1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/tcp.h> 50 #include <linux/udp.h> 51 #include <linux/sctp.h> 52 #include <linux/netdevice.h> 53 #ifdef CONFIG_NET_CLS_ACT 54 #include <net/pkt_sched.h> 55 #endif 56 #include <linux/string.h> 57 #include <linux/skbuff.h> 58 #include <linux/splice.h> 59 #include <linux/cache.h> 60 #include <linux/rtnetlink.h> 61 #include <linux/init.h> 62 #include <linux/scatterlist.h> 63 #include <linux/errqueue.h> 64 #include <linux/prefetch.h> 65 #include <linux/if_vlan.h> 66 67 #include <net/protocol.h> 68 #include <net/dst.h> 69 #include <net/sock.h> 70 #include <net/checksum.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 74 #include <linux/uaccess.h> 75 #include <trace/events/skb.h> 76 #include <linux/highmem.h> 77 #include <linux/capability.h> 78 #include <linux/user_namespace.h> 79 80 struct kmem_cache *skbuff_head_cache __ro_after_init; 81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 83 EXPORT_SYMBOL(sysctl_max_skb_frags); 84 85 /** 86 * skb_panic - private function for out-of-line support 87 * @skb: buffer 88 * @sz: size 89 * @addr: address 90 * @msg: skb_over_panic or skb_under_panic 91 * 92 * Out-of-line support for skb_put() and skb_push(). 93 * Called via the wrapper skb_over_panic() or skb_under_panic(). 94 * Keep out of line to prevent kernel bloat. 95 * __builtin_return_address is not used because it is not always reliable. 96 */ 97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 98 const char msg[]) 99 { 100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 101 msg, addr, skb->len, sz, skb->head, skb->data, 102 (unsigned long)skb->tail, (unsigned long)skb->end, 103 skb->dev ? skb->dev->name : "<NULL>"); 104 BUG(); 105 } 106 107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 108 { 109 skb_panic(skb, sz, addr, __func__); 110 } 111 112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 113 { 114 skb_panic(skb, sz, addr, __func__); 115 } 116 117 /* 118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 119 * the caller if emergency pfmemalloc reserves are being used. If it is and 120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 121 * may be used. Otherwise, the packet data may be discarded until enough 122 * memory is free 123 */ 124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 126 127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 128 unsigned long ip, bool *pfmemalloc) 129 { 130 void *obj; 131 bool ret_pfmemalloc = false; 132 133 /* 134 * Try a regular allocation, when that fails and we're not entitled 135 * to the reserves, fail. 136 */ 137 obj = kmalloc_node_track_caller(size, 138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 139 node); 140 if (obj || !(gfp_pfmemalloc_allowed(flags))) 141 goto out; 142 143 /* Try again but now we are using pfmemalloc reserves */ 144 ret_pfmemalloc = true; 145 obj = kmalloc_node_track_caller(size, flags, node); 146 147 out: 148 if (pfmemalloc) 149 *pfmemalloc = ret_pfmemalloc; 150 151 return obj; 152 } 153 154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 155 * 'private' fields and also do memory statistics to find all the 156 * [BEEP] leaks. 157 * 158 */ 159 160 /** 161 * __alloc_skb - allocate a network buffer 162 * @size: size to allocate 163 * @gfp_mask: allocation mask 164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 165 * instead of head cache and allocate a cloned (child) skb. 166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 167 * allocations in case the data is required for writeback 168 * @node: numa node to allocate memory on 169 * 170 * Allocate a new &sk_buff. The returned buffer has no headroom and a 171 * tail room of at least size bytes. The object has a reference count 172 * of one. The return is the buffer. On a failure the return is %NULL. 173 * 174 * Buffers may only be allocated from interrupts using a @gfp_mask of 175 * %GFP_ATOMIC. 176 */ 177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 178 int flags, int node) 179 { 180 struct kmem_cache *cache; 181 struct skb_shared_info *shinfo; 182 struct sk_buff *skb; 183 u8 *data; 184 bool pfmemalloc; 185 186 cache = (flags & SKB_ALLOC_FCLONE) 187 ? skbuff_fclone_cache : skbuff_head_cache; 188 189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 190 gfp_mask |= __GFP_MEMALLOC; 191 192 /* Get the HEAD */ 193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 194 if (!skb) 195 goto out; 196 prefetchw(skb); 197 198 /* We do our best to align skb_shared_info on a separate cache 199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 200 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 201 * Both skb->head and skb_shared_info are cache line aligned. 202 */ 203 size = SKB_DATA_ALIGN(size); 204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 206 if (!data) 207 goto nodata; 208 /* kmalloc(size) might give us more room than requested. 209 * Put skb_shared_info exactly at the end of allocated zone, 210 * to allow max possible filling before reallocation. 211 */ 212 size = SKB_WITH_OVERHEAD(ksize(data)); 213 prefetchw(data + size); 214 215 /* 216 * Only clear those fields we need to clear, not those that we will 217 * actually initialise below. Hence, don't put any more fields after 218 * the tail pointer in struct sk_buff! 219 */ 220 memset(skb, 0, offsetof(struct sk_buff, tail)); 221 /* Account for allocated memory : skb + skb->head */ 222 skb->truesize = SKB_TRUESIZE(size); 223 skb->pfmemalloc = pfmemalloc; 224 refcount_set(&skb->users, 1); 225 skb->head = data; 226 skb->data = data; 227 skb_reset_tail_pointer(skb); 228 skb->end = skb->tail + size; 229 skb->mac_header = (typeof(skb->mac_header))~0U; 230 skb->transport_header = (typeof(skb->transport_header))~0U; 231 232 /* make sure we initialize shinfo sequentially */ 233 shinfo = skb_shinfo(skb); 234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 235 atomic_set(&shinfo->dataref, 1); 236 237 if (flags & SKB_ALLOC_FCLONE) { 238 struct sk_buff_fclones *fclones; 239 240 fclones = container_of(skb, struct sk_buff_fclones, skb1); 241 242 skb->fclone = SKB_FCLONE_ORIG; 243 refcount_set(&fclones->fclone_ref, 1); 244 245 fclones->skb2.fclone = SKB_FCLONE_CLONE; 246 } 247 out: 248 return skb; 249 nodata: 250 kmem_cache_free(cache, skb); 251 skb = NULL; 252 goto out; 253 } 254 EXPORT_SYMBOL(__alloc_skb); 255 256 /** 257 * __build_skb - build a network buffer 258 * @data: data buffer provided by caller 259 * @frag_size: size of data, or 0 if head was kmalloced 260 * 261 * Allocate a new &sk_buff. Caller provides space holding head and 262 * skb_shared_info. @data must have been allocated by kmalloc() only if 263 * @frag_size is 0, otherwise data should come from the page allocator 264 * or vmalloc() 265 * The return is the new skb buffer. 266 * On a failure the return is %NULL, and @data is not freed. 267 * Notes : 268 * Before IO, driver allocates only data buffer where NIC put incoming frame 269 * Driver should add room at head (NET_SKB_PAD) and 270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 272 * before giving packet to stack. 273 * RX rings only contains data buffers, not full skbs. 274 */ 275 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 276 { 277 struct skb_shared_info *shinfo; 278 struct sk_buff *skb; 279 unsigned int size = frag_size ? : ksize(data); 280 281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 282 if (!skb) 283 return NULL; 284 285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 286 287 memset(skb, 0, offsetof(struct sk_buff, tail)); 288 skb->truesize = SKB_TRUESIZE(size); 289 refcount_set(&skb->users, 1); 290 skb->head = data; 291 skb->data = data; 292 skb_reset_tail_pointer(skb); 293 skb->end = skb->tail + size; 294 skb->mac_header = (typeof(skb->mac_header))~0U; 295 skb->transport_header = (typeof(skb->transport_header))~0U; 296 297 /* make sure we initialize shinfo sequentially */ 298 shinfo = skb_shinfo(skb); 299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 300 atomic_set(&shinfo->dataref, 1); 301 302 return skb; 303 } 304 305 /* build_skb() is wrapper over __build_skb(), that specifically 306 * takes care of skb->head and skb->pfmemalloc 307 * This means that if @frag_size is not zero, then @data must be backed 308 * by a page fragment, not kmalloc() or vmalloc() 309 */ 310 struct sk_buff *build_skb(void *data, unsigned int frag_size) 311 { 312 struct sk_buff *skb = __build_skb(data, frag_size); 313 314 if (skb && frag_size) { 315 skb->head_frag = 1; 316 if (page_is_pfmemalloc(virt_to_head_page(data))) 317 skb->pfmemalloc = 1; 318 } 319 return skb; 320 } 321 EXPORT_SYMBOL(build_skb); 322 323 #define NAPI_SKB_CACHE_SIZE 64 324 325 struct napi_alloc_cache { 326 struct page_frag_cache page; 327 unsigned int skb_count; 328 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 329 }; 330 331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 333 334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 335 { 336 struct page_frag_cache *nc; 337 unsigned long flags; 338 void *data; 339 340 local_irq_save(flags); 341 nc = this_cpu_ptr(&netdev_alloc_cache); 342 data = page_frag_alloc(nc, fragsz, gfp_mask); 343 local_irq_restore(flags); 344 return data; 345 } 346 347 /** 348 * netdev_alloc_frag - allocate a page fragment 349 * @fragsz: fragment size 350 * 351 * Allocates a frag from a page for receive buffer. 352 * Uses GFP_ATOMIC allocations. 353 */ 354 void *netdev_alloc_frag(unsigned int fragsz) 355 { 356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC); 357 } 358 EXPORT_SYMBOL(netdev_alloc_frag); 359 360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 361 { 362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 363 364 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 365 } 366 367 void *napi_alloc_frag(unsigned int fragsz) 368 { 369 return __napi_alloc_frag(fragsz, GFP_ATOMIC); 370 } 371 EXPORT_SYMBOL(napi_alloc_frag); 372 373 /** 374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 375 * @dev: network device to receive on 376 * @len: length to allocate 377 * @gfp_mask: get_free_pages mask, passed to alloc_skb 378 * 379 * Allocate a new &sk_buff and assign it a usage count of one. The 380 * buffer has NET_SKB_PAD headroom built in. Users should allocate 381 * the headroom they think they need without accounting for the 382 * built in space. The built in space is used for optimisations. 383 * 384 * %NULL is returned if there is no free memory. 385 */ 386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 387 gfp_t gfp_mask) 388 { 389 struct page_frag_cache *nc; 390 unsigned long flags; 391 struct sk_buff *skb; 392 bool pfmemalloc; 393 void *data; 394 395 len += NET_SKB_PAD; 396 397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 400 if (!skb) 401 goto skb_fail; 402 goto skb_success; 403 } 404 405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 406 len = SKB_DATA_ALIGN(len); 407 408 if (sk_memalloc_socks()) 409 gfp_mask |= __GFP_MEMALLOC; 410 411 local_irq_save(flags); 412 413 nc = this_cpu_ptr(&netdev_alloc_cache); 414 data = page_frag_alloc(nc, len, gfp_mask); 415 pfmemalloc = nc->pfmemalloc; 416 417 local_irq_restore(flags); 418 419 if (unlikely(!data)) 420 return NULL; 421 422 skb = __build_skb(data, len); 423 if (unlikely(!skb)) { 424 skb_free_frag(data); 425 return NULL; 426 } 427 428 /* use OR instead of assignment to avoid clearing of bits in mask */ 429 if (pfmemalloc) 430 skb->pfmemalloc = 1; 431 skb->head_frag = 1; 432 433 skb_success: 434 skb_reserve(skb, NET_SKB_PAD); 435 skb->dev = dev; 436 437 skb_fail: 438 return skb; 439 } 440 EXPORT_SYMBOL(__netdev_alloc_skb); 441 442 /** 443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 444 * @napi: napi instance this buffer was allocated for 445 * @len: length to allocate 446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 447 * 448 * Allocate a new sk_buff for use in NAPI receive. This buffer will 449 * attempt to allocate the head from a special reserved region used 450 * only for NAPI Rx allocation. By doing this we can save several 451 * CPU cycles by avoiding having to disable and re-enable IRQs. 452 * 453 * %NULL is returned if there is no free memory. 454 */ 455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 456 gfp_t gfp_mask) 457 { 458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 459 struct sk_buff *skb; 460 void *data; 461 462 len += NET_SKB_PAD + NET_IP_ALIGN; 463 464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 467 if (!skb) 468 goto skb_fail; 469 goto skb_success; 470 } 471 472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 473 len = SKB_DATA_ALIGN(len); 474 475 if (sk_memalloc_socks()) 476 gfp_mask |= __GFP_MEMALLOC; 477 478 data = page_frag_alloc(&nc->page, len, gfp_mask); 479 if (unlikely(!data)) 480 return NULL; 481 482 skb = __build_skb(data, len); 483 if (unlikely(!skb)) { 484 skb_free_frag(data); 485 return NULL; 486 } 487 488 /* use OR instead of assignment to avoid clearing of bits in mask */ 489 if (nc->page.pfmemalloc) 490 skb->pfmemalloc = 1; 491 skb->head_frag = 1; 492 493 skb_success: 494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 495 skb->dev = napi->dev; 496 497 skb_fail: 498 return skb; 499 } 500 EXPORT_SYMBOL(__napi_alloc_skb); 501 502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 503 int size, unsigned int truesize) 504 { 505 skb_fill_page_desc(skb, i, page, off, size); 506 skb->len += size; 507 skb->data_len += size; 508 skb->truesize += truesize; 509 } 510 EXPORT_SYMBOL(skb_add_rx_frag); 511 512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 513 unsigned int truesize) 514 { 515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 516 517 skb_frag_size_add(frag, size); 518 skb->len += size; 519 skb->data_len += size; 520 skb->truesize += truesize; 521 } 522 EXPORT_SYMBOL(skb_coalesce_rx_frag); 523 524 static void skb_drop_list(struct sk_buff **listp) 525 { 526 kfree_skb_list(*listp); 527 *listp = NULL; 528 } 529 530 static inline void skb_drop_fraglist(struct sk_buff *skb) 531 { 532 skb_drop_list(&skb_shinfo(skb)->frag_list); 533 } 534 535 static void skb_clone_fraglist(struct sk_buff *skb) 536 { 537 struct sk_buff *list; 538 539 skb_walk_frags(skb, list) 540 skb_get(list); 541 } 542 543 static void skb_free_head(struct sk_buff *skb) 544 { 545 unsigned char *head = skb->head; 546 547 if (skb->head_frag) 548 skb_free_frag(head); 549 else 550 kfree(head); 551 } 552 553 static void skb_release_data(struct sk_buff *skb) 554 { 555 struct skb_shared_info *shinfo = skb_shinfo(skb); 556 int i; 557 558 if (skb->cloned && 559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 560 &shinfo->dataref)) 561 return; 562 563 for (i = 0; i < shinfo->nr_frags; i++) 564 __skb_frag_unref(&shinfo->frags[i]); 565 566 if (shinfo->frag_list) 567 kfree_skb_list(shinfo->frag_list); 568 569 skb_zcopy_clear(skb, true); 570 skb_free_head(skb); 571 } 572 573 /* 574 * Free an skbuff by memory without cleaning the state. 575 */ 576 static void kfree_skbmem(struct sk_buff *skb) 577 { 578 struct sk_buff_fclones *fclones; 579 580 switch (skb->fclone) { 581 case SKB_FCLONE_UNAVAILABLE: 582 kmem_cache_free(skbuff_head_cache, skb); 583 return; 584 585 case SKB_FCLONE_ORIG: 586 fclones = container_of(skb, struct sk_buff_fclones, skb1); 587 588 /* We usually free the clone (TX completion) before original skb 589 * This test would have no chance to be true for the clone, 590 * while here, branch prediction will be good. 591 */ 592 if (refcount_read(&fclones->fclone_ref) == 1) 593 goto fastpath; 594 break; 595 596 default: /* SKB_FCLONE_CLONE */ 597 fclones = container_of(skb, struct sk_buff_fclones, skb2); 598 break; 599 } 600 if (!refcount_dec_and_test(&fclones->fclone_ref)) 601 return; 602 fastpath: 603 kmem_cache_free(skbuff_fclone_cache, fclones); 604 } 605 606 void skb_release_head_state(struct sk_buff *skb) 607 { 608 skb_dst_drop(skb); 609 secpath_reset(skb); 610 if (skb->destructor) { 611 WARN_ON(in_irq()); 612 skb->destructor(skb); 613 } 614 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 615 nf_conntrack_put(skb_nfct(skb)); 616 #endif 617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 618 nf_bridge_put(skb->nf_bridge); 619 #endif 620 } 621 622 /* Free everything but the sk_buff shell. */ 623 static void skb_release_all(struct sk_buff *skb) 624 { 625 skb_release_head_state(skb); 626 if (likely(skb->head)) 627 skb_release_data(skb); 628 } 629 630 /** 631 * __kfree_skb - private function 632 * @skb: buffer 633 * 634 * Free an sk_buff. Release anything attached to the buffer. 635 * Clean the state. This is an internal helper function. Users should 636 * always call kfree_skb 637 */ 638 639 void __kfree_skb(struct sk_buff *skb) 640 { 641 skb_release_all(skb); 642 kfree_skbmem(skb); 643 } 644 EXPORT_SYMBOL(__kfree_skb); 645 646 /** 647 * kfree_skb - free an sk_buff 648 * @skb: buffer to free 649 * 650 * Drop a reference to the buffer and free it if the usage count has 651 * hit zero. 652 */ 653 void kfree_skb(struct sk_buff *skb) 654 { 655 if (!skb_unref(skb)) 656 return; 657 658 trace_kfree_skb(skb, __builtin_return_address(0)); 659 __kfree_skb(skb); 660 } 661 EXPORT_SYMBOL(kfree_skb); 662 663 void kfree_skb_list(struct sk_buff *segs) 664 { 665 while (segs) { 666 struct sk_buff *next = segs->next; 667 668 kfree_skb(segs); 669 segs = next; 670 } 671 } 672 EXPORT_SYMBOL(kfree_skb_list); 673 674 /** 675 * skb_tx_error - report an sk_buff xmit error 676 * @skb: buffer that triggered an error 677 * 678 * Report xmit error if a device callback is tracking this skb. 679 * skb must be freed afterwards. 