xref: /openbmc/linux/net/core/skbuff.c (revision 036b9e7c)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __ro_after_init;
81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
160 /**
161  *	__alloc_skb	-	allocate a network buffer
162  *	@size: size to allocate
163  *	@gfp_mask: allocation mask
164  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165  *		instead of head cache and allocate a cloned (child) skb.
166  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167  *		allocations in case the data is required for writeback
168  *	@node: numa node to allocate memory on
169  *
170  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
171  *	tail room of at least size bytes. The object has a reference count
172  *	of one. The return is the buffer. On a failure the return is %NULL.
173  *
174  *	Buffers may only be allocated from interrupts using a @gfp_mask of
175  *	%GFP_ATOMIC.
176  */
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 			    int flags, int node)
179 {
180 	struct kmem_cache *cache;
181 	struct skb_shared_info *shinfo;
182 	struct sk_buff *skb;
183 	u8 *data;
184 	bool pfmemalloc;
185 
186 	cache = (flags & SKB_ALLOC_FCLONE)
187 		? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 		gfp_mask |= __GFP_MEMALLOC;
191 
192 	/* Get the HEAD */
193 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 	if (!skb)
195 		goto out;
196 	prefetchw(skb);
197 
198 	/* We do our best to align skb_shared_info on a separate cache
199 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 	 * Both skb->head and skb_shared_info are cache line aligned.
202 	 */
203 	size = SKB_DATA_ALIGN(size);
204 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 	if (!data)
207 		goto nodata;
208 	/* kmalloc(size) might give us more room than requested.
209 	 * Put skb_shared_info exactly at the end of allocated zone,
210 	 * to allow max possible filling before reallocation.
211 	 */
212 	size = SKB_WITH_OVERHEAD(ksize(data));
213 	prefetchw(data + size);
214 
215 	/*
216 	 * Only clear those fields we need to clear, not those that we will
217 	 * actually initialise below. Hence, don't put any more fields after
218 	 * the tail pointer in struct sk_buff!
219 	 */
220 	memset(skb, 0, offsetof(struct sk_buff, tail));
221 	/* Account for allocated memory : skb + skb->head */
222 	skb->truesize = SKB_TRUESIZE(size);
223 	skb->pfmemalloc = pfmemalloc;
224 	refcount_set(&skb->users, 1);
225 	skb->head = data;
226 	skb->data = data;
227 	skb_reset_tail_pointer(skb);
228 	skb->end = skb->tail + size;
229 	skb->mac_header = (typeof(skb->mac_header))~0U;
230 	skb->transport_header = (typeof(skb->transport_header))~0U;
231 
232 	/* make sure we initialize shinfo sequentially */
233 	shinfo = skb_shinfo(skb);
234 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 	atomic_set(&shinfo->dataref, 1);
236 
237 	if (flags & SKB_ALLOC_FCLONE) {
238 		struct sk_buff_fclones *fclones;
239 
240 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
241 
242 		skb->fclone = SKB_FCLONE_ORIG;
243 		refcount_set(&fclones->fclone_ref, 1);
244 
245 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 	}
247 out:
248 	return skb;
249 nodata:
250 	kmem_cache_free(cache, skb);
251 	skb = NULL;
252 	goto out;
253 }
254 EXPORT_SYMBOL(__alloc_skb);
255 
256 /**
257  * __build_skb - build a network buffer
258  * @data: data buffer provided by caller
259  * @frag_size: size of data, or 0 if head was kmalloced
260  *
261  * Allocate a new &sk_buff. Caller provides space holding head and
262  * skb_shared_info. @data must have been allocated by kmalloc() only if
263  * @frag_size is 0, otherwise data should come from the page allocator
264  *  or vmalloc()
265  * The return is the new skb buffer.
266  * On a failure the return is %NULL, and @data is not freed.
267  * Notes :
268  *  Before IO, driver allocates only data buffer where NIC put incoming frame
269  *  Driver should add room at head (NET_SKB_PAD) and
270  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
272  *  before giving packet to stack.
273  *  RX rings only contains data buffers, not full skbs.
274  */
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276 {
277 	struct skb_shared_info *shinfo;
278 	struct sk_buff *skb;
279 	unsigned int size = frag_size ? : ksize(data);
280 
281 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 	if (!skb)
283 		return NULL;
284 
285 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286 
287 	memset(skb, 0, offsetof(struct sk_buff, tail));
288 	skb->truesize = SKB_TRUESIZE(size);
289 	refcount_set(&skb->users, 1);
290 	skb->head = data;
291 	skb->data = data;
292 	skb_reset_tail_pointer(skb);
293 	skb->end = skb->tail + size;
294 	skb->mac_header = (typeof(skb->mac_header))~0U;
295 	skb->transport_header = (typeof(skb->transport_header))~0U;
296 
297 	/* make sure we initialize shinfo sequentially */
298 	shinfo = skb_shinfo(skb);
299 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 	atomic_set(&shinfo->dataref, 1);
301 
302 	return skb;
303 }
304 
305 /* build_skb() is wrapper over __build_skb(), that specifically
306  * takes care of skb->head and skb->pfmemalloc
307  * This means that if @frag_size is not zero, then @data must be backed
308  * by a page fragment, not kmalloc() or vmalloc()
309  */
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
311 {
312 	struct sk_buff *skb = __build_skb(data, frag_size);
313 
314 	if (skb && frag_size) {
315 		skb->head_frag = 1;
316 		if (page_is_pfmemalloc(virt_to_head_page(data)))
317 			skb->pfmemalloc = 1;
318 	}
319 	return skb;
320 }
321 EXPORT_SYMBOL(build_skb);
322 
323 #define NAPI_SKB_CACHE_SIZE	64
324 
325 struct napi_alloc_cache {
326 	struct page_frag_cache page;
327 	unsigned int skb_count;
328 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
329 };
330 
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333 
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335 {
336 	struct page_frag_cache *nc;
337 	unsigned long flags;
338 	void *data;
339 
340 	local_irq_save(flags);
341 	nc = this_cpu_ptr(&netdev_alloc_cache);
342 	data = page_frag_alloc(nc, fragsz, gfp_mask);
343 	local_irq_restore(flags);
344 	return data;
345 }
346 
347 /**
348  * netdev_alloc_frag - allocate a page fragment
349  * @fragsz: fragment size
350  *
351  * Allocates a frag from a page for receive buffer.
352  * Uses GFP_ATOMIC allocations.
353  */
354 void *netdev_alloc_frag(unsigned int fragsz)
355 {
356 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
357 }
358 EXPORT_SYMBOL(netdev_alloc_frag);
359 
360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
361 {
362 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
363 
364 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
365 }
366 
367 void *napi_alloc_frag(unsigned int fragsz)
368 {
369 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
370 }
371 EXPORT_SYMBOL(napi_alloc_frag);
372 
373 /**
374  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
375  *	@dev: network device to receive on
376  *	@len: length to allocate
377  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
378  *
379  *	Allocate a new &sk_buff and assign it a usage count of one. The
380  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
381  *	the headroom they think they need without accounting for the
382  *	built in space. The built in space is used for optimisations.
383  *
384  *	%NULL is returned if there is no free memory.
385  */
386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 				   gfp_t gfp_mask)
388 {
389 	struct page_frag_cache *nc;
390 	unsigned long flags;
391 	struct sk_buff *skb;
392 	bool pfmemalloc;
393 	void *data;
394 
395 	len += NET_SKB_PAD;
396 
397 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 		if (!skb)
401 			goto skb_fail;
402 		goto skb_success;
403 	}
404 
405 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 	len = SKB_DATA_ALIGN(len);
407 
408 	if (sk_memalloc_socks())
409 		gfp_mask |= __GFP_MEMALLOC;
410 
411 	local_irq_save(flags);
412 
413 	nc = this_cpu_ptr(&netdev_alloc_cache);
414 	data = page_frag_alloc(nc, len, gfp_mask);
415 	pfmemalloc = nc->pfmemalloc;
416 
417 	local_irq_restore(flags);
418 
419 	if (unlikely(!data))
420 		return NULL;
421 
422 	skb = __build_skb(data, len);
423 	if (unlikely(!skb)) {
424 		skb_free_frag(data);
425 		return NULL;
426 	}
427 
428 	/* use OR instead of assignment to avoid clearing of bits in mask */
429 	if (pfmemalloc)
430 		skb->pfmemalloc = 1;
431 	skb->head_frag = 1;
432 
433 skb_success:
434 	skb_reserve(skb, NET_SKB_PAD);
435 	skb->dev = dev;
436 
437 skb_fail:
438 	return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441 
442 /**
443  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444  *	@napi: napi instance this buffer was allocated for
445  *	@len: length to allocate
446  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
447  *
448  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
449  *	attempt to allocate the head from a special reserved region used
450  *	only for NAPI Rx allocation.  By doing this we can save several
451  *	CPU cycles by avoiding having to disable and re-enable IRQs.
