626 return csum; 2627 } 2628 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2629 2630 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2631 { 2632 net_warn_ratelimited( 2633 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2634 __func__); 2635 return 0; 2636 } 2637 2638 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2639 int offset, int len) 2640 { 2641 net_warn_ratelimited( 2642 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2643 __func__); 2644 return 0; 2645 } 2646 2647 static const struct skb_checksum_ops default_crc32c_ops = { 2648 .update = warn_crc32c_csum_update, 2649 .combine = warn_crc32c_csum_combine, 2650 }; 2651 2652 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2653 &default_crc32c_ops; 2654 EXPORT_SYMBOL(crc32c_csum_stub); 2655 2656 /** 2657 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2658 * @from: source buffer 2659 * 2660 * Calculates the amount of linear headroom needed in the 'to' skb passed 2661 * into skb_zerocopy(). 2662 */ 2663 unsigned int 2664 skb_zerocopy_headlen(const struct sk_buff *from) 2665 { 2666 unsigned int hlen = 0; 2667 2668 if (!from->head_frag || 2669 skb_headlen(from) < L1_CACHE_BYTES || 2670 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2671 hlen = skb_headlen(from); 2672 2673 if (skb_has_frag_list(from)) 2674 hlen = from->len; 2675 2676 return hlen; 2677 } 2678 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2679 2680 /** 2681 * skb_zerocopy - Zero copy skb to skb 2682 * @to: destination buffer 2683 * @from: source buffer 2684 * @len: number of bytes to copy from source buffer 2685 * @hlen: size of linear headroom in destination buffer 2686 * 2687 * Copies up to `len` bytes from `from` to `to` by creating references 2688 * to the frags in the source buffer. 2689 * 2690 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2691 * headroom in the `to` buffer. 2692 * 2693 * Return value: 2694 * 0: everything is OK 2695 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2696 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2697 */ 2698 int 2699 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2700 { 2701 int i, j = 0; 2702 int plen = 0; /* length of skb->head fragment */ 2703 int ret; 2704 struct page *page; 2705 unsigned int offset; 2706 2707 BUG_ON(!from->head_frag && !hlen); 2708 2709 /* dont bother with small payloads */ 2710 if (len <= skb_tailroom(to)) 2711 return skb_copy_bits(from, 0, skb_put(to, len), len); 2712 2713 if (hlen) { 2714 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2715 if (unlikely(ret)) 2716 return ret; 2717 len -= hlen; 2718 } else { 2719 plen = min_t(int, skb_headlen(from), len); 2720 if (plen) { 2721 page = virt_to_head_page(from->head); 2722 offset = from->data - (unsigned char *)page_address(page); 2723 __skb_fill_page_desc(to, 0, page, offset, plen); 2724 get_page(page); 2725 j = 1; 2726 len -= plen; 2727 } 2728 } 2729 2730 to->truesize += len + plen; 2731 to->len += len + plen; 2732 to->data_len += len + plen; 2733 2734 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2735 skb_tx_error(from); 2736 return -ENOMEM; 2737 } 2738 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2739 2740 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2741 if (!len) 2742 break; 2743 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2744 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2745 len -= skb_shinfo(to)->frags[j].size; 2746 skb_frag_ref(to, j); 2747 j++; 2748 } 2749 skb_shinfo(to)->nr_frags = j; 2750 2751 return 0; 2752 } 2753 EXPORT_SYMBOL_GPL(skb_zerocopy); 2754 2755 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2756 { 2757 __wsum csum; 2758 long csstart; 2759 2760 if (skb->ip_summed == CHECKSUM_PARTIAL) 2761 csstart = skb_checksum_start_offset(skb); 2762 else 2763 csstart = skb_headlen(skb); 2764 2765 BUG_ON(csstart > skb_headlen(skb)); 2766 2767 skb_copy_from_linear_data(skb, to, csstart); 2768 2769 csum = 0; 2770 if (csstart != skb->len) 2771 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2772 skb->len - csstart, 0); 2773 2774 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2775 long csstuff = csstart + skb->csum_offset; 2776 2777 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2778 } 2779 } 2780 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2781 2782 /** 2783 * skb_dequeue - remove from the head of the queue 2784 * @list: list to dequeue from 2785 * 2786 * Remove the head of the list. The list lock is taken so the function 2787 * may be used safely with other locking list functions. The head item is 2788 * returned or %NULL if the list is empty. 2789 */ 2790 2791 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2792 { 2793 unsigned long flags; 2794 struct sk_buff *result; 2795 2796 spin_lock_irqsave(&list->lock, flags); 2797 result = __skb_dequeue(list); 2798 spin_unlock_irqrestore(&list->lock, flags); 2799 return result; 2800 } 2801 EXPORT_SYMBOL(skb_dequeue); 2802 2803 /** 2804 * skb_dequeue_tail - remove from the tail of the queue 2805 * @list: list to dequeue from 2806 * 2807 * Remove the tail of the list. The list lock is taken so the function 2808 * may be used safely with other locking list functions. The tail item is 2809 * returned or %NULL if the list is empty. 2810 */ 2811 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2812 { 2813 unsigned long flags; 2814 struct sk_buff *result; 2815 2816 spin_lock_irqsave(&list->lock, flags); 2817 result = __skb_dequeue_tail(list); 2818 spin_unlock_irqrestore(&list->lock, flags); 2819 return result; 2820 } 2821 EXPORT_SYMBOL(skb_dequeue_tail); 2822 2823 /** 2824 * skb_queue_purge - empty a list 2825 * @list: list to empty 2826 * 2827 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2828 * the list and one reference dropped. This function takes the list 2829 * lock and is atomic with respect to other list locking functions. 2830 */ 2831 void skb_queue_purge(struct sk_buff_head *list) 2832 { 2833 struct sk_buff *skb; 2834 while ((skb = skb_dequeue(list)) != NULL) 2835 kfree_skb(skb); 2836 } 2837 EXPORT_SYMBOL(skb_queue_purge); 2838 2839 /** 2840 * skb_rbtree_purge - empty a skb rbtree 2841 * @root: root of the rbtree to empty 2842 * 2843 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2844 * the list and one reference dropped. This function does not take 2845 * any lock. Synchronization should be handled by the caller (e.g., TCP 2846 * out-of-order queue is protected by the socket lock). 2847 */ 2848 void skb_rbtree_purge(struct rb_root *root) 2849 { 2850 struct rb_node *p = rb_first(root); 2851 2852 while (p) { 2853 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2854 2855 p = rb_next(p); 2856 rb_erase(&skb->rbnode, root); 2857 kfree_skb(skb); 2858 } 2859 } 2860 2861 /** 2862 * skb_queue_head - queue a buffer at the list head 2863 * @list: list to use 2864 * @newsk: buffer to queue 2865 * 2866 * Queue a buffer at the start of the list. This function takes the 2867 * list lock and can be used safely with other locking &sk_buff functions 2868 * safely. 2869 * 2870 * A buffer cannot be placed on two lists at the same time. 2871 */ 2872 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2873 { 2874 unsigned long flags; 2875 2876 spin_lock_irqsave(&list->lock, flags); 2877 __skb_queue_head(list, newsk); 2878 spin_unlock_irqrestore(&list->lock, flags); 2879 } 2880 EXPORT_SYMBOL(skb_queue_head); 2881 2882 /** 2883 * skb_queue_tail - queue a buffer at the list tail 2884 * @list: list to use 2885 * @newsk: buffer to queue 2886 * 2887 * Queue a buffer at the tail of the list. This function takes the 2888 * list lock and can be used safely with other locking &sk_buff functions 2889 * safely. 2890 * 2891 * A buffer cannot be placed on two lists at the same time. 2892 */ 2893 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2894 { 2895 unsigned long flags; 2896 2897 spin_lock_irqsave(&list->lock, flags); 2898 __skb_queue_tail(list, newsk); 2899 spin_unlock_irqrestore(&list->lock, flags); 2900 } 2901 EXPORT_SYMBOL(skb_queue_tail); 2902 2903 /** 2904 * skb_unlink - remove a buffer from a list 2905 * @skb: buffer to remove 2906 * @list: list to use 2907 * 2908 * Remove a packet from a list. The list locks are taken and this 2909 * function is atomic with respect to other list locked calls 2910 * 2911 * You must know what list the SKB is on. 2912 */ 2913 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2914 { 2915 unsigned long flags; 2916 2917 spin_lock_irqsave(&list->lock, flags); 2918 __skb_unlink(skb, list); 2919 spin_unlock_irqrestore(&list->lock, flags); 2920 } 2921 EXPORT_SYMBOL(skb_unlink); 2922 2923 /** 2924 * skb_append - append a buffer 2925 * @old: buffer to insert after 2926 * @newsk: buffer to insert 2927 * @list: list to use 2928 * 2929 * Place a packet after a given packet in a list. The list locks are taken 2930 * and this function is atomic with respect to other list locked calls. 2931 * A buffer cannot be placed on two lists at the same time. 2932 */ 2933 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2934 { 2935 unsigned long flags; 2936 2937 spin_lock_irqsave(&list->lock, flags); 2938 __skb_queue_after(list, old, newsk); 2939 spin_unlock_irqrestore(&list->lock, flags); 2940 } 2941 EXPORT_SYMBOL(skb_append); 2942 2943 /** 2944 * skb_insert - insert a buffer 2945 * @old: buffer to insert before 2946 * @newsk: buffer to insert 2947 * @list: list to use 2948 * 2949 * Place a packet before a given packet in a list. The list locks are 2950 * taken and this function is atomic with respect to other list locked 2951 * calls. 