xref: /openbmc/linux/net/core/skbuff.c (revision 110e6f26)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
160 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
161 {
162 	struct sk_buff *skb;
163 
164 	/* Get the HEAD */
165 	skb = kmem_cache_alloc_node(skbuff_head_cache,
166 				    gfp_mask & ~__GFP_DMA, node);
167 	if (!skb)
168 		goto out;
169 
170 	/*
171 	 * Only clear those fields we need to clear, not those that we will
172 	 * actually initialise below. Hence, don't put any more fields after
173 	 * the tail pointer in struct sk_buff!
174 	 */
175 	memset(skb, 0, offsetof(struct sk_buff, tail));
176 	skb->head = NULL;
177 	skb->truesize = sizeof(struct sk_buff);
178 	atomic_set(&skb->users, 1);
179 
180 	skb->mac_header = (typeof(skb->mac_header))~0U;
181 out:
182 	return skb;
183 }
184 
185 /**
186  *	__alloc_skb	-	allocate a network buffer
187  *	@size: size to allocate
188  *	@gfp_mask: allocation mask
189  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
190  *		instead of head cache and allocate a cloned (child) skb.
191  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
192  *		allocations in case the data is required for writeback
193  *	@node: numa node to allocate memory on
194  *
195  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
196  *	tail room of at least size bytes. The object has a reference count
197  *	of one. The return is the buffer. On a failure the return is %NULL.
198  *
199  *	Buffers may only be allocated from interrupts using a @gfp_mask of
200  *	%GFP_ATOMIC.
201  */
202 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
203 			    int flags, int node)
204 {
205 	struct kmem_cache *cache;
206 	struct skb_shared_info *shinfo;
207 	struct sk_buff *skb;
208 	u8 *data;
209 	bool pfmemalloc;
210 
211 	cache = (flags & SKB_ALLOC_FCLONE)
212 		? skbuff_fclone_cache : skbuff_head_cache;
213 
214 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
215 		gfp_mask |= __GFP_MEMALLOC;
216 
217 	/* Get the HEAD */
218 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
219 	if (!skb)
220 		goto out;
221 	prefetchw(skb);
222 
223 	/* We do our best to align skb_shared_info on a separate cache
224 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
225 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
226 	 * Both skb->head and skb_shared_info are cache line aligned.
227 	 */
228 	size = SKB_DATA_ALIGN(size);
229 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
230 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
231 	if (!data)
232 		goto nodata;
233 	/* kmalloc(size) might give us more room than requested.
234 	 * Put skb_shared_info exactly at the end of allocated zone,
235 	 * to allow max possible filling before reallocation.
236 	 */
237 	size = SKB_WITH_OVERHEAD(ksize(data));
238 	prefetchw(data + size);
239 
240 	/*
241 	 * Only clear those fields we need to clear, not those that we will
242 	 * actually initialise below. Hence, don't put any more fields after
243 	 * the tail pointer in struct sk_buff!
244 	 */
245 	memset(skb, 0, offsetof(struct sk_buff, tail));
246 	/* Account for allocated memory : skb + skb->head */
247 	skb->truesize = SKB_TRUESIZE(size);
248 	skb->pfmemalloc = pfmemalloc;
249 	atomic_set(&skb->users, 1);
250 	skb->head = data;
251 	skb->data = data;
252 	skb_reset_tail_pointer(skb);
253 	skb->end = skb->tail + size;
254 	skb->mac_header = (typeof(skb->mac_header))~0U;
255 	skb->transport_header = (typeof(skb->transport_header))~0U;
256 
257 	/* make sure we initialize shinfo sequentially */
258 	shinfo = skb_shinfo(skb);
259 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
260 	atomic_set(&shinfo->dataref, 1);
261 	kmemcheck_annotate_variable(shinfo->destructor_arg);
262 
263 	if (flags & SKB_ALLOC_FCLONE) {
264 		struct sk_buff_fclones *fclones;
265 
266 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
267 
268 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
269 		skb->fclone = SKB_FCLONE_ORIG;
270 		atomic_set(&fclones->fclone_ref, 1);
271 
272 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
273 		fclones->skb2.pfmemalloc = pfmemalloc;
274 	}
275 out:
276 	return skb;
277 nodata:
278 	kmem_cache_free(cache, skb);
279 	skb = NULL;
280 	goto out;
281 }
282 EXPORT_SYMBOL(__alloc_skb);
283 
284 /**
285  * __build_skb - build a network buffer
286  * @data: data buffer provided by caller
287  * @frag_size: size of data, or 0 if head was kmalloced
288  *
289  * Allocate a new &sk_buff. Caller provides space holding head and
290  * skb_shared_info. @data must have been allocated by kmalloc() only if
291  * @frag_size is 0, otherwise data should come from the page allocator
292  *  or vmalloc()
293  * The return is the new skb buffer.
294  * On a failure the return is %NULL, and @data is not freed.
295  * Notes :
296  *  Before IO, driver allocates only data buffer where NIC put incoming frame
297  *  Driver should add room at head (NET_SKB_PAD) and
298  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
300  *  before giving packet to stack.
301  *  RX rings only contains data buffers, not full skbs.
302  */
303 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
304 {
305 	struct skb_shared_info *shinfo;
306 	struct sk_buff *skb;
307 	unsigned int size = frag_size ? : ksize(data);
308 
309 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
310 	if (!skb)
311 		return NULL;
312 
313 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
314 
315 	memset(skb, 0, offsetof(struct sk_buff, tail));
316 	skb->truesize = SKB_TRUESIZE(size);
317 	atomic_set(&skb->users, 1);
318 	skb->head = data;
319 	skb->data = data;
320 	skb_reset_tail_pointer(skb);
321 	skb->end = skb->tail + size;
322 	skb->mac_header = (typeof(skb->mac_header))~0U;
323 	skb->transport_header = (typeof(skb->transport_header))~0U;
324 
325 	/* make sure we initialize shinfo sequentially */
326 	shinfo = skb_shinfo(skb);
327 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328 	atomic_set(&shinfo->dataref, 1);
329 	kmemcheck_annotate_variable(shinfo->destructor_arg);
330 
331 	return skb;
332 }
333 
334 /* build_skb() is wrapper over __build_skb(), that specifically
335  * takes care of skb->head and skb->pfmemalloc
336  * This means that if @frag_size is not zero, then @data must be backed
337  * by a page fragment, not kmalloc() or vmalloc()
338  */
339 struct sk_buff *build_skb(void *data, unsigned int frag_size)
340 {
341 	struct sk_buff *skb = __build_skb(data, frag_size);
342 
343 	if (skb && frag_size) {
344 		skb->head_frag = 1;
345 		if (page_is_pfmemalloc(virt_to_head_page(data)))
346 			skb->pfmemalloc = 1;
347 	}
348 	return skb;
349 }
350 EXPORT_SYMBOL(build_skb);
351 
352 #define NAPI_SKB_CACHE_SIZE	64
353 
354 struct napi_alloc_cache {
355 	struct page_frag_cache page;
356 	size_t skb_count;
357 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
358 };
359 
360 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
361 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
362 
363 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
364 {
365 	struct page_frag_cache *nc;
366 	unsigned long flags;
367 	void *data;
368 
369 	local_irq_save(flags);
370 	nc = this_cpu_ptr(&netdev_alloc_cache);
371 	data = __alloc_page_frag(nc, fragsz, gfp_mask);
372 	local_irq_restore(flags);
373 	return data;
374 }
375 
376 /**
377  * netdev_alloc_frag - allocate a page fragment
378  * @fragsz: fragment size
379  *
380  * Allocates a frag from a page for receive buffer.
381  * Uses GFP_ATOMIC allocations.
382  */
383 void *netdev_alloc_frag(unsigned int fragsz)
384 {
385 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
386 }
387 EXPORT_SYMBOL(netdev_alloc_frag);
388 
389 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
390 {
391 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
392 
393 	return __alloc_page_frag(&nc->page, fragsz, gfp_mask);
394 }
395 
396 void *napi_alloc_frag(unsigned int fragsz)
397 {
398 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
399 }
400 EXPORT_SYMBOL(napi_alloc_frag);
401 
402 /**
403  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
404  *	@dev: network device to receive on
405  *	@len: length to allocate
406  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
407  *
408  *	Allocate a new &sk_buff and assign it a usage count of one. The
409  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
410  *	the headroom they think they need without accounting for the
411  *	built in space. The built in space is used for optimisations.
412  *
413  *	%NULL is returned if there is no free memory.
414  */
415 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
416 				   gfp_t gfp_mask)
417 {
418 	struct page_frag_cache *nc;
419 	unsigned long flags;
420 	struct sk_buff *skb;
421 	bool pfmemalloc;
422 	void *data;
423 
424 	len += NET_SKB_PAD;
425 
426 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
427 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
428 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
429 		if (!skb)
430 			goto skb_fail;
431 		goto skb_success;
432 	}
433 
434 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435 	len = SKB_DATA_ALIGN(len);
436 
437 	if (sk_memalloc_socks())
438 		gfp_mask |= __GFP_MEMALLOC;
439 
440 	local_irq_save(flags);
441 
442 	nc = this_cpu_ptr(&netdev_alloc_cache);
443 	data = __alloc_page_frag(nc, len, gfp_mask);
444 	pfmemalloc = nc->pfmemalloc;
445 
446 	local_irq_restore(flags);
447 
448 	if (unlikely(!data))
449 		return NULL;
450 
451 	skb = __build_skb(data, len);
452 	if (unlikely(!skb)) {
453 		skb_free_frag(data);
454 		return NULL;
455 	}
456 
457 	/* use OR instead of assignment to avoid clearing of bits in mask */
458 	if (pfmemalloc)
459 		skb->pfmemalloc = 1;
460 	skb->head_frag = 1;
461 
462 skb_success:
463 	skb_reserve(skb, NET_SKB_PAD);
464 	skb->dev = dev;
465 
466 skb_fail:
467 	return skb;
468 }
469 EXPORT_SYMBOL(__netdev_alloc_skb);
470 
471 /**
472  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
473  *	@napi: napi instance this buffer was allocated for
474  *	@len: length to allocate
475  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
476  *
477  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
478  *	attempt to allocate the head from a special reserved region used
479  *	only for NAPI Rx allocation.  By doing this we can save several
480  *	CPU cycles by avoiding having to disable and re-enable IRQs.
481  *
482  *	%NULL is returned if there is no free memory.
483  */
484 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
485 				 gfp_t gfp_mask)
486 {
487 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
488 	struct sk_buff *skb;
489 	void *data;
490 
491 	len += NET_SKB_PAD + NET_IP_ALIGN;
492 
493 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
494 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
495 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
496 		if (!skb)
497 			goto skb_fail;
498 		goto skb_success;
499 	}
500 
501 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
502 	len = SKB_DATA_ALIGN(len);
503 
504 	if (sk_memalloc_socks())
505 		gfp_mask |= __GFP_MEMALLOC;
506 
507 	data = __alloc_page_frag(&nc->page, len, gfp_mask);
508 	if (unlikely(!data))
509 		return NULL;
510 
511 	skb = __build_skb(data, len);
512 	if (unlikely(!skb)) {
513 		skb_free_frag(data);
514 		return NULL;
515 	}
516 
517 	/* use OR instead of assignment to avoid clearing of bits in mask */
518 	if (nc->page.pfmemalloc)
519 		skb->pfmemalloc = 1;
520 	skb->head_frag = 1;
521 
522 skb_success:
523 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
524 	skb->dev = napi->dev;
525 
526 skb_fail:
527 	return skb;
528 }
529 EXPORT_SYMBOL(__napi_alloc_skb);
530 
531 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
532 		     int size, unsigned int truesize)
533 {
534 	skb_fill_page_desc(skb, i, page, off, size);
535 	skb->len += size;
536 	skb->data_len += size;
537 	skb->truesize += truesize;
538 }
539 EXPORT_SYMBOL(skb_add_rx_frag);
540 
541 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
542 			  unsigned int truesize)
543 {
544 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
545 
546 	skb_frag_size_add(frag, size);
547 	skb->len += size;
548 	skb->data_len += size;
549 	skb->truesize += truesize;
550 }
551 EXPORT_SYMBOL(skb_coalesce_rx_frag);
552 
553 static void skb_drop_list(struct sk_buff **listp)
554 {
555 	kfree_skb_list(*listp);
556 	*listp = NULL;
557 }
558 
559 static inline void skb_drop_fraglist(struct sk_buff *skb)
560 {
561 	skb_drop_list(&skb_shinfo(skb)->frag_list);
562 }
563 
564 static void skb_clone_fraglist(struct sk_buff *skb)
565 {
566 	struct sk_buff *list;
567 
568 	skb_walk_frags(skb, list)
569 		skb_get(list);
570 }
571 
572 static void skb_free_head(struct sk_buff *skb)
573 {
574 	unsigned char *head = skb->head;
575 
576 	if (skb->head_frag)
577 		skb_free_frag(head);
578 	else
579 		kfree(head);
580 }
581 
582 static void skb_release_data(struct sk_buff *skb)
583 {
584 	struct skb_shared_info *shinfo = skb_shinfo(skb);
585 	int i;
586 
587 	if (skb->cloned &&
588 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
589 			      &shinfo->dataref))
590 		return;
591 
592 	for (i = 0; i < shinfo->nr_frags; i++)
593 		__skb_frag_unref(&shinfo->frags[i]);
594 
595 	/*
596 	 * If skb buf is from userspace, we need to notify the caller
597 	 * the lower device DMA has done;
598 	 */
599 	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
600 		struct ubuf_info *uarg;
601 
602 		uarg = shinfo->destructor_arg;
603 		if (uarg->callback)
604 			uarg->callback(uarg, true);
605 	}
606 
607 	if (shinfo->frag_list)
608 		kfree_skb_list(shinfo->frag_list);
609 
610 	skb_free_head(skb);
611 }
612 
613 /*
614  *	Free an skbuff by memory without cleaning the state.
615  */
616 static void kfree_skbmem(struct sk_buff *skb)
617 {
618 	struct sk_buff_fclones *fclones;
619 
620 	switch (skb->fclone) {
621 	case SKB_FCLONE_UNAVAILABLE:
622 		kmem_cache_free(skbuff_head_cache, skb);
623 		return;
624 
625 	case SKB_FCLONE_ORIG:
626 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
627 
628 		/* We usually free the clone (TX completion) before original skb
629 		 * This test would have no chance to be true for the clone,
630 		 * while here, branch prediction will be good.
631 		 */
632 		if (atomic_read(&fclones->fclone_ref) == 1)
633 			goto fastpath;
634 		break;
635 
636 	default: /* SKB_FCLONE_CLONE */
637 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 		break;
639 	}
640 	if (!atomic_dec_and_test(&fclones->fclone_ref))
641 		return;
642 fastpath:
643 	kmem_cache_free(skbuff_fclone_cache, fclones);
644 }
645 
646 static void skb_release_head_state(struct sk_buff *skb)
647 {
648 	skb_dst_drop(skb);
649 #ifdef CONFIG_XFRM
650 	secpath_put(skb->sp);
651 #endif
652 	if (skb->destructor) {
653 		WARN_ON(in_irq());
654 		skb->destructor(skb);
655 	}
656 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
657 	nf_conntrack_put(skb->nfct);
658 #endif
659 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
660 	nf_bridge_put(skb->nf_bridge);
661 #endif
662 }
663 
664 /* Free everything but the sk_buff shell. */
665 static void skb_release_all(struct sk_buff *skb)
666 {
667 	skb_release_head_state(skb);
668 	if (likely(skb->head))
669 		skb_release_data(skb);
670 }
671 
672 /**
673  *	__kfree_skb - private function
674  *	@skb: buffer
675  *
676  *	Free an sk_buff. Release anything attached to the buffer.
677  *	Clean the state. This is an internal helper function. Users should
678  *	always call kfree_skb
679  */
680 
681 void __kfree_skb(struct sk_buff *skb)
682 {
683 	skb_release_all(skb);
684 	kfree_skbmem(skb);
685 }
686 EXPORT_SYMBOL(__kfree_skb);
687 
688 /**
689  *	kfree_skb - free an sk_buff
690  *	@skb: buffer to free
691  *
692  *	Drop a reference to the buffer and free it if the usage count has
693  *	hit zero.
694  */
695 void kfree_skb(struct sk_buff *skb)
696 {
697 	if (unlikely(!skb))
698 		return;
699 	if (likely(atomic_read(&skb->users) == 1))
700 		smp_rmb();
701 	else if (likely(!atomic_dec_and_test(&skb->users)))
702 		return;
703 	trace_kfree_skb(skb, __builtin_return_address(0));
704 	__kfree_skb(skb);
705 }
706 EXPORT_SYMBOL(kfree_skb);
707 
708 void kfree_skb_list(struct sk_buff *segs)
709 {
710 	while (segs) {
711 		struct sk_buff *next = segs->next;
712 
713 		kfree_skb(segs);
714 		segs = next;
715 	}
716 }
717 EXPORT_SYMBOL(kfree_skb_list);
718 
719 /**
720  *	skb_tx_error - report an sk_buff xmit error
721  *	@skb: buffer that triggered an error
722  *
723  *	Report xmit error if a device callback is tracking this skb.