680 */ 681 void skb_tx_error(struct sk_buff *skb) 682 { 683 skb_zcopy_clear(skb, true); 684 } 685 EXPORT_SYMBOL(skb_tx_error); 686 687 /** 688 * consume_skb - free an skbuff 689 * @skb: buffer to free 690 * 691 * Drop a ref to the buffer and free it if the usage count has hit zero 692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 693 * is being dropped after a failure and notes that 694 */ 695 void consume_skb(struct sk_buff *skb) 696 { 697 if (!skb_unref(skb)) 698 return; 699 700 trace_consume_skb(skb); 701 __kfree_skb(skb); 702 } 703 EXPORT_SYMBOL(consume_skb); 704 705 /** 706 * consume_stateless_skb - free an skbuff, assuming it is stateless 707 * @skb: buffer to free 708 * 709 * Alike consume_skb(), but this variant assumes that this is the last 710 * skb reference and all the head states have been already dropped 711 */ 712 void __consume_stateless_skb(struct sk_buff *skb) 713 { 714 trace_consume_skb(skb); 715 skb_release_data(skb); 716 kfree_skbmem(skb); 717 } 718 719 void __kfree_skb_flush(void) 720 { 721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 722 723 /* flush skb_cache if containing objects */ 724 if (nc->skb_count) { 725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 726 nc->skb_cache); 727 nc->skb_count = 0; 728 } 729 } 730 731 static inline void _kfree_skb_defer(struct sk_buff *skb) 732 { 733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 734 735 /* drop skb->head and call any destructors for packet */ 736 skb_release_all(skb); 737 738 /* record skb to CPU local list */ 739 nc->skb_cache[nc->skb_count++] = skb; 740 741 #ifdef CONFIG_SLUB 742 /* SLUB writes into objects when freeing */ 743 prefetchw(skb); 744 #endif 745 746 /* flush skb_cache if it is filled */ 747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 749 nc->skb_cache); 750 nc->skb_count = 0; 751 } 752 } 753 void __kfree_skb_defer(struct sk_buff *skb) 754 { 755 _kfree_skb_defer(skb); 756 } 757 758 void napi_consume_skb(struct sk_buff *skb, int budget) 759 { 760 if (unlikely(!skb)) 761 return; 762 763 /* Zero budget indicate non-NAPI context called us, like netpoll */ 764 if (unlikely(!budget)) { 765 dev_consume_skb_any(skb); 766 return; 767 } 768 769 if (!skb_unref(skb)) 770 return; 771 772 /* if reaching here SKB is ready to free */ 773 trace_consume_skb(skb); 774 775 /* if SKB is a clone, don't handle this case */ 776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 777 __kfree_skb(skb); 778 return; 779 } 780 781 _kfree_skb_defer(skb); 782 } 783 EXPORT_SYMBOL(napi_consume_skb); 784 785 /* Make sure a field is enclosed inside headers_start/headers_end section */ 786 #define CHECK_SKB_FIELD(field) \ 787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 788 offsetof(struct sk_buff, headers_start)); \ 789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 790 offsetof(struct sk_buff, headers_end)); \ 791 792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 793 { 794 new->tstamp = old->tstamp; 795 /* We do not copy old->sk */ 796 new->dev = old->dev; 797 memcpy(new->cb, old->cb, sizeof(old->cb)); 798 skb_dst_copy(new, old); 799 #ifdef CONFIG_XFRM 800 new->sp = secpath_get(old->sp); 801 #endif 802 __nf_copy(new, old, false); 803 804 /* Note : this field could be in headers_start/headers_end section 805 * It is not yet because we do not want to have a 16 bit hole 806 */ 807 new->queue_mapping = old->queue_mapping; 808 809 memcpy(&new->headers_start, &old->headers_start, 810 offsetof(struct sk_buff, headers_end) - 811 offsetof(struct sk_buff, headers_start)); 812 CHECK_SKB_FIELD(protocol); 813 CHECK_SKB_FIELD(csum); 814 CHECK_SKB_FIELD(hash); 815 CHECK_SKB_FIELD(priority); 816 CHECK_SKB_FIELD(skb_iif); 817 CHECK_SKB_FIELD(vlan_proto); 818 CHECK_SKB_FIELD(vlan_tci); 819 CHECK_SKB_FIELD(transport_header); 820 CHECK_SKB_FIELD(network_header); 821 CHECK_SKB_FIELD(mac_header); 822 CHECK_SKB_FIELD(inner_protocol); 823 CHECK_SKB_FIELD(inner_transport_header); 824 CHECK_SKB_FIELD(inner_network_header); 825 CHECK_SKB_FIELD(inner_mac_header); 826 CHECK_SKB_FIELD(mark); 827 #ifdef CONFIG_NETWORK_SECMARK 828 CHECK_SKB_FIELD(secmark); 829 #endif 830 #ifdef CONFIG_NET_RX_BUSY_POLL 831 CHECK_SKB_FIELD(napi_id); 832 #endif 833 #ifdef CONFIG_XPS 834 CHECK_SKB_FIELD(sender_cpu); 835 #endif 836 #ifdef CONFIG_NET_SCHED 837 CHECK_SKB_FIELD(tc_index); 838 #endif 839 840 } 841 842 /* 843 * You should not add any new code to this function. Add it to 844 * __copy_skb_header above instead. 845 */ 846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 847 { 848 #define C(x) n->x = skb->x 849 850 n->next = n->prev = NULL; 851 n->sk = NULL; 852 __copy_skb_header(n, skb); 853 854 C(len); 855 C(data_len); 856 C(mac_len); 857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 858 n->cloned = 1; 859 n->nohdr = 0; 860 n->peeked = 0; 861 C(pfmemalloc); 862 n->destructor = NULL; 863 C(tail); 864 C(end); 865 C(head); 866 C(head_frag); 867 C(data); 868 C(truesize); 869 refcount_set(&n->users, 1); 870 871 atomic_inc(&(skb_shinfo(skb)->dataref)); 872 skb->cloned = 1; 873 874 return n; 875 #undef C 876 } 877 878 /** 879 * skb_morph - morph one skb into another 880 * @dst: the skb to receive the contents 881 * @src: the skb to supply the contents 882 * 883 * This is identical to skb_clone except that the target skb is 884 * supplied by the user. 885 * 886 * The target skb is returned upon exit. 887 */ 888 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 889 { 890 skb_release_all(dst); 891 return __skb_clone(dst, src); 892 } 893 EXPORT_SYMBOL_GPL(skb_morph); 894 895 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 896 { 897 unsigned long max_pg, num_pg, new_pg, old_pg; 898 struct user_struct *user; 899 900 if (capable(CAP_IPC_LOCK) || !size) 901 return 0; 902 903 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 904 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 905 user = mmp->user ? : current_user(); 906 907 do { 908 old_pg = atomic_long_read(&user->locked_vm); 909 new_pg = old_pg + num_pg; 910 if (new_pg > max_pg) 911 return -ENOBUFS; 912 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 913 old_pg); 914 915 if (!mmp->user) { 916 mmp->user = get_uid(user); 917 mmp->num_pg = num_pg; 918 } else { 919 mmp->num_pg += num_pg; 920 } 921 922 return 0; 923 } 924 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 925 926 void mm_unaccount_pinned_pages(struct mmpin *mmp) 927 { 928 if (mmp->user) { 929 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 930 free_uid(mmp->user); 931 } 932 } 933 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 934 935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) 936 { 937 struct ubuf_info *uarg; 938 struct sk_buff *skb; 939 940 WARN_ON_ONCE(!in_task()); 941 942 skb = sock_omalloc(sk, 0, GFP_KERNEL); 943 if (!skb) 944 return NULL; 945 946 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 947 uarg = (void *)skb->cb; 948 uarg->mmp.user = NULL; 949 950 if (mm_account_pinned_pages(&uarg->mmp, size)) { 951 kfree_skb(skb); 952 return NULL; 953 } 954 955 uarg->callback = sock_zerocopy_callback; 956 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 957 uarg->len = 1; 958 uarg->bytelen = size; 959 uarg->zerocopy = 1; 960 refcount_set(&uarg->refcnt, 1); 961 sock_hold(sk); 962 963 return uarg; 964 } 965 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); 966 967 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 968 { 969 return container_of((void *)uarg, struct sk_buff, cb); 970 } 971 972 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 973 struct ubuf_info *uarg) 974 { 975 if (uarg) { 976 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 977 u32 bytelen, next; 978 979 /* realloc only when socket is locked (TCP, UDP cork), 980 * so uarg->len and sk_zckey access is serialized 981 */ 982 if (!sock_owned_by_user(sk)) { 983 WARN_ON_ONCE(1); 984 return NULL; 985 } 986 987 bytelen = uarg->bytelen + size; 988 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 989 /* TCP can create new skb to attach new uarg */ 990 if (sk->sk_type == SOCK_STREAM) 991 goto new_alloc; 992 return NULL; 993 } 994 995 next = (u32)atomic_read(&sk->sk_zckey); 996 if ((u32)(uarg->id + uarg->len) == next) { 997 if (mm_account_pinned_pages(&uarg->mmp, size)) 998 return NULL; 999 uarg->len++; 1000 uarg->bytelen = bytelen; 1001 atomic_set(&sk->sk_zckey, ++next); 1002 sock_zerocopy_get(uarg); 1003 return uarg; 1004 } 1005 } 1006 1007 new_alloc: 1008 return sock_zerocopy_alloc(sk, size); 1009 } 1010 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); 1011 1012 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1013 { 1014 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1015 u32 old_lo, old_hi; 1016 u64 sum_len; 1017 1018 old_lo = serr->ee.ee_info; 1019 old_hi = serr->ee.ee_data; 1020 sum_len = old_hi - old_lo + 1ULL + len; 1021 1022 if (sum_len >= (1ULL << 32)) 1023 return false; 1024 1025 if (lo != old_hi + 1) 1026 return false; 1027 1028 serr->ee.ee_data += len; 1029 return true; 1030 } 1031 1032 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) 1033 { 1034 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1035 struct sock_exterr_skb *serr; 1036 struct sock *sk = skb->sk; 1037 struct sk_buff_head *q; 1038 unsigned long flags; 1039 u32 lo, hi; 1040 u16 len; 1041 1042 mm_unaccount_pinned_pages(&uarg->mmp); 1043 1044 /* if !len, there was only 1 call, and it was aborted 1045 * so do not queue a completion notification 1046 */ 1047 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1048 goto release; 1049 1050 len = uarg->len; 1051 lo = uarg->id; 1052 hi = uarg->id + len - 1; 1053 1054 serr = SKB_EXT_ERR(skb); 1055 memset(serr, 0, sizeof(*serr)); 1056 serr->ee.ee_errno = 0; 1057 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1058 serr->ee.ee_data = hi; 1059 serr->ee.ee_info = lo; 1060 if (!success) 1061 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1062 1063 q = &sk->sk_error_queue; 1064 spin_lock_irqsave(&q->lock, flags); 1065 tail = skb_peek_tail(q); 1066 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1067 !skb_zerocopy_notify_extend(tail, lo, len)) { 1068 __skb_queue_tail(q, skb); 1069 skb = NULL; 1070 } 1071 spin_unlock_irqrestore(&q->lock, flags); 1072 1073 sk->sk_error_report(sk); 1074 1075 release: 1076 consume_skb(skb); 1077 sock_put(sk); 1078 } 1079 EXPORT_SYMBOL_GPL(sock_zerocopy_callback); 1080 1081 void sock_zerocopy_put(struct ubuf_info *uarg) 1082 { 1083 if (uarg && refcount_dec_and_test(&uarg->refcnt)) { 1084 if (uarg->callback) 1085 uarg->callback(uarg, uarg->zerocopy); 1086 else 1087 consume_skb(skb_from_uarg(uarg)); 1088 } 1089 } 1090 EXPORT_SYMBOL_GPL(sock_zerocopy_put); 1091 1092 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1093 { 1094 if (uarg) { 1095 struct sock *sk = skb_from_uarg(uarg)->sk; 1096 1097 atomic_dec(&sk->sk_zckey); 1098 uarg->len--; 1099 1100 if (have_uref) 1101 sock_zerocopy_put(uarg); 1102 } 1103 } 1104 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); 1105 1106 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1107 struct iov_iter *from, size_t length); 1108 1109 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) 1110 { 1111 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1112 } 1113 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); 1114 1115 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1116 struct msghdr *msg, int len, 1117 struct ubuf_info *uarg) 1118 { 1119 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1120 struct iov_iter orig_iter = msg->msg_iter; 1121 int err, orig_len = skb->len; 1122 1123 /* An skb can only point to one uarg. This edge case happens when 1124 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1125 */ 1126 if (orig_uarg && uarg != orig_uarg) 1127 return -EEXIST; 1128 1129 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1130 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1131 struct sock *save_sk = skb->sk; 1132 1133 /* Streams do not free skb on error. Reset to prev state. */ 1134 msg->msg_iter = orig_iter; 1135 skb->sk = sk; 1136 ___pskb_trim(skb, orig_len); 1137 skb->sk = save_sk; 1138 return err; 1139 } 1140 1141 skb_zcopy_set(skb, uarg, NULL); 1142 return skb->len - orig_len; 1143 } 1144 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1145 1146 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1147 gfp_t gfp_mask) 1148 { 1149 if (skb_zcopy(orig)) { 1150 if (skb_zcopy(nskb)) { 1151 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1152 if (!gfp_mask) { 1153 WARN_ON_ONCE(1); 1154 return -ENOMEM; 1155 } 1156 if (skb_uarg(nskb) == skb_uarg(orig)) 1157 return 0; 1158 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1159 return -EIO; 1160 } 1161 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1162 } 1163 return 0; 1164 } 1165 1166 /** 1167 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1168 * @skb: the skb to modify 1169 * @gfp_mask: allocation priority 1170 * 1171 * This must be called on SKBTX_DEV_ZEROCOPY skb. 1172 * It will copy all frags into kernel and drop the reference 1173 * to userspace pages. 1174 * 1175 * If this function is called from an interrupt gfp_mask() must be 1176 * %GFP_ATOMIC. 1177 * 1178 * Returns 0 on success or a negative error code on failure 1179 * to allocate kernel memory to copy to. 1180 */ 1181 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1182 { 1183 int num_frags = skb_shinfo(skb)->nr_frags; 1184 struct page *page, *head = NULL; 1185 int i, new_frags; 1186 u32 d_off; 1187 1188 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1189 return -EINVAL; 1190 1191 if (!num_frags) 1192 goto release; 1193 1194 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1195 for (i = 0; i < new_frags; i++) { 1196 page = alloc_page(gfp_mask); 1197 if (!page) { 1198 while (head) { 1199 struct page *next = (struct page *)page_private(head); 1200 put_page(head); 1201 head = next; 1202 } 1203 return -ENOMEM; 1204 } 1205 set_page_private(page, (unsigned long)head); 1206 head = page; 1207 } 1208 1209 page = head; 1210 d_off = 0; 1211 for (i = 0; i < num_frags; i++) { 1212 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1213 u32 p_off, p_len, copied; 1214 struct page *p; 1215 u8 *vaddr; 1216 1217 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f), 1218 p, p_off, p_len, copied) { 1219 u32 copy, done = 0; 1220 vaddr = kmap_atomic(p); 1221 1222 while (done < p_len) { 1223 if (d_off == PAGE_SIZE) { 1224 d_off = 0; 1225 page = (struct page *)page_private(page); 1226 } 1227 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1228 memcpy(page_address(page) + d_off, 1229 vaddr + p_off + done, copy); 1230 done += copy; 1231 d_off += copy; 1232 } 1233 kunmap_atomic(vaddr); 1234 } 1235 } 1236 1237 /* skb frags release userspace buffers */ 1238 for (i = 0; i < num_frags; i++) 1239 skb_frag_unref(skb, i); 1240 1241 /* skb frags point to kernel buffers */ 1242 for (i = 0; i < new_frags - 1; i++) { 1243 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1244 head = (struct page *)page_private(head); 1245 } 1246 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1247 skb_shinfo(skb)->nr_frags = new_frags; 1248 1249 release: 1250 skb_zcopy_clear(skb, false); 1251 return 0; 1252 } 1253 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1254 1255 /** 1256 * skb_clone - duplicate an sk_buff 1257 * @skb: buffer to clone 1258 * @gfp_mask: allocation priority 1259 * 1260 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1261 * copies share the same packet data but not structure. The new 1262 * buffer has a reference count of 1. If the allocation fails the 1263 * function returns %NULL otherwise the new buffer is returned. 1264 * 1265 * If this function is called from an interrupt gfp_mask() must be 1266 * %GFP_ATOMIC. 1267 */ 1268 1269 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1270 { 1271 struct sk_buff_fclones *fclones = container_of(skb, 1272 struct sk_buff_fclones, 1273 skb1); 1274 struct sk_buff *n; 1275 1276 if (skb_orphan_frags(skb, gfp_mask)) 1277 return NULL; 1278 1279 if (skb->fclone == SKB_FCLONE_ORIG && 1280 refcount_read(&fclones->fclone_ref) == 1) { 1281 n = &fclones->skb2; 1282 refcount_set(&fclones->fclone_ref, 2); 1283 } else { 1284 if (skb_pfmemalloc(skb)) 1285 gfp_mask |= __GFP_MEMALLOC; 1286 1287 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1288 if (!n) 1289 return NULL; 1290 1291 n->fclone = SKB_FCLONE_UNAVAILABLE; 1292 } 1293 1294 return __skb_clone(n, skb); 1295 } 1296 EXPORT_SYMBOL(skb_clone); 1297 1298 void skb_headers_offset_update(struct sk_buff *skb, int off) 1299 { 1300 /* Only adjust this if it actually is csum_start rather than csum */ 1301 if (skb->ip_summed == CHECKSUM_PARTIAL) 1302 skb->csum_start += off; 1303 /* {transport,network,mac}_header and tail are relative to skb->head */ 1304 skb->transport_header += off; 1305 skb->network_header += off; 1306 if (skb_mac_header_was_set(skb)) 1307 skb->mac_header += off; 1308 skb->inner_transport_header += off; 1309 skb->inner_network_header += off; 1310 skb->inner_mac_header += off; 1311 } 1312 EXPORT_SYMBOL(skb_headers_offset_update); 1313 1314 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1315 { 1316 __copy_skb_header(new, old); 1317 1318 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1319 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1320 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1321 } 1322 EXPORT_SYMBOL(skb_copy_header); 1323 1324 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1325 { 1326 if (skb_pfmemalloc(skb)) 1327 return SKB_ALLOC_RX; 1328 return 0; 1329 } 1330 1331 /** 1332 * skb_copy - create private copy of an sk_buff 1333 * @skb: buffer to copy 1334 * @gfp_mask: allocation priority 1335 * 1336 * Make a copy of both an &sk_buff and its data. This is used when the 1337 * caller wishes to modify the data and needs a private copy of the 1338 * data to alter. Returns %NULL on failure or the pointer to the buffer 1339 * on success. The returned buffer has a reference count of 1. 1340 * 1341 * As by-product this function converts non-linear &sk_buff to linear 1342 * one, so that &sk_buff becomes completely private and caller is allowed 1343 * to modify all the data of returned buffer. This means that this 1344 * function is not recommended for use in circumstances when only 1345 * header is going to be modified. Use pskb_copy() instead. 1346 */ 1347 1348 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1349 { 1350 int headerlen = skb_headroom(skb); 1351 unsigned int size = skb_end_offset(skb) + skb->data_len; 1352 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1353 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1354 1355 if (!n) 1356 return NULL; 1357 1358 /* Set the data pointer */ 1359 skb_reserve(n, headerlen); 1360 /* Set the tail pointer and length */ 1361 skb_put(n, skb->len); 1362 1363 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1364 1365 skb_copy_header(n, skb); 1366 return n; 1367 } 1368 EXPORT_SYMBOL(skb_copy); 1369 1370 /** 1371 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1372 * @skb: buffer to copy 1373 * @headroom: headroom of new skb 1374 * @gfp_mask: allocation priority 1375 * @fclone: if true allocate the copy of the skb from the fclone 1376 * cache instead of the head cache; it is recommended to set this 1377 * to true for the cases where the copy will likely be cloned 1378 * 1379 * Make a copy of both an &sk_buff and part of its data, located 1380 * in header. Fragmented data remain shared. This is used when 1381 * the caller wishes to modify only header of &sk_buff and needs 1382 * private copy of the header to alter. Returns %NULL on failure 1383 * or the pointer to the buffer on success. 1384 * The returned buffer has a reference count of 1. 1385 */ 1386 1387 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1388 gfp_t gfp_mask, bool fclone) 1389 { 1390 unsigned int size = skb_headlen(skb) + headroom; 1391 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1392 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1393 1394 if (!n) 1395 goto out; 1396 1397 /* Set the data pointer */ 1398 skb_reserve(n, headroom); 1399 /* Set the tail pointer and length */ 1400 skb_put(n, skb_headlen(skb)); 1401 /* Copy the bytes */ 1402 skb_copy_from_linear_data(skb, n->data, n->len); 1403 1404 n->truesize += skb->data_len; 1405 n->data_len = skb->data_len; 1406 n->len = skb->len; 1407 1408 if (skb_shinfo(skb)->nr_frags) { 1409 int i; 1410 1411 if (skb_orphan_frags(skb, gfp_mask) || 1412 skb_zerocopy_clone(n, skb, gfp_mask)) { 1413 kfree_skb(n); 1414 n = NULL; 1415 goto out; 1416 } 1417 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1418 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1419 skb_frag_ref(skb, i); 1420 } 1421 skb_shinfo(n)->nr_frags = i; 1422 } 1423 1424 if (skb_has_frag_list(skb)) { 1425 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1426 skb_clone_fraglist(n); 1427 } 1428 1429 skb_copy_header(n, skb); 1430 out: 1431 return n; 1432 } 1433 EXPORT_SYMBOL(__pskb_copy_fclone); 1434 1435 /** 1436 * pskb_expand_head - reallocate header of &sk_buff 1437 * @skb: buffer to reallocate 1438 * @nhead: room to add at head 1439 * @ntail: room to add at tail 1440 * @gfp_mask: allocation priority 1441 * 1442 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1443 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1444 * reference count of 1. Returns zero in the case of success or error, 1445 * if expansion failed. In the last case, &sk_buff is not changed. 