452  *
453  *	%NULL is returned if there is no free memory.
454  */
455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 				 gfp_t gfp_mask)
457 {
458 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 	struct sk_buff *skb;
460 	void *data;
461 
462 	len += NET_SKB_PAD + NET_IP_ALIGN;
463 
464 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 		if (!skb)
468 			goto skb_fail;
469 		goto skb_success;
470 	}
471 
472 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 	len = SKB_DATA_ALIGN(len);
474 
475 	if (sk_memalloc_socks())
476 		gfp_mask |= __GFP_MEMALLOC;
477 
478 	data = page_frag_alloc(&nc->page, len, gfp_mask);
479 	if (unlikely(!data))
480 		return NULL;
481 
482 	skb = __build_skb(data, len);
483 	if (unlikely(!skb)) {
484 		skb_free_frag(data);
485 		return NULL;
486 	}
487 
488 	/* use OR instead of assignment to avoid clearing of bits in mask */
489 	if (nc->page.pfmemalloc)
490 		skb->pfmemalloc = 1;
491 	skb->head_frag = 1;
492 
493 skb_success:
494 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 	skb->dev = napi->dev;
496 
497 skb_fail:
498 	return skb;
499 }
500 EXPORT_SYMBOL(__napi_alloc_skb);
501 
502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 		     int size, unsigned int truesize)
504 {
505 	skb_fill_page_desc(skb, i, page, off, size);
506 	skb->len += size;
507 	skb->data_len += size;
508 	skb->truesize += truesize;
509 }
510 EXPORT_SYMBOL(skb_add_rx_frag);
511 
512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 			  unsigned int truesize)
514 {
515 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
516 
517 	skb_frag_size_add(frag, size);
518 	skb->len += size;
519 	skb->data_len += size;
520 	skb->truesize += truesize;
521 }
522 EXPORT_SYMBOL(skb_coalesce_rx_frag);
523 
524 static void skb_drop_list(struct sk_buff **listp)
525 {
526 	kfree_skb_list(*listp);
527 	*listp = NULL;
528 }
529 
530 static inline void skb_drop_fraglist(struct sk_buff *skb)
531 {
532 	skb_drop_list(&skb_shinfo(skb)->frag_list);
533 }
534 
535 static void skb_clone_fraglist(struct sk_buff *skb)
536 {
537 	struct sk_buff *list;
538 
539 	skb_walk_frags(skb, list)
540 		skb_get(list);
541 }
542 
543 static void skb_free_head(struct sk_buff *skb)
544 {
545 	unsigned char *head = skb->head;
546 
547 	if (skb->head_frag)
548 		skb_free_frag(head);
549 	else
550 		kfree(head);
551 }
552 
553 static void skb_release_data(struct sk_buff *skb)
554 {
555 	struct skb_shared_info *shinfo = skb_shinfo(skb);
556 	int i;
557 
558 	if (skb->cloned &&
559 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 			      &shinfo->dataref))
561 		return;
562 
563 	for (i = 0; i < shinfo->nr_frags; i++)
564 		__skb_frag_unref(&shinfo->frags[i]);
565 
566 	if (shinfo->frag_list)
567 		kfree_skb_list(shinfo->frag_list);
568 
569 	skb_zcopy_clear(skb, true);
570 	skb_free_head(skb);
571 }
572 
573 /*
574  *	Free an skbuff by memory without cleaning the state.
575  */
576 static void kfree_skbmem(struct sk_buff *skb)
577 {
578 	struct sk_buff_fclones *fclones;
579 
580 	switch (skb->fclone) {
581 	case SKB_FCLONE_UNAVAILABLE:
582 		kmem_cache_free(skbuff_head_cache, skb);
583 		return;
584 
585 	case SKB_FCLONE_ORIG:
586 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
587 
588 		/* We usually free the clone (TX completion) before original skb
589 		 * This test would have no chance to be true for the clone,
590 		 * while here, branch prediction will be good.
591 		 */
592 		if (refcount_read(&fclones->fclone_ref) == 1)
593 			goto fastpath;
594 		break;
595 
596 	default: /* SKB_FCLONE_CLONE */
597 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 		break;
599 	}
600 	if (!refcount_dec_and_test(&fclones->fclone_ref))
601 		return;
602 fastpath:
603 	kmem_cache_free(skbuff_fclone_cache, fclones);
604 }
605 
606 void skb_release_head_state(struct sk_buff *skb)
607 {
608 	skb_dst_drop(skb);
609 	secpath_reset(skb);
610 	if (skb->destructor) {
611 		WARN_ON(in_irq());
612 		skb->destructor(skb);
613 	}
614 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 	nf_conntrack_put(skb_nfct(skb));
616 #endif
617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 	nf_bridge_put(skb->nf_bridge);
619 #endif
620 }
621 
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
624 {
625 	skb_release_head_state(skb);
626 	if (likely(skb->head))
627 		skb_release_data(skb);
628 }
629 
630 /**
631  *	__kfree_skb - private function
632  *	@skb: buffer
633  *
634  *	Free an sk_buff. Release anything attached to the buffer.
635  *	Clean the state. This is an internal helper function. Users should
636  *	always call kfree_skb
637  */
638 
639 void __kfree_skb(struct sk_buff *skb)
640 {
641 	skb_release_all(skb);
642 	kfree_skbmem(skb);
643 }
644 EXPORT_SYMBOL(__kfree_skb);
645 
646 /**
647  *	kfree_skb - free an sk_buff
648  *	@skb: buffer to free
649  *
650  *	Drop a reference to the buffer and free it if the usage count has
651  *	hit zero.
652  */
653 void kfree_skb(struct sk_buff *skb)
654 {
655 	if (!skb_unref(skb))
656 		return;
657 
658 	trace_kfree_skb(skb, __builtin_return_address(0));
659 	__kfree_skb(skb);
660 }
661 EXPORT_SYMBOL(kfree_skb);
662 
663 void kfree_skb_list(struct sk_buff *segs)
664 {
665 	while (segs) {
666 		struct sk_buff *next = segs->next;
667 
668 		kfree_skb(segs);
669 		segs = next;
670 	}
671 }
672 EXPORT_SYMBOL(kfree_skb_list);
673 
674 /**
675  *	skb_tx_error - report an sk_buff xmit error
676  *	@skb: buffer that triggered an error
677  *
678  *	Report xmit error if a device callback is tracking this skb.
679  *	skb must be freed afterwards.