724  *	skb must be freed afterwards.
725  */
726 void skb_tx_error(struct sk_buff *skb)
727 {
728 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
729 		struct ubuf_info *uarg;
730 
731 		uarg = skb_shinfo(skb)->destructor_arg;
732 		if (uarg->callback)
733 			uarg->callback(uarg, false);
734 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
735 	}
736 }
737 EXPORT_SYMBOL(skb_tx_error);
738 
739 /**
740  *	consume_skb - free an skbuff
741  *	@skb: buffer to free
742  *
743  *	Drop a ref to the buffer and free it if the usage count has hit zero
744  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
745  *	is being dropped after a failure and notes that
746  */
747 void consume_skb(struct sk_buff *skb)
748 {
749 	if (unlikely(!skb))
750 		return;
751 	if (likely(atomic_read(&skb->users) == 1))
752 		smp_rmb();
753 	else if (likely(!atomic_dec_and_test(&skb->users)))
754 		return;
755 	trace_consume_skb(skb);
756 	__kfree_skb(skb);
757 }
758 EXPORT_SYMBOL(consume_skb);
759 
760 void __kfree_skb_flush(void)
761 {
762 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
763 
764 	/* flush skb_cache if containing objects */
765 	if (nc->skb_count) {
766 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
767 				     nc->skb_cache);
768 		nc->skb_count = 0;
769 	}
770 }
771 
772 static inline void _kfree_skb_defer(struct sk_buff *skb)
773 {
774 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
775 
776 	/* drop skb->head and call any destructors for packet */
777 	skb_release_all(skb);
778 
779 	/* record skb to CPU local list */
780 	nc->skb_cache[nc->skb_count++] = skb;
781 
782 #ifdef CONFIG_SLUB
783 	/* SLUB writes into objects when freeing */
784 	prefetchw(skb);
785 #endif
786 
787 	/* flush skb_cache if it is filled */
788 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
789 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
790 				     nc->skb_cache);
791 		nc->skb_count = 0;
792 	}
793 }
794 void __kfree_skb_defer(struct sk_buff *skb)
795 {
796 	_kfree_skb_defer(skb);
797 }
798 
799 void napi_consume_skb(struct sk_buff *skb, int budget)
800 {
801 	if (unlikely(!skb))
802 		return;
803 
804 	/* Zero budget indicate non-NAPI context called us, like netpoll */
805 	if (unlikely(!budget)) {
806 		dev_consume_skb_any(skb);
807 		return;
808 	}
809 
810 	if (likely(atomic_read(&skb->users) == 1))
811 		smp_rmb();
812 	else if (likely(!atomic_dec_and_test(&skb->users)))
813 		return;
814 	/* if reaching here SKB is ready to free */
815 	trace_consume_skb(skb);
816 
817 	/* if SKB is a clone, don't handle this case */
818 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
819 		__kfree_skb(skb);
820 		return;
821 	}
822 
823 	_kfree_skb_defer(skb);
824 }
825 EXPORT_SYMBOL(napi_consume_skb);
826 
827 /* Make sure a field is enclosed inside headers_start/headers_end section */
828 #define CHECK_SKB_FIELD(field) \
829 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
830 		     offsetof(struct sk_buff, headers_start));	\
831 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
832 		     offsetof(struct sk_buff, headers_end));	\
833 
834 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
835 {
836 	new->tstamp		= old->tstamp;
837 	/* We do not copy old->sk */
838 	new->dev		= old->dev;
839 	memcpy(new->cb, old->cb, sizeof(old->cb));
840 	skb_dst_copy(new, old);
841 #ifdef CONFIG_XFRM
842 	new->sp			= secpath_get(old->sp);
843 #endif
844 	__nf_copy(new, old, false);
845 
846 	/* Note : this field could be in headers_start/headers_end section
847 	 * It is not yet because we do not want to have a 16 bit hole
848 	 */
849 	new->queue_mapping = old->queue_mapping;
850 
851 	memcpy(&new->headers_start, &old->headers_start,
852 	       offsetof(struct sk_buff, headers_end) -
853 	       offsetof(struct sk_buff, headers_start));
854 	CHECK_SKB_FIELD(protocol);
855 	CHECK_SKB_FIELD(csum);
856 	CHECK_SKB_FIELD(hash);
857 	CHECK_SKB_FIELD(priority);
858 	CHECK_SKB_FIELD(skb_iif);
859 	CHECK_SKB_FIELD(vlan_proto);
860 	CHECK_SKB_FIELD(vlan_tci);
861 	CHECK_SKB_FIELD(transport_header);
862 	CHECK_SKB_FIELD(network_header);
863 	CHECK_SKB_FIELD(mac_header);
864 	CHECK_SKB_FIELD(inner_protocol);
865 	CHECK_SKB_FIELD(inner_transport_header);
866 	CHECK_SKB_FIELD(inner_network_header);
867 	CHECK_SKB_FIELD(inner_mac_header);
868 	CHECK_SKB_FIELD(mark);
869 #ifdef CONFIG_NETWORK_SECMARK
870 	CHECK_SKB_FIELD(secmark);
871 #endif
872 #ifdef CONFIG_NET_RX_BUSY_POLL
873 	CHECK_SKB_FIELD(napi_id);
874 #endif
875 #ifdef CONFIG_XPS
876 	CHECK_SKB_FIELD(sender_cpu);
877 #endif
878 #ifdef CONFIG_NET_SCHED
879 	CHECK_SKB_FIELD(tc_index);
880 #ifdef CONFIG_NET_CLS_ACT
881 	CHECK_SKB_FIELD(tc_verd);
882 #endif
883 #endif
884 
885 }
886 
887 /*
888  * You should not add any new code to this function.  Add it to
889  * __copy_skb_header above instead.
890  */
891 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
892 {
893 #define C(x) n->x = skb->x
894 
895 	n->next = n->prev = NULL;
896 	n->sk = NULL;
897 	__copy_skb_header(n, skb);
898 
899 	C(len);
900 	C(data_len);
901 	C(mac_len);
902 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
903 	n->cloned = 1;
904 	n->nohdr = 0;
905 	n->destructor = NULL;
906 	C(tail);
907 	C(end);
908 	C(head);
909 	C(head_frag);
910 	C(data);
911 	C(truesize);
912 	atomic_set(&n->users, 1);
913 
914 	atomic_inc(&(skb_shinfo(skb)->dataref));
915 	skb->cloned = 1;
916 
917 	return n;
918 #undef C
919 }
920 
921 /**
922  *	skb_morph	-	morph one skb into another
923  *	@dst: the skb to receive the contents
924  *	@src: the skb to supply the contents
925  *
926  *	This is identical to skb_clone except that the target skb is
927  *	supplied by the user.
928  *
929  *	The target skb is returned upon exit.
930  */
931 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
932 {
933 	skb_release_all(dst);
934 	return __skb_clone(dst, src);
935 }
936 EXPORT_SYMBOL_GPL(skb_morph);
937 
938 /**
939  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
940  *	@skb: the skb to modify
941  *	@gfp_mask: allocation priority
942  *
943  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
944  *	It will copy all frags into kernel and drop the reference
945  *	to userspace pages.
946  *
947  *	If this function is called from an interrupt gfp_mask() must be
948  *	%GFP_ATOMIC.
949  *
950  *	Returns 0 on success or a negative error code on failure
951  *	to allocate kernel memory to copy to.
952  */
953 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
954 {
955 	int i;
956 	int num_frags = skb_shinfo(skb)->nr_frags;
957 	struct page *page, *head = NULL;
958 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
959 
960 	for (i = 0; i < num_frags; i++) {
961 		u8 *vaddr;
962 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
963 
964 		page = alloc_page(gfp_mask);
965 		if (!page) {
966 			while (head) {
967 				struct page *next = (struct page *)page_private(head);
968 				put_page(head);
969 				head = next;
970 			}
971 			return -ENOMEM;
972 		}
973 		vaddr = kmap_atomic(skb_frag_page(f));
974 		memcpy(page_address(page),
975 		       vaddr + f->page_offset, skb_frag_size(f));
976 		kunmap_atomic(vaddr);
977 		set_page_private(page, (unsigned long)head);
978 		head = page;
979 	}
980 
981 	/* skb frags release userspace buffers */
982 	for (i = 0; i < num_frags; i++)
983 		skb_frag_unref(skb, i);
984 
985 	uarg->callback(uarg, false);
986 
987 	/* skb frags point to kernel buffers */
988 	for (i = num_frags - 1; i >= 0; i--) {
989 		__skb_fill_page_desc(skb, i, head, 0,
990 				     skb_shinfo(skb)->frags[i].size);
991 		head = (struct page *)page_private(head);
992 	}
993 
994 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
995 	return 0;
996 }
997 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
998 
999 /**
1000  *	skb_clone	-	duplicate an sk_buff
1001  *	@skb: buffer to clone
1002  *	@gfp_mask: allocation priority
1003  *
1004  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1005  *	copies share the same packet data but not structure. The new
1006  *	buffer has a reference count of 1. If the allocation fails the
1007  *	function returns %NULL otherwise the new buffer is returned.
1008  *
1009  *	If this function is called from an interrupt gfp_mask() must be
1010  *	%GFP_ATOMIC.
1011  */
1012 
1013 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1014 {
1015 	struct sk_buff_fclones *fclones = container_of(skb,
1016 						       struct sk_buff_fclones,
1017 						       skb1);
1018 	struct sk_buff *n;
1019 
1020 	if (skb_orphan_frags(skb, gfp_mask))
1021 		return NULL;
1022 
1023 	if (skb->fclone == SKB_FCLONE_ORIG &&
1024 	    atomic_read(&fclones->fclone_ref) == 1) {
1025 		n = &fclones->skb2;
1026 		atomic_set(&fclones->fclone_ref, 2);
1027 	} else {
1028 		if (skb_pfmemalloc(skb))
1029 			gfp_mask |= __GFP_MEMALLOC;
1030 
1031 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1032 		if (!n)
1033 			return NULL;
1034 
1035 		kmemcheck_annotate_bitfield(n, flags1);
1036 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1037 	}
1038 
1039 	return __skb_clone(n, skb);
1040 }
1041 EXPORT_SYMBOL(skb_clone);
1042 
1043 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1044 {
1045 	/* Only adjust this if it actually is csum_start rather than csum */
1046 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1047 		skb->csum_start += off;
1048 	/* {transport,network,mac}_header and tail are relative to skb->head */
1049 	skb->transport_header += off;
1050 	skb->network_header   += off;
1051 	if (skb_mac_header_was_set(skb))
1052 		skb->mac_header += off;
1053 	skb->inner_transport_header += off;
1054 	skb->inner_network_header += off;
1055 	skb->inner_mac_header += off;
1056 }
1057 
1058 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1059 {
1060 	__copy_skb_header(new, old);
1061 
1062 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1063 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1064 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1065 }
1066 
1067 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1068 {
1069 	if (skb_pfmemalloc(skb))
1070 		return SKB_ALLOC_RX;
1071 	return 0;
1072 }
1073 
1074 /**
1075  *	skb_copy	-	create private copy of an sk_buff
1076  *	@skb: buffer to copy
1077  *	@gfp_mask: allocation priority
1078  *
1079  *	Make a copy of both an &sk_buff and its data. This is used when the
1080  *	caller wishes to modify the data and needs a private copy of the
1081  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1082  *	on success. The returned buffer has a reference count of 1.
1083  *
1084  *	As by-product this function converts non-linear &sk_buff to linear
1085  *	one, so that &sk_buff becomes completely private and caller is allowed
1086  *	to modify all the data of returned buffer. This means that this
1087  *	function is not recommended for use in circumstances when only
1088  *	header is going to be modified. Use pskb_copy() instead.
1089  */
1090 
1091 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1092 {
1093 	int headerlen = skb_headroom(skb);
1094 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1095 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1096 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1097 
1098 	if (!n)
1099 		return NULL;
1100 
1101 	/* Set the data pointer */
1102 	skb_reserve(n, headerlen);
1103 	/* Set the tail pointer and length */
1104 	skb_put(n, skb->len);
1105 
1106 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1107 		BUG();
1108 
1109 	copy_skb_header(n, skb);
1110 	return n;
1111 }
1112 EXPORT_SYMBOL(skb_copy);
1113 
1114 /**
1115  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1116  *	@skb: buffer to copy
1117  *	@headroom: headroom of new skb
1118  *	@gfp_mask: allocation priority
1119  *	@fclone: if true allocate the copy of the skb from the fclone
1120  *	cache instead of the head cache; it is recommended to set this
1121  *	to true for the cases where the copy will likely be cloned
1122  *
1123  *	Make a copy of both an &sk_buff and part of its data, located
1124  *	in header. Fragmented data remain shared. This is used when
1125  *	the caller wishes to modify only header of &sk_buff and needs
1126  *	private copy of the header to alter. Returns %NULL on failure
1127  *	or the pointer to the buffer on success.
1128  *	The returned buffer has a reference count of 1.
1129  */
1130 
1131 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1132 				   gfp_t gfp_mask, bool fclone)
1133 {
1134 	unsigned int size = skb_headlen(skb) + headroom;
1135 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1136 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1137 
1138 	if (!n)
1139 		goto out;
1140 
1141 	/* Set the data pointer */
1142 	skb_reserve(n, headroom);
1143 	/* Set the tail pointer and length */
1144 	skb_put(n, skb_headlen(skb));
1145 	/* Copy the bytes */
1146 	skb_copy_from_linear_data(skb, n->data, n->len);
1147 
1148 	n->truesize += skb->data_len;
1149 	n->data_len  = skb->data_len;
1150 	n->len	     = skb->len;
1151 
1152 	if (skb_shinfo(skb)->nr_frags) {
1153 		int i;
1154 
1155 		if (skb_orphan_frags(skb, gfp_mask)) {
1156 			kfree_skb(n);
1157 			n = NULL;
1158 			goto out;
1159 		}
1160 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1161 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1162 			skb_frag_ref(skb, i);
1163 		}
1164 		skb_shinfo(n)->nr_frags = i;
1165 	}
1166 
1167 	if (skb_has_frag_list(skb)) {
1168 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1169 		skb_clone_fraglist(n);
1170 	}
1171 
1172 	copy_skb_header(n, skb);
1173 out:
1174 	return n;
1175 }
1176 EXPORT_SYMBOL(__pskb_copy_fclone);
1177 
1178 /**
1179  *	pskb_expand_head - reallocate header of &sk_buff
1180  *	@skb: buffer to reallocate
1181  *	@nhead: room to add at head
1182  *	@ntail: room to add at tail
1183  *	@gfp_mask: allocation priority
1184  *
1185  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1186  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1187  *	reference count of 1. Returns zero in the case of success or error,
1188  *	if expansion failed. In the last case, &sk_buff is not changed.
1189  *
1190  *	All the pointers pointing into skb header may change and must be
1191  *	reloaded after call to this function.
1192  */
1193 
1194 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1195 		     gfp_t gfp_mask)
1196 {
1197 	int i;
1198 	u8 *data;
1199 	int size = nhead + skb_end_offset(skb) + ntail;
1200 	long off;
1201 
1202 	BUG_ON(nhead < 0);
1203 
1204 	if (skb_shared(skb))
1205 		BUG();
1206 
1207 	size = SKB_DATA_ALIGN(size);
1208 
1209 	if (skb_pfmemalloc(skb))
1210 		gfp_mask |= __GFP_MEMALLOC;
1211 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1212 			       gfp_mask, NUMA_NO_NODE, NULL);
1213 	if (!data)
1214 		goto nodata;
1215 	size = SKB_WITH_OVERHEAD(ksize(data));
1216 
1217 	/* Copy only real data... and, alas, header. This should be
1218 	 * optimized for the cases when header is void.
1219 	 */
1220 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1221 
1222 	memcpy((struct skb_shared_info *)(data + size),
1223 	       skb_shinfo(skb),
1224 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1225 
1226 	/*
1227 	 * if shinfo is shared we must drop the old head gracefully, but if it
1228 	 * is not we can just drop the old head and let the existing refcount
1229 	 * be since all we did is relocate the values
1230 	 */
1231 	if (skb_cloned(skb)) {
1232 		/* copy this zero copy skb frags */
1233 		if (skb_orphan_frags(skb, gfp_mask))
1234 			goto nofrags;
1235 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1236 			skb_frag_ref(skb, i);
1237 
1238 		if (skb_has_frag_list(skb))
1239 			skb_clone_fraglist(skb);
1240 
1241 		skb_release_data(skb);
1242 	} else {
1243 		skb_free_head(skb);
1244 	}
1245 	off = (data + nhead) - skb->head;
1246 
1247 	skb->head     = data;
1248 	skb->head_frag = 0;
1249 	skb->data    += off;
1250 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1251 	skb->end      = size;
1252 	off           = nhead;
1253 #else
1254 	skb->end      = skb->head + size;
1255 #endif
1256 	skb->tail	      += off;
1257 	skb_headers_offset_update(skb, nhead);
1258 	skb->cloned   = 0;
1259 	skb->hdr_len  = 0;
1260 	skb->nohdr    = 0;
1261 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1262 	return 0;
1263 
1264 nofrags:
1265 	kfree(data);
1266 nodata:
1267 	return -ENOMEM;
1268 }
1269 EXPORT_SYMBOL(pskb_expand_head);
1270 
1271 /* Make private copy of skb with writable head and some headroom */
1272 
1273 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1274 {
1275 	struct sk_buff *skb2;
1276 	int delta = headroom - skb_headroom(skb);
1277 
1278 	if (delta <= 0)
1279 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1280 	else {
1281 		skb2 = skb_clone(skb, GFP_ATOMIC);
1282 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1283 					     GFP_ATOMIC)) {
1284 			kfree_skb(skb2);
1285 			skb2 = NULL;
1286 		}
1287 	}
1288 	return skb2;
1289 }
1290 EXPORT_SYMBOL(skb_realloc_headroom);
1291 
1292 /**
1293  *	skb_copy_expand	-	copy and expand sk_buff
1294  *	@skb: buffer to copy
1295  *	@newheadroom: new free bytes at head
1296  *	@newtailroom: new free bytes at tail
1297  *	@gfp_mask: allocation priority
1298  *
1299  *	Make a copy of both an &sk_buff and its data and while doing so
1300  *	allocate additional space.