1446 * 1447 * All the pointers pointing into skb header may change and must be 1448 * reloaded after call to this function. 1449 */ 1450 1451 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1452 gfp_t gfp_mask) 1453 { 1454 int i, osize = skb_end_offset(skb); 1455 int size = osize + nhead + ntail; 1456 long off; 1457 u8 *data; 1458 1459 BUG_ON(nhead < 0); 1460 1461 BUG_ON(skb_shared(skb)); 1462 1463 size = SKB_DATA_ALIGN(size); 1464 1465 if (skb_pfmemalloc(skb)) 1466 gfp_mask |= __GFP_MEMALLOC; 1467 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1468 gfp_mask, NUMA_NO_NODE, NULL); 1469 if (!data) 1470 goto nodata; 1471 size = SKB_WITH_OVERHEAD(ksize(data)); 1472 1473 /* Copy only real data... and, alas, header. This should be 1474 * optimized for the cases when header is void. 1475 */ 1476 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1477 1478 memcpy((struct skb_shared_info *)(data + size), 1479 skb_shinfo(skb), 1480 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1481 1482 /* 1483 * if shinfo is shared we must drop the old head gracefully, but if it 1484 * is not we can just drop the old head and let the existing refcount 1485 * be since all we did is relocate the values 1486 */ 1487 if (skb_cloned(skb)) { 1488 if (skb_orphan_frags(skb, gfp_mask)) 1489 goto nofrags; 1490 if (skb_zcopy(skb)) 1491 refcount_inc(&skb_uarg(skb)->refcnt); 1492 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1493 skb_frag_ref(skb, i); 1494 1495 if (skb_has_frag_list(skb)) 1496 skb_clone_fraglist(skb); 1497 1498 skb_release_data(skb); 1499 } else { 1500 skb_free_head(skb); 1501 } 1502 off = (data + nhead) - skb->head; 1503 1504 skb->head = data; 1505 skb->head_frag = 0; 1506 skb->data += off; 1507 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1508 skb->end = size; 1509 off = nhead; 1510 #else 1511 skb->end = skb->head + size; 1512 #endif 1513 skb->tail += off; 1514 skb_headers_offset_update(skb, nhead); 1515 skb->cloned = 0; 1516 skb->hdr_len = 0; 1517 skb->nohdr = 0; 1518 atomic_set(&skb_shinfo(skb)->dataref, 1); 1519 1520 skb_metadata_clear(skb); 1521 1522 /* It is not generally safe to change skb->truesize. 1523 * For the moment, we really care of rx path, or 1524 * when skb is orphaned (not attached to a socket). 1525 */ 1526 if (!skb->sk || skb->destructor == sock_edemux) 1527 skb->truesize += size - osize; 1528 1529 return 0; 1530 1531 nofrags: 1532 kfree(data); 1533 nodata: 1534 return -ENOMEM; 1535 } 1536 EXPORT_SYMBOL(pskb_expand_head); 1537 1538 /* Make private copy of skb with writable head and some headroom */ 1539 1540 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1541 { 1542 struct sk_buff *skb2; 1543 int delta = headroom - skb_headroom(skb); 1544 1545 if (delta <= 0) 1546 skb2 = pskb_copy(skb, GFP_ATOMIC); 1547 else { 1548 skb2 = skb_clone(skb, GFP_ATOMIC); 1549 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1550 GFP_ATOMIC)) { 1551 kfree_skb(skb2); 1552 skb2 = NULL; 1553 } 1554 } 1555 return skb2; 1556 } 1557 EXPORT_SYMBOL(skb_realloc_headroom); 1558 1559 /** 1560 * skb_copy_expand - copy and expand sk_buff 1561 * @skb: buffer to copy 1562 * @newheadroom: new free bytes at head 1563 * @newtailroom: new free bytes at tail 1564 * @gfp_mask: allocation priority 1565 * 1566 * Make a copy of both an &sk_buff and its data and while doing so 1567 * allocate additional space. 1568 * 1569 * This is used when the caller wishes to modify the data and needs a 1570 * private copy of the data to alter as well as more space for new fields. 1571 * Returns %NULL on failure or the pointer to the buffer 1572 * on success. The returned buffer has a reference count of 1. 1573 * 1574 * You must pass %GFP_ATOMIC as the allocation priority if this function 1575 * is called from an interrupt. 1576 */ 1577 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1578 int newheadroom, int newtailroom, 1579 gfp_t gfp_mask) 1580 { 1581 /* 1582 * Allocate the copy buffer 1583 */ 1584 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1585 gfp_mask, skb_alloc_rx_flag(skb), 1586 NUMA_NO_NODE); 1587 int oldheadroom = skb_headroom(skb); 1588 int head_copy_len, head_copy_off; 1589 1590 if (!n) 1591 return NULL; 1592 1593 skb_reserve(n, newheadroom); 1594 1595 /* Set the tail pointer and length */ 1596 skb_put(n, skb->len); 1597 1598 head_copy_len = oldheadroom; 1599 head_copy_off = 0; 1600 if (newheadroom <= head_copy_len) 1601 head_copy_len = newheadroom; 1602 else 1603 head_copy_off = newheadroom - head_copy_len; 1604 1605 /* Copy the linear header and data. */ 1606 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1607 skb->len + head_copy_len)); 1608 1609 skb_copy_header(n, skb); 1610 1611 skb_headers_offset_update(n, newheadroom - oldheadroom); 1612 1613 return n; 1614 } 1615 EXPORT_SYMBOL(skb_copy_expand); 1616 1617 /** 1618 * __skb_pad - zero pad the tail of an skb 1619 * @skb: buffer to pad 1620 * @pad: space to pad 1621 * @free_on_error: free buffer on error 1622 * 1623 * Ensure that a buffer is followed by a padding area that is zero 1624 * filled. Used by network drivers which may DMA or transfer data 1625 * beyond the buffer end onto the wire. 1626 * 1627 * May return error in out of memory cases. The skb is freed on error 1628 * if @free_on_error is true. 1629 */ 1630 1631 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1632 { 1633 int err; 1634 int ntail; 1635 1636 /* If the skbuff is non linear tailroom is always zero.. */ 1637 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1638 memset(skb->data+skb->len, 0, pad); 1639 return 0; 1640 } 1641 1642 ntail = skb->data_len + pad - (skb->end - skb->tail); 1643 if (likely(skb_cloned(skb) || ntail > 0)) { 1644 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1645 if (unlikely(err)) 1646 goto free_skb; 1647 } 1648 1649 /* FIXME: The use of this function with non-linear skb's really needs 1650 * to be audited. 1651 */ 1652 err = skb_linearize(skb); 1653 if (unlikely(err)) 1654 goto free_skb; 1655 1656 memset(skb->data + skb->len, 0, pad); 1657 return 0; 1658 1659 free_skb: 1660 if (free_on_error) 1661 kfree_skb(skb); 1662 return err; 1663 } 1664 EXPORT_SYMBOL(__skb_pad); 1665 1666 /** 1667 * pskb_put - add data to the tail of a potentially fragmented buffer 1668 * @skb: start of the buffer to use 1669 * @tail: tail fragment of the buffer to use 1670 * @len: amount of data to add 1671 * 1672 * This function extends the used data area of the potentially 1673 * fragmented buffer. @tail must be the last fragment of @skb -- or 1674 * @skb itself. If this would exceed the total buffer size the kernel 1675 * will panic. A pointer to the first byte of the extra data is 1676 * returned. 1677 */ 1678 1679 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1680 { 1681 if (tail != skb) { 1682 skb->data_len += len; 1683 skb->len += len; 1684 } 1685 return skb_put(tail, len); 1686 } 1687 EXPORT_SYMBOL_GPL(pskb_put); 1688 1689 /** 1690 * skb_put - add data to a buffer 1691 * @skb: buffer to use 1692 * @len: amount of data to add 1693 * 1694 * This function extends the used data area of the buffer. If this would 1695 * exceed the total buffer size the kernel will panic. A pointer to the 1696 * first byte of the extra data is returned. 1697 */ 1698 void *skb_put(struct sk_buff *skb, unsigned int len) 1699 { 1700 void *tmp = skb_tail_pointer(skb); 1701 SKB_LINEAR_ASSERT(skb); 1702 skb->tail += len; 1703 skb->len += len; 1704 if (unlikely(skb->tail > skb->end)) 1705 skb_over_panic(skb, len, __builtin_return_address(0)); 1706 return tmp; 1707 } 1708 EXPORT_SYMBOL(skb_put); 1709 1710 /** 1711 * skb_push - add data to the start of a buffer 1712 * @skb: buffer to use 1713 * @len: amount of data to add 1714 * 1715 * This function extends the used data area of the buffer at the buffer 1716 * start. If this would exceed the total buffer headroom the kernel will 1717 * panic. A pointer to the first byte of the extra data is returned. 1718 */ 1719 void *skb_push(struct sk_buff *skb, unsigned int len) 1720 { 1721 skb->data -= len; 1722 skb->len += len; 1723 if (unlikely(skb->data < skb->head)) 1724 skb_under_panic(skb, len, __builtin_return_address(0)); 1725 return skb->data; 1726 } 1727 EXPORT_SYMBOL(skb_push); 1728 1729 /** 1730 * skb_pull - remove data from the start of a buffer 1731 * @skb: buffer to use 1732 * @len: amount of data to remove 1733 * 1734 * This function removes data from the start of a buffer, returning 1735 * the memory to the headroom. A pointer to the next data in the buffer 1736 * is returned. Once the data has been pulled future pushes will overwrite 1737 * the old data. 1738 */ 1739 void *skb_pull(struct sk_buff *skb, unsigned int len) 1740 { 1741 return skb_pull_inline(skb, len); 1742 } 1743 EXPORT_SYMBOL(skb_pull); 1744 1745 /** 1746 * skb_trim - remove end from a buffer 1747 * @skb: buffer to alter 1748 * @len: new length 1749 * 1750 * Cut the length of a buffer down by removing data from the tail. If 1751 * the buffer is already under the length specified it is not modified. 1752 * The skb must be linear. 1753 */ 1754 void skb_trim(struct sk_buff *skb, unsigned int len) 1755 { 1756 if (skb->len > len) 1757 __skb_trim(skb, len); 1758 } 1759 EXPORT_SYMBOL(skb_trim); 1760 1761 /* Trims skb to length len. It can change skb pointers. 1762 */ 1763 1764 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1765 { 1766 struct sk_buff **fragp; 1767 struct sk_buff *frag; 1768 int offset = skb_headlen(skb); 1769 int nfrags = skb_shinfo(skb)->nr_frags; 1770 int i; 1771 int err; 1772 1773 if (skb_cloned(skb) && 1774 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1775 return err; 1776 1777 i = 0; 1778 if (offset >= len) 1779 goto drop_pages; 1780 1781 for (; i < nfrags; i++) { 1782 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1783 1784 if (end < len) { 1785 offset = end; 1786 continue; 1787 } 1788 1789 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1790 1791 drop_pages: 1792 skb_shinfo(skb)->nr_frags = i; 1793 1794 for (; i < nfrags; i++) 1795 skb_frag_unref(skb, i); 1796 1797 if (skb_has_frag_list(skb)) 1798 skb_drop_fraglist(skb); 1799 goto done; 1800 } 1801 1802 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1803 fragp = &frag->next) { 1804 int end = offset + frag->len; 1805 1806 if (skb_shared(frag)) { 1807 struct sk_buff *nfrag; 1808 1809 nfrag = skb_clone(frag, GFP_ATOMIC); 1810 if (unlikely(!nfrag)) 1811 return -ENOMEM; 1812 1813 nfrag->next = frag->next; 1814 consume_skb(frag); 1815 frag = nfrag; 1816 *fragp = frag; 1817 } 1818 1819 if (end < len) { 1820 offset = end; 1821 continue; 1822 } 1823 1824 if (end > len && 1825 unlikely((err = pskb_trim(frag, len - offset)))) 1826 return err; 1827 1828 if (frag->next) 1829 skb_drop_list(&frag->next); 1830 break; 1831 } 1832 1833 done: 1834 if (len > skb_headlen(skb)) { 1835 skb->data_len -= skb->len - len; 1836 skb->len = len; 1837 } else { 1838 skb->len = len; 1839 skb->data_len = 0; 1840 skb_set_tail_pointer(skb, len); 1841 } 1842 1843 if (!skb->sk || skb->destructor == sock_edemux) 1844 skb_condense(skb); 1845 return 0; 1846 } 1847 EXPORT_SYMBOL(___pskb_trim); 1848 1849 /* Note : use pskb_trim_rcsum() instead of calling this directly 1850 */ 1851 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 1852 { 1853 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1854 int delta = skb->len - len; 1855 1856 skb->csum = csum_block_sub(skb->csum, 1857 skb_checksum(skb, len, delta, 0), 1858 len); 1859 } 1860 return __pskb_trim(skb, len); 1861 } 1862 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 1863 1864 /** 1865 * __pskb_pull_tail - advance tail of skb header 1866 * @skb: buffer to reallocate 1867 * @delta: number of bytes to advance tail 1868 * 1869 * The function makes a sense only on a fragmented &sk_buff, 1870 * it expands header moving its tail forward and copying necessary 1871 * data from fragmented part. 1872 * 1873 * &sk_buff MUST have reference count of 1. 1874 * 1875 * Returns %NULL (and &sk_buff does not change) if pull failed 1876 * or value of new tail of skb in the case of success. 1877 * 1878 * All the pointers pointing into skb header may change and must be 1879 * reloaded after call to this function. 1880 */ 1881 1882 /* Moves tail of skb head forward, copying data from fragmented part, 1883 * when it is necessary. 1884 * 1. It may fail due to malloc failure. 1885 * 2. It may change skb pointers. 1886 * 1887 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1888 */ 1889 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 1890 { 1891 /* If skb has not enough free space at tail, get new one 1892 * plus 128 bytes for future expansions. If we have enough 1893 * room at tail, reallocate without expansion only if skb is cloned. 1894 */ 1895 int i, k, eat = (skb->tail + delta) - skb->end; 1896 1897 if (eat > 0 || skb_cloned(skb)) { 1898 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1899 GFP_ATOMIC)) 1900 return NULL; 1901 } 1902 1903 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 1904 skb_tail_pointer(skb), delta)); 1905 1906 /* Optimization: no fragments, no reasons to preestimate 1907 * size of pulled pages. Superb. 1908 */ 1909 if (!skb_has_frag_list(skb)) 1910 goto pull_pages; 1911 1912 /* Estimate size of pulled pages. */ 1913 eat = delta; 1914 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1915 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1916 1917 if (size >= eat) 1918 goto pull_pages; 1919 eat -= size; 1920 } 1921 1922 /* If we need update frag list, we are in troubles. 1923 * Certainly, it is possible to add an offset to skb data, 1924 * but taking into account that pulling is expected to 1925 * be very rare operation, it is worth to fight against 1926 * further bloating skb head and crucify ourselves here instead. 1927 * Pure masohism, indeed. 8)8) 1928 */ 1929 if (eat) { 1930 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1931 struct sk_buff *clone = NULL; 1932 struct sk_buff *insp = NULL; 1933 1934 do { 1935 if (list->len <= eat) { 1936 /* Eaten as whole. */ 1937 eat -= list->len; 1938 list = list->next; 1939 insp = list; 1940 } else { 1941 /* Eaten partially. */ 1942 1943 if (skb_shared(list)) { 1944 /* Sucks! We need to fork list. :-( */ 1945 clone = skb_clone(list, GFP_ATOMIC); 1946 if (!clone) 1947 return NULL; 1948 insp = list->next; 1949 list = clone; 1950 } else { 1951 /* This may be pulled without 1952 * problems. */ 1953 insp = list; 1954 } 1955 if (!pskb_pull(list, eat)) { 1956 kfree_skb(clone); 1957 return NULL; 1958 } 1959 break; 1960 } 1961 } while (eat); 1962 1963 /* Free pulled out fragments. */ 1964 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1965 skb_shinfo(skb)->frag_list = list->next; 1966 kfree_skb(list); 1967 } 1968 /* And insert new clone at head. */ 1969 if (clone) { 1970 clone->next = list; 1971 skb_shinfo(skb)->frag_list = clone; 1972 } 1973 } 1974 /* Success! Now we may commit changes to skb data. */ 1975 1976 pull_pages: 1977 eat = delta; 1978 k = 0; 1979 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1980 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1981 1982 if (size <= eat) { 1983 skb_frag_unref(skb, i); 1984 eat -= size; 1985 } else { 1986 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1987 if (eat) { 1988 skb_shinfo(skb)->frags[k].page_offset += eat; 1989 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1990 if (!i) 1991 goto end; 1992 eat = 0; 1993 } 1994 k++; 1995 } 1996 } 1997 skb_shinfo(skb)->nr_frags = k; 1998 1999 end: 2000 skb->tail += delta; 2001 skb->data_len -= delta; 2002 2003 if (!skb->data_len) 2004 skb_zcopy_clear(skb, false); 2005 2006 return skb_tail_pointer(skb); 2007 } 2008 EXPORT_SYMBOL(__pskb_pull_tail); 2009 2010 /** 2011 * skb_copy_bits - copy bits from skb to kernel buffer 2012 * @skb: source skb 2013 * @offset: offset in source 2014 * @to: destination buffer 2015 * @len: number of bytes to copy 2016 * 2017 * Copy the specified number of bytes from the source skb to the 2018 * destination buffer. 2019 * 2020 * CAUTION ! : 2021 * If its prototype is ever changed, 2022 * check arch/{*}/net/{*}.S files, 2023 * since it is called from BPF assembly code. 2024 */ 2025 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2026 { 2027 int start = skb_headlen(skb); 2028 struct sk_buff *frag_iter; 2029 int i, copy; 2030 2031 if (offset > (int)skb->len - len) 2032 goto fault; 2033 2034 /* Copy header. */ 2035 if ((copy = start - offset) > 0) { 2036 if (copy > len) 2037 copy = len; 2038 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2039 if ((len -= copy) == 0) 2040 return 0; 2041 offset += copy; 2042 to += copy; 2043 } 2044 2045 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2046 int end; 2047 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2048 2049 WARN_ON(start > offset + len); 2050 2051 end = start + skb_frag_size(f); 2052 if ((copy = end - offset) > 0) { 2053 u32 p_off, p_len, copied; 2054 struct page *p; 2055 u8 *vaddr; 2056 2057 if (copy > len) 2058 copy = len; 2059 2060 skb_frag_foreach_page(f, 2061 f->page_offset + offset - start, 2062 copy, p, p_off, p_len, copied) { 2063 vaddr = kmap_atomic(p); 2064 memcpy(to + copied, vaddr + p_off, p_len); 2065 kunmap_atomic(vaddr); 2066 } 2067 2068 if ((len -= copy) == 0) 2069 return 0; 2070 offset += copy; 2071 to += copy; 2072 } 2073 start = end; 2074 } 2075 2076 skb_walk_frags(skb, frag_iter) { 2077 int end; 2078 2079 WARN_ON(start > offset + len); 2080 2081 end = start + frag_iter->len; 2082 if ((copy = end - offset) > 0) { 2083 if (copy > len) 2084 copy = len; 2085 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2086 goto fault; 2087 if ((len -= copy) == 0) 2088 return 0; 2089 offset += copy; 2090 to += copy; 2091 } 2092 start = end; 2093 } 2094 2095 if (!len) 2096 return 0; 2097 2098 fault: 2099 return -EFAULT; 2100 } 2101 EXPORT_SYMBOL(skb_copy_bits); 2102 2103 /* 2104 * Callback from splice_to_pipe(), if we need to release some pages 2105 * at the end of the spd in case we error'ed out in filling the pipe. 2106 */ 2107 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2108 { 2109 put_page(spd->pages[i]); 2110 } 2111 2112 static struct page *linear_to_page(struct page *page, unsigned int *len, 2113 unsigned int *offset, 2114 struct sock *sk) 2115 { 2116 struct page_frag *pfrag = sk_page_frag(sk); 2117 2118 if (!sk_page_frag_refill(sk, pfrag)) 2119 return NULL; 2120 2121 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2122 2123 memcpy(page_address(pfrag->page) + pfrag->offset, 2124 page_address(page) + *offset, *len); 2125 *offset = pfrag->offset; 2126 pfrag->offset += *len; 2127 2128 return pfrag->page; 2129 } 2130 2131 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2132 struct page *page, 2133 unsigned int offset) 2134 { 2135 return spd->nr_pages && 2136 spd->pages[spd->nr_pages - 1] == page && 2137 (spd->partial[spd->nr_pages - 1].offset + 2138 spd->partial[spd->nr_pages - 1].len == offset); 2139 } 2140 2141 /* 2142 * Fill page/offset/length into spd, if it can hold more pages. 