680  */
681 void skb_tx_error(struct sk_buff *skb)
682 {
683 	skb_zcopy_clear(skb, true);
684 }
685 EXPORT_SYMBOL(skb_tx_error);
686 
687 /**
688  *	consume_skb - free an skbuff
689  *	@skb: buffer to free
690  *
691  *	Drop a ref to the buffer and free it if the usage count has hit zero
692  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
693  *	is being dropped after a failure and notes that
694  */
695 void consume_skb(struct sk_buff *skb)
696 {
697 	if (!skb_unref(skb))
698 		return;
699 
700 	trace_consume_skb(skb);
701 	__kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(consume_skb);
704 
705 /**
706  *	consume_stateless_skb - free an skbuff, assuming it is stateless
707  *	@skb: buffer to free
708  *
709  *	Alike consume_skb(), but this variant assumes that this is the last
710  *	skb reference and all the head states have been already dropped
711  */
712 void __consume_stateless_skb(struct sk_buff *skb)
713 {
714 	trace_consume_skb(skb);
715 	skb_release_data(skb);
716 	kfree_skbmem(skb);
717 }
718 
719 void __kfree_skb_flush(void)
720 {
721 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722 
723 	/* flush skb_cache if containing objects */
724 	if (nc->skb_count) {
725 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 				     nc->skb_cache);
727 		nc->skb_count = 0;
728 	}
729 }
730 
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
732 {
733 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734 
735 	/* drop skb->head and call any destructors for packet */
736 	skb_release_all(skb);
737 
738 	/* record skb to CPU local list */
739 	nc->skb_cache[nc->skb_count++] = skb;
740 
741 #ifdef CONFIG_SLUB
742 	/* SLUB writes into objects when freeing */
743 	prefetchw(skb);
744 #endif
745 
746 	/* flush skb_cache if it is filled */
747 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 				     nc->skb_cache);
750 		nc->skb_count = 0;
751 	}
752 }
753 void __kfree_skb_defer(struct sk_buff *skb)
754 {
755 	_kfree_skb_defer(skb);
756 }
757 
758 void napi_consume_skb(struct sk_buff *skb, int budget)
759 {
760 	if (unlikely(!skb))
761 		return;
762 
763 	/* Zero budget indicate non-NAPI context called us, like netpoll */
764 	if (unlikely(!budget)) {
765 		dev_consume_skb_any(skb);
766 		return;
767 	}
768 
769 	if (!skb_unref(skb))
770 		return;
771 
772 	/* if reaching here SKB is ready to free */
773 	trace_consume_skb(skb);
774 
775 	/* if SKB is a clone, don't handle this case */
776 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 		__kfree_skb(skb);
778 		return;
779 	}
780 
781 	_kfree_skb_defer(skb);
782 }
783 EXPORT_SYMBOL(napi_consume_skb);
784 
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
788 		     offsetof(struct sk_buff, headers_start));	\
789 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
790 		     offsetof(struct sk_buff, headers_end));	\
791 
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 	new->tstamp		= old->tstamp;
795 	/* We do not copy old->sk */
796 	new->dev		= old->dev;
797 	memcpy(new->cb, old->cb, sizeof(old->cb));
798 	skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 	new->sp			= secpath_get(old->sp);
801 #endif
802 	__nf_copy(new, old, false);
803 
804 	/* Note : this field could be in headers_start/headers_end section
805 	 * It is not yet because we do not want to have a 16 bit hole
806 	 */
807 	new->queue_mapping = old->queue_mapping;
808 
809 	memcpy(&new->headers_start, &old->headers_start,
810 	       offsetof(struct sk_buff, headers_end) -
811 	       offsetof(struct sk_buff, headers_start));
812 	CHECK_SKB_FIELD(protocol);
813 	CHECK_SKB_FIELD(csum);
814 	CHECK_SKB_FIELD(hash);
815 	CHECK_SKB_FIELD(priority);
816 	CHECK_SKB_FIELD(skb_iif);
817 	CHECK_SKB_FIELD(vlan_proto);
818 	CHECK_SKB_FIELD(vlan_tci);
819 	CHECK_SKB_FIELD(transport_header);
820 	CHECK_SKB_FIELD(network_header);
821 	CHECK_SKB_FIELD(mac_header);
822 	CHECK_SKB_FIELD(inner_protocol);
823 	CHECK_SKB_FIELD(inner_transport_header);
824 	CHECK_SKB_FIELD(inner_network_header);
825 	CHECK_SKB_FIELD(inner_mac_header);
826 	CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 	CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 	CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_XPS
834 	CHECK_SKB_FIELD(sender_cpu);
835 #endif
836 #ifdef CONFIG_NET_SCHED
837 	CHECK_SKB_FIELD(tc_index);
838 #endif
839 
840 }
841 
842 /*
843  * You should not add any new code to this function.  Add it to
844  * __copy_skb_header above instead.
845  */
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847 {
848 #define C(x) n->x = skb->x
849 
850 	n->next = n->prev = NULL;
851 	n->sk = NULL;
852 	__copy_skb_header(n, skb);
853 
854 	C(len);
855 	C(data_len);
856 	C(mac_len);
857 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 	n->cloned = 1;
859 	n->nohdr = 0;
860 	n->peeked = 0;
861 	C(pfmemalloc);
862 	n->destructor = NULL;
863 	C(tail);
864 	C(end);
865 	C(head);
866 	C(head_frag);
867 	C(data);
868 	C(truesize);
869 	refcount_set(&n->users, 1);
870 
871 	atomic_inc(&(skb_shinfo(skb)->dataref));
872 	skb->cloned = 1;
873 
874 	return n;
875 #undef C
876 }
877 
878 /**
879  *	skb_morph	-	morph one skb into another
880  *	@dst: the skb to receive the contents
881  *	@src: the skb to supply the contents
882  *
883  *	This is identical to skb_clone except that the target skb is
884  *	supplied by the user.
885  *
886  *	The target skb is returned upon exit.
887  */
888 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
889 {
890 	skb_release_all(dst);
891 	return __skb_clone(dst, src);
892 }
893 EXPORT_SYMBOL_GPL(skb_morph);
894 
895 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
896 {
897 	unsigned long max_pg, num_pg, new_pg, old_pg;
898 	struct user_struct *user;
899 
900 	if (capable(CAP_IPC_LOCK) || !size)
901 		return 0;
902 
903 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
904 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
905 	user = mmp->user ? : current_user();
906 
907 	do {
908 		old_pg = atomic_long_read(&user->locked_vm);
909 		new_pg = old_pg + num_pg;
910 		if (new_pg > max_pg)
911 			return -ENOBUFS;
912 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
913 		 old_pg);
914 
915 	if (!mmp->user) {
916 		mmp->user = get_uid(user);
917 		mmp->num_pg = num_pg;
918 	} else {
919 		mmp->num_pg += num_pg;
920 	}
921 
922 	return 0;
923 }
924 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
925 
926 void mm_unaccount_pinned_pages(struct mmpin *mmp)
927 {
928 	if (mmp->user) {
929 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
930 		free_uid(mmp->user);
931 	}
932 }
933 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
934 
935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
936 {
937 	struct ubuf_info *uarg;
938 	struct sk_buff *skb;
939 
940 	WARN_ON_ONCE(!in_task());
941 
942 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
943 	if (!skb)
944 		return NULL;
945 
946 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
947 	uarg = (void *)skb->cb;
948 	uarg->mmp.user = NULL;
949 
950 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
951 		kfree_skb(skb);
952 		return NULL;
953 	}
954 
955 	uarg->callback = sock_zerocopy_callback;
956 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
957 	uarg->len = 1;
958 	uarg->bytelen = size;
959 	uarg->zerocopy = 1;
960 	refcount_set(&uarg->refcnt, 1);
961 	sock_hold(sk);
962 
963 	return uarg;
964 }
965 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
966 
967 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
968 {
969 	return container_of((void *)uarg, struct sk_buff, cb);
970 }
971 
972 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
973 					struct ubuf_info *uarg)
974 {
975 	if (uarg) {
976 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
977 		u32 bytelen, next;
978 
979 		/* realloc only when socket is locked (TCP, UDP cork),
980 		 * so uarg->len and sk_zckey access is serialized
981 		 */
982 		if (!sock_owned_by_user(sk)) {
983 			WARN_ON_ONCE(1);
984 			return NULL;
985 		}
986 
987 		bytelen = uarg->bytelen + size;
988 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
989 			/* TCP can create new skb to attach new uarg */
990 			if (sk->sk_type == SOCK_STREAM)
991 				goto new_alloc;
992 			return NULL;
993 		}
994 
995 		next = (u32)atomic_read(&sk->sk_zckey);
996 		if ((u32)(uarg->id + uarg->len) == next) {
997 			if (mm_account_pinned_pages(&uarg->mmp, size))
998 				return NULL;
999 			uarg->len++;
1000 			uarg->bytelen = bytelen;
1001 			atomic_set(&sk->sk_zckey, ++next);
1002 			sock_zerocopy_get(uarg);
1003 			return uarg;
1004 		}
1005 	}
1006 
1007 new_alloc:
1008 	return sock_zerocopy_alloc(sk, size);
1009 }
1010 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1011 
1012 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1013 {
1014 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1015 	u32 old_lo, old_hi;
1016 	u64 sum_len;
1017 
1018 	old_lo = serr->ee.ee_info;
1019 	old_hi = serr->ee.ee_data;
1020 	sum_len = old_hi - old_lo + 1ULL + len;
1021 
1022 	if (sum_len >= (1ULL << 32))
1023 		return false;
1024 
1025 	if (lo != old_hi + 1)
1026 		return false;
1027 
1028 	serr->ee.ee_data += len;
1029 	return true;
1030 }
1031 
1032 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1033 {
1034 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1035 	struct sock_exterr_skb *serr;
1036 	struct sock *sk = skb->sk;
1037 	struct sk_buff_head *q;
1038 	unsigned long flags;
1039 	u32 lo, hi;
1040 	u16 len;
1041 