2952 * 2953 * A buffer cannot be placed on two lists at the same time. 2954 */ 2955 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2956 { 2957 unsigned long flags; 2958 2959 spin_lock_irqsave(&list->lock, flags); 2960 __skb_insert(newsk, old->prev, old, list); 2961 spin_unlock_irqrestore(&list->lock, flags); 2962 } 2963 EXPORT_SYMBOL(skb_insert); 2964 2965 static inline void skb_split_inside_header(struct sk_buff *skb, 2966 struct sk_buff* skb1, 2967 const u32 len, const int pos) 2968 { 2969 int i; 2970 2971 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2972 pos - len); 2973 /* And move data appendix as is. */ 2974 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2975 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2976 2977 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2978 skb_shinfo(skb)->nr_frags = 0; 2979 skb1->data_len = skb->data_len; 2980 skb1->len += skb1->data_len; 2981 skb->data_len = 0; 2982 skb->len = len; 2983 skb_set_tail_pointer(skb, len); 2984 } 2985 2986 static inline void skb_split_no_header(struct sk_buff *skb, 2987 struct sk_buff* skb1, 2988 const u32 len, int pos) 2989 { 2990 int i, k = 0; 2991 const int nfrags = skb_shinfo(skb)->nr_frags; 2992 2993 skb_shinfo(skb)->nr_frags = 0; 2994 skb1->len = skb1->data_len = skb->len - len; 2995 skb->len = len; 2996 skb->data_len = len - pos; 2997 2998 for (i = 0; i < nfrags; i++) { 2999 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3000 3001 if (pos + size > len) { 3002 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3003 3004 if (pos < len) { 3005 /* Split frag. 3006 * We have two variants in this case: 3007 * 1. Move all the frag to the second 3008 * part, if it is possible. F.e. 3009 * this approach is mandatory for TUX, 3010 * where splitting is expensive. 3011 * 2. Split is accurately. We make this. 3012 */ 3013 skb_frag_ref(skb, i); 3014 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3015 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3016 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3017 skb_shinfo(skb)->nr_frags++; 3018 } 3019 k++; 3020 } else 3021 skb_shinfo(skb)->nr_frags++; 3022 pos += size; 3023 } 3024 skb_shinfo(skb1)->nr_frags = k; 3025 } 3026 3027 /** 3028 * skb_split - Split fragmented skb to two parts at length len. 3029 * @skb: the buffer to split 3030 * @skb1: the buffer to receive the second part 3031 * @len: new length for skb 3032 */ 3033 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3034 { 3035 int pos = skb_headlen(skb); 3036 3037 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3038 SKBTX_SHARED_FRAG; 3039 skb_zerocopy_clone(skb1, skb, 0); 3040 if (len < pos) /* Split line is inside header. */ 3041 skb_split_inside_header(skb, skb1, len, pos); 3042 else /* Second chunk has no header, nothing to copy. */ 3043 skb_split_no_header(skb, skb1, len, pos); 3044 } 3045 EXPORT_SYMBOL(skb_split); 3046 3047 /* Shifting from/to a cloned skb is a no-go. 3048 * 3049 * Caller cannot keep skb_shinfo related pointers past calling here! 3050 */ 3051 static int skb_prepare_for_shift(struct sk_buff *skb) 3052 { 3053 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3054 } 3055 3056 /** 3057 * skb_shift - Shifts paged data partially from skb to another 3058 * @tgt: buffer into which tail data gets added 3059 * @skb: buffer from which the paged data comes from 3060 * @shiftlen: shift up to this many bytes 3061 * 3062 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3063 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3064 * It's up to caller to free skb if everything was shifted. 3065 * 3066 * If @tgt runs out of frags, the whole operation is aborted. 3067 * 3068 * Skb cannot include anything else but paged data while tgt is allowed 3069 * to have non-paged data as well. 3070 * 3071 * TODO: full sized shift could be optimized but that would need 3072 * specialized skb free'er to handle frags without up-to-date nr_frags. 3073 */ 3074 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3075 { 3076 int from, to, merge, todo; 3077 struct skb_frag_struct *fragfrom, *fragto; 3078 3079 BUG_ON(shiftlen > skb->len); 3080 3081 if (skb_headlen(skb)) 3082 return 0; 3083 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3084 return 0; 3085 3086 todo = shiftlen; 3087 from = 0; 3088 to = skb_shinfo(tgt)->nr_frags; 3089 fragfrom = &skb_shinfo(skb)->frags[from]; 3090 3091 /* Actual merge is delayed until the point when we know we can 3092 * commit all, so that we don't have to undo partial changes 3093 */ 3094 if (!to || 3095 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3096 fragfrom->page_offset)) { 3097 merge = -1; 3098 } else { 3099 merge = to - 1; 3100 3101 todo -= skb_frag_size(fragfrom); 3102 if (todo < 0) { 3103 if (skb_prepare_for_shift(skb) || 3104 skb_prepare_for_shift(tgt)) 3105 return 0; 3106 3107 /* All previous frag pointers might be stale! */ 3108 fragfrom = &skb_shinfo(skb)->frags[from]; 3109 fragto = &skb_shinfo(tgt)->frags[merge]; 3110 3111 skb_frag_size_add(fragto, shiftlen); 3112 skb_frag_size_sub(fragfrom, shiftlen); 3113 fragfrom->page_offset += shiftlen; 3114 3115 goto onlymerged; 3116 } 3117 3118 from++; 3119 } 3120 3121 /* Skip full, not-fitting skb to avoid expensive operations */ 3122 if ((shiftlen == skb->len) && 3123 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3124 return 0; 3125 3126 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3127 return 0; 3128 3129 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3130 if (to == MAX_SKB_FRAGS) 3131 return 0; 3132 3133 fragfrom = &skb_shinfo(skb)->frags[from]; 3134 fragto = &skb_shinfo(tgt)->frags[to]; 3135 3136 if (todo >= skb_frag_size(fragfrom)) { 3137 *fragto = *fragfrom; 3138 todo -= skb_frag_size(fragfrom); 3139 from++; 3140 to++; 3141 3142 } else { 3143 __skb_frag_ref(fragfrom); 3144 fragto->page = fragfrom->page; 3145 fragto->page_offset = fragfrom->page_offset; 3146 skb_frag_size_set(fragto, todo); 3147 3148 fragfrom->page_offset += todo; 3149 skb_frag_size_sub(fragfrom, todo); 3150 todo = 0; 3151 3152 to++; 3153 break; 3154 } 3155 } 3156 3157 /* Ready to "commit" this state change to tgt */ 3158 skb_shinfo(tgt)->nr_frags = to; 3159 3160 if (merge >= 0) { 3161 fragfrom = &skb_shinfo(skb)->frags[0]; 3162 fragto = &skb_shinfo(tgt)->frags[merge]; 3163 3164 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3165 __skb_frag_unref(fragfrom); 3166 } 3167 3168 /* Reposition in the original skb */ 3169 to = 0; 3170 while (from < skb_shinfo(skb)->nr_frags) 3171 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3172 skb_shinfo(skb)->nr_frags = to; 3173 3174 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3175 3176 onlymerged: 3177 /* Most likely the tgt won't ever need its checksum anymore, skb on 3178 * the other hand might need it if it needs to be resent 3179 */ 3180 tgt->ip_summed = CHECKSUM_PARTIAL; 3181 skb->ip_summed = CHECKSUM_PARTIAL; 3182 3183 /* Yak, is it really working this way? Some helper please? */ 3184 skb->len -= shiftlen; 3185 skb->data_len -= shiftlen; 3186 skb->truesize -= shiftlen; 3187 tgt->len += shiftlen; 3188 tgt->data_len += shiftlen; 3189 tgt->truesize += shiftlen; 3190 3191 return shiftlen; 3192 } 3193 3194 /** 3195 * skb_prepare_seq_read - Prepare a sequential read of skb data 3196 * @skb: the buffer to read 3197 * @from: lower offset of data to be read 3198 * @to: upper offset of data to be read 3199 * @st: state variable 3200 * 3201 * Initializes the specified state variable. Must be called before 3202 * invoking skb_seq_read() for the first time. 3203 */ 3204 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3205 unsigned int to, struct skb_seq_state *st) 3206 { 3207 st->lower_offset = from; 3208 st->upper_offset = to; 3209 st->root_skb = st->cur_skb = skb; 3210 st->frag_idx = st->stepped_offset = 0; 3211 st->frag_data = NULL; 3212 } 3213 EXPORT_SYMBOL(skb_prepare_seq_read); 3214 3215 /** 3216 * skb_seq_read - Sequentially read skb data 3217 * @consumed: number of bytes consumed by the caller so far 3218 * @data: destination pointer for data to be returned 3219 * @st: state variable 3220 * 3221 * Reads a block of skb data at @consumed relative to the 3222 * lower offset specified to skb_prepare_seq_read(). Assigns 3223 * the head of the data block to @data and returns the length 3224 * of the block or 0 if the end of the skb data or the upper 3225 * offset has been reached. 3226 * 3227 * The caller is not required to consume all of the data 3228 * returned, i.e. @consumed is typically set to the number 3229 * of bytes already consumed and the next call to 3230 * skb_seq_read() will return the remaining part of the block. 3231 * 3232 * Note 1: The size of each block of data returned can be arbitrary, 3233 * this limitation is the cost for zerocopy sequential 3234 * reads of potentially non linear data. 3235 * 3236 * Note 2: Fragment lists within fragments are not implemented 3237 * at the moment, state->root_skb could be replaced with 3238 * a stack for this purpose. 3239 */ 3240 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3241 struct skb_seq_state *st) 3242 { 3243 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3244 skb_frag_t *frag; 3245 3246 if (unlikely(abs_offset >= st->upper_offset)) { 3247 if (st->frag_data) { 3248 kunmap_atomic(st->frag_data); 3249 st->frag_data = NULL; 3250 } 3251 return 0; 3252 } 3253 3254 next_skb: 3255 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3256 3257 if (abs_offset < block_limit && !st->frag_data) { 3258 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3259 return block_limit - abs_offset; 3260 } 3261 3262 if (st->frag_idx == 0 && !st->frag_data) 3263 st->stepped_offset += skb_headlen(st->cur_skb); 3264 3265 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3266 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3267 block_limit = skb_frag_size(frag) + st->stepped_offset; 3268 3269 if (abs_offset < block_limit) { 3270 if (!st->frag_data) 3271 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3272 3273 *data = (u8 *) st->frag_data + frag->page_offset + 3274 (abs_offset - st->stepped_offset); 3275 3276 return block_limit - abs_offset; 3277 } 3278 3279 if (st->frag_data) { 3280 kunmap_atomic(st->frag_data); 3281 st->frag_data = NULL; 3282 } 3283 3284 st->frag_idx++; 3285 st->stepped_offset += skb_frag_size(frag); 3286 } 3287 3288 if (st->frag_data) { 3289 kunmap_atomic(st->frag_data); 3290 st->frag_data = NULL; 3291 } 3292 3293 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3294 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3295 st->frag_idx = 0; 3296 goto next_skb; 3297 } else if (st->cur_skb->next) { 3298 st->cur_skb = st->cur_skb->next; 3299 st->frag_idx = 0; 3300 goto next_skb; 3301 } 3302 3303 return 0; 3304 } 3305 EXPORT_SYMBOL(skb_seq_read); 3306 3307 /** 3308 * skb_abort_seq_read - Abort a sequential read of skb data 3309 * @st: state variable 3310 * 3311 * Must be called if skb_seq_read() was not called until it 3312 * returned 0. 