2143 */ 2144 static bool spd_fill_page(struct splice_pipe_desc *spd, 2145 struct pipe_inode_info *pipe, struct page *page, 2146 unsigned int *len, unsigned int offset, 2147 bool linear, 2148 struct sock *sk) 2149 { 2150 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2151 return true; 2152 2153 if (linear) { 2154 page = linear_to_page(page, len, &offset, sk); 2155 if (!page) 2156 return true; 2157 } 2158 if (spd_can_coalesce(spd, page, offset)) { 2159 spd->partial[spd->nr_pages - 1].len += *len; 2160 return false; 2161 } 2162 get_page(page); 2163 spd->pages[spd->nr_pages] = page; 2164 spd->partial[spd->nr_pages].len = *len; 2165 spd->partial[spd->nr_pages].offset = offset; 2166 spd->nr_pages++; 2167 2168 return false; 2169 } 2170 2171 static bool __splice_segment(struct page *page, unsigned int poff, 2172 unsigned int plen, unsigned int *off, 2173 unsigned int *len, 2174 struct splice_pipe_desc *spd, bool linear, 2175 struct sock *sk, 2176 struct pipe_inode_info *pipe) 2177 { 2178 if (!*len) 2179 return true; 2180 2181 /* skip this segment if already processed */ 2182 if (*off >= plen) { 2183 *off -= plen; 2184 return false; 2185 } 2186 2187 /* ignore any bits we already processed */ 2188 poff += *off; 2189 plen -= *off; 2190 *off = 0; 2191 2192 do { 2193 unsigned int flen = min(*len, plen); 2194 2195 if (spd_fill_page(spd, pipe, page, &flen, poff, 2196 linear, sk)) 2197 return true; 2198 poff += flen; 2199 plen -= flen; 2200 *len -= flen; 2201 } while (*len && plen); 2202 2203 return false; 2204 } 2205 2206 /* 2207 * Map linear and fragment data from the skb to spd. It reports true if the 2208 * pipe is full or if we already spliced the requested length. 2209 */ 2210 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2211 unsigned int *offset, unsigned int *len, 2212 struct splice_pipe_desc *spd, struct sock *sk) 2213 { 2214 int seg; 2215 struct sk_buff *iter; 2216 2217 /* map the linear part : 2218 * If skb->head_frag is set, this 'linear' part is backed by a 2219 * fragment, and if the head is not shared with any clones then 2220 * we can avoid a copy since we own the head portion of this page. 2221 */ 2222 if (__splice_segment(virt_to_page(skb->data), 2223 (unsigned long) skb->data & (PAGE_SIZE - 1), 2224 skb_headlen(skb), 2225 offset, len, spd, 2226 skb_head_is_locked(skb), 2227 sk, pipe)) 2228 return true; 2229 2230 /* 2231 * then map the fragments 2232 */ 2233 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2234 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2235 2236 if (__splice_segment(skb_frag_page(f), 2237 f->page_offset, skb_frag_size(f), 2238 offset, len, spd, false, sk, pipe)) 2239 return true; 2240 } 2241 2242 skb_walk_frags(skb, iter) { 2243 if (*offset >= iter->len) { 2244 *offset -= iter->len; 2245 continue; 2246 } 2247 /* __skb_splice_bits() only fails if the output has no room 2248 * left, so no point in going over the frag_list for the error 2249 * case. 2250 */ 2251 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2252 return true; 2253 } 2254 2255 return false; 2256 } 2257 2258 /* 2259 * Map data from the skb to a pipe. Should handle both the linear part, 2260 * the fragments, and the frag list. 2261 */ 2262 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2263 struct pipe_inode_info *pipe, unsigned int tlen, 2264 unsigned int flags) 2265 { 2266 struct partial_page partial[MAX_SKB_FRAGS]; 2267 struct page *pages[MAX_SKB_FRAGS]; 2268 struct splice_pipe_desc spd = { 2269 .pages = pages, 2270 .partial = partial, 2271 .nr_pages_max = MAX_SKB_FRAGS, 2272 .ops = &nosteal_pipe_buf_ops, 2273 .spd_release = sock_spd_release, 2274 }; 2275 int ret = 0; 2276 2277 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2278 2279 if (spd.nr_pages) 2280 ret = splice_to_pipe(pipe, &spd); 2281 2282 return ret; 2283 } 2284 EXPORT_SYMBOL_GPL(skb_splice_bits); 2285 2286 /* Send skb data on a socket. Socket must be locked. */ 2287 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2288 int len) 2289 { 2290 unsigned int orig_len = len; 2291 struct sk_buff *head = skb; 2292 unsigned short fragidx; 2293 int slen, ret; 2294 2295 do_frag_list: 2296 2297 /* Deal with head data */ 2298 while (offset < skb_headlen(skb) && len) { 2299 struct kvec kv; 2300 struct msghdr msg; 2301 2302 slen = min_t(int, len, skb_headlen(skb) - offset); 2303 kv.iov_base = skb->data + offset; 2304 kv.iov_len = slen; 2305 memset(&msg, 0, sizeof(msg)); 2306 2307 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); 2308 if (ret <= 0) 2309 goto error; 2310 2311 offset += ret; 2312 len -= ret; 2313 } 2314 2315 /* All the data was skb head? */ 2316 if (!len) 2317 goto out; 2318 2319 /* Make offset relative to start of frags */ 2320 offset -= skb_headlen(skb); 2321 2322 /* Find where we are in frag list */ 2323 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2324 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2325 2326 if (offset < frag->size) 2327 break; 2328 2329 offset -= frag->size; 2330 } 2331 2332 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2333 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2334 2335 slen = min_t(size_t, len, frag->size - offset); 2336 2337 while (slen) { 2338 ret = kernel_sendpage_locked(sk, frag->page.p, 2339 frag->page_offset + offset, 2340 slen, MSG_DONTWAIT); 2341 if (ret <= 0) 2342 goto error; 2343 2344 len -= ret; 2345 offset += ret; 2346 slen -= ret; 2347 } 2348 2349 offset = 0; 2350 } 2351 2352 if (len) { 2353 /* Process any frag lists */ 2354 2355 if (skb == head) { 2356 if (skb_has_frag_list(skb)) { 2357 skb = skb_shinfo(skb)->frag_list; 2358 goto do_frag_list; 2359 } 2360 } else if (skb->next) { 2361 skb = skb->next; 2362 goto do_frag_list; 2363 } 2364 } 2365 2366 out: 2367 return orig_len - len; 2368 2369 error: 2370 return orig_len == len ? ret : orig_len - len; 2371 } 2372 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2373 2374 /** 2375 * skb_store_bits - store bits from kernel buffer to skb 2376 * @skb: destination buffer 2377 * @offset: offset in destination 2378 * @from: source buffer 2379 * @len: number of bytes to copy 2380 * 2381 * Copy the specified number of bytes from the source buffer to the 2382 * destination skb. This function handles all the messy bits of 2383 * traversing fragment lists and such. 2384 */ 2385 2386 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2387 { 2388 int start = skb_headlen(skb); 2389 struct sk_buff *frag_iter; 2390 int i, copy; 2391 2392 if (offset > (int)skb->len - len) 2393 goto fault; 2394 2395 if ((copy = start - offset) > 0) { 2396 if (copy > len) 2397 copy = len; 2398 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2399 if ((len -= copy) == 0) 2400 return 0; 2401 offset += copy; 2402 from += copy; 2403 } 2404 2405 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2406 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2407 int end; 2408 2409 WARN_ON(start > offset + len); 2410 2411 end = start + skb_frag_size(frag); 2412 if ((copy = end - offset) > 0) { 2413 u32 p_off, p_len, copied; 2414 struct page *p; 2415 u8 *vaddr; 2416 2417 if (copy > len) 2418 copy = len; 2419 2420 skb_frag_foreach_page(frag, 2421 frag->page_offset + offset - start, 2422 copy, p, p_off, p_len, copied) { 2423 vaddr = kmap_atomic(p); 2424 memcpy(vaddr + p_off, from + copied, p_len); 2425 kunmap_atomic(vaddr); 2426 } 2427 2428 if ((len -= copy) == 0) 2429 return 0; 2430 offset += copy; 2431 from += copy; 2432 } 2433 start = end; 2434 } 2435 2436 skb_walk_frags(skb, frag_iter) { 2437 int end; 2438 2439 WARN_ON(start > offset + len); 2440 2441 end = start + frag_iter->len; 2442 if ((copy = end - offset) > 0) { 2443 if (copy > len) 2444 copy = len; 2445 if (skb_store_bits(frag_iter, offset - start, 2446 from, copy)) 2447 goto fault; 2448 if ((len -= copy) == 0) 2449 return 0; 2450 offset += copy; 2451 from += copy; 2452 } 2453 start = end; 2454 } 2455 if (!len) 2456 return 0; 2457 2458 fault: 2459 return -EFAULT; 2460 } 2461 EXPORT_SYMBOL(skb_store_bits); 2462 2463 /* Checksum skb data. */ 2464 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2465 __wsum csum, const struct skb_checksum_ops *ops) 2466 { 2467 int start = skb_headlen(skb); 2468 int i, copy = start - offset; 2469 struct sk_buff *frag_iter; 2470 int pos = 0; 2471 2472 /* Checksum header. */ 2473 if (copy > 0) { 2474 if (copy > len) 2475 copy = len; 2476 csum = ops->update(skb->data + offset, copy, csum); 2477 if ((len -= copy) == 0) 2478 return csum; 2479 offset += copy; 2480 pos = copy; 2481 } 2482 2483 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2484 int end; 2485 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2486 2487 WARN_ON(start > offset + len); 2488 2489 end = start + skb_frag_size(frag); 2490 if ((copy = end - offset) > 0) { 2491 u32 p_off, p_len, copied; 2492 struct page *p; 2493 __wsum csum2; 2494 u8 *vaddr; 2495 2496 if (copy > len) 2497 copy = len; 2498 2499 skb_frag_foreach_page(frag, 2500 frag->page_offset + offset - start, 2501 copy, p, p_off, p_len, copied) { 2502 vaddr = kmap_atomic(p); 2503 csum2 = ops->update(vaddr + p_off, p_len, 0); 2504 kunmap_atomic(vaddr); 2505 csum = ops->combine(csum, csum2, pos, p_len); 2506 pos += p_len; 2507 } 2508 2509 if (!(len -= copy)) 2510 return csum; 2511 offset += copy; 2512 } 2513 start = end; 2514 } 2515 2516 skb_walk_frags(skb, frag_iter) { 2517 int end; 2518 2519 WARN_ON(start > offset + len); 2520 2521 end = start + frag_iter->len; 2522 if ((copy = end - offset) > 0) { 2523 __wsum csum2; 2524 if (copy > len) 2525 copy = len; 2526 csum2 = __skb_checksum(frag_iter, offset - start, 2527 copy, 0, ops); 2528 csum = ops->combine(csum, csum2, pos, copy); 2529 if ((len -= copy) == 0) 2530 return csum; 2531 offset += copy; 2532 pos += copy; 2533 } 2534 start = end; 2535 } 2536 BUG_ON(len); 2537 2538 return csum; 2539 } 2540 EXPORT_SYMBOL(__skb_checksum); 2541 2542 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2543 int len, __wsum csum) 2544 { 2545 const struct skb_checksum_ops ops = { 2546 .update = csum_partial_ext, 2547 .combine = csum_block_add_ext, 2548 }; 2549 2550 return __skb_checksum(skb, offset, len, csum, &ops); 2551 } 2552 EXPORT_SYMBOL(skb_checksum); 2553 2554 /* Both of above in one bottle. */ 2555 2556 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2557 u8 *to, int len, __wsum csum) 2558 { 2559 int start = skb_headlen(skb); 2560 int i, copy = start - offset; 2561 struct sk_buff *frag_iter; 2562 int pos = 0; 2563 2564 /* Copy header. */ 2565 if (copy > 0) { 2566 if (copy > len) 2567 copy = len; 2568 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2569 copy, csum); 2570 if ((len -= copy) == 0) 2571 return csum; 2572 offset += copy; 2573 to += copy; 2574 pos = copy; 2575 } 2576 2577 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2578 int end; 2579 2580 WARN_ON(start > offset + len); 2581 2582 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2583 if ((copy = end - offset) > 0) { 2584 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2585 u32 p_off, p_len, copied; 2586 struct page *p; 2587 __wsum csum2; 2588 u8 *vaddr; 2589 2590 if (copy > len) 2591 copy = len; 2592 2593 skb_frag_foreach_page(frag, 2594 frag->page_offset + offset - start, 2595 copy, p, p_off, p_len, copied) { 2596 vaddr = kmap_atomic(p); 2597 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2598 to + copied, 2599 p_len, 0); 2600 kunmap_atomic(vaddr); 2601 csum = csum_block_add(csum, csum2, pos); 2602 pos += p_len; 2603 } 2604 2605 if (!(len -= copy)) 2606 return csum; 2607 offset += copy; 2608 to += copy; 2609 } 2610 start = end; 2611 } 2612 2613 skb_walk_frags(skb, frag_iter) { 2614 __wsum csum2; 2615 int end; 2616 2617 WARN_ON(start > offset + len); 2618 2619 end = start + frag_iter->len; 2620 if ((copy = end - offset) > 0) { 2621 if (copy > len) 2622 copy = len; 2623 csum2 = skb_copy_and_csum_bits(frag_iter, 2624 offset - start, 2625 to, copy, 0); 2626 csum = csum_block_add(csum, csum2, pos); 2627 if ((len -= copy) == 0) 2628 return csum; 2629 offset += copy; 2630 to += copy; 2631 pos += copy; 2632 } 2633 start = end; 2634 } 2635 BUG_ON(len); 2636 return csum; 2637 } 2638 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2639 2640 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 2641 { 2642 __sum16 sum; 2643 2644 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 2645 /* See comments in __skb_checksum_complete(). */ 2646 if (likely(!sum)) { 2647 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2648 !skb->csum_complete_sw) 2649 netdev_rx_csum_fault(skb->dev, skb); 2650 } 2651 if (!skb_shared(skb)) 2652 skb->csum_valid = !sum; 2653 return sum; 2654 } 2655 EXPORT_SYMBOL(__skb_checksum_complete_head); 2656 2657 /* This function assumes skb->csum already holds pseudo header's checksum, 2658 * which has been changed from the hardware checksum, for example, by 2659 * __skb_checksum_validate_complete(). And, the original skb->csum must 2660 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 2661 * 2662 * It returns non-zero if the recomputed checksum is still invalid, otherwise 2663 * zero. The new checksum is stored back into skb->csum unless the skb is 2664 * shared. 2665 */ 2666 __sum16 __skb_checksum_complete(struct sk_buff *skb) 2667 { 2668 __wsum csum; 2669 __sum16 sum; 2670 2671 csum = skb_checksum(skb, 0, skb->len, 0); 2672 2673 sum = csum_fold(csum_add(skb->csum, csum)); 2674 /* This check is inverted, because we already knew the hardware 2675 * checksum is invalid before calling this function. So, if the 2676 * re-computed checksum is valid instead, then we have a mismatch 2677 * between the original skb->csum and skb_checksum(). This means either 2678 * the original hardware checksum is incorrect or we screw up skb->csum 2679 * when moving skb->data around. 2680 */ 2681 if (likely(!sum)) { 2682 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 2683 !skb->csum_complete_sw) 2684 netdev_rx_csum_fault(skb->dev, skb); 2685 } 2686 2687 if (!skb_shared(skb)) { 2688 /* Save full packet checksum */ 2689 skb->csum = csum; 2690 skb->ip_summed = CHECKSUM_COMPLETE; 2691 skb->csum_complete_sw = 1; 2692 skb->csum_valid = !sum; 2693 } 2694 2695 return sum; 2696 } 2697 EXPORT_SYMBOL(__skb_checksum_complete); 2698 2699 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 2700 { 2701 net_warn_ratelimited( 2702 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2703 __func__); 2704 return 0; 2705 } 2706 2707 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 2708 int offset, int len) 2709 { 2710 net_warn_ratelimited( 2711 "%s: attempt to compute crc32c without libcrc32c.ko\n", 2712 __func__); 2713 return 0; 2714 } 2715 2716 static const struct skb_checksum_ops default_crc32c_ops = { 2717 .update = warn_crc32c_csum_update, 2718 .combine = warn_crc32c_csum_combine, 2719 }; 2720 2721 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 2722 &default_crc32c_ops; 2723 EXPORT_SYMBOL(crc32c_csum_stub); 2724 2725 /** 2726 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2727 * @from: source buffer 2728 * 2729 * Calculates the amount of linear headroom needed in the 'to' skb passed 2730 * into skb_zerocopy(). 2731 */ 2732 unsigned int 2733 skb_zerocopy_headlen(const struct sk_buff *from) 2734 { 2735 unsigned int hlen = 0; 2736 2737 if (!from->head_frag || 2738 skb_headlen(from) < L1_CACHE_BYTES || 2739 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2740 hlen = skb_headlen(from); 2741 2742 if (skb_has_frag_list(from)) 2743 hlen = from->len; 2744 2745 return hlen; 2746 } 2747 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2748 2749 /** 2750 * skb_zerocopy - Zero copy skb to skb 2751 * @to: destination buffer 2752 * @from: source buffer 2753 * @len: number of bytes to copy from source buffer 2754 * @hlen: size of linear headroom in destination buffer 2755 * 2756 * Copies up to `len` bytes from `from` to `to` by creating references 2757 * to the frags in the source buffer. 2758 * 2759 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2760 * headroom in the `to` buffer. 2761 * 2762 * Return value: 2763 * 0: everything is OK 2764 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2765 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2766 */ 2767 int 2768 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2769 { 2770 int i, j = 0; 2771 int plen = 0; /* length of skb->head fragment */ 2772 int ret; 2773 struct page *page; 2774 unsigned int offset; 2775 2776 BUG_ON(!from->head_frag && !hlen); 2777 2778 /* dont bother with small payloads */ 2779 if (len <= skb_tailroom(to)) 2780 return skb_copy_bits(from, 0, skb_put(to, len), len); 2781 2782 if (hlen) { 2783 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2784 if (unlikely(ret)) 2785 return ret; 2786 len -= hlen; 2787 } else { 2788 plen = min_t(int, skb_headlen(from), len); 2789 if (plen) { 2790 page = virt_to_head_page(from->head); 2791 offset = from->data - (unsigned char *)page_address(page); 2792 __skb_fill_page_desc(to, 0, page, offset, plen); 2793 get_page(page); 2794 j = 1; 2795 len -= plen; 2796 } 2797 } 2798 2799 to->truesize += len + plen; 2800 to->len += len + plen; 2801 to->data_len += len + plen; 2802 2803 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2804 skb_tx_error(from); 2805 return -ENOMEM; 2806 } 2807 skb_zerocopy_clone(to, from, GFP_ATOMIC); 2808 2809 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2810 if (!len) 2811 break; 2812 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2813 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2814 len -= skb_shinfo(to)->frags[j].size; 2815 skb_frag_ref(to, j); 2816 j++; 2817 } 2818 skb_shinfo(to)->nr_frags = j; 2819 2820 return 0; 2821 } 2822 EXPORT_SYMBOL_GPL(skb_zerocopy); 2823 2824 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2825 { 2826 __wsum csum; 2827 long csstart; 2828 2829 if (skb->ip_summed == CHECKSUM_PARTIAL) 2830 csstart = skb_checksum_start_offset(skb); 2831 else 2832 csstart = skb_headlen(skb); 2833 2834 BUG_ON(csstart > skb_headlen(skb)); 2835 2836 skb_copy_from_linear_data(skb, to, csstart); 2837 2838 csum = 0; 2839 if (csstart != skb->len) 2840 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2841 skb->len - csstart, 0); 2842 2843 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2844 long csstuff = csstart + skb->csum_offset; 2845 2846 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2847 } 2848 } 2849 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2850 2851 /** 2852 * skb_dequeue - remove from the head of the queue 2853 * @list: list to dequeue from 2854 * 2855 * Remove the head of the list. The list lock is taken so the function 2856 * may be used safely with other locking list functions. The head item is 2857 * returned or %NULL if the list is empty. 