1042 	mm_unaccount_pinned_pages(&uarg->mmp);
1043 
1044 	/* if !len, there was only 1 call, and it was aborted
1045 	 * so do not queue a completion notification
1046 	 */
1047 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1048 		goto release;
1049 
1050 	len = uarg->len;
1051 	lo = uarg->id;
1052 	hi = uarg->id + len - 1;
1053 
1054 	serr = SKB_EXT_ERR(skb);
1055 	memset(serr, 0, sizeof(*serr));
1056 	serr->ee.ee_errno = 0;
1057 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1058 	serr->ee.ee_data = hi;
1059 	serr->ee.ee_info = lo;
1060 	if (!success)
1061 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1062 
1063 	q = &sk->sk_error_queue;
1064 	spin_lock_irqsave(&q->lock, flags);
1065 	tail = skb_peek_tail(q);
1066 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1067 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1068 		__skb_queue_tail(q, skb);
1069 		skb = NULL;
1070 	}
1071 	spin_unlock_irqrestore(&q->lock, flags);
1072 
1073 	sk->sk_error_report(sk);
1074 
1075 release:
1076 	consume_skb(skb);
1077 	sock_put(sk);
1078 }
1079 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1080 
1081 void sock_zerocopy_put(struct ubuf_info *uarg)
1082 {
1083 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1084 		if (uarg->callback)
1085 			uarg->callback(uarg, uarg->zerocopy);
1086 		else
1087 			consume_skb(skb_from_uarg(uarg));
1088 	}
1089 }
1090 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1091 
1092 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1093 {
1094 	if (uarg) {
1095 		struct sock *sk = skb_from_uarg(uarg)->sk;
1096 
1097 		atomic_dec(&sk->sk_zckey);
1098 		uarg->len--;
1099 
1100 		if (have_uref)
1101 			sock_zerocopy_put(uarg);
1102 	}
1103 }
1104 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1105 
1106 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1107 				   struct iov_iter *from, size_t length);
1108 
1109 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1110 {
1111 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1112 }
1113 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1114 
1115 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1116 			     struct msghdr *msg, int len,
1117 			     struct ubuf_info *uarg)
1118 {
1119 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1120 	struct iov_iter orig_iter = msg->msg_iter;
1121 	int err, orig_len = skb->len;
1122 
1123 	/* An skb can only point to one uarg. This edge case happens when
1124 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1125 	 */
1126 	if (orig_uarg && uarg != orig_uarg)
1127 		return -EEXIST;
1128 
1129 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1130 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1131 		struct sock *save_sk = skb->sk;
1132 
1133 		/* Streams do not free skb on error. Reset to prev state. */
1134 		msg->msg_iter = orig_iter;
1135 		skb->sk = sk;
1136 		___pskb_trim(skb, orig_len);
1137 		skb->sk = save_sk;
1138 		return err;
1139 	}
1140 
1141 	skb_zcopy_set(skb, uarg, NULL);
1142 	return skb->len - orig_len;
1143 }
1144 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1145 
1146 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1147 			      gfp_t gfp_mask)
1148 {
1149 	if (skb_zcopy(orig)) {
1150 		if (skb_zcopy(nskb)) {
1151 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1152 			if (!gfp_mask) {
1153 				WARN_ON_ONCE(1);
1154 				return -ENOMEM;
1155 			}
1156 			if (skb_uarg(nskb) == skb_uarg(orig))
1157 				return 0;
1158 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1159 				return -EIO;
1160 		}
1161 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1162 	}
1163 	return 0;
1164 }
1165 
1166 /**
1167  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1168  *	@skb: the skb to modify
1169  *	@gfp_mask: allocation priority
1170  *
1171  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1172  *	It will copy all frags into kernel and drop the reference
1173  *	to userspace pages.
1174  *
1175  *	If this function is called from an interrupt gfp_mask() must be
1176  *	%GFP_ATOMIC.
1177  *
1178  *	Returns 0 on success or a negative error code on failure
1179  *	to allocate kernel memory to copy to.
1180  */
1181 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1182 {
1183 	int num_frags = skb_shinfo(skb)->nr_frags;
1184 	struct page *page, *head = NULL;
1185 	int i, new_frags;
1186 	u32 d_off;
1187 
1188 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1189 		return -EINVAL;
1190 
1191 	if (!num_frags)
1192 		goto release;
1193 
1194 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1195 	for (i = 0; i < new_frags; i++) {
1196 		page = alloc_page(gfp_mask);
1197 		if (!page) {
1198 			while (head) {
1199 				struct page *next = (struct page *)page_private(head);
1200 				put_page(head);
1201 				head = next;
1202 			}
1203 			return -ENOMEM;
1204 		}
1205 		set_page_private(page, (unsigned long)head);
1206 		head = page;
1207 	}
1208 
1209 	page = head;
1210 	d_off = 0;
1211 	for (i = 0; i < num_frags; i++) {
1212 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1213 		u32 p_off, p_len, copied;
1214 		struct page *p;
1215 		u8 *vaddr;
1216 
1217 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1218 				      p, p_off, p_len, copied) {
1219 			u32 copy, done = 0;
1220 			vaddr = kmap_atomic(p);
1221 
1222 			while (done < p_len) {
1223 				if (d_off == PAGE_SIZE) {
1224 					d_off = 0;
1225 					page = (struct page *)page_private(page);
1226 				}
1227 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1228 				memcpy(page_address(page) + d_off,
1229 				       vaddr + p_off + done, copy);
1230 				done += copy;
1231 				d_off += copy;
1232 			}
1233 			kunmap_atomic(vaddr);
1234 		}
1235 	}
1236 
1237 	/* skb frags release userspace buffers */
1238 	for (i = 0; i < num_frags; i++)
1239 		skb_frag_unref(skb, i);
1240 
1241 	/* skb frags point to kernel buffers */
1242 	for (i = 0; i < new_frags - 1; i++) {
1243 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1244 		head = (struct page *)page_private(head);
1245 	}
1246 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1247 	skb_shinfo(skb)->nr_frags = new_frags;
1248 
1249 release:
1250 	skb_zcopy_clear(skb, false);
1251 	return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1254 
1255 /**
1256  *	skb_clone	-	duplicate an sk_buff
1257  *	@skb: buffer to clone
1258  *	@gfp_mask: allocation priority
1259  *
1260  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1261  *	copies share the same packet data but not structure. The new
1262  *	buffer has a reference count of 1. If the allocation fails the
1263  *	function returns %NULL otherwise the new buffer is returned.
1264  *
1265  *	If this function is called from an interrupt gfp_mask() must be
1266  *	%GFP_ATOMIC.
1267  */
1268 
1269 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1270 {
1271 	struct sk_buff_fclones *fclones = container_of(skb,
1272 						       struct sk_buff_fclones,
1273 						       skb1);
1274 	struct sk_buff *n;
1275 
1276 	if (skb_orphan_frags(skb, gfp_mask))
1277 		return NULL;
1278 
1279 	if (skb->fclone == SKB_FCLONE_ORIG &&
1280 	    refcount_read(&fclones->fclone_ref) == 1) {
1281 		n = &fclones->skb2;
1282 		refcount_set(&fclones->fclone_ref, 2);
1283 	} else {
1284 		if (skb_pfmemalloc(skb))
1285 			gfp_mask |= __GFP_MEMALLOC;
1286 
1287 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1288 		if (!n)
1289 			return NULL;
1290 
1291 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1292 	}
1293 
1294 	return __skb_clone(n, skb);
1295 }
1296 EXPORT_SYMBOL(skb_clone);
1297 
1298 void skb_headers_offset_update(struct sk_buff *skb, int off)
1299 {
1300 	/* Only adjust this if it actually is csum_start rather than csum */
1301 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1302 		skb->csum_start += off;
1303 	/* {transport,network,mac}_header and tail are relative to skb->head */
1304 	skb->transport_header += off;
1305 	skb->network_header   += off;
1306 	if (skb_mac_header_was_set(skb))
1307 		skb->mac_header += off;
1308 	skb->inner_transport_header += off;
1309 	skb->inner_network_header += off;
1310 	skb->inner_mac_header += off;
1311 }
1312 EXPORT_SYMBOL(skb_headers_offset_update);
1313 
1314 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1315 {
1316 	__copy_skb_header(new, old);
1317 
1318 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1319 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1320 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1321 }
1322 EXPORT_SYMBOL(skb_copy_header);
1323 
1324 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1325 {
1326 	if (skb_pfmemalloc(skb))
1327 		return SKB_ALLOC_RX;
1328 	return 0;
1329 }
1330 
1331 /**
1332  *	skb_copy	-	create private copy of an sk_buff
1333  *	@skb: buffer to copy
1334  *	@gfp_mask: allocation priority
1335  *
1336  *	Make a copy of both an &sk_buff and its data. This is used when the
1337  *	caller wishes to modify the data and needs a private copy of the
1338  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1339  *	on success. The returned buffer has a reference count of 1.
1340  *
1341  *	As by-product this function converts non-linear &sk_buff to linear
1342  *	one, so that &sk_buff becomes completely private and caller is allowed
1343  *	to modify all the data of returned buffer. This means that this
1344  *	function is not recommended for use in circumstances when only
1345  *	header is going to be modified. Use pskb_copy() instead.
