xref: /openbmc/linux/net/core/skbuff.c (revision 12fbfc4c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72 
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79 
80 #include "datagram.h"
81 
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89 
90 /**
91  *	skb_panic - private function for out-of-line support
92  *	@skb:	buffer
93  *	@sz:	size
94  *	@addr:	address
95  *	@msg:	skb_over_panic or skb_under_panic
96  *
97  *	Out-of-line support for skb_put() and skb_push().
98  *	Called via the wrapper skb_over_panic() or skb_under_panic().
99  *	Keep out of line to prevent kernel bloat.
100  *	__builtin_return_address is not used because it is not always reliable.
101  */
102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 		      const char msg[])
104 {
105 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 		 msg, addr, skb->len, sz, skb->head, skb->data,
107 		 (unsigned long)skb->tail, (unsigned long)skb->end,
108 		 skb->dev ? skb->dev->name : "<NULL>");
109 	BUG();
110 }
111 
112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 	skb_panic(skb, sz, addr, __func__);
120 }
121 
122 /*
123  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124  * the caller if emergency pfmemalloc reserves are being used. If it is and
125  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126  * may be used. Otherwise, the packet data may be discarded until enough
127  * memory is free
128  */
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131 
132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 			       unsigned long ip, bool *pfmemalloc)
134 {
135 	void *obj;
136 	bool ret_pfmemalloc = false;
137 
138 	/*
139 	 * Try a regular allocation, when that fails and we're not entitled
140 	 * to the reserves, fail.
141 	 */
142 	obj = kmalloc_node_track_caller(size,
143 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 					node);
145 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 		goto out;
147 
148 	/* Try again but now we are using pfmemalloc reserves */
149 	ret_pfmemalloc = true;
150 	obj = kmalloc_node_track_caller(size, flags, node);
151 
152 out:
153 	if (pfmemalloc)
154 		*pfmemalloc = ret_pfmemalloc;
155 
156 	return obj;
157 }
158 
159 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
160  *	'private' fields and also do memory statistics to find all the
161  *	[BEEP] leaks.
162  *
163  */
164 
165 /**
166  *	__alloc_skb	-	allocate a network buffer
167  *	@size: size to allocate
168  *	@gfp_mask: allocation mask
169  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170  *		instead of head cache and allocate a cloned (child) skb.
171  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172  *		allocations in case the data is required for writeback
173  *	@node: numa node to allocate memory on
174  *
175  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
176  *	tail room of at least size bytes. The object has a reference count
177  *	of one. The return is the buffer. On a failure the return is %NULL.
178  *
179  *	Buffers may only be allocated from interrupts using a @gfp_mask of
180  *	%GFP_ATOMIC.
181  */
182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 			    int flags, int node)
184 {
185 	struct kmem_cache *cache;
186 	struct skb_shared_info *shinfo;
187 	struct sk_buff *skb;
188 	u8 *data;
189 	bool pfmemalloc;
190 
191 	cache = (flags & SKB_ALLOC_FCLONE)
192 		? skbuff_fclone_cache : skbuff_head_cache;
193 
194 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 		gfp_mask |= __GFP_MEMALLOC;
196 
197 	/* Get the HEAD */
198 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 	if (!skb)
200 		goto out;
201 	prefetchw(skb);
202 
203 	/* We do our best to align skb_shared_info on a separate cache
204 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 	 * Both skb->head and skb_shared_info are cache line aligned.
207 	 */
208 	size = SKB_DATA_ALIGN(size);
209 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 	if (!data)
212 		goto nodata;
213 	/* kmalloc(size) might give us more room than requested.
214 	 * Put skb_shared_info exactly at the end of allocated zone,
215 	 * to allow max possible filling before reallocation.
216 	 */
217 	size = SKB_WITH_OVERHEAD(ksize(data));
218 	prefetchw(data + size);
219 
220 	/*
221 	 * Only clear those fields we need to clear, not those that we will
222 	 * actually initialise below. Hence, don't put any more fields after
223 	 * the tail pointer in struct sk_buff!
224 	 */
225 	memset(skb, 0, offsetof(struct sk_buff, tail));
226 	/* Account for allocated memory : skb + skb->head */
227 	skb->truesize = SKB_TRUESIZE(size);
228 	skb->pfmemalloc = pfmemalloc;
229 	refcount_set(&skb->users, 1);
230 	skb->head = data;
231 	skb->data = data;
232 	skb_reset_tail_pointer(skb);
233 	skb->end = skb->tail + size;
234 	skb->mac_header = (typeof(skb->mac_header))~0U;
235 	skb->transport_header = (typeof(skb->transport_header))~0U;
236 
237 	/* make sure we initialize shinfo sequentially */
238 	shinfo = skb_shinfo(skb);
239 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 	atomic_set(&shinfo->dataref, 1);
241 
242 	if (flags & SKB_ALLOC_FCLONE) {
243 		struct sk_buff_fclones *fclones;
244 
245 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
246 
247 		skb->fclone = SKB_FCLONE_ORIG;
248 		refcount_set(&fclones->fclone_ref, 1);
249 
250 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 	}
252 out:
253 	return skb;
254 nodata:
255 	kmem_cache_free(cache, skb);
256 	skb = NULL;
257 	goto out;
258 }
259 EXPORT_SYMBOL(__alloc_skb);
260 
261 /* Caller must provide SKB that is memset cleared */
262 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
263 					  void *data, unsigned int frag_size)
264 {
265 	struct skb_shared_info *shinfo;
266 	unsigned int size = frag_size ? : ksize(data);
267 
268 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
269 
270 	/* Assumes caller memset cleared SKB */
271 	skb->truesize = SKB_TRUESIZE(size);
272 	refcount_set(&skb->users, 1);
273 	skb->head = data;
274 	skb->data = data;
275 	skb_reset_tail_pointer(skb);
276 	skb->end = skb->tail + size;
277 	skb->mac_header = (typeof(skb->mac_header))~0U;
278 	skb->transport_header = (typeof(skb->transport_header))~0U;
279 
280 	/* make sure we initialize shinfo sequentially */
281 	shinfo = skb_shinfo(skb);
282 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
283 	atomic_set(&shinfo->dataref, 1);
284 
285 	return skb;
286 }
287 
288 /**
289  * __build_skb - build a network buffer
290  * @data: data buffer provided by caller
291  * @frag_size: size of data, or 0 if head was kmalloced
292  *
293  * Allocate a new &sk_buff. Caller provides space holding head and
294  * skb_shared_info. @data must have been allocated by kmalloc() only if
295  * @frag_size is 0, otherwise data should come from the page allocator
296  *  or vmalloc()
297  * The return is the new skb buffer.
298  * On a failure the return is %NULL, and @data is not freed.
299  * Notes :
300  *  Before IO, driver allocates only data buffer where NIC put incoming frame
301  *  Driver should add room at head (NET_SKB_PAD) and
302  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
303  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
304  *  before giving packet to stack.
305  *  RX rings only contains data buffers, not full skbs.
306  */
307 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
308 {
309 	struct sk_buff *skb;
310 
311 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
312 	if (unlikely(!skb))
313 		return NULL;
314 
315 	memset(skb, 0, offsetof(struct sk_buff, tail));
316 
317 	return __build_skb_around(skb, data, frag_size);
318 }
319 
320 /* build_skb() is wrapper over __build_skb(), that specifically
321  * takes care of skb->head and skb->pfmemalloc
322  * This means that if @frag_size is not zero, then @data must be backed
323  * by a page fragment, not kmalloc() or vmalloc()
324  */
325 struct sk_buff *build_skb(void *data, unsigned int frag_size)
326 {
327 	struct sk_buff *skb = __build_skb(data, frag_size);
328 
329 	if (skb && frag_size) {
330 		skb->head_frag = 1;
331 		if (page_is_pfmemalloc(virt_to_head_page(data)))
332 			skb->pfmemalloc = 1;
333 	}
334 	return skb;
335 }
336 EXPORT_SYMBOL(build_skb);
337 
338 /**
339  * build_skb_around - build a network buffer around provided skb
340  * @skb: sk_buff provide by caller, must be memset cleared
341  * @data: data buffer provided by caller
342  * @frag_size: size of data, or 0 if head was kmalloced
343  */
344 struct sk_buff *build_skb_around(struct sk_buff *skb,
345 				 void *data, unsigned int frag_size)
346 {
347 	if (unlikely(!skb))
348 		return NULL;
349 
350 	skb = __build_skb_around(skb, data, frag_size);
351 
352 	if (skb && frag_size) {
353 		skb->head_frag = 1;
354 		if (page_is_pfmemalloc(virt_to_head_page(data)))
355 			skb->pfmemalloc = 1;
356 	}
357 	return skb;
358 }
359 EXPORT_SYMBOL(build_skb_around);
360 
361 #define NAPI_SKB_CACHE_SIZE	64
362 
363 struct napi_alloc_cache {
364 	struct page_frag_cache page;
365 	unsigned int skb_count;
366 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
367 };
368 
369 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
370 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
371 
372 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
373 {
374 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
375 
376 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
377 }
378 
379 void *napi_alloc_frag(unsigned int fragsz)
380 {
381 	fragsz = SKB_DATA_ALIGN(fragsz);
382 
383 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
384 }
385 EXPORT_SYMBOL(napi_alloc_frag);
386 
387 /**
388  * netdev_alloc_frag - allocate a page fragment
389  * @fragsz: fragment size
390  *
391  * Allocates a frag from a page for receive buffer.
392  * Uses GFP_ATOMIC allocations.
393  */
394 void *netdev_alloc_frag(unsigned int fragsz)
395 {
396 	struct page_frag_cache *nc;
397 	void *data;
398 
399 	fragsz = SKB_DATA_ALIGN(fragsz);
400 	if (in_irq() || irqs_disabled()) {
401 		nc = this_cpu_ptr(&netdev_alloc_cache);
402 		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
403 	} else {
404 		local_bh_disable();
405 		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
406 		local_bh_enable();
407 	}
408 	return data;
409 }
410 EXPORT_SYMBOL(netdev_alloc_frag);
411 
412 /**
413  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
414  *	@dev: network device to receive on
415  *	@len: length to allocate
416  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
417  *
418  *	Allocate a new &sk_buff and assign it a usage count of one. The
419  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
420  *	the headroom they think they need without accounting for the
421  *	built in space. The built in space is used for optimisations.
422  *
423  *	%NULL is returned if there is no free memory.
424  */
425 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
426 				   gfp_t gfp_mask)
427 {
428 	struct page_frag_cache *nc;
429 	struct sk_buff *skb;
430 	bool pfmemalloc;
431 	void *data;
432 
433 	len += NET_SKB_PAD;
434 
435 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
436 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
437 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
438 		if (!skb)
439 			goto skb_fail;
440 		goto skb_success;
441 	}
442 
443 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
444 	len = SKB_DATA_ALIGN(len);
445 
446 	if (sk_memalloc_socks())
447 		gfp_mask |= __GFP_MEMALLOC;
448 
449 	if (in_irq() || irqs_disabled()) {
450 		nc = this_cpu_ptr(&netdev_alloc_cache);
451 		data = page_frag_alloc(nc, len, gfp_mask);
452 		pfmemalloc = nc->pfmemalloc;
453 	} else {
454 		local_bh_disable();
455 		nc = this_cpu_ptr(&napi_alloc_cache.page);
456 		data = page_frag_alloc(nc, len, gfp_mask);
457 		pfmemalloc = nc->pfmemalloc;
458 		local_bh_enable();
459 	}
460 
461 	if (unlikely(!data))
462 		return NULL;
463 
464 	skb = __build_skb(data, len);
465 	if (unlikely(!skb)) {
466 		skb_free_frag(data);
467 		return NULL;
468 	}
469 
470 	if (pfmemalloc)
471 		skb->pfmemalloc = 1;
472 	skb->head_frag = 1;
473 
474 skb_success:
475 	skb_reserve(skb, NET_SKB_PAD);
476 	skb->dev = dev;
477 
478 skb_fail:
479 	return skb;
480 }
481 EXPORT_SYMBOL(__netdev_alloc_skb);
482 
483 /**
484  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485  *	@napi: napi instance this buffer was allocated for
486  *	@len: length to allocate
487  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
488  *
489  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
490  *	attempt to allocate the head from a special reserved region used
491  *	only for NAPI Rx allocation.  By doing this we can save several
492  *	CPU cycles by avoiding having to disable and re-enable IRQs.
493  *
494  *	%NULL is returned if there is no free memory.
495  */
496 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
497 				 gfp_t gfp_mask)
498 {
499 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
500 	struct sk_buff *skb;
501 	void *data;
502 
503 	len += NET_SKB_PAD + NET_IP_ALIGN;
504 
505 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
506 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
507 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
508 		if (!skb)
509 			goto skb_fail;
510 		goto skb_success;
511 	}
512 
513 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
514 	len = SKB_DATA_ALIGN(len);
515 
516 	if (sk_memalloc_socks())
517 		gfp_mask |= __GFP_MEMALLOC;
518 
519 	data = page_frag_alloc(&nc->page, len, gfp_mask);
520 	if (unlikely(!data))
521 		return NULL;
522 
523 	skb = __build_skb(data, len);
524 	if (unlikely(!skb)) {
525 		skb_free_frag(data);
526 		return NULL;
527 	}
528 
529 	if (nc->page.pfmemalloc)
530 		skb->pfmemalloc = 1;
531 	skb->head_frag = 1;
532 
533 skb_success:
534 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
535 	skb->dev = napi->dev;
536 
537 skb_fail:
538 	return skb;
539 }
540 EXPORT_SYMBOL(__napi_alloc_skb);
541 
542 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
543 		     int size, unsigned int truesize)
544 {
545 	skb_fill_page_desc(skb, i, page, off, size);
546 	skb->len += size;
547 	skb->data_len += size;
548 	skb->truesize += truesize;
549 }
550 EXPORT_SYMBOL(skb_add_rx_frag);
551 
552 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
553 			  unsigned int truesize)
554 {
555 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
556 
557 	skb_frag_size_add(frag, size);
558 	skb->len += size;
559 	skb->data_len += size;
560 	skb->truesize += truesize;
561 }
562 EXPORT_SYMBOL(skb_coalesce_rx_frag);
563 
564 static void skb_drop_list(struct sk_buff **listp)
565 {
566 	kfree_skb_list(*listp);
567 	*listp = NULL;
568 }
569 
570 static inline void skb_drop_fraglist(struct sk_buff *skb)
571 {
572 	skb_drop_list(&skb_shinfo(skb)->frag_list);
573 }
574 
575 static void skb_clone_fraglist(struct sk_buff *skb)
576 {
577 	struct sk_buff *list;
578 
579 	skb_walk_frags(skb, list)
580 		skb_get(list);
581 }
582 
583 static void skb_free_head(struct sk_buff *skb)
584 {
585 	unsigned char *head = skb->head;
586 
587 	if (skb->head_frag)
588 		skb_free_frag(head);
589 	else
590 		kfree(head);
591 }
592 
593 static void skb_release_data(struct sk_buff *skb)
594 {
595 	struct skb_shared_info *shinfo = skb_shinfo(skb);
596 	int i;
597 
598 	if (skb->cloned &&
599 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
600 			      &shinfo->dataref))
601 		return;
602 
603 	for (i = 0; i < shinfo->nr_frags; i++)
604 		__skb_frag_unref(&shinfo->frags[i]);
605 
606 	if (shinfo->frag_list)
607 		kfree_skb_list(shinfo->frag_list);
608 
609 	skb_zcopy_clear(skb, true);
610 	skb_free_head(skb);
611 }
612 
613 /*
614  *	Free an skbuff by memory without cleaning the state.
615  */
616 static void kfree_skbmem(struct sk_buff *skb)
617 {
618 	struct sk_buff_fclones *fclones;
619 
620 	switch (skb->fclone) {
621 	case SKB_FCLONE_UNAVAILABLE:
622 		kmem_cache_free(skbuff_head_cache, skb);
623 		return;
624 
625 	case SKB_FCLONE_ORIG:
626 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
627 
628 		/* We usually free the clone (TX completion) before original skb
629 		 * This test would have no chance to be true for the clone,
630 		 * while here, branch prediction will be good.
631 		 */
632 		if (refcount_read(&fclones->fclone_ref) == 1)
633 			goto fastpath;
634 		break;
635 
636 	default: /* SKB_FCLONE_CLONE */
637 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 		break;
639 	}
640 	if (!refcount_dec_and_test(&fclones->fclone_ref))
641 		return;
642 fastpath:
643 	kmem_cache_free(skbuff_fclone_cache, fclones);
644 }
645 
646 void skb_release_head_state(struct sk_buff *skb)
647 {
648 	skb_dst_drop(skb);
649 	if (skb->destructor) {
650 		WARN_ON(in_irq());
651 		skb->destructor(skb);
652 	}
653 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
654 	nf_conntrack_put(skb_nfct(skb));
655 #endif
656 	skb_ext_put(skb);
657 }
658 
659 /* Free everything but the sk_buff shell. */
660 static void skb_release_all(struct sk_buff *skb)
661 {
662 	skb_release_head_state(skb);
663 	if (likely(skb->head))
664 		skb_release_data(skb);
665 }
666 
667 /**
668  *	__kfree_skb - private function
669  *	@skb: buffer
670  *
671  *	Free an sk_buff. Release anything attached to the buffer.
672  *	Clean the state. This is an internal helper function. Users should
673  *	always call kfree_skb
674  */
675 
676 void __kfree_skb(struct sk_buff *skb)
677 {
678 	skb_release_all(skb);
679 	kfree_skbmem(skb);
680 }
681 EXPORT_SYMBOL(__kfree_skb);
682 
683 /**
684  *	kfree_skb - free an sk_buff
685  *	@skb: buffer to free
686  *
687  *	Drop a reference to the buffer and free it if the usage count has
688  *	hit zero.
689  */
690 void kfree_skb(struct sk_buff *skb)
691 {
692 	if (!skb_unref(skb))
693 		return;
694 
695 	trace_kfree_skb(skb, __builtin_return_address(0));
696 	__kfree_skb(skb);
697 }
698 EXPORT_SYMBOL(kfree_skb);
699 
700 void kfree_skb_list(struct sk_buff *segs)
701 {
702 	while (segs) {
703 		struct sk_buff *next = segs->next;
704 
705 		kfree_skb(segs);
706 		segs = next;
707 	}
708 }
709 EXPORT_SYMBOL(kfree_skb_list);
710 
711 /* Dump skb information and contents.
712  *
713  * Must only be called from net_ratelimit()-ed paths.
714  *
715  * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
716  */
717 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
718 {
719 	static atomic_t can_dump_full = ATOMIC_INIT(5);
720 	struct skb_shared_info *sh = skb_shinfo(skb);
721 	struct net_device *dev = skb->dev;
722 	struct sock *sk = skb->sk;
723 	struct sk_buff *list_skb;
724 	bool has_mac, has_trans;
725 	int headroom, tailroom;
726 	int i, len, seg_len;
727 
728 	if (full_pkt)
729 		full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
730 
731 	if (full_pkt)
732 		len = skb->len;
733 	else
734 		len = min_t(int, skb->len, MAX_HEADER + 128);
735 
736 	headroom = skb_headroom(skb);
737 	tailroom = skb_tailroom(skb);
738 
739 	has_mac = skb_mac_header_was_set(skb);
740 	has_trans = skb_transport_header_was_set(skb);
741 
742 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
743 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
744 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
745 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
746 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
747 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
748 	       has_mac ? skb->mac_header : -1,
749 	       has_mac ? skb_mac_header_len(skb) : -1,
750 	       skb->network_header,
751 	       has_trans ? skb_network_header_len(skb) : -1,
752 	       has_trans ? skb->transport_header : -1,
753 	       sh->tx_flags, sh->nr_frags,
754 	       sh->gso_size, sh->gso_type, sh->gso_segs,
755 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
756 	       skb->csum_valid, skb->csum_level,
757 	       skb->hash, skb->sw_hash, skb->l4_hash,
758 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
759 
760 	if (dev)
761 		printk("%sdev name=%s feat=0x%pNF\n",
762 		       level, dev->name, &dev->features);
763 	if (sk)
764 		printk("%ssk family=%hu type=%u proto=%u\n",
765 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
766 
767 	if (full_pkt && headroom)
768 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
769 			       16, 1, skb->head, headroom, false);
770 
771 	seg_len = min_t(int, skb_headlen(skb), len);
772 	if (seg_len)
773 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
774 			       16, 1, skb->data, seg_len, false);
775 	len -= seg_len;
776 
777 	if (full_pkt && tailroom)
778 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
779 			       16, 1, skb_tail_pointer(skb), tailroom, false);
780 
781 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
782 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
783 		u32 p_off, p_len, copied;
784 		struct page *p;
785 		u8 *vaddr;
786 
787 		skb_frag_foreach_page(frag, skb_frag_off(frag),
788 				      skb_frag_size(frag), p, p_off, p_len,
789 				      copied) {
790 			seg_len = min_t(int, p_len, len);
791 			vaddr = kmap_atomic(p);
792 			print_hex_dump(level, "skb frag:     ",
793 				       DUMP_PREFIX_OFFSET,
794 				       16, 1, vaddr + p_off, seg_len, false);
795 			kunmap_atomic(vaddr);
796 			len -= seg_len;
797 			if (!len)
798 				break;
799 		}
800 	}
801 
802 	if (full_pkt && skb_has_frag_list(skb)) {
803 		printk("skb fraglist:\n");
804 		skb_walk_frags(skb, list_skb)
805 			skb_dump(level, list_skb, true);
806 	}
807 }
808 EXPORT_SYMBOL(skb_dump);
809 
810 /**
811  *	skb_tx_error - report an sk_buff xmit error
812  *	@skb: buffer that triggered an error
813  *
814  *	Report xmit error if a device callback is tracking this skb.
815  *	skb must be freed afterwards.