1301  *
1302  *	This is used when the caller wishes to modify the data and needs a
1303  *	private copy of the data to alter as well as more space for new fields.
1304  *	Returns %NULL on failure or the pointer to the buffer
1305  *	on success. The returned buffer has a reference count of 1.
1306  *
1307  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1308  *	is called from an interrupt.
1309  */
1310 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1311 				int newheadroom, int newtailroom,
1312 				gfp_t gfp_mask)
1313 {
1314 	/*
1315 	 *	Allocate the copy buffer
1316 	 */
1317 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1318 					gfp_mask, skb_alloc_rx_flag(skb),
1319 					NUMA_NO_NODE);
1320 	int oldheadroom = skb_headroom(skb);
1321 	int head_copy_len, head_copy_off;
1322 
1323 	if (!n)
1324 		return NULL;
1325 
1326 	skb_reserve(n, newheadroom);
1327 
1328 	/* Set the tail pointer and length */
1329 	skb_put(n, skb->len);
1330 
1331 	head_copy_len = oldheadroom;
1332 	head_copy_off = 0;
1333 	if (newheadroom <= head_copy_len)
1334 		head_copy_len = newheadroom;
1335 	else
1336 		head_copy_off = newheadroom - head_copy_len;
1337 
1338 	/* Copy the linear header and data. */
1339 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1340 			  skb->len + head_copy_len))
1341 		BUG();
1342 
1343 	copy_skb_header(n, skb);
1344 
1345 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1346 
1347 	return n;
1348 }
1349 EXPORT_SYMBOL(skb_copy_expand);
1350 
1351 /**
1352  *	skb_pad			-	zero pad the tail of an skb
1353  *	@skb: buffer to pad
1354  *	@pad: space to pad
1355  *
1356  *	Ensure that a buffer is followed by a padding area that is zero
1357  *	filled. Used by network drivers which may DMA or transfer data
1358  *	beyond the buffer end onto the wire.
1359  *
1360  *	May return error in out of memory cases. The skb is freed on error.
1361  */
1362 
1363 int skb_pad(struct sk_buff *skb, int pad)
1364 {
1365 	int err;
1366 	int ntail;
1367 
1368 	/* If the skbuff is non linear tailroom is always zero.. */
1369 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1370 		memset(skb->data+skb->len, 0, pad);
1371 		return 0;
1372 	}
1373 
1374 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1375 	if (likely(skb_cloned(skb) || ntail > 0)) {
1376 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1377 		if (unlikely(err))
1378 			goto free_skb;
1379 	}
1380 
1381 	/* FIXME: The use of this function with non-linear skb's really needs
1382 	 * to be audited.
1383 	 */
1384 	err = skb_linearize(skb);
1385 	if (unlikely(err))
1386 		goto free_skb;
1387 
1388 	memset(skb->data + skb->len, 0, pad);
1389 	return 0;
1390 
1391 free_skb:
1392 	kfree_skb(skb);
1393 	return err;
1394 }
1395 EXPORT_SYMBOL(skb_pad);
1396 
1397 /**
1398  *	pskb_put - add data to the tail of a potentially fragmented buffer
1399  *	@skb: start of the buffer to use
1400  *	@tail: tail fragment of the buffer to use
1401  *	@len: amount of data to add
1402  *
1403  *	This function extends the used data area of the potentially
1404  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1405  *	@skb itself. If this would exceed the total buffer size the kernel
1406  *	will panic. A pointer to the first byte of the extra data is
1407  *	returned.
1408  */
1409 
1410 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1411 {
1412 	if (tail != skb) {
1413 		skb->data_len += len;
1414 		skb->len += len;
1415 	}
1416 	return skb_put(tail, len);
1417 }
1418 EXPORT_SYMBOL_GPL(pskb_put);
1419 
1420 /**
1421  *	skb_put - add data to a buffer
1422  *	@skb: buffer to use
1423  *	@len: amount of data to add
1424  *
1425  *	This function extends the used data area of the buffer. If this would
1426  *	exceed the total buffer size the kernel will panic. A pointer to the
1427  *	first byte of the extra data is returned.
1428  */
1429 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1430 {
1431 	unsigned char *tmp = skb_tail_pointer(skb);
1432 	SKB_LINEAR_ASSERT(skb);
1433 	skb->tail += len;
1434 	skb->len  += len;
1435 	if (unlikely(skb->tail > skb->end))
1436 		skb_over_panic(skb, len, __builtin_return_address(0));
1437 	return tmp;
1438 }
1439 EXPORT_SYMBOL(skb_put);
1440 
1441 /**
1442  *	skb_push - add data to the start of a buffer
1443  *	@skb: buffer to use
1444  *	@len: amount of data to add
1445  *
1446  *	This function extends the used data area of the buffer at the buffer
1447  *	start. If this would exceed the total buffer headroom the kernel will
1448  *	panic. A pointer to the first byte of the extra data is returned.
1449  */
1450 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1451 {
1452 	skb->data -= len;
1453 	skb->len  += len;
1454 	if (unlikely(skb->data<skb->head))
1455 		skb_under_panic(skb, len, __builtin_return_address(0));
1456 	return skb->data;
1457 }
1458 EXPORT_SYMBOL(skb_push);
1459 
1460 /**
1461  *	skb_pull - remove data from the start of a buffer
1462  *	@skb: buffer to use
1463  *	@len: amount of data to remove
1464  *
1465  *	This function removes data from the start of a buffer, returning
1466  *	the memory to the headroom. A pointer to the next data in the buffer
1467  *	is returned. Once the data has been pulled future pushes will overwrite
1468  *	the old data.
1469  */
1470 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1471 {
1472 	return skb_pull_inline(skb, len);
1473 }
1474 EXPORT_SYMBOL(skb_pull);
1475 
1476 /**
1477  *	skb_trim - remove end from a buffer
1478  *	@skb: buffer to alter
1479  *	@len: new length
1480  *
1481  *	Cut the length of a buffer down by removing data from the tail. If
1482  *	the buffer is already under the length specified it is not modified.
1483  *	The skb must be linear.
1484  */
1485 void skb_trim(struct sk_buff *skb, unsigned int len)
1486 {
1487 	if (skb->len > len)
1488 		__skb_trim(skb, len);
1489 }
1490 EXPORT_SYMBOL(skb_trim);
1491 
1492 /* Trims skb to length len. It can change skb pointers.
1493  */
1494 
1495 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1496 {
1497 	struct sk_buff **fragp;
1498 	struct sk_buff *frag;
1499 	int offset = skb_headlen(skb);
1500 	int nfrags = skb_shinfo(skb)->nr_frags;
1501 	int i;
1502 	int err;
1503 
1504 	if (skb_cloned(skb) &&
1505 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1506 		return err;
1507 
1508 	i = 0;
1509 	if (offset >= len)
1510 		goto drop_pages;
1511 
1512 	for (; i < nfrags; i++) {
1513 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1514 
1515 		if (end < len) {
1516 			offset = end;
1517 			continue;
1518 		}
1519 
1520 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1521 
1522 drop_pages:
1523 		skb_shinfo(skb)->nr_frags = i;
1524 
1525 		for (; i < nfrags; i++)
1526 			skb_frag_unref(skb, i);
1527 
1528 		if (skb_has_frag_list(skb))
1529 			skb_drop_fraglist(skb);
1530 		goto done;
1531 	}
1532 
1533 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1534 	     fragp = &frag->next) {
1535 		int end = offset + frag->len;
1536 
1537 		if (skb_shared(frag)) {
1538 			struct sk_buff *nfrag;
1539 
1540 			nfrag = skb_clone(frag, GFP_ATOMIC);
1541 			if (unlikely(!nfrag))
1542 				return -ENOMEM;
1543 
1544 			nfrag->next = frag->next;
1545 			consume_skb(frag);
1546 			frag = nfrag;
1547 			*fragp = frag;
1548 		}
1549 
1550 		if (end < len) {
1551 			offset = end;
1552 			continue;
1553 		}
1554 
1555 		if (end > len &&
1556 		    unlikely((err = pskb_trim(frag, len - offset))))
1557 			return err;
1558 
1559 		if (frag->next)
1560 			skb_drop_list(&frag->next);
1561 		break;
1562 	}
1563 
1564 done:
1565 	if (len > skb_headlen(skb)) {
1566 		skb->data_len -= skb->len - len;
1567 		skb->len       = len;
1568 	} else {
1569 		skb->len       = len;
1570 		skb->data_len  = 0;
1571 		skb_set_tail_pointer(skb, len);
1572 	}
1573 
1574 	return 0;
1575 }
1576 EXPORT_SYMBOL(___pskb_trim);
1577 
1578 /**
1579  *	__pskb_pull_tail - advance tail of skb header
1580  *	@skb: buffer to reallocate
1581  *	@delta: number of bytes to advance tail
1582  *
1583  *	The function makes a sense only on a fragmented &sk_buff,
1584  *	it expands header moving its tail forward and copying necessary
1585  *	data from fragmented part.
1586  *
1587  *	&sk_buff MUST have reference count of 1.
1588  *
1589  *	Returns %NULL (and &sk_buff does not change) if pull failed
1590  *	or value of new tail of skb in the case of success.
1591  *
1592  *	All the pointers pointing into skb header may change and must be
1593  *	reloaded after call to this function.
1594  */
1595 
1596 /* Moves tail of skb head forward, copying data from fragmented part,
1597  * when it is necessary.
1598  * 1. It may fail due to malloc failure.
1599  * 2. It may change skb pointers.
1600  *
1601  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1602  */
1603 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1604 {
1605 	/* If skb has not enough free space at tail, get new one
1606 	 * plus 128 bytes for future expansions. If we have enough
1607 	 * room at tail, reallocate without expansion only if skb is cloned.
1608 	 */
1609 	int i, k, eat = (skb->tail + delta) - skb->end;
1610 
1611 	if (eat > 0 || skb_cloned(skb)) {
1612 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1613 				     GFP_ATOMIC))
1614 			return NULL;
1615 	}
1616 
1617 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1618 		BUG();
1619 
1620 	/* Optimization: no fragments, no reasons to preestimate
1621 	 * size of pulled pages. Superb.
1622 	 */
1623 	if (!skb_has_frag_list(skb))
1624 		goto pull_pages;
1625 
1626 	/* Estimate size of pulled pages. */
1627 	eat = delta;
1628 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1629 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1630 
1631 		if (size >= eat)
1632 			goto pull_pages;
1633 		eat -= size;
1634 	}
1635 
1636 	/* If we need update frag list, we are in troubles.
1637 	 * Certainly, it possible to add an offset to skb data,
1638 	 * but taking into account that pulling is expected to
1639 	 * be very rare operation, it is worth to fight against
1640 	 * further bloating skb head and crucify ourselves here instead.
1641 	 * Pure masohism, indeed. 8)8)
1642 	 */
1643 	if (eat) {
1644 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1645 		struct sk_buff *clone = NULL;
1646 		struct sk_buff *insp = NULL;
1647 
1648 		do {
1649 			BUG_ON(!list);
1650 
1651 			if (list->len <= eat) {
1652 				/* Eaten as whole. */
1653 				eat -= list->len;
1654 				list = list->next;
1655 				insp = list;
1656 			} else {
1657 				/* Eaten partially. */
1658 
1659 				if (skb_shared(list)) {
1660 					/* Sucks! We need to fork list. :-( */
1661 					clone = skb_clone(list, GFP_ATOMIC);
1662 					if (!clone)
1663 						return NULL;
1664 					insp = list->next;
1665 					list = clone;
1666 				} else {
1667 					/* This may be pulled without
1668 					 * problems. */
1669 					insp = list;
1670 				}
1671 				if (!pskb_pull(list, eat)) {
1672 					kfree_skb(clone);
1673 					return NULL;
1674 				}
1675 				break;
1676 			}
1677 		} while (eat);
1678 
1679 		/* Free pulled out fragments. */
1680 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1681 			skb_shinfo(skb)->frag_list = list->next;
1682 			kfree_skb(list);
1683 		}
1684 		/* And insert new clone at head. */
1685 		if (clone) {
1686 			clone->next = list;
1687 			skb_shinfo(skb)->frag_list = clone;
1688 		}
1689 	}
1690 	/* Success! Now we may commit changes to skb data. */
1691 
1692 pull_pages:
1693 	eat = delta;
1694 	k = 0;
1695 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1696 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1697 
1698 		if (size <= eat) {
1699 			skb_frag_unref(skb, i);
1700 			eat -= size;
1701 		} else {
1702 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1703 			if (eat) {
1704 				skb_shinfo(skb)->frags[k].page_offset += eat;
1705 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1706 				eat = 0;
1707 			}
1708 			k++;
1709 		}
1710 	}
1711 	skb_shinfo(skb)->nr_frags = k;
1712 
1713 	skb->tail     += delta;
1714 	skb->data_len -= delta;
1715 
1716 	return skb_tail_pointer(skb);
1717 }
1718 EXPORT_SYMBOL(__pskb_pull_tail);
1719 
1720 /**
1721  *	skb_copy_bits - copy bits from skb to kernel buffer
1722  *	@skb: source skb
1723  *	@offset: offset in source
1724  *	@to: destination buffer
1725  *	@len: number of bytes to copy
1726  *
1727  *	Copy the specified number of bytes from the source skb to the
1728  *	destination buffer.
1729  *
1730  *	CAUTION ! :
1731  *		If its prototype is ever changed,
1732  *		check arch/{*}/net/{*}.S files,
1733  *		since it is called from BPF assembly code.
1734  */
1735 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1736 {
1737 	int start = skb_headlen(skb);
1738 	struct sk_buff *frag_iter;
1739 	int i, copy;
1740 
1741 	if (offset > (int)skb->len - len)
1742 		goto fault;
1743 
1744 	/* Copy header. */
1745 	if ((copy = start - offset) > 0) {
1746 		if (copy > len)
1747 			copy = len;
1748 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1749 		if ((len -= copy) == 0)
1750 			return 0;
1751 		offset += copy;
1752 		to     += copy;
1753 	}
1754 
1755 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1756 		int end;
1757 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1758 
1759 		WARN_ON(start > offset + len);
1760 
1761 		end = start + skb_frag_size(f);
1762 		if ((copy = end - offset) > 0) {
1763 			u8 *vaddr;
1764 
1765 			if (copy > len)
1766 				copy = len;
1767 
1768 			vaddr = kmap_atomic(skb_frag_page(f));
1769 			memcpy(to,
1770 			       vaddr + f->page_offset + offset - start,
1771 			       copy);
1772 			kunmap_atomic(vaddr);
1773 
1774 			if ((len -= copy) == 0)
1775 				return 0;
1776 			offset += copy;
1777 			to     += copy;
1778 		}
1779 		start = end;
1780 	}
1781 
1782 	skb_walk_frags(skb, frag_iter) {
1783 		int end;
1784 
1785 		WARN_ON(start > offset + len);
1786 
1787 		end = start + frag_iter->len;
1788 		if ((copy = end - offset) > 0) {
1789 			if (copy > len)
1790 				copy = len;
1791 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1792 				goto fault;
1793 			if ((len -= copy) == 0)
1794 				return 0;
1795 			offset += copy;
1796 			to     += copy;
1797 		}
1798 		start = end;
1799 	}
1800 
1801 	if (!len)
1802 		return 0;
1803 
1804 fault:
1805 	return -EFAULT;
1806 }
1807 EXPORT_SYMBOL(skb_copy_bits);
1808 
1809 /*
1810  * Callback from splice_to_pipe(), if we need to release some pages
1811  * at the end of the spd in case we error'ed out in filling the pipe.