1346  */
1347 
1348 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1349 {
1350 	int headerlen = skb_headroom(skb);
1351 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1352 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1353 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1354 
1355 	if (!n)
1356 		return NULL;
1357 
1358 	/* Set the data pointer */
1359 	skb_reserve(n, headerlen);
1360 	/* Set the tail pointer and length */
1361 	skb_put(n, skb->len);
1362 
1363 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1364 
1365 	skb_copy_header(n, skb);
1366 	return n;
1367 }
1368 EXPORT_SYMBOL(skb_copy);
1369 
1370 /**
1371  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1372  *	@skb: buffer to copy
1373  *	@headroom: headroom of new skb
1374  *	@gfp_mask: allocation priority
1375  *	@fclone: if true allocate the copy of the skb from the fclone
1376  *	cache instead of the head cache; it is recommended to set this
1377  *	to true for the cases where the copy will likely be cloned
1378  *
1379  *	Make a copy of both an &sk_buff and part of its data, located
1380  *	in header. Fragmented data remain shared. This is used when
1381  *	the caller wishes to modify only header of &sk_buff and needs
1382  *	private copy of the header to alter. Returns %NULL on failure
1383  *	or the pointer to the buffer on success.
1384  *	The returned buffer has a reference count of 1.
1385  */
1386 
1387 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1388 				   gfp_t gfp_mask, bool fclone)
1389 {
1390 	unsigned int size = skb_headlen(skb) + headroom;
1391 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1392 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1393 
1394 	if (!n)
1395 		goto out;
1396 
1397 	/* Set the data pointer */
1398 	skb_reserve(n, headroom);
1399 	/* Set the tail pointer and length */
1400 	skb_put(n, skb_headlen(skb));
1401 	/* Copy the bytes */
1402 	skb_copy_from_linear_data(skb, n->data, n->len);
1403 
1404 	n->truesize += skb->data_len;
1405 	n->data_len  = skb->data_len;
1406 	n->len	     = skb->len;
1407 
1408 	if (skb_shinfo(skb)->nr_frags) {
1409 		int i;
1410 
1411 		if (skb_orphan_frags(skb, gfp_mask) ||
1412 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1413 			kfree_skb(n);
1414 			n = NULL;
1415 			goto out;
1416 		}
1417 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1418 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1419 			skb_frag_ref(skb, i);
1420 		}
1421 		skb_shinfo(n)->nr_frags = i;
1422 	}
1423 
1424 	if (skb_has_frag_list(skb)) {
1425 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1426 		skb_clone_fraglist(n);
1427 	}
1428 
1429 	skb_copy_header(n, skb);
1430 out:
1431 	return n;
1432 }
1433 EXPORT_SYMBOL(__pskb_copy_fclone);
1434 
1435 /**
1436  *	pskb_expand_head - reallocate header of &sk_buff
1437  *	@skb: buffer to reallocate
1438  *	@nhead: room to add at head
1439  *	@ntail: room to add at tail
1440  *	@gfp_mask: allocation priority
1441  *
1442  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1443  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1444  *	reference count of 1. Returns zero in the case of success or error,
1445  *	if expansion failed. In the last case, &sk_buff is not changed.
1446  *
1447  *	All the pointers pointing into skb header may change and must be
1448  *	reloaded after call to this function.
1449  */
1450 
1451 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1452 		     gfp_t gfp_mask)
1453 {
1454 	int i, osize = skb_end_offset(skb);
1455 	int size = osize + nhead + ntail;
1456 	long off;
1457 	u8 *data;
1458 
1459 	BUG_ON(nhead < 0);
1460 
1461 	BUG_ON(skb_shared(skb));
1462 
1463 	size = SKB_DATA_ALIGN(size);
1464 
1465 	if (skb_pfmemalloc(skb))
1466 		gfp_mask |= __GFP_MEMALLOC;
1467 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1468 			       gfp_mask, NUMA_NO_NODE, NULL);
1469 	if (!data)
1470 		goto nodata;
1471 	size = SKB_WITH_OVERHEAD(ksize(data));
1472 
1473 	/* Copy only real data... and, alas, header. This should be
1474 	 * optimized for the cases when header is void.
1475 	 */
1476 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1477 
1478 	memcpy((struct skb_shared_info *)(data + size),
1479 	       skb_shinfo(skb),
1480 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1481 
1482 	/*
1483 	 * if shinfo is shared we must drop the old head gracefully, but if it
1484 	 * is not we can just drop the old head and let the existing refcount
1485 	 * be since all we did is relocate the values
1486 	 */
1487 	if (skb_cloned(skb)) {
1488 		if (skb_orphan_frags(skb, gfp_mask))
1489 			goto nofrags;
1490 		if (skb_zcopy(skb))
1491 			refcount_inc(&skb_uarg(skb)->refcnt);
1492 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1493 			skb_frag_ref(skb, i);
1494 
1495 		if (skb_has_frag_list(skb))
1496 			skb_clone_fraglist(skb);
1497 
1498 		skb_release_data(skb);
1499 	} else {
1500 		skb_free_head(skb);
1501 	}
1502 	off = (data + nhead) - skb->head;
1503 
1504 	skb->head     = data;
1505 	skb->head_frag = 0;
1506 	skb->data    += off;
1507 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1508 	skb->end      = size;
1509 	off           = nhead;
1510 #else
1511 	skb->end      = skb->head + size;
1512 #endif
1513 	skb->tail	      += off;
1514 	skb_headers_offset_update(skb, nhead);
1515 	skb->cloned   = 0;
1516 	skb->hdr_len  = 0;
1517 	skb->nohdr    = 0;
1518 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1519 
1520 	skb_metadata_clear(skb);
1521 
1522 	/* It is not generally safe to change skb->truesize.
1523 	 * For the moment, we really care of rx path, or
1524 	 * when skb is orphaned (not attached to a socket).
1525 	 */
1526 	if (!skb->sk || skb->destructor == sock_edemux)
1527 		skb->truesize += size - osize;
1528 
1529 	return 0;
1530 
1531 nofrags:
1532 	kfree(data);
1533 nodata:
1534 	return -ENOMEM;
1535 }
1536 EXPORT_SYMBOL(pskb_expand_head);
1537 
1538 /* Make private copy of skb with writable head and some headroom */
1539 
1540 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1541 {
1542 	struct sk_buff *skb2;
1543 	int delta = headroom - skb_headroom(skb);
1544 
1545 	if (delta <= 0)
1546 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1547 	else {
1548 		skb2 = skb_clone(skb, GFP_ATOMIC);
1549 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1550 					     GFP_ATOMIC)) {
1551 			kfree_skb(skb2);
1552 			skb2 = NULL;
1553 		}
1554 	}
1555 	return skb2;
1556 }
1557 EXPORT_SYMBOL(skb_realloc_headroom);
1558 
1559 /**
1560  *	skb_copy_expand	-	copy and expand sk_buff
1561  *	@skb: buffer to copy
1562  *	@newheadroom: new free bytes at head
1563  *	@newtailroom: new free bytes at tail
1564  *	@gfp_mask: allocation priority
1565  *
1566  *	Make a copy of both an &sk_buff and its data and while doing so
1567  *	allocate additional space.
1568  *
1569  *	This is used when the caller wishes to modify the data and needs a
1570  *	private copy of the data to alter as well as more space for new fields.
1571  *	Returns %NULL on failure or the pointer to the buffer
1572  *	on success. The returned buffer has a reference count of 1.
1573  *
1574  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1575  *	is called from an interrupt.
1576  */
1577 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1578 				int newheadroom, int newtailroom,
1579 				gfp_t gfp_mask)
1580 {
1581 	/*
1582 	 *	Allocate the copy buffer
1583 	 */
1584 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1585 					gfp_mask, skb_alloc_rx_flag(skb),
1586 					NUMA_NO_NODE);
1587 	int oldheadroom = skb_headroom(skb);
1588 	int head_copy_len, head_copy_off;
1589 
1590 	if (!n)
1591 		return NULL;
1592 
1593 	skb_reserve(n, newheadroom);
1594 
1595 	/* Set the tail pointer and length */
1596 	skb_put(n, skb->len);
1597 
1598 	head_copy_len = oldheadroom;
1599 	head_copy_off = 0;
1600 	if (newheadroom <= head_copy_len)
1601 		head_copy_len = newheadroom;
1602 	else
1603 		head_copy_off = newheadroom - head_copy_len;
1604 
1605 	/* Copy the linear header and data. */
1606 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1607 			     skb->len + head_copy_len));
1608 
1609 	skb_copy_header(n, skb);
1610 
1611 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1612 
1613 	return n;
1614 }
1615 EXPORT_SYMBOL(skb_copy_expand);
1616 
1617 /**
1618  *	__skb_pad		-	zero pad the tail of an skb
1619  *	@skb: buffer to pad
1620  *	@pad: space to pad
1621  *	@free_on_error: free buffer on error
1622  *
1623  *	Ensure that a buffer is followed by a padding area that is zero
1624  *	filled. Used by network drivers which may DMA or transfer data
1625  *	beyond the buffer end onto the wire.