816  */
817 void skb_tx_error(struct sk_buff *skb)
818 {
819 	skb_zcopy_clear(skb, true);
820 }
821 EXPORT_SYMBOL(skb_tx_error);
822 
823 #ifdef CONFIG_TRACEPOINTS
824 /**
825  *	consume_skb - free an skbuff
826  *	@skb: buffer to free
827  *
828  *	Drop a ref to the buffer and free it if the usage count has hit zero
829  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
830  *	is being dropped after a failure and notes that
831  */
832 void consume_skb(struct sk_buff *skb)
833 {
834 	if (!skb_unref(skb))
835 		return;
836 
837 	trace_consume_skb(skb);
838 	__kfree_skb(skb);
839 }
840 EXPORT_SYMBOL(consume_skb);
841 #endif
842 
843 /**
844  *	consume_stateless_skb - free an skbuff, assuming it is stateless
845  *	@skb: buffer to free
846  *
847  *	Alike consume_skb(), but this variant assumes that this is the last
848  *	skb reference and all the head states have been already dropped
849  */
850 void __consume_stateless_skb(struct sk_buff *skb)
851 {
852 	trace_consume_skb(skb);
853 	skb_release_data(skb);
854 	kfree_skbmem(skb);
855 }
856 
857 void __kfree_skb_flush(void)
858 {
859 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
860 
861 	/* flush skb_cache if containing objects */
862 	if (nc->skb_count) {
863 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
864 				     nc->skb_cache);
865 		nc->skb_count = 0;
866 	}
867 }
868 
869 static inline void _kfree_skb_defer(struct sk_buff *skb)
870 {
871 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
872 
873 	/* drop skb->head and call any destructors for packet */
874 	skb_release_all(skb);
875 
876 	/* record skb to CPU local list */
877 	nc->skb_cache[nc->skb_count++] = skb;
878 
879 #ifdef CONFIG_SLUB
880 	/* SLUB writes into objects when freeing */
881 	prefetchw(skb);
882 #endif
883 
884 	/* flush skb_cache if it is filled */
885 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
886 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
887 				     nc->skb_cache);
888 		nc->skb_count = 0;
889 	}
890 }
891 void __kfree_skb_defer(struct sk_buff *skb)
892 {
893 	_kfree_skb_defer(skb);
894 }
895 
896 void napi_consume_skb(struct sk_buff *skb, int budget)
897 {
898 	if (unlikely(!skb))
899 		return;
900 
901 	/* Zero budget indicate non-NAPI context called us, like netpoll */
902 	if (unlikely(!budget)) {
903 		dev_consume_skb_any(skb);
904 		return;
905 	}
906 
907 	if (!skb_unref(skb))
908 		return;
909 
910 	/* if reaching here SKB is ready to free */
911 	trace_consume_skb(skb);
912 
913 	/* if SKB is a clone, don't handle this case */
914 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
915 		__kfree_skb(skb);
916 		return;
917 	}
918 
919 	_kfree_skb_defer(skb);
920 }
921 EXPORT_SYMBOL(napi_consume_skb);
922 
923 /* Make sure a field is enclosed inside headers_start/headers_end section */
924 #define CHECK_SKB_FIELD(field) \
925 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
926 		     offsetof(struct sk_buff, headers_start));	\
927 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
928 		     offsetof(struct sk_buff, headers_end));	\
929 
930 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
931 {
932 	new->tstamp		= old->tstamp;
933 	/* We do not copy old->sk */
934 	new->dev		= old->dev;
935 	memcpy(new->cb, old->cb, sizeof(old->cb));
936 	skb_dst_copy(new, old);
937 	__skb_ext_copy(new, old);
938 	__nf_copy(new, old, false);
939 
940 	/* Note : this field could be in headers_start/headers_end section
941 	 * It is not yet because we do not want to have a 16 bit hole
942 	 */
943 	new->queue_mapping = old->queue_mapping;
944 
945 	memcpy(&new->headers_start, &old->headers_start,
946 	       offsetof(struct sk_buff, headers_end) -
947 	       offsetof(struct sk_buff, headers_start));
948 	CHECK_SKB_FIELD(protocol);
949 	CHECK_SKB_FIELD(csum);
950 	CHECK_SKB_FIELD(hash);
951 	CHECK_SKB_FIELD(priority);
952 	CHECK_SKB_FIELD(skb_iif);
953 	CHECK_SKB_FIELD(vlan_proto);
954 	CHECK_SKB_FIELD(vlan_tci);
955 	CHECK_SKB_FIELD(transport_header);
956 	CHECK_SKB_FIELD(network_header);
957 	CHECK_SKB_FIELD(mac_header);
958 	CHECK_SKB_FIELD(inner_protocol);
959 	CHECK_SKB_FIELD(inner_transport_header);
960 	CHECK_SKB_FIELD(inner_network_header);
961 	CHECK_SKB_FIELD(inner_mac_header);
962 	CHECK_SKB_FIELD(mark);
963 #ifdef CONFIG_NETWORK_SECMARK
964 	CHECK_SKB_FIELD(secmark);
965 #endif
966 #ifdef CONFIG_NET_RX_BUSY_POLL
967 	CHECK_SKB_FIELD(napi_id);
968 #endif
969 #ifdef CONFIG_XPS
970 	CHECK_SKB_FIELD(sender_cpu);
971 #endif
972 #ifdef CONFIG_NET_SCHED
973 	CHECK_SKB_FIELD(tc_index);
974 #endif
975 
976 }
977 
978 /*
979  * You should not add any new code to this function.  Add it to
980  * __copy_skb_header above instead.
981  */
982 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
983 {
984 #define C(x) n->x = skb->x
985 
986 	n->next = n->prev = NULL;
987 	n->sk = NULL;
988 	__copy_skb_header(n, skb);
989 
990 	C(len);
991 	C(data_len);
992 	C(mac_len);
993 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
994 	n->cloned = 1;
995 	n->nohdr = 0;
996 	n->peeked = 0;
997 	C(pfmemalloc);
998 	n->destructor = NULL;
999 	C(tail);
1000 	C(end);
1001 	C(head);
1002 	C(head_frag);
1003 	C(data);
1004 	C(truesize);
1005 	refcount_set(&n->users, 1);
1006 
1007 	atomic_inc(&(skb_shinfo(skb)->dataref));
1008 	skb->cloned = 1;
1009 
1010 	return n;
1011 #undef C
1012 }
1013 
1014 /**
1015  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1016  * @first: first sk_buff of the msg
1017  */
1018 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1019 {
1020 	struct sk_buff *n;
1021 
1022 	n = alloc_skb(0, GFP_ATOMIC);
1023 	if (!n)
1024 		return NULL;
1025 
1026 	n->len = first->len;
1027 	n->data_len = first->len;
1028 	n->truesize = first->truesize;
1029 
1030 	skb_shinfo(n)->frag_list = first;
1031 
1032 	__copy_skb_header(n, first);
1033 	n->destructor = NULL;
1034 
1035 	return n;
1036 }
1037 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1038 
1039 /**
1040  *	skb_morph	-	morph one skb into another
1041  *	@dst: the skb to receive the contents
1042  *	@src: the skb to supply the contents
1043  *
1044  *	This is identical to skb_clone except that the target skb is
1045  *	supplied by the user.
1046  *
1047  *	The target skb is returned upon exit.
1048  */
1049 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1050 {
1051 	skb_release_all(dst);
1052 	return __skb_clone(dst, src);
1053 }
1054 EXPORT_SYMBOL_GPL(skb_morph);
1055 
1056 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1057 {
1058 	unsigned long max_pg, num_pg, new_pg, old_pg;
1059 	struct user_struct *user;
1060 
1061 	if (capable(CAP_IPC_LOCK) || !size)
1062 		return 0;
1063 
1064 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1065 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1066 	user = mmp->user ? : current_user();
1067 
1068 	do {
1069 		old_pg = atomic_long_read(&user->locked_vm);
1070 		new_pg = old_pg + num_pg;
1071 		if (new_pg > max_pg)
1072 			return -ENOBUFS;
1073 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1074 		 old_pg);
1075 
1076 	if (!mmp->user) {
1077 		mmp->user = get_uid(user);
1078 		mmp->num_pg = num_pg;
1079 	} else {
1080 		mmp->num_pg += num_pg;
1081 	}
1082 
1083 	return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1086 
1087 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1088 {
1089 	if (mmp->user) {
1090 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1091 		free_uid(mmp->user);
1092 	}
1093 }
1094 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1095 
1096 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1097 {
1098 	struct ubuf_info *uarg;
1099 	struct sk_buff *skb;
1100 
1101 	WARN_ON_ONCE(!in_task());
1102 
1103 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1104 	if (!skb)
1105 		return NULL;
1106 
1107 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1108 	uarg = (void *)skb->cb;
1109 	uarg->mmp.user = NULL;
1110 
1111 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1112 		kfree_skb(skb);
1113 		return NULL;
1114 	}
1115 
1116 	uarg->callback = sock_zerocopy_callback;
1117 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1118 	uarg->len = 1;
1119 	uarg->bytelen = size;
1120 	uarg->zerocopy = 1;
1121 	refcount_set(&uarg->refcnt, 1);
1122 	sock_hold(sk);
1123 
1124 	return uarg;
1125 }
1126 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1127 
1128 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1129 {
1130 	return container_of((void *)uarg, struct sk_buff, cb);
1131 }
1132 
1133 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1134 					struct ubuf_info *uarg)
1135 {
1136 	if (uarg) {
1137 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1138 		u32 bytelen, next;
1139 
1140 		/* realloc only when socket is locked (TCP, UDP cork),
1141 		 * so uarg->len and sk_zckey access is serialized
1142 		 */
1143 		if (!sock_owned_by_user(sk)) {
1144 			WARN_ON_ONCE(1);
1145 			return NULL;
1146 		}
1147 
1148 		bytelen = uarg->bytelen + size;
1149 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1150 			/* TCP can create new skb to attach new uarg */
1151 			if (sk->sk_type == SOCK_STREAM)
1152 				goto new_alloc;
1153 			return NULL;
1154 		}
1155 
1156 		next = (u32)atomic_read(&sk->sk_zckey);
1157 		if ((u32)(uarg->id + uarg->len) == next) {
1158 			if (mm_account_pinned_pages(&uarg->mmp, size))
1159 				return NULL;
1160 			uarg->len++;
1161 			uarg->bytelen = bytelen;
1162 			atomic_set(&sk->sk_zckey, ++next);
1163 
1164 			/* no extra ref when appending to datagram (MSG_MORE) */
1165 			if (sk->sk_type == SOCK_STREAM)
1166 				sock_zerocopy_get(uarg);
1167 
1168 			return uarg;
1169 		}
1170 	}
1171 
1172 new_alloc:
1173 	return sock_zerocopy_alloc(sk, size);
1174 }
1175 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1176 
1177 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1178 {
1179 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1180 	u32 old_lo, old_hi;
1181 	u64 sum_len;
1182 
1183 	old_lo = serr->ee.ee_info;
1184 	old_hi = serr->ee.ee_data;
1185 	sum_len = old_hi - old_lo + 1ULL + len;
1186 
1187 	if (sum_len >= (1ULL << 32))
1188 		return false;
1189 
1190 	if (lo != old_hi + 1)
1191 		return false;
1192 
1193 	serr->ee.ee_data += len;
1194 	return true;
1195 }
1196 
1197 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1198 {
1199 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1200 	struct sock_exterr_skb *serr;
1201 	struct sock *sk = skb->sk;
1202 	struct sk_buff_head *q;
1203 	unsigned long flags;
1204 	u32 lo, hi;
1205 	u16 len;
1206 
1207 	mm_unaccount_pinned_pages(&uarg->mmp);
1208 
1209 	/* if !len, there was only 1 call, and it was aborted
1210 	 * so do not queue a completion notification
1211 	 */
1212 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1213 		goto release;
1214 
1215 	len = uarg->len;
1216 	lo = uarg->id;
1217 	hi = uarg->id + len - 1;
1218 
1219 	serr = SKB_EXT_ERR(skb);
1220 	memset(serr, 0, sizeof(*serr));
1221 	serr->ee.ee_errno = 0;
1222 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1223 	serr->ee.ee_data = hi;
1224 	serr->ee.ee_info = lo;
1225 	if (!success)
1226 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1227 
1228 	q = &sk->sk_error_queue;
1229 	spin_lock_irqsave(&q->lock, flags);
1230 	tail = skb_peek_tail(q);
1231 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1232 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1233 		__skb_queue_tail(q, skb);
1234 		skb = NULL;
1235 	}
1236 	spin_unlock_irqrestore(&q->lock, flags);
1237 
1238 	sk->sk_error_report(sk);
1239 
1240 release:
1241 	consume_skb(skb);
1242 	sock_put(sk);
1243 }
1244 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1245 
1246 void sock_zerocopy_put(struct ubuf_info *uarg)
1247 {
1248 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1249 		if (uarg->callback)
1250 			uarg->callback(uarg, uarg->zerocopy);
1251 		else
1252 			consume_skb(skb_from_uarg(uarg));
1253 	}
1254 }
1255 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1256 
1257 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1258 {
1259 	if (uarg) {
1260 		struct sock *sk = skb_from_uarg(uarg)->sk;
1261 
1262 		atomic_dec(&sk->sk_zckey);
1263 		uarg->len--;
1264 
1265 		if (have_uref)
1266 			sock_zerocopy_put(uarg);
1267 	}
1268 }
1269 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1270 
1271 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1272 {
1273 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1274 }
1275 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1276 
1277 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1278 			     struct msghdr *msg, int len,
1279 			     struct ubuf_info *uarg)
1280 {
1281 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1282 	struct iov_iter orig_iter = msg->msg_iter;
1283 	int err, orig_len = skb->len;
1284 
1285 	/* An skb can only point to one uarg. This edge case happens when
1286 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1287 	 */
1288 	if (orig_uarg && uarg != orig_uarg)
1289 		return -EEXIST;
1290 
1291 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1292 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1293 		struct sock *save_sk = skb->sk;
1294 
1295 		/* Streams do not free skb on error. Reset to prev state. */
1296 		msg->msg_iter = orig_iter;
1297 		skb->sk = sk;
1298 		___pskb_trim(skb, orig_len);
1299 		skb->sk = save_sk;
1300 		return err;
1301 	}
1302 
1303 	skb_zcopy_set(skb, uarg, NULL);
1304 	return skb->len - orig_len;
1305 }
1306 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1307 
1308 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1309 			      gfp_t gfp_mask)
1310 {
1311 	if (skb_zcopy(orig)) {
1312 		if (skb_zcopy(nskb)) {
1313 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1314 			if (!gfp_mask) {
1315 				WARN_ON_ONCE(1);
1316 				return -ENOMEM;
1317 			}
1318 			if (skb_uarg(nskb) == skb_uarg(orig))
1319 				return 0;
1320 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1321 				return -EIO;
1322 		}
1323 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1324 	}
1325 	return 0;
1326 }
1327 
1328 /**
1329  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1330  *	@skb: the skb to modify
1331  *	@gfp_mask: allocation priority
1332  *
1333  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1334  *	It will copy all frags into kernel and drop the reference
1335  *	to userspace pages.
1336  *
1337  *	If this function is called from an interrupt gfp_mask() must be
1338  *	%GFP_ATOMIC.
1339  *
1340  *	Returns 0 on success or a negative error code on failure
1341  *	to allocate kernel memory to copy to.
1342  */
1343 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1344 {
1345 	int num_frags = skb_shinfo(skb)->nr_frags;
1346 	struct page *page, *head = NULL;
1347 	int i, new_frags;
1348 	u32 d_off;
1349 
1350 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1351 		return -EINVAL;
1352 
1353 	if (!num_frags)
1354 		goto release;
1355 
1356 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1357 	for (i = 0; i < new_frags; i++) {
1358 		page = alloc_page(gfp_mask);
1359 		if (!page) {
1360 			while (head) {
1361 				struct page *next = (struct page *)page_private(head);
1362 				put_page(head);
1363 				head = next;
1364 			}
1365 			return -ENOMEM;
1366 		}
1367 		set_page_private(page, (unsigned long)head);
1368 		head = page;
1369 	}
1370 
1371 	page = head;
1372 	d_off = 0;
1373 	for (i = 0; i < num_frags; i++) {
1374 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1375 		u32 p_off, p_len, copied;
1376 		struct page *p;
1377 		u8 *vaddr;
1378 
1379 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1380 				      p, p_off, p_len, copied) {
1381 			u32 copy, done = 0;
1382 			vaddr = kmap_atomic(p);
1383 
1384 			while (done < p_len) {
1385 				if (d_off == PAGE_SIZE) {
1386 					d_off = 0;
1387 					page = (struct page *)page_private(page);
1388 				}
1389 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1390 				memcpy(page_address(page) + d_off,
1391 				       vaddr + p_off + done, copy);
1392 				done += copy;
1393 				d_off += copy;
1394 			}
1395 			kunmap_atomic(vaddr);
1396 		}
1397 	}
1398 
1399 	/* skb frags release userspace buffers */
1400 	for (i = 0; i < num_frags; i++)
1401 		skb_frag_unref(skb, i);
1402 
1403 	/* skb frags point to kernel buffers */
1404 	for (i = 0; i < new_frags - 1; i++) {
1405 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1406 		head = (struct page *)page_private(head);
1407 	}
1408 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1409 	skb_shinfo(skb)->nr_frags = new_frags;
1410 
1411 release:
1412 	skb_zcopy_clear(skb, false);
1413 	return 0;
1414 }
1415 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1416 
1417 /**
1418  *	skb_clone	-	duplicate an sk_buff
1419  *	@skb: buffer to clone
1420  *	@gfp_mask: allocation priority
1421  *
1422  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1423  *	copies share the same packet data but not structure. The new
1424  *	buffer has a reference count of 1. If the allocation fails the
1425  *	function returns %NULL otherwise the new buffer is returned.
1426  *
1427  *	If this function is called from an interrupt gfp_mask() must be
1428  *	%GFP_ATOMIC.
1429  */
1430 
1431 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1432 {
1433 	struct sk_buff_fclones *fclones = container_of(skb,
1434 						       struct sk_buff_fclones,
1435 						       skb1);
1436 	struct sk_buff *n;
1437 
1438 	if (skb_orphan_frags(skb, gfp_mask))
1439 		return NULL;
1440 
1441 	if (skb->fclone == SKB_FCLONE_ORIG &&
1442 	    refcount_read(&fclones->fclone_ref) == 1) {
1443 		n = &fclones->skb2;
1444 		refcount_set(&fclones->fclone_ref, 2);
1445 	} else {
1446 		if (skb_pfmemalloc(skb))
1447 			gfp_mask |= __GFP_MEMALLOC;
1448 
1449 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1450 		if (!n)
1451 			return NULL;
1452 
1453 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1454 	}
1455 
1456 	return __skb_clone(n, skb);
1457 }
1458 EXPORT_SYMBOL(skb_clone);
1459 
1460 void skb_headers_offset_update(struct sk_buff *skb, int off)
1461 {
1462 	/* Only adjust this if it actually is csum_start rather than csum */
1463 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1464 		skb->csum_start += off;
1465 	/* {transport,network,mac}_header and tail are relative to skb->head */
1466 	skb->transport_header += off;
1467 	skb->network_header   += off;
1468 	if (skb_mac_header_was_set(skb))
1469 		skb->mac_header += off;
1470 	skb->inner_transport_header += off;
1471 	skb->inner_network_header += off;
1472 	skb->inner_mac_header += off;
1473 }
1474 EXPORT_SYMBOL(skb_headers_offset_update);
1475 
1476 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1477 {
1478 	__copy_skb_header(new, old);
1479 
1480 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1481 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1482 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1483 }
1484 EXPORT_SYMBOL(skb_copy_header);
1485 
1486 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1487 {
1488 	if (skb_pfmemalloc(skb))
1489 		return SKB_ALLOC_RX;
1490 	return 0;
1491 }
1492 
1493 /**
1494  *	skb_copy	-	create private copy of an sk_buff
1495  *	@skb: buffer to copy
1496  *	@gfp_mask: allocation priority
1497  *
1498  *	Make a copy of both an &sk_buff and its data. This is used when the
1499  *	caller wishes to modify the data and needs a private copy of the
1500  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1501  *	on success. The returned buffer has a reference count of 1.
1502  *
1503  *	As by-product this function converts non-linear &sk_buff to linear
1504  *	one, so that &sk_buff becomes completely private and caller is allowed
1505  *	to modify all the data of returned buffer. This means that this
1506  *	function is not recommended for use in circumstances when only
1507  *	header is going to be modified. Use pskb_copy() instead.
1508  */
1509 
1510 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1511 {
1512 	int headerlen = skb_headroom(skb);
1513 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1514 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1515 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1516 
1517 	if (!n)
1518 		return NULL;
1519 
1520 	/* Set the data pointer */
1521 	skb_reserve(n, headerlen);
1522 	/* Set the tail pointer and length */
1523 	skb_put(n, skb->len);
1524 
1525 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1526 
1527 	skb_copy_header(n, skb);
1528 	return n;
1529 }
1530 EXPORT_SYMBOL(skb_copy);
1531 
1532 /**
1533  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1534  *	@skb: buffer to copy
1535  *	@headroom: headroom of new skb
1536  *	@gfp_mask: allocation priority
1537  *	@fclone: if true allocate the copy of the skb from the fclone
1538  *	cache instead of the head cache; it is recommended to set this
1539  *	to true for the cases where the copy will likely be cloned
1540  *
1541  *	Make a copy of both an &sk_buff and part of its data, located
1542  *	in header. Fragmented data remain shared. This is used when
1543  *	the caller wishes to modify only header of &sk_buff and needs
1544  *	private copy of the header to alter. Returns %NULL on failure
1545  *	or the pointer to the buffer on success.
1546  *	The returned buffer has a reference count of 1.
1547  */
1548 
1549 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1550 				   gfp_t gfp_mask, bool fclone)
1551 {
1552 	unsigned int size = skb_headlen(skb) + headroom;
1553 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1554 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1555 
1556 	if (!n)
1557 		goto out;
1558 
1559 	/* Set the data pointer */
1560 	skb_reserve(n, headroom);
1561 	/* Set the tail pointer and length */
1562 	skb_put(n, skb_headlen(skb));
1563 	/* Copy the bytes */
1564 	skb_copy_from_linear_data(skb, n->data, n->len);
1565 
1566 	n->truesize += skb->data_len;
1567 	n->data_len  = skb->data_len;
1568 	n->len	     = skb->len;
1569 
1570 	if (skb_shinfo(skb)->nr_frags) {
1571 		int i;
1572 
1573 		if (skb_orphan_frags(skb, gfp_mask) ||
1574 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1575 			kfree_skb(n);
1576 			n = NULL;
1577 			goto out;
1578 		}
1579 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1580 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1581 			skb_frag_ref(skb, i);
1582 		}
1583 		skb_shinfo(n)->nr_frags = i;
1584 	}
1585 
1586 	if (skb_has_frag_list(skb)) {
1587 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1588 		skb_clone_fraglist(n);
1589 	}
1590 
1591 	skb_copy_header(n, skb);
1592 out:
1593 	return n;
1594 }
1595 EXPORT_SYMBOL(__pskb_copy_fclone);
1596 
1597 /**
1598  *	pskb_expand_head - reallocate header of &sk_buff
1599  *	@skb: buffer to reallocate
1600  *	@nhead: room to add at head
1601  *	@ntail: room to add at tail
1602  *	@gfp_mask: allocation priority
1603  *
1604  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1605  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1606  *	reference count of 1. Returns zero in the case of success or error,
1607  *	if expansion failed. In the last case, &sk_buff is not changed.
1608  *
1609  *	All the pointers pointing into skb header may change and must be
1610  *	reloaded after call to this function.
1611  */
1612 
1613 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1614 		     gfp_t gfp_mask)
1615 {
1616 	int i, osize = skb_end_offset(skb);
1617 	int size = osize + nhead + ntail;
1618 	long off;
1619 	u8 *data;
1620 
1621 	BUG_ON(nhead < 0);
1622 
1623 	BUG_ON(skb_shared(skb));
1624 
1625 	size = SKB_DATA_ALIGN(size);
1626 
1627 	if (skb_pfmemalloc(skb))
1628 		gfp_mask |= __GFP_MEMALLOC;
1629 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1630 			       gfp_mask, NUMA_NO_NODE, NULL);
1631 	if (!data)
1632 		goto nodata;
1633 	size = SKB_WITH_OVERHEAD(ksize(data));
1634 
1635 	/* Copy only real data... and, alas, header. This should be
1636 	 * optimized for the cases when header is void.