3313 */ 3314 void skb_abort_seq_read(struct skb_seq_state *st) 3315 { 3316 if (st->frag_data) 3317 kunmap_atomic(st->frag_data); 3318 } 3319 EXPORT_SYMBOL(skb_abort_seq_read); 3320 3321 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3322 3323 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3324 struct ts_config *conf, 3325 struct ts_state *state) 3326 { 3327 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3328 } 3329 3330 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3331 { 3332 skb_abort_seq_read(TS_SKB_CB(state)); 3333 } 3334 3335 /** 3336 * skb_find_text - Find a text pattern in skb data 3337 * @skb: the buffer to look in 3338 * @from: search offset 3339 * @to: search limit 3340 * @config: textsearch configuration 3341 * 3342 * Finds a pattern in the skb data according to the specified 3343 * textsearch configuration. Use textsearch_next() to retrieve 3344 * subsequent occurrences of the pattern. Returns the offset 3345 * to the first occurrence or UINT_MAX if no match was found. 3346 */ 3347 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3348 unsigned int to, struct ts_config *config) 3349 { 3350 struct ts_state state; 3351 unsigned int ret; 3352 3353 config->get_next_block = skb_ts_get_next_block; 3354 config->finish = skb_ts_finish; 3355 3356 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3357 3358 ret = textsearch_find(config, &state); 3359 return (ret <= to - from ? ret : UINT_MAX); 3360 } 3361 EXPORT_SYMBOL(skb_find_text); 3362 3363 /** 3364 * skb_append_datato_frags - append the user data to a skb 3365 * @sk: sock structure 3366 * @skb: skb structure to be appended with user data. 3367 * @getfrag: call back function to be used for getting the user data 3368 * @from: pointer to user message iov 3369 * @length: length of the iov message 3370 * 3371 * Description: This procedure append the user data in the fragment part 3372 * of the skb if any page alloc fails user this procedure returns -ENOMEM 3373 */ 3374 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 3375 int (*getfrag)(void *from, char *to, int offset, 3376 int len, int odd, struct sk_buff *skb), 3377 void *from, int length) 3378 { 3379 int frg_cnt = skb_shinfo(skb)->nr_frags; 3380 int copy; 3381 int offset = 0; 3382 int ret; 3383 struct page_frag *pfrag = ¤t->task_frag; 3384 3385 do { 3386 /* Return error if we don't have space for new frag */ 3387 if (frg_cnt >= MAX_SKB_FRAGS) 3388 return -EMSGSIZE; 3389 3390 if (!sk_page_frag_refill(sk, pfrag)) 3391 return -ENOMEM; 3392 3393 /* copy the user data to page */ 3394 copy = min_t(int, length, pfrag->size - pfrag->offset); 3395 3396 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 3397 offset, copy, 0, skb); 3398 if (ret < 0) 3399 return -EFAULT; 3400 3401 /* copy was successful so update the size parameters */ 3402 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 3403 copy); 3404 frg_cnt++; 3405 pfrag->offset += copy; 3406 get_page(pfrag->page); 3407 3408 skb->truesize += copy; 3409 refcount_add(copy, &sk->sk_wmem_alloc); 3410 skb->len += copy; 3411 skb->data_len += copy; 3412 offset += copy; 3413 length -= copy; 3414 3415 } while (length > 0); 3416 3417 return 0; 3418 } 3419 EXPORT_SYMBOL(skb_append_datato_frags); 3420 3421 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3422 int offset, size_t size) 3423 { 3424 int i = skb_shinfo(skb)->nr_frags; 3425 3426 if (skb_can_coalesce(skb, i, page, offset)) { 3427 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3428 } else if (i < MAX_SKB_FRAGS) { 3429 get_page(page); 3430 skb_fill_page_desc(skb, i, page, offset, size); 3431 } else { 3432 return -EMSGSIZE; 3433 } 3434 3435 return 0; 3436 } 3437 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3438 3439 /** 3440 * skb_pull_rcsum - pull skb and update receive checksum 3441 * @skb: buffer to update 3442 * @len: length of data pulled 3443 * 3444 * This function performs an skb_pull on the packet and updates 3445 * the CHECKSUM_COMPLETE checksum. It should be used on 3446 * receive path processing instead of skb_pull unless you know 3447 * that the checksum difference is zero (e.g., a valid IP header) 3448 * or you are setting ip_summed to CHECKSUM_NONE. 3449 */ 3450 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3451 { 3452 unsigned char *data = skb->data; 3453 3454 BUG_ON(len > skb->len); 3455 __skb_pull(skb, len); 3456 skb_postpull_rcsum(skb, data, len); 3457 return skb->data; 3458 } 3459 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3460 3461 /** 3462 * skb_segment - Perform protocol segmentation on skb. 3463 * @head_skb: buffer to segment 3464 * @features: features for the output path (see dev->features) 3465 * 3466 * This function performs segmentation on the given skb. It returns 3467 * a pointer to the first in a list of new skbs for the segments. 3468 * In case of error it returns ERR_PTR(err). 3469 */ 3470 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3471 netdev_features_t features) 3472 { 3473 struct sk_buff *segs = NULL; 3474 struct sk_buff *tail = NULL; 3475 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3476 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3477 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3478 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3479 struct sk_buff *frag_skb = head_skb; 3480 unsigned int offset = doffset; 3481 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3482 unsigned int partial_segs = 0; 3483 unsigned int headroom; 3484 unsigned int len = head_skb->len; 3485 __be16 proto; 3486 bool csum, sg; 3487 int nfrags = skb_shinfo(head_skb)->nr_frags; 3488 int err = -ENOMEM; 3489 int i = 0; 3490 int pos; 3491 int dummy; 3492 3493 __skb_push(head_skb, doffset); 3494 proto = skb_network_protocol(head_skb, &dummy); 3495 if (unlikely(!proto)) 3496 return ERR_PTR(-EINVAL); 3497 3498 sg = !!(features & NETIF_F_SG); 3499 csum = !!can_checksum_protocol(features, proto); 3500 3501 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3502 if (!(features & NETIF_F_GSO_PARTIAL)) { 3503 struct sk_buff *iter; 3504 unsigned int frag_len; 3505 3506 if (!list_skb || 3507 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3508 goto normal; 3509 3510 /* If we get here then all the required 3511 * GSO features except frag_list are supported. 3512 * Try to split the SKB to multiple GSO SKBs 3513 * with no frag_list. 3514 * Currently we can do that only when the buffers don't 3515 * have a linear part and all the buffers except 3516 * the last are of the same length. 3517 */ 3518 frag_len = list_skb->len; 3519 skb_walk_frags(head_skb, iter) { 3520 if (frag_len != iter->len && iter->next) 3521 goto normal; 3522 if (skb_headlen(iter) && !iter->head_frag) 3523 goto normal; 3524 3525 len -= iter->len; 3526 } 3527 3528 if (len != frag_len) 3529 goto normal; 3530 } 3531 3532 /* GSO partial only requires that we trim off any excess that 3533 * doesn't fit into an MSS sized block, so take care of that 3534 * now. 3535 */ 3536 partial_segs = len / mss; 3537 if (partial_segs > 1) 3538 mss *= partial_segs; 3539 else 3540 partial_segs = 0; 3541 } 3542 3543 normal: 3544 headroom = skb_headroom(head_skb); 3545 pos = skb_headlen(head_skb); 3546 3547 do { 3548 struct sk_buff *nskb; 3549 skb_frag_t *nskb_frag; 3550 int hsize; 3551 int size; 3552 3553 if (unlikely(mss == GSO_BY_FRAGS)) { 3554 len = list_skb->len; 3555 } else { 3556 len = head_skb->len - offset; 3557 if (len > mss) 3558 len = mss; 3559 } 3560 3561 hsize = skb_headlen(head_skb) - offset; 3562 if (hsize < 0) 3563 hsize = 0; 3564 if (hsize > len || !sg) 3565 hsize = len; 3566 3567 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3568 (skb_headlen(list_skb) == len || sg)) { 3569 BUG_ON(skb_headlen(list_skb) > len); 3570 3571 i = 0; 3572 nfrags = skb_shinfo(list_skb)->nr_frags; 3573 frag = skb_shinfo(list_skb)->frags; 3574 frag_skb = list_skb; 3575 pos += skb_headlen(list_skb); 3576 3577 while (pos < offset + len) { 3578 BUG_ON(i >= nfrags); 3579 3580 size = skb_frag_size(frag); 3581 if (pos + size > offset + len) 3582 break; 3583 3584 i++; 3585 pos += size; 3586 frag++; 3587 } 3588 3589 nskb = skb_clone(list_skb, GFP_ATOMIC); 3590 list_skb = list_skb->next; 3591 3592 if (unlikely(!nskb)) 3593 goto err; 3594 3595 if (unlikely(pskb_trim(nskb, len))) { 3596 kfree_skb(nskb); 3597 goto err; 3598 } 3599 3600 hsize = skb_end_offset(nskb); 3601 if (skb_cow_head(nskb, doffset + headroom)) { 3602 kfree_skb(nskb); 3603 goto err; 3604 } 3605 3606 nskb->truesize += skb_end_offset(nskb) - hsize; 3607 skb_release_head_state(nskb); 3608 __skb_push(nskb, doffset); 3609 } else { 3610 nskb = __alloc_skb(hsize + doffset + headroom, 3611 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3612 NUMA_NO_NODE); 3613 3614 if (unlikely(!nskb)) 3615 goto err; 3616 3617 skb_reserve(nskb, headroom); 3618 __skb_put(nskb, doffset); 3619 } 3620 3621 if (segs) 3622 tail->next = nskb; 3623 else 3624 segs = nskb; 3625 tail = nskb; 3626 3627 __copy_skb_header(nskb, head_skb); 3628 3629 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3630 skb_reset_mac_len(nskb); 3631 3632 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3633 nskb->data - tnl_hlen, 3634 doffset + tnl_hlen); 3635 3636 if (nskb->len == len + doffset) 3637 goto perform_csum_check; 3638 3639 if (!sg) { 3640 if (!nskb->remcsum_offload) 3641 nskb->ip_summed = CHECKSUM_NONE; 3642 SKB_GSO_CB(nskb)->csum = 3643 skb_copy_and_csum_bits(head_skb, offset, 3644 skb_put(nskb, len), 3645 len, 0); 3646 SKB_GSO_CB(nskb)->csum_start = 3647 skb_headroom(nskb) + doffset; 3648 continue; 3649 } 3650 3651 nskb_frag = skb_shinfo(nskb)->frags; 3652 3653 skb_copy_from_linear_data_offset(head_skb, offset, 3654 skb_put(nskb, hsize), hsize); 3655 3656 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3657 SKBTX_SHARED_FRAG; 3658 3659 