1626  *
1627  *	May return error in out of memory cases. The skb is freed on error
1628  *	if @free_on_error is true.
1629  */
1630 
1631 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1632 {
1633 	int err;
1634 	int ntail;
1635 
1636 	/* If the skbuff is non linear tailroom is always zero.. */
1637 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1638 		memset(skb->data+skb->len, 0, pad);
1639 		return 0;
1640 	}
1641 
1642 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1643 	if (likely(skb_cloned(skb) || ntail > 0)) {
1644 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1645 		if (unlikely(err))
1646 			goto free_skb;
1647 	}
1648 
1649 	/* FIXME: The use of this function with non-linear skb's really needs
1650 	 * to be audited.
1651 	 */
1652 	err = skb_linearize(skb);
1653 	if (unlikely(err))
1654 		goto free_skb;
1655 
1656 	memset(skb->data + skb->len, 0, pad);
1657 	return 0;
1658 
1659 free_skb:
1660 	if (free_on_error)
1661 		kfree_skb(skb);
1662 	return err;
1663 }
1664 EXPORT_SYMBOL(__skb_pad);
1665 
1666 /**
1667  *	pskb_put - add data to the tail of a potentially fragmented buffer
1668  *	@skb: start of the buffer to use
1669  *	@tail: tail fragment of the buffer to use
1670  *	@len: amount of data to add
1671  *
1672  *	This function extends the used data area of the potentially
1673  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1674  *	@skb itself. If this would exceed the total buffer size the kernel
1675  *	will panic. A pointer to the first byte of the extra data is
1676  *	returned.
1677  */
1678 
1679 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1680 {
1681 	if (tail != skb) {
1682 		skb->data_len += len;
1683 		skb->len += len;
1684 	}
1685 	return skb_put(tail, len);
1686 }
1687 EXPORT_SYMBOL_GPL(pskb_put);
1688 
1689 /**
1690  *	skb_put - add data to a buffer
1691  *	@skb: buffer to use
1692  *	@len: amount of data to add
1693  *
1694  *	This function extends the used data area of the buffer. If this would
1695  *	exceed the total buffer size the kernel will panic. A pointer to the
1696  *	first byte of the extra data is returned.
1697  */
1698 void *skb_put(struct sk_buff *skb, unsigned int len)
1699 {
1700 	void *tmp = skb_tail_pointer(skb);
1701 	SKB_LINEAR_ASSERT(skb);
1702 	skb->tail += len;
1703 	skb->len  += len;
1704 	if (unlikely(skb->tail > skb->end))
1705 		skb_over_panic(skb, len, __builtin_return_address(0));
1706 	return tmp;
1707 }
1708 EXPORT_SYMBOL(skb_put);
1709 
1710 /**
1711  *	skb_push - add data to the start of a buffer
1712  *	@skb: buffer to use
1713  *	@len: amount of data to add
1714  *
1715  *	This function extends the used data area of the buffer at the buffer
1716  *	start. If this would exceed the total buffer headroom the kernel will
1717  *	panic. A pointer to the first byte of the extra data is returned.
1718  */
1719 void *skb_push(struct sk_buff *skb, unsigned int len)
1720 {
1721 	skb->data -= len;
1722 	skb->len  += len;
1723 	if (unlikely(skb->data < skb->head))
1724 		skb_under_panic(skb, len, __builtin_return_address(0));
1725 	return skb->data;
1726 }
1727 EXPORT_SYMBOL(skb_push);
1728 
1729 /**
1730  *	skb_pull - remove data from the start of a buffer
1731  *	@skb: buffer to use
1732  *	@len: amount of data to remove
1733  *
1734  *	This function removes data from the start of a buffer, returning
1735  *	the memory to the headroom. A pointer to the next data in the buffer
1736  *	is returned. Once the data has been pulled future pushes will overwrite
1737  *	the old data.
1738  */
1739 void *skb_pull(struct sk_buff *skb, unsigned int len)
1740 {
1741 	return skb_pull_inline(skb, len);
1742 }
1743 EXPORT_SYMBOL(skb_pull);
1744 
1745 /**
1746  *	skb_trim - remove end from a buffer
1747  *	@skb: buffer to alter
1748  *	@len: new length
1749  *
1750  *	Cut the length of a buffer down by removing data from the tail. If
1751  *	the buffer is already under the length specified it is not modified.
1752  *	The skb must be linear.
1753  */
1754 void skb_trim(struct sk_buff *skb, unsigned int len)
1755 {
1756 	if (skb->len > len)
1757 		__skb_trim(skb, len);
1758 }
1759 EXPORT_SYMBOL(skb_trim);
1760 
1761 /* Trims skb to length len. It can change skb pointers.
1762  */
1763 
1764 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1765 {
1766 	struct sk_buff **fragp;
1767 	struct sk_buff *frag;
1768 	int offset = skb_headlen(skb);
1769 	int nfrags = skb_shinfo(skb)->nr_frags;
1770 	int i;
1771 	int err;
1772 
1773 	if (skb_cloned(skb) &&
1774 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1775 		return err;
1776 
1777 	i = 0;
1778 	if (offset >= len)
1779 		goto drop_pages;
1780 
1781 	for (; i < nfrags; i++) {
1782 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1783 
1784 		if (end < len) {
1785 			offset = end;
1786 			continue;
1787 		}
1788 
1789 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1790 
1791 drop_pages:
1792 		skb_shinfo(skb)->nr_frags = i;
1793 
1794 		for (; i < nfrags; i++)
1795 			skb_frag_unref(skb, i);
1796 
1797 		if (skb_has_frag_list(skb))
1798 			skb_drop_fraglist(skb);
1799 		goto done;
1800 	}
1801 
1802 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1803 	     fragp = &frag->next) {
1804 		int end = offset + frag->len;
1805 
1806 		if (skb_shared(frag)) {
1807 			struct sk_buff *nfrag;
1808 
1809 			nfrag = skb_clone(frag, GFP_ATOMIC);
1810 			if (unlikely(!nfrag))
1811 				return -ENOMEM;
1812 
1813 			nfrag->next = frag->next;
1814 			consume_skb(frag);
1815 			frag = nfrag;
1816 			*fragp = frag;
1817 		}
1818 
1819 		if (end < len) {
1820 			offset = end;
1821 			continue;
1822 		}
1823 
1824 		if (end > len &&
1825 		    unlikely((err = pskb_trim(frag, len - offset))))
1826 			return err;
1827 
1828 		if (frag->next)
1829 			skb_drop_list(&frag->next);
1830 		break;
1831 	}
1832 
1833 done:
1834 	if (len > skb_headlen(skb)) {
1835 		skb->data_len -= skb->len - len;
1836 		skb->len       = len;
1837 	} else {
1838 		skb->len       = len;
1839 		skb->data_len  = 0;
1840 		skb_set_tail_pointer(skb, len);
1841 	}
1842 
1843 	if (!skb->sk || skb->destructor == sock_edemux)
1844 		skb_condense(skb);
1845 	return 0;
1846 }
1847 EXPORT_SYMBOL(___pskb_trim);
1848 
1849 /* Note : use pskb_trim_rcsum() instead of calling this directly
1850  */
1851 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1852 {
1853 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1854 		int delta = skb->len - len;
1855 
1856 		skb->csum = csum_block_sub(skb->csum,
1857 					   skb_checksum(skb, len, delta, 0),
1858 					   len);
1859 	}
1860 	return __pskb_trim(skb, len);
1861 }
1862 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1863 
1864 /**
1865  *	__pskb_pull_tail - advance tail of skb header
1866  *	@skb: buffer to reallocate
1867  *	@delta: number of bytes to advance tail
1868  *
1869  *	The function makes a sense only on a fragmented &sk_buff,
1870  *	it expands header moving its tail forward and copying necessary
1871  *	data from fragmented part.
1872  *
1873  *	&sk_buff MUST have reference count of 1.
1874  *
1875  *	Returns %NULL (and &sk_buff does not change) if pull failed
1876  *	or value of new tail of skb in the case of success.
1877  *
1878  *	All the pointers pointing into skb header may change and must be
1879  *	reloaded after call to this function.
1880  */
1881 
1882 /* Moves tail of skb head forward, copying data from fragmented part,
1883  * when it is necessary.
1884  * 1. It may fail due to malloc failure.
1885  * 2. It may change skb pointers.
1886  *
1887  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1888  */
1889 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1890 {
1891 	/* If skb has not enough free space at tail, get new one
1892 	 * plus 128 bytes for future expansions. If we have enough
1893 	 * room at tail, reallocate without expansion only if skb is cloned.