1637 	 */
1638 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1639 
1640 	memcpy((struct skb_shared_info *)(data + size),
1641 	       skb_shinfo(skb),
1642 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1643 
1644 	/*
1645 	 * if shinfo is shared we must drop the old head gracefully, but if it
1646 	 * is not we can just drop the old head and let the existing refcount
1647 	 * be since all we did is relocate the values
1648 	 */
1649 	if (skb_cloned(skb)) {
1650 		if (skb_orphan_frags(skb, gfp_mask))
1651 			goto nofrags;
1652 		if (skb_zcopy(skb))
1653 			refcount_inc(&skb_uarg(skb)->refcnt);
1654 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1655 			skb_frag_ref(skb, i);
1656 
1657 		if (skb_has_frag_list(skb))
1658 			skb_clone_fraglist(skb);
1659 
1660 		skb_release_data(skb);
1661 	} else {
1662 		skb_free_head(skb);
1663 	}
1664 	off = (data + nhead) - skb->head;
1665 
1666 	skb->head     = data;
1667 	skb->head_frag = 0;
1668 	skb->data    += off;
1669 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1670 	skb->end      = size;
1671 	off           = nhead;
1672 #else
1673 	skb->end      = skb->head + size;
1674 #endif
1675 	skb->tail	      += off;
1676 	skb_headers_offset_update(skb, nhead);
1677 	skb->cloned   = 0;
1678 	skb->hdr_len  = 0;
1679 	skb->nohdr    = 0;
1680 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1681 
1682 	skb_metadata_clear(skb);
1683 
1684 	/* It is not generally safe to change skb->truesize.
1685 	 * For the moment, we really care of rx path, or
1686 	 * when skb is orphaned (not attached to a socket).
1687 	 */
1688 	if (!skb->sk || skb->destructor == sock_edemux)
1689 		skb->truesize += size - osize;
1690 
1691 	return 0;
1692 
1693 nofrags:
1694 	kfree(data);
1695 nodata:
1696 	return -ENOMEM;
1697 }
1698 EXPORT_SYMBOL(pskb_expand_head);
1699 
1700 /* Make private copy of skb with writable head and some headroom */
1701 
1702 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1703 {
1704 	struct sk_buff *skb2;
1705 	int delta = headroom - skb_headroom(skb);
1706 
1707 	if (delta <= 0)
1708 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1709 	else {
1710 		skb2 = skb_clone(skb, GFP_ATOMIC);
1711 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1712 					     GFP_ATOMIC)) {
1713 			kfree_skb(skb2);
1714 			skb2 = NULL;
1715 		}
1716 	}
1717 	return skb2;
1718 }
1719 EXPORT_SYMBOL(skb_realloc_headroom);
1720 
1721 /**
1722  *	skb_copy_expand	-	copy and expand sk_buff
1723  *	@skb: buffer to copy
1724  *	@newheadroom: new free bytes at head
1725  *	@newtailroom: new free bytes at tail
1726  *	@gfp_mask: allocation priority
1727  *
1728  *	Make a copy of both an &sk_buff and its data and while doing so
1729  *	allocate additional space.
1730  *
1731  *	This is used when the caller wishes to modify the data and needs a
1732  *	private copy of the data to alter as well as more space for new fields.
1733  *	Returns %NULL on failure or the pointer to the buffer
1734  *	on success. The returned buffer has a reference count of 1.
1735  *
1736  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1737  *	is called from an interrupt.
1738  */
1739 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1740 				int newheadroom, int newtailroom,
1741 				gfp_t gfp_mask)
1742 {
1743 	/*
1744 	 *	Allocate the copy buffer
1745 	 */
1746 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1747 					gfp_mask, skb_alloc_rx_flag(skb),
1748 					NUMA_NO_NODE);
1749 	int oldheadroom = skb_headroom(skb);
1750 	int head_copy_len, head_copy_off;
1751 
1752 	if (!n)
1753 		return NULL;
1754 
1755 	skb_reserve(n, newheadroom);
1756 
1757 	/* Set the tail pointer and length */
1758 	skb_put(n, skb->len);
1759 
1760 	head_copy_len = oldheadroom;
1761 	head_copy_off = 0;
1762 	if (newheadroom <= head_copy_len)
1763 		head_copy_len = newheadroom;
1764 	else
1765 		head_copy_off = newheadroom - head_copy_len;
1766 
1767 	/* Copy the linear header and data. */
1768 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1769 			     skb->len + head_copy_len));
1770 
1771 	skb_copy_header(n, skb);
1772 
1773 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1774 
1775 	return n;
1776 }
1777 EXPORT_SYMBOL(skb_copy_expand);
1778 
1779 /**
1780  *	__skb_pad		-	zero pad the tail of an skb
1781  *	@skb: buffer to pad
1782  *	@pad: space to pad
1783  *	@free_on_error: free buffer on error
1784  *
1785  *	Ensure that a buffer is followed by a padding area that is zero
1786  *	filled. Used by network drivers which may DMA or transfer data
1787  *	beyond the buffer end onto the wire.
1788  *
1789  *	May return error in out of memory cases. The skb is freed on error
1790  *	if @free_on_error is true.
1791  */
1792 
1793 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1794 {
1795 	int err;
1796 	int ntail;
1797 
1798 	/* If the skbuff is non linear tailroom is always zero.. */
1799 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1800 		memset(skb->data+skb->len, 0, pad);
1801 		return 0;
1802 	}
1803 
1804 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1805 	if (likely(skb_cloned(skb) || ntail > 0)) {
1806 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1807 		if (unlikely(err))
1808 			goto free_skb;
1809 	}
1810 
1811 	/* FIXME: The use of this function with non-linear skb's really needs
1812 	 * to be audited.
1813 	 */
1814 	err = skb_linearize(skb);
1815 	if (unlikely(err))
1816 		goto free_skb;
1817 
1818 	memset(skb->data + skb->len, 0, pad);
1819 	return 0;
1820 
1821 free_skb:
1822 	if (free_on_error)
1823 		kfree_skb(skb);
1824 	return err;
1825 }
1826 EXPORT_SYMBOL(__skb_pad);
1827 
1828 /**
1829  *	pskb_put - add data to the tail of a potentially fragmented buffer
1830  *	@skb: start of the buffer to use
1831  *	@tail: tail fragment of the buffer to use
1832  *	@len: amount of data to add
1833  *
1834  *	This function extends the used data area of the potentially
1835  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1836  *	@skb itself. If this would exceed the total buffer size the kernel
1837  *	will panic. A pointer to the first byte of the extra data is
1838  *	returned.
1839  */
1840 
1841 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1842 {
1843 	if (tail != skb) {
1844 		skb->data_len += len;
1845 		skb->len += len;
1846 	}
1847 	return skb_put(tail, len);
1848 }
1849 EXPORT_SYMBOL_GPL(pskb_put);
1850 
1851 /**
1852  *	skb_put - add data to a buffer
1853  *	@skb: buffer to use
1854  *	@len: amount of data to add
1855  *
1856  *	This function extends the used data area of the buffer. If this would
1857  *	exceed the total buffer size the kernel will panic. A pointer to the
1858  *	first byte of the extra data is returned.
1859  */
1860 void *skb_put(struct sk_buff *skb, unsigned int len)
1861 {
1862 	void *tmp = skb_tail_pointer(skb);
1863 	SKB_LINEAR_ASSERT(skb);
1864 	skb->tail += len;
1865 	skb->len  += len;
1866 	if (unlikely(skb->tail > skb->end))
1867 		skb_over_panic(skb, len, __builtin_return_address(0));
1868 	return tmp;
1869 }
1870 EXPORT_SYMBOL(skb_put);
1871 
1872 /**
1873  *	skb_push - add data to the start of a buffer
1874  *	@skb: buffer to use
1875  *	@len: amount of data to add
1876  *
1877  *	This function extends the used data area of the buffer at the buffer
1878  *	start. If this would exceed the total buffer headroom the kernel will
1879  *	panic. A pointer to the first byte of the extra data is returned.
1880  */
1881 void *skb_push(struct sk_buff *skb, unsigned int len)
1882 {
1883 	skb->data -= len;
1884 	skb->len  += len;
1885 	if (unlikely(skb->data < skb->head))
1886 		skb_under_panic(skb, len, __builtin_return_address(0));
1887 	return skb->data;
1888 }
1889 EXPORT_SYMBOL(skb_push);
1890 
1891 /**
1892  *	skb_pull - remove data from the start of a buffer
1893  *	@skb: buffer to use
1894  *	@len: amount of data to remove
1895  *
1896  *	This function removes data from the start of a buffer, returning
1897  *	the memory to the headroom. A pointer to the next data in the buffer
1898  *	is returned. Once the data has been pulled future pushes will overwrite
1899  *	the old data.
1900  */
1901 void *skb_pull(struct sk_buff *skb, unsigned int len)
1902 {
1903 	return skb_pull_inline(skb, len);
1904 }
1905 EXPORT_SYMBOL(skb_pull);
1906 
1907 /**
1908  *	skb_trim - remove end from a buffer
1909  *	@skb: buffer to alter
1910  *	@len: new length
1911  *
1912  *	Cut the length of a buffer down by removing data from the tail. If
1913  *	the buffer is already under the length specified it is not modified.
1914  *	The skb must be linear.
1915  */
1916 void skb_trim(struct sk_buff *skb, unsigned int len)
1917 {
1918 	if (skb->len > len)
1919 		__skb_trim(skb, len);
1920 }
1921 EXPORT_SYMBOL(skb_trim);
1922 
1923 /* Trims skb to length len. It can change skb pointers.
1924  */
1925 
1926 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1927 {
1928 	struct sk_buff **fragp;
1929 	struct sk_buff *frag;
1930 	int offset = skb_headlen(skb);
1931 	int nfrags = skb_shinfo(skb)->nr_frags;
1932 	int i;
1933 	int err;
1934 
1935 	if (skb_cloned(skb) &&
1936 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1937 		return err;
1938 
1939 	i = 0;
1940 	if (offset >= len)
1941 		goto drop_pages;
1942 
1943 	for (; i < nfrags; i++) {
1944 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1945 
1946 		if (end < len) {
1947 			offset = end;
1948 			continue;
1949 		}
1950 
1951 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1952 
1953 drop_pages:
1954 		skb_shinfo(skb)->nr_frags = i;
1955 
1956 		for (; i < nfrags; i++)
1957 			skb_frag_unref(skb, i);
1958 
1959 		if (skb_has_frag_list(skb))
1960 			skb_drop_fraglist(skb);
1961 		goto done;
1962 	}
1963 
1964 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1965 	     fragp = &frag->next) {
1966 		int end = offset + frag->len;
1967 
1968 		if (skb_shared(frag)) {
1969 			struct sk_buff *nfrag;
1970 
1971 			nfrag = skb_clone(frag, GFP_ATOMIC);
1972 			if (unlikely(!nfrag))
1973 				return -ENOMEM;
1974 
1975 			nfrag->next = frag->next;
1976 			consume_skb(frag);
1977 			frag = nfrag;
1978 			*fragp = frag;
1979 		}
1980 
1981 		if (end < len) {
1982 			offset = end;
1983 			continue;
1984 		}
1985 
1986 		if (end > len &&
1987 		    unlikely((err = pskb_trim(frag, len - offset))))
1988 			return err;
1989 
1990 		if (frag->next)
1991 			skb_drop_list(&frag->next);
1992 		break;
1993 	}
1994 
1995 done:
1996 	if (len > skb_headlen(skb)) {
1997 		skb->data_len -= skb->len - len;
1998 		skb->len       = len;
1999 	} else {
2000 		skb->len       = len;
2001 		skb->data_len  = 0;
2002 		skb_set_tail_pointer(skb, len);
2003 	}
2004 
2005 	if (!skb->sk || skb->destructor == sock_edemux)
2006 		skb_condense(skb);
2007 	return 0;
2008 }
2009 EXPORT_SYMBOL(___pskb_trim);
2010 
2011 /* Note : use pskb_trim_rcsum() instead of calling this directly
2012  */
2013 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2014 {
2015 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2016 		int delta = skb->len - len;
2017 
2018 		skb->csum = csum_block_sub(skb->csum,
2019 					   skb_checksum(skb, len, delta, 0),
2020 					   len);
2021 	}
2022 	return __pskb_trim(skb, len);
2023 }
2024 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2025 
2026 /**
2027  *	__pskb_pull_tail - advance tail of skb header
2028  *	@skb: buffer to reallocate
2029  *	@delta: number of bytes to advance tail
2030  *
2031  *	The function makes a sense only on a fragmented &sk_buff,
2032  *	it expands header moving its tail forward and copying necessary
2033  *	data from fragmented part.
2034  *
2035  *	&sk_buff MUST have reference count of 1.
2036  *
2037  *	Returns %NULL (and &sk_buff does not change) if pull failed
2038  *	or value of new tail of skb in the case of success.
2039  *
2040  *	All the pointers pointing into skb header may change and must be
2041  *	reloaded after call to this function.
2042  */
2043 
2044 /* Moves tail of skb head forward, copying data from fragmented part,
2045  * when it is necessary.
2046  * 1. It may fail due to malloc failure.
2047  * 2. It may change skb pointers.
2048  *
2049  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2050  */
2051 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2052 {
2053 	/* If skb has not enough free space at tail, get new one
2054 	 * plus 128 bytes for future expansions. If we have enough
2055 	 * room at tail, reallocate without expansion only if skb is cloned.
2056 	 */
2057 	int i, k, eat = (skb->tail + delta) - skb->end;
2058 
2059 	if (eat > 0 || skb_cloned(skb)) {
2060 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2061 				     GFP_ATOMIC))
2062 			return NULL;
2063 	}
2064 
2065 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2066 			     skb_tail_pointer(skb), delta));
2067 
2068 	/* Optimization: no fragments, no reasons to preestimate
2069 	 * size of pulled pages. Superb.
2070 	 */
2071 	if (!skb_has_frag_list(skb))
2072 		goto pull_pages;
2073 
2074 	/* Estimate size of pulled pages. */
2075 	eat = delta;
2076 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2077 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2078 
2079 		if (size >= eat)
2080 			goto pull_pages;
2081 		eat -= size;
2082 	}
2083 
2084 	/* If we need update frag list, we are in troubles.
2085 	 * Certainly, it is possible to add an offset to skb data,
2086 	 * but taking into account that pulling is expected to
2087 	 * be very rare operation, it is worth to fight against
2088 	 * further bloating skb head and crucify ourselves here instead.
2089 	 * Pure masohism, indeed. 8)8)
2090 	 */
2091 	if (eat) {
2092 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2093 		struct sk_buff *clone = NULL;
2094 		struct sk_buff *insp = NULL;
2095 
2096 		do {
2097 			if (list->len <= eat) {
2098 				/* Eaten as whole. */
2099 				eat -= list->len;
2100 				list = list->next;
2101 				insp = list;
2102 			} else {
2103 				/* Eaten partially. */
2104 
2105 				if (skb_shared(list)) {
2106 					/* Sucks! We need to fork list. :-( */
2107 					clone = skb_clone(list, GFP_ATOMIC);
2108 					if (!clone)
2109 						return NULL;
2110 					insp = list->next;
2111 					list = clone;
2112 				} else {
2113 					/* This may be pulled without
2114 					 * problems. */
2115 					insp = list;
2116 				}
2117 				if (!pskb_pull(list, eat)) {
2118 					kfree_skb(clone);
2119 					return NULL;
2120 				}
2121 				break;
2122 			}
2123 		} while (eat);
2124 
2125 		/* Free pulled out fragments. */
2126 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2127 			skb_shinfo(skb)->frag_list = list->next;
2128 			kfree_skb(list);
2129 		}
2130 		/* And insert new clone at head. */
2131 		if (clone) {
2132 			clone->next = list;
2133 			skb_shinfo(skb)->frag_list = clone;
2134 		}
2135 	}
2136 	/* Success! Now we may commit changes to skb data. */
2137 
2138 pull_pages:
2139 	eat = delta;
2140 	k = 0;
2141 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2142 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2143 
2144 		if (size <= eat) {
2145 			skb_frag_unref(skb, i);
2146 			eat -= size;
2147 		} else {
2148 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2149 
2150 			*frag = skb_shinfo(skb)->frags[i];
2151 			if (eat) {
2152 				skb_frag_off_add(frag, eat);
2153 				skb_frag_size_sub(frag, eat);
2154 				if (!i)
2155 					goto end;
2156 				eat = 0;
2157 			}
2158 			k++;
2159 		}
2160 	}
2161 	skb_shinfo(skb)->nr_frags = k;
2162 
2163 end:
2164 	skb->tail     += delta;
2165 	skb->data_len -= delta;
2166 
2167 	if (!skb->data_len)
2168 		skb_zcopy_clear(skb, false);
2169 
2170 	return skb_tail_pointer(skb);
2171 }
2172 EXPORT_SYMBOL(__pskb_pull_tail);
2173 
2174 /**
2175  *	skb_copy_bits - copy bits from skb to kernel buffer
2176  *	@skb: source skb
2177  *	@offset: offset in source
2178  *	@to: destination buffer
2179  *	@len: number of bytes to copy
2180  *
2181  *	Copy the specified number of bytes from the source skb to the
2182  *	destination buffer.
2183  *
2184  *	CAUTION ! :
2185  *		If its prototype is ever changed,
2186  *		check arch/{*}/net/{*}.S files,
2187  *		since it is called from BPF assembly code.
2188  */
2189 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2190 {
2191 	int start = skb_headlen(skb);
2192 	struct sk_buff *frag_iter;
2193 	int i, copy;
2194 
2195 	if (offset > (int)skb->len - len)
2196 		goto fault;
2197 
2198 	/* Copy header. */
2199 	if ((copy = start - offset) > 0) {
2200 		if (copy > len)
2201 			copy = len;
2202 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2203 		if ((len -= copy) == 0)
2204 			return 0;
2205 		offset += copy;
2206 		to     += copy;
2207 	}
2208 
2209 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2210 		int end;
2211 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2212 
2213 		WARN_ON(start > offset + len);
2214 
2215 		end = start + skb_frag_size(f);
2216 		if ((copy = end - offset) > 0) {
2217 			u32 p_off, p_len, copied;
2218 			struct page *p;
2219 			u8 *vaddr;
2220 
2221 			if (copy > len)
2222 				copy = len;
2223 
2224 			skb_frag_foreach_page(f,
2225 					      skb_frag_off(f) + offset - start,
2226 					      copy, p, p_off, p_len, copied) {
2227 				vaddr = kmap_atomic(p);
2228 				memcpy(to + copied, vaddr + p_off, p_len);
2229 				kunmap_atomic(vaddr);
2230 			}
2231 
2232 			if ((len -= copy) == 0)
2233 				return 0;
2234 			offset += copy;
2235 			to     += copy;
2236 		}
2237 		start = end;
2238 	}
2239 
2240 	skb_walk_frags(skb, frag_iter) {
2241 		int end;
2242 
2243 		WARN_ON(start > offset + len);
2244 
2245 		end = start + frag_iter->len;
2246 		if ((copy = end - offset) > 0) {
2247 			if (copy > len)
2248 				copy = len;
2249 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2250 				goto fault;
2251 			if ((len -= copy) == 0)
2252 				return 0;
2253 			offset += copy;
2254 			to     += copy;
2255 		}
2256 		start = end;
2257 	}
2258 
2259 	if (!len)
2260 		return 0;
2261 
2262 fault:
2263 	return -EFAULT;
2264 }
2265 EXPORT_SYMBOL(skb_copy_bits);
2266 
2267 /*
2268  * Callback from splice_to_pipe(), if we need to release some pages
2269  * at the end of the spd in case we error'ed out in filling the pipe.
2270  */
2271 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2272 {
2273 	put_page(spd->pages[i]);
2274 }
2275 
2276 static struct page *linear_to_page(struct page *page, unsigned int *len,
2277 				   unsigned int *offset,
2278 				   struct sock *sk)
2279 {
2280 	struct page_frag *pfrag = sk_page_frag(sk);
2281 
2282 	if (!sk_page_frag_refill(sk, pfrag))
2283 		return NULL;
2284 
2285 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2286 
2287 	memcpy(page_address(pfrag->page) + pfrag->offset,
2288 	       page_address(page) + *offset, *len);
2289 	*offset = pfrag->offset;
2290 	pfrag->offset += *len;
2291 
2292 	return pfrag->page;
2293 }
2294 
2295 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2296 			     struct page *page,
2297 			     unsigned int offset)
2298 {
2299 	return	spd->nr_pages &&
2300 		spd->pages[spd->nr_pages - 1] == page &&
2301 		(spd->partial[spd->nr_pages - 1].offset +
2302 		 spd->partial[spd->nr_pages - 1].len == offset);
2303 }
2304 
2305 /*
2306  * Fill page/offset/length into spd, if it can hold more pages.
2307  */
2308 static bool spd_fill_page(struct splice_pipe_desc *spd,
2309 			  struct pipe_inode_info *pipe, struct page *page,
2310 			  unsigned int *len, unsigned int offset,
2311 			  bool linear,
2312 			  struct sock *sk)
2313 {
2314 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2315 		return true;
2316 
2317 	if (linear) {
2318 		page = linear_to_page(page, len, &offset, sk);
2319 		if (!page)
2320 			return true;
2321 	}
2322 	if (spd_can_coalesce(spd, page, offset)) {
2323 		spd->partial[spd->nr_pages - 1].len += *len;
2324 		return false;
2325 	}
2326 	get_page(page);
2327 	spd->pages[spd->nr_pages] = page;
2328 	spd->partial[spd->nr_pages].len = *len;
2329 	spd->partial[spd->nr_pages].offset = offset;
2330 	spd->nr_pages++;
2331 
2332 	return false;
2333 }
2334 
2335 static bool __splice_segment(struct page *page, unsigned int poff,
2336 			     unsigned int plen, unsigned int *off,
2337 			     unsigned int *len,
2338 			     struct splice_pipe_desc *spd, bool linear,
2339 			     struct sock *sk,
2340 			     struct pipe_inode_info *pipe)
2341 {
2342 	if (!*len)
2343 		return true;
2344 
2345 	/* skip this segment if already processed */
2346 	if (*off >= plen) {
2347 		*off -= plen;
2348 		return false;
2349 	}
2350 
2351 	/* ignore any bits we already processed */
2352 	poff += *off;
2353 	plen -= *off;
2354 	*off = 0;
2355 
2356 	do {
2357 		unsigned int flen = min(*len, plen);
2358 
2359 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2360 				  linear, sk))
2361 			return true;
2362 		poff += flen;
2363 		plen -= flen;
2364 		*len -= flen;
2365 	} while (*len && plen);
2366 
2367 	return false;
2368 }
2369 
2370 /*
2371  * Map linear and fragment data from the skb to spd. It reports true if the
2372  * pipe is full or if we already spliced the requested length.
2373  */
2374 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2375 			      unsigned int *offset, unsigned int *len,
2376 			      struct splice_pipe_desc *spd, struct sock *sk)
2377 {
2378 	int seg;
2379 	struct sk_buff *iter;
2380 
2381 	/* map the linear part :
2382 	 * If skb->head_frag is set, this 'linear' part is backed by a
2383 	 * fragment, and if the head is not shared with any clones then
2384 	 * we can avoid a copy since we own the head portion of this page.