2858 */ 2859 2860 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2861 { 2862 unsigned long flags; 2863 struct sk_buff *result; 2864 2865 spin_lock_irqsave(&list->lock, flags); 2866 result = __skb_dequeue(list); 2867 spin_unlock_irqrestore(&list->lock, flags); 2868 return result; 2869 } 2870 EXPORT_SYMBOL(skb_dequeue); 2871 2872 /** 2873 * skb_dequeue_tail - remove from the tail of the queue 2874 * @list: list to dequeue from 2875 * 2876 * Remove the tail of the list. The list lock is taken so the function 2877 * may be used safely with other locking list functions. The tail item is 2878 * returned or %NULL if the list is empty. 2879 */ 2880 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2881 { 2882 unsigned long flags; 2883 struct sk_buff *result; 2884 2885 spin_lock_irqsave(&list->lock, flags); 2886 result = __skb_dequeue_tail(list); 2887 spin_unlock_irqrestore(&list->lock, flags); 2888 return result; 2889 } 2890 EXPORT_SYMBOL(skb_dequeue_tail); 2891 2892 /** 2893 * skb_queue_purge - empty a list 2894 * @list: list to empty 2895 * 2896 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2897 * the list and one reference dropped. This function takes the list 2898 * lock and is atomic with respect to other list locking functions. 2899 */ 2900 void skb_queue_purge(struct sk_buff_head *list) 2901 { 2902 struct sk_buff *skb; 2903 while ((skb = skb_dequeue(list)) != NULL) 2904 kfree_skb(skb); 2905 } 2906 EXPORT_SYMBOL(skb_queue_purge); 2907 2908 /** 2909 * skb_rbtree_purge - empty a skb rbtree 2910 * @root: root of the rbtree to empty 2911 * Return value: the sum of truesizes of all purged skbs. 2912 * 2913 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2914 * the list and one reference dropped. This function does not take 2915 * any lock. Synchronization should be handled by the caller (e.g., TCP 2916 * out-of-order queue is protected by the socket lock). 2917 */ 2918 unsigned int skb_rbtree_purge(struct rb_root *root) 2919 { 2920 struct rb_node *p = rb_first(root); 2921 unsigned int sum = 0; 2922 2923 while (p) { 2924 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 2925 2926 p = rb_next(p); 2927 rb_erase(&skb->rbnode, root); 2928 sum += skb->truesize; 2929 kfree_skb(skb); 2930 } 2931 return sum; 2932 } 2933 2934 /** 2935 * skb_queue_head - queue a buffer at the list head 2936 * @list: list to use 2937 * @newsk: buffer to queue 2938 * 2939 * Queue a buffer at the start of the list. This function takes the 2940 * list lock and can be used safely with other locking &sk_buff functions 2941 * safely. 2942 * 2943 * A buffer cannot be placed on two lists at the same time. 2944 */ 2945 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2946 { 2947 unsigned long flags; 2948 2949 spin_lock_irqsave(&list->lock, flags); 2950 __skb_queue_head(list, newsk); 2951 spin_unlock_irqrestore(&list->lock, flags); 2952 } 2953 EXPORT_SYMBOL(skb_queue_head); 2954 2955 /** 2956 * skb_queue_tail - queue a buffer at the list tail 2957 * @list: list to use 2958 * @newsk: buffer to queue 2959 * 2960 * Queue a buffer at the tail of the list. This function takes the 2961 * list lock and can be used safely with other locking &sk_buff functions 2962 * safely. 2963 * 2964 * A buffer cannot be placed on two lists at the same time. 2965 */ 2966 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2967 { 2968 unsigned long flags; 2969 2970 spin_lock_irqsave(&list->lock, flags); 2971 __skb_queue_tail(list, newsk); 2972 spin_unlock_irqrestore(&list->lock, flags); 2973 } 2974 EXPORT_SYMBOL(skb_queue_tail); 2975 2976 /** 2977 * skb_unlink - remove a buffer from a list 2978 * @skb: buffer to remove 2979 * @list: list to use 2980 * 2981 * Remove a packet from a list. The list locks are taken and this 2982 * function is atomic with respect to other list locked calls 2983 * 2984 * You must know what list the SKB is on. 2985 */ 2986 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2987 { 2988 unsigned long flags; 2989 2990 spin_lock_irqsave(&list->lock, flags); 2991 __skb_unlink(skb, list); 2992 spin_unlock_irqrestore(&list->lock, flags); 2993 } 2994 EXPORT_SYMBOL(skb_unlink); 2995 2996 /** 2997 * skb_append - append a buffer 2998 * @old: buffer to insert after 2999 * @newsk: buffer to insert 3000 * @list: list to use 3001 * 3002 * Place a packet after a given packet in a list. The list locks are taken 3003 * and this function is atomic with respect to other list locked calls. 3004 * A buffer cannot be placed on two lists at the same time. 3005 */ 3006 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3007 { 3008 unsigned long flags; 3009 3010 spin_lock_irqsave(&list->lock, flags); 3011 __skb_queue_after(list, old, newsk); 3012 spin_unlock_irqrestore(&list->lock, flags); 3013 } 3014 EXPORT_SYMBOL(skb_append); 3015 3016 static inline void skb_split_inside_header(struct sk_buff *skb, 3017 struct sk_buff* skb1, 3018 const u32 len, const int pos) 3019 { 3020 int i; 3021 3022 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3023 pos - len); 3024 /* And move data appendix as is. */ 3025 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3026 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3027 3028 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3029 skb_shinfo(skb)->nr_frags = 0; 3030 skb1->data_len = skb->data_len; 3031 skb1->len += skb1->data_len; 3032 skb->data_len = 0; 3033 skb->len = len; 3034 skb_set_tail_pointer(skb, len); 3035 } 3036 3037 static inline void skb_split_no_header(struct sk_buff *skb, 3038 struct sk_buff* skb1, 3039 const u32 len, int pos) 3040 { 3041 int i, k = 0; 3042 const int nfrags = skb_shinfo(skb)->nr_frags; 3043 3044 skb_shinfo(skb)->nr_frags = 0; 3045 skb1->len = skb1->data_len = skb->len - len; 3046 skb->len = len; 3047 skb->data_len = len - pos; 3048 3049 for (i = 0; i < nfrags; i++) { 3050 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3051 3052 if (pos + size > len) { 3053 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3054 3055 if (pos < len) { 3056 /* Split frag. 3057 * We have two variants in this case: 3058 * 1. Move all the frag to the second 3059 * part, if it is possible. F.e. 3060 * this approach is mandatory for TUX, 3061 * where splitting is expensive. 3062 * 2. Split is accurately. We make this. 3063 */ 3064 skb_frag_ref(skb, i); 3065 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 3066 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3067 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3068 skb_shinfo(skb)->nr_frags++; 3069 } 3070 k++; 3071 } else 3072 skb_shinfo(skb)->nr_frags++; 3073 pos += size; 3074 } 3075 skb_shinfo(skb1)->nr_frags = k; 3076 } 3077 3078 /** 3079 * skb_split - Split fragmented skb to two parts at length len. 3080 * @skb: the buffer to split 3081 * @skb1: the buffer to receive the second part 3082 * @len: new length for skb 3083 */ 3084 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3085 { 3086 int pos = skb_headlen(skb); 3087 3088 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & 3089 SKBTX_SHARED_FRAG; 3090 skb_zerocopy_clone(skb1, skb, 0); 3091 if (len < pos) /* Split line is inside header. */ 3092 skb_split_inside_header(skb, skb1, len, pos); 3093 else /* Second chunk has no header, nothing to copy. */ 3094 skb_split_no_header(skb, skb1, len, pos); 3095 } 3096 EXPORT_SYMBOL(skb_split); 3097 3098 /* Shifting from/to a cloned skb is a no-go. 3099 * 3100 * Caller cannot keep skb_shinfo related pointers past calling here! 3101 */ 3102 static int skb_prepare_for_shift(struct sk_buff *skb) 3103 { 3104 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3105 } 3106 3107 /** 3108 * skb_shift - Shifts paged data partially from skb to another 3109 * @tgt: buffer into which tail data gets added 3110 * @skb: buffer from which the paged data comes from 3111 * @shiftlen: shift up to this many bytes 3112 * 3113 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3114 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3115 * It's up to caller to free skb if everything was shifted. 3116 * 3117 * If @tgt runs out of frags, the whole operation is aborted. 3118 * 3119 * Skb cannot include anything else but paged data while tgt is allowed 3120 * to have non-paged data as well. 3121 * 3122 * TODO: full sized shift could be optimized but that would need 3123 * specialized skb free'er to handle frags without up-to-date nr_frags. 3124 */ 3125 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3126 { 3127 int from, to, merge, todo; 3128 struct skb_frag_struct *fragfrom, *fragto; 3129 3130 BUG_ON(shiftlen > skb->len); 3131 3132 if (skb_headlen(skb)) 3133 return 0; 3134 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3135 return 0; 3136 3137 todo = shiftlen; 3138 from = 0; 3139 to = skb_shinfo(tgt)->nr_frags; 3140 fragfrom = &skb_shinfo(skb)->frags[from]; 3141 3142 /* Actual merge is delayed until the point when we know we can 3143 * commit all, so that we don't have to undo partial changes 3144 */ 3145 if (!to || 3146 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3147 fragfrom->page_offset)) { 3148 merge = -1; 3149 } else { 3150 merge = to - 1; 3151 3152 todo -= skb_frag_size(fragfrom); 3153 if (todo < 0) { 3154 if (skb_prepare_for_shift(skb) || 3155 skb_prepare_for_shift(tgt)) 3156 return 0; 3157 3158 /* All previous frag pointers might be stale! */ 3159 fragfrom = &skb_shinfo(skb)->frags[from]; 3160 fragto = &skb_shinfo(tgt)->frags[merge]; 3161 3162 skb_frag_size_add(fragto, shiftlen); 3163 skb_frag_size_sub(fragfrom, shiftlen); 3164 fragfrom->page_offset += shiftlen; 3165 3166 goto onlymerged; 3167 } 3168 3169 from++; 3170 } 3171 3172 /* Skip full, not-fitting skb to avoid expensive operations */ 3173 if ((shiftlen == skb->len) && 3174 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3175 return 0; 3176 3177 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3178 return 0; 3179 3180 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3181 if (to == MAX_SKB_FRAGS) 3182 return 0; 3183 3184 fragfrom = &skb_shinfo(skb)->frags[from]; 3185 fragto = &skb_shinfo(tgt)->frags[to]; 3186 3187 if (todo >= skb_frag_size(fragfrom)) { 3188 *fragto = *fragfrom; 3189 todo -= skb_frag_size(fragfrom); 3190 from++; 3191 to++; 3192 3193 } else { 3194 __skb_frag_ref(fragfrom); 3195 fragto->page = fragfrom->page; 3196 fragto->page_offset = fragfrom->page_offset; 3197 skb_frag_size_set(fragto, todo); 3198 3199 fragfrom->page_offset += todo; 3200 skb_frag_size_sub(fragfrom, todo); 3201 todo = 0; 3202 3203 to++; 3204 break; 3205 } 3206 } 3207 3208 /* Ready to "commit" this state change to tgt */ 3209 skb_shinfo(tgt)->nr_frags = to; 3210 3211 if (merge >= 0) { 3212 fragfrom = &skb_shinfo(skb)->frags[0]; 3213 fragto = &skb_shinfo(tgt)->frags[merge]; 3214 3215 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3216 __skb_frag_unref(fragfrom); 3217 } 3218 3219 /* Reposition in the original skb */ 3220 to = 0; 3221 while (from < skb_shinfo(skb)->nr_frags) 3222 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3223 skb_shinfo(skb)->nr_frags = to; 3224 3225 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3226 3227 onlymerged: 3228 /* Most likely the tgt won't ever need its checksum anymore, skb on 3229 * the other hand might need it if it needs to be resent 3230 */ 3231 tgt->ip_summed = CHECKSUM_PARTIAL; 3232 skb->ip_summed = CHECKSUM_PARTIAL; 3233 3234 /* Yak, is it really working this way? Some helper please? */ 3235 skb->len -= shiftlen; 3236 skb->data_len -= shiftlen; 3237 skb->truesize -= shiftlen; 3238 tgt->len += shiftlen; 3239 tgt->data_len += shiftlen; 3240 tgt->truesize += shiftlen; 3241 3242 return shiftlen; 3243 } 3244 3245 /** 3246 * skb_prepare_seq_read - Prepare a sequential read of skb data 3247 * @skb: the buffer to read 3248 * @from: lower offset of data to be read 3249 * @to: upper offset of data to be read 3250 * @st: state variable 3251 * 3252 * Initializes the specified state variable. Must be called before 3253 * invoking skb_seq_read() for the first time. 3254 */ 3255 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3256 unsigned int to, struct skb_seq_state *st) 3257 { 3258 st->lower_offset = from; 3259 st->upper_offset = to; 3260 st->root_skb = st->cur_skb = skb; 3261 st->frag_idx = st->stepped_offset = 0; 3262 st->frag_data = NULL; 3263 } 3264 EXPORT_SYMBOL(skb_prepare_seq_read); 3265 3266 /** 3267 * skb_seq_read - Sequentially read skb data 3268 * @consumed: number of bytes consumed by the caller so far 3269 * @data: destination pointer for data to be returned 3270 * @st: state variable 3271 * 3272 * Reads a block of skb data at @consumed relative to the 3273 * lower offset specified to skb_prepare_seq_read(). Assigns 3274 * the head of the data block to @data and returns the length 3275 * of the block or 0 if the end of the skb data or the upper 3276 * offset has been reached. 3277 * 3278 * The caller is not required to consume all of the data 3279 * returned, i.e. @consumed is typically set to the number 3280 * of bytes already consumed and the next call to 3281 * skb_seq_read() will return the remaining part of the block. 3282 * 3283 * Note 1: The size of each block of data returned can be arbitrary, 3284 * this limitation is the cost for zerocopy sequential 3285 * reads of potentially non linear data. 3286 * 3287 * Note 2: Fragment lists within fragments are not implemented 3288 * at the moment, state->root_skb could be replaced with 3289 * a stack for this purpose. 3290 */ 3291 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3292 struct skb_seq_state *st) 3293 { 3294 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3295 skb_frag_t *frag; 3296 3297 if (unlikely(abs_offset >= st->upper_offset)) { 3298 if (st->frag_data) { 3299 kunmap_atomic(st->frag_data); 3300 st->frag_data = NULL; 3301 } 3302 return 0; 3303 } 3304 3305 next_skb: 3306 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3307 3308 if (abs_offset < block_limit && !st->frag_data) { 3309 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3310 return block_limit - abs_offset; 3311 } 3312 3313 if (st->frag_idx == 0 && !st->frag_data) 3314 st->stepped_offset += skb_headlen(st->cur_skb); 3315 3316 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3317 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3318 block_limit = skb_frag_size(frag) + st->stepped_offset; 3319 3320 if (abs_offset < block_limit) { 3321 if (!st->frag_data) 3322 st->frag_data = kmap_atomic(skb_frag_page(frag)); 3323 3324 *data = (u8 *) st->frag_data + frag->page_offset + 3325 (abs_offset - st->stepped_offset); 3326 3327 return block_limit - abs_offset; 3328 } 3329 3330 if (st->frag_data) { 3331 kunmap_atomic(st->frag_data); 3332 st->frag_data = NULL; 3333 } 3334 3335 st->frag_idx++; 3336 st->stepped_offset += skb_frag_size(frag); 3337 } 3338 3339 if (st->frag_data) { 3340 kunmap_atomic(st->frag_data); 3341 st->frag_data = NULL; 3342 } 3343 3344 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3345 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3346 st->frag_idx = 0; 3347 goto next_skb; 3348 } else if (st->cur_skb->next) { 3349 st->cur_skb = st->cur_skb->next; 3350 st->frag_idx = 0; 3351 goto next_skb; 3352 } 3353 3354 return 0; 3355 } 3356 EXPORT_SYMBOL(skb_seq_read); 3357 3358 /** 3359 * skb_abort_seq_read - Abort a sequential read of skb data 3360 * @st: state variable 3361 * 3362 * Must be called if skb_seq_read() was not called until it 3363 * returned 0. 3364 */ 3365 void skb_abort_seq_read(struct skb_seq_state *st) 3366 { 3367 if (st->frag_data) 3368 kunmap_atomic(st->frag_data); 3369 } 3370 EXPORT_SYMBOL(skb_abort_seq_read); 3371 3372 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3373 3374 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3375 struct ts_config *conf, 3376 struct ts_state *state) 3377 { 3378 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3379 } 3380 3381 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3382 { 3383 skb_abort_seq_read(TS_SKB_CB(state)); 3384 } 3385 3386 /** 3387 * skb_find_text - Find a text pattern in skb data 3388 * @skb: the buffer to look in 3389 * @from: search offset 3390 * @to: search limit 3391 * @config: textsearch configuration 3392 * 3393 * Finds a pattern in the skb data according to the specified 3394 * textsearch configuration. Use textsearch_next() to retrieve 3395 * subsequent occurrences of the pattern. Returns the offset 3396 * to the first occurrence or UINT_MAX if no match was found. 3397 */ 3398 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3399 unsigned int to, struct ts_config *config) 3400 { 3401 struct ts_state state; 3402 unsigned int ret; 3403 3404 config->get_next_block = skb_ts_get_next_block; 3405 config->finish = skb_ts_finish; 3406 3407 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3408 3409 ret = textsearch_find(config, &state); 3410 return (ret <= to - from ? ret : UINT_MAX); 3411 } 3412 EXPORT_SYMBOL(skb_find_text); 3413 3414 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3415 int offset, size_t size) 3416 { 3417 int i = skb_shinfo(skb)->nr_frags; 3418 3419 if (skb_can_coalesce(skb, i, page, offset)) { 3420 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3421 } else if (i < MAX_SKB_FRAGS) { 3422 get_page(page); 3423 skb_fill_page_desc(skb, i, page, offset, size); 3424 } else { 3425 return -EMSGSIZE; 3426 } 3427 3428 return 0; 3429 } 3430 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3431 3432 /** 3433 * skb_pull_rcsum - pull skb and update receive checksum 3434 * @skb: buffer to update 3435 * @len: length of data pulled 3436 * 3437 * This function performs an skb_pull on the packet and updates 3438 * the CHECKSUM_COMPLETE checksum. It should be used on 3439 * receive path processing instead of skb_pull unless you know 3440 * that the checksum difference is zero (e.g., a valid IP header) 3441 * or you are setting ip_summed to CHECKSUM_NONE. 3442 */ 3443 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3444 { 3445 unsigned char *data = skb->data; 3446 3447 BUG_ON(len > skb->len); 3448 __skb_pull(skb, len); 3449 skb_postpull_rcsum(skb, data, len); 3450 return skb->data; 3451 } 3452 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3453 3454 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3455 { 3456 skb_frag_t head_frag; 3457 struct page *page; 3458 3459 page = virt_to_head_page(frag_skb->head); 3460 head_frag.page.p = page; 3461 head_frag.page_offset = frag_skb->data - 3462 (unsigned char *)page_address(page); 3463 head_frag.size = skb_headlen(frag_skb); 3464 return head_frag; 3465 } 3466 3467 /** 3468 * skb_segment - Perform protocol segmentation on skb. 3469 * @head_skb: buffer to segment 3470 * @features: features for the output path (see dev->features) 3471 * 3472 * This function performs segmentation on the given skb. It returns 3473 * a pointer to the first in a list of new skbs for the segments. 