1812  */
1813 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1814 {
1815 	put_page(spd->pages[i]);
1816 }
1817 
1818 static struct page *linear_to_page(struct page *page, unsigned int *len,
1819 				   unsigned int *offset,
1820 				   struct sock *sk)
1821 {
1822 	struct page_frag *pfrag = sk_page_frag(sk);
1823 
1824 	if (!sk_page_frag_refill(sk, pfrag))
1825 		return NULL;
1826 
1827 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1828 
1829 	memcpy(page_address(pfrag->page) + pfrag->offset,
1830 	       page_address(page) + *offset, *len);
1831 	*offset = pfrag->offset;
1832 	pfrag->offset += *len;
1833 
1834 	return pfrag->page;
1835 }
1836 
1837 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1838 			     struct page *page,
1839 			     unsigned int offset)
1840 {
1841 	return	spd->nr_pages &&
1842 		spd->pages[spd->nr_pages - 1] == page &&
1843 		(spd->partial[spd->nr_pages - 1].offset +
1844 		 spd->partial[spd->nr_pages - 1].len == offset);
1845 }
1846 
1847 /*
1848  * Fill page/offset/length into spd, if it can hold more pages.
1849  */
1850 static bool spd_fill_page(struct splice_pipe_desc *spd,
1851 			  struct pipe_inode_info *pipe, struct page *page,
1852 			  unsigned int *len, unsigned int offset,
1853 			  bool linear,
1854 			  struct sock *sk)
1855 {
1856 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1857 		return true;
1858 
1859 	if (linear) {
1860 		page = linear_to_page(page, len, &offset, sk);
1861 		if (!page)
1862 			return true;
1863 	}
1864 	if (spd_can_coalesce(spd, page, offset)) {
1865 		spd->partial[spd->nr_pages - 1].len += *len;
1866 		return false;
1867 	}
1868 	get_page(page);
1869 	spd->pages[spd->nr_pages] = page;
1870 	spd->partial[spd->nr_pages].len = *len;
1871 	spd->partial[spd->nr_pages].offset = offset;
1872 	spd->nr_pages++;
1873 
1874 	return false;
1875 }
1876 
1877 static bool __splice_segment(struct page *page, unsigned int poff,
1878 			     unsigned int plen, unsigned int *off,
1879 			     unsigned int *len,
1880 			     struct splice_pipe_desc *spd, bool linear,
1881 			     struct sock *sk,
1882 			     struct pipe_inode_info *pipe)
1883 {
1884 	if (!*len)
1885 		return true;
1886 
1887 	/* skip this segment if already processed */
1888 	if (*off >= plen) {
1889 		*off -= plen;
1890 		return false;
1891 	}
1892 
1893 	/* ignore any bits we already processed */
1894 	poff += *off;
1895 	plen -= *off;
1896 	*off = 0;
1897 
1898 	do {
1899 		unsigned int flen = min(*len, plen);
1900 
1901 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1902 				  linear, sk))
1903 			return true;
1904 		poff += flen;
1905 		plen -= flen;
1906 		*len -= flen;
1907 	} while (*len && plen);
1908 
1909 	return false;
1910 }
1911 
1912 /*
1913  * Map linear and fragment data from the skb to spd. It reports true if the
1914  * pipe is full or if we already spliced the requested length.
1915  */
1916 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1917 			      unsigned int *offset, unsigned int *len,
1918 			      struct splice_pipe_desc *spd, struct sock *sk)
1919 {
1920 	int seg;
1921 	struct sk_buff *iter;
1922 
1923 	/* map the linear part :
1924 	 * If skb->head_frag is set, this 'linear' part is backed by a
1925 	 * fragment, and if the head is not shared with any clones then
1926 	 * we can avoid a copy since we own the head portion of this page.
1927 	 */
1928 	if (__splice_segment(virt_to_page(skb->data),
1929 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1930 			     skb_headlen(skb),
1931 			     offset, len, spd,
1932 			     skb_head_is_locked(skb),
1933 			     sk, pipe))
1934 		return true;
1935 
1936 	/*
1937 	 * then map the fragments
1938 	 */
1939 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1940 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1941 
1942 		if (__splice_segment(skb_frag_page(f),
1943 				     f->page_offset, skb_frag_size(f),
1944 				     offset, len, spd, false, sk, pipe))
1945 			return true;
1946 	}
1947 
1948 	skb_walk_frags(skb, iter) {
1949 		if (*offset >= iter->len) {
1950 			*offset -= iter->len;
1951 			continue;
1952 		}
1953 		/* __skb_splice_bits() only fails if the output has no room
1954 		 * left, so no point in going over the frag_list for the error
1955 		 * case.
1956 		 */
1957 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1958 			return true;
1959 	}
1960 
1961 	return false;
1962 }
1963 
1964 ssize_t skb_socket_splice(struct sock *sk,
1965 			  struct pipe_inode_info *pipe,
1966 			  struct splice_pipe_desc *spd)
1967 {
1968 	int ret;
1969 
1970 	/* Drop the socket lock, otherwise we have reverse
1971 	 * locking dependencies between sk_lock and i_mutex
1972 	 * here as compared to sendfile(). We enter here
1973 	 * with the socket lock held, and splice_to_pipe() will
1974 	 * grab the pipe inode lock. For sendfile() emulation,
1975 	 * we call into ->sendpage() with the i_mutex lock held
1976 	 * and networking will grab the socket lock.
1977 	 */
1978 	release_sock(sk);
1979 	ret = splice_to_pipe(pipe, spd);
1980 	lock_sock(sk);
1981 
1982 	return ret;
1983 }
1984 
1985 /*
1986  * Map data from the skb to a pipe. Should handle both the linear part,
1987  * the fragments, and the frag list.
1988  */
1989 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1990 		    struct pipe_inode_info *pipe, unsigned int tlen,
1991 		    unsigned int flags,
1992 		    ssize_t (*splice_cb)(struct sock *,
1993 					 struct pipe_inode_info *,
1994 					 struct splice_pipe_desc *))
1995 {
1996 	struct partial_page partial[MAX_SKB_FRAGS];
1997 	struct page *pages[MAX_SKB_FRAGS];
1998 	struct splice_pipe_desc spd = {
1999 		.pages = pages,
2000 		.partial = partial,
2001 		.nr_pages_max = MAX_SKB_FRAGS,
2002 		.flags = flags,
2003 		.ops = &nosteal_pipe_buf_ops,
2004 		.spd_release = sock_spd_release,
2005 	};
2006 	int ret = 0;
2007 
2008 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2009 
2010 	if (spd.nr_pages)
2011 		ret = splice_cb(sk, pipe, &spd);
2012 
2013 	return ret;
2014 }
2015 EXPORT_SYMBOL_GPL(skb_splice_bits);
2016 
2017 /**
2018  *	skb_store_bits - store bits from kernel buffer to skb
2019  *	@skb: destination buffer
2020  *	@offset: offset in destination
2021  *	@from: source buffer
2022  *	@len: number of bytes to copy
2023  *
2024  *	Copy the specified number of bytes from the source buffer to the
2025  *	destination skb.  This function handles all the messy bits of
2026  *	traversing fragment lists and such.
2027  */
2028 
2029 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2030 {
2031 	int start = skb_headlen(skb);
2032 	struct sk_buff *frag_iter;
2033 	int i, copy;
2034 
2035 	if (offset > (int)skb->len - len)
2036 		goto fault;
2037 
2038 	if ((copy = start - offset) > 0) {
2039 		if (copy > len)
2040 			copy = len;
2041 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2042 		if ((len -= copy) == 0)
2043 			return 0;
2044 		offset += copy;
2045 		from += copy;
2046 	}
2047 
2048 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2049 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2050 		int end;
2051 
2052 		WARN_ON(start > offset + len);
2053 
2054 		end = start + skb_frag_size(frag);
2055 		if ((copy = end - offset) > 0) {
2056 			u8 *vaddr;
2057 
2058 			if (copy > len)
2059 				copy = len;
2060 
2061 			vaddr = kmap_atomic(skb_frag_page(frag));
2062 			memcpy(vaddr + frag->page_offset + offset - start,
2063 			       from, copy);
2064 			kunmap_atomic(vaddr);
2065 
2066 			if ((len -= copy) == 0)
2067 				return 0;
2068 			offset += copy;
2069 			from += copy;
2070 		}
2071 		start = end;
2072 	}
2073 
2074 	skb_walk_frags(skb, frag_iter) {
2075 		int end;
2076 
2077 		WARN_ON(start > offset + len);
2078 
2079 		end = start + frag_iter->len;
2080 		if ((copy = end - offset) > 0) {
2081 			if (copy > len)
2082 				copy = len;
2083 			if (skb_store_bits(frag_iter, offset - start,
2084 					   from, copy))
2085 				goto fault;
2086 			if ((len -= copy) == 0)
2087 				return 0;
2088 			offset += copy;
2089 			from += copy;
2090 		}
2091 		start = end;
2092 	}
2093 	if (!len)
2094 		return 0;
2095 
2096 fault:
2097 	return -EFAULT;
2098 }
2099 EXPORT_SYMBOL(skb_store_bits);
2100 
2101 /* Checksum skb data. */
2102 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2103 		      __wsum csum, const struct skb_checksum_ops *ops)
2104 {
2105 	int start = skb_headlen(skb);
2106 	int i, copy = start - offset;
2107 	struct sk_buff *frag_iter;
2108 	int pos = 0;
2109 
2110 	/* Checksum header. */
2111 	if (copy > 0) {
2112 		if (copy > len)
2113 			copy = len;
2114 		csum = ops->update(skb->data + offset, copy, csum);
2115 		if ((len -= copy) == 0)
2116 			return csum;
2117 		offset += copy;
2118 		pos	= copy;
2119 	}
2120 
2121 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2122 		int end;
2123 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2124 
2125 		WARN_ON(start > offset + len);
2126 
2127 		end = start + skb_frag_size(frag);
2128 		if ((copy = end - offset) > 0) {
2129 			__wsum csum2;
2130 			u8 *vaddr;
2131 
2132 			if (copy > len)
2133 				copy = len;
2134 			vaddr = kmap_atomic(skb_frag_page(frag));
2135 			csum2 = ops->update(vaddr + frag->page_offset +
2136 					    offset - start, copy, 0);
2137 			kunmap_atomic(vaddr);
2138 			csum = ops->combine(csum, csum2, pos, copy);
2139 			if (!(len -= copy))
2140 				return csum;
2141 			offset += copy;
2142 			pos    += copy;
2143 		}
2144 		start = end;
2145 	}
2146 
2147 	skb_walk_frags(skb, frag_iter) {
2148 		int end;
2149 
2150 		WARN_ON(start > offset + len);
2151 
2152 		end = start + frag_iter->len;
2153 		if ((copy = end - offset) > 0) {
2154 			__wsum csum2;
2155 			if (copy > len)
2156 				copy = len;
2157 			csum2 = __skb_checksum(frag_iter, offset - start,
2158 					       copy, 0, ops);
2159 			csum = ops->combine(csum, csum2, pos, copy);
2160 			if ((len -= copy) == 0)
2161 				return csum;
2162 			offset += copy;
2163 			pos    += copy;
2164 		}
2165 		start = end;
2166 	}
2167 	BUG_ON(len);
2168 
2169 	return csum;
2170 }
2171 EXPORT_SYMBOL(__skb_checksum);
2172 
2173 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2174 		    int len, __wsum csum)
2175 {
2176 	const struct skb_checksum_ops ops = {
2177 		.update  = csum_partial_ext,
2178 		.combine = csum_block_add_ext,
2179 	};
2180 
2181 	return __skb_checksum(skb, offset, len, csum, &ops);
2182 }
2183 EXPORT_SYMBOL(skb_checksum);
2184 
2185 /* Both of above in one bottle. */
2186 
2187 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2188 				    u8 *to, int len, __wsum csum)
2189 {
2190 	int start = skb_headlen(skb);
2191 	int i, copy = start - offset;
2192 	struct sk_buff *frag_iter;
2193 	int pos = 0;
2194 
2195 	/* Copy header. */
2196 	if (copy > 0) {
2197 		if (copy > len)
2198 			copy = len;
2199 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2200 						 copy, csum);
2201 		if ((len -= copy) == 0)
2202 			return csum;
2203 		offset += copy;
2204 		to     += copy;
2205 		pos	= copy;
2206 	}
2207 
2208 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2209 		int end;
2210 
2211 		WARN_ON(start > offset + len);
2212 
2213 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2214 		if ((copy = end - offset) > 0) {
2215 			__wsum csum2;
2216 			u8 *vaddr;
2217 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2218 
2219 			if (copy > len)
2220 				copy = len;
2221 			vaddr = kmap_atomic(skb_frag_page(frag));
2222 			csum2 = csum_partial_copy_nocheck(vaddr +
2223 							  frag->page_offset +
2224 							  offset - start, to,
2225 							  copy, 0);
2226 			kunmap_atomic(vaddr);
2227 			csum = csum_block_add(csum, csum2, pos);
2228 			if (!(len -= copy))
2229 				return csum;
2230 			offset += copy;
2231 			to     += copy;
2232 			pos    += copy;
2233 		}
2234 		start = end;
2235 	}
2236 
2237 	skb_walk_frags(skb, frag_iter) {
2238 		__wsum csum2;
2239 		int end;
2240 
2241 		WARN_ON(start > offset + len);
2242 
2243 		end = start + frag_iter->len;
2244 		if ((copy = end - offset) > 0) {
2245 			if (copy > len)
2246 				copy = len;
2247 			csum2 = skb_copy_and_csum_bits(frag_iter,
2248 						       offset - start,
2249 						       to, copy, 0);
2250 			csum = csum_block_add(csum, csum2, pos);
2251 			if ((len -= copy) == 0)
2252 				return csum;
2253 			offset += copy;
2254 			to     += copy;
2255 			pos    += copy;
2256 		}
2257 		start = end;
2258 	}
2259 	BUG_ON(len);
2260 	return csum;
2261 }
2262 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2263 
2264  /**
2265  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2266  *	@from: source buffer
2267  *
2268  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2269  *	into skb_zerocopy().
2270  */
2271 unsigned int
2272 skb_zerocopy_headlen(const struct sk_buff *from)
2273 {
2274 	unsigned int hlen = 0;
2275 
2276 	if (!from->head_frag ||
2277 	    skb_headlen(from) < L1_CACHE_BYTES ||
2278 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2279 		hlen = skb_headlen(from);
2280 
2281 	if (skb_has_frag_list(from))
2282 		hlen = from->len;
2283 
2284 	return hlen;
2285 }
2286 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2287 
2288 /**
2289  *	skb_zerocopy - Zero copy skb to skb
2290  *	@to: destination buffer
2291  *	@from: source buffer
2292  *	@len: number of bytes to copy from source buffer
2293  *	@hlen: size of linear headroom in destination buffer
2294  *
2295  *	Copies up to `len` bytes from `from` to `to` by creating references
2296  *	to the frags in the source buffer.
2297  *
2298  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2299  *	headroom in the `to` buffer.
2300  *
2301  *	Return value:
2302  *	0: everything is OK
2303  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2304  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2305  */
2306 int
2307 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2308 {
2309 	int i, j = 0;
2310 	int plen = 0; /* length of skb->head fragment */
2311 	int ret;
2312 	struct page *page;
2313 	unsigned int offset;
2314 
2315 	BUG_ON(!from->head_frag && !hlen);
2316 
2317 	/* dont bother with small payloads */
2318 	if (len <= skb_tailroom(to))
2319 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2320 
2321 	if (hlen) {
2322 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2323 		if (unlikely(ret))
2324 			return ret;
2325 		len -= hlen;
2326 	} else {
2327 		plen = min_t(int, skb_headlen(from), len);
2328 		if (plen) {
2329 			page = virt_to_head_page(from->head);
2330 			offset = from->data - (unsigned char *)page_address(page);
2331 			__skb_fill_page_desc(to, 0, page, offset, plen);
2332 			get_page(page);
2333 			j = 1;
2334 			len -= plen;
2335 		}
2336 	}
2337 
2338 	to->truesize += len + plen;
2339 	to->len += len + plen;
2340 	to->data_len += len + plen;
2341 
2342 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2343 		skb_tx_error(from);
2344 		return -ENOMEM;
2345 	}
2346 
2347 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2348 		if (!len)
2349 			break;
2350 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2351 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2352 		len -= skb_shinfo(to)->frags[j].size;
2353 		skb_frag_ref(to, j);
2354 		j++;
2355 	}
2356 	skb_shinfo(to)->nr_frags = j;
2357 
2358 	return 0;
2359 }
2360 EXPORT_SYMBOL_GPL(skb_zerocopy);
2361 
2362 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2363 {
2364 	__wsum csum;
2365 	long csstart;
2366 
2367 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2368 		csstart = skb_checksum_start_offset(skb);
2369 	else
2370 		csstart = skb_headlen(skb);
2371 
2372 	BUG_ON(csstart > skb_headlen(skb));
2373 
2374 	skb_copy_from_linear_data(skb, to, csstart);
2375 
2376 	csum = 0;
2377 	if (csstart != skb->len)
2378 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2379 					      skb->len - csstart, 0);
2380 
2381 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2382 		long csstuff = csstart + skb->csum_offset;
2383 
2384 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2385 	}
2386 }
2387 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2388 
2389 /**
2390  *	skb_dequeue - remove from the head of the queue
2391  *	@list: list to dequeue from
2392  *
2393  *	Remove the head of the list. The list lock is taken so the function
2394  *	may be used safely with other locking list functions. The head item is
2395  *	returned or %NULL if the list is empty.