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3660 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3661 goto err; 3662 3663 while (pos < offset + len) { 3664 if (i >= nfrags) { 3665 BUG_ON(skb_headlen(list_skb)); 3666 3667 i = 0; 3668 nfrags = skb_shinfo(list_skb)->nr_frags; 3669 frag = skb_shinfo(list_skb)->frags; 3670 frag_skb = list_skb; 3671 3672 BUG_ON(!nfrags); 3673 3674 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3675 skb_zerocopy_clone(nskb, frag_skb, 3676 GFP_ATOMIC)) 3677 goto err; 3678 3679 list_skb = list_skb->next; 3680 } 3681 3682 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3683 MAX_SKB_FRAGS)) { 3684 net_warn_ratelimited( 3685 "skb_segment: too many frags: %u %u\n", 3686 pos, mss); 3687 goto err; 3688 } 3689 3690 *nskb_frag = *frag; 3691 __skb_frag_ref(nskb_frag); 3692 size = skb_frag_size(nskb_frag); 3693 3694 if (pos < offset) { 3695 nskb_frag->page_offset += offset - pos; 3696 skb_frag_size_sub(nskb_frag, offset - pos); 3697 } 3698 3699 skb_shinfo(nskb)->nr_frags++; 3700 3701 if (pos + size <= offset + len) { 3702 i++; 3703 frag++; 3704 pos += size; 3705 } else { 3706 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3707 goto skip_fraglist; 3708 } 3709 3710 nskb_frag++; 3711 } 3712 3713 skip_fraglist: 3714 nskb->data_len = len - hsize; 3715 nskb->len += nskb->data_len; 3716 nskb->truesize += nskb->data_len; 3717 3718 perform_csum_check: 3719 if (!csum) { 3720 if (skb_has_shared_frag(nskb)) { 3721 err = __skb_linearize(nskb); 3722 if (err) 3723 goto err; 3724 } 3725 if (!nskb->remcsum_offload) 3726 nskb->ip_summed = CHECKSUM_NONE; 3727 SKB_GSO_CB(nskb)->csum = 3728 skb_checksum(nskb, doffset, 3729 nskb->len - doffset, 0); 3730 SKB_GSO_CB(nskb)->csum_start = 3731 skb_headroom(nskb) + doffset; 3732 } 3733 } while ((offset += len) < head_skb->len); 3734 3735 /* Some callers want to get the end of the list. 3736 * Put it in segs->prev to avoid walking the list. 3737 * (see validate_xmit_skb_list() for example) 3738 */ 3739 segs->prev = tail; 3740 3741 if (partial_segs) { 3742 struct sk_buff *iter; 3743 int type = skb_shinfo(head_skb)->gso_type; 3744 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3745 3746 /* Update type to add partial and then remove dodgy if set */ 3747 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3748 type &= ~SKB_GSO_DODGY; 3749 3750 /* Update GSO info and prepare to start updating headers on 3751 * our way back down the stack of protocols. 3752 */ 3753 for (iter = segs; iter; iter = iter->next) { 3754 skb_shinfo(iter)->gso_size = gso_size; 3755 skb_shinfo(iter)->gso_segs = partial_segs; 3756 skb_shinfo(iter)->gso_type = type; 3757 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3758 } 3759 3760 if (tail->len - doffset <= gso_size) 3761 skb_shinfo(tail)->gso_size = 0; 3762 else if (tail != segs) 3763 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3764 } 3765 3766 /* Following permits correct backpressure, for protocols 3767 * using skb_set_owner_w(). 3768 * Idea is to tranfert ownership from head_skb to last segment. 3769 */ 3770 if (head_skb->destructor == sock_wfree) { 3771 swap(tail->truesize, head_skb->truesize); 3772 swap(tail->destructor, head_skb->destructor); 3773 swap(tail->sk, head_skb->sk); 3774 } 3775 return segs; 3776 3777 err: 3778 kfree_skb_list(segs); 3779 return ERR_PTR(err); 3780 } 3781 EXPORT_SYMBOL_GPL(skb_segment); 3782 3783 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3784 { 3785 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3786 unsigned int offset = skb_gro_offset(skb); 3787 unsigned int headlen = skb_headlen(skb); 3788 unsigned int len = skb_gro_len(skb); 3789 struct sk_buff *lp, *p = *head; 3790 unsigned int delta_truesize; 3791 3792 if (unlikely(p->len + len >= 65536)) 3793 return -E2BIG; 3794 3795 lp = NAPI_GRO_CB(p)->last; 3796 pinfo = skb_shinfo(lp); 3797 3798 if (headlen <= offset) { 3799 skb_frag_t *frag; 3800 skb_frag_t *frag2; 3801 int i = skbinfo->nr_frags; 3802 int nr_frags = pinfo->nr_frags + i; 3803 3804 if (nr_frags > MAX_SKB_FRAGS) 3805 goto merge; 3806 3807 offset -= headlen; 3808 pinfo->nr_frags = nr_frags; 3809 skbinfo->nr_frags = 0; 3810 3811 frag = pinfo->frags + nr_frags; 3812 frag2 = skbinfo->frags + i; 3813 do { 3814 *--frag = *--frag2; 3815 } while (--i); 3816 3817 frag->page_offset += offset; 3818 skb_frag_size_sub(frag, offset); 3819 3820 /* all fragments truesize : remove (head size + sk_buff) */ 3821 delta_truesize = skb->truesize - 3822 SKB_TRUESIZE(skb_end_offset(skb)); 3823 3824 skb->truesize -= skb->data_len; 3825 skb->len -= skb->data_len; 3826 skb->data_len = 0; 3827 3828 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3829 goto done; 3830 } else if (skb->head_frag) { 3831 int nr_frags = pinfo->nr_frags; 3832 skb_frag_t *frag = pinfo->frags + nr_frags; 3833 struct page *page = virt_to_head_page(skb->head); 3834 unsigned int first_size = headlen - offset; 3835 unsigned int first_offset; 3836 3837 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3838 goto merge; 3839 3840 first_offset = skb->data - 3841 (unsigned char *)page_address(page) + 3842 offset; 3843 3844 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3845 3846 frag->page.p = page; 3847 frag->page_offset = first_offset; 3848 skb_frag_size_set(frag, first_size); 3849 3850 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3851 /* We dont need to clear skbinfo->nr_frags here */ 3852 3853 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3854 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3855 goto done; 3856 } 3857 3858 merge: 3859 delta_truesize = skb->truesize; 3860 if (offset > headlen) { 3861 unsigned int eat = offset - headlen; 3862 3863 skbinfo->frags[0].page_offset += eat; 3864 skb_frag_size_sub(&skbinfo->frags[0], eat); 3865 skb->data_len -= eat; 3866 skb->len -= eat; 3867 offset = headlen; 3868 } 3869 3870 __skb_pull(skb, offset); 3871 3872 if (NAPI_GRO_CB(p)->last == p) 3873 skb_shinfo(p)->frag_list = skb; 3874 else 3875 NAPI_GRO_CB(p)->last->next = skb; 3876 NAPI_GRO_CB(p)->last = skb; 3877 __skb_header_release(skb); 3878 lp = p; 3879 3880 done: 3881 NAPI_GRO_CB(p)->count++; 3882 p->data_len += len; 3883 p->truesize += delta_truesize; 3884 p->len += len; 3885 if (lp != p) { 3886 lp->data_len += len; 3887 lp->truesize += delta_truesize; 3888 lp->len += len; 3889 } 3890 NAPI_GRO_CB(skb)->same_flow = 1; 3891 return 0; 3892 } 3893 EXPORT_SYMBOL_GPL(skb_gro_receive); 3894 3895 void __init skb_init(void) 3896 { 3897 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 3898 sizeof(struct sk_buff), 3899 0, 3900 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3901 offsetof(struct sk_buff, cb), 3902 sizeof_field(struct sk_buff, cb), 3903 NULL); 3904 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3905 sizeof(struct sk_buff_fclones), 3906 0, 3907 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3908 NULL); 3909 } 3910 3911 static int 3912 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3913 unsigned int recursion_level) 3914 { 3915 int start = skb_headlen(skb); 3916 int i, copy = start - offset; 3917 struct sk_buff *frag_iter; 3918 int elt = 0; 3919 3920 if (unlikely(recursion_level >= 24)) 3921 return -EMSGSIZE; 3922 3923 if (copy > 0) { 3924 if (copy > len) 3925 copy = len; 3926 sg_set_buf(sg, skb->data + offset, copy); 3927 elt++; 3928 if ((len -= copy) == 0) 3929 return elt; 3930 offset += copy; 3931 } 3932 3933 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3934 int end; 3935 3936 WARN_ON(start > offset + len); 3937 3938 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3939 if ((copy = end - offset) > 0) { 3940 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3941 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3942 return -EMSGSIZE; 3943 3944 if (copy > len) 3945 copy = len; 3946 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3947 frag->page_offset+offset-start); 3948 elt++; 3949 if (!(len -= copy)) 3950 return elt; 3951 offset += copy; 3952 } 3953 start = end; 3954 } 3955 3956 skb_walk_frags(skb, frag_iter) { 3957 int end, ret; 3958 3959 WARN_ON(start > offset + len); 3960 3961 end = start + frag_iter->len; 3962 if ((copy = end - offset) > 0) { 3963 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3964 return -EMSGSIZE; 3965 3966 if (copy > len) 3967 copy = len; 3968 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3969 copy, recursion_level + 1); 3970 if (unlikely(ret < 0)) 3971 return ret; 3972 elt += ret; 3973 if ((len -= copy) == 0) 3974 return elt; 3975 offset += copy; 3976 } 3977 start = end; 3978 } 3979 BUG_ON(len); 3980 return elt; 3981 } 3982 3983 /** 3984 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3985 * @skb: Socket buffer containing the buffers to be mapped 3986 * @sg: The scatter-gather list to map into 3987 * @offset: The offset into the buffer's contents to start mapping 3988 * @len: Length of buffer space to be mapped 3989 * 3990 * Fill the specified scatter-gather list with mappings/pointers into a 3991 * region of the buffer space attached to a socket buffer. Returns either 3992 * the number of scatterlist items used, or -EMSGSIZE if the contents 3993 * could not fit. 3994 */ 3995 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3996 { 3997 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 3998 3999 if (nsg <= 0) 4000 return nsg; 4001 4002 sg_mark_end(&sg[nsg - 1]); 4003 4004 return nsg; 4005 } 4006 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4007 4008 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4009 * sglist without mark the sg which contain last skb data as the end. 4010 * So the caller can mannipulate sg list as will when padding new data after 4011 * the first call without calling sg_unmark_end to expend sg list. 4012 * 4013 * Scenario to use skb_to_sgvec_nomark: 4014 * 1. sg_init_table 4015 * 2. skb_to_sgvec_nomark(payload1) 4016 * 3. skb_to_sgvec_nomark(payload2) 4017 * 4018 * This is equivalent to: 4019 * 1. sg_init_table 4020 * 2. skb_to_sgvec(payload1) 4021 * 3. sg_unmark_end 4022 * 4. skb_to_sgvec(payload2) 4023 * 4024 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4025 * is more preferable. 