3474 * In case of error it returns ERR_PTR(err). 3475 */ 3476 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3477 netdev_features_t features) 3478 { 3479 struct sk_buff *segs = NULL; 3480 struct sk_buff *tail = NULL; 3481 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3482 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3483 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3484 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3485 struct sk_buff *frag_skb = head_skb; 3486 unsigned int offset = doffset; 3487 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3488 unsigned int partial_segs = 0; 3489 unsigned int headroom; 3490 unsigned int len = head_skb->len; 3491 __be16 proto; 3492 bool csum, sg; 3493 int nfrags = skb_shinfo(head_skb)->nr_frags; 3494 int err = -ENOMEM; 3495 int i = 0; 3496 int pos; 3497 int dummy; 3498 3499 __skb_push(head_skb, doffset); 3500 proto = skb_network_protocol(head_skb, &dummy); 3501 if (unlikely(!proto)) 3502 return ERR_PTR(-EINVAL); 3503 3504 sg = !!(features & NETIF_F_SG); 3505 csum = !!can_checksum_protocol(features, proto); 3506 3507 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3508 if (!(features & NETIF_F_GSO_PARTIAL)) { 3509 struct sk_buff *iter; 3510 unsigned int frag_len; 3511 3512 if (!list_skb || 3513 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3514 goto normal; 3515 3516 /* If we get here then all the required 3517 * GSO features except frag_list are supported. 3518 * Try to split the SKB to multiple GSO SKBs 3519 * with no frag_list. 3520 * Currently we can do that only when the buffers don't 3521 * have a linear part and all the buffers except 3522 * the last are of the same length. 3523 */ 3524 frag_len = list_skb->len; 3525 skb_walk_frags(head_skb, iter) { 3526 if (frag_len != iter->len && iter->next) 3527 goto normal; 3528 if (skb_headlen(iter) && !iter->head_frag) 3529 goto normal; 3530 3531 len -= iter->len; 3532 } 3533 3534 if (len != frag_len) 3535 goto normal; 3536 } 3537 3538 /* GSO partial only requires that we trim off any excess that 3539 * doesn't fit into an MSS sized block, so take care of that 3540 * now. 3541 */ 3542 partial_segs = len / mss; 3543 if (partial_segs > 1) 3544 mss *= partial_segs; 3545 else 3546 partial_segs = 0; 3547 } 3548 3549 normal: 3550 headroom = skb_headroom(head_skb); 3551 pos = skb_headlen(head_skb); 3552 3553 do { 3554 struct sk_buff *nskb; 3555 skb_frag_t *nskb_frag; 3556 int hsize; 3557 int size; 3558 3559 if (unlikely(mss == GSO_BY_FRAGS)) { 3560 len = list_skb->len; 3561 } else { 3562 len = head_skb->len - offset; 3563 if (len > mss) 3564 len = mss; 3565 } 3566 3567 hsize = skb_headlen(head_skb) - offset; 3568 if (hsize < 0) 3569 hsize = 0; 3570 if (hsize > len || !sg) 3571 hsize = len; 3572 3573 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3574 (skb_headlen(list_skb) == len || sg)) { 3575 BUG_ON(skb_headlen(list_skb) > len); 3576 3577 i = 0; 3578 nfrags = skb_shinfo(list_skb)->nr_frags; 3579 frag = skb_shinfo(list_skb)->frags; 3580 frag_skb = list_skb; 3581 pos += skb_headlen(list_skb); 3582 3583 while (pos < offset + len) { 3584 BUG_ON(i >= nfrags); 3585 3586 size = skb_frag_size(frag); 3587 if (pos + size > offset + len) 3588 break; 3589 3590 i++; 3591 pos += size; 3592 frag++; 3593 } 3594 3595 nskb = skb_clone(list_skb, GFP_ATOMIC); 3596 list_skb = list_skb->next; 3597 3598 if (unlikely(!nskb)) 3599 goto err; 3600 3601 if (unlikely(pskb_trim(nskb, len))) { 3602 kfree_skb(nskb); 3603 goto err; 3604 } 3605 3606 hsize = skb_end_offset(nskb); 3607 if (skb_cow_head(nskb, doffset + headroom)) { 3608 kfree_skb(nskb); 3609 goto err; 3610 } 3611 3612 nskb->truesize += skb_end_offset(nskb) - hsize; 3613 skb_release_head_state(nskb); 3614 __skb_push(nskb, doffset); 3615 } else { 3616 nskb = __alloc_skb(hsize + doffset + headroom, 3617 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3618 NUMA_NO_NODE); 3619 3620 if (unlikely(!nskb)) 3621 goto err; 3622 3623 skb_reserve(nskb, headroom); 3624 __skb_put(nskb, doffset); 3625 } 3626 3627 if (segs) 3628 tail->next = nskb; 3629 else 3630 segs = nskb; 3631 tail = nskb; 3632 3633 __copy_skb_header(nskb, head_skb); 3634 3635 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3636 skb_reset_mac_len(nskb); 3637 3638 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3639 nskb->data - tnl_hlen, 3640 doffset + tnl_hlen); 3641 3642 if (nskb->len == len + doffset) 3643 goto perform_csum_check; 3644 3645 if (!sg) { 3646 if (!nskb->remcsum_offload) 3647 nskb->ip_summed = CHECKSUM_NONE; 3648 SKB_GSO_CB(nskb)->csum = 3649 skb_copy_and_csum_bits(head_skb, offset, 3650 skb_put(nskb, len), 3651 len, 0); 3652 SKB_GSO_CB(nskb)->csum_start = 3653 skb_headroom(nskb) + doffset; 3654 continue; 3655 } 3656 3657 nskb_frag = skb_shinfo(nskb)->frags; 3658 3659 skb_copy_from_linear_data_offset(head_skb, offset, 3660 skb_put(nskb, hsize), hsize); 3661 3662 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & 3663 SKBTX_SHARED_FRAG; 3664 3665 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3666 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 3667 goto err; 3668 3669 while (pos < offset + len) { 3670 if (i >= nfrags) { 3671 i = 0; 3672 nfrags = skb_shinfo(list_skb)->nr_frags; 3673 frag = skb_shinfo(list_skb)->frags; 3674 frag_skb = list_skb; 3675 if (!skb_headlen(list_skb)) { 3676 BUG_ON(!nfrags); 3677 } else { 3678 BUG_ON(!list_skb->head_frag); 3679 3680 /* to make room for head_frag. */ 3681 i--; 3682 frag--; 3683 } 3684 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 3685 skb_zerocopy_clone(nskb, frag_skb, 3686 GFP_ATOMIC)) 3687 goto err; 3688 3689 list_skb = list_skb->next; 3690 } 3691 3692 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3693 MAX_SKB_FRAGS)) { 3694 net_warn_ratelimited( 3695 "skb_segment: too many frags: %u %u\n", 3696 pos, mss); 3697 err = -EINVAL; 3698 goto err; 3699 } 3700 3701 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 3702 __skb_frag_ref(nskb_frag); 3703 size = skb_frag_size(nskb_frag); 3704 3705 if (pos < offset) { 3706 nskb_frag->page_offset += offset - pos; 3707 skb_frag_size_sub(nskb_frag, offset - pos); 3708 } 3709 3710 skb_shinfo(nskb)->nr_frags++; 3711 3712 if (pos + size <= offset + len) { 3713 i++; 3714 frag++; 3715 pos += size; 3716 } else { 3717 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3718 goto skip_fraglist; 3719 } 3720 3721 nskb_frag++; 3722 } 3723 3724 skip_fraglist: 3725 nskb->data_len = len - hsize; 3726 nskb->len += nskb->data_len; 3727 nskb->truesize += nskb->data_len; 3728 3729 perform_csum_check: 3730 if (!csum) { 3731 if (skb_has_shared_frag(nskb) && 3732 __skb_linearize(nskb)) 3733 goto err; 3734 3735 if (!nskb->remcsum_offload) 3736 nskb->ip_summed = CHECKSUM_NONE; 3737 SKB_GSO_CB(nskb)->csum = 3738 skb_checksum(nskb, doffset, 3739 nskb->len - doffset, 0); 3740 SKB_GSO_CB(nskb)->csum_start = 3741 skb_headroom(nskb) + doffset; 3742 } 3743 } while ((offset += len) < head_skb->len); 3744 3745 /* Some callers want to get the end of the list. 3746 * Put it in segs->prev to avoid walking the list. 3747 * (see validate_xmit_skb_list() for example) 3748 */ 3749 segs->prev = tail; 3750 3751 if (partial_segs) { 3752 struct sk_buff *iter; 3753 int type = skb_shinfo(head_skb)->gso_type; 3754 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3755 3756 /* Update type to add partial and then remove dodgy if set */ 3757 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3758 type &= ~SKB_GSO_DODGY; 3759 3760 /* Update GSO info and prepare to start updating headers on 3761 * our way back down the stack of protocols. 3762 */ 3763 for (iter = segs; iter; iter = iter->next) { 3764 skb_shinfo(iter)->gso_size = gso_size; 3765 skb_shinfo(iter)->gso_segs = partial_segs; 3766 skb_shinfo(iter)->gso_type = type; 3767 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3768 } 3769 3770 if (tail->len - doffset <= gso_size) 3771 skb_shinfo(tail)->gso_size = 0; 3772 else if (tail != segs) 3773 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3774 } 3775 3776 /* Following permits correct backpressure, for protocols 3777 * using skb_set_owner_w(). 3778 * Idea is to tranfert ownership from head_skb to last segment. 3779 */ 3780 if (head_skb->destructor == sock_wfree) { 3781 swap(tail->truesize, head_skb->truesize); 3782 swap(tail->destructor, head_skb->destructor); 3783 swap(tail->sk, head_skb->sk); 3784 } 3785 return segs; 3786 3787 err: 3788 kfree_skb_list(segs); 3789 return ERR_PTR(err); 3790 } 3791 EXPORT_SYMBOL_GPL(skb_segment); 3792 3793 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) 3794 { 3795 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3796 unsigned int offset = skb_gro_offset(skb); 3797 unsigned int headlen = skb_headlen(skb); 3798 unsigned int len = skb_gro_len(skb); 3799 unsigned int delta_truesize; 3800 struct sk_buff *lp; 3801 3802 if (unlikely(p->len + len >= 65536)) 3803 return -E2BIG; 3804 3805 lp = NAPI_GRO_CB(p)->last; 3806 pinfo = skb_shinfo(lp); 3807 3808 if (headlen <= offset) { 3809 skb_frag_t *frag; 3810 skb_frag_t *frag2; 3811 int i = skbinfo->nr_frags; 3812 int nr_frags = pinfo->nr_frags + i; 3813 3814 if (nr_frags > MAX_SKB_FRAGS) 3815 goto merge; 3816 3817 offset -= headlen; 3818 pinfo->nr_frags = nr_frags; 3819 skbinfo->nr_frags = 0; 3820 3821 frag = pinfo->frags + nr_frags; 3822 frag2 = skbinfo->frags + i; 3823 do { 3824 *--frag = *--frag2; 3825 } while (--i); 3826 3827 frag->page_offset += offset; 3828 skb_frag_size_sub(frag, offset); 3829 3830 /* all fragments truesize : remove (head size + sk_buff) */ 3831 delta_truesize = skb->truesize - 3832 SKB_TRUESIZE(skb_end_offset(skb)); 3833 3834 skb->truesize -= skb->data_len; 3835 skb->len -= skb->data_len; 3836 skb->data_len = 0; 3837 3838 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3839 goto done; 3840 } else if (skb->head_frag) { 3841 int nr_frags = pinfo->nr_frags; 3842 skb_frag_t *frag = pinfo->frags + nr_frags; 3843 struct page *page = virt_to_head_page(skb->head); 3844 unsigned int first_size = headlen - offset; 3845 unsigned int first_offset; 3846 3847 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3848 goto merge; 3849 3850 first_offset = skb->data - 3851 (unsigned char *)page_address(page) + 3852 offset; 3853 3854 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3855 3856 frag->page.p = page; 3857 frag->page_offset = first_offset; 3858 skb_frag_size_set(frag, first_size); 3859 3860 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3861 /* We dont need to clear skbinfo->nr_frags here */ 3862 3863 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3864 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3865 goto done; 3866 } 3867 3868 merge: 3869 delta_truesize = skb->truesize; 3870 if (offset > headlen) { 3871 unsigned int eat = offset - headlen; 3872 3873 skbinfo->frags[0].page_offset += eat; 3874 skb_frag_size_sub(&skbinfo->frags[0], eat); 3875 skb->data_len -= eat; 3876 skb->len -= eat; 3877 offset = headlen; 3878 } 3879 3880 __skb_pull(skb, offset); 3881 3882 if (NAPI_GRO_CB(p)->last == p) 3883 skb_shinfo(p)->frag_list = skb; 3884 else 3885 NAPI_GRO_CB(p)->last->next = skb; 3886 NAPI_GRO_CB(p)->last = skb; 3887 __skb_header_release(skb); 3888 lp = p; 3889 3890 done: 3891 NAPI_GRO_CB(p)->count++; 3892 p->data_len += len; 3893 p->truesize += delta_truesize; 3894 p->len += len; 3895 if (lp != p) { 3896 lp->data_len += len; 3897 lp->truesize += delta_truesize; 3898 lp->len += len; 3899 } 3900 NAPI_GRO_CB(skb)->same_flow = 1; 3901 return 0; 3902 } 3903 EXPORT_SYMBOL_GPL(skb_gro_receive); 3904 3905 void __init skb_init(void) 3906 { 3907 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 3908 sizeof(struct sk_buff), 3909 0, 3910 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3911 offsetof(struct sk_buff, cb), 3912 sizeof_field(struct sk_buff, cb), 3913 NULL); 3914 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3915 sizeof(struct sk_buff_fclones), 3916 0, 3917 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3918 NULL); 3919 } 3920 3921 static int 3922 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 3923 unsigned int recursion_level) 3924 { 3925 int start = skb_headlen(skb); 3926 int i, copy = start - offset; 3927 struct sk_buff *frag_iter; 3928 int elt = 0; 3929 3930 if (unlikely(recursion_level >= 24)) 3931 return -EMSGSIZE; 3932 3933 if (copy > 0) { 3934 if (copy > len) 3935 copy = len; 3936 sg_set_buf(sg, skb->data + offset, copy); 3937 elt++; 3938 if ((len -= copy) == 0) 3939 return elt; 3940 offset += copy; 3941 } 3942 3943 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3944 int end; 3945 3946 WARN_ON(start > offset + len); 3947 3948 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3949 if ((copy = end - offset) > 0) { 3950 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3951 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3952 return -EMSGSIZE; 3953 3954 if (copy > len) 3955 copy = len; 3956 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3957 frag->page_offset+offset-start); 3958 elt++; 3959 if (!(len -= copy)) 3960 return elt; 3961 offset += copy; 3962 } 3963 start = end; 3964 } 3965 3966 skb_walk_frags(skb, frag_iter) { 3967 int end, ret; 3968 3969 WARN_ON(start > offset + len); 3970 3971 end = start + frag_iter->len; 3972 if ((copy = end - offset) > 0) { 3973 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 3974 return -EMSGSIZE; 3975 3976 if (copy > len) 3977 copy = len; 3978 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3979 copy, recursion_level + 1); 3980 if (unlikely(ret < 0)) 3981 return ret; 3982 elt += ret; 3983 if ((len -= copy) == 0) 3984 return elt; 3985 offset += copy; 3986 } 3987 start = end; 3988 } 3989 BUG_ON(len); 3990 return elt; 3991 } 3992 3993 /** 3994 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3995 * @skb: Socket buffer containing the buffers to be mapped 3996 * @sg: The scatter-gather list to map into 3997 * @offset: The offset into the buffer's contents to start mapping 3998 * @len: Length of buffer space to be mapped 3999 * 4000 * Fill the specified scatter-gather list with mappings/pointers into a 4001 * region of the buffer space attached to a socket buffer. Returns either 4002 * the number of scatterlist items used, or -EMSGSIZE if the contents 4003 * could not fit. 4004 */ 4005 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4006 { 4007 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4008 4009 if (nsg <= 0) 4010 return nsg; 4011 4012 sg_mark_end(&sg[nsg - 1]); 4013 4014 return nsg; 4015 } 4016 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4017 4018 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4019 * sglist without mark the sg which contain last skb data as the end. 4020 * So the caller can mannipulate sg list as will when padding new data after 4021 * the first call without calling sg_unmark_end to expend sg list. 4022 * 4023 * Scenario to use skb_to_sgvec_nomark: 4024 * 1. sg_init_table 4025 * 2. skb_to_sgvec_nomark(payload1) 4026 * 3. skb_to_sgvec_nomark(payload2) 4027 * 4028 * This is equivalent to: 4029 * 1. sg_init_table 4030 * 2. skb_to_sgvec(payload1) 4031 * 3. sg_unmark_end 4032 * 4. skb_to_sgvec(payload2) 4033 * 4034 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4035 * is more preferable. 4036 */ 4037 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4038 int offset, int len) 4039 { 4040 return __skb_to_sgvec(skb, sg, offset, len, 0); 4041 } 4042 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4043 4044 4045 4046 /** 4047 * skb_cow_data - Check that a socket buffer's data buffers are writable 4048 * @skb: The socket buffer to check. 4049 * @tailbits: Amount of trailing space to be added 4050 * @trailer: Returned pointer to the skb where the @tailbits space begins 4051 * 4052 * Make sure that the data buffers attached to a socket buffer are 4053 * writable. If they are not, private copies are made of the data buffers 4054 * and the socket buffer is set to use these instead. 4055 * 4056 * If @tailbits is given, make sure that there is space to write @tailbits 4057 * bytes of data beyond current end of socket buffer. @trailer will be 4058 * set to point to the skb in which this space begins. 4059 * 4060 * The number of scatterlist elements required to completely map the 4061 * COW'd and extended socket buffer will be returned. 4062 */ 4063 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4064 { 4065 int copyflag; 4066 int elt; 4067 struct sk_buff *skb1, **skb_p; 4068 4069 /* If skb is cloned or its head is paged, reallocate 4070 * head pulling out all the pages (pages are considered not writable 4071 * at the moment even if they are anonymous). 4072 */ 4073 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4074 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 4075 return -ENOMEM; 4076 4077 /* Easy case. Most of packets will go this way. */ 4078 if (!skb_has_frag_list(skb)) { 4079 /* A little of trouble, not enough of space for trailer. 4080 * This should not happen, when stack is tuned to generate 4081 * good frames. OK, on miss we reallocate and reserve even more 4082 * space, 128 bytes is fair. */ 4083 4084 if (skb_tailroom(skb) < tailbits && 4085 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4086 return -ENOMEM; 4087 4088 /* Voila! */ 4089 *trailer = skb; 4090 return 1; 4091 } 4092 4093 /* Misery. We are in troubles, going to mincer fragments... */ 4094 4095 elt = 1; 4096 skb_p = &skb_shinfo(skb)->frag_list; 4097 copyflag = 0; 4098 4099 while ((skb1 = *skb_p) != NULL) { 4100 int ntail = 0; 4101 4102 /* The fragment is partially pulled by someone, 4103 * this can happen on input. Copy it and everything 4104 * after it. */ 4105 4106 if (skb_shared(skb1)) 4107 copyflag = 1; 4108 4109 /* If the skb is the last, worry about trailer. */ 4110 4111 if (skb1->next == NULL && tailbits) { 4112 if (skb_shinfo(skb1)->nr_frags || 4113 skb_has_frag_list(skb1) || 4114 skb_tailroom(skb1) < tailbits) 4115 ntail = tailbits + 128; 4116 } 4117 4118 if (copyflag || 4119 skb_cloned(skb1) || 4120 ntail || 4121 skb_shinfo(skb1)->nr_frags || 4122 skb_has_frag_list(skb1)) { 4123 struct sk_buff *skb2; 4124 4125 /* Fuck, we are miserable poor guys... */ 4126 if (ntail == 0) 4127 skb2 = skb_copy(skb1, GFP_ATOMIC); 4128 else 4129 skb2 = skb_copy_expand(skb1, 4130 skb_headroom(skb1), 4131 ntail, 4132 GFP_ATOMIC); 4133 if (unlikely(skb2 == NULL)) 4134 return -ENOMEM; 4135 4136 if (skb1->sk) 4137 skb_set_owner_w(skb2, skb1->sk); 4138 4139 /* Looking around. Are we still alive? 4140 * OK, link new skb, drop old one */ 4141 4142 skb2->next = skb1->next; 4143 *skb_p = skb2; 4144 kfree_skb(skb1); 4145 skb1 = skb2; 4146 } 4147 elt++; 4148 *trailer = skb1; 4149 skb_p = &skb1->next; 4150 } 4151 4152 return elt; 4153 } 4154 EXPORT_SYMBOL_GPL(skb_cow_data); 4155 4156 static void sock_rmem_free(struct sk_buff *skb) 4157 { 4158 struct sock *sk = skb->sk; 4159 4160 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4161 } 4162 4163 static void skb_set_err_queue(struct sk_buff *skb) 4164 { 4165 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4166 * So, it is safe to (mis)use it to mark skbs on the error queue. 