1894 	 */
1895 	int i, k, eat = (skb->tail + delta) - skb->end;
1896 
1897 	if (eat > 0 || skb_cloned(skb)) {
1898 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1899 				     GFP_ATOMIC))
1900 			return NULL;
1901 	}
1902 
1903 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1904 			     skb_tail_pointer(skb), delta));
1905 
1906 	/* Optimization: no fragments, no reasons to preestimate
1907 	 * size of pulled pages. Superb.
1908 	 */
1909 	if (!skb_has_frag_list(skb))
1910 		goto pull_pages;
1911 
1912 	/* Estimate size of pulled pages. */
1913 	eat = delta;
1914 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1915 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1916 
1917 		if (size >= eat)
1918 			goto pull_pages;
1919 		eat -= size;
1920 	}
1921 
1922 	/* If we need update frag list, we are in troubles.
1923 	 * Certainly, it is possible to add an offset to skb data,
1924 	 * but taking into account that pulling is expected to
1925 	 * be very rare operation, it is worth to fight against
1926 	 * further bloating skb head and crucify ourselves here instead.
1927 	 * Pure masohism, indeed. 8)8)
1928 	 */
1929 	if (eat) {
1930 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1931 		struct sk_buff *clone = NULL;
1932 		struct sk_buff *insp = NULL;
1933 
1934 		do {
1935 			if (list->len <= eat) {
1936 				/* Eaten as whole. */
1937 				eat -= list->len;
1938 				list = list->next;
1939 				insp = list;
1940 			} else {
1941 				/* Eaten partially. */
1942 
1943 				if (skb_shared(list)) {
1944 					/* Sucks! We need to fork list. :-( */
1945 					clone = skb_clone(list, GFP_ATOMIC);
1946 					if (!clone)
1947 						return NULL;
1948 					insp = list->next;
1949 					list = clone;
1950 				} else {
1951 					/* This may be pulled without
1952 					 * problems. */
1953 					insp = list;
1954 				}
1955 				if (!pskb_pull(list, eat)) {
1956 					kfree_skb(clone);
1957 					return NULL;
1958 				}
1959 				break;
1960 			}
1961 		} while (eat);
1962 
1963 		/* Free pulled out fragments. */
1964 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1965 			skb_shinfo(skb)->frag_list = list->next;
1966 			kfree_skb(list);
1967 		}
1968 		/* And insert new clone at head. */
1969 		if (clone) {
1970 			clone->next = list;
1971 			skb_shinfo(skb)->frag_list = clone;
1972 		}
1973 	}
1974 	/* Success! Now we may commit changes to skb data. */
1975 
1976 pull_pages:
1977 	eat = delta;
1978 	k = 0;
1979 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1980 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1981 
1982 		if (size <= eat) {
1983 			skb_frag_unref(skb, i);
1984 			eat -= size;
1985 		} else {
1986 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1987 			if (eat) {
1988 				skb_shinfo(skb)->frags[k].page_offset += eat;
1989 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1990 				if (!i)
1991 					goto end;
1992 				eat = 0;
1993 			}
1994 			k++;
1995 		}
1996 	}
1997 	skb_shinfo(skb)->nr_frags = k;
1998 
1999 end:
2000 	skb->tail     += delta;
2001 	skb->data_len -= delta;
2002 
2003 	if (!skb->data_len)
2004 		skb_zcopy_clear(skb, false);
2005 
2006 	return skb_tail_pointer(skb);
2007 }
2008 EXPORT_SYMBOL(__pskb_pull_tail);
2009 
2010 /**
2011  *	skb_copy_bits - copy bits from skb to kernel buffer
2012  *	@skb: source skb
2013  *	@offset: offset in source
2014  *	@to: destination buffer
2015  *	@len: number of bytes to copy
2016  *
2017  *	Copy the specified number of bytes from the source skb to the
2018  *	destination buffer.
2019  *
2020  *	CAUTION ! :
2021  *		If its prototype is ever changed,
2022  *		check arch/{*}/net/{*}.S files,
2023  *		since it is called from BPF assembly code.
2024  */
2025 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2026 {
2027 	int start = skb_headlen(skb);
2028 	struct sk_buff *frag_iter;
2029 	int i, copy;
2030 
2031 	if (offset > (int)skb->len - len)
2032 		goto fault;
2033 
2034 	/* Copy header. */
2035 	if ((copy = start - offset) > 0) {
2036 		if (copy > len)
2037 			copy = len;
2038 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2039 		if ((len -= copy) == 0)
2040 			return 0;
2041 		offset += copy;
2042 		to     += copy;
2043 	}
2044 
2045 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2046 		int end;
2047 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2048 
2049 		WARN_ON(start > offset + len);
2050 
2051 		end = start + skb_frag_size(f);
2052 		if ((copy = end - offset) > 0) {
2053 			u32 p_off, p_len, copied;
2054 			struct page *p;
2055 			u8 *vaddr;
2056 
2057 			if (copy > len)
2058 				copy = len;
2059 
2060 			skb_frag_foreach_page(f,
2061 					      f->page_offset + offset - start,
2062 					      copy, p, p_off, p_len, copied) {
2063 				vaddr = kmap_atomic(p);
2064 				memcpy(to + copied, vaddr + p_off, p_len);
2065 				kunmap_atomic(vaddr);
2066 			}
2067 
2068 			if ((len -= copy) == 0)
2069 				return 0;
2070 			offset += copy;
2071 			to     += copy;
2072 		}
2073 		start = end;
2074 	}
2075 
2076 	skb_walk_frags(skb, frag_iter) {
2077 		int end;
2078 
2079 		WARN_ON(start > offset + len);
2080 
2081 		end = start + frag_iter->len;
2082 		if ((copy = end - offset) > 0) {
2083 			if (copy > len)
2084 				copy = len;
2085 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2086 				goto fault;
2087 			if ((len -= copy) == 0)
2088 				return 0;
2089 			offset += copy;
2090 			to     += copy;
2091 		}
2092 		start = end;
2093 	}
2094 
2095 	if (!len)
2096 		return 0;
2097 
2098 fault:
2099 	return -EFAULT;
2100 }
2101 EXPORT_SYMBOL(skb_copy_bits);
2102 
2103 /*
2104  * Callback from splice_to_pipe(), if we need to release some pages
2105  * at the end of the spd in case we error'ed out in filling the pipe.
2106  */
2107 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2108 {
2109 	put_page(spd->pages[i]);
2110 }
2111 
2112 static struct page *linear_to_page(struct page *page, unsigned int *len,
2113 				   unsigned int *offset,
2114 				   struct sock *sk)
2115 {
2116 	struct page_frag *pfrag = sk_page_frag(sk);
2117 
2118 	if (!sk_page_frag_refill(sk, pfrag))
2119 		return NULL;
2120 
2121 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2122 
2123 	memcpy(page_address(pfrag->page) + pfrag->offset,
2124 	       page_address(page) + *offset, *len);
2125 	*offset = pfrag->offset;
2126 	pfrag->offset += *len;
2127 
2128 	return pfrag->page;
2129 }
2130 
2131 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2132 			     struct page *page,
2133 			     unsigned int offset)
2134 {
2135 	return	spd->nr_pages &&
2136 		spd->pages[spd->nr_pages - 1] == page &&
2137 		(spd->partial[spd->nr_pages - 1].offset +
2138 		 spd->partial[spd->nr_pages - 1].len == offset);
2139 }
2140 
2141 /*
2142  * Fill page/offset/length into spd, if it can hold more pages.
2143  */
2144 static bool spd_fill_page(struct splice_pipe_desc *spd,
2145 			  struct pipe_inode_info *pipe, struct page *page,
2146 			  unsigned int *len, unsigned int offset,
2147 			  bool linear,
2148 			  struct sock *sk)
2149 {
2150 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2151 		return true;
2152 
2153 	if (linear) {
2154 		page = linear_to_page(page, len, &offset, sk);
2155 		if (!page)
2156 			return true;
2157 	}
2158 	if (spd_can_coalesce(spd, page, offset)) {
2159 		spd->partial[spd->nr_pages - 1].len += *len;
2160 		return false;
2161 	}
2162 	get_page(page);
2163 	spd->pages[spd->nr_pages] = page;
2164 	spd->partial[spd->nr_pages].len = *len;
2165 	spd->partial[spd->nr_pages].offset = offset;
2166 	spd->nr_pages++;
2167 
2168 	return false;
2169 }
2170 
2171 static bool __splice_segment(struct page *page, unsigned int poff,
2172 			     unsigned int plen, unsigned int *off,
2173 			     unsigned int *len,
2174 			     struct splice_pipe_desc *spd, bool linear,
2175 			     struct sock *sk,
2176 			     struct pipe_inode_info *pipe)
2177 {
2178 	if (!*len)
2179 		return true;
2180 
2181 	/* skip this segment if already processed */
2182 	if (*off >= plen) {
2183 		*off -= plen;
2184 		return false;
2185 	}
2186 
2187 	/* ignore any bits we already processed */
2188 	poff += *off;
2189 	plen -= *off;
2190 	*off = 0;
2191 
2192 	do {
2193 		unsigned int flen = min(*len, plen);
2194 
2195 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2196 				  linear, sk))
2197 			return true;
2198 		poff += flen;
2199 		plen -= flen;
2200 		*len -= flen;
2201 	} while (*len && plen);
2202 
2203 	return false;
2204 }
2205 
2206 /*
2207  * Map linear and fragment data from the skb to spd. It reports true if the
2208  * pipe is full or if we already spliced the requested length.