4026 */ 4027 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4028 int offset, int len) 4029 { 4030 return __skb_to_sgvec(skb, sg, offset, len, 0); 4031 } 4032 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4033 4034 4035 4036 /** 4037 * skb_cow_data - Check that a socket buffer's data buffers are writable 4038 * @skb: The socket buffer to check. 4039 * @tailbits: Amount of trailing space to be added 4040 * @trailer: Returned pointer to the skb where the @tailbits space begins 4041 * 4042 * Make sure that the data buffers attached to a socket buffer are 4043 * writable. If they are not, private copies are made of the data buffers 4044 * and the socket buffer is set to use these instead. 4045 * 4046 * If @tailbits is given, make sure that there is space to write @tailbits 4047 * bytes of data beyond current end of socket buffer. @trailer will be 4048 * set to point to the skb in which this space begins. 4049 * 4050 * The number of scatterlist elements required to completely map the 4051 * COW'd and extended socket buffer will be returned. 4052 */ 4053 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4054 { 4055 int copyflag; 4056 int elt; 4057 struct sk_buff *skb1, **skb_p; 4058 4059 /* If skb is cloned or its head is paged, reallocate 4060 * head pulling out all the pages (pages are considered not writable 4061 * at the moment even if they are anonymous). 4062 */ 4063 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4064 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4065 return -ENOMEM; 4066 4067 /* Easy case. Most of packets will go this way. */ 4068 if (!skb_has_frag_list(skb)) { 4069 /* A little of trouble, not enough of space for trailer. 4070 * This should not happen, when stack is tuned to generate 4071 * good frames. OK, on miss we reallocate and reserve even more 4072 * space, 128 bytes is fair. */ 4073 4074 if (skb_tailroom(skb) < tailbits && 4075 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4076 return -ENOMEM; 4077 4078 /* Voila! */ 4079 *trailer = skb; 4080 return 1; 4081 } 4082 4083 /* Misery. We are in troubles, going to mincer fragments... */ 4084 4085 elt = 1; 4086 skb_p = &skb_shinfo(skb)->frag_list; 4087 copyflag = 0; 4088 4089 while ((skb1 = *skb_p) != NULL) { 4090 int ntail = 0; 4091 4092 /* The fragment is partially pulled by someone, 4093 * this can happen on input. Copy it and everything 4094 * after it. */ 4095 4096 if (skb_shared(skb1)) 4097 copyflag = 1; 4098 4099 /* If the skb is the last, worry about trailer. */ 4100 4101 if (skb1->next == NULL && tailbits) { 4102 if (skb_shinfo(skb1)->nr_frags || 4103 skb_has_frag_list(skb1) || 4104 skb_tailroom(skb1) < tailbits) 4105 ntail = tailbits + 128; 4106 } 4107 4108 if (copyflag || 4109 skb_cloned(skb1) || 4110 ntail || 4111 skb_shinfo(skb1)->nr_frags || 4112 skb_has_frag_list(skb1)) { 4113 struct sk_buff *skb2; 4114 4115 /* Fuck, we are miserable poor guys... */ 4116 if (ntail == 0) 4117 skb2 = skb_copy(skb1, GFP_ATOMIC); 4118 else 4119 skb2 = skb_copy_expand(skb1, 4120 skb_headroom(skb1), 4121 ntail, 4122 GFP_ATOMIC); 4123 if (unlikely(skb2 == NULL)) 4124 return -ENOMEM; 4125 4126 if (skb1->sk) 4127 skb_set_owner_w(skb2, skb1->sk); 4128 4129 /* Looking around. Are we still alive? 4130 * OK, link new skb, drop old one */ 4131 4132 skb2->next = skb1->next; 4133 *skb_p = skb2; 4134 kfree_skb(skb1); 4135 skb1 = skb2; 4136 } 4137 elt++; 4138 *trailer = skb1; 4139 skb_p = &skb1->next; 4140 } 4141 4142 return elt; 4143 } 4144 EXPORT_SYMBOL_GPL(skb_cow_data); 4145 4146 static void sock_rmem_free(struct sk_buff *skb) 4147 { 4148 struct sock *sk = skb->sk; 4149 4150 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4151 } 4152 4153 static void skb_set_err_queue(struct sk_buff *skb) 4154 { 4155 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4156 * So, it is safe to (mis)use it to mark skbs on the error queue. 4157 */ 4158 skb->pkt_type = PACKET_OUTGOING; 4159 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4160 } 4161 4162 /* 4163 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4164 */ 4165 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4166 { 4167 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4168 (unsigned int)sk->sk_rcvbuf) 4169 return -ENOMEM; 4170 4171 skb_orphan(skb); 4172 skb->sk = sk; 4173 skb->destructor = sock_rmem_free; 4174 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4175 skb_set_err_queue(skb); 4176 4177 /* before exiting rcu section, make sure dst is refcounted */ 4178 skb_dst_force(skb); 4179 4180 skb_queue_tail(&sk->sk_error_queue, skb); 4181 if (!sock_flag(sk, SOCK_DEAD)) 4182 sk->sk_data_ready(sk); 4183 return 0; 4184 } 4185 EXPORT_SYMBOL(sock_queue_err_skb); 4186 4187 static bool is_icmp_err_skb(const struct sk_buff *skb) 4188 { 4189 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4190 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4191 } 4192 4193 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4194 { 4195 struct sk_buff_head *q = &sk->sk_error_queue; 4196 struct sk_buff *skb, *skb_next = NULL; 4197 bool icmp_next = false; 4198 unsigned long flags; 4199 4200 spin_lock_irqsave(&q->lock, flags); 4201 skb = __skb_dequeue(q); 4202 if (skb && (skb_next = skb_peek(q))) { 4203 icmp_next = is_icmp_err_skb(skb_next); 4204 if (icmp_next) 4205 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4206 } 4207 spin_unlock_irqrestore(&q->lock, flags); 4208 4209 if (is_icmp_err_skb(skb) && !icmp_next) 4210 sk->sk_err = 0; 4211 4212 if (skb_next) 4213 sk->sk_error_report(sk); 4214 4215 return skb; 4216 } 4217 EXPORT_SYMBOL(sock_dequeue_err_skb); 4218 4219 /** 4220 * skb_clone_sk - create clone of skb, and take reference to socket 4221 * @skb: the skb to clone 4222 * 4223 * This function creates a clone of a buffer that holds a reference on 4224 * sk_refcnt. Buffers created via this function are meant to be 4225 * returned using sock_queue_err_skb, or free via kfree_skb. 4226 * 4227 * When passing buffers allocated with this function to sock_queue_err_skb 4228 * it is necessary to wrap the call with sock_hold/sock_put in order to 4229 * prevent the socket from being released prior to being enqueued on 4230 * the sk_error_queue. 4231 */ 4232 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4233 { 4234 struct sock *sk = skb->sk; 4235 struct sk_buff *clone; 4236 4237 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4238 return NULL; 4239 4240 clone = skb_clone(skb, GFP_ATOMIC); 4241 if (!clone) { 4242 sock_put(sk); 4243 return NULL; 4244 } 4245 4246 clone->sk = sk; 4247 clone->destructor = sock_efree; 4248 4249 return clone; 4250 } 4251 EXPORT_SYMBOL(skb_clone_sk); 4252 4253 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4254 struct sock *sk, 4255 int tstype, 4256 bool opt_stats) 4257 { 4258 struct sock_exterr_skb *serr; 4259 int err; 4260 4261 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4262 4263 serr = SKB_EXT_ERR(skb); 4264 memset(serr, 0, sizeof(*serr)); 4265 serr->ee.ee_errno = ENOMSG; 4266 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4267 serr->ee.ee_info = tstype; 4268 serr->opt_stats = opt_stats; 4269 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4270 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4271 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4272 if (sk->sk_protocol == IPPROTO_TCP && 4273 sk->sk_type == SOCK_STREAM) 4274 serr->ee.ee_data -= sk->sk_tskey; 4275 } 4276 4277 err = sock_queue_err_skb(sk, skb); 4278 4279 if (err) 4280 kfree_skb(skb); 4281 } 4282 4283 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4284 { 4285 bool ret; 4286 4287 if (likely(sysctl_tstamp_allow_data || tsonly)) 4288 return true; 4289 4290 read_lock_bh(&sk->sk_callback_lock); 4291 ret = sk->sk_socket && sk->sk_socket->file && 4292 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4293 read_unlock_bh(&sk->sk_callback_lock); 4294 return ret; 4295 } 4296 4297 void skb_complete_tx_timestamp(struct sk_buff *skb, 4298 struct skb_shared_hwtstamps *hwtstamps) 4299 { 4300 struct sock *sk = skb->sk; 4301 4302 if (!skb_may_tx_timestamp(sk, false)) 4303 goto err; 4304 4305 /* Take a reference to prevent skb_orphan() from freeing the socket, 4306 * but only if the socket refcount is not zero. 4307 */ 4308 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4309 *skb_hwtstamps(skb) = *hwtstamps; 4310 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4311 sock_put(sk); 4312 return; 4313 } 4314 4315 err: 4316 kfree_skb(skb); 4317 } 4318 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4319 4320 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4321 struct skb_shared_hwtstamps *hwtstamps, 4322 struct sock *sk, int tstype) 4323 { 4324 struct sk_buff *skb; 4325 bool tsonly, opt_stats = false; 4326 4327 if (!sk) 4328 return; 4329 4330 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4331 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4332 return; 4333 4334 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4335 if (!skb_may_tx_timestamp(sk, tsonly)) 4336 return; 4337 4338 if (tsonly) { 4339 #ifdef CONFIG_INET 4340 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4341 sk->sk_protocol == IPPROTO_TCP && 4342 sk->sk_type == SOCK_STREAM) { 4343 skb = tcp_get_timestamping_opt_stats(sk); 4344 opt_stats = true; 4345 } else 4346 #endif 4347 skb = alloc_skb(0, GFP_ATOMIC); 4348 } else { 4349 skb = skb_clone(orig_skb, GFP_ATOMIC); 4350 } 4351 if (!skb) 4352 return; 4353 4354 if (tsonly) { 4355 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4356 SKBTX_ANY_TSTAMP; 4357 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4358 } 4359 4360 if (hwtstamps) 4361 *skb_hwtstamps(skb) = *hwtstamps; 4362 else 4363 skb->tstamp = ktime_get_real(); 4364 4365 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4366 } 4367 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4368 4369 void skb_tstamp_tx(struct sk_buff *orig_skb, 4370 struct skb_shared_hwtstamps *hwtstamps) 4371 { 4372 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4373 SCM_TSTAMP_SND); 4374 } 4375 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4376 4377 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4378 { 4379 struct sock *sk = skb->sk; 4380 struct sock_exterr_skb *serr; 4381 int err = 1; 4382 4383 skb->wifi_acked_valid = 1; 4384 skb->wifi_acked = acked; 4385 4386 serr = SKB_EXT_ERR(skb); 4387 memset(serr, 0, sizeof(*serr)); 4388 serr->ee.ee_errno = ENOMSG; 4389 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4390 4391 /* Take a reference to prevent skb_orphan() from freeing the socket, 4392 * but only if the socket refcount is not zero. 4393 */ 4394 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4395 err = sock_queue_err_skb(sk, skb); 4396 sock_put(sk); 4397 } 4398 if (err) 4399 kfree_skb(skb); 4400 } 4401 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4402 4403 /** 4404 * skb_partial_csum_set - set up and verify partial csum values for packet 4405 * @skb: the skb to set 4406 * @start: the number of bytes after skb->data to start checksumming. 