4167 */ 4168 skb->pkt_type = PACKET_OUTGOING; 4169 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4170 } 4171 4172 /* 4173 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4174 */ 4175 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4176 { 4177 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4178 (unsigned int)sk->sk_rcvbuf) 4179 return -ENOMEM; 4180 4181 skb_orphan(skb); 4182 skb->sk = sk; 4183 skb->destructor = sock_rmem_free; 4184 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4185 skb_set_err_queue(skb); 4186 4187 /* before exiting rcu section, make sure dst is refcounted */ 4188 skb_dst_force(skb); 4189 4190 skb_queue_tail(&sk->sk_error_queue, skb); 4191 if (!sock_flag(sk, SOCK_DEAD)) 4192 sk->sk_error_report(sk); 4193 return 0; 4194 } 4195 EXPORT_SYMBOL(sock_queue_err_skb); 4196 4197 static bool is_icmp_err_skb(const struct sk_buff *skb) 4198 { 4199 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4200 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4201 } 4202 4203 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4204 { 4205 struct sk_buff_head *q = &sk->sk_error_queue; 4206 struct sk_buff *skb, *skb_next = NULL; 4207 bool icmp_next = false; 4208 unsigned long flags; 4209 4210 spin_lock_irqsave(&q->lock, flags); 4211 skb = __skb_dequeue(q); 4212 if (skb && (skb_next = skb_peek(q))) { 4213 icmp_next = is_icmp_err_skb(skb_next); 4214 if (icmp_next) 4215 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin; 4216 } 4217 spin_unlock_irqrestore(&q->lock, flags); 4218 4219 if (is_icmp_err_skb(skb) && !icmp_next) 4220 sk->sk_err = 0; 4221 4222 if (skb_next) 4223 sk->sk_error_report(sk); 4224 4225 return skb; 4226 } 4227 EXPORT_SYMBOL(sock_dequeue_err_skb); 4228 4229 /** 4230 * skb_clone_sk - create clone of skb, and take reference to socket 4231 * @skb: the skb to clone 4232 * 4233 * This function creates a clone of a buffer that holds a reference on 4234 * sk_refcnt. Buffers created via this function are meant to be 4235 * returned using sock_queue_err_skb, or free via kfree_skb. 4236 * 4237 * When passing buffers allocated with this function to sock_queue_err_skb 4238 * it is necessary to wrap the call with sock_hold/sock_put in order to 4239 * prevent the socket from being released prior to being enqueued on 4240 * the sk_error_queue. 4241 */ 4242 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4243 { 4244 struct sock *sk = skb->sk; 4245 struct sk_buff *clone; 4246 4247 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4248 return NULL; 4249 4250 clone = skb_clone(skb, GFP_ATOMIC); 4251 if (!clone) { 4252 sock_put(sk); 4253 return NULL; 4254 } 4255 4256 clone->sk = sk; 4257 clone->destructor = sock_efree; 4258 4259 return clone; 4260 } 4261 EXPORT_SYMBOL(skb_clone_sk); 4262 4263 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4264 struct sock *sk, 4265 int tstype, 4266 bool opt_stats) 4267 { 4268 struct sock_exterr_skb *serr; 4269 int err; 4270 4271 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4272 4273 serr = SKB_EXT_ERR(skb); 4274 memset(serr, 0, sizeof(*serr)); 4275 serr->ee.ee_errno = ENOMSG; 4276 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4277 serr->ee.ee_info = tstype; 4278 serr->opt_stats = opt_stats; 4279 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4280 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4281 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4282 if (sk->sk_protocol == IPPROTO_TCP && 4283 sk->sk_type == SOCK_STREAM) 4284 serr->ee.ee_data -= sk->sk_tskey; 4285 } 4286 4287 err = sock_queue_err_skb(sk, skb); 4288 4289 if (err) 4290 kfree_skb(skb); 4291 } 4292 4293 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4294 { 4295 bool ret; 4296 4297 if (likely(sysctl_tstamp_allow_data || tsonly)) 4298 return true; 4299 4300 read_lock_bh(&sk->sk_callback_lock); 4301 ret = sk->sk_socket && sk->sk_socket->file && 4302 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4303 read_unlock_bh(&sk->sk_callback_lock); 4304 return ret; 4305 } 4306 4307 void skb_complete_tx_timestamp(struct sk_buff *skb, 4308 struct skb_shared_hwtstamps *hwtstamps) 4309 { 4310 struct sock *sk = skb->sk; 4311 4312 if (!skb_may_tx_timestamp(sk, false)) 4313 goto err; 4314 4315 /* Take a reference to prevent skb_orphan() from freeing the socket, 4316 * but only if the socket refcount is not zero. 4317 */ 4318 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4319 *skb_hwtstamps(skb) = *hwtstamps; 4320 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4321 sock_put(sk); 4322 return; 4323 } 4324 4325 err: 4326 kfree_skb(skb); 4327 } 4328 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4329 4330 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4331 struct skb_shared_hwtstamps *hwtstamps, 4332 struct sock *sk, int tstype) 4333 { 4334 struct sk_buff *skb; 4335 bool tsonly, opt_stats = false; 4336 4337 if (!sk) 4338 return; 4339 4340 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4341 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4342 return; 4343 4344 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4345 if (!skb_may_tx_timestamp(sk, tsonly)) 4346 return; 4347 4348 if (tsonly) { 4349 #ifdef CONFIG_INET 4350 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4351 sk->sk_protocol == IPPROTO_TCP && 4352 sk->sk_type == SOCK_STREAM) { 4353 skb = tcp_get_timestamping_opt_stats(sk); 4354 opt_stats = true; 4355 } else 4356 #endif 4357 skb = alloc_skb(0, GFP_ATOMIC); 4358 } else { 4359 skb = skb_clone(orig_skb, GFP_ATOMIC); 4360 } 4361 if (!skb) 4362 return; 4363 4364 if (tsonly) { 4365 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4366 SKBTX_ANY_TSTAMP; 4367 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4368 } 4369 4370 if (hwtstamps) 4371 *skb_hwtstamps(skb) = *hwtstamps; 4372 else 4373 skb->tstamp = ktime_get_real(); 4374 4375 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4376 } 4377 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4378 4379 void skb_tstamp_tx(struct sk_buff *orig_skb, 4380 struct skb_shared_hwtstamps *hwtstamps) 4381 { 4382 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 4383 SCM_TSTAMP_SND); 4384 } 4385 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4386 4387 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4388 { 4389 struct sock *sk = skb->sk; 4390 struct sock_exterr_skb *serr; 4391 int err = 1; 4392 4393 skb->wifi_acked_valid = 1; 4394 skb->wifi_acked = acked; 4395 4396 serr = SKB_EXT_ERR(skb); 4397 memset(serr, 0, sizeof(*serr)); 4398 serr->ee.ee_errno = ENOMSG; 4399 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4400 4401 /* Take a reference to prevent skb_orphan() from freeing the socket, 4402 * but only if the socket refcount is not zero. 4403 */ 4404 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4405 err = sock_queue_err_skb(sk, skb); 4406 sock_put(sk); 4407 } 4408 if (err) 4409 kfree_skb(skb); 4410 } 4411 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4412 4413 /** 4414 * skb_partial_csum_set - set up and verify partial csum values for packet 4415 * @skb: the skb to set 4416 * @start: the number of bytes after skb->data to start checksumming. 4417 * @off: the offset from start to place the checksum. 4418 * 4419 * For untrusted partially-checksummed packets, we need to make sure the values 4420 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4421 * 4422 * This function checks and sets those values and skb->ip_summed: if this 4423 * returns false you should drop the packet. 4424 */ 4425 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4426 { 4427 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4428 u32 csum_start = skb_headroom(skb) + (u32)start; 4429 4430 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4431 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4432 start, off, skb_headroom(skb), skb_headlen(skb)); 4433 return false; 4434 } 4435 skb->ip_summed = CHECKSUM_PARTIAL; 4436 skb->csum_start = csum_start; 4437 skb->csum_offset = off; 4438 skb_set_transport_header(skb, start); 4439 return true; 4440 } 4441 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4442 4443 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4444 unsigned int max) 4445 { 4446 if (skb_headlen(skb) >= len) 4447 return 0; 4448 4449 /* If we need to pullup then pullup to the max, so we 4450 * won't need to do it again. 4451 */ 4452 if (max > skb->len) 4453 max = skb->len; 4454 4455 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4456 return -ENOMEM; 4457 4458 if (skb_headlen(skb) < len) 4459 return -EPROTO; 4460 4461 return 0; 4462 } 4463 4464 #define MAX_TCP_HDR_LEN (15 * 4) 4465 4466 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4467 typeof(IPPROTO_IP) proto, 4468 unsigned int off) 4469 { 4470 switch (proto) { 4471 int err; 4472 4473 case IPPROTO_TCP: 4474 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4475 off + MAX_TCP_HDR_LEN); 4476 if (!err && !skb_partial_csum_set(skb, off, 4477 offsetof(struct tcphdr, 4478 check))) 4479 err = -EPROTO; 4480 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4481 4482 case IPPROTO_UDP: 4483 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4484 off + sizeof(struct udphdr)); 4485 if (!err && !skb_partial_csum_set(skb, off, 4486 offsetof(struct udphdr, 4487 check))) 4488 err = -EPROTO; 4489 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4490 } 4491 4492 return ERR_PTR(-EPROTO); 4493 } 4494 4495 /* This value should be large enough to cover a tagged ethernet header plus 4496 * maximally sized IP and TCP or UDP headers. 4497 */ 4498 #define MAX_IP_HDR_LEN 128 4499 4500 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4501 { 4502 unsigned int off; 4503 bool fragment; 4504 __sum16 *csum; 4505 int err; 4506 4507 fragment = false; 4508 4509 err = skb_maybe_pull_tail(skb, 4510 sizeof(struct iphdr), 4511 MAX_IP_HDR_LEN); 4512 if (err < 0) 4513 goto out; 4514 4515 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4516 fragment = true; 4517 4518 off = ip_hdrlen(skb); 4519 4520 err = -EPROTO; 4521 4522 if (fragment) 4523 goto out; 4524 4525 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4526 if (IS_ERR(csum)) 4527 return PTR_ERR(csum); 4528 4529 if (recalculate) 4530 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4531 ip_hdr(skb)->daddr, 4532 skb->len - off, 4533 ip_hdr(skb)->protocol, 0); 4534 err = 0; 4535 4536 out: 4537 return err; 4538 } 4539 4540 /* This value should be large enough to cover a tagged ethernet header plus 4541 * an IPv6 header, all options, and a maximal TCP or UDP header. 4542 */ 4543 #define MAX_IPV6_HDR_LEN 256 4544 4545 #define OPT_HDR(type, skb, off) \ 4546 (type *)(skb_network_header(skb) + (off)) 4547 4548 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4549 { 4550 int err; 4551 u8 nexthdr; 4552 unsigned int off; 4553 unsigned int len; 4554 bool fragment; 4555 bool done; 4556 __sum16 *csum; 4557 4558 fragment = false; 4559 done = false; 4560 4561 off = sizeof(struct ipv6hdr); 4562 4563 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4564 if (err < 0) 4565 goto out; 4566 4567 nexthdr = ipv6_hdr(skb)->nexthdr; 4568 4569 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4570 while (off <= len && !done) { 4571 switch (nexthdr) { 4572 case IPPROTO_DSTOPTS: 4573 case IPPROTO_HOPOPTS: 4574 case IPPROTO_ROUTING: { 4575 struct ipv6_opt_hdr *hp; 4576 4577 err = skb_maybe_pull_tail(skb, 4578 off + 4579 sizeof(struct ipv6_opt_hdr), 4580 MAX_IPV6_HDR_LEN); 4581 if (err < 0) 4582 goto out; 4583 4584 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4585 nexthdr = hp->nexthdr; 4586 off += ipv6_optlen(hp); 4587 break; 4588 } 4589 case IPPROTO_AH: { 4590 struct ip_auth_hdr *hp; 4591 4592 err = skb_maybe_pull_tail(skb, 4593 off + 4594 sizeof(struct ip_auth_hdr), 4595 MAX_IPV6_HDR_LEN); 4596 if (err < 0) 4597 goto out; 4598 4599 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4600 nexthdr = hp->nexthdr; 4601 off += ipv6_authlen(hp); 4602 break; 4603 } 4604 case IPPROTO_FRAGMENT: { 4605 struct frag_hdr *hp; 4606 4607 err = skb_maybe_pull_tail(skb, 4608 off + 4609 sizeof(struct frag_hdr), 4610 MAX_IPV6_HDR_LEN); 4611 if (err < 0) 4612 goto out; 4613 4614 hp = OPT_HDR(struct frag_hdr, skb, off); 4615 4616 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4617 fragment = true; 4618 4619 nexthdr = hp->nexthdr; 4620 off += sizeof(struct frag_hdr); 4621 break; 4622 } 4623 default: 4624 done = true; 4625 break; 4626 } 4627 } 4628 4629 err = -EPROTO; 4630 4631 if (!done || fragment) 4632 goto out; 4633 4634 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4635 if (IS_ERR(csum)) 4636 return PTR_ERR(csum); 4637 4638 if (recalculate) 4639 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4640 &ipv6_hdr(skb)->daddr, 4641 skb->len - off, nexthdr, 0); 4642 err = 0; 4643 4644 out: 4645 return err; 4646 } 4647 4648 /** 4649 * skb_checksum_setup - set up partial checksum offset 4650 * @skb: the skb to set up 4651 * @recalculate: if true the pseudo-header checksum will be recalculated 4652 */ 4653 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4654 { 4655 int err; 4656 4657 switch (skb->protocol) { 4658 case htons(ETH_P_IP): 4659 err = skb_checksum_setup_ipv4(skb, recalculate); 4660 break; 4661 4662 case htons(ETH_P_IPV6): 4663 err = skb_checksum_setup_ipv6(skb, recalculate); 4664 break; 4665 4666 default: 4667 err = -EPROTO; 4668 break; 4669 } 4670 4671 return err; 4672 } 4673 EXPORT_SYMBOL(skb_checksum_setup); 4674 4675 /** 4676 * skb_checksum_maybe_trim - maybe trims the given skb 4677 * @skb: the skb to check 4678 * @transport_len: the data length beyond the network header 4679 * 4680 * Checks whether the given skb has data beyond the given transport length. 4681 * If so, returns a cloned skb trimmed to this transport length. 4682 * Otherwise returns the provided skb. Returns NULL in error cases 4683 * (e.g. transport_len exceeds skb length or out-of-memory). 4684 * 4685 * Caller needs to set the skb transport header and free any returned skb if it 4686 * differs from the provided skb. 4687 */ 4688 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4689 unsigned int transport_len) 4690 { 4691 struct sk_buff *skb_chk; 4692 unsigned int len = skb_transport_offset(skb) + transport_len; 4693 int ret; 4694 4695 if (skb->len < len) 4696 return NULL; 4697 else if (skb->len == len) 4698 return skb; 4699 4700 skb_chk = skb_clone(skb, GFP_ATOMIC); 4701 if (!skb_chk) 4702 return NULL; 4703 4704 ret = pskb_trim_rcsum(skb_chk, len); 4705 if (ret) { 4706 kfree_skb(skb_chk); 4707 return NULL; 4708 } 4709 4710 return skb_chk; 4711 } 4712 4713 /** 4714 * skb_checksum_trimmed - validate checksum of an skb 4715 * @skb: the skb to check 4716 * @transport_len: the data length beyond the network header 4717 * @skb_chkf: checksum function to use 4718 * 4719 * Applies the given checksum function skb_chkf to the provided skb. 4720 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4721 * 4722 * If the skb has data beyond the given transport length, then a 4723 * trimmed & cloned skb is checked and returned. 4724 * 4725 * Caller needs to set the skb transport header and free any returned skb if it 4726 * differs from the provided skb. 4727 */ 4728 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4729 unsigned int transport_len, 4730 __sum16(*skb_chkf)(struct sk_buff *skb)) 4731 { 4732 struct sk_buff *skb_chk; 4733 unsigned int offset = skb_transport_offset(skb); 4734 __sum16 ret; 4735 4736 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4737 if (!skb_chk) 4738 goto err; 4739 4740 if (!pskb_may_pull(skb_chk, offset)) 4741 goto err; 4742 4743 skb_pull_rcsum(skb_chk, offset); 4744 ret = skb_chkf(skb_chk); 4745 skb_push_rcsum(skb_chk, offset); 4746 4747 if (ret) 4748 goto err; 4749 4750 return skb_chk; 4751 4752 err: 4753 if (skb_chk && skb_chk != skb) 4754 kfree_skb(skb_chk); 4755 4756 return NULL; 4757 4758 } 4759 EXPORT_SYMBOL(skb_checksum_trimmed); 4760 4761 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4762 { 4763 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4764 skb->dev->name); 4765 } 4766 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4767 4768 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4769 { 4770 if (head_stolen) { 4771 skb_release_head_state(skb); 4772 kmem_cache_free(skbuff_head_cache, skb); 4773 } else { 4774 __kfree_skb(skb); 4775 } 4776 } 4777 EXPORT_SYMBOL(kfree_skb_partial); 4778 4779 /** 4780 * skb_try_coalesce - try to merge skb to prior one 4781 * @to: prior buffer 4782 * @from: buffer to add 4783 * @fragstolen: pointer to boolean 4784 * @delta_truesize: how much more was allocated than was requested 4785 */ 4786 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4787 bool *fragstolen, int *delta_truesize) 4788 { 4789 struct skb_shared_info *to_shinfo, *from_shinfo; 4790 int i, delta, len = from->len; 4791 4792 *fragstolen = false; 4793 4794 if (skb_cloned(to)) 4795 return false; 4796 4797 if (len <= skb_tailroom(to)) { 4798 if (len) 4799 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4800 *delta_truesize = 0; 4801 return true; 4802 } 4803 4804 to_shinfo = skb_shinfo(to); 4805 from_shinfo = skb_shinfo(from); 4806 if (to_shinfo->frag_list || from_shinfo->frag_list) 4807 return false; 4808 if (skb_zcopy(to) || skb_zcopy(from)) 4809 return false; 4810 4811 if (skb_headlen(from) != 0) { 4812 struct page *page; 4813 unsigned int offset; 4814 4815 if (to_shinfo->nr_frags + 4816 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 4817 return false; 4818 4819 if (skb_head_is_locked(from)) 4820 return false; 4821 4822 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4823 4824 page = virt_to_head_page(from->head); 4825 offset = from->data - (unsigned char *)page_address(page); 4826 4827 skb_fill_page_desc(to, to_shinfo->nr_frags, 4828 page, offset, skb_headlen(from)); 4829 *fragstolen = true; 4830 } else { 4831 if (to_shinfo->nr_frags + 4832 from_shinfo->nr_frags > MAX_SKB_FRAGS) 4833 return false; 4834 4835 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4836 } 4837 4838 WARN_ON_ONCE(delta < len); 4839 4840 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 4841 from_shinfo->frags, 4842 from_shinfo->nr_frags * sizeof(skb_frag_t)); 4843 to_shinfo->nr_frags += from_shinfo->nr_frags; 4844 4845 if (!skb_cloned(from)) 4846 from_shinfo->nr_frags = 0; 4847 4848 /* if the skb is not cloned this does nothing 4849 * since we set nr_frags to 0. 4850 */ 4851 for (i = 0; i < from_shinfo->nr_frags; i++) 4852 __skb_frag_ref(&from_shinfo->frags[i]); 4853 4854 to->truesize += delta; 4855 to->len += len; 4856 to->data_len += len; 4857 4858 *delta_truesize = delta; 4859 return true; 4860 } 4861 EXPORT_SYMBOL(skb_try_coalesce); 4862 4863 /** 4864 * skb_scrub_packet - scrub an skb 4865 * 4866 * @skb: buffer to clean 4867 * @xnet: packet is crossing netns 4868 * 4869 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4870 * into/from a tunnel. Some information have to be cleared during these 4871 * operations. 