2385 	 */
2386 	if (__splice_segment(virt_to_page(skb->data),
2387 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2388 			     skb_headlen(skb),
2389 			     offset, len, spd,
2390 			     skb_head_is_locked(skb),
2391 			     sk, pipe))
2392 		return true;
2393 
2394 	/*
2395 	 * then map the fragments
2396 	 */
2397 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2398 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2399 
2400 		if (__splice_segment(skb_frag_page(f),
2401 				     skb_frag_off(f), skb_frag_size(f),
2402 				     offset, len, spd, false, sk, pipe))
2403 			return true;
2404 	}
2405 
2406 	skb_walk_frags(skb, iter) {
2407 		if (*offset >= iter->len) {
2408 			*offset -= iter->len;
2409 			continue;
2410 		}
2411 		/* __skb_splice_bits() only fails if the output has no room
2412 		 * left, so no point in going over the frag_list for the error
2413 		 * case.
2414 		 */
2415 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2416 			return true;
2417 	}
2418 
2419 	return false;
2420 }
2421 
2422 /*
2423  * Map data from the skb to a pipe. Should handle both the linear part,
2424  * the fragments, and the frag list.
2425  */
2426 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2427 		    struct pipe_inode_info *pipe, unsigned int tlen,
2428 		    unsigned int flags)
2429 {
2430 	struct partial_page partial[MAX_SKB_FRAGS];
2431 	struct page *pages[MAX_SKB_FRAGS];
2432 	struct splice_pipe_desc spd = {
2433 		.pages = pages,
2434 		.partial = partial,
2435 		.nr_pages_max = MAX_SKB_FRAGS,
2436 		.ops = &nosteal_pipe_buf_ops,
2437 		.spd_release = sock_spd_release,
2438 	};
2439 	int ret = 0;
2440 
2441 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2442 
2443 	if (spd.nr_pages)
2444 		ret = splice_to_pipe(pipe, &spd);
2445 
2446 	return ret;
2447 }
2448 EXPORT_SYMBOL_GPL(skb_splice_bits);
2449 
2450 /* Send skb data on a socket. Socket must be locked. */
2451 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2452 			 int len)
2453 {
2454 	unsigned int orig_len = len;
2455 	struct sk_buff *head = skb;
2456 	unsigned short fragidx;
2457 	int slen, ret;
2458 
2459 do_frag_list:
2460 
2461 	/* Deal with head data */
2462 	while (offset < skb_headlen(skb) && len) {
2463 		struct kvec kv;
2464 		struct msghdr msg;
2465 
2466 		slen = min_t(int, len, skb_headlen(skb) - offset);
2467 		kv.iov_base = skb->data + offset;
2468 		kv.iov_len = slen;
2469 		memset(&msg, 0, sizeof(msg));
2470 		msg.msg_flags = MSG_DONTWAIT;
2471 
2472 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2473 		if (ret <= 0)
2474 			goto error;
2475 
2476 		offset += ret;
2477 		len -= ret;
2478 	}
2479 
2480 	/* All the data was skb head? */
2481 	if (!len)
2482 		goto out;
2483 
2484 	/* Make offset relative to start of frags */
2485 	offset -= skb_headlen(skb);
2486 
2487 	/* Find where we are in frag list */
2488 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2489 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2490 
2491 		if (offset < skb_frag_size(frag))
2492 			break;
2493 
2494 		offset -= skb_frag_size(frag);
2495 	}
2496 
2497 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2498 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2499 
2500 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2501 
2502 		while (slen) {
2503 			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2504 						     skb_frag_off(frag) + offset,
2505 						     slen, MSG_DONTWAIT);
2506 			if (ret <= 0)
2507 				goto error;
2508 
2509 			len -= ret;
2510 			offset += ret;
2511 			slen -= ret;
2512 		}
2513 
2514 		offset = 0;
2515 	}
2516 
2517 	if (len) {
2518 		/* Process any frag lists */
2519 
2520 		if (skb == head) {
2521 			if (skb_has_frag_list(skb)) {
2522 				skb = skb_shinfo(skb)->frag_list;
2523 				goto do_frag_list;
2524 			}
2525 		} else if (skb->next) {
2526 			skb = skb->next;
2527 			goto do_frag_list;
2528 		}
2529 	}
2530 
2531 out:
2532 	return orig_len - len;
2533 
2534 error:
2535 	return orig_len == len ? ret : orig_len - len;
2536 }
2537 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2538 
2539 /**
2540  *	skb_store_bits - store bits from kernel buffer to skb
2541  *	@skb: destination buffer
2542  *	@offset: offset in destination
2543  *	@from: source buffer
2544  *	@len: number of bytes to copy
2545  *
2546  *	Copy the specified number of bytes from the source buffer to the
2547  *	destination skb.  This function handles all the messy bits of
2548  *	traversing fragment lists and such.
2549  */
2550 
2551 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2552 {
2553 	int start = skb_headlen(skb);
2554 	struct sk_buff *frag_iter;
2555 	int i, copy;
2556 
2557 	if (offset > (int)skb->len - len)
2558 		goto fault;
2559 
2560 	if ((copy = start - offset) > 0) {
2561 		if (copy > len)
2562 			copy = len;
2563 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2564 		if ((len -= copy) == 0)
2565 			return 0;
2566 		offset += copy;
2567 		from += copy;
2568 	}
2569 
2570 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2571 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2572 		int end;
2573 
2574 		WARN_ON(start > offset + len);
2575 
2576 		end = start + skb_frag_size(frag);
2577 		if ((copy = end - offset) > 0) {
2578 			u32 p_off, p_len, copied;
2579 			struct page *p;
2580 			u8 *vaddr;
2581 
2582 			if (copy > len)
2583 				copy = len;
2584 
2585 			skb_frag_foreach_page(frag,
2586 					      skb_frag_off(frag) + offset - start,
2587 					      copy, p, p_off, p_len, copied) {
2588 				vaddr = kmap_atomic(p);
2589 				memcpy(vaddr + p_off, from + copied, p_len);
2590 				kunmap_atomic(vaddr);
2591 			}
2592 
2593 			if ((len -= copy) == 0)
2594 				return 0;
2595 			offset += copy;
2596 			from += copy;
2597 		}
2598 		start = end;
2599 	}
2600 
2601 	skb_walk_frags(skb, frag_iter) {
2602 		int end;
2603 
2604 		WARN_ON(start > offset + len);
2605 
2606 		end = start + frag_iter->len;
2607 		if ((copy = end - offset) > 0) {
2608 			if (copy > len)
2609 				copy = len;
2610 			if (skb_store_bits(frag_iter, offset - start,
2611 					   from, copy))
2612 				goto fault;
2613 			if ((len -= copy) == 0)
2614 				return 0;
2615 			offset += copy;
2616 			from += copy;
2617 		}
2618 		start = end;
2619 	}
2620 	if (!len)
2621 		return 0;
2622 
2623 fault:
2624 	return -EFAULT;
2625 }
2626 EXPORT_SYMBOL(skb_store_bits);
2627 
2628 /* Checksum skb data. */
2629 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2630 		      __wsum csum, const struct skb_checksum_ops *ops)
2631 {
2632 	int start = skb_headlen(skb);
2633 	int i, copy = start - offset;
2634 	struct sk_buff *frag_iter;
2635 	int pos = 0;
2636 
2637 	/* Checksum header. */
2638 	if (copy > 0) {
2639 		if (copy > len)
2640 			copy = len;
2641 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2642 				       skb->data + offset, copy, csum);
2643 		if ((len -= copy) == 0)
2644 			return csum;
2645 		offset += copy;
2646 		pos	= copy;
2647 	}
2648 
2649 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2650 		int end;
2651 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2652 
2653 		WARN_ON(start > offset + len);
2654 
2655 		end = start + skb_frag_size(frag);
2656 		if ((copy = end - offset) > 0) {
2657 			u32 p_off, p_len, copied;
2658 			struct page *p;
2659 			__wsum csum2;
2660 			u8 *vaddr;
2661 
2662 			if (copy > len)
2663 				copy = len;
2664 
2665 			skb_frag_foreach_page(frag,
2666 					      skb_frag_off(frag) + offset - start,
2667 					      copy, p, p_off, p_len, copied) {
2668 				vaddr = kmap_atomic(p);
2669 				csum2 = INDIRECT_CALL_1(ops->update,
2670 							csum_partial_ext,
2671 							vaddr + p_off, p_len, 0);
2672 				kunmap_atomic(vaddr);
2673 				csum = INDIRECT_CALL_1(ops->combine,
2674 						       csum_block_add_ext, csum,
2675 						       csum2, pos, p_len);
2676 				pos += p_len;
2677 			}
2678 
2679 			if (!(len -= copy))
2680 				return csum;
2681 			offset += copy;
2682 		}
2683 		start = end;
2684 	}
2685 
2686 	skb_walk_frags(skb, frag_iter) {
2687 		int end;
2688 
2689 		WARN_ON(start > offset + len);
2690 
2691 		end = start + frag_iter->len;
2692 		if ((copy = end - offset) > 0) {
2693 			__wsum csum2;
2694 			if (copy > len)
2695 				copy = len;
2696 			csum2 = __skb_checksum(frag_iter, offset - start,
2697 					       copy, 0, ops);
2698 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2699 					       csum, csum2, pos, copy);
2700 			if ((len -= copy) == 0)
2701 				return csum;
2702 			offset += copy;
2703 			pos    += copy;
2704 		}
2705 		start = end;
2706 	}
2707 	BUG_ON(len);
2708 
2709 	return csum;
2710 }
2711 EXPORT_SYMBOL(__skb_checksum);
2712 
2713 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2714 		    int len, __wsum csum)
2715 {
2716 	const struct skb_checksum_ops ops = {
2717 		.update  = csum_partial_ext,
2718 		.combine = csum_block_add_ext,
2719 	};
2720 
2721 	return __skb_checksum(skb, offset, len, csum, &ops);
2722 }
2723 EXPORT_SYMBOL(skb_checksum);
2724 
2725 /* Both of above in one bottle. */
2726 
2727 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2728 				    u8 *to, int len, __wsum csum)
2729 {
2730 	int start = skb_headlen(skb);
2731 	int i, copy = start - offset;
2732 	struct sk_buff *frag_iter;
2733 	int pos = 0;
2734 
2735 	/* Copy header. */
2736 	if (copy > 0) {
2737 		if (copy > len)
2738 			copy = len;
2739 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2740 						 copy, csum);
2741 		if ((len -= copy) == 0)
2742 			return csum;
2743 		offset += copy;
2744 		to     += copy;
2745 		pos	= copy;
2746 	}
2747 
2748 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2749 		int end;
2750 
2751 		WARN_ON(start > offset + len);
2752 
2753 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2754 		if ((copy = end - offset) > 0) {
2755 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2756 			u32 p_off, p_len, copied;
2757 			struct page *p;
2758 			__wsum csum2;
2759 			u8 *vaddr;
2760 
2761 			if (copy > len)
2762 				copy = len;
2763 
2764 			skb_frag_foreach_page(frag,
2765 					      skb_frag_off(frag) + offset - start,
2766 					      copy, p, p_off, p_len, copied) {
2767 				vaddr = kmap_atomic(p);
2768 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2769 								  to + copied,
2770 								  p_len, 0);
2771 				kunmap_atomic(vaddr);
2772 				csum = csum_block_add(csum, csum2, pos);
2773 				pos += p_len;
2774 			}
2775 
2776 			if (!(len -= copy))
2777 				return csum;
2778 			offset += copy;
2779 			to     += copy;
2780 		}
2781 		start = end;
2782 	}
2783 
2784 	skb_walk_frags(skb, frag_iter) {
2785 		__wsum csum2;
2786 		int end;
2787 
2788 		WARN_ON(start > offset + len);
2789 
2790 		end = start + frag_iter->len;
2791 		if ((copy = end - offset) > 0) {
2792 			if (copy > len)
2793 				copy = len;
2794 			csum2 = skb_copy_and_csum_bits(frag_iter,
2795 						       offset - start,
2796 						       to, copy, 0);
2797 			csum = csum_block_add(csum, csum2, pos);
2798 			if ((len -= copy) == 0)
2799 				return csum;
2800 			offset += copy;
2801 			to     += copy;
2802 			pos    += copy;
2803 		}
2804 		start = end;
2805 	}
2806 	BUG_ON(len);
2807 	return csum;
2808 }
2809 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2810 
2811 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2812 {
2813 	__sum16 sum;
2814 
2815 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2816 	/* See comments in __skb_checksum_complete(). */
2817 	if (likely(!sum)) {
2818 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2819 		    !skb->csum_complete_sw)
2820 			netdev_rx_csum_fault(skb->dev, skb);
2821 	}
2822 	if (!skb_shared(skb))
2823 		skb->csum_valid = !sum;
2824 	return sum;
2825 }
2826 EXPORT_SYMBOL(__skb_checksum_complete_head);
2827 
2828 /* This function assumes skb->csum already holds pseudo header's checksum,
2829  * which has been changed from the hardware checksum, for example, by
2830  * __skb_checksum_validate_complete(). And, the original skb->csum must
2831  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2832  *
2833  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2834  * zero. The new checksum is stored back into skb->csum unless the skb is
2835  * shared.
2836  */
2837 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2838 {
2839 	__wsum csum;
2840 	__sum16 sum;
2841 
2842 	csum = skb_checksum(skb, 0, skb->len, 0);
2843 
2844 	sum = csum_fold(csum_add(skb->csum, csum));
2845 	/* This check is inverted, because we already knew the hardware
2846 	 * checksum is invalid before calling this function. So, if the
2847 	 * re-computed checksum is valid instead, then we have a mismatch
2848 	 * between the original skb->csum and skb_checksum(). This means either
2849 	 * the original hardware checksum is incorrect or we screw up skb->csum
2850 	 * when moving skb->data around.
2851 	 */
2852 	if (likely(!sum)) {
2853 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2854 		    !skb->csum_complete_sw)
2855 			netdev_rx_csum_fault(skb->dev, skb);
2856 	}
2857 
2858 	if (!skb_shared(skb)) {
2859 		/* Save full packet checksum */
2860 		skb->csum = csum;
2861 		skb->ip_summed = CHECKSUM_COMPLETE;
2862 		skb->csum_complete_sw = 1;
2863 		skb->csum_valid = !sum;
2864 	}
2865 
2866 	return sum;
2867 }
2868 EXPORT_SYMBOL(__skb_checksum_complete);
2869 
2870 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2871 {
2872 	net_warn_ratelimited(
2873 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2874 		__func__);
2875 	return 0;
2876 }
2877 
2878 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2879 				       int offset, int len)
2880 {
2881 	net_warn_ratelimited(
2882 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2883 		__func__);
2884 	return 0;
2885 }
2886 
2887 static const struct skb_checksum_ops default_crc32c_ops = {
2888 	.update  = warn_crc32c_csum_update,
2889 	.combine = warn_crc32c_csum_combine,
2890 };
2891 
2892 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2893 	&default_crc32c_ops;
2894 EXPORT_SYMBOL(crc32c_csum_stub);
2895 
2896  /**
2897  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2898  *	@from: source buffer
2899  *
2900  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2901  *	into skb_zerocopy().
2902  */
2903 unsigned int
2904 skb_zerocopy_headlen(const struct sk_buff *from)
2905 {
2906 	unsigned int hlen = 0;
2907 
2908 	if (!from->head_frag ||
2909 	    skb_headlen(from) < L1_CACHE_BYTES ||
2910 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2911 		hlen = skb_headlen(from);
2912 
2913 	if (skb_has_frag_list(from))
2914 		hlen = from->len;
2915 
2916 	return hlen;
2917 }
2918 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2919 
2920 /**
2921  *	skb_zerocopy - Zero copy skb to skb
2922  *	@to: destination buffer
2923  *	@from: source buffer
2924  *	@len: number of bytes to copy from source buffer
2925  *	@hlen: size of linear headroom in destination buffer
2926  *
2927  *	Copies up to `len` bytes from `from` to `to` by creating references
2928  *	to the frags in the source buffer.
2929  *
2930  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2931  *	headroom in the `to` buffer.
2932  *
2933  *	Return value:
2934  *	0: everything is OK
2935  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2936  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2937  */
2938 int
2939 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2940 {
2941 	int i, j = 0;
2942 	int plen = 0; /* length of skb->head fragment */
2943 	int ret;
2944 	struct page *page;
2945 	unsigned int offset;
2946 
2947 	BUG_ON(!from->head_frag && !hlen);
2948 
2949 	/* dont bother with small payloads */
2950 	if (len <= skb_tailroom(to))
2951 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2952 
2953 	if (hlen) {
2954 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2955 		if (unlikely(ret))
2956 			return ret;
2957 		len -= hlen;
2958 	} else {
2959 		plen = min_t(int, skb_headlen(from), len);
2960 		if (plen) {
2961 			page = virt_to_head_page(from->head);
2962 			offset = from->data - (unsigned char *)page_address(page);
2963 			__skb_fill_page_desc(to, 0, page, offset, plen);
2964 			get_page(page);
2965 			j = 1;
2966 			len -= plen;
2967 		}
2968 	}
2969 
2970 	to->truesize += len + plen;
2971 	to->len += len + plen;
2972 	to->data_len += len + plen;
2973 
2974 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2975 		skb_tx_error(from);
2976 		return -ENOMEM;
2977 	}
2978 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2979 
2980 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2981 		int size;
2982 
2983 		if (!len)
2984 			break;
2985 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2986 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2987 					len);
2988 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2989 		len -= size;
2990 		skb_frag_ref(to, j);
2991 		j++;
2992 	}
2993 	skb_shinfo(to)->nr_frags = j;
2994 
2995 	return 0;
2996 }
2997 EXPORT_SYMBOL_GPL(skb_zerocopy);
2998 
2999 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3000 {
3001 	__wsum csum;
3002 	long csstart;
3003 
3004 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3005 		csstart = skb_checksum_start_offset(skb);
3006 	else
3007 		csstart = skb_headlen(skb);
3008 
3009 	BUG_ON(csstart > skb_headlen(skb));
3010 
3011 	skb_copy_from_linear_data(skb, to, csstart);
3012 
3013 	csum = 0;
3014 	if (csstart != skb->len)
3015 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3016 					      skb->len - csstart, 0);
3017 
3018 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3019 		long csstuff = csstart + skb->csum_offset;
3020 
3021 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3022 	}
3023 }
3024 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3025 
3026 /**
3027  *	skb_dequeue - remove from the head of the queue
3028  *	@list: list to dequeue from
3029  *
3030  *	Remove the head of the list. The list lock is taken so the function
3031  *	may be used safely with other locking list functions. The head item is
3032  *	returned or %NULL if the list is empty.
3033  */
3034 
3035 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3036 {
3037 	unsigned long flags;
3038 	struct sk_buff *result;
3039 
3040 	spin_lock_irqsave(&list->lock, flags);
3041 	result = __skb_dequeue(list);
3042 	spin_unlock_irqrestore(&list->lock, flags);
3043 	return result;
3044 }
3045 EXPORT_SYMBOL(skb_dequeue);
3046 
3047 /**
3048  *	skb_dequeue_tail - remove from the tail of the queue
3049  *	@list: list to dequeue from
3050  *
3051  *	Remove the tail of the list. The list lock is taken so the function
3052  *	may be used safely with other locking list functions. The tail item is
3053  *	returned or %NULL if the list is empty.
3054  */
3055 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3056 {
3057 	unsigned long flags;
3058 	struct sk_buff *result;
3059 
3060 	spin_lock_irqsave(&list->lock, flags);
3061 	result = __skb_dequeue_tail(list);
3062 	spin_unlock_irqrestore(&list->lock, flags);
3063 	return result;
3064 }
3065 EXPORT_SYMBOL(skb_dequeue_tail);
3066 
3067 /**
3068  *	skb_queue_purge - empty a list
3069  *	@list: list to empty
3070  *
3071  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3072  *	the list and one reference dropped. This function takes the list
3073  *	lock and is atomic with respect to other list locking functions.
3074  */
3075 void skb_queue_purge(struct sk_buff_head *list)
3076 {
3077 	struct sk_buff *skb;
3078 	while ((skb = skb_dequeue(list)) != NULL)
3079 		kfree_skb(skb);
3080 }
3081 EXPORT_SYMBOL(skb_queue_purge);
3082 
3083 /**
3084  *	skb_rbtree_purge - empty a skb rbtree
3085  *	@root: root of the rbtree to empty
3086  *	Return value: the sum of truesizes of all purged skbs.
3087  *
3088  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3089  *	the list and one reference dropped. This function does not take
3090  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3091  *	out-of-order queue is protected by the socket lock).
3092  */
3093 unsigned int skb_rbtree_purge(struct rb_root *root)
3094 {
3095 	struct rb_node *p = rb_first(root);
3096 	unsigned int sum = 0;
3097 
3098 	while (p) {
3099 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3100 
3101 		p = rb_next(p);
3102 		rb_erase(&skb->rbnode, root);
3103 		sum += skb->truesize;
3104 		kfree_skb(skb);
3105 	}
3106 	return sum;
3107 }
3108 
3109 /**
3110  *	skb_queue_head - queue a buffer at the list head
3111  *	@list: list to use
3112  *	@newsk: buffer to queue
3113  *
3114  *	Queue a buffer at the start of the list. This function takes the
3115  *	list lock and can be used safely with other locking &sk_buff functions
3116  *	safely.
3117  *
3118  *	A buffer cannot be placed on two lists at the same time.
3119  */
3120 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3121 {
3122 	unsigned long flags;
3123 
3124 	spin_lock_irqsave(&list->lock, flags);
3125 	__skb_queue_head(list, newsk);
3126 	spin_unlock_irqrestore(&list->lock, flags);
3127 }
3128 EXPORT_SYMBOL(skb_queue_head);
3129 
3130 /**
3131  *	skb_queue_tail - queue a buffer at the list tail
3132  *	@list: list to use
3133  *	@newsk: buffer to queue
3134  *
3135  *	Queue a buffer at the tail of the list. This function takes the
3136  *	list lock and can be used safely with other locking &sk_buff functions
3137  *	safely.
3138  *
3139  *	A buffer cannot be placed on two lists at the same time.
3140  */
3141 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3142 {
3143 	unsigned long flags;
3144 
3145 	spin_lock_irqsave(&list->lock, flags);
3146 	__skb_queue_tail(list, newsk);
3147 	spin_unlock_irqrestore(&list->lock, flags);
3148 }
3149 EXPORT_SYMBOL(skb_queue_tail);
3150 
3151 /**
3152  *	skb_unlink	-	remove a buffer from a list
3153  *	@skb: buffer to remove
3154  *	@list: list to use
3155  *
3156  *	Remove a packet from a list. The list locks are taken and this
3157  *	function is atomic with respect to other list locked calls
3158  *
3159  *	You must know what list the SKB is on.
3160  */
3161 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3162 {
3163 	unsigned long flags;
3164 
3165 	spin_lock_irqsave(&list->lock, flags);
3166 	__skb_unlink(skb, list);
3167 	spin_unlock_irqrestore(&list->lock, flags);
3168 }
3169 EXPORT_SYMBOL(skb_unlink);
3170 
3171 /**
3172  *	skb_append	-	append a buffer
3173  *	@old: buffer to insert after
3174  *	@newsk: buffer to insert
3175  *	@list: list to use
3176  *
3177  *	Place a packet after a given packet in a list. The list locks are taken
3178  *	and this function is atomic with respect to other list locked calls.