4407 * @off: the offset from start to place the checksum. 4408 * 4409 * For untrusted partially-checksummed packets, we need to make sure the values 4410 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4411 * 4412 * This function checks and sets those values and skb->ip_summed: if this 4413 * returns false you should drop the packet. 4414 */ 4415 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4416 { 4417 if (unlikely(start > skb_headlen(skb)) || 4418 unlikely((int)start + off > skb_headlen(skb) - 2)) { 4419 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 4420 start, off, skb_headlen(skb)); 4421 return false; 4422 } 4423 skb->ip_summed = CHECKSUM_PARTIAL; 4424 skb->csum_start = skb_headroom(skb) + start; 4425 skb->csum_offset = off; 4426 skb_set_transport_header(skb, start); 4427 return true; 4428 } 4429 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4430 4431 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4432 unsigned int max) 4433 { 4434 if (skb_headlen(skb) >= len) 4435 return 0; 4436 4437 /* If we need to pullup then pullup to the max, so we 4438 * won't need to do it again. 4439 */ 4440 if (max > skb->len) 4441 max = skb->len; 4442 4443 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4444 return -ENOMEM; 4445 4446 if (skb_headlen(skb) < len) 4447 return -EPROTO; 4448 4449 return 0; 4450 } 4451 4452 #define MAX_TCP_HDR_LEN (15 * 4) 4453 4454 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4455 typeof(IPPROTO_IP) proto, 4456 unsigned int off) 4457 { 4458 switch (proto) { 4459 int err; 4460 4461 case IPPROTO_TCP: 4462 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4463 off + MAX_TCP_HDR_LEN); 4464 if (!err && !skb_partial_csum_set(skb, off, 4465 offsetof(struct tcphdr, 4466 check))) 4467 err = -EPROTO; 4468 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4469 4470 case IPPROTO_UDP: 4471 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4472 off + sizeof(struct udphdr)); 4473 if (!err && !skb_partial_csum_set(skb, off, 4474 offsetof(struct udphdr, 4475 check))) 4476 err = -EPROTO; 4477 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4478 } 4479 4480 return ERR_PTR(-EPROTO); 4481 } 4482 4483 /* This value should be large enough to cover a tagged ethernet header plus 4484 * maximally sized IP and TCP or UDP headers. 4485 */ 4486 #define MAX_IP_HDR_LEN 128 4487 4488 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4489 { 4490 unsigned int off; 4491 bool fragment; 4492 __sum16 *csum; 4493 int err; 4494 4495 fragment = false; 4496 4497 err = skb_maybe_pull_tail(skb, 4498 sizeof(struct iphdr), 4499 MAX_IP_HDR_LEN); 4500 if (err < 0) 4501 goto out; 4502 4503 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4504 fragment = true; 4505 4506 off = ip_hdrlen(skb); 4507 4508 err = -EPROTO; 4509 4510 if (fragment) 4511 goto out; 4512 4513 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4514 if (IS_ERR(csum)) 4515 return PTR_ERR(csum); 4516 4517 if (recalculate) 4518 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4519 ip_hdr(skb)->daddr, 4520 skb->len - off, 4521 ip_hdr(skb)->protocol, 0); 4522 err = 0; 4523 4524 out: 4525 return err; 4526 } 4527 4528 /* This value should be large enough to cover a tagged ethernet header plus 4529 * an IPv6 header, all options, and a maximal TCP or UDP header. 4530 */ 4531 #define MAX_IPV6_HDR_LEN 256 4532 4533 #define OPT_HDR(type, skb, off) \ 4534 (type *)(skb_network_header(skb) + (off)) 4535 4536 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4537 { 4538 int err; 4539 u8 nexthdr; 4540 unsigned int off; 4541 unsigned int len; 4542 bool fragment; 4543 bool done; 4544 __sum16 *csum; 4545 4546 fragment = false; 4547 done = false; 4548 4549 off = sizeof(struct ipv6hdr); 4550 4551 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4552 if (err < 0) 4553 goto out; 4554 4555 nexthdr = ipv6_hdr(skb)->nexthdr; 4556 4557 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4558 while (off <= len && !done) { 4559 switch (nexthdr) { 4560 case IPPROTO_DSTOPTS: 4561 case IPPROTO_HOPOPTS: 4562 case IPPROTO_ROUTING: { 4563 struct ipv6_opt_hdr *hp; 4564 4565 err = skb_maybe_pull_tail(skb, 4566 off + 4567 sizeof(struct ipv6_opt_hdr), 4568 MAX_IPV6_HDR_LEN); 4569 if (err < 0) 4570 goto out; 4571 4572 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4573 nexthdr = hp->nexthdr; 4574 off += ipv6_optlen(hp); 4575 break; 4576 } 4577 case IPPROTO_AH: { 4578 struct ip_auth_hdr *hp; 4579 4580 err = skb_maybe_pull_tail(skb, 4581 off + 4582 sizeof(struct ip_auth_hdr), 4583 MAX_IPV6_HDR_LEN); 4584 if (err < 0) 4585 goto out; 4586 4587 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4588 nexthdr = hp->nexthdr; 4589 off += ipv6_authlen(hp); 4590 break; 4591 } 4592 case IPPROTO_FRAGMENT: { 4593 struct frag_hdr *hp; 4594 4595 err = skb_maybe_pull_tail(skb, 4596 off + 4597 sizeof(struct frag_hdr), 4598 MAX_IPV6_HDR_LEN); 4599 if (err < 0) 4600 goto out; 4601 4602 hp = OPT_HDR(struct frag_hdr, skb, off); 4603 4604 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4605 fragment = true; 4606 4607 nexthdr = hp->nexthdr; 4608 off += sizeof(struct frag_hdr); 4609 break; 4610 } 4611 default: 4612 done = true; 4613 break; 4614 } 4615 } 4616 4617 err = -EPROTO; 4618 4619 if (!done || fragment) 4620 goto out; 4621 4622 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4623 if (IS_ERR(csum)) 4624 return PTR_ERR(csum); 4625 4626 if (recalculate) 4627 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4628 &ipv6_hdr(skb)->daddr, 4629 skb->len - off, nexthdr, 0); 4630 err = 0; 4631 4632 out: 4633 return err; 4634 } 4635 4636 /** 4637 * skb_checksum_setup - set up partial checksum offset 4638 * @skb: the skb to set up 4639 * @recalculate: if true the pseudo-header checksum will be recalculated 4640 */ 4641 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4642 { 4643 int err; 4644 4645 switch (skb->protocol) { 4646 case htons(ETH_P_IP): 4647 err = skb_checksum_setup_ipv4(skb, recalculate); 4648 break; 4649 4650 case htons(ETH_P_IPV6): 4651 err = skb_checksum_setup_ipv6(skb, recalculate); 4652 break; 4653 4654 default: 4655 err = -EPROTO; 4656 break; 4657 } 4658 4659 return err; 4660 } 4661 EXPORT_SYMBOL(skb_checksum_setup); 4662 4663 /** 4664 * skb_checksum_maybe_trim - maybe trims the given skb 4665 * @skb: the skb to check 4666 * @transport_len: the data length beyond the network header 4667 * 4668 * Checks whether the given skb has data beyond the given transport length. 4669 * If so, returns a cloned skb trimmed to this transport length. 4670 * Otherwise returns the provided skb. Returns NULL in error cases 4671 * (e.g. transport_len exceeds skb length or out-of-memory). 4672 * 4673 * Caller needs to set the skb transport header and free any returned skb if it 4674 * differs from the provided skb. 4675 */ 4676 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4677 unsigned int transport_len) 4678 { 4679 struct sk_buff *skb_chk; 4680 unsigned int len = skb_transport_offset(skb) + transport_len; 4681 int ret; 4682 4683 if (skb->len < len) 4684 return NULL; 4685 else if (skb->len == len) 4686 return skb; 4687 4688 skb_chk = skb_clone(skb, GFP_ATOMIC); 4689 if (!skb_chk) 4690 return NULL; 4691 4692 ret = pskb_trim_rcsum(skb_chk, len); 4693 if (ret) { 4694 kfree_skb(skb_chk); 4695 return NULL; 4696 } 4697 4698 return skb_chk; 4699 } 4700 4701 /** 4702 * skb_checksum_trimmed - validate checksum of an skb 4703 * @skb: the skb to check 4704 * @transport_len: the data length beyond the network header 4705 * @skb_chkf: checksum function to use 4706 * 4707 * Applies the given checksum function skb_chkf to the provided skb. 4708 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4709 * 4710 * If the skb has data beyond the given transport length, then a 4711 * trimmed & cloned skb is checked and returned. 