4872 * skb_scrub_packet can also be used to clean a skb before injecting it in 4873 * another namespace (@xnet == true). We have to clear all information in the 4874 * skb that could impact namespace isolation. 4875 */ 4876 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4877 { 4878 skb->pkt_type = PACKET_HOST; 4879 skb->skb_iif = 0; 4880 skb->ignore_df = 0; 4881 skb_dst_drop(skb); 4882 secpath_reset(skb); 4883 nf_reset(skb); 4884 nf_reset_trace(skb); 4885 4886 #ifdef CONFIG_NET_SWITCHDEV 4887 skb->offload_fwd_mark = 0; 4888 skb->offload_l3_fwd_mark = 0; 4889 #endif 4890 4891 if (!xnet) 4892 return; 4893 4894 ipvs_reset(skb); 4895 skb->mark = 0; 4896 skb->tstamp = 0; 4897 } 4898 EXPORT_SYMBOL_GPL(skb_scrub_packet); 4899 4900 /** 4901 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4902 * 4903 * @skb: GSO skb 4904 * 4905 * skb_gso_transport_seglen is used to determine the real size of the 4906 * individual segments, including Layer4 headers (TCP/UDP). 4907 * 4908 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4909 */ 4910 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4911 { 4912 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4913 unsigned int thlen = 0; 4914 4915 if (skb->encapsulation) { 4916 thlen = skb_inner_transport_header(skb) - 4917 skb_transport_header(skb); 4918 4919 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4920 thlen += inner_tcp_hdrlen(skb); 4921 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4922 thlen = tcp_hdrlen(skb); 4923 } else if (unlikely(skb_is_gso_sctp(skb))) { 4924 thlen = sizeof(struct sctphdr); 4925 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4926 thlen = sizeof(struct udphdr); 4927 } 4928 /* UFO sets gso_size to the size of the fragmentation 4929 * payload, i.e. the size of the L4 (UDP) header is already 4930 * accounted for. 4931 */ 4932 return thlen + shinfo->gso_size; 4933 } 4934 4935 /** 4936 * skb_gso_network_seglen - Return length of individual segments of a gso packet 4937 * 4938 * @skb: GSO skb 4939 * 4940 * skb_gso_network_seglen is used to determine the real size of the 4941 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 4942 * 4943 * The MAC/L2 header is not accounted for. 4944 */ 4945 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 4946 { 4947 unsigned int hdr_len = skb_transport_header(skb) - 4948 skb_network_header(skb); 4949 4950 return hdr_len + skb_gso_transport_seglen(skb); 4951 } 4952 4953 /** 4954 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 4955 * 4956 * @skb: GSO skb 4957 * 4958 * skb_gso_mac_seglen is used to determine the real size of the 4959 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 4960 * headers (TCP/UDP). 4961 */ 4962 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 4963 { 4964 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 4965 4966 return hdr_len + skb_gso_transport_seglen(skb); 4967 } 4968 4969 /** 4970 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 4971 * 4972 * There are a couple of instances where we have a GSO skb, and we 4973 * want to determine what size it would be after it is segmented. 4974 * 4975 * We might want to check: 4976 * - L3+L4+payload size (e.g. IP forwarding) 4977 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 4978 * 4979 * This is a helper to do that correctly considering GSO_BY_FRAGS. 4980 * 4981 * @skb: GSO skb 4982 * 4983 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 4984 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 4985 * 4986 * @max_len: The maximum permissible length. 4987 * 4988 * Returns true if the segmented length <= max length. 4989 */ 4990 static inline bool skb_gso_size_check(const struct sk_buff *skb, 4991 unsigned int seg_len, 4992 unsigned int max_len) { 4993 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4994 const struct sk_buff *iter; 4995 4996 if (shinfo->gso_size != GSO_BY_FRAGS) 4997 return seg_len <= max_len; 4998 4999 /* Undo this so we can re-use header sizes */ 5000 seg_len -= GSO_BY_FRAGS; 5001 5002 skb_walk_frags(skb, iter) { 5003 if (seg_len + skb_headlen(iter) > max_len) 5004 return false; 5005 } 5006 5007 return true; 5008 } 5009 5010 /** 5011 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5012 * 5013 * @skb: GSO skb 5014 * @mtu: MTU to validate against 5015 * 5016 * skb_gso_validate_network_len validates if a given skb will fit a 5017 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5018 * payload. 5019 */ 5020 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5021 { 5022 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5023 } 5024 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5025 5026 /** 5027 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5028 * 5029 * @skb: GSO skb 5030 * @len: length to validate against 5031 * 5032 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5033 * length once split, including L2, L3 and L4 headers and the payload. 5034 */ 5035 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5036 { 5037 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5038 } 5039 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5040 5041 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5042 { 5043 int mac_len; 5044 5045 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5046 kfree_skb(skb); 5047 return NULL; 5048 } 5049 5050 mac_len = skb->data - skb_mac_header(skb); 5051 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5052 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5053 mac_len - VLAN_HLEN - ETH_TLEN); 5054 } 5055 skb->mac_header += VLAN_HLEN; 5056 return skb; 5057 } 5058 5059 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5060 { 5061 struct vlan_hdr *vhdr; 5062 u16 vlan_tci; 5063 5064 if (unlikely(skb_vlan_tag_present(skb))) { 5065 /* vlan_tci is already set-up so leave this for another time */ 5066 return skb; 5067 } 5068 5069 skb = skb_share_check(skb, GFP_ATOMIC); 5070 if (unlikely(!skb)) 5071 goto err_free; 5072 5073 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 5074 goto err_free; 5075 5076 vhdr = (struct vlan_hdr *)skb->data; 5077 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5078 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5079 5080 skb_pull_rcsum(skb, VLAN_HLEN); 5081 vlan_set_encap_proto(skb, vhdr); 5082 5083 skb = skb_reorder_vlan_header(skb); 5084 if (unlikely(!skb)) 5085 goto err_free; 5086 5087 skb_reset_network_header(skb); 5088 skb_reset_transport_header(skb); 5089 skb_reset_mac_len(skb); 5090 5091 return skb; 5092 5093 err_free: 5094 kfree_skb(skb); 5095 return NULL; 5096 } 5097 EXPORT_SYMBOL(skb_vlan_untag); 5098 5099 int skb_ensure_writable(struct sk_buff *skb, int write_len) 5100 { 5101 if (!pskb_may_pull(skb, write_len)) 5102 return -ENOMEM; 5103 5104 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5105 return 0; 5106 5107 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5108 } 5109 EXPORT_SYMBOL(skb_ensure_writable); 5110 5111 /* remove VLAN header from packet and update csum accordingly. 5112 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5113 */ 5114 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5115 { 5116 struct vlan_hdr *vhdr; 5117 int offset = skb->data - skb_mac_header(skb); 5118 int err; 5119 5120 if (WARN_ONCE(offset, 5121 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5122 offset)) { 5123 return -EINVAL; 5124 } 5125 5126 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5127 if (unlikely(err)) 5128 return err; 5129 5130 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5131 5132 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5133 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5134 5135 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5136 __skb_pull(skb, VLAN_HLEN); 5137 5138 vlan_set_encap_proto(skb, vhdr); 5139 skb->mac_header += VLAN_HLEN; 5140 5141 if (skb_network_offset(skb) < ETH_HLEN) 5142 skb_set_network_header(skb, ETH_HLEN); 5143 5144 skb_reset_mac_len(skb); 5145 5146 return err; 5147 } 5148 EXPORT_SYMBOL(__skb_vlan_pop); 5149 5150 /* Pop a vlan tag either from hwaccel or from payload. 5151 * Expects skb->data at mac header. 5152 */ 5153 int skb_vlan_pop(struct sk_buff *skb) 5154 { 5155 u16 vlan_tci; 5156 __be16 vlan_proto; 5157 int err; 5158 5159 if (likely(skb_vlan_tag_present(skb))) { 5160 __vlan_hwaccel_clear_tag(skb); 5161 } else { 5162 if (unlikely(!eth_type_vlan(skb->protocol))) 5163 return 0; 5164 5165 err = __skb_vlan_pop(skb, &vlan_tci); 5166 if (err) 5167 return err; 5168 } 5169 /* move next vlan tag to hw accel tag */ 5170 if (likely(!eth_type_vlan(skb->protocol))) 5171 return 0; 5172 5173 vlan_proto = skb->protocol; 5174 err = __skb_vlan_pop(skb, &vlan_tci); 5175 if (unlikely(err)) 5176 return err; 5177 5178 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5179 return 0; 5180 } 5181 EXPORT_SYMBOL(skb_vlan_pop); 5182 5183 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5184 * Expects skb->data at mac header. 5185 */ 5186 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5187 { 5188 if (skb_vlan_tag_present(skb)) { 5189 int offset = skb->data - skb_mac_header(skb); 5190 int err; 5191 5192 if (WARN_ONCE(offset, 5193 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5194 offset)) { 5195 return -EINVAL; 5196 } 5197 5198 err = __vlan_insert_tag(skb, skb->vlan_proto, 5199 skb_vlan_tag_get(skb)); 5200 if (err) 5201 return err; 5202 5203 skb->protocol = skb->vlan_proto; 5204 skb->mac_len += VLAN_HLEN; 5205 5206 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5207 } 5208 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5209 return 0; 5210 } 5211 EXPORT_SYMBOL(skb_vlan_push); 5212 5213 /** 5214 * alloc_skb_with_frags - allocate skb with page frags 5215 * 5216 * @header_len: size of linear part 5217 * @data_len: needed length in frags 5218 * @max_page_order: max page order desired. 5219 * @errcode: pointer to error code if any 5220 * @gfp_mask: allocation mask 5221 * 5222 * This can be used to allocate a paged skb, given a maximal order for frags. 5223 */ 5224 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5225 unsigned long data_len, 5226 int max_page_order, 5227 int *errcode, 5228 gfp_t gfp_mask) 5229 { 5230 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5231 unsigned long chunk; 5232 struct sk_buff *skb; 5233 struct page *page; 5234 gfp_t gfp_head; 5235 int i; 5236 5237 *errcode = -EMSGSIZE; 5238 /* Note this test could be relaxed, if we succeed to allocate 5239 * high order pages... 5240 */ 5241 if (npages > MAX_SKB_FRAGS) 5242 return NULL; 5243 5244 gfp_head = gfp_mask; 5245 if (gfp_head & __GFP_DIRECT_RECLAIM) 5246 gfp_head |= __GFP_RETRY_MAYFAIL; 5247 5248 *errcode = -ENOBUFS; 5249 skb = alloc_skb(header_len, gfp_head); 5250 if (!skb) 5251 return NULL; 5252 5253 skb->truesize += npages << PAGE_SHIFT; 5254 5255 for (i = 0; npages > 0; i++) { 5256 int order = max_page_order; 5257 5258 while (order) { 5259 if (npages >= 1 << order) { 5260 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 5261 __GFP_COMP | 5262 __GFP_NOWARN, 5263 order); 5264 if (page) 5265 goto fill_page; 5266 /* Do not retry other high order allocations */ 5267 order = 1; 5268 max_page_order = 0; 5269 } 5270 order--; 5271 } 5272 page = alloc_page(gfp_mask); 5273 if (!page) 5274 goto failure; 5275 fill_page: 5276 chunk = min_t(unsigned long, data_len, 5277 PAGE_SIZE << order); 5278 skb_fill_page_desc(skb, i, page, 0, chunk); 5279 data_len -= chunk; 5280 npages -= 1 << order; 5281 } 5282 return skb; 5283 5284 failure: 5285 kfree_skb(skb); 5286 return NULL; 5287 } 5288 EXPORT_SYMBOL(alloc_skb_with_frags); 5289 5290 /* carve out the first off bytes from skb when off < headlen */ 5291 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 5292 const int headlen, gfp_t gfp_mask) 5293 { 5294 int i; 5295 int size = skb_end_offset(skb); 5296 int new_hlen = headlen - off; 5297 u8 *data; 5298 5299 size = SKB_DATA_ALIGN(size); 5300 5301 if (skb_pfmemalloc(skb)) 5302 gfp_mask |= __GFP_MEMALLOC; 5303 data = kmalloc_reserve(size + 5304 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5305 gfp_mask, NUMA_NO_NODE, NULL); 5306 if (!data) 5307 return -ENOMEM; 5308 5309 size = SKB_WITH_OVERHEAD(ksize(data)); 5310 5311 /* Copy real data, and all frags */ 5312 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 5313 skb->len -= off; 5314 5315 memcpy((struct skb_shared_info *)(data + size), 5316 skb_shinfo(skb), 5317 offsetof(struct skb_shared_info, 5318 frags[skb_shinfo(skb)->nr_frags])); 5319 if (skb_cloned(skb)) { 5320 /* drop the old head gracefully */ 5321 if (skb_orphan_frags(skb, gfp_mask)) { 5322 kfree(data); 5323 return -ENOMEM; 5324 } 5325 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 5326 skb_frag_ref(skb, i); 5327 if (skb_has_frag_list(skb)) 5328 skb_clone_fraglist(skb); 5329 skb_release_data(skb); 5330 } else { 5331 /* we can reuse existing recount- all we did was 5332 * relocate values 5333 */ 5334 skb_free_head(skb); 5335 } 5336 5337 skb->head = data; 5338 skb->data = data; 5339 skb->head_frag = 0; 5340 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5341 skb->end = size; 5342 #else 5343 skb->end = skb->head + size; 5344 #endif 5345 skb_set_tail_pointer(skb, skb_headlen(skb)); 5346 skb_headers_offset_update(skb, 0); 5347 skb->cloned = 0; 5348 skb->hdr_len = 0; 5349 skb->nohdr = 0; 5350 atomic_set(&skb_shinfo(skb)->dataref, 1); 5351 5352 return 0; 5353 } 5354 5355 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 5356 5357 /* carve out the first eat bytes from skb's frag_list. May recurse into 5358 * pskb_carve() 5359 */ 5360 static int pskb_carve_frag_list(struct sk_buff *skb, 5361 struct skb_shared_info *shinfo, int eat, 5362 gfp_t gfp_mask) 5363 { 5364 struct sk_buff *list = shinfo->frag_list; 5365 struct sk_buff *clone = NULL; 5366 struct sk_buff *insp = NULL; 5367 5368 do { 5369 if (!list) { 5370 pr_err("Not enough bytes to eat. Want %d\n", eat); 5371 return -EFAULT; 5372 } 5373 if (list->len <= eat) { 5374 /* Eaten as whole. */ 5375 eat -= list->len; 5376 list = list->next; 5377 insp = list; 5378 } else { 5379 /* Eaten partially. */ 5380 if (skb_shared(list)) { 5381 clone = skb_clone(list, gfp_mask); 5382 if (!clone) 5383 return -ENOMEM; 5384 insp = list->next; 5385 list = clone; 5386 } else { 5387 /* This may be pulled without problems. */ 5388 insp = list; 5389 } 5390 if (pskb_carve(list, eat, gfp_mask) < 0) { 5391 kfree_skb(clone); 5392 return -ENOMEM; 5393 } 5394 break; 5395 } 5396 } while (eat); 5397 5398 /* Free pulled out fragments. */ 5399 while ((list = shinfo->frag_list) != insp) { 5400 shinfo->frag_list = list->next; 5401 kfree_skb(list); 5402 } 5403 /* And insert new clone at head. */ 5404 if (clone) { 5405 clone->next = list; 5406 shinfo->frag_list = clone; 5407 } 5408 return 0; 5409 } 5410 5411 /* carve off first len bytes from skb. Split line (off) is in the 5412 * non-linear part of skb 5413 */ 5414 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 5415 int pos, gfp_t gfp_mask) 5416 { 5417 int i, k = 0; 5418 int size = skb_end_offset(skb); 5419 u8 *data; 5420 const int nfrags = skb_shinfo(skb)->nr_frags; 5421 struct skb_shared_info *shinfo; 5422 5423 size = SKB_DATA_ALIGN(size); 5424 5425 if (skb_pfmemalloc(skb)) 5426 gfp_mask |= __GFP_MEMALLOC; 5427 data = kmalloc_reserve(size + 5428 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 5429 gfp_mask, NUMA_NO_NODE, NULL); 5430 if (!data) 5431 return -ENOMEM; 5432 5433 size = SKB_WITH_OVERHEAD(ksize(data)); 5434 5435 memcpy((struct skb_shared_info *)(data + size), 5436 skb_shinfo(skb), offsetof(struct skb_shared_info, 5437 frags[skb_shinfo(skb)->nr_frags])); 5438 if (skb_orphan_frags(skb, gfp_mask)) { 5439 kfree(data); 5440 return -ENOMEM; 5441 } 5442 shinfo = (struct skb_shared_info *)(data + size); 5443 for (i = 0; i < nfrags; i++) { 5444 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 5445 5446 if (pos + fsize > off) { 5447 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 5448 5449 if (pos < off) { 5450 /* Split frag. 5451 * We have two variants in this case: 5452 * 1. Move all the frag to the second 5453 * part, if it is possible. F.e. 5454 * this approach is mandatory for TUX, 5455 * where splitting is expensive. 5456 * 2. Split is accurately. We make this. 5457 */ 5458 shinfo->frags[0].page_offset += off - pos; 5459 skb_frag_size_sub(&shinfo->frags[0], off - pos); 5460 } 5461 skb_frag_ref(skb, i); 5462 k++; 5463 } 5464 pos += fsize; 5465 } 5466 shinfo->nr_frags = k; 5467 if (skb_has_frag_list(skb)) 5468 skb_clone_fraglist(skb); 5469 5470 if (k == 0) { 5471 /* split line is in frag list */ 5472 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 5473 } 5474 skb_release_data(skb); 5475 5476 skb->head = data; 5477 skb->head_frag = 0; 5478 skb->data = data; 5479 #ifdef NET_SKBUFF_DATA_USES_OFFSET 5480 skb->end = size; 5481 #else 5482 skb->end = skb->head + size; 5483 #endif 5484 skb_reset_tail_pointer(skb); 5485 skb_headers_offset_update(skb, 0); 5486 skb->cloned = 0; 5487 skb->hdr_len = 0; 5488 skb->nohdr = 0; 5489 skb->len -= off; 5490 skb->data_len = skb->len; 5491 atomic_set(&skb_shinfo(skb)->dataref, 1); 5492 return 0; 5493 } 5494 5495 /* remove len bytes from the beginning of the skb */ 5496 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 5497 { 5498 int headlen = skb_headlen(skb); 5499 5500 if (len < headlen) 5501 return pskb_carve_inside_header(skb, len, headlen, gfp); 5502 else 5503 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 5504 } 5505 5506 /* Extract to_copy bytes starting at off from skb, and return this in 5507 * a new skb 5508 */ 5509 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 5510 int to_copy, gfp_t gfp) 5511 { 5512 struct sk_buff *clone = skb_clone(skb, gfp); 5513 5514 if (!clone) 5515 return NULL; 5516 5517 if (pskb_carve(clone, off, gfp) < 0 || 5518 pskb_trim(clone, to_copy)) { 5519 kfree_skb(clone); 5520 return NULL; 5521 } 5522 return clone; 5523 } 5524 EXPORT_SYMBOL(pskb_extract); 5525 5526 /** 5527 * skb_condense - try to get rid of fragments/frag_list if possible 5528 * @skb: buffer 5529 * 5530 * Can be used to save memory before skb is added to a busy queue. 5531 * If packet has bytes in frags and enough tail room in skb->head, 5532 * pull all of them, so that we can free the frags right now and adjust 5533 * truesize. 5534 * Notes: 5535 * We do not reallocate skb->head thus can not fail. 5536 * Caller must re-evaluate skb->truesize if needed. 5537 */ 5538 void skb_condense(struct sk_buff *skb) 5539 { 5540 if (skb->data_len) { 5541 if (skb->data_len > skb->end - skb->tail || 5542 skb_cloned(skb)) 5543 return; 5544 5545 /* Nice, we can free page frag(s) right now */ 5546 __pskb_pull_tail(skb, skb->data_len); 5547 } 5548 /* At this point, skb->truesize might be over estimated, 5549 * because skb had a fragment, and fragments do not tell 5550 * their truesize. 5551 * When we pulled its content into skb->head, fragment 5552 * was freed, but __pskb_pull_tail() could not possibly 5553 * adjust skb->truesize, not knowing the frag truesize. 5554 */ 5555 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5556 } 5557