3179  *	A buffer cannot be placed on two lists at the same time.
3180  */
3181 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3182 {
3183 	unsigned long flags;
3184 
3185 	spin_lock_irqsave(&list->lock, flags);
3186 	__skb_queue_after(list, old, newsk);
3187 	spin_unlock_irqrestore(&list->lock, flags);
3188 }
3189 EXPORT_SYMBOL(skb_append);
3190 
3191 static inline void skb_split_inside_header(struct sk_buff *skb,
3192 					   struct sk_buff* skb1,
3193 					   const u32 len, const int pos)
3194 {
3195 	int i;
3196 
3197 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3198 					 pos - len);
3199 	/* And move data appendix as is. */
3200 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3201 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3202 
3203 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3204 	skb_shinfo(skb)->nr_frags  = 0;
3205 	skb1->data_len		   = skb->data_len;
3206 	skb1->len		   += skb1->data_len;
3207 	skb->data_len		   = 0;
3208 	skb->len		   = len;
3209 	skb_set_tail_pointer(skb, len);
3210 }
3211 
3212 static inline void skb_split_no_header(struct sk_buff *skb,
3213 				       struct sk_buff* skb1,
3214 				       const u32 len, int pos)
3215 {
3216 	int i, k = 0;
3217 	const int nfrags = skb_shinfo(skb)->nr_frags;
3218 
3219 	skb_shinfo(skb)->nr_frags = 0;
3220 	skb1->len		  = skb1->data_len = skb->len - len;
3221 	skb->len		  = len;
3222 	skb->data_len		  = len - pos;
3223 
3224 	for (i = 0; i < nfrags; i++) {
3225 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3226 
3227 		if (pos + size > len) {
3228 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3229 
3230 			if (pos < len) {
3231 				/* Split frag.
3232 				 * We have two variants in this case:
3233 				 * 1. Move all the frag to the second
3234 				 *    part, if it is possible. F.e.
3235 				 *    this approach is mandatory for TUX,
3236 				 *    where splitting is expensive.
3237 				 * 2. Split is accurately. We make this.
3238 				 */
3239 				skb_frag_ref(skb, i);
3240 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3241 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3242 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3243 				skb_shinfo(skb)->nr_frags++;
3244 			}
3245 			k++;
3246 		} else
3247 			skb_shinfo(skb)->nr_frags++;
3248 		pos += size;
3249 	}
3250 	skb_shinfo(skb1)->nr_frags = k;
3251 }
3252 
3253 /**
3254  * skb_split - Split fragmented skb to two parts at length len.
3255  * @skb: the buffer to split
3256  * @skb1: the buffer to receive the second part
3257  * @len: new length for skb
3258  */
3259 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3260 {
3261 	int pos = skb_headlen(skb);
3262 
3263 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3264 				      SKBTX_SHARED_FRAG;
3265 	skb_zerocopy_clone(skb1, skb, 0);
3266 	if (len < pos)	/* Split line is inside header. */
3267 		skb_split_inside_header(skb, skb1, len, pos);
3268 	else		/* Second chunk has no header, nothing to copy. */
3269 		skb_split_no_header(skb, skb1, len, pos);
3270 }
3271 EXPORT_SYMBOL(skb_split);
3272 
3273 /* Shifting from/to a cloned skb is a no-go.
3274  *
3275  * Caller cannot keep skb_shinfo related pointers past calling here!
3276  */
3277 static int skb_prepare_for_shift(struct sk_buff *skb)
3278 {
3279 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3280 }
3281 
3282 /**
3283  * skb_shift - Shifts paged data partially from skb to another
3284  * @tgt: buffer into which tail data gets added
3285  * @skb: buffer from which the paged data comes from
3286  * @shiftlen: shift up to this many bytes
3287  *
3288  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3289  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3290  * It's up to caller to free skb if everything was shifted.
3291  *
3292  * If @tgt runs out of frags, the whole operation is aborted.
3293  *
3294  * Skb cannot include anything else but paged data while tgt is allowed
3295  * to have non-paged data as well.
3296  *
3297  * TODO: full sized shift could be optimized but that would need
3298  * specialized skb free'er to handle frags without up-to-date nr_frags.
3299  */
3300 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3301 {
3302 	int from, to, merge, todo;
3303 	skb_frag_t *fragfrom, *fragto;
3304 
3305 	BUG_ON(shiftlen > skb->len);
3306 
3307 	if (skb_headlen(skb))
3308 		return 0;
3309 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3310 		return 0;
3311 
3312 	todo = shiftlen;
3313 	from = 0;
3314 	to = skb_shinfo(tgt)->nr_frags;
3315 	fragfrom = &skb_shinfo(skb)->frags[from];
3316 
3317 	/* Actual merge is delayed until the point when we know we can
3318 	 * commit all, so that we don't have to undo partial changes
3319 	 */
3320 	if (!to ||
3321 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3322 			      skb_frag_off(fragfrom))) {
3323 		merge = -1;
3324 	} else {
3325 		merge = to - 1;
3326 
3327 		todo -= skb_frag_size(fragfrom);
3328 		if (todo < 0) {
3329 			if (skb_prepare_for_shift(skb) ||
3330 			    skb_prepare_for_shift(tgt))
3331 				return 0;
3332 
3333 			/* All previous frag pointers might be stale! */
3334 			fragfrom = &skb_shinfo(skb)->frags[from];
3335 			fragto = &skb_shinfo(tgt)->frags[merge];
3336 
3337 			skb_frag_size_add(fragto, shiftlen);
3338 			skb_frag_size_sub(fragfrom, shiftlen);
3339 			skb_frag_off_add(fragfrom, shiftlen);
3340 
3341 			goto onlymerged;
3342 		}
3343 
3344 		from++;
3345 	}
3346 
3347 	/* Skip full, not-fitting skb to avoid expensive operations */
3348 	if ((shiftlen == skb->len) &&
3349 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3350 		return 0;
3351 
3352 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3353 		return 0;
3354 
3355 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3356 		if (to == MAX_SKB_FRAGS)
3357 			return 0;
3358 
3359 		fragfrom = &skb_shinfo(skb)->frags[from];
3360 		fragto = &skb_shinfo(tgt)->frags[to];
3361 
3362 		if (todo >= skb_frag_size(fragfrom)) {
3363 			*fragto = *fragfrom;
3364 			todo -= skb_frag_size(fragfrom);
3365 			from++;
3366 			to++;
3367 
3368 		} else {
3369 			__skb_frag_ref(fragfrom);
3370 			skb_frag_page_copy(fragto, fragfrom);
3371 			skb_frag_off_copy(fragto, fragfrom);
3372 			skb_frag_size_set(fragto, todo);
3373 
3374 			skb_frag_off_add(fragfrom, todo);
3375 			skb_frag_size_sub(fragfrom, todo);
3376 			todo = 0;
3377 
3378 			to++;
3379 			break;
3380 		}
3381 	}
3382 
3383 	/* Ready to "commit" this state change to tgt */
3384 	skb_shinfo(tgt)->nr_frags = to;
3385 
3386 	if (merge >= 0) {
3387 		fragfrom = &skb_shinfo(skb)->frags[0];
3388 		fragto = &skb_shinfo(tgt)->frags[merge];
3389 
3390 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3391 		__skb_frag_unref(fragfrom);
3392 	}
3393 
3394 	/* Reposition in the original skb */
3395 	to = 0;
3396 	while (from < skb_shinfo(skb)->nr_frags)
3397 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3398 	skb_shinfo(skb)->nr_frags = to;
3399 
3400 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3401 
3402 onlymerged:
3403 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3404 	 * the other hand might need it if it needs to be resent
3405 	 */
3406 	tgt->ip_summed = CHECKSUM_PARTIAL;
3407 	skb->ip_summed = CHECKSUM_PARTIAL;
3408 
3409 	/* Yak, is it really working this way? Some helper please? */
3410 	skb->len -= shiftlen;
3411 	skb->data_len -= shiftlen;
3412 	skb->truesize -= shiftlen;
3413 	tgt->len += shiftlen;
3414 	tgt->data_len += shiftlen;
3415 	tgt->truesize += shiftlen;
3416 
3417 	return shiftlen;
3418 }
3419 
3420 /**
3421  * skb_prepare_seq_read - Prepare a sequential read of skb data
3422  * @skb: the buffer to read
3423  * @from: lower offset of data to be read
3424  * @to: upper offset of data to be read
3425  * @st: state variable
3426  *
3427  * Initializes the specified state variable. Must be called before
3428  * invoking skb_seq_read() for the first time.
3429  */
3430 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3431 			  unsigned int to, struct skb_seq_state *st)
3432 {
3433 	st->lower_offset = from;
3434 	st->upper_offset = to;
3435 	st->root_skb = st->cur_skb = skb;
3436 	st->frag_idx = st->stepped_offset = 0;
3437 	st->frag_data = NULL;
3438 }
3439 EXPORT_SYMBOL(skb_prepare_seq_read);
3440 
3441 /**
3442  * skb_seq_read - Sequentially read skb data
3443  * @consumed: number of bytes consumed by the caller so far
3444  * @data: destination pointer for data to be returned
3445  * @st: state variable
3446  *
3447  * Reads a block of skb data at @consumed relative to the
3448  * lower offset specified to skb_prepare_seq_read(). Assigns
3449  * the head of the data block to @data and returns the length
3450  * of the block or 0 if the end of the skb data or the upper
3451  * offset has been reached.
3452  *
3453  * The caller is not required to consume all of the data
3454  * returned, i.e. @consumed is typically set to the number
3455  * of bytes already consumed and the next call to
3456  * skb_seq_read() will return the remaining part of the block.
3457  *
3458  * Note 1: The size of each block of data returned can be arbitrary,
3459  *       this limitation is the cost for zerocopy sequential
3460  *       reads of potentially non linear data.
3461  *
3462  * Note 2: Fragment lists within fragments are not implemented
3463  *       at the moment, state->root_skb could be replaced with
3464  *       a stack for this purpose.
3465  */
3466 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3467 			  struct skb_seq_state *st)
3468 {
3469 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3470 	skb_frag_t *frag;
3471 
3472 	if (unlikely(abs_offset >= st->upper_offset)) {
3473 		if (st->frag_data) {
3474 			kunmap_atomic(st->frag_data);
3475 			st->frag_data = NULL;
3476 		}
3477 		return 0;
3478 	}
3479 
3480 next_skb:
3481 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3482 
3483 	if (abs_offset < block_limit && !st->frag_data) {
3484 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3485 		return block_limit - abs_offset;
3486 	}
3487 
3488 	if (st->frag_idx == 0 && !st->frag_data)
3489 		st->stepped_offset += skb_headlen(st->cur_skb);
3490 
3491 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3492 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3493 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3494 
3495 		if (abs_offset < block_limit) {
3496 			if (!st->frag_data)
3497 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3498 
3499 			*data = (u8 *) st->frag_data + skb_frag_off(frag) +
3500 				(abs_offset - st->stepped_offset);
3501 
3502 			return block_limit - abs_offset;
3503 		}
3504 
3505 		if (st->frag_data) {
3506 			kunmap_atomic(st->frag_data);
3507 			st->frag_data = NULL;
3508 		}
3509 
3510 		st->frag_idx++;
3511 		st->stepped_offset += skb_frag_size(frag);
3512 	}
3513 
3514 	if (st->frag_data) {
3515 		kunmap_atomic(st->frag_data);
3516 		st->frag_data = NULL;
3517 	}
3518 
3519 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3520 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3521 		st->frag_idx = 0;
3522 		goto next_skb;
3523 	} else if (st->cur_skb->next) {
3524 		st->cur_skb = st->cur_skb->next;
3525 		st->frag_idx = 0;
3526 		goto next_skb;
3527 	}
3528 
3529 	return 0;
3530 }
3531 EXPORT_SYMBOL(skb_seq_read);
3532 
3533 /**
3534  * skb_abort_seq_read - Abort a sequential read of skb data
3535  * @st: state variable
3536  *
3537  * Must be called if skb_seq_read() was not called until it
3538  * returned 0.
3539  */
3540 void skb_abort_seq_read(struct skb_seq_state *st)
3541 {
3542 	if (st->frag_data)
3543 		kunmap_atomic(st->frag_data);
3544 }
3545 EXPORT_SYMBOL(skb_abort_seq_read);
3546 
3547 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3548 
3549 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3550 					  struct ts_config *conf,
3551 					  struct ts_state *state)
3552 {
3553 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3554 }
3555 
3556 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3557 {
3558 	skb_abort_seq_read(TS_SKB_CB(state));
3559 }
3560 
3561 /**
3562  * skb_find_text - Find a text pattern in skb data
3563  * @skb: the buffer to look in
3564  * @from: search offset
3565  * @to: search limit
3566  * @config: textsearch configuration
3567  *
3568  * Finds a pattern in the skb data according to the specified
3569  * textsearch configuration. Use textsearch_next() to retrieve
3570  * subsequent occurrences of the pattern. Returns the offset
3571  * to the first occurrence or UINT_MAX if no match was found.
3572  */
3573 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3574 			   unsigned int to, struct ts_config *config)
3575 {
3576 	struct ts_state state;
3577 	unsigned int ret;
3578 
3579 	config->get_next_block = skb_ts_get_next_block;
3580 	config->finish = skb_ts_finish;
3581 
3582 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3583 
3584 	ret = textsearch_find(config, &state);
3585 	return (ret <= to - from ? ret : UINT_MAX);
3586 }
3587 EXPORT_SYMBOL(skb_find_text);
3588 
3589 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3590 			 int offset, size_t size)
3591 {
3592 	int i = skb_shinfo(skb)->nr_frags;
3593 
3594 	if (skb_can_coalesce(skb, i, page, offset)) {
3595 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3596 	} else if (i < MAX_SKB_FRAGS) {
3597 		get_page(page);
3598 		skb_fill_page_desc(skb, i, page, offset, size);
3599 	} else {
3600 		return -EMSGSIZE;
3601 	}
3602 
3603 	return 0;
3604 }
3605 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3606 
3607 /**
3608  *	skb_pull_rcsum - pull skb and update receive checksum
3609  *	@skb: buffer to update
3610  *	@len: length of data pulled
3611  *
3612  *	This function performs an skb_pull on the packet and updates
3613  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3614  *	receive path processing instead of skb_pull unless you know
3615  *	that the checksum difference is zero (e.g., a valid IP header)
3616  *	or you are setting ip_summed to CHECKSUM_NONE.
3617  */
3618 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3619 {
3620 	unsigned char *data = skb->data;
3621 
3622 	BUG_ON(len > skb->len);
3623 	__skb_pull(skb, len);
3624 	skb_postpull_rcsum(skb, data, len);
3625 	return skb->data;
3626 }
3627 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3628 
3629 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3630 {
3631 	skb_frag_t head_frag;
3632 	struct page *page;
3633 
3634 	page = virt_to_head_page(frag_skb->head);
3635 	__skb_frag_set_page(&head_frag, page);
3636 	skb_frag_off_set(&head_frag, frag_skb->data -
3637 			 (unsigned char *)page_address(page));
3638 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3639 	return head_frag;
3640 }
3641 
3642 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3643 				 netdev_features_t features,
3644 				 unsigned int offset)
3645 {
3646 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3647 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3648 	unsigned int delta_truesize = 0;
3649 	unsigned int delta_len = 0;
3650 	struct sk_buff *tail = NULL;
3651 	struct sk_buff *nskb;
3652 
3653 	skb_push(skb, -skb_network_offset(skb) + offset);
3654 
3655 	skb_shinfo(skb)->frag_list = NULL;
3656 
3657 	do {
3658 		nskb = list_skb;
3659 		list_skb = list_skb->next;
3660 
3661 		if (!tail)
3662 			skb->next = nskb;
3663 		else
3664 			tail->next = nskb;
3665 
3666 		tail = nskb;
3667 
3668 		delta_len += nskb->len;
3669 		delta_truesize += nskb->truesize;
3670 
3671 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3672 
3673 		skb_release_head_state(nskb);
3674 		 __copy_skb_header(nskb, skb);
3675 
3676 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3677 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3678 						 nskb->data - tnl_hlen,
3679 						 offset + tnl_hlen);
3680 
3681 		if (skb_needs_linearize(nskb, features) &&
3682 		    __skb_linearize(nskb))
3683 			goto err_linearize;
3684 
3685 	} while (list_skb);
3686 
3687 	skb->truesize = skb->truesize - delta_truesize;
3688 	skb->data_len = skb->data_len - delta_len;
3689 	skb->len = skb->len - delta_len;
3690 
3691 	skb_gso_reset(skb);
3692 
3693 	skb->prev = tail;
3694 
3695 	if (skb_needs_linearize(skb, features) &&
3696 	    __skb_linearize(skb))
3697 		goto err_linearize;
3698 
3699 	skb_get(skb);
3700 
3701 	return skb;
3702 
3703 err_linearize:
3704 	kfree_skb_list(skb->next);
3705 	skb->next = NULL;
3706 	return ERR_PTR(-ENOMEM);
3707 }
3708 EXPORT_SYMBOL_GPL(skb_segment_list);
3709 
3710 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3711 {
3712 	if (unlikely(p->len + skb->len >= 65536))
3713 		return -E2BIG;
3714 
3715 	if (NAPI_GRO_CB(p)->last == p)
3716 		skb_shinfo(p)->frag_list = skb;
3717 	else
3718 		NAPI_GRO_CB(p)->last->next = skb;
3719 
3720 	skb_pull(skb, skb_gro_offset(skb));
3721 
3722 	NAPI_GRO_CB(p)->last = skb;
3723 	NAPI_GRO_CB(p)->count++;
3724 	p->data_len += skb->len;
3725 	p->truesize += skb->truesize;
3726 	p->len += skb->len;
3727 
3728 	NAPI_GRO_CB(skb)->same_flow = 1;
3729 
3730 	return 0;
3731 }
3732 
3733 /**
3734  *	skb_segment - Perform protocol segmentation on skb.
3735  *	@head_skb: buffer to segment
3736  *	@features: features for the output path (see dev->features)
3737  *
3738  *	This function performs segmentation on the given skb.  It returns
3739  *	a pointer to the first in a list of new skbs for the segments.
3740  *	In case of error it returns ERR_PTR(err).
3741  */
3742 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3743 			    netdev_features_t features)
3744 {
3745 	struct sk_buff *segs = NULL;
3746 	struct sk_buff *tail = NULL;
3747 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3748 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3749 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3750 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3751 	struct sk_buff *frag_skb = head_skb;
3752 	unsigned int offset = doffset;
3753 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3754 	unsigned int partial_segs = 0;
3755 	unsigned int headroom;
3756 	unsigned int len = head_skb->len;
3757 	__be16 proto;
3758 	bool csum, sg;
3759 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3760 	int err = -ENOMEM;
3761 	int i = 0;
3762 	int pos;
3763 
3764 	if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3765 	    (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3766 		/* gso_size is untrusted, and we have a frag_list with a linear
3767 		 * non head_frag head.
3768 		 *
3769 		 * (we assume checking the first list_skb member suffices;
3770 		 * i.e if either of the list_skb members have non head_frag
3771 		 * head, then the first one has too).
3772 		 *
3773 		 * If head_skb's headlen does not fit requested gso_size, it
3774 		 * means that the frag_list members do NOT terminate on exact
3775 		 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3776 		 * sharing. Therefore we must fallback to copying the frag_list
3777 		 * skbs; we do so by disabling SG.
3778 		 */
3779 		if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3780 			features &= ~NETIF_F_SG;
3781 	}
3782 
3783 	__skb_push(head_skb, doffset);
3784 	proto = skb_network_protocol(head_skb, NULL);
3785 	if (unlikely(!proto))
3786 		return ERR_PTR(-EINVAL);
3787 
3788 	sg = !!(features & NETIF_F_SG);
3789 	csum = !!can_checksum_protocol(features, proto);
3790 
3791 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3792 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3793 			struct sk_buff *iter;
3794 			unsigned int frag_len;
3795 
3796 			if (!list_skb ||
3797 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3798 				goto normal;
3799 
3800 			/* If we get here then all the required
3801 			 * GSO features except frag_list are supported.
3802 			 * Try to split the SKB to multiple GSO SKBs
3803 			 * with no frag_list.
3804 			 * Currently we can do that only when the buffers don't
3805 			 * have a linear part and all the buffers except
3806 			 * the last are of the same length.
3807 			 */
3808 			frag_len = list_skb->len;
3809 			skb_walk_frags(head_skb, iter) {
3810 				if (frag_len != iter->len && iter->next)
3811 					goto normal;
3812 				if (skb_headlen(iter) && !iter->head_frag)
3813 					goto normal;
3814 
3815 				len -= iter->len;
3816 			}
3817 
3818 			if (len != frag_len)
3819 				goto normal;
3820 		}
3821 
3822 		/* GSO partial only requires that we trim off any excess that
3823 		 * doesn't fit into an MSS sized block, so take care of that
3824 		 * now.