4712 * 4713 * Caller needs to set the skb transport header and free any returned skb if it 4714 * differs from the provided skb. 4715 */ 4716 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4717 unsigned int transport_len, 4718 __sum16(*skb_chkf)(struct sk_buff *skb)) 4719 { 4720 struct sk_buff *skb_chk; 4721 unsigned int offset = skb_transport_offset(skb); 4722 __sum16 ret; 4723 4724 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4725 if (!skb_chk) 4726 goto err; 4727 4728 if (!pskb_may_pull(skb_chk, offset)) 4729 goto err; 4730 4731 skb_pull_rcsum(skb_chk, offset); 4732 ret = skb_chkf(skb_chk); 4733 skb_push_rcsum(skb_chk, offset); 4734 4735 if (ret) 4736 goto err; 4737 4738 return skb_chk; 4739 4740 err: 4741 if (skb_chk && skb_chk != skb) 4742 kfree_skb(skb_chk); 4743 4744 return NULL; 4745 4746 } 4747 EXPORT_SYMBOL(skb_checksum_trimmed); 4748 4749 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4750 { 4751 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4752 skb->dev->name); 4753 } 4754 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4755 4756 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4757 { 4758 if (head_stolen) { 4759 skb_release_head_state(skb); 4760 kmem_cache_free(skbuff_head_cache, skb); 4761 } else { 4762 __kfree_skb(skb); 4763 } 4764 } 4765 EXPORT_SYMBOL(kfree_skb_partial); 4766 4767 /** 4768 * skb_try_coalesce - try to merge skb to prior one 4769 * @to: prior buffer 4770 * @from: buffer to add 4771 * @fragstolen: pointer to boolean 4772 * @delta_truesize: how much more was allocated than was requested 4773 */ 4774 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4775 bool *fragstolen, int *delta_truesize) 4776 { 4777 struct skb_shared_info *to_shinfo, *from_shinfo; 4778 int i, delta, len = from->len; 4779 4780 *fragstolen = false; 4781 4782 if (skb_cloned(to)) 4783 return false; 4784 4785 if (len <= skb_tailroom(to)) { 4786 if (len) 4787 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4788 *delta_truesize = 0; 4789 return true; 4790 } 4791 4792 to_shinfo = skb_shinfo(to); 4793 from_shinfo = skb_shinfo(from); 4794 if (to_shinfo->frag_list || from_shinfo->frag_list) 4795 return false; 4796 if (skb_zcopy(to) || skb_zcopy(from)) 4797 return false; 4798 4799 if (skb_headlen(from) != 0) { 4800 struct page *page; 4801 unsigned int offset; 4802 4803 if (to_shinfo->nr_frags + 4804 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 4805 return false; 4806 4807 if (skb_head_is_locked(from)) 4808 return false; 4809 4810 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4811 4812 page = virt_to_head_page(from->head); 4813 offset = from->data - (unsigned char *)page_address(page); 4814 4815 skb_fill_page_desc(to, to_shinfo->nr_frags, 4816 page, offset, skb_headlen(from)); 4817 *fragstolen = true; 4818 } else { 4819 if (to_shinfo->nr_frags + 4820 from_shinfo->nr_frags > MAX_SKB_FRAGS) 4821 return false; 4822 4823 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4824 } 4825 4826 WARN_ON_ONCE(delta < len); 4827 4828 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 4829 from_shinfo->frags, 4830 from_shinfo->nr_frags * sizeof(skb_frag_t)); 4831 to_shinfo->nr_frags += from_shinfo->nr_frags; 4832 4833 if (!skb_cloned(from)) 4834 from_shinfo->nr_frags = 0; 4835 4836 /* if the skb is not cloned this does nothing 4837 * since we set nr_frags to 0. 4838 */ 4839 for (i = 0; i < from_shinfo->nr_frags; i++) 4840 __skb_frag_ref(&from_shinfo->frags[i]); 4841 4842 to->truesize += delta; 4843 to->len += len; 4844 to->data_len += len; 4845 4846 *delta_truesize = delta; 4847 return true; 4848 } 4849 EXPORT_SYMBOL(skb_try_coalesce); 4850 4851 /** 4852 * skb_scrub_packet - scrub an skb 4853 * 4854 * @skb: buffer to clean 4855 * @xnet: packet is crossing netns 4856 * 4857 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4858 * into/from a tunnel. Some information have to be cleared during these 4859 * operations. 4860 * skb_scrub_packet can also be used to clean a skb before injecting it in 4861 * another namespace (@xnet == true). We have to clear all information in the 4862 * skb that could impact namespace isolation. 4863 */ 4864 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4865 { 4866 skb->tstamp = 0; 4867 skb->pkt_type = PACKET_HOST; 4868 skb->skb_iif = 0; 4869 skb->ignore_df = 0; 4870 skb_dst_drop(skb); 4871 secpath_reset(skb); 4872 nf_reset(skb); 4873 nf_reset_trace(skb); 4874 4875 if (!xnet) 4876 return; 4877 4878 ipvs_reset(skb); 4879 skb_orphan(skb); 4880 skb->mark = 0; 4881 } 4882 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4883 4884 /** 4885 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4886 * 4887 * @skb: GSO skb 4888 * 4889 * skb_gso_transport_seglen is used to determine the real size of the 4890 * individual segments, including Layer4 headers (TCP/UDP). 4891 * 4892 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4893 */ 4894 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4895 { 4896 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4897 unsigned int thlen = 0; 4898 4899 if (skb->encapsulation) { 4900 thlen = skb_inner_transport_header(skb) - 4901 skb_transport_header(skb); 4902 4903 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4904 thlen += inner_tcp_hdrlen(skb); 4905 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4906 thlen = tcp_hdrlen(skb); 4907 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) { 4908 thlen = sizeof(struct sctphdr); 4909 } 4910 /* UFO sets gso_size to the size of the fragmentation 4911 * payload, i.e. the size of the L4 (UDP) header is already 4912 * accounted for. 4913 */ 4914 return thlen + shinfo->gso_size; 4915 } 4916 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen); 4917 4918 /** 4919 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 4920 * 4921 * There are a couple of instances where we have a GSO skb, and we 4922 * want to determine what size it would be after it is segmented. 4923 * 4924 * We might want to check: 4925 * - L3+L4+payload size (e.g. IP forwarding) 4926 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 4927 * 4928 * This is a helper to do that correctly considering GSO_BY_FRAGS. 4929 * 4930 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 4931 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 4932 * 4933 * @max_len: The maximum permissible length. 4934 * 4935 * Returns true if the segmented length <= max length. 4936 */ 4937 static inline bool skb_gso_size_check(const struct sk_buff *skb, 4938 unsigned int seg_len, 4939 unsigned int max_len) { 4940 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4941 const struct sk_buff *iter; 4942 4943 if (shinfo->gso_size != GSO_BY_FRAGS) 4944 return seg_len <= max_len; 4945 4946 /* Undo this so we can re-use header sizes */ 4947 seg_len -= GSO_BY_FRAGS; 4948 4949 skb_walk_frags(skb, iter) { 4950 if (seg_len + skb_headlen(iter) > max_len) 4951 return false; 4952 } 4953 4954 return true; 4955 } 4956 4957 /** 4958 * skb_gso_validate_mtu - Return in case such skb fits a given MTU 4959 * 4960 * @skb: GSO skb 4961 * @mtu: MTU to validate against 4962 * 4963 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU 4964 * once split. 4965 */ 4966 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu) 4967 { 4968 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 4969 } 4970 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu); 4971 4972 /** 4973 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 4974 * 4975 * @skb: GSO skb 4976 * @len: length to validate against 4977 * 4978 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 4979 * length once split, including L2, L3 and L4 headers and the payload. 4980 */ 4981 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 4982 { 4983 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 4984 } 4985 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 4986 4987 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 4988 { 4989 if (skb_cow(skb, skb_headroom(skb)) < 0) { 4990 kfree_skb(skb); 4991 return NULL; 4992 } 4993 4994 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN, 4995 2 * ETH_ALEN); 4996 skb->mac_header += VLAN_HLEN; 4997 return skb; 4998 } 4999 5000 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5001 { 5002 struct vlan_hdr *vhdr; 5003 u16 vlan_tci; 5004 5005 if (unlikely(skb_vlan_tag_present(skb))) { 5006 /* vlan_tci is already set-up so leave this for another time */ 5007 return skb; 5008 } 5009 5010 skb = skb_share_check(skb, GFP_ATOMIC); 5011 if (unlikely(!skb)) 5012 goto err_free; 5013 5014 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5015 goto err_free; 5016 5017 vhdr = (struct vlan_hdr *)skb->data; 5018 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5019 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5020 5021 skb_pull_rcsum(skb, VLAN_HLEN); 5022 vlan_set_encap_proto(skb, vhdr); 5023 5024 skb = skb_reorder_vlan_header(skb); 5025 if (unlikely(!skb)) 5026 goto err_free; 5027 5028 skb_reset_network_header(skb); 5029 skb_reset_transport_header(skb); 5030 skb_reset_mac_len(skb); 5031 5032 return skb; 5033 5034 err_free: 5035 kfree_skb(skb); 5036 return NULL; 5037 } 5038 EXPORT_SYMBOL(skb_vlan_untag); 5039 5040 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5041 { 5042 if (!pskb_may_pull(skb, write_len)) 5043 return -ENOMEM; 5044 5045 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5046 return 0; 5047 5048 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5049 } 5050 EXPORT_SYMBOL(skb_ensure_writable); 5051 5052 /* remove VLAN header from packet and update csum accordingly. 5053 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5054 */ 5055 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5056 { 5057 struct vlan_hdr *vhdr; 5058 int offset = skb->data - skb_mac_header(skb); 5059 int err; 5060 5061 if (WARN_ONCE(offset, 5062 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5063 offset)) { 5064 return -EINVAL; 5065 } 5066 5067 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5068 if (unlikely(err)) 5069 return err; 5070 5071 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5072 5073 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5074 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5075 5076 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5077 __skb_pull(skb, VLAN_HLEN); 5078 5079 vlan_set_encap_proto(skb, vhdr); 5080 skb->mac_header += VLAN_HLEN; 5081 5082 if (skb_network_offset(skb) < ETH_HLEN) 5083 skb_set_network_header(skb, ETH_HLEN); 5084 5085 skb_reset_mac_len(skb); 5086 5087 return err; 5088 } 5089 EXPORT_SYMBOL(__skb_vlan_pop); 5090 5091 /* Pop a vlan tag either from hwaccel or from payload. 5092 * Expects skb->data at mac header. 5093 */ 5094 int skb_vlan_pop(struct sk_buff *skb) 5095 { 5096 u16 vlan_tci; 5097 __be16 vlan_proto; 5098 int err; 5099 5100 if (likely(skb_vlan_tag_present(skb))) { 5101 skb->vlan_tci = 0; 5102 } else { 5103 if (unlikely(!eth_type_vlan(skb->protocol))) 5104 return 0; 5105 5106 err = __skb_vlan_pop(skb, &vlan_tci); 5107 if (err) 5108 return err; 5109 } 5110 /* move next vlan tag to hw accel tag */ 5111 if (likely(!eth_type_vlan(skb->protocol))) 5112 return 0; 5113 5114 vlan_proto = skb->protocol; 5115 err = __skb_vlan_pop(skb, &vlan_tci); 5116 if (unlikely(err)) 5117 return err; 5118 5119 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5120 return 0; 5121 } 5122 EXPORT_SYMBOL(skb_vlan_pop); 5123 5124 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5125 * Expects skb->data at mac header. 