2209  */
2210 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2211 			      unsigned int *offset, unsigned int *len,
2212 			      struct splice_pipe_desc *spd, struct sock *sk)
2213 {
2214 	int seg;
2215 	struct sk_buff *iter;
2216 
2217 	/* map the linear part :
2218 	 * If skb->head_frag is set, this 'linear' part is backed by a
2219 	 * fragment, and if the head is not shared with any clones then
2220 	 * we can avoid a copy since we own the head portion of this page.
2221 	 */
2222 	if (__splice_segment(virt_to_page(skb->data),
2223 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2224 			     skb_headlen(skb),
2225 			     offset, len, spd,
2226 			     skb_head_is_locked(skb),
2227 			     sk, pipe))
2228 		return true;
2229 
2230 	/*
2231 	 * then map the fragments
2232 	 */
2233 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2234 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2235 
2236 		if (__splice_segment(skb_frag_page(f),
2237 				     f->page_offset, skb_frag_size(f),
2238 				     offset, len, spd, false, sk, pipe))
2239 			return true;
2240 	}
2241 
2242 	skb_walk_frags(skb, iter) {
2243 		if (*offset >= iter->len) {
2244 			*offset -= iter->len;
2245 			continue;
2246 		}
2247 		/* __skb_splice_bits() only fails if the output has no room
2248 		 * left, so no point in going over the frag_list for the error
2249 		 * case.
2250 		 */
2251 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2252 			return true;
2253 	}
2254 
2255 	return false;
2256 }
2257 
2258 /*
2259  * Map data from the skb to a pipe. Should handle both the linear part,
2260  * the fragments, and the frag list.
2261  */
2262 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2263 		    struct pipe_inode_info *pipe, unsigned int tlen,
2264 		    unsigned int flags)
2265 {
2266 	struct partial_page partial[MAX_SKB_FRAGS];
2267 	struct page *pages[MAX_SKB_FRAGS];
2268 	struct splice_pipe_desc spd = {
2269 		.pages = pages,
2270 		.partial = partial,
2271 		.nr_pages_max = MAX_SKB_FRAGS,
2272 		.ops = &nosteal_pipe_buf_ops,
2273 		.spd_release = sock_spd_release,
2274 	};
2275 	int ret = 0;
2276 
2277 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2278 
2279 	if (spd.nr_pages)
2280 		ret = splice_to_pipe(pipe, &spd);
2281 
2282 	return ret;
2283 }
2284 EXPORT_SYMBOL_GPL(skb_splice_bits);
2285 
2286 /* Send skb data on a socket. Socket must be locked. */
2287 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2288 			 int len)
2289 {
2290 	unsigned int orig_len = len;
2291 	struct sk_buff *head = skb;
2292 	unsigned short fragidx;
2293 	int slen, ret;
2294 
2295 do_frag_list:
2296 
2297 	/* Deal with head data */
2298 	while (offset < skb_headlen(skb) && len) {
2299 		struct kvec kv;
2300 		struct msghdr msg;
2301 
2302 		slen = min_t(int, len, skb_headlen(skb) - offset);
2303 		kv.iov_base = skb->data + offset;
2304 		kv.iov_len = slen;
2305 		memset(&msg, 0, sizeof(msg));
2306 
2307 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2308 		if (ret <= 0)
2309 			goto error;
2310 
2311 		offset += ret;
2312 		len -= ret;
2313 	}
2314 
2315 	/* All the data was skb head? */
2316 	if (!len)
2317 		goto out;
2318 
2319 	/* Make offset relative to start of frags */
2320 	offset -= skb_headlen(skb);
2321 
2322 	/* Find where we are in frag list */
2323 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2324 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2325 
2326 		if (offset < frag->size)
2327 			break;
2328 
2329 		offset -= frag->size;
2330 	}
2331 
2332 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2333 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2334 
2335 		slen = min_t(size_t, len, frag->size - offset);
2336 
2337 		while (slen) {
2338 			ret = kernel_sendpage_locked(sk, frag->page.p,
2339 						     frag->page_offset + offset,
2340 						     slen, MSG_DONTWAIT);
2341 			if (ret <= 0)
2342 				goto error;
2343 
2344 			len -= ret;
2345 			offset += ret;
2346 			slen -= ret;
2347 		}
2348 
2349 		offset = 0;
2350 	}
2351 
2352 	if (len) {
2353 		/* Process any frag lists */
2354 
2355 		if (skb == head) {
2356 			if (skb_has_frag_list(skb)) {
2357 				skb = skb_shinfo(skb)->frag_list;
2358 				goto do_frag_list;
2359 			}
2360 		} else if (skb->next) {
2361 			skb = skb->next;
2362 			goto do_frag_list;
2363 		}
2364 	}
2365 
2366 out:
2367 	return orig_len - len;
2368 
2369 error:
2370 	return orig_len == len ? ret : orig_len - len;
2371 }
2372 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2373 
2374 /**
2375  *	skb_store_bits - store bits from kernel buffer to skb
2376  *	@skb: destination buffer
2377  *	@offset: offset in destination
2378  *	@from: source buffer
2379  *	@len: number of bytes to copy
2380  *
2381  *	Copy the specified number of bytes from the source buffer to the
2382  *	destination skb.  This function handles all the messy bits of
2383  *	traversing fragment lists and such.
2384  */
2385 
2386 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2387 {
2388 	int start = skb_headlen(skb);
2389 	struct sk_buff *frag_iter;
2390 	int i, copy;
2391 
2392 	if (offset > (int)skb->len - len)
2393 		goto fault;
2394 
2395 	if ((copy = start - offset) > 0) {
2396 		if (copy > len)
2397 			copy = len;
2398 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2399 		if ((len -= copy) == 0)
2400 			return 0;
2401 		offset += copy;
2402 		from += copy;
2403 	}
2404 
2405 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2406 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2407 		int end;
2408 
2409 		WARN_ON(start > offset + len);
2410 
2411 		end = start + skb_frag_size(frag);
2412 		if ((copy = end - offset) > 0) {
2413 			u32 p_off, p_len, copied;
2414 			struct page *p;
2415 			u8 *vaddr;
2416 
2417 			if (copy > len)
2418 				copy = len;
2419 
2420 			skb_frag_foreach_page(frag,
2421 					      frag->page_offset + offset - start,
2422 					      copy, p, p_off, p_len, copied) {
2423 				vaddr = kmap_atomic(p);
2424 				memcpy(vaddr + p_off, from + copied, p_len);
2425 				kunmap_atomic(vaddr);
2426 			}
2427 
2428 			if ((len -= copy) == 0)
2429 				return 0;
2430 			offset += copy;
2431 			from += copy;
2432 		}
2433 		start = end;
2434 	}
2435 
2436 	skb_walk_frags(skb, frag_iter) {
2437 		int end;
2438 
2439 		WARN_ON(start > offset + len);
2440 
2441 		end = start + frag_iter->len;
2442 		if ((copy = end - offset) > 0) {
2443 			if (copy > len)
2444 				copy = len;
2445 			if (skb_store_bits(frag_iter, offset - start,
2446 					   from, copy))
2447 				goto fault;
2448 			if ((len -= copy) == 0)
2449 				return 0;
2450 			offset += copy;
2451 			from += copy;
2452 		}
2453 		start = end;
2454 	}
2455 	if (!len)
2456 		return 0;
2457 
2458 fault:
2459 	return -EFAULT;
2460 }
2461 EXPORT_SYMBOL(skb_store_bits);
2462 
2463 /* Checksum skb data. */
2464 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2465 		      __wsum csum, const struct skb_checksum_ops *ops)
2466 {
2467 	int start = skb_headlen(skb);
2468 	int i, copy = start - offset;
2469 	struct sk_buff *frag_iter;
2470 	int pos = 0;
2471 
2472 	/* Checksum header. */
2473 	if (copy > 0) {
2474 		if (copy > len)
2475 			copy = len;
2476 		csum = ops->update(skb->data + offset, copy, csum);
2477 		if ((len -= copy) == 0)
2478 			return csum;
2479 		offset += copy;
2480 		