2396  */
2397 
2398 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2399 {
2400 	unsigned long flags;
2401 	struct sk_buff *result;
2402 
2403 	spin_lock_irqsave(&list->lock, flags);
2404 	result = __skb_dequeue(list);
2405 	spin_unlock_irqrestore(&list->lock, flags);
2406 	return result;
2407 }
2408 EXPORT_SYMBOL(skb_dequeue);
2409 
2410 /**
2411  *	skb_dequeue_tail - remove from the tail of the queue
2412  *	@list: list to dequeue from
2413  *
2414  *	Remove the tail of the list. The list lock is taken so the function
2415  *	may be used safely with other locking list functions. The tail item is
2416  *	returned or %NULL if the list is empty.
2417  */
2418 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2419 {
2420 	unsigned long flags;
2421 	struct sk_buff *result;
2422 
2423 	spin_lock_irqsave(&list->lock, flags);
2424 	result = __skb_dequeue_tail(list);
2425 	spin_unlock_irqrestore(&list->lock, flags);
2426 	return result;
2427 }
2428 EXPORT_SYMBOL(skb_dequeue_tail);
2429 
2430 /**
2431  *	skb_queue_purge - empty a list
2432  *	@list: list to empty
2433  *
2434  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2435  *	the list and one reference dropped. This function takes the list
2436  *	lock and is atomic with respect to other list locking functions.
2437  */
2438 void skb_queue_purge(struct sk_buff_head *list)
2439 {
2440 	struct sk_buff *skb;
2441 	while ((skb = skb_dequeue(list)) != NULL)
2442 		kfree_skb(skb);
2443 }
2444 EXPORT_SYMBOL(skb_queue_purge);
2445 
2446 /**
2447  *	skb_queue_head - queue a buffer at the list head
2448  *	@list: list to use
2449  *	@newsk: buffer to queue
2450  *
2451  *	Queue a buffer at the start of the list. This function takes the
2452  *	list lock and can be used safely with other locking &sk_buff functions
2453  *	safely.
2454  *
2455  *	A buffer cannot be placed on two lists at the same time.
2456  */
2457 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2458 {
2459 	unsigned long flags;
2460 
2461 	spin_lock_irqsave(&list->lock, flags);
2462 	__skb_queue_head(list, newsk);
2463 	spin_unlock_irqrestore(&list->lock, flags);
2464 }
2465 EXPORT_SYMBOL(skb_queue_head);
2466 
2467 /**
2468  *	skb_queue_tail - queue a buffer at the list tail
2469  *	@list: list to use
2470  *	@newsk: buffer to queue
2471  *
2472  *	Queue a buffer at the tail of the list. This function takes the
2473  *	list lock and can be used safely with other locking &sk_buff functions
2474  *	safely.
2475  *
2476  *	A buffer cannot be placed on two lists at the same time.
2477  */
2478 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2479 {
2480 	unsigned long flags;
2481 
2482 	spin_lock_irqsave(&list->lock, flags);
2483 	__skb_queue_tail(list, newsk);
2484 	spin_unlock_irqrestore(&list->lock, flags);
2485 }
2486 EXPORT_SYMBOL(skb_queue_tail);
2487 
2488 /**
2489  *	skb_unlink	-	remove a buffer from a list
2490  *	@skb: buffer to remove
2491  *	@list: list to use
2492  *
2493  *	Remove a packet from a list. The list locks are taken and this
2494  *	function is atomic with respect to other list locked calls
2495  *
2496  *	You must know what list the SKB is on.
2497  */
2498 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2499 {
2500 	unsigned long flags;
2501 
2502 	spin_lock_irqsave(&list->lock, flags);
2503 	__skb_unlink(skb, list);
2504 	spin_unlock_irqrestore(&list->lock, flags);
2505 }
2506 EXPORT_SYMBOL(skb_unlink);
2507 
2508 /**
2509  *	skb_append	-	append a buffer
2510  *	@old: buffer to insert after
2511  *	@newsk: buffer to insert
2512  *	@list: list to use
2513  *
2514  *	Place a packet after a given packet in a list. The list locks are taken
2515  *	and this function is atomic with respect to other list locked calls.
2516  *	A buffer cannot be placed on two lists at the same time.
2517  */
2518 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2519 {
2520 	unsigned long flags;
2521 
2522 	spin_lock_irqsave(&list->lock, flags);
2523 	__skb_queue_after(list, old, newsk);
2524 	spin_unlock_irqrestore(&list->lock, flags);
2525 }
2526 EXPORT_SYMBOL(skb_append);
2527 
2528 /**
2529  *	skb_insert	-	insert a buffer
2530  *	@old: buffer to insert before
2531  *	@newsk: buffer to insert
2532  *	@list: list to use
2533  *
2534  *	Place a packet before a given packet in a list. The list locks are
2535  * 	taken and this function is atomic with respect to other list locked
2536  *	calls.
2537  *
2538  *	A buffer cannot be placed on two lists at the same time.
2539  */
2540 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2541 {
2542 	unsigned long flags;
2543 
2544 	spin_lock_irqsave(&list->lock, flags);
2545 	__skb_insert(newsk, old->prev, old, list);
2546 	spin_unlock_irqrestore(&list->lock, flags);
2547 }
2548 EXPORT_SYMBOL(skb_insert);
2549 
2550 static inline void skb_split_inside_header(struct sk_buff *skb,
2551 					   struct sk_buff* skb1,
2552 					   const u32 len, const int pos)
2553 {
2554 	int i;
2555 
2556 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2557 					 pos - len);
2558 	/* And move data appendix as is. */
2559 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2560 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2561 
2562 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2563 	skb_shinfo(skb)->nr_frags  = 0;
2564 	skb1->data_len		   = skb->data_len;
2565 	skb1->len		   += skb1->data_len;
2566 	skb->data_len		   = 0;
2567 	skb->len		   = len;
2568 	skb_set_tail_pointer(skb, len);
2569 }
2570 
2571 static inline void skb_split_no_header(struct sk_buff *skb,
2572 				       struct sk_buff* skb1,
2573 				       const u32 len, int pos)
2574 {
2575 	int i, k = 0;
2576 	const int nfrags = skb_shinfo(skb)->nr_frags;
2577 
2578 	skb_shinfo(skb)->nr_frags = 0;
2579 	skb1->len		  = skb1->data_len = skb->len - len;
2580 	skb->len		  = len;
2581 	skb->data_len		  = len - pos;
2582 
2583 	for (i = 0; i < nfrags; i++) {
2584 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2585 
2586 		if (pos + size > len) {
2587 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2588 
2589 			if (pos < len) {
2590 				/* Split frag.
2591 				 * We have two variants in this case:
2592 				 * 1. Move all the frag to the second
2593 				 *    part, if it is possible. F.e.
2594 				 *    this approach is mandatory for TUX,
2595 				 *    where splitting is expensive.
2596 				 * 2. Split is accurately. We make this.
2597 				 */
2598 				skb_frag_ref(skb, i);
2599 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2600 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2601 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2602 				skb_shinfo(skb)->nr_frags++;
2603 			}
2604 			k++;
2605 		} else
2606 			skb_shinfo(skb)->nr_frags++;
2607 		pos += size;
2608 	}
2609 	skb_shinfo(skb1)->nr_frags = k;
2610 }
2611 
2612 /**
2613  * skb_split - Split fragmented skb to two parts at length len.
2614  * @skb: the buffer to split
2615  * @skb1: the buffer to receive the second part
2616  * @len: new length for skb
2617  */
2618 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2619 {
2620 	int pos = skb_headlen(skb);
2621 
2622 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2623 	if (len < pos)	/* Split line is inside header. */
2624 		skb_split_inside_header(skb, skb1, len, pos);
2625 	else		/* Second chunk has no header, nothing to copy. */
2626 		skb_split_no_header(skb, skb1, len, pos);
2627 }
2628 EXPORT_SYMBOL(skb_split);
2629 
2630 /* Shifting from/to a cloned skb is a no-go.
2631  *
2632  * Caller cannot keep skb_shinfo related pointers past calling here!
2633  */
2634 static int skb_prepare_for_shift(struct sk_buff *skb)
2635 {
2636 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2637 }
2638 
2639 /**
2640  * skb_shift - Shifts paged data partially from skb to another
2641  * @tgt: buffer into which tail data gets added
2642  * @skb: buffer from which the paged data comes from
2643  * @shiftlen: shift up to this many bytes
2644  *
2645  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2646  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2647  * It's up to caller to free skb if everything was shifted.
2648  *
2649  * If @tgt runs out of frags, the whole operation is aborted.
2650  *
2651  * Skb cannot include anything else but paged data while tgt is allowed
2652  * to have non-paged data as well.
2653  *
2654  * TODO: full sized shift could be optimized but that would need
2655  * specialized skb free'er to handle frags without up-to-date nr_frags.
2656  */
2657 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2658 {
2659 	int from, to, merge, todo;
2660 	struct skb_frag_struct *fragfrom, *fragto;
2661 
2662 	BUG_ON(shiftlen > skb->len);
2663 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2664 
2665 	todo = shiftlen;
2666 	from = 0;
2667 	to = skb_shinfo(tgt)->nr_frags;
2668 	fragfrom = &skb_shinfo(skb)->frags[from];
2669 
2670 	/* Actual merge is delayed until the point when we know we can
2671 	 * commit all, so that we don't have to undo partial changes
2672 	 */
2673 	if (!to ||
2674 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2675 			      fragfrom->page_offset)) {
2676 		merge = -1;
2677 	} else {
2678 		merge = to - 1;
2679 
2680 		todo -= skb_frag_size(fragfrom);
2681 		if (todo < 0) {
2682 			if (skb_prepare_for_shift(skb) ||
2683 			    skb_prepare_for_shift(tgt))
2684 				return 0;
2685 
2686 			/* All previous frag pointers might be stale! */
2687 			fragfrom = &skb_shinfo(skb)->frags[from];
2688 			fragto = &skb_shinfo(tgt)->frags[merge];
2689 
2690 			skb_frag_size_add(fragto, shiftlen);
2691 			skb_frag_size_sub(fragfrom, shiftlen);
2692 			fragfrom->page_offset += shiftlen;
2693 
2694 			goto onlymerged;
2695 		}
2696 
2697 		from++;
2698 	}
2699 
2700 	/* Skip full, not-fitting skb to avoid expensive operations */
2701 	if ((shiftlen == skb->len) &&
2702 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2703 		return 0;
2704 
2705 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2706 		return 0;
2707 
2708 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2709 		if (to == MAX_SKB_FRAGS)
2710 			return 0;
2711 
2712 		fragfrom = &skb_shinfo(skb)->frags[from];
2713 		fragto = &skb_shinfo(tgt)->frags[to];
2714 
2715 		if (todo >= skb_frag_size(fragfrom)) {
2716 			*fragto = *fragfrom;
2717 			todo -= skb_frag_size(fragfrom);
2718 			from++;
2719 			to++;
2720 
2721 		} else {
2722 			__skb_frag_ref(fragfrom);
2723 			fragto->page = fragfrom->page;
2724 			fragto->page_offset = fragfrom->page_offset;
2725 			skb_frag_size_set(fragto, todo);
2726 
2727 			fragfrom->page_offset += todo;
2728 			skb_frag_size_sub(fragfrom, todo);
2729 			todo = 0;
2730 
2731 			to++;
2732 			break;
2733 		}
2734 	}
2735 
2736 	/* Ready to "commit" this state change to tgt */
2737 	skb_shinfo(tgt)->nr_frags = to;
2738 
2739 	if (merge >= 0) {
2740 		fragfrom = &skb_shinfo(skb)->frags[0];
2741 		fragto = &skb_shinfo(tgt)->frags[merge];
2742 
2743 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2744 		__skb_frag_unref(fragfrom);
2745 	}
2746 
2747 	/* Reposition in the original skb */
2748 	to = 0;
2749 	while (from < skb_shinfo(skb)->nr_frags)
2750 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2751 	skb_shinfo(skb)->nr_frags = to;
2752 
2753 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2754 
2755 onlymerged:
2756 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2757 	 * the other hand might need it if it needs to be resent
2758 	 */
2759 	tgt->ip_summed = CHECKSUM_PARTIAL;
2760 	skb->ip_summed = CHECKSUM_PARTIAL;
2761 
2762 	/* Yak, is it really working this way? Some helper please? */
2763 	skb->len -= shiftlen;
2764 	skb->data_len -= shiftlen;
2765 	skb->truesize -= shiftlen;
2766 	tgt->len += shiftlen;
2767 	tgt->data_len += shiftlen;
2768 	tgt->truesize += shiftlen;
2769 
2770 	return shiftlen;
2771 }
2772 
2773 /**
2774  * skb_prepare_seq_read - Prepare a sequential read of skb data
2775  * @skb: the buffer to read
2776  * @from: lower offset of data to be read
2777  * @to: upper offset of data to be read
2778  * @st: state variable
2779  *
2780  * Initializes the specified state variable. Must be called before
2781  * invoking skb_seq_read() for the first time.
2782  */
2783 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2784 			  unsigned int to, struct skb_seq_state *st)
2785 {
2786 	st->lower_offset = from;
2787 	st->upper_offset = to;
2788 	st->root_skb = st->cur_skb = skb;
2789 	st->frag_idx = st->stepped_offset = 0;
2790 	st->frag_data = NULL;
2791 }
2792 EXPORT_SYMBOL(skb_prepare_seq_read);
2793 
2794 /**
2795  * skb_seq_read - Sequentially read skb data
2796  * @consumed: number of bytes consumed by the caller so far
2797  * @data: destination pointer for data to be returned
2798  * @st: state variable
2799  *
2800  * Reads a block of skb data at @consumed relative to the
2801  * lower offset specified to skb_prepare_seq_read(). Assigns
2802  * the head of the data block to @data and returns the length
2803  * of the block or 0 if the end of the skb data or the upper
2804  * offset has been reached.
2805  *
2806  * The caller is not required to consume all of the data
2807  * returned, i.e. @consumed is typically set to the number
2808  * of bytes already consumed and the next call to
2809  * skb_seq_read() will return the remaining part of the block.
2810  *
2811  * Note 1: The size of each block of data returned can be arbitrary,
2812  *       this limitation is the cost for zerocopy sequential
2813  *       reads of potentially non linear data.
2814  *
2815  * Note 2: Fragment lists within fragments are not implemented
2816  *       at the moment, state->root_skb could be replaced with
2817  *       a stack for this purpose.
2818  */
2819 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2820 			  struct skb_seq_state *st)
2821 {
2822 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2823 	skb_frag_t *frag;
2824 
2825 	if (unlikely(abs_offset >= st->upper_offset)) {
2826 		if (st->frag_data) {
2827 			kunmap_atomic(st->frag_data);
2828 			st->frag_data = NULL;
2829 		}
2830 		return 0;
2831 	}
2832 
2833 next_skb:
2834 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2835 
2836 	if (abs_offset < block_limit && !st->frag_data) {
2837 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2838 		return block_limit - abs_offset;
2839 	}
2840 
2841 	if (st->frag_idx == 0 && !st->frag_data)
2842 		st->stepped_offset += skb_headlen(st->cur_skb);
2843 
2844 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2845 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2846 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2847 
2848 		if (abs_offset < block_limit) {
2849 			if (!st->frag_data)
2850 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2851 
2852 			*data = (u8 *) st->frag_data + frag->page_offset +
2853 				(abs_offset - st->stepped_offset);
2854 
2855 			return block_limit - abs_offset;
2856 		}
2857 
2858 		if (st->frag_data) {
2859 			kunmap_atomic(st->frag_data);
2860 			st->frag_data = NULL;
2861 		}
2862 
2863 		st->frag_idx++;
2864 		st->stepped_offset += skb_frag_size(frag);
2865 	}
2866 
2867 	if (st->frag_data) {
2868 		kunmap_atomic(st->frag_data);
2869 		st->frag_data = NULL;
2870 	}
2871 
2872 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2873 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2874 		st->frag_idx = 0;
2875 		goto next_skb;
2876 	} else if (st->cur_skb->next) {
2877 		st->cur_skb = st->cur_skb->next;
2878 		st->frag_idx = 0;
2879 		goto next_skb;
2880 	}
2881 
2882 	return 0;
2883 }
2884 EXPORT_SYMBOL(skb_seq_read);
2885 
2886 /**
2887  * skb_abort_seq_read - Abort a sequential read of skb data
2888  * @st: state variable
2889  *
2890  * Must be called if skb_seq_read() was not called until it
2891  * returned 0.
2892  */
2893 void skb_abort_seq_read(struct skb_seq_state *st)
2894 {
2895 	if (st->frag_data)
2896 		kunmap_atomic(st->frag_data);
2897 }
2898 EXPORT_SYMBOL(skb_abort_seq_read);
2899 
2900 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2901 
2902 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2903 					  struct ts_config *conf,
2904 					  struct ts_state *state)
2905 {
2906 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2907 }
2908 
2909 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2910 {
2911 	skb_abort_seq_read(TS_SKB_CB(state));
2912 }
2913 
2914 /**
2915  * skb_find_text - Find a text pattern in skb data
2916  * @skb: the buffer to look in
2917  * @from: search offset
2918  * @to: search limit
2919  * @config: textsearch configuration
2920  *
2921  * Finds a pattern in the skb data according to the specified
2922  * textsearch configuration. Use textsearch_next() to retrieve
2923  * subsequent occurrences of the pattern. Returns the offset
2924  * to the first occurrence or UINT_MAX if no match was found.