5126 */ 5127 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5128 { 5129 if (skb_vlan_tag_present(skb)) { 5130 int offset = skb->data - skb_mac_header(skb); 5131 int err; 5132 5133 if (WARN_ONCE(offset, 5134 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5135 offset)) { 5136 return -EINVAL; 5137 } 5138 5139 err = __vlan_insert_tag(skb, skb->vlan_proto, 5140 skb_vlan_tag_get(skb)); 5141 if (err) 5142 return err; 5143 5144 skb->protocol = skb->vlan_proto; 5145 skb->mac_len += VLAN_HLEN; 5146 5147 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5148 } 5149 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5150 return 0; 5151 } 5152 EXPORT_SYMBOL(skb_vlan_push); 5153 5154 /** 5155 * alloc_skb_with_frags - allocate skb with page frags 5156 * 5157 * @header_len: size of linear part 5158 * @data_len: needed length in frags 5159 * @max_page_order: max page order desired. 5160 * @errcode: pointer to error code if any 5161 * @gfp_mask: allocation mask 5162 * 5163 * This can be used to allocate a paged skb, given a maximal order for frags. 5164 */ 5165 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5166 unsigned long data_len, 5167 int max_page_order, 5168 int *errcode, 5169 gfp_t gfp_mask) 5170 { 5171 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5172 unsigned long chunk; 5173 struct sk_buff *skb; 5174 struct page *page; 5175 gfp_t gfp_head; 5176 int i; 5177 5178 *errcode = -EMSGSIZE; 5179 /* Note this test could be relaxed, if we succeed to allocate 5180 * high order pages... 5181 */ 5182 if (npages > MAX_SKB_FRAGS) 5183 return NULL; 5184 5185 gfp_head = gfp_mask; 5186 if (gfp_head & __GFP_DIRECT_RECLAIM) 5187 gfp_head |= __GFP_RETRY_MAYFAIL; 5188 5189 *errcode = -ENOBUFS; 5190 skb = alloc_skb(header_len, gfp_head); 5191 if (!skb) 5192 return NULL; 5193 5194 skb->truesize += npages << PAGE_SHIFT; 5195 5196 for (i = 0; npages > 0; i++) { 5197 int order = max_page_order; 5198 5199 while (order) { 5200 if (npages >= 1 << order) { 5201 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5202 __GFP_COMP | 5203 __GFP_NOWARN | 5204 __GFP_NORETRY, 5205 order); 5206 if (page) 5207 goto fill_page; 5208 /* Do not retry other high order allocations */ 5209 order = 1; 5210 max_page_order = 0; 5211 } 5212 order--; 5213 } 5214 page = alloc_page(gfp_mask); 5215 if (!page) 5216 goto failure; 5217 fill_page: 5218 chunk = min_t(unsigned long, data_len, 5219 PAGE_SIZE << order); 5220 skb_fill_page_desc(skb, i, page, 0, chunk); 5221 data_len -= chunk; 5222 npages -= 1 << order; 5223 } 5224 return skb; 5225 5226 failure: 5227 kfree_skb(skb); 5228 return NULL; 5229 } 5230 EXPORT_SYMBOL(alloc_skb_with_frags); 5231 5232 /* carve out the first off bytes from skb when off < headlen */ 5233 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5234 const int headlen, gfp_t gfp_mask) 5235 { 5236 int i; 5237 int size = skb_end_offset(skb); 5238 int new_hlen = headlen - off; 5239 u8 *data; 5240 5241 size = SKB_DATA_ALIGN(size); 5242 5243 if (skb_pfmemalloc(skb)) 5244 gfp_mask |= __GFP_MEMALLOC; 5245 data = kmalloc_reserve(size + 5246 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5247 gfp_mask, NUMA_NO_NODE, NULL); 5248 if (!data) 5249 return -ENOMEM; 5250 5251 size = SKB_WITH_OVERHEAD(ksize(data)); 5252 5253 /* Copy real data, and all frags */ 5254 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5255 skb->len -= off; 5256 5257 memcpy((struct skb_shared_info *)(data + size), 5258 skb_shinfo(skb), 5259 offsetof(struct skb_shared_info, 5260 frags[skb_shinfo(skb)->nr_frags])); 5261 if (skb_cloned(skb)) { 5262 /* drop the old head gracefully */ 5263 if (skb_orphan_frags(skb, gfp_mask)) { 5264 kfree(data); 5265 return -ENOMEM; 5266 } 5267 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5268 skb_frag_ref(skb, i); 5269 if (skb_has_frag_list(skb)) 5270 skb_clone_fraglist(skb); 5271 skb_release_data(skb); 5272 } else { 5273 /* we can reuse existing recount- all we did was 5274 * relocate values 5275 */ 5276 skb_free_head(skb); 5277 } 5278 5279 skb->head = data; 5280 skb->data = data; 5281 skb->head_frag = 0; 5282 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5283 skb->end = size; 5284 #else 5285 skb->end = skb->head + size; 5286 #endif 5287 skb_set_tail_pointer(skb, skb_headlen(skb)); 5288 skb_headers_offset_update(skb, 0); 5289 skb->cloned = 0; 5290 skb->hdr_len = 0; 5291 skb->nohdr = 0; 5292 atomic_set(&skb_shinfo(skb)->dataref, 1); 5293 5294 return 0; 5295 } 5296 5297 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5298 5299 /* carve out the first eat bytes from skb's frag_list. May recurse into 5300 * pskb_carve() 5301 */ 5302 static int pskb_carve_frag_list(struct sk_buff *skb, 5303 struct skb_shared_info *shinfo, int eat, 5304 gfp_t gfp_mask) 5305 { 5306 struct sk_buff *list = shinfo->frag_list; 5307 struct sk_buff *clone = NULL; 5308 struct sk_buff *insp = NULL; 5309 5310 do { 5311 if (!list) { 5312 pr_err("Not enough bytes to eat. Want %d\n", eat); 5313 return -EFAULT; 5314 } 5315 if (list->len <= eat) { 5316 /* Eaten as whole. */ 5317 eat -= list->len; 5318 list = list->next; 5319 insp = list; 5320 } else { 5321 /* Eaten partially. */ 5322 if (skb_shared(list)) { 5323 clone = skb_clone(list, gfp_mask); 5324 if (!clone) 5325 return -ENOMEM; 5326 insp = list->next; 5327 list = clone; 5328 } else { 5329 /* This may be pulled without problems. */ 5330 insp = list; 5331 } 5332 if (pskb_carve(list, eat, gfp_mask) < 0) { 5333 kfree_skb(clone); 5334 return -ENOMEM; 5335 } 5336 break; 5337 } 5338 } while (eat); 5339 5340 /* Free pulled out fragments. */ 5341 while ((list = shinfo->frag_list) != insp) { 5342 shinfo->frag_list = list->next; 5343 kfree_skb(list); 5344 } 5345 /* And insert new clone at head. */ 5346 if (clone) { 5347 clone->next = list; 5348 shinfo->frag_list = clone; 5349 } 5350 return 0; 5351 } 5352 5353 /* carve off first len bytes from skb. Split line (off) is in the 5354 * non-linear part of skb 5355 */ 5356 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5357 int pos, gfp_t gfp_mask) 5358 { 5359 int i, k = 0; 5360 int size = skb_end_offset(skb); 5361 u8 *data; 5362 const int nfrags = skb_shinfo(skb)->nr_frags; 5363 struct skb_shared_info *shinfo; 5364 5365 size = SKB_DATA_ALIGN(size); 5366 5367 if (skb_pfmemalloc(skb)) 5368 gfp_mask |= __GFP_MEMALLOC; 5369 data = kmalloc_reserve(size + 5370 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5371 gfp_mask, NUMA_NO_NODE, NULL); 5372 if (!data) 5373 return -ENOMEM; 5374 5375 size = SKB_WITH_OVERHEAD(ksize(data)); 5376 5377 memcpy((struct skb_shared_info *)(data + size), 5378 skb_shinfo(skb), offsetof(struct skb_shared_info, 5379 frags[skb_shinfo(skb)->nr_frags])); 5380 if (skb_orphan_frags(skb, gfp_mask)) { 5381 kfree(data); 5382 return -ENOMEM; 5383 } 5384 shinfo = (struct skb_shared_info *)(data + size); 5385 for (i = 0; i < nfrags; i++) { 5386 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5387 5388 if (pos + fsize > off) { 5389 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5390 5391 if (pos < off) { 5392 /* Split frag. 5393 * We have two variants in this case: 5394 * 1. Move all the frag to the second 5395 * part, if it is possible. F.e. 5396 * this approach is mandatory for TUX, 5397 * where splitting is expensive. 5398 * 2. Split is accurately. We make this. 5399 */ 5400 shinfo->frags[0].page_offset += off - pos; 5401 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5402 } 5403 skb_frag_ref(skb, i); 5404 k++; 5405 } 5406 pos += fsize; 5407 } 5408 shinfo->nr_frags = k; 5409 if (skb_has_frag_list(skb)) 5410 skb_clone_fraglist(skb); 5411 5412 if (k == 0) { 5413 /* split line is in frag list */ 5414 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5415 } 5416 skb_release_data(skb); 5417 5418 skb->head = data; 5419 skb->head_frag = 0; 5420 skb->data = data; 5421 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5422 skb->end = size; 5423 #else 5424 skb->end = skb->head + size; 5425 #endif 5426 skb_reset_tail_pointer(skb); 5427 skb_headers_offset_update(skb, 0); 5428 skb->cloned = 0; 5429 skb->hdr_len = 0; 5430 skb->nohdr = 0; 5431 skb->len -= off; 5432 skb->data_len = skb->len; 5433 atomic_set(&skb_shinfo(skb)->dataref, 1); 5434 return 0; 5435 } 5436 5437 /* remove len bytes from the beginning of the skb */ 5438 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5439 { 5440 int headlen = skb_headlen(skb); 5441 5442 if (len < headlen) 5443 return pskb_carve_inside_header(skb, len, headlen, gfp); 5444 else 5445 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5446 } 5447 5448 /* Extract to_copy bytes starting at off from skb, and return this in 5449 * a new skb 5450 */ 5451 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5452 int to_copy, gfp_t gfp) 5453 { 5454 struct sk_buff *clone = skb_clone(skb, gfp); 5455 5456 if (!clone) 5457 return NULL; 5458 5459 if (pskb_carve(clone, off, gfp) < 0 || 5460 pskb_trim(clone, to_copy)) { 5461 kfree_skb(clone); 5462 return NULL; 5463 } 5464 return clone; 5465 } 5466 EXPORT_SYMBOL(pskb_extract); 5467 5468 /** 5469 * skb_condense - try to get rid of fragments/frag_list if possible 5470 * @skb: buffer 5471 * 5472 * Can be used to save memory before skb is added to a busy queue. 5473 * If packet has bytes in frags and enough tail room in skb->head, 5474 * pull all of them, so that we can free the frags right now and adjust 5475 * truesize. 5476 * Notes: 5477 * We do not reallocate skb->head thus can not fail. 5478 * Caller must re-evaluate skb->truesize if needed. 5479 */ 5480 void skb_condense(struct sk_buff *skb) 5481 { 5482 if (skb->data_len) { 5483 if (skb->data_len > skb->end - skb->tail || 5484 skb_cloned(skb)) 5485 return; 5486 5487 /* Nice, we can free page frag(s) right now */ 5488 __pskb_pull_tail(skb, skb->data_len); 5489 } 5490 /* At this point, skb->truesize might be over estimated, 5491 * because skb had a fragment, and fragments do not tell 5492 * their truesize. 5493 * When we pulled its content into skb->head, fragment 5494 * was freed, but __pskb_pull_tail() could not possibly 5495 * adjust skb->truesize, not knowing the frag truesize. 5496 */ 5497 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5498 } 5499