3825 		 */
3826 		partial_segs = len / mss;
3827 		if (partial_segs > 1)
3828 			mss *= partial_segs;
3829 		else
3830 			partial_segs = 0;
3831 	}
3832 
3833 normal:
3834 	headroom = skb_headroom(head_skb);
3835 	pos = skb_headlen(head_skb);
3836 
3837 	do {
3838 		struct sk_buff *nskb;
3839 		skb_frag_t *nskb_frag;
3840 		int hsize;
3841 		int size;
3842 
3843 		if (unlikely(mss == GSO_BY_FRAGS)) {
3844 			len = list_skb->len;
3845 		} else {
3846 			len = head_skb->len - offset;
3847 			if (len > mss)
3848 				len = mss;
3849 		}
3850 
3851 		hsize = skb_headlen(head_skb) - offset;
3852 		if (hsize < 0)
3853 			hsize = 0;
3854 		if (hsize > len || !sg)
3855 			hsize = len;
3856 
3857 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3858 		    (skb_headlen(list_skb) == len || sg)) {
3859 			BUG_ON(skb_headlen(list_skb) > len);
3860 
3861 			i = 0;
3862 			nfrags = skb_shinfo(list_skb)->nr_frags;
3863 			frag = skb_shinfo(list_skb)->frags;
3864 			frag_skb = list_skb;
3865 			pos += skb_headlen(list_skb);
3866 
3867 			while (pos < offset + len) {
3868 				BUG_ON(i >= nfrags);
3869 
3870 				size = skb_frag_size(frag);
3871 				if (pos + size > offset + len)
3872 					break;
3873 
3874 				i++;
3875 				pos += size;
3876 				frag++;
3877 			}
3878 
3879 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3880 			list_skb = list_skb->next;
3881 
3882 			if (unlikely(!nskb))
3883 				goto err;
3884 
3885 			if (unlikely(pskb_trim(nskb, len))) {
3886 				kfree_skb(nskb);
3887 				goto err;
3888 			}
3889 
3890 			hsize = skb_end_offset(nskb);
3891 			if (skb_cow_head(nskb, doffset + headroom)) {
3892 				kfree_skb(nskb);
3893 				goto err;
3894 			}
3895 
3896 			nskb->truesize += skb_end_offset(nskb) - hsize;
3897 			skb_release_head_state(nskb);
3898 			__skb_push(nskb, doffset);
3899 		} else {
3900 			nskb = __alloc_skb(hsize + doffset + headroom,
3901 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3902 					   NUMA_NO_NODE);
3903 
3904 			if (unlikely(!nskb))
3905 				goto err;
3906 
3907 			skb_reserve(nskb, headroom);
3908 			__skb_put(nskb, doffset);
3909 		}
3910 
3911 		if (segs)
3912 			tail->next = nskb;
3913 		else
3914 			segs = nskb;
3915 		tail = nskb;
3916 
3917 		__copy_skb_header(nskb, head_skb);
3918 
3919 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3920 		skb_reset_mac_len(nskb);
3921 
3922 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3923 						 nskb->data - tnl_hlen,
3924 						 doffset + tnl_hlen);
3925 
3926 		if (nskb->len == len + doffset)
3927 			goto perform_csum_check;
3928 
3929 		if (!sg) {
3930 			if (!csum) {
3931 				if (!nskb->remcsum_offload)
3932 					nskb->ip_summed = CHECKSUM_NONE;
3933 				SKB_GSO_CB(nskb)->csum =
3934 					skb_copy_and_csum_bits(head_skb, offset,
3935 							       skb_put(nskb,
3936 								       len),
3937 							       len, 0);
3938 				SKB_GSO_CB(nskb)->csum_start =
3939 					skb_headroom(nskb) + doffset;
3940 			} else {
3941 				skb_copy_bits(head_skb, offset,
3942 					      skb_put(nskb, len),
3943 					      len);
3944 			}
3945 			continue;
3946 		}
3947 
3948 		nskb_frag = skb_shinfo(nskb)->frags;
3949 
3950 		skb_copy_from_linear_data_offset(head_skb, offset,
3951 						 skb_put(nskb, hsize), hsize);
3952 
3953 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3954 					      SKBTX_SHARED_FRAG;
3955 
3956 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3957 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3958 			goto err;
3959 
3960 		while (pos < offset + len) {
3961 			if (i >= nfrags) {
3962 				i = 0;
3963 				nfrags = skb_shinfo(list_skb)->nr_frags;
3964 				frag = skb_shinfo(list_skb)->frags;
3965 				frag_skb = list_skb;
3966 				if (!skb_headlen(list_skb)) {
3967 					BUG_ON(!nfrags);
3968 				} else {
3969 					BUG_ON(!list_skb->head_frag);
3970 
3971 					/* to make room for head_frag. */
3972 					i--;
3973 					frag--;
3974 				}
3975 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3976 				    skb_zerocopy_clone(nskb, frag_skb,
3977 						       GFP_ATOMIC))
3978 					goto err;
3979 
3980 				list_skb = list_skb->next;
3981 			}
3982 
3983 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3984 				     MAX_SKB_FRAGS)) {
3985 				net_warn_ratelimited(
3986 					"skb_segment: too many frags: %u %u\n",
3987 					pos, mss);
3988 				err = -EINVAL;
3989 				goto err;
3990 			}
3991 
3992 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3993 			__skb_frag_ref(nskb_frag);
3994 			size = skb_frag_size(nskb_frag);
3995 
3996 			if (pos < offset) {
3997 				skb_frag_off_add(nskb_frag, offset - pos);
3998 				skb_frag_size_sub(nskb_frag, offset - pos);
3999 			}
4000 
4001 			skb_shinfo(nskb)->nr_frags++;
4002 
4003 			if (pos + size <= offset + len) {
4004 				i++;
4005 				frag++;
4006 				pos += size;
4007 			} else {
4008 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4009 				goto skip_fraglist;
4010 			}
4011 
4012 			nskb_frag++;
4013 		}
4014 
4015 skip_fraglist:
4016 		nskb->data_len = len - hsize;
4017 		nskb->len += nskb->data_len;
4018 		nskb->truesize += nskb->data_len;
4019 
4020 perform_csum_check:
4021 		if (!csum) {
4022 			if (skb_has_shared_frag(nskb) &&
4023 			    __skb_linearize(nskb))
4024 				goto err;
4025 
4026 			if (!nskb->remcsum_offload)
4027 				nskb->ip_summed = CHECKSUM_NONE;
4028 			SKB_GSO_CB(nskb)->csum =
4029 				skb_checksum(nskb, doffset,
4030 					     nskb->len - doffset, 0);
4031 			SKB_GSO_CB(nskb)->csum_start =
4032 				skb_headroom(nskb) + doffset;
4033 		}
4034 	} while ((offset += len) < head_skb->len);
4035 
4036 	/* Some callers want to get the end of the list.
4037 	 * Put it in segs->prev to avoid walking the list.
4038 	 * (see validate_xmit_skb_list() for example)
4039 	 */
4040 	segs->prev = tail;
4041 
4042 	if (partial_segs) {
4043 		struct sk_buff *iter;
4044 		int type = skb_shinfo(head_skb)->gso_type;
4045 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4046 
4047 		/* Update type to add partial and then remove dodgy if set */
4048 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4049 		type &= ~SKB_GSO_DODGY;
4050 
4051 		/* Update GSO info and prepare to start updating headers on
4052 		 * our way back down the stack of protocols.
4053 		 */
4054 		for (iter = segs; iter; iter = iter->next) {
4055 			skb_shinfo(iter)->gso_size = gso_size;
4056 			skb_shinfo(iter)->gso_segs = partial_segs;
4057 			skb_shinfo(iter)->gso_type = type;
4058 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4059 		}
4060 
4061 		if (tail->len - doffset <= gso_size)
4062 			skb_shinfo(tail)->gso_size = 0;
4063 		else if (tail != segs)
4064 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4065 	}
4066 
4067 	/* Following permits correct backpressure, for protocols
4068 	 * using skb_set_owner_w().
4069 	 * Idea is to tranfert ownership from head_skb to last segment.
4070 	 */
4071 	if (head_skb->destructor == sock_wfree) {
4072 		swap(tail->truesize, head_skb->truesize);
4073 		swap(tail->destructor, head_skb->destructor);
4074 		swap(tail->sk, head_skb->sk);
4075 	}
4076 	return segs;
4077 
4078 err:
4079 	kfree_skb_list(segs);
4080 	return ERR_PTR(err);
4081 }
4082 EXPORT_SYMBOL_GPL(skb_segment);
4083 
4084 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4085 {
4086 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4087 	unsigned int offset = skb_gro_offset(skb);
4088 	unsigned int headlen = skb_headlen(skb);
4089 	unsigned int len = skb_gro_len(skb);
4090 	unsigned int delta_truesize;
4091 	struct sk_buff *lp;
4092 
4093 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4094 		return -E2BIG;
4095 
4096 	lp = NAPI_GRO_CB(p)->last;
4097 	pinfo = skb_shinfo(lp);
4098 
4099 	if (headlen <= offset) {
4100 		skb_frag_t *frag;
4101 		skb_frag_t *frag2;
4102 		int i = skbinfo->nr_frags;
4103 		int nr_frags = pinfo->nr_frags + i;
4104 
4105 		if (nr_frags > MAX_SKB_FRAGS)
4106 			goto merge;
4107 
4108 		offset -= headlen;
4109 		pinfo->nr_frags = nr_frags;
4110 		skbinfo->nr_frags = 0;
4111 
4112 		frag = pinfo->frags + nr_frags;
4113 		frag2 = skbinfo->frags + i;
4114 		do {
4115 			*--frag = *--frag2;
4116 		} while (--i);
4117 
4118 		skb_frag_off_add(frag, offset);
4119 		skb_frag_size_sub(frag, offset);
4120 
4121 		/* all fragments truesize : remove (head size + sk_buff) */
4122 		delta_truesize = skb->truesize -
4123 				 SKB_TRUESIZE(skb_end_offset(skb));
4124 
4125 		skb->truesize -= skb->data_len;
4126 		skb->len -= skb->data_len;
4127 		skb->data_len = 0;
4128 
4129 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4130 		goto done;
4131 	} else if (skb->head_frag) {
4132 		int nr_frags = pinfo->nr_frags;
4133 		skb_frag_t *frag = pinfo->frags + nr_frags;
4134 		struct page *page = virt_to_head_page(skb->head);
4135 		unsigned int first_size = headlen - offset;
4136 		unsigned int first_offset;
4137 
4138 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4139 			goto merge;
4140 
4141 		first_offset = skb->data -
4142 			       (unsigned char *)page_address(page) +
4143 			       offset;
4144 
4145 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4146 
4147 		__skb_frag_set_page(frag, page);
4148 		skb_frag_off_set(frag, first_offset);
4149 		skb_frag_size_set(frag, first_size);
4150 
4151 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4152 		/* We dont need to clear skbinfo->nr_frags here */
4153 
4154 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4155 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4156 		goto done;
4157 	}
4158 
4159 merge:
4160 	delta_truesize = skb->truesize;
4161 	if (offset > headlen) {
4162 		unsigned int eat = offset - headlen;
4163 
4164 		skb_frag_off_add(&skbinfo->frags[0], eat);
4165 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4166 		skb->data_len -= eat;
4167 		skb->len -= eat;
4168 		offset = headlen;
4169 	}
4170 
4171 	__skb_pull(skb, offset);
4172 
4173 	if (NAPI_GRO_CB(p)->last == p)
4174 		skb_shinfo(p)->frag_list = skb;
4175 	else
4176 		NAPI_GRO_CB(p)->last->next = skb;
4177 	NAPI_GRO_CB(p)->last = skb;
4178 	__skb_header_release(skb);
4179 	lp = p;
4180 
4181 done:
4182 	NAPI_GRO_CB(p)->count++;
4183 	p->data_len += len;
4184 	p->truesize += delta_truesize;
4185 	p->len += len;
4186 	if (lp != p) {
4187 		lp->data_len += len;
4188 		lp->truesize += delta_truesize;
4189 		lp->len += len;
4190 	}
4191 	NAPI_GRO_CB(skb)->same_flow = 1;
4192 	return 0;
4193 }
4194 
4195 #ifdef CONFIG_SKB_EXTENSIONS
4196 #define SKB_EXT_ALIGN_VALUE	8
4197 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4198 
4199 static const u8 skb_ext_type_len[] = {
4200 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4201 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4202 #endif
4203 #ifdef CONFIG_XFRM
4204 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4205 #endif
4206 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4207 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4208 #endif
4209 #if IS_ENABLED(CONFIG_MPTCP)
4210 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4211 #endif
4212 };
4213 
4214 static __always_inline unsigned int skb_ext_total_length(void)
4215 {
4216 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4217 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4218 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4219 #endif
4220 #ifdef CONFIG_XFRM
4221 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4222 #endif
4223 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4224 		skb_ext_type_len[TC_SKB_EXT] +
4225 #endif
4226 #if IS_ENABLED(CONFIG_MPTCP)
4227 		skb_ext_type_len[SKB_EXT_MPTCP] +
4228 #endif
4229 		0;
4230 }
4231 
4232 static void skb_extensions_init(void)
4233 {
4234 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4235 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4236 
4237 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4238 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4239 					     0,
4240 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4241 					     NULL);
4242 }
4243 #else
4244 static void skb_extensions_init(void) {}
4245 #endif
4246 
4247 void __init skb_init(void)
4248 {
4249 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4250 					      sizeof(struct sk_buff),
4251 					      0,
4252 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4253 					      offsetof(struct sk_buff, cb),
4254 					      sizeof_field(struct sk_buff, cb),
4255 					      NULL);
4256 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4257 						sizeof(struct sk_buff_fclones),
4258 						0,
4259 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4260 						NULL);
4261 	skb_extensions_init();
4262 }
4263 
4264 static int
4265 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4266 	       unsigned int recursion_level)
4267 {
4268 	int start = skb_headlen(skb);
4269 	int i, copy = start - offset;
4270 	struct sk_buff *frag_iter;
4271 	int elt = 0;
4272 
4273 	if (unlikely(recursion_level >= 24))
4274 		return -EMSGSIZE;
4275 
4276 	if (copy > 0) {
4277 		if (copy > len)
4278 			copy = len;
4279 		sg_set_buf(sg, skb->data + offset, copy);
4280 		elt++;
4281 		if ((len -= copy) == 0)
4282 			return elt;
4283 		offset += copy;
4284 	}
4285 
4286 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4287 		int end;
4288 
4289 		WARN_ON(start > offset + len);
4290 
4291 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4292 		if ((copy = end - offset) > 0) {
4293 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4294 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4295 				return -EMSGSIZE;
4296 
4297 			if (copy > len)
4298 				copy = len;
4299 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4300 				    skb_frag_off(frag) + offset - start);
4301 			elt++;
4302 			if (!(len -= copy))
4303 				return elt;
4304 			offset += copy;
4305 		}
4306 		start = end;
4307 	}
4308 
4309 	skb_walk_frags(skb, frag_iter) {
4310 		int end, ret;
4311 
4312 		WARN_ON(start > offset + len);
4313 
4314 		end = start + frag_iter->len;
4315 		if ((copy = end - offset) > 0) {
4316 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4317 				return -EMSGSIZE;
4318 
4319 			if (copy > len)
4320 				copy = len;
4321 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4322 					      copy, recursion_level + 1);
4323 			if (unlikely(ret < 0))
4324 				return ret;
4325 			elt += ret;
4326 			if ((len -= copy) == 0)
4327 				return elt;
4328 			offset += copy;
4329 		}
4330 		start = end;
4331 	}
4332 	BUG_ON(len);
4333 	return elt;
4334 }
4335 
4336 /**
4337  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4338  *	@skb: Socket buffer containing the buffers to be mapped
4339  *	@sg: The scatter-gather list to map into
4340  *	@offset: The offset into the buffer's contents to start mapping
4341  *	@len: Length of buffer space to be mapped
4342  *
4343  *	Fill the specified scatter-gather list with mappings/pointers into a
4344  *	region of the buffer space attached to a socket buffer. Returns either
4345  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4346  *	could not fit.
4347  */
4348 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4349 {
4350 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4351 
4352 	if (nsg <= 0)
4353 		return nsg;
4354 
4355 	sg_mark_end(&sg[nsg - 1]);
4356 
4357 	return nsg;
4358 }
4359 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4360 
4361 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4362  * sglist without mark the sg which contain last skb data as the end.
4363  * So the caller can mannipulate sg list as will when padding new data after
4364  * the first call without calling sg_unmark_end to expend sg list.
4365  *
4366  * Scenario to use skb_to_sgvec_nomark:
4367  * 1. sg_init_table
4368  * 2. skb_to_sgvec_nomark(payload1)
4369  * 3. skb_to_sgvec_nomark(payload2)
4370  *
4371  * This is equivalent to:
4372  * 1. sg_init_table
4373  * 2. skb_to_sgvec(payload1)
4374  * 3. sg_unmark_end
4375  * 4. skb_to_sgvec(payload2)
4376  *
4377  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4378  * is more preferable.
4379  */
4380 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4381 			int offset, int len)
4382 {
4383 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4384 }
4385 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4386 
4387 
4388 
4389 /**
4390  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4391  *	@skb: The socket buffer to check.
4392  *	@tailbits: Amount of trailing space to be added
4393  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4394  *
4395  *	Make sure that the data buffers attached to a socket buffer are
4396  *	writable. If they are not, private copies are made of the data buffers
4397  *	and the socket buffer is set to use these instead.
4398  *
4399  *	If @tailbits is given, make sure that there is space to write @tailbits
4400  *	bytes of data beyond current end of socket buffer.  @trailer will be
4401  *	set to point to the skb in which this space begins.
4402  *
4403  *	The number of scatterlist elements required to completely map the
4404  *	COW'd and extended socket buffer will be returned.
4405  */
4406 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4407 {
4408 	int copyflag;
4409 	int elt;
4410 	struct sk_buff *skb1, **skb_p;
4411 
4412 	/* If skb is cloned or its head is paged, reallocate
4413 	 * head pulling out all the pages (pages are considered not writable
4414 	 * at the moment even if they are anonymous).
4415 	 */
4416 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4417 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4418 		return -ENOMEM;
4419 
4420 	/* Easy case. Most of packets will go this way. */
4421 	if (!skb_has_frag_list(skb)) {
4422 		/* A little of trouble, not enough of space for trailer.
4423 		 * This should not happen, when stack is tuned to generate
4424 		 * good frames. OK, on miss we reallocate and reserve even more
4425 		 * space, 128 bytes is fair. */
4426 
4427 		if (skb_tailroom(skb) < tailbits &&
4428 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4429 			return -ENOMEM;
4430 
4431 		/* Voila! */
4432 		*trailer = skb;
4433 		return 1;
4434 	}
4435 
4436 	/* Misery. We are in troubles, going to mincer fragments... */
4437 
4438 	elt = 1;
4439 	skb_p = &skb_shinfo(skb)->frag_list;
4440 	copyflag = 0;
4441 
4442 	while ((skb1 = *skb_p) != NULL) {
4443 		int ntail = 0;
4444 
4445 		/* The fragment is partially pulled by someone,
4446 		 * this can happen on input. Copy it and everything
4447 		 * after it. */
4448 
4449 		if (skb_shared(skb1))
4450 			copyflag = 1;
4451 
4452 		/* If the skb is the last, worry about trailer. */
4453 
4454 		if (skb1->next == NULL && tailbits) {
4455 			if (skb_shinfo(skb1)->nr_frags ||
4456 			    skb_has_frag_list(skb1) ||
4457 			    skb_tailroom(skb1) < tailbits)
4458 				ntail = tailbits + 128;
4459 		}
4460 
4461 		if (copyflag ||
4462 		    skb_cloned(skb1) ||
4463 		    ntail ||
4464 		    skb_shinfo(skb1)->nr_frags ||
4465 		    skb_has_frag_list(skb1)) {
4466 			struct sk_buff *skb2;
4467 
4468 			/* Fuck, we are miserable poor guys... */
4469 			if (ntail == 0)
4470 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4471 			else
4472 				skb2 = skb_copy_expand(skb1,
4473 						       skb_headroom(skb1),
4474 						       ntail,
4475 						       GFP_ATOMIC);
4476 			if (unlikely(skb2 == NULL))
4477 				return -ENOMEM;
4478 
4479 			if (skb1->sk)
4480 				skb_set_owner_w(skb2, skb1->sk);
4481 
4482 			/* Looking around. Are we still alive?
4483 			 * OK, link new skb, drop old one */
4484 
4485 			skb2->next = skb1->next;
4486 			*skb_p = skb2;
4487 			kfree_skb(skb1);
4488 			skb1 = skb2;
4489 		}
4490 		elt++;
4491 		*trailer = skb1;
4492 		skb_p = &skb1->next;
4493 	}
4494 
4495 	return elt;
4496 }
4497 EXPORT_SYMBOL_GPL(skb_cow_data);
4498 
4499 static void sock_rmem_free(struct sk_buff *skb)
4500 {
4501 	struct sock *sk = skb->sk;
4502 
4503 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4504 }
4505 
4506 static void skb_set_err_queue(struct sk_buff *skb)
4507 {
4508 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4509 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4510 	 */
4511 	skb->pkt_type = PACKET_OUTGOING;
4512 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4513 }
4514 
4515 /*
4516  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4517  */
4518 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4519 {
4520 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4521 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4522 		return -ENOMEM;
4523 
4524 	skb_orphan(skb);
4525 	skb->sk = sk;
4526 	skb->destructor = sock_rmem_free;
4527 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4528 	skb_set_err_queue(skb);
4529 
4530 	/* before exiting rcu section, make sure dst is refcounted */
4531 	skb_dst_force(skb);
4532 
4533 	skb_queue_tail(&sk->sk_error_queue, skb);
4534 	if (!sock_flag(sk, SOCK_DEAD))
4535 		sk->sk_error_report(sk);
4536 	return 0;
4537 }
4538 EXPORT_SYMBOL(sock_queue_err_skb);
4539 
4540 static bool is_icmp_err_skb(const struct sk_buff *skb)
4541 {
4542 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4543 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4544 }
4545 
4546 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4547 {
4548 	struct sk_buff_head *q = &sk->sk_error_queue;
4549 	struct sk_buff *skb, *skb_next = NULL;
4550 	bool icmp_next = false;
4551 	unsigned long flags;
4552 
4553 	spin_lock_irqsave(&q->lock, flags);
4554 	skb = __skb_dequeue(q);
4555 	if (skb && (skb_next = skb_peek(q))) {
4556 		icmp_next = is_icmp_err_skb(skb_next);
4557 		if (icmp_next)
4558 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4559 	}
4560 	spin_unlock_irqrestore(&q->lock, flags);
4561 
4562 	if (is_icmp_err_skb(skb) && !icmp_next)
4563 		sk->sk_err = 0;
4564 
4565 	if (skb_next)
4566 		sk->sk_error_report(sk);
4567 
4568 	return skb;
4569 }
4570 EXPORT_SYMBOL(sock_dequeue_err_skb);
4571 
4572 /**
4573  * skb_clone_sk - create clone of skb, and take reference to socket
4574  * @skb: the skb to clone
4575  *
4576  * This function creates a clone of a buffer that holds a reference on
4577  * sk_refcnt.  Buffers created via this function are meant to be
4578  * returned using sock_queue_err_skb, or free via kfree_skb.
4579  *
4580  * When passing buffers allocated with this function to sock_queue_err_skb
4581  * it is necessary to wrap the call with sock_hold/sock_put in order to
4582  * prevent the socket from being released prior to being enqueued on
4583  * the sk_error_queue.
4584  */
4585 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4586 {
4587 	struct sock *sk = skb->sk;
4588 	struct sk_buff *clone;
4589 
4590 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4591 		return NULL;
4592 
4593 	clone = skb_clone(skb, GFP_ATOMIC);
4594 	if (!clone) {
4595 		sock_put(sk);
4596 		return NULL;
4597 	}
4598 
4599 	clone->sk = sk;
4600 	clone->destructor = sock_efree;
4601 
4602 	return clone;
4603 }
4604 EXPORT_SYMBOL(skb_clone_sk);
4605 
4606 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4607 					struct sock *sk,
4608 					int tstype,
4609 					bool opt_stats)
4610 {
4611 	struct sock_exterr_skb *serr;
4612 	int err;
4613 
4614 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4615 
4616 	serr = SKB_EXT_ERR(skb);
4617 	memset(serr, 0, sizeof(*serr));
4618 	serr->ee.ee_errno = ENOMSG;
4619 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4620 	serr->ee.ee_info = tstype;
4621 	serr->opt_stats = opt_stats;
4622 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4623 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4624 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4625 		if (sk->sk_protocol == IPPROTO_TCP &&
4626 		    sk->sk_type == SOCK_STREAM)
4627 			serr->ee.ee_data -= sk->sk_tskey;
4628 	}
4629 
4630 	err = sock_queue_err_skb(sk, skb);
4631 
4632 	if (err)
4633 		kfree_skb(skb);
4634 }
4635 
4636 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4637 {
4638 	bool ret;
4639 
4640 	if (likely(sysctl_tstamp_allow_data || tsonly))
4641 		return true;
4642 
4643 	read_lock_bh(&sk->sk_callback_lock);
4644 	ret = sk->sk_socket && sk->sk_socket->file &&
4645 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4646 	read_unlock_bh(&sk->sk_callback_lock);
4647 	return ret;
4648 }
4649 
4650 void skb_complete_tx_timestamp(struct sk_buff *skb,
4651 			       struct skb_shared_hwtstamps *hwtstamps)
4652 {
4653 	struct sock *sk = skb->sk;
4654 
4655 	if (!skb_may_tx_timestamp(sk, false))
4656 		goto err;
4657 
4658 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4659 	 * but only if the socket refcount is not zero.
4660 	 */
4661 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4662 		*skb_hwtstamps(skb) = *hwtstamps;
4663 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4664 		sock_put(sk);
4665 		return;
4666 	}
4667 
4668 err:
4669 	kfree_skb(skb);
4670 }
4671 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4672 
4673 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4674 		     struct skb_shared_hwtstamps *hwtstamps,
4675 		     struct sock *sk, int tstype)
4676 {
4677 	struct sk_buff *skb;
4678 	bool tsonly, opt_stats = false;
4679 
4680 	if (!sk)
4681 		return;
4682 
4683 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4684 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4685 		return;
4686 
4687 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4688 	if (!skb_may_tx_timestamp(sk, tsonly))
4689 		return;
4690 
4691 	if (tsonly) {
4692 #ifdef CONFIG_INET
4693 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4694 		    sk->sk_protocol == IPPROTO_TCP &&
4695 		    sk->sk_type == SOCK_STREAM) {
4696 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4697 			opt_stats = true;
4698 		} else
4699 #endif
4700 			skb = alloc_skb(0, GFP_ATOMIC);
4701 	} else {
4702 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4703 	}
4704 	if (!skb)
4705 		return;
4706 
4707 	if (tsonly) {
4708 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4709 					     SKBTX_ANY_TSTAMP;
4710 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4711 	}
4712 
4713 	if (hwtstamps)
4714 		*skb_hwtstamps(skb) = *hwtstamps;
4715 	else
4716 		skb->tstamp = ktime_get_real();
4717 
4718 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4719 }
4720 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4721 
4722 void skb_tstamp_tx(struct sk_buff *orig_skb,
4723 		   struct skb_shared_hwtstamps *hwtstamps)
4724 {
4725 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4726 			       SCM_TSTAMP_SND);
4727 }
4728 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4729 
4730 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4731 {
4732 	struct sock *sk = skb->sk;
4733 	struct sock_exterr_skb *serr;
4734 	int err = 1;
4735 
4736 	skb->wifi_acked_valid = 1;
4737 	skb->wifi_acked = acked;
4738 
4739 	serr = SKB_EXT_ERR(skb);
4740 	memset(serr, 0, sizeof(*serr));
4741 	serr->ee.ee_errno = ENOMSG;
4742 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4743 
4744 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4745 	 * but only if the socket refcount is not zero.
4746 	 */
4747 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4748 		err = sock_queue_err_skb(sk, skb);
4749 		sock_put(sk);
4750 	}
4751 	if (err)
4752 		kfree_skb(skb);
4753 }
4754 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4755 
4756 /**
4757  * skb_partial_csum_set - set up and verify partial csum values for packet
4758  * @skb: the skb to set
4759  * @start: the number of bytes after skb->data to start checksumming.
4760  * @off: the offset from start to place the checksum.
4761  *
4762  * For untrusted partially-checksummed packets, we need to make sure the values
4763  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4764  *
4765  * This function checks and sets those values and skb->ip_summed: if this
4766  * returns false you should drop the packet.
4767  */
4768 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4769 {
4770 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4771 	u32 csum_start = skb_headroom(skb) + (u32)start;
4772 
4773 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4774 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4775 				     start, off, skb_headroom(skb), skb_headlen(skb));
4776 		return false;
4777 	}
4778 	skb->ip_summed = CHECKSUM_PARTIAL;
4779 	skb->csum_start = csum_start;
4780 	skb->csum_offset = off;
4781 	skb_set_transport_header(skb, start);
4782 	return true;
4783 }
4784 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4785 
4786 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4787 			       unsigned int max)
4788 {
4789 	if (skb_headlen(skb) >= len)
4790 		return 0;
4791 
4792 	/* If we need to pullup then pullup to the max, so we
4793 	 * won't need to do it again.
4794 	 */
4795 	if (max > skb->len)
4796 		max = skb->len;
4797 
4798 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4799 		return -ENOMEM;
4800 
4801 	if (skb_headlen(skb) < len)
4802 		return -EPROTO;
4803 
4804 	return 0;
4805 }
4806 
4807 #define MAX_TCP_HDR_LEN (15 * 4)
4808 
4809 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4810 				      typeof(IPPROTO_IP) proto,
4811 				      unsigned int off)
4812 {
4813 	int err;
4814 
4815 	switch (proto) {
4816 	case IPPROTO_TCP:
4817 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4818 					  off + MAX_TCP_HDR_LEN);
4819 		if (!err && !skb_partial_csum_set(skb, off,
4820 						  offsetof(struct tcphdr,
4821 							   check)))
4822 			err = -EPROTO;
4823 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4824 
4825 	case IPPROTO_UDP:
4826 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4827 					  off + sizeof(struct udphdr));
4828 		if (!err && !skb_partial_csum_set(skb, off,
4829 						  offsetof(struct udphdr,
4830 							   check)))
4831 			err = -EPROTO;
4832 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4833 	}
4834 
4835 	return ERR_PTR(-EPROTO);
4836 }
4837 
4838 /* This value should be large enough to cover a tagged ethernet header plus
4839  * maximally sized IP and TCP or UDP headers.
4840  */
4841 #define MAX_IP_HDR_LEN 128
4842 
4843 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4844 {
4845 	unsigned int off;
4846 	bool fragment;
4847 	__sum16 *csum;
4848 	int err;
4849 
4850 	fragment = false;
4851 
4852 	err = skb_maybe_pull_tail(skb,
4853 				  sizeof(struct iphdr),
4854 				  MAX_IP_HDR_LEN);
4855 	if (err < 0)
4856 		goto out;
4857 
4858 	if (ip_is_fragment(ip_hdr(skb)))
4859 		fragment = true;
4860 
4861 	off = ip_hdrlen(skb);
4862 
4863 	err = -EPROTO;
4864 
4865 	if (fragment)
4866 		goto out;
4867 
4868 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4869 	if (IS_ERR(csum))
4870 		return PTR_ERR(csum);
4871 
4872 	if (recalculate)
4873 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4874 					   ip_hdr(skb)->daddr,
4875 					   skb->len - off,
4876 					   ip_hdr(skb)->protocol, 0);
4877 	err = 0;
4878 
4879 out:
4880 	return err;
4881 }
4882 
4883 /* This value should be large enough to cover a tagged ethernet header plus
4884  * an IPv6 header, all options, and a maximal TCP or UDP header.
4885  */
4886 #define MAX_IPV6_HDR_LEN 256
4887 
4888 #define OPT_HDR(type, skb, off) \
4889 	(type *)(skb_network_header(skb) + (off))
4890 
4891 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4892 {
4893 	int err;
4894 	u8 nexthdr;
4895 	unsigned int off;
4896 	unsigned int len;
4897 	bool fragment;
4898 	bool done;
4899 	__sum16 *csum;
4900 
4901 	fragment = false;
4902 	done = false;
4903 
4904 	off = sizeof(struct ipv6hdr);
4905 
4906 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4907 	if (err < 0)
4908 		goto out;
4909 
4910 	nexthdr = ipv6_hdr(skb)->nexthdr;
4911 
4912 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4913 	while (off <= len && !done) {
4914 		switch (nexthdr) {
4915 		case IPPROTO_DSTOPTS:
4916 		case IPPROTO_HOPOPTS:
4917 		case IPPROTO_ROUTING: {
4918 			struct ipv6_opt_hdr *hp;
4919 
4920 			err = skb_maybe_pull_tail(skb,
4921 						  off +
4922 						  sizeof(struct ipv6_opt_hdr),
4923 						  MAX_IPV6_HDR_LEN);
4924 			if (err < 0)
4925 				goto out;
4926 
4927 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4928 			nexthdr = hp->nexthdr;
4929 			off += ipv6_optlen(hp);
4930 			break;
4931 		}
4932 		case IPPROTO_AH: {
4933 			struct ip_auth_hdr *hp;
4934 
4935 			err = skb_maybe_pull_tail(skb,
4936 						  off +
4937 						  sizeof(struct ip_auth_hdr),
4938 						  MAX_IPV6_HDR_LEN);
4939 			if (err < 0)
4940 				goto out;
4941 
4942 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4943 			nexthdr = hp->nexthdr;
4944 			off += ipv6_authlen(hp);
4945 			break;
4946 		}
4947 		case IPPROTO_FRAGMENT: {
4948 			struct frag_hdr *hp;
4949 
4950 			err = skb_maybe_pull_tail(skb,
4951 						  off +
4952 						  sizeof(struct frag_hdr),
4953 						  MAX_IPV6_HDR_LEN);
4954 			if (err < 0)
4955 				goto out;
4956 
4957 			hp = OPT_HDR(struct frag_hdr, skb, off);
4958 
4959 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4960 				fragment = true;
4961 
4962 			nexthdr = hp->nexthdr;
4963 			off += sizeof(struct frag_hdr);
4964 			break;
4965 		}
4966 		default:
4967 			done = true;
4968 			break;
4969 		}
4970 	}
4971 
4972 	err = -EPROTO;
4973 
4974 	if (!done || fragment)
4975 		goto out;
4976 
4977 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4978 	if (IS_ERR(csum))
4979 		return PTR_ERR(csum);
4980 
4981 	if (recalculate)
4982 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4983 					 &ipv6_hdr(skb)->daddr,
4984 					 skb->len - off, nexthdr, 0);
4985 	err = 0;
4986 
4987 out:
4988 	return err;
4989 }
4990 
4991 /**
4992  * skb_checksum_setup - set up partial checksum offset
4993  * @skb: the skb to set up
4994  * @recalculate: if true the pseudo-header checksum will be recalculated
4995  */
4996 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4997 {
4998 	int err;
4999 
5000 	switch (skb->protocol) {
5001 	case htons(ETH_P_IP):
5002 		err = skb_checksum_setup_ipv4(skb, recalculate);
5003 		break;
5004 
5005 	case htons(ETH_P_IPV6):
5006 		err = skb_checksum_setup_ipv6(skb, recalculate);
5007 		break;
5008 
5009 	default:
5010 		err = -EPROTO;
5011 		break;
5012 	}
5013 
5014 	return err;
5015 }
5016 EXPORT_SYMBOL(skb_checksum_setup);
5017 
5018 /**
5019  * skb_checksum_maybe_trim - maybe trims the given skb
5020  * @skb: the skb to check
5021  * @transport_len: the data length beyond the network header
5022  *
5023  * Checks whether the given skb has data beyond the given transport length.
5024  * If so, returns a cloned skb trimmed to this transport length.
5025  * Otherwise returns the provided skb. Returns NULL in error cases
5026  * (e.g. transport_len exceeds skb length or out-of-memory).
5027  *
5028  * Caller needs to set the skb transport header and free any returned skb if it
5029  * differs from the provided skb.
5030  */
5031 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5032 					       unsigned int transport_len)
5033 {
5034 	struct sk_buff *skb_chk;
5035 	unsigned int len = skb_transport_offset(skb) + transport_len;
5036 	int ret;
5037 
5038 	if (skb->len < len)
5039 		return NULL;
5040 	else if (skb->len == len)
5041 		return skb;
5042 
5043 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5044 	if (!skb_chk)
5045 		return NULL;
5046 
5047 	ret = pskb_trim_rcsum(skb_chk, len);
5048 	if (ret) {
5049 		kfree_skb(skb_chk);
5050 		return NULL;
5051 	}
5052 
5053 	return skb_chk;
5054 }
5055 
5056 /**
5057  * skb_checksum_trimmed - validate checksum of an skb
5058  * @skb: the skb to check
5059  * @transport_len: the data length beyond the network header
5060  * @skb_chkf: checksum function to use
5061  *
5062  * Applies the given checksum function skb_chkf to the provided skb.
5063  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5064  *
5065  * If the skb has data beyond the given transport length, then a
5066  * trimmed & cloned skb is checked and returned.
5067  *
5068  * Caller needs to set the skb transport header and free any returned skb if it
5069  * differs from the provided skb.
5070  */
5071 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5072 				     unsigned int transport_len,
5073 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5074 {
5075 	struct sk_buff *skb_chk;
5076 	unsigned int offset = skb_transport_offset(skb);
5077 	__sum16 ret;
5078 
5079 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5080 	if (!skb_chk)
5081 		goto err;
5082 
5083 	if (!pskb_may_pull(skb_chk, offset))
5084 		goto err;
5085 
5086 	skb_pull_rcsum(skb_chk, offset);
5087 	ret = skb_chkf(skb_chk);
5088 	skb_push_rcsum(skb_chk, offset);
5089 
5090 	if (ret)
5091 		goto err;
5092 
5093 	return skb_chk;
5094 
5095 err:
5096 	if (skb_chk && skb_chk != skb)
5097 		kfree_skb(skb_chk);
5098 
5099 	return NULL;
5100 
5101 }
5102 EXPORT_SYMBOL(skb_checksum_trimmed);
5103 
5104 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5105 {
5106 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5107 			     skb->dev->name);
5108 }
5109 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5110 
5111 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5112 {
5113 	if (head_stolen) {
5114 		skb_release_head_state(skb);
5115 		kmem_cache_free(skbuff_head_cache, skb);
5116 	} else {
5117 		__kfree_skb(skb);
5118 	}
5119 }
5120 EXPORT_SYMBOL(kfree_skb_partial);
5121 
5122 /**
5123  * skb_try_coalesce - try to merge skb to prior one
5124  * @to: prior buffer
5125  * @from: buffer to add
5126  * @fragstolen: pointer to boolean
5127  * @delta_truesize: how much more was allocated than was requested
5128  */
5129 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5130 		      bool *fragstolen, int *delta_truesize)
5131 {
5132 	struct skb_shared_info *to_shinfo, *from_shinfo;
5133 	int i, delta, len = from->len;
5134 
5135 	*fragstolen = false;
5136 
5137 	if (skb_cloned(to))
5138 		return false;
5139 
5140 	if (len <= skb_tailroom(to)) {
5141 		if (len)
5142 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5143 		*delta_truesize = 0;
5144 		return true;
5145 	}
5146 
5147 	to_shinfo = skb_shinfo(to);
5148 	from_shinfo = skb_shinfo(from);
5149 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5150 		return false;
5151 	if (skb_zcopy(to) || skb_zcopy(from))
5152 		return false;
5153 
5154 	if (skb_headlen(from) != 0) {
5155 		struct page *page;
5156 		unsigned int offset;
5157 
5158 		if (to_shinfo->nr_frags +
5159 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5160 			return false;
5161 
5162 		if (skb_head_is_locked(from))
5163 			return false;
5164 
5165 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5166 
5167 		page = virt_to_head_page(from->head);
5168 		offset = from->data - (unsigned char *)page_address(page);
5169 
5170 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5171 				   page, offset, skb_headlen(from));
5172 		*fragstolen = true;
5173 	} else {
5174 		if (to_shinfo->nr_frags +
5175 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5176 			return false;
5177 
5178 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5179 	}
5180 
5181 	WARN_ON_ONCE(delta < len);
5182 
5183 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5184 	       from_shinfo->frags,
5185 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5186 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5187 
5188 	if (!skb_cloned(from))
5189 		from_shinfo->nr_frags = 0;
5190 
5191 	/* if the skb is not cloned this does nothing
5192 	 * since we set nr_frags to 0.
5193 	 */
5194 	for (i = 0; i < from_shinfo->nr_frags; i++)
5195 		__skb_frag_ref(&from_shinfo->frags[i]);
5196 
5197 	to->truesize += delta;
5198 	to->len += len;
5199 	to->data_len += len;
5200 
5201 	*delta_truesize = delta;
5202 	return true;
5203 }
5204 EXPORT_SYMBOL(skb_try_coalesce);
5205 
5206 /**
5207  * skb_scrub_packet - scrub an skb
5208  *
5209  * @skb: buffer to clean
5210  * @xnet: packet is crossing netns
5211  *
5212  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5213  * into/from a tunnel. Some information have to be cleared during these
5214  * operations.
5215  * skb_scrub_packet can also be used to clean a skb before injecting it in
5216  * another namespace (@xnet == true). We have to clear all information in the
5217  * skb that could impact namespace isolation.
5218  */
5219 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5220 {
5221 	skb->pkt_type = PACKET_HOST;
5222 	skb->skb_iif = 0;
5223 	skb->ignore_df = 0;
5224 	skb_dst_drop(skb);
5225 	skb_ext_reset(skb);
5226 	nf_reset_ct(skb);
5227 	nf_reset_trace(skb);
5228 
5229 #ifdef CONFIG_NET_SWITCHDEV
5230 	skb->offload_fwd_mark = 0;
5231 	skb->offload_l3_fwd_mark = 0;
5232 #endif
5233 
5234 	if (!xnet)
5235 		return;
5236 
5237 	ipvs_reset(skb);
5238 	skb->mark = 0;
5239 	skb->tstamp = 0;
5240 }
5241 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5242 
5243 /**
5244  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5245  *
5246  * @skb: GSO skb
5247  *
5248  * skb_gso_transport_seglen is used to determine the real size of the
5249  * individual segments, including Layer4 headers (TCP/UDP).
5250  *
5251  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5252  */
5253 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5254 {
5255 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5256 	unsigned int thlen = 0;
5257 
5258 	if (skb->encapsulation) {
5259 		thlen = skb_inner_transport_header(skb) -
5260 			skb_transport_header(skb);
5261 
5262 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5263 			thlen += inner_tcp_hdrlen(skb);
5264 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5265 		thlen = tcp_hdrlen(skb);
5266 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5267 		thlen = sizeof(struct sctphdr);
5268 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5269 		thlen = sizeof(struct udphdr);
5270 	}
5271 	/* UFO sets gso_size to the size of the fragmentation
5272 	 * payload, i.e. the size of the L4 (UDP) header is already
5273 	 * accounted for.
5274 	 */
5275 	return thlen + shinfo->gso_size;
5276 }
5277 
5278 /**
5279  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5280  *
5281  * @skb: GSO skb
5282  *
5283  * skb_gso_network_seglen is used to determine the real size of the
5284  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5285  *
5286  * The MAC/L2 header is not accounted for.
5287  */
5288 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5289 {
5290 	unsigned int hdr_len = skb_transport_header(skb) -
5291 			       skb_network_header(skb);
5292 
5293 	return hdr_len + skb_gso_transport_seglen(skb);
5294 }
5295 
5296 /**
5297  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5298  *
5299  * @skb: GSO skb
5300  *
5301  * skb_gso_mac_seglen is used to determine the real size of the
5302  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5303  * headers (TCP/UDP).
5304  */
5305 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5306 {
5307 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5308 
5309 	return hdr_len + skb_gso_transport_seglen(skb);
5310 }
5311 
5312 /**
5313  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5314  *
5315  * There are a couple of instances where we have a GSO skb, and we
5316  * want to determine what size it would be after it is segmented.
5317  *
5318  * We might want to check:
5319  * -    L3+L4+payload size (e.g. IP forwarding)
5320  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5321  *
5322  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5323  *
5324  * @skb: GSO skb
5325  *
5326  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5327  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5328  *
5329  * @max_len: The maximum permissible length.
5330  *
5331  * Returns true if the segmented length <= max length.
5332  */
5333 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5334 				      unsigned int seg_len,
5335 				      unsigned int max_len) {
5336 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5337 	const struct sk_buff *iter;
5338 
5339 	if (shinfo->gso_size != GSO_BY_FRAGS)
5340 		return seg_len <= max_len;
5341 
5342 	/* Undo this so we can re-use header sizes */
5343 	seg_len -= GSO_BY_FRAGS;
5344 
5345 	skb_walk_frags(skb, iter) {
5346 		if (seg_len + skb_headlen(iter) > max_len)
5347 			return false;
5348 	}
5349 
5350 	return true;
5351 }
5352 
5353 /**
5354  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5355  *
5356  * @skb: GSO skb
5357  * @mtu: MTU to validate against
5358  *
5359  * skb_gso_validate_network_len validates if a given skb will fit a
5360  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5361  * payload.
5362  */
5363 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5364 {
5365 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5366 }
5367 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5368 
5369 /**
5370  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5371  *
5372  * @skb: GSO skb
5373  * @len: length to validate against
5374  *
5375  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5376  * length once split, including L2, L3 and L4 headers and the payload.
5377  */
5378 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5379 {
5380 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5381 }
5382 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5383 
5384 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5385 {
5386 	int mac_len, meta_len;
5387 	void *meta;
5388 
5389 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5390 		kfree_skb(skb);
5391 		return NULL;
5392 	}
5393 
5394 	mac_len = skb->data - skb_mac_header(skb);
5395 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5396 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5397 			mac_len - VLAN_HLEN - ETH_TLEN);
5398 	}
5399 
5400 	meta_len = skb_metadata_len(skb);
5401 	if (meta_len) {
5402 		meta = skb_metadata_end(skb) - meta_len;
5403 		memmove(meta + VLAN_HLEN, meta, meta_len);
5404 	}
5405 
5406 	skb->mac_header += VLAN_HLEN;
5407 	return skb;
5408 }
5409 
5410 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5411 {
5412 	struct vlan_hdr *vhdr;
5413 	u16 vlan_tci;
5414 
5415 	if (unlikely(skb_vlan_tag_present(skb))) {
5416 		/* vlan_tci is already set-up so leave this for another time */
5417 		return skb;
5418 	}
5419 
5420 	skb = skb_share_check(skb, GFP_ATOMIC);
5421 	if (unlikely(!skb))
5422 		goto err_free;
5423 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5424 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5425 		goto err_free;
5426 
5427 	vhdr = (struct vlan_hdr *)skb->data;
5428 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5429 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5430 
5431 	skb_pull_rcsum(skb, VLAN_HLEN);
5432 	vlan_set_encap_proto(skb, vhdr);
5433 
5434 	skb = skb_reorder_vlan_header(skb);
5435 	if (unlikely(!skb))
5436 		goto err_free;
5437 
5438 	skb_reset_network_header(skb);
5439 	skb_reset_transport_header(skb);
5440 	skb_reset_mac_len(skb);
5441 
5442 	return skb;
5443 
5444 err_free:
5445 	kfree_skb(skb);
5446 	return NULL;
5447 }
5448 EXPORT_SYMBOL(skb_vlan_untag);
5449 
5450 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5451 {
5452 	if (!pskb_may_pull(skb, write_len))
5453 		return -ENOMEM;
5454 
5455 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5456 		return 0;
5457 
5458 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5459 }
5460 EXPORT_SYMBOL(skb_ensure_writable);
5461 
5462 /* remove VLAN header from packet and update csum accordingly.