2925  */
2926 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2927 			   unsigned int to, struct ts_config *config)
2928 {
2929 	struct ts_state state;
2930 	unsigned int ret;
2931 
2932 	config->get_next_block = skb_ts_get_next_block;
2933 	config->finish = skb_ts_finish;
2934 
2935 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2936 
2937 	ret = textsearch_find(config, &state);
2938 	return (ret <= to - from ? ret : UINT_MAX);
2939 }
2940 EXPORT_SYMBOL(skb_find_text);
2941 
2942 /**
2943  * skb_append_datato_frags - append the user data to a skb
2944  * @sk: sock  structure
2945  * @skb: skb structure to be appended with user data.
2946  * @getfrag: call back function to be used for getting the user data
2947  * @from: pointer to user message iov
2948  * @length: length of the iov message
2949  *
2950  * Description: This procedure append the user data in the fragment part
2951  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2952  */
2953 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2954 			int (*getfrag)(void *from, char *to, int offset,
2955 					int len, int odd, struct sk_buff *skb),
2956 			void *from, int length)
2957 {
2958 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2959 	int copy;
2960 	int offset = 0;
2961 	int ret;
2962 	struct page_frag *pfrag = &current->task_frag;
2963 
2964 	do {
2965 		/* Return error if we don't have space for new frag */
2966 		if (frg_cnt >= MAX_SKB_FRAGS)
2967 			return -EMSGSIZE;
2968 
2969 		if (!sk_page_frag_refill(sk, pfrag))
2970 			return -ENOMEM;
2971 
2972 		/* copy the user data to page */
2973 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2974 
2975 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2976 			      offset, copy, 0, skb);
2977 		if (ret < 0)
2978 			return -EFAULT;
2979 
2980 		/* copy was successful so update the size parameters */
2981 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2982 				   copy);
2983 		frg_cnt++;
2984 		pfrag->offset += copy;
2985 		get_page(pfrag->page);
2986 
2987 		skb->truesize += copy;
2988 		atomic_add(copy, &sk->sk_wmem_alloc);
2989 		skb->len += copy;
2990 		skb->data_len += copy;
2991 		offset += copy;
2992 		length -= copy;
2993 
2994 	} while (length > 0);
2995 
2996 	return 0;
2997 }
2998 EXPORT_SYMBOL(skb_append_datato_frags);
2999 
3000 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3001 			 int offset, size_t size)
3002 {
3003 	int i = skb_shinfo(skb)->nr_frags;
3004 
3005 	if (skb_can_coalesce(skb, i, page, offset)) {
3006 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3007 	} else if (i < MAX_SKB_FRAGS) {
3008 		get_page(page);
3009 		skb_fill_page_desc(skb, i, page, offset, size);
3010 	} else {
3011 		return -EMSGSIZE;
3012 	}
3013 
3014 	return 0;
3015 }
3016 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3017 
3018 /**
3019  *	skb_push_rcsum - push skb and update receive checksum
3020  *	@skb: buffer to update
3021  *	@len: length of data pulled
3022  *
3023  *	This function performs an skb_push on the packet and updates
3024  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3025  *	receive path processing instead of skb_push unless you know
3026  *	that the checksum difference is zero (e.g., a valid IP header)
3027  *	or you are setting ip_summed to CHECKSUM_NONE.
3028  */
3029 static unsigned char *skb_push_rcsum(struct sk_buff *skb, unsigned len)
3030 {
3031 	skb_push(skb, len);
3032 	skb_postpush_rcsum(skb, skb->data, len);
3033 	return skb->data;
3034 }
3035 
3036 /**
3037  *	skb_pull_rcsum - pull skb and update receive checksum
3038  *	@skb: buffer to update
3039  *	@len: length of data pulled
3040  *
3041  *	This function performs an skb_pull on the packet and updates
3042  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3043  *	receive path processing instead of skb_pull unless you know
3044  *	that the checksum difference is zero (e.g., a valid IP header)
3045  *	or you are setting ip_summed to CHECKSUM_NONE.
3046  */
3047 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3048 {
3049 	unsigned char *data = skb->data;
3050 
3051 	BUG_ON(len > skb->len);
3052 	__skb_pull(skb, len);
3053 	skb_postpull_rcsum(skb, data, len);
3054 	return skb->data;
3055 }
3056 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3057 
3058 /**
3059  *	skb_segment - Perform protocol segmentation on skb.
3060  *	@head_skb: buffer to segment
3061  *	@features: features for the output path (see dev->features)
3062  *
3063  *	This function performs segmentation on the given skb.  It returns
3064  *	a pointer to the first in a list of new skbs for the segments.
3065  *	In case of error it returns ERR_PTR(err).
3066  */
3067 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3068 			    netdev_features_t features)
3069 {
3070 	struct sk_buff *segs = NULL;
3071 	struct sk_buff *tail = NULL;
3072 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3073 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3074 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3075 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3076 	struct sk_buff *frag_skb = head_skb;
3077 	unsigned int offset = doffset;
3078 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3079 	unsigned int headroom;
3080 	unsigned int len;
3081 	__be16 proto;
3082 	bool csum;
3083 	int sg = !!(features & NETIF_F_SG);
3084 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3085 	int err = -ENOMEM;
3086 	int i = 0;
3087 	int pos;
3088 	int dummy;
3089 
3090 	__skb_push(head_skb, doffset);
3091 	proto = skb_network_protocol(head_skb, &dummy);
3092 	if (unlikely(!proto))
3093 		return ERR_PTR(-EINVAL);
3094 
3095 	csum = !!can_checksum_protocol(features, proto);
3096 
3097 	headroom = skb_headroom(head_skb);
3098 	pos = skb_headlen(head_skb);
3099 
3100 	do {
3101 		struct sk_buff *nskb;
3102 		skb_frag_t *nskb_frag;
3103 		int hsize;
3104 		int size;
3105 
3106 		len = head_skb->len - offset;
3107 		if (len > mss)
3108 			len = mss;
3109 
3110 		hsize = skb_headlen(head_skb) - offset;
3111 		if (hsize < 0)
3112 			hsize = 0;
3113 		if (hsize > len || !sg)
3114 			hsize = len;
3115 
3116 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3117 		    (skb_headlen(list_skb) == len || sg)) {
3118 			BUG_ON(skb_headlen(list_skb) > len);
3119 
3120 			i = 0;
3121 			nfrags = skb_shinfo(list_skb)->nr_frags;
3122 			frag = skb_shinfo(list_skb)->frags;
3123 			frag_skb = list_skb;
3124 			pos += skb_headlen(list_skb);
3125 
3126 			while (pos < offset + len) {
3127 				BUG_ON(i >= nfrags);
3128 
3129 				size = skb_frag_size(frag);
3130 				if (pos + size > offset + len)
3131 					break;
3132 
3133 				i++;
3134 				pos += size;
3135 				frag++;
3136 			}
3137 
3138 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3139 			list_skb = list_skb->next;
3140 
3141 			if (unlikely(!nskb))
3142 				goto err;
3143 
3144 			if (unlikely(pskb_trim(nskb, len))) {
3145 				kfree_skb(nskb);
3146 				goto err;
3147 			}
3148 
3149 			hsize = skb_end_offset(nskb);
3150 			if (skb_cow_head(nskb, doffset + headroom)) {
3151 				kfree_skb(nskb);
3152 				goto err;
3153 			}
3154 
3155 			nskb->truesize += skb_end_offset(nskb) - hsize;
3156 			skb_release_head_state(nskb);
3157 			__skb_push(nskb, doffset);
3158 		} else {
3159 			nskb = __alloc_skb(hsize + doffset + headroom,
3160 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3161 					   NUMA_NO_NODE);
3162 
3163 			if (unlikely(!nskb))
3164 				goto err;
3165 
3166 			skb_reserve(nskb, headroom);
3167 			__skb_put(nskb, doffset);
3168 		}
3169 
3170 		if (segs)
3171 			tail->next = nskb;
3172 		else
3173 			segs = nskb;
3174 		tail = nskb;
3175 
3176 		__copy_skb_header(nskb, head_skb);
3177 
3178 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3179 		skb_reset_mac_len(nskb);
3180 
3181 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3182 						 nskb->data - tnl_hlen,
3183 						 doffset + tnl_hlen);
3184 
3185 		if (nskb->len == len + doffset)
3186 			goto perform_csum_check;
3187 
3188 		if (!sg) {
3189 			if (!nskb->remcsum_offload)
3190 				nskb->ip_summed = CHECKSUM_NONE;
3191 			SKB_GSO_CB(nskb)->csum =
3192 				skb_copy_and_csum_bits(head_skb, offset,
3193 						       skb_put(nskb, len),
3194 						       len, 0);
3195 			SKB_GSO_CB(nskb)->csum_start =
3196 				skb_headroom(nskb) + doffset;
3197 			continue;
3198 		}
3199 
3200 		nskb_frag = skb_shinfo(nskb)->frags;
3201 
3202 		skb_copy_from_linear_data_offset(head_skb, offset,
3203 						 skb_put(nskb, hsize), hsize);
3204 
3205 		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3206 			SKBTX_SHARED_FRAG;
3207 
3208 		while (pos < offset + len) {
3209 			if (i >= nfrags) {
3210 				BUG_ON(skb_headlen(list_skb));
3211 
3212 				i = 0;
3213 				nfrags = skb_shinfo(list_skb)->nr_frags;
3214 				frag = skb_shinfo(list_skb)->frags;
3215 				frag_skb = list_skb;
3216 
3217 				BUG_ON(!nfrags);
3218 
3219 				list_skb = list_skb->next;
3220 			}
3221 
3222 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3223 				     MAX_SKB_FRAGS)) {
3224 				net_warn_ratelimited(
3225 					"skb_segment: too many frags: %u %u\n",
3226 					pos, mss);
3227 				goto err;
3228 			}
3229 
3230 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3231 				goto err;
3232 
3233 			*nskb_frag = *frag;
3234 			__skb_frag_ref(nskb_frag);
3235 			size = skb_frag_size(nskb_frag);
3236 
3237 			if (pos < offset) {
3238 				nskb_frag->page_offset += offset - pos;
3239 				skb_frag_size_sub(nskb_frag, offset - pos);
3240 			}
3241 
3242 			skb_shinfo(nskb)->nr_frags++;
3243 
3244 			if (pos + size <= offset + len) {
3245 				i++;
3246 				frag++;
3247 				pos += size;
3248 			} else {
3249 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3250 				goto skip_fraglist;
3251 			}
3252 
3253 			nskb_frag++;
3254 		}
3255 
3256 skip_fraglist:
3257 		nskb->data_len = len - hsize;
3258 		nskb->len += nskb->data_len;
3259 		nskb->truesize += nskb->data_len;
3260 
3261 perform_csum_check:
3262 		if (!csum) {
3263 			if (skb_has_shared_frag(nskb)) {
3264 				err = __skb_linearize(nskb);
3265 				if (err)
3266 					goto err;
3267 			}
3268 			if (!nskb->remcsum_offload)
3269 				nskb->ip_summed = CHECKSUM_NONE;
3270 			SKB_GSO_CB(nskb)->csum =
3271 				skb_checksum(nskb, doffset,
3272 					     nskb->len - doffset, 0);
3273 			SKB_GSO_CB(nskb)->csum_start =
3274 				skb_headroom(nskb) + doffset;
3275 		}
3276 	} while ((offset += len) < head_skb->len);
3277 
3278 	/* Some callers want to get the end of the list.
3279 	 * Put it in segs->prev to avoid walking the list.
3280 	 * (see validate_xmit_skb_list() for example)
3281 	 */
3282 	segs->prev = tail;
3283 
3284 	/* Following permits correct backpressure, for protocols
3285 	 * using skb_set_owner_w().
3286 	 * Idea is to tranfert ownership from head_skb to last segment.
3287 	 */
3288 	if (head_skb->destructor == sock_wfree) {
3289 		swap(tail->truesize, head_skb->truesize);
3290 		swap(tail->destructor, head_skb->destructor);
3291 		swap(tail->sk, head_skb->sk);
3292 	}
3293 	return segs;
3294 
3295 err:
3296 	kfree_skb_list(segs);
3297 	return ERR_PTR(err);
3298 }
3299 EXPORT_SYMBOL_GPL(skb_segment);
3300 
3301 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3302 {
3303 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3304 	unsigned int offset = skb_gro_offset(skb);
3305 	unsigned int headlen = skb_headlen(skb);
3306 	unsigned int len = skb_gro_len(skb);
3307 	struct sk_buff *lp, *p = *head;
3308 	unsigned int delta_truesize;
3309 
3310 	if (unlikely(p->len + len >= 65536))
3311 		return -E2BIG;
3312 
3313 	lp = NAPI_GRO_CB(p)->last;
3314 	pinfo = skb_shinfo(lp);
3315 
3316 	if (headlen <= offset) {
3317 		skb_frag_t *frag;
3318 		skb_frag_t *frag2;
3319 		int i = skbinfo->nr_frags;
3320 		int nr_frags = pinfo->nr_frags + i;
3321 
3322 		if (nr_frags > MAX_SKB_FRAGS)
3323 			goto merge;
3324 
3325 		offset -= headlen;
3326 		pinfo->nr_frags = nr_frags;
3327 		skbinfo->nr_frags = 0;
3328 
3329 		frag = pinfo->frags + nr_frags;
3330 		frag2 = skbinfo->frags + i;
3331 		do {
3332 			*--frag = *--frag2;
3333 		} while (--i);
3334 
3335 		frag->page_offset += offset;
3336 		skb_frag_size_sub(frag, offset);
3337 
3338 		/* all fragments truesize : remove (head size + sk_buff) */
3339 		delta_truesize = skb->truesize -
3340 				 SKB_TRUESIZE(skb_end_offset(skb));
3341 
3342 		skb->truesize -= skb->data_len;
3343 		skb->len -= skb->data_len;
3344 		skb->data_len = 0;
3345 
3346 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3347 		goto done;
3348 	} else if (skb->head_frag) {
3349 		int nr_frags = pinfo->nr_frags;
3350 		skb_frag_t *frag = pinfo->frags + nr_frags;
3351 		struct page *page = virt_to_head_page(skb->head);
3352 		unsigned int first_size = headlen - offset;
3353 		unsigned int first_offset;
3354 
3355 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3356 			goto merge;
3357 
3358 		first_offset = skb->data -
3359 			       (unsigned char *)page_address(page) +
3360 			       offset;
3361 
3362 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3363 
3364 		frag->page.p	  = page;
3365 		frag->page_offset = first_offset;
3366 		skb_frag_size_set(frag, first_size);
3367 
3368 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3369 		/* We dont need to clear skbinfo->nr_frags here */
3370 
3371 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3372 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3373 		goto done;
3374 	}
3375 
3376 merge:
3377 	delta_truesize = skb->truesize;
3378 	if (offset > headlen) {
3379 		unsigned int eat = offset - headlen;
3380 
3381 		skbinfo->frags[0].page_offset += eat;
3382 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3383 		skb->data_len -= eat;
3384 		skb->len -= eat;
3385 		offset = headlen;
3386 	}
3387 
3388 	__skb_pull(skb, offset);
3389 
3390 	if (NAPI_GRO_CB(p)->last == p)
3391 		skb_shinfo(p)->frag_list = skb;
3392 	else
3393 		NAPI_GRO_CB(p)->last->next = skb;
3394 	NAPI_GRO_CB(p)->last = skb;
3395 	__skb_header_release(skb);
3396 	lp = p;
3397 
3398 done:
3399 	NAPI_GRO_CB(p)->count++;
3400 	p->data_len += len;
3401 	p->truesize += delta_truesize;
3402 	p->len += len;
3403 	if (lp != p) {
3404 		lp->data_len += len;
3405 		lp->truesize += delta_truesize;
3406 		lp->len += len;
3407 	}
3408 	NAPI_GRO_CB(skb)->same_flow = 1;
3409 	return 0;
3410 }
3411 
3412 void __init skb_init(void)
3413 {
3414 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3415 					      sizeof(struct sk_buff),
3416 					      0,
3417 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3418 					      NULL);
3419 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3420 						sizeof(struct sk_buff_fclones),
3421 						0,
3422 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3423 						NULL);
3424 }
3425 
3426 /**
3427  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3428  *	@skb: Socket buffer containing the buffers to be mapped
3429  *	@sg: The scatter-gather list to map into
3430  *	@offset: The offset into the buffer's contents to start mapping
3431  *	@len: Length of buffer space to be mapped
3432  *
3433  *	Fill the specified scatter-gather list with mappings/pointers into a
3434  *	region of the buffer space attached to a socket buffer.
3435  */
3436 static int
3437 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3438 {
3439 	int start = skb_headlen(skb);
3440 	int i, copy = start - offset;
3441 	struct sk_buff *frag_iter;
3442 	int elt = 0;
3443 
3444 	if (copy > 0) {
3445 		if (copy > len)
3446 			copy = len;
3447 		sg_set_buf(sg, skb->data + offset, copy);
3448 		elt++;
3449 		if ((len -= copy) == 0)
3450 			return elt;
3451 		offset += copy;
3452 	}
3453 
3454 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3455 		int end;
3456 
3457 		WARN_ON(start > offset + len);
3458 
3459 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3460 		if ((copy = end - offset) > 0) {
3461 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3462 
3463 			if (copy > len)
3464 				copy = len;
3465 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3466 					frag->page_offset+offset-start);
3467 			elt++;
3468 			if (!(len -= copy))
3469 				return elt;
3470 			offset += copy;
3471 		}
3472 		start = end;
3473 	}
3474 
3475 	skb_walk_frags(skb, frag_iter) {
3476 		int end;
3477 
3478 		WARN_ON(start > offset + len);
3479 
3480 		end = start + frag_iter->len;
3481 		if ((copy = end - offset) > 0) {
3482 			if (copy > len)
3483 				copy = len;
3484 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3485 					      copy);
3486 			if ((len -= copy) == 0)
3487 				return elt;
3488 			offset += copy;
3489 		}
3490 		start = end;
3491 	}
3492 	BUG_ON(len);
3493 	return elt;
3494 }
3495 
3496 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3497  * sglist without mark the sg which contain last skb data as the end.
3498  * So the caller can mannipulate sg list as will when padding new data after
3499  * the first call without calling sg_unmark_end to expend sg list.
3500  *
3501  * Scenario to use skb_to_sgvec_nomark:
3502  * 1. sg_init_table
3503  * 2. skb_to_sgvec_nomark(payload1)
3504  * 3. skb_to_sgvec_nomark(payload2)
3505  *
3506  * This is equivalent to:
3507  * 1. sg_init_table
3508  * 2. skb_to_sgvec(payload1)
3509  * 3. sg_unmark_end
3510  * 4. skb_to_sgvec(payload2)
3511  *
3512  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3513  * is more preferable.
3514  */
3515 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3516 			int offset, int len)
3517 {
3518 	return __skb_to_sgvec(skb, sg, offset, len);
3519 }
3520 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3521 
3522 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3523 {
3524 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3525 
3526 	sg_mark_end(&sg[nsg - 1]);
3527 
3528 	return nsg;
3529 }
3530 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3531 
3532 /**
3533  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3534  *	@skb: The socket buffer to check.
3535  *	@tailbits: Amount of trailing space to be added
3536  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3537  *
3538  *	Make sure that the data buffers attached to a socket buffer are
3539  *	writable. If they are not, private copies are made of the data buffers
3540  *	and the socket buffer is set to use these instead.
3541  *
3542  *	If @tailbits is given, make sure that there is space to write @tailbits
3543  *	bytes of data beyond current end of socket buffer.  @trailer will be
3544  *	set to point to the skb in which this space begins.
3545  *
3546  *	The number of scatterlist elements required to completely map the
3547  *	COW'd and extended socket buffer will be returned.
3548  */
3549 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3550 {
3551 	int copyflag;
3552 	int elt;
3553 	struct sk_buff *skb1, **skb_p;
3554 
3555 	/* If skb is cloned or its head is paged, reallocate
3556 	 * head pulling out all the pages (pages are considered not writable
3557 	 * at the moment even if they are anonymous).
3558 	 */
3559 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3560 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3561 		return -ENOMEM;
3562 
3563 	/* Easy case. Most of packets will go this way. */
3564 	if (!skb_has_frag_list(skb)) {
3565 		/* A little of trouble, not enough of space for trailer.
3566 		 * This should not happen, when stack is tuned to generate
3567 		 * good frames. OK, on miss we reallocate and reserve even more
3568 		 * space, 128 bytes is fair. */
3569 
3570 		if (skb_tailroom(skb) < tailbits &&
3571 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3572 			return -ENOMEM;
3573 
3574 		/* Voila! */
3575 		*trailer = skb;
3576 		return 1;
3577 	}
3578 
3579 	/* Misery. We are in troubles, going to mincer fragments... */
3580 
3581 	elt = 1;
3582 	skb_p = &skb_shinfo(skb)->frag_list;
3583 	copyflag = 0;
3584 
3585 	while ((skb1 = *skb_p) != NULL) {
3586 		int ntail = 0;
3587 
3588 		/* The fragment is partially pulled by someone,
3589 		 * this can happen on input. Copy it and everything
3590 		 * after it. */
3591 
3592 		if (skb_shared(skb1))
3593 			copyflag = 1;
3594 
3595 		/* If the skb is the last, worry about trailer. */
3596 
3597 		if (skb1->next == NULL && tailbits) {
3598 			if (skb_shinfo(skb1)->nr_frags ||
3599 			    skb_has_frag_list(skb1) ||
3600 			    skb_tailroom(skb1) < tailbits)
3601 				ntail = tailbits + 128;
3602 		}
3603 
3604 		if (copyflag ||
3605 		    skb_cloned(skb1) ||
3606 		    ntail ||
3607 		    skb_shinfo(skb1)->nr_frags ||
3608 		    skb_has_frag_list(skb1)) {
3609 			struct sk_buff *skb2;
3610 
3611 			/* Fuck, we are miserable poor guys... */
3612 			if (ntail == 0)
3613 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3614 			else
3615 				skb2 = skb_copy_expand(skb1,
3616 						       skb_headroom(skb1),
3617 						       ntail,
3618 						       GFP_ATOMIC);
3619 			if (unlikely(skb2 == NULL))
3620 				return -ENOMEM;
3621 
3622 			if (skb1->sk)
3623 				skb_set_owner_w(skb2, skb1->sk);
3624 
3625 			/* Looking around. Are we still alive?
3626 			 * OK, link new skb, drop old one */
3627 
3628 			skb2->next = skb1->next;
3629 			*skb_p = skb2;
3630 			kfree_skb(skb1);
3631 			skb1 = skb2;
3632 		}
3633 		elt++;
3634 		*trailer = skb1;
3635 		skb_p = &skb1->next;
3636 	}
3637 
3638 	return elt;
3639 }
3640 EXPORT_SYMBOL_GPL(skb_cow_data);
3641 
3642 static void sock_rmem_free(struct sk_buff *skb)
3643 {
3644 	struct sock *sk = skb->sk;
3645 
3646 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3647 }
3648 
3649 /*
3650  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3651  */
3652 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3653 {
3654 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3655 	    (unsigned int)sk->sk_rcvbuf)
3656 		return -ENOMEM;
3657 
3658 	skb_orphan(skb);
3659 	skb->sk = sk;
3660 	skb->destructor = sock_rmem_free;
3661 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3662 
3663 	/* before exiting rcu section, make sure dst is refcounted */
3664 	skb_dst_force(skb);
3665 
3666 	skb_queue_tail(&sk->sk_error_queue, skb);
3667 	if (!sock_flag(sk, SOCK_DEAD))
3668 		sk->sk_data_ready(sk);
3669 	return 0;
3670 }
3671 EXPORT_SYMBOL(sock_queue_err_skb);
3672 
3673 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3674 {
3675 	struct sk_buff_head *q = &sk->sk_error_queue;
3676 	struct sk_buff *skb, *skb_next;
3677 	unsigned long flags;
3678 	int err = 0;
3679 
3680 	spin_lock_irqsave(&q->lock, flags);
3681 	skb = __skb_dequeue(q);
3682 	if (skb && (skb_next = skb_peek(q)))
3683 		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3684 	spin_unlock_irqrestore(&q->lock, flags);
3685 
3686 	sk->sk_err = err;
3687 	if (err)
3688 		sk->sk_error_report(sk);
3689 
3690 	return skb;
3691 }
3692 EXPORT_SYMBOL(sock_dequeue_err_skb);
3693 
3694 /**
3695  * skb_clone_sk - create clone of skb, and take reference to socket
3696  * @skb: the skb to clone
3697  *
3698  * This function creates a clone of a buffer that holds a reference on
3699  * sk_refcnt.  Buffers created via this function are meant to be
3700  * returned using sock_queue_err_skb, or free via kfree_skb.
3701  *
3702  * When passing buffers allocated with this function to sock_queue_err_skb
3703  * it is necessary to wrap the call with sock_hold/sock_put in order to
3704  * prevent the socket from being released prior to being enqueued on
3705  * the sk_error_queue.
3706  */
3707 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3708 {
3709 	struct sock *sk = skb->sk;
3710 	struct sk_buff *clone;
3711 
3712 	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3713 		return NULL;
3714 
3715 	clone = skb_clone(skb, GFP_ATOMIC);
3716 	if (!clone) {
3717 		sock_put(sk);
3718 		return NULL;
3719 	}
3720 
3721 	clone->sk = sk;
3722 	clone->destructor = sock_efree;
3723 
3724 	return clone;
3725 }
3726 EXPORT_SYMBOL(skb_clone_sk);
3727 
3728 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3729 					struct sock *sk,
3730 					int tstype)
3731 {
3732 	struct sock_exterr_skb *serr;
3733 	int err;
3734 
3735 	serr = SKB_EXT_ERR(skb);
3736 	memset(serr, 0, sizeof(*serr));
3737 	serr->ee.ee_errno = ENOMSG;
3738 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3739 	serr->ee.ee_info = tstype;
3740 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3741 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3742 		if (sk->sk_protocol == IPPROTO_TCP &&
3743 		    sk->sk_type == SOCK_STREAM)
3744 			serr->ee.ee_data -= sk->sk_tskey;
3745 	}
3746 
3747 	err = sock_queue_err_skb(sk, skb);
3748 
3749 	if (err)
3750 		kfree_skb(skb);
3751 }
3752 
3753 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3754 {
3755 	bool ret;
3756 
3757 	if (likely(sysctl_tstamp_allow_data || tsonly))
3758 		return true;
3759 
3760 	read_lock_bh(&sk->sk_callback_lock);
3761 	ret = sk->sk_socket && sk->sk_socket->file &&
3762 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3763 	read_unlock_bh(&sk->sk_callback_lock);
3764 	return ret;
3765 }
3766 
3767 void skb_complete_tx_timestamp(struct sk_buff *skb,
3768 			       struct skb_shared_hwtstamps *hwtstamps)
3769 {
3770 	struct sock *sk = skb->sk;
3771 
3772 	if (!skb_may_tx_timestamp(sk, false))
3773 		return;
3774 
3775 	/* take a reference to prevent skb_orphan() from freeing the socket */
3776 	sock_hold(sk);
3777 
3778 	*skb_hwtstamps(skb) = *hwtstamps;
3779 	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3780 
3781 	sock_put(sk);
3782 }
3783 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3784 
3785 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3786 		     struct skb_shared_hwtstamps *hwtstamps,
3787 		     struct sock *sk, int tstype)
3788 {
3789 	struct sk_buff *skb;
3790 	bool tsonly;
3791 
3792 	if (!sk)
3793 		return;
3794 
3795 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3796 	if (!skb_may_tx_timestamp(sk, tsonly))
3797 		return;
3798 
3799 	if (tsonly)
3800 		skb = alloc_skb(0, GFP_ATOMIC);
3801 	else
3802 		skb = skb_clone(orig_skb, GFP_ATOMIC);
3803 	if (!skb)
3804 		return;
3805 
3806 	if (tsonly) {
3807 		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3808 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3809 	}
3810 
3811 	if (hwtstamps)
3812 		*skb_hwtstamps(skb) = *hwtstamps;
3813 	else
3814 		skb->tstamp = ktime_get_real();
3815 
3816 	__skb_complete_tx_timestamp(skb, sk, tstype);
3817 }
3818 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3819 
3820 void skb_tstamp_tx(struct sk_buff *orig_skb,
3821 		   struct skb_shared_hwtstamps *hwtstamps)
3822 {
3823 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3824 			       SCM_TSTAMP_SND);
3825 }
3826 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3827 
3828 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3829 {
3830 	struct sock *sk = skb->sk;
3831 	struct sock_exterr_skb *serr;
3832 	int err;
3833 
3834 	skb->wifi_acked_valid = 1;
3835 	skb->wifi_acked = acked;
3836 
3837 	serr = SKB_EXT_ERR(skb);
3838 	memset(serr, 0, sizeof(*serr));
3839 	serr->ee.ee_errno = ENOMSG;
3840 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3841 
3842 	/* take a reference to prevent skb_orphan() from freeing the socket */
3843 	sock_hold(sk);
3844 
3845 	err = sock_queue_err_skb(sk, skb);
3846 	if (err)
3847 		kfree_skb(skb);
3848 
3849 	sock_put(sk);
3850 }
3851 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3852 
3853 /**
3854  * skb_partial_csum_set - set up and verify partial csum values for packet
3855  * @skb: the skb to set
3856  * @start: the number of bytes after skb->data to start checksumming.
3857  * @off: the offset from start to place the checksum.
3858  *
3859  * For untrusted partially-checksummed packets, we need to make sure the values
3860  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3861  *
3862  * This function checks and sets those values and skb->ip_summed: if this
3863  * returns false you should drop the packet.
3864  */
3865 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3866 {
3867 	if (unlikely(start > skb_headlen(skb)) ||
3868 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3869 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3870 				     start, off, skb_headlen(skb));
3871 		return false;
3872 	}
3873 	skb->ip_summed = CHECKSUM_PARTIAL;
3874 	skb->csum_start = skb_headroom(skb) + start;
3875 	skb->csum_offset = off;
3876 	skb_set_transport_header(skb, start);
3877 	return true;
3878 }
3879 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3880 
3881 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3882 			       unsigned int max)
3883 {
3884 	if (skb_headlen(skb) >= len)
3885 		return 0;
3886 
3887 	/* If we need to pullup then pullup to the max, so we
3888 	 * won't need to do it again.
3889 	 */
3890 	if (max > skb->len)
3891 		max = skb->len;
3892 
3893 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3894 		return -ENOMEM;
3895 
3896 	if (skb_headlen(skb) < len)
3897 		return -EPROTO;
3898 
3899 	return 0;
3900 }
3901 
3902 #define MAX_TCP_HDR_LEN (15 * 4)
3903 
3904 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3905 				      typeof(IPPROTO_IP) proto,
3906 				      unsigned int off)
3907 {
3908 	switch (proto) {
3909 		int err;
3910 
3911 	case IPPROTO_TCP:
3912 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3913 					  off + MAX_TCP_HDR_LEN);
3914 		if (!err && !skb_partial_csum_set(skb, off,
3915 						  offsetof(struct tcphdr,
3916 							   check)))
3917 			err = -EPROTO;
3918 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3919 
3920 	case IPPROTO_UDP:
3921 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3922 					  off + sizeof(struct udphdr));
3923 		if (!err && !skb_partial_csum_set(skb, off,
3924 						  offsetof(struct udphdr,
3925 							   check)))
3926 			err = -EPROTO;
3927 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3928 	}
3929 
3930 	return ERR_PTR(-EPROTO);
3931 }
3932 
3933 /* This value should be large enough to cover a tagged ethernet header plus
3934  * maximally sized IP and TCP or UDP headers.
3935  */
3936 #define MAX_IP_HDR_LEN 128
3937 
3938 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3939 {
3940 	unsigned int off;
3941 	bool fragment;
3942 	__sum16 *csum;
3943 	int err;
3944 
3945 	fragment = false;
3946 
3947 	err = skb_maybe_pull_tail(skb,
3948 				  sizeof(struct iphdr),
3949 				  MAX_IP_HDR_LEN);
3950 	if (err < 0)
3951 		goto out;
3952 
3953 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3954 		fragment = true;
3955 
3956 	off = ip_hdrlen(skb);
3957 
3958 	err = -EPROTO;
3959 
3960 	if (fragment)
3961 		goto out;
3962 
3963 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3964 	if (IS_ERR(csum))
3965 		return PTR_ERR(csum);
3966 
3967 	if (recalculate)
3968 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3969 					   ip_hdr(skb)->daddr,
3970 					   skb->len - off,
3971 					   ip_hdr(skb)->protocol, 0);
3972 	err = 0;
3973 
3974 out:
3975 	return err;
3976 }
3977 
3978 /* This value should be large enough to cover a tagged ethernet header plus
3979  * an IPv6 header, all options, and a maximal TCP or UDP header.