5463  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5464  */
5465 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5466 {
5467 	struct vlan_hdr *vhdr;
5468 	int offset = skb->data - skb_mac_header(skb);
5469 	int err;
5470 
5471 	if (WARN_ONCE(offset,
5472 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5473 		      offset)) {
5474 		return -EINVAL;
5475 	}
5476 
5477 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5478 	if (unlikely(err))
5479 		return err;
5480 
5481 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5482 
5483 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5484 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5485 
5486 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5487 	__skb_pull(skb, VLAN_HLEN);
5488 
5489 	vlan_set_encap_proto(skb, vhdr);
5490 	skb->mac_header += VLAN_HLEN;
5491 
5492 	if (skb_network_offset(skb) < ETH_HLEN)
5493 		skb_set_network_header(skb, ETH_HLEN);
5494 
5495 	skb_reset_mac_len(skb);
5496 
5497 	return err;
5498 }
5499 EXPORT_SYMBOL(__skb_vlan_pop);
5500 
5501 /* Pop a vlan tag either from hwaccel or from payload.
5502  * Expects skb->data at mac header.
5503  */
5504 int skb_vlan_pop(struct sk_buff *skb)
5505 {
5506 	u16 vlan_tci;
5507 	__be16 vlan_proto;
5508 	int err;
5509 
5510 	if (likely(skb_vlan_tag_present(skb))) {
5511 		__vlan_hwaccel_clear_tag(skb);
5512 	} else {
5513 		if (unlikely(!eth_type_vlan(skb->protocol)))
5514 			return 0;
5515 
5516 		err = __skb_vlan_pop(skb, &vlan_tci);
5517 		if (err)
5518 			return err;
5519 	}
5520 	/* move next vlan tag to hw accel tag */
5521 	if (likely(!eth_type_vlan(skb->protocol)))
5522 		return 0;
5523 
5524 	vlan_proto = skb->protocol;
5525 	err = __skb_vlan_pop(skb, &vlan_tci);
5526 	if (unlikely(err))
5527 		return err;
5528 
5529 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5530 	return 0;
5531 }
5532 EXPORT_SYMBOL(skb_vlan_pop);
5533 
5534 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5535  * Expects skb->data at mac header.
5536  */
5537 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5538 {
5539 	if (skb_vlan_tag_present(skb)) {
5540 		int offset = skb->data - skb_mac_header(skb);
5541 		int err;
5542 
5543 		if (WARN_ONCE(offset,
5544 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5545 			      offset)) {
5546 			return -EINVAL;
5547 		}
5548 
5549 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5550 					skb_vlan_tag_get(skb));
5551 		if (err)
5552 			return err;
5553 
5554 		skb->protocol = skb->vlan_proto;
5555 		skb->mac_len += VLAN_HLEN;
5556 
5557 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5558 	}
5559 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5560 	return 0;
5561 }
5562 EXPORT_SYMBOL(skb_vlan_push);
5563 
5564 /* Update the ethertype of hdr and the skb csum value if required. */
5565 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5566 			     __be16 ethertype)
5567 {
5568 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5569 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5570 
5571 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5572 	}
5573 
5574 	hdr->h_proto = ethertype;
5575 }
5576 
5577 /**
5578  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5579  *                   the packet
5580  *
5581  * @skb: buffer
5582  * @mpls_lse: MPLS label stack entry to push
5583  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5584  * @mac_len: length of the MAC header
5585  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5586  *            ethernet
5587  *
5588  * Expects skb->data at mac header.
5589  *
5590  * Returns 0 on success, -errno otherwise.
5591  */
5592 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5593 		  int mac_len, bool ethernet)
5594 {
5595 	struct mpls_shim_hdr *lse;
5596 	int err;
5597 
5598 	if (unlikely(!eth_p_mpls(mpls_proto)))
5599 		return -EINVAL;
5600 
5601 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5602 	if (skb->encapsulation)
5603 		return -EINVAL;
5604 
5605 	err = skb_cow_head(skb, MPLS_HLEN);
5606 	if (unlikely(err))
5607 		return err;
5608 
5609 	if (!skb->inner_protocol) {
5610 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5611 		skb_set_inner_protocol(skb, skb->protocol);
5612 	}
5613 
5614 	skb_push(skb, MPLS_HLEN);
5615 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5616 		mac_len);
5617 	skb_reset_mac_header(skb);
5618 	skb_set_network_header(skb, mac_len);
5619 	skb_reset_mac_len(skb);
5620 
5621 	lse = mpls_hdr(skb);
5622 	lse->label_stack_entry = mpls_lse;
5623 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5624 
5625 	if (ethernet)
5626 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5627 	skb->protocol = mpls_proto;
5628 
5629 	return 0;
5630 }
5631 EXPORT_SYMBOL_GPL(skb_mpls_push);
5632 
5633 /**
5634  * skb_mpls_pop() - pop the outermost MPLS header
5635  *
5636  * @skb: buffer
5637  * @next_proto: ethertype of header after popped MPLS header
5638  * @mac_len: length of the MAC header
5639  * @ethernet: flag to indicate if the packet is ethernet
5640  *
5641  * Expects skb->data at mac header.
5642  *
5643  * Returns 0 on success, -errno otherwise.
5644  */
5645 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5646 		 bool ethernet)
5647 {
5648 	int err;
5649 
5650 	if (unlikely(!eth_p_mpls(skb->protocol)))
5651 		return 0;
5652 
5653 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5654 	if (unlikely(err))
5655 		return err;
5656 
5657 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5658 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5659 		mac_len);
5660 
5661 	__skb_pull(skb, MPLS_HLEN);
5662 	skb_reset_mac_header(skb);
5663 	skb_set_network_header(skb, mac_len);
5664 
5665 	if (ethernet) {
5666 		struct ethhdr *hdr;
5667 
5668 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5669 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5670 		skb_mod_eth_type(skb, hdr, next_proto);
5671 	}
5672 	skb->protocol = next_proto;
5673 
5674 	return 0;
5675 }
5676 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5677 
5678 /**
5679  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5680  *
5681  * @skb: buffer
5682  * @mpls_lse: new MPLS label stack entry to update to
5683  *
5684  * Expects skb->data at mac header.
5685  *
5686  * Returns 0 on success, -errno otherwise.
5687  */
5688 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5689 {
5690 	int err;
5691 
5692 	if (unlikely(!eth_p_mpls(skb->protocol)))
5693 		return -EINVAL;
5694 
5695 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5696 	if (unlikely(err))
5697 		return err;
5698 
5699 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5700 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5701 
5702 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5703 	}
5704 
5705 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5706 
5707 	return 0;
5708 }
5709 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5710 
5711 /**
5712  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5713  *
5714  * @skb: buffer
5715  *
5716  * Expects skb->data at mac header.
5717  *
5718  * Returns 0 on success, -errno otherwise.
5719  */
5720 int skb_mpls_dec_ttl(struct sk_buff *skb)
5721 {
5722 	u32 lse;
5723 	u8 ttl;
5724 
5725 	if (unlikely(!eth_p_mpls(skb->protocol)))
5726 		return -EINVAL;
5727 
5728 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5729 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5730 	if (!--ttl)
5731 		return -EINVAL;
5732 
5733 	lse &= ~MPLS_LS_TTL_MASK;
5734 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5735 
5736 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5737 }
5738 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5739 
5740 /**
5741  * alloc_skb_with_frags - allocate skb with page frags
5742  *
5743  * @header_len: size of linear part
5744  * @data_len: needed length in frags
5745  * @max_page_order: max page order desired.
5746  * @errcode: pointer to error code if any
5747  * @gfp_mask: allocation mask
5748  *
5749  * This can be used to allocate a paged skb, given a maximal order for frags.
5750  */
5751 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5752 				     unsigned long data_len,
5753 				     int max_page_order,
5754 				     int *errcode,
5755 				     gfp_t gfp_mask)
5756 {
5757 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5758 	unsigned long chunk;
5759 	struct sk_buff *skb;
5760 	struct page *page;
5761 	int i;
5762 
5763 	*errcode = -EMSGSIZE;
5764 	/* Note this test could be relaxed, if we succeed to allocate
5765 	 * high order pages...
5766 	 */
5767 	if (npages > MAX_SKB_FRAGS)
5768 		return NULL;
5769 
5770 	*errcode = -ENOBUFS;
5771 	skb = alloc_skb(header_len, gfp_mask);
5772 	if (!skb)
5773 		return NULL;
5774 
5775 	skb->truesize += npages << PAGE_SHIFT;
5776 
5777 	for (i = 0; npages > 0; i++) {
5778 		int order = max_page_order;
5779 
5780 		while (order) {
5781 			if (npages >= 1 << order) {
5782 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5783 						   __GFP_COMP |
5784 						   __GFP_NOWARN,
5785 						   order);
5786 				if (page)
5787 					goto fill_page;
5788 				/* Do not retry other high order allocations */
5789 				order = 1;
5790 				max_page_order = 0;
5791 			}
5792 			order--;
5793 		}
5794 		page = alloc_page(gfp_mask);
5795 		if (!page)
5796 			goto failure;
5797 fill_page:
5798 		chunk = min_t(unsigned long, data_len,
5799 			      PAGE_SIZE << order);
5800 		skb_fill_page_desc(skb, i, page, 0, chunk);
5801 		data_len -= chunk;
5802 		npages -= 1 << order;
5803 	}
5804 	return skb;
5805 
5806 failure:
5807 	kfree_skb(skb);
5808 	return NULL;
5809 }
5810 EXPORT_SYMBOL(alloc_skb_with_frags);
5811 
5812 /* carve out the first off bytes from skb when off < headlen */
5813 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5814 				    const int headlen, gfp_t gfp_mask)
5815 {
5816 	int i;
5817 	int size = skb_end_offset(skb);
5818 	int new_hlen = headlen - off;
5819 	u8 *data;
5820 
5821 	size = SKB_DATA_ALIGN(size);
5822 
5823 	if (skb_pfmemalloc(skb))
5824 		gfp_mask |= __GFP_MEMALLOC;
5825 	data = kmalloc_reserve(size +
5826 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5827 			       gfp_mask, NUMA_NO_NODE, NULL);
5828 	if (!data)
5829 		return -ENOMEM;
5830 
5831 	size = SKB_WITH_OVERHEAD(ksize(data));
5832 
5833 	/* Copy real data, and all frags */
5834 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5835 	skb->len -= off;
5836 
5837 	memcpy((struct skb_shared_info *)(data + size),
5838 	       skb_shinfo(skb),
5839 	       offsetof(struct skb_shared_info,
5840 			frags[skb_shinfo(skb)->nr_frags]));
5841 	if (skb_cloned(skb)) {
5842 		/* drop the old head gracefully */
5843 		if (skb_orphan_frags(skb, gfp_mask)) {
5844 			kfree(data);
5845 			return -ENOMEM;
5846 		}
5847 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5848 			skb_frag_ref(skb, i);
5849 		if (skb_has_frag_list(skb))
5850 			skb_clone_fraglist(skb);
5851 		skb_release_data(skb);
5852 	} else {
5853 		/* we can reuse existing recount- all we did was
5854 		 * relocate values
5855 		 */
5856 		skb_free_head(skb);
5857 	}
5858 
5859 	skb->head = data;
5860 	skb->data = data;
5861 	skb->head_frag = 0;
5862 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5863 	skb->end = size;
5864 #else
5865 	skb->end = skb->head + size;
5866 #endif
5867 	skb_set_tail_pointer(skb, skb_headlen(skb));
5868 	skb_headers_offset_update(skb, 0);
5869 	skb->cloned = 0;
5870 	skb->hdr_len = 0;
5871 	skb->nohdr = 0;
5872 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5873 
5874 	return 0;
5875 }
5876 
5877 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5878 
5879 /* carve out the first eat bytes from skb's frag_list. May recurse into
5880  * pskb_carve()
5881  */
5882 static int pskb_carve_frag_list(struct sk_buff *skb,
5883 				struct skb_shared_info *shinfo, int eat,
5884 				gfp_t gfp_mask)
5885 {
5886 	struct sk_buff *list = shinfo->frag_list;
5887 	struct sk_buff *clone = NULL;
5888 	struct sk_buff *insp = NULL;
5889 
5890 	do {
5891 		if (!list) {
5892 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5893 			return -EFAULT;
5894 		}
5895 		if (list->len <= eat) {
5896 			/* Eaten as whole. */
5897 			eat -= list->len;
5898 			list = list->next;
5899 			insp = list;
5900 		} else {
5901 			/* Eaten partially. */
5902 			if (skb_shared(list)) {
5903 				clone = skb_clone(list, gfp_mask);
5904 				if (!clone)
5905 					return -ENOMEM;
5906 				insp = list->next;
5907 				list = clone;
5908 			} else {
5909 				/* This may be pulled without problems. */
5910 				insp = list;
5911 			}
5912 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5913 				kfree_skb(clone);
5914 				return -ENOMEM;
5915 			}
5916 			break;
5917 		}
5918 	} while (eat);
5919 
5920 	/* Free pulled out fragments. */
5921 	while ((list = shinfo->frag_list) != insp) {
5922 		shinfo->frag_list = list->next;
5923 		kfree_skb(list);
5924 	}
5925 	/* And insert new clone at head. */
5926 	if (clone) {
5927 		clone->next = list;
5928 		shinfo->frag_list = clone;
5929 	}
5930 	return 0;
5931 }
5932 
5933 /* carve off first len bytes from skb. Split line (off) is in the
5934  * non-linear part of skb
5935  */
5936 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5937 				       int pos, gfp_t gfp_mask)
5938 {
5939 	int i, k = 0;
5940 	int size = skb_end_offset(skb);
5941 	u8 *data;
5942 	const int nfrags = skb_shinfo(skb)->nr_frags;
5943 	struct skb_shared_info *shinfo;
5944 
5945 	size = SKB_DATA_ALIGN(size);
5946 
5947 	if (skb_pfmemalloc(skb))
5948 		gfp_mask |= __GFP_MEMALLOC;
5949 	data = kmalloc_reserve(size +
5950 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5951 			       gfp_mask, NUMA_NO_NODE, NULL);
5952 	if (!data)
5953 		return -ENOMEM;
5954 
5955 	size = SKB_WITH_OVERHEAD(ksize(data));
5956 
5957 	memcpy((struct skb_shared_info *)(data + size),
5958 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5959 					 frags[skb_shinfo(skb)->nr_frags]));
5960 	if (skb_orphan_frags(skb, gfp_mask)) {
5961 		kfree(data);
5962 		return -ENOMEM;
5963 	}
5964 	shinfo = (struct skb_shared_info *)(data + size);
5965 	for (i = 0; i < nfrags; i++) {
5966 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5967 
5968 		if (pos + fsize > off) {
5969 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5970 
5971 			if (pos < off) {
5972 				/* Split frag.
5973 				 * We have two variants in this case:
5974 				 * 1. Move all the frag to the second
5975 				 *    part, if it is possible. F.e.
5976 				 *    this approach is mandatory for TUX,
5977 				 *    where splitting is expensive.
5978 				 * 2. Split is accurately. We make this.
5979 				 */
5980 				skb_frag_off_add(&shinfo->frags[0], off - pos);
5981 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5982 			}
5983 			skb_frag_ref(skb, i);
5984 			k++;
5985 		}
5986 		pos += fsize;
5987 	}
5988 	shinfo->nr_frags = k;
5989 	if (skb_has_frag_list(skb))
5990 		skb_clone_fraglist(skb);
5991 
5992 	/* split line is in frag list */
5993 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
5994 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
5995 		if (skb_has_frag_list(skb))
5996 			kfree_skb_list(skb_shinfo(skb)->frag_list);
5997 		kfree(data);
5998 		return -ENOMEM;
5999 	}
6000 	skb_release_data(skb);
6001 
6002 	skb->head = data;
6003 	skb->head_frag = 0;
6004 	skb->data = data;
6005 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6006 	skb->end = size;
6007 #else
6008 	skb->end = skb->head + size;
6009 #endif
6010 	skb_reset_tail_pointer(skb);
6011 	skb_headers_offset_update(skb, 0);
6012 	skb->cloned   = 0;
6013 	skb->hdr_len  = 0;
6014 	skb->nohdr    = 0;
6015 	skb->len -= off;
6016 	skb->data_len = skb->len;
6017 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6018 	return 0;
6019 }
6020 
6021 /* remove len bytes from the beginning of the skb */
6022 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6023 {
6024 	int headlen = skb_headlen(skb);
6025 
6026 	if (len < headlen)
6027 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6028 	else
6029 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6030 }
6031 
6032 /* Extract to_copy bytes starting at off from skb, and return this in
6033  * a new skb
6034  */
6035 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6036 			     int to_copy, gfp_t gfp)
6037 {
6038 	struct sk_buff  *clone = skb_clone(skb, gfp);
6039 
6040 	if (!clone)
6041 		return NULL;
6042 
6043 	if (pskb_carve(clone, off, gfp) < 0 ||
6044 	    pskb_trim(clone, to_copy)) {
6045 		kfree_skb(clone);
6046 		return NULL;
6047 	}
6048 	return clone;
6049 }
6050 EXPORT_SYMBOL(pskb_extract);
6051 
6052 /**
6053  * skb_condense - try to get rid of fragments/frag_list if possible
6054  * @skb: buffer
6055  *
6056  * Can be used to save memory before skb is added to a busy queue.
6057  * If packet has bytes in frags and enough tail room in skb->head,
6058  * pull all of them, so that we can free the frags right now and adjust
6059  * truesize.
6060  * Notes:
6061  *	We do not reallocate skb->head thus can not fail.
6062  *	Caller must re-evaluate skb->truesize if needed.
6063  */
6064 void skb_condense(struct sk_buff *skb)
6065 {
6066 	if (skb->data_len) {
6067 		if (skb->data_len > skb->end - skb->tail ||
6068 		    skb_cloned(skb))
6069 			return;
6070 
6071 		/* Nice, we can free page frag(s) right now */
6072 		__pskb_pull_tail(skb, skb->data_len);
6073 	}
6074 	/* At this point, skb->truesize might be over estimated,
6075 	 * because skb had a fragment, and fragments do not tell
6076 	 * their truesize.
6077 	 * When we pulled its content into skb->head, fragment
6078 	 * was freed, but __pskb_pull_tail() could not possibly
6079 	 * adjust skb->truesize, not knowing the frag truesize.
6080 	 */
6081 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6082 }
6083 
6084 #ifdef CONFIG_SKB_EXTENSIONS
6085 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6086 {
6087 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6088 }
6089 
6090 /**
6091  * __skb_ext_alloc - allocate a new skb extensions storage
6092  *
6093  * @flags: See kmalloc().
6094  *
6095  * Returns the newly allocated pointer. The pointer can later attached to a
6096  * skb via __skb_ext_set().
6097  * Note: caller must handle the skb_ext as an opaque data.
6098  */
6099 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6100 {
6101 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6102 
6103 	if (new) {
6104 		memset(new->offset, 0, sizeof(new->offset));
6105 		refcount_set(&new->refcnt, 1);
6106 	}
6107 
6108 	return new;
6109 }
6110 
6111 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6112 					 unsigned int old_active)
6113 {
6114 	struct skb_ext *new;
6115 
6116 	if (refcount_read(&old->refcnt) == 1)
6117 		return old;
6118 
6119 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6120 	if (!new)
6121 		return NULL;
6122 
6123 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6124 	refcount_set(&new->refcnt, 1);
6125 
6126 #ifdef CONFIG_XFRM
6127 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6128 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6129 		unsigned int i;
6130 
6131 		for (i = 0; i < sp->len; i++)
6132 			xfrm_state_hold(sp->xvec[i]);
6133 	}
6134 #endif
6135 	__skb_ext_put(old);
6136 	return new;
6137 }
6138 
6139 /**
6140  * __skb_ext_set - attach the specified extension storage to this skb
6141  * @skb: buffer
6142  * @id: extension id
6143  * @ext: extension storage previously allocated via __skb_ext_alloc()
6144  *
6145  * Existing extensions, if any, are cleared.
6146  *
6147  * Returns the pointer to the extension.
6148  */
6149 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6150 		    struct skb_ext *ext)
6151 {
6152 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6153 
6154 	skb_ext_put(skb);
6155 	newlen = newoff + skb_ext_type_len[id];
6156 	ext->chunks = newlen;
6157 	ext->offset[id] = newoff;
6158 	skb->extensions = ext;
6159 	skb->active_extensions = 1 << id;
6160 	return skb_ext_get_ptr(ext, id);
6161 }
6162 
6163 /**
6164  * skb_ext_add - allocate space for given extension, COW if needed
6165  * @skb: buffer
6166  * @id: extension to allocate space for
6167  *
6168  * Allocates enough space for the given extension.
6169  * If the extension is already present, a pointer to that extension
6170  * is returned.
6171  *
6172  * If the skb was cloned, COW applies and the returned memory can be
6173  * modified without changing the extension space of clones buffers.
6174  *
6175  * Returns pointer to the extension or NULL on allocation failure.
6176  */
6177 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6178 {
6179 	struct skb_ext *new, *old = NULL;
6180 	unsigned int newlen, newoff;
6181 
6182 	if (skb->active_extensions) {
6183 		old = skb->extensions;
6184 
6185 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6186 		if (!new)
6187 			return NULL;
6188 
6189 		if (__skb_ext_exist(new, id))
6190 			goto set_active;
6191 
6192 		newoff = new->chunks;
6193 	} else {
6194 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6195 
6196 		new = __skb_ext_alloc(GFP_ATOMIC);
6197 		if (!new)
6198 			return NULL;
6199 	}
6200 
6201 	newlen = newoff + skb_ext_type_len[id];
6202 	new->chunks = newlen;
6203 	new->offset[id] = newoff;
6204 set_active:
6205 	skb->extensions = new;
6206 	skb->active_extensions |= 1 << id;
6207 	return skb_ext_get_ptr(new, id);
6208 }
6209 EXPORT_SYMBOL(skb_ext_add);
6210 
6211 #ifdef CONFIG_XFRM
6212 static void skb_ext_put_sp(struct sec_path *sp)
6213 {
6214 	unsigned int i;
6215 
6216 	for (i = 0; i < sp->len; i++)
6217 		xfrm_state_put(sp->xvec[i]);
6218 }
6219 #endif
6220 
6221 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6222 {
6223 	struct skb_ext *ext = skb->extensions;
6224 
6225 	skb->active_extensions &= ~(1 << id);
6226 	if (skb->active_extensions == 0) {
6227 		skb->extensions = NULL;
6228 		__skb_ext_put(ext);
6229 #ifdef CONFIG_XFRM
6230 	} else if (id == SKB_EXT_SEC_PATH &&
6231 		   refcount_read(&ext->refcnt) == 1) {
6232 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6233 
6234 		skb_ext_put_sp(sp);
6235 		sp->len = 0;
6236 #endif
6237 	}
6238 }
6239 EXPORT_SYMBOL(__skb_ext_del);
6240 
6241 void __skb_ext_put(struct skb_ext *ext)
6242 {
6243 	/* If this is last clone, nothing can increment
6244 	 * it after check passes.  Avoids one atomic op.
6245 	 */
6246 	if (refcount_read(&ext->refcnt) == 1)
6247 		goto free_now;
6248 
6249 	if (!refcount_dec_and_test(&ext->refcnt))
6250 		return;
6251 free_now:
6252 #ifdef CONFIG_XFRM
6253 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6254 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6255 #endif
6256 
6257 	kmem_cache_free(skbuff_ext_cache, ext);
6258 }
6259 EXPORT_SYMBOL(__skb_ext_put);
6260 #endif /* CONFIG_SKB_EXTENSIONS */
6261