3980  */
3981 #define MAX_IPV6_HDR_LEN 256
3982 
3983 #define OPT_HDR(type, skb, off) \
3984 	(type *)(skb_network_header(skb) + (off))
3985 
3986 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3987 {
3988 	int err;
3989 	u8 nexthdr;
3990 	unsigned int off;
3991 	unsigned int len;
3992 	bool fragment;
3993 	bool done;
3994 	__sum16 *csum;
3995 
3996 	fragment = false;
3997 	done = false;
3998 
3999 	off = sizeof(struct ipv6hdr);
4000 
4001 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4002 	if (err < 0)
4003 		goto out;
4004 
4005 	nexthdr = ipv6_hdr(skb)->nexthdr;
4006 
4007 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4008 	while (off <= len && !done) {
4009 		switch (nexthdr) {
4010 		case IPPROTO_DSTOPTS:
4011 		case IPPROTO_HOPOPTS:
4012 		case IPPROTO_ROUTING: {
4013 			struct ipv6_opt_hdr *hp;
4014 
4015 			err = skb_maybe_pull_tail(skb,
4016 						  off +
4017 						  sizeof(struct ipv6_opt_hdr),
4018 						  MAX_IPV6_HDR_LEN);
4019 			if (err < 0)
4020 				goto out;
4021 
4022 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4023 			nexthdr = hp->nexthdr;
4024 			off += ipv6_optlen(hp);
4025 			break;
4026 		}
4027 		case IPPROTO_AH: {
4028 			struct ip_auth_hdr *hp;
4029 
4030 			err = skb_maybe_pull_tail(skb,
4031 						  off +
4032 						  sizeof(struct ip_auth_hdr),
4033 						  MAX_IPV6_HDR_LEN);
4034 			if (err < 0)
4035 				goto out;
4036 
4037 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4038 			nexthdr = hp->nexthdr;
4039 			off += ipv6_authlen(hp);
4040 			break;
4041 		}
4042 		case IPPROTO_FRAGMENT: {
4043 			struct frag_hdr *hp;
4044 
4045 			err = skb_maybe_pull_tail(skb,
4046 						  off +
4047 						  sizeof(struct frag_hdr),
4048 						  MAX_IPV6_HDR_LEN);
4049 			if (err < 0)
4050 				goto out;
4051 
4052 			hp = OPT_HDR(struct frag_hdr, skb, off);
4053 
4054 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4055 				fragment = true;
4056 
4057 			nexthdr = hp->nexthdr;
4058 			off += sizeof(struct frag_hdr);
4059 			break;
4060 		}
4061 		default:
4062 			done = true;
4063 			break;
4064 		}
4065 	}
4066 
4067 	err = -EPROTO;
4068 
4069 	if (!done || fragment)
4070 		goto out;
4071 
4072 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4073 	if (IS_ERR(csum))
4074 		return PTR_ERR(csum);
4075 
4076 	if (recalculate)
4077 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4078 					 &ipv6_hdr(skb)->daddr,
4079 					 skb->len - off, nexthdr, 0);
4080 	err = 0;
4081 
4082 out:
4083 	return err;
4084 }
4085 
4086 /**
4087  * skb_checksum_setup - set up partial checksum offset
4088  * @skb: the skb to set up
4089  * @recalculate: if true the pseudo-header checksum will be recalculated
4090  */
4091 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4092 {
4093 	int err;
4094 
4095 	switch (skb->protocol) {
4096 	case htons(ETH_P_IP):
4097 		err = skb_checksum_setup_ipv4(skb, recalculate);
4098 		break;
4099 
4100 	case htons(ETH_P_IPV6):
4101 		err = skb_checksum_setup_ipv6(skb, recalculate);
4102 		break;
4103 
4104 	default:
4105 		err = -EPROTO;
4106 		break;
4107 	}
4108 
4109 	return err;
4110 }
4111 EXPORT_SYMBOL(skb_checksum_setup);
4112 
4113 /**
4114  * skb_checksum_maybe_trim - maybe trims the given skb
4115  * @skb: the skb to check
4116  * @transport_len: the data length beyond the network header
4117  *
4118  * Checks whether the given skb has data beyond the given transport length.
4119  * If so, returns a cloned skb trimmed to this transport length.
4120  * Otherwise returns the provided skb. Returns NULL in error cases
4121  * (e.g. transport_len exceeds skb length or out-of-memory).
4122  *
4123  * Caller needs to set the skb transport header and free any returned skb if it
4124  * differs from the provided skb.
4125  */
4126 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4127 					       unsigned int transport_len)
4128 {
4129 	struct sk_buff *skb_chk;
4130 	unsigned int len = skb_transport_offset(skb) + transport_len;
4131 	int ret;
4132 
4133 	if (skb->len < len)
4134 		return NULL;
4135 	else if (skb->len == len)
4136 		return skb;
4137 
4138 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4139 	if (!skb_chk)
4140 		return NULL;
4141 
4142 	ret = pskb_trim_rcsum(skb_chk, len);
4143 	if (ret) {
4144 		kfree_skb(skb_chk);
4145 		return NULL;
4146 	}
4147 
4148 	return skb_chk;
4149 }
4150 
4151 /**
4152  * skb_checksum_trimmed - validate checksum of an skb
4153  * @skb: the skb to check
4154  * @transport_len: the data length beyond the network header
4155  * @skb_chkf: checksum function to use
4156  *
4157  * Applies the given checksum function skb_chkf to the provided skb.
4158  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4159  *
4160  * If the skb has data beyond the given transport length, then a
4161  * trimmed & cloned skb is checked and returned.
4162  *
4163  * Caller needs to set the skb transport header and free any returned skb if it
4164  * differs from the provided skb.
4165  */
4166 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4167 				     unsigned int transport_len,
4168 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4169 {
4170 	struct sk_buff *skb_chk;
4171 	unsigned int offset = skb_transport_offset(skb);
4172 	__sum16 ret;
4173 
4174 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4175 	if (!skb_chk)
4176 		goto err;
4177 
4178 	if (!pskb_may_pull(skb_chk, offset))
4179 		goto err;
4180 
4181 	skb_pull_rcsum(skb_chk, offset);
4182 	ret = skb_chkf(skb_chk);
4183 	skb_push_rcsum(skb_chk, offset);
4184 
4185 	if (ret)
4186 		goto err;
4187 
4188 	return skb_chk;
4189 
4190 err:
4191 	if (skb_chk && skb_chk != skb)
4192 		kfree_skb(skb_chk);
4193 
4194 	return NULL;
4195 
4196 }
4197 EXPORT_SYMBOL(skb_checksum_trimmed);
4198 
4199 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4200 {
4201 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4202 			     skb->dev->name);
4203 }
4204 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4205 
4206 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4207 {
4208 	if (head_stolen) {
4209 		skb_release_head_state(skb);
4210 		kmem_cache_free(skbuff_head_cache, skb);
4211 	} else {
4212 		__kfree_skb(skb);
4213 	}
4214 }
4215 EXPORT_SYMBOL(kfree_skb_partial);
4216 
4217 /**
4218  * skb_try_coalesce - try to merge skb to prior one
4219  * @to: prior buffer
4220  * @from: buffer to add
4221  * @fragstolen: pointer to boolean
4222  * @delta_truesize: how much more was allocated than was requested
4223  */
4224 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4225 		      bool *fragstolen, int *delta_truesize)
4226 {
4227 	int i, delta, len = from->len;
4228 
4229 	*fragstolen = false;
4230 
4231 	if (skb_cloned(to))
4232 		return false;
4233 
4234 	if (len <= skb_tailroom(to)) {
4235 		if (len)
4236 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4237 		*delta_truesize = 0;
4238 		return true;
4239 	}
4240 
4241 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4242 		return false;
4243 
4244 	if (skb_headlen(from) != 0) {
4245 		struct page *page;
4246 		unsigned int offset;
4247 
4248 		if (skb_shinfo(to)->nr_frags +
4249 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4250 			return false;
4251 
4252 		if (skb_head_is_locked(from))
4253 			return false;
4254 
4255 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4256 
4257 		page = virt_to_head_page(from->head);
4258 		offset = from->data - (unsigned char *)page_address(page);
4259 
4260 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4261 				   page, offset, skb_headlen(from));
4262 		*fragstolen = true;
4263 	} else {
4264 		if (skb_shinfo(to)->nr_frags +
4265 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4266 			return false;
4267 
4268 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4269 	}
4270 
4271 	WARN_ON_ONCE(delta < len);
4272 
4273 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4274 	       skb_shinfo(from)->frags,
4275 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4276 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4277 
4278 	if (!skb_cloned(from))
4279 		skb_shinfo(from)->nr_frags = 0;
4280 
4281 	/* if the skb is not cloned this does nothing
4282 	 * since we set nr_frags to 0.
4283 	 */
4284 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4285 		skb_frag_ref(from, i);
4286 
4287 	to->truesize += delta;
4288 	to->len += len;
4289 	to->data_len += len;
4290 
4291 	*delta_truesize = delta;
4292 	return true;
4293 }
4294 EXPORT_SYMBOL(skb_try_coalesce);
4295 
4296 /**
4297  * skb_scrub_packet - scrub an skb
4298  *
4299  * @skb: buffer to clean
4300  * @xnet: packet is crossing netns
4301  *
4302  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4303  * into/from a tunnel. Some information have to be cleared during these
4304  * operations.
4305  * skb_scrub_packet can also be used to clean a skb before injecting it in
4306  * another namespace (@xnet == true). We have to clear all information in the
4307  * skb that could impact namespace isolation.
4308  */
4309 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4310 {
4311 	skb->tstamp.tv64 = 0;
4312 	skb->pkt_type = PACKET_HOST;
4313 	skb->skb_iif = 0;
4314 	skb->ignore_df = 0;
4315 	skb_dst_drop(skb);
4316 	secpath_reset(skb);
4317 	nf_reset(skb);
4318 	nf_reset_trace(skb);
4319 
4320 	if (!xnet)
4321 		return;
4322 
4323 	skb_orphan(skb);
4324 	skb->mark = 0;
4325 }
4326 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4327 
4328 /**
4329  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4330  *
4331  * @skb: GSO skb
4332  *
4333  * skb_gso_transport_seglen is used to determine the real size of the
4334  * individual segments, including Layer4 headers (TCP/UDP).
4335  *
4336  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4337  */
4338 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4339 {
4340 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4341 	unsigned int thlen = 0;
4342 
4343 	if (skb->encapsulation) {
4344 		thlen = skb_inner_transport_header(skb) -
4345 			skb_transport_header(skb);
4346 
4347 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4348 			thlen += inner_tcp_hdrlen(skb);
4349 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4350 		thlen = tcp_hdrlen(skb);
4351 	}
4352 	/* UFO sets gso_size to the size of the fragmentation
4353 	 * payload, i.e. the size of the L4 (UDP) header is already
4354 	 * accounted for.
4355 	 */
4356 	return thlen + shinfo->gso_size;
4357 }
4358 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4359 
4360 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4361 {
4362 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4363 		kfree_skb(skb);
4364 		return NULL;
4365 	}
4366 
4367 	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4368 		2 * ETH_ALEN);
4369 	skb->mac_header += VLAN_HLEN;
4370 	return skb;
4371 }
4372 
4373 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4374 {
4375 	struct vlan_hdr *vhdr;
4376 	u16 vlan_tci;
4377 
4378 	if (unlikely(skb_vlan_tag_present(skb))) {
4379 		/* vlan_tci is already set-up so leave this for another time */
4380 		return skb;
4381 	}
4382 
4383 	skb = skb_share_check(skb, GFP_ATOMIC);
4384 	if (unlikely(!skb))
4385 		goto err_free;
4386 
4387 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4388 		goto err_free;
4389 
4390 	vhdr = (struct vlan_hdr *)skb->data;
4391 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4392 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4393 
4394 	skb_pull_rcsum(skb, VLAN_HLEN);
4395 	vlan_set_encap_proto(skb, vhdr);
4396 
4397 	skb = skb_reorder_vlan_header(skb);
4398 	if (unlikely(!skb))
4399 		goto err_free;
4400 
4401 	skb_reset_network_header(skb);
4402 	skb_reset_transport_header(skb);
4403 	skb_reset_mac_len(skb);
4404 
4405 	return skb;
4406 
4407 err_free:
4408 	kfree_skb(skb);
4409 	return NULL;
4410 }
4411 EXPORT_SYMBOL(skb_vlan_untag);
4412 
4413 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4414 {
4415 	if (!pskb_may_pull(skb, write_len))
4416 		return -ENOMEM;
4417 
4418 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4419 		return 0;
4420 
4421 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4422 }
4423 EXPORT_SYMBOL(skb_ensure_writable);
4424 
4425 /* remove VLAN header from packet and update csum accordingly. */
4426 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4427 {
4428 	struct vlan_hdr *vhdr;
4429 	unsigned int offset = skb->data - skb_mac_header(skb);
4430 	int err;
4431 
4432 	__skb_push(skb, offset);
4433 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4434 	if (unlikely(err))
4435 		goto pull;
4436 
4437 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4438 
4439 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4440 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4441 
4442 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4443 	__skb_pull(skb, VLAN_HLEN);
4444 
4445 	vlan_set_encap_proto(skb, vhdr);
4446 	skb->mac_header += VLAN_HLEN;
4447 
4448 	if (skb_network_offset(skb) < ETH_HLEN)
4449 		skb_set_network_header(skb, ETH_HLEN);
4450 
4451 	skb_reset_mac_len(skb);
4452 pull:
4453 	__skb_pull(skb, offset);
4454 
4455 	return err;
4456 }
4457 
4458 int skb_vlan_pop(struct sk_buff *skb)
4459 {
4460 	u16 vlan_tci;
4461 	__be16 vlan_proto;
4462 	int err;
4463 
4464 	if (likely(skb_vlan_tag_present(skb))) {
4465 		skb->vlan_tci = 0;
4466 	} else {
4467 		if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4468 			      skb->protocol != htons(ETH_P_8021AD)) ||
4469 			     skb->len < VLAN_ETH_HLEN))
4470 			return 0;
4471 
4472 		err = __skb_vlan_pop(skb, &vlan_tci);
4473 		if (err)
4474 			return err;
4475 	}
4476 	/* move next vlan tag to hw accel tag */
4477 	if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4478 		    skb->protocol != htons(ETH_P_8021AD)) ||
4479 		   skb->len < VLAN_ETH_HLEN))
4480 		return 0;
4481 
4482 	vlan_proto = skb->protocol;
4483 	err = __skb_vlan_pop(skb, &vlan_tci);
4484 	if (unlikely(err))
4485 		return err;
4486 
4487 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4488 	return 0;
4489 }
4490 EXPORT_SYMBOL(skb_vlan_pop);
4491 
4492 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4493 {
4494 	if (skb_vlan_tag_present(skb)) {
4495 		unsigned int offset = skb->data - skb_mac_header(skb);
4496 		int err;
4497 
4498 		/* __vlan_insert_tag expect skb->data pointing to mac header.
4499 		 * So change skb->data before calling it and change back to
4500 		 * original position later
4501 		 */
4502 		__skb_push(skb, offset);
4503 		err = __vlan_insert_tag(skb, skb->vlan_proto,
4504 					skb_vlan_tag_get(skb));
4505 		if (err)
4506 			return err;
4507 		skb->protocol = skb->vlan_proto;
4508 		skb->mac_len += VLAN_HLEN;
4509 		__skb_pull(skb, offset);
4510 
4511 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4512 	}
4513 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4514 	return 0;
4515 }
4516 EXPORT_SYMBOL(skb_vlan_push);
4517 
4518 /**
4519  * alloc_skb_with_frags - allocate skb with page frags
4520  *
4521  * @header_len: size of linear part
4522  * @data_len: needed length in frags
4523  * @max_page_order: max page order desired.
4524  * @errcode: pointer to error code if any
4525  * @gfp_mask: allocation mask
4526  *
4527  * This can be used to allocate a paged skb, given a maximal order for frags.
4528  */
4529 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4530 				     unsigned long data_len,
4531 				     int max_page_order,
4532 				     int *errcode,
4533 				     gfp_t gfp_mask)
4534 {
4535 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4536 	unsigned long chunk;
4537 	struct sk_buff *skb;
4538 	struct page *page;
4539 	gfp_t gfp_head;
4540 	int i;
4541 
4542 	*errcode = -EMSGSIZE;
4543 	/* Note this test could be relaxed, if we succeed to allocate
4544 	 * high order pages...
4545 	 */
4546 	if (npages > MAX_SKB_FRAGS)
4547 		return NULL;
4548 
4549 	gfp_head = gfp_mask;
4550 	if (gfp_head & __GFP_DIRECT_RECLAIM)
4551 		gfp_head |= __GFP_REPEAT;
4552 
4553 	*errcode = -ENOBUFS;
4554 	skb = alloc_skb(header_len, gfp_head);
4555 	if (!skb)
4556 		return NULL;
4557 
4558 	skb->truesize += npages << PAGE_SHIFT;
4559 
4560 	for (i = 0; npages > 0; i++) {
4561 		int order = max_page_order;
4562 
4563 		while (order) {
4564 			if (npages >= 1 << order) {
4565 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4566 						   __GFP_COMP |
4567 						   __GFP_NOWARN |
4568 						   __GFP_NORETRY,
4569 						   order);
4570 				if (page)
4571 					goto fill_page;
4572 				/* Do not retry other high order allocations */
4573 				order = 1;
4574 				max_page_order = 0;
4575 			}
4576 			order--;
4577 		}
4578 		page = alloc_page(gfp_mask);
4579 		if (!page)
4580 			goto failure;
4581 fill_page:
4582 		chunk = min_t(unsigned long, data_len,
4583 			      PAGE_SIZE << order);
4584 		skb_fill_page_desc(skb, i, page, 0, chunk);
4585 		data_len -= chunk;
4586 		npages -= 1 << order;
4587 	}
4588 	return skb;
4589 
4590 failure:
4591 	kfree_skb(skb);
4592 	return NULL;
4593 }
4594 EXPORT_SYMBOL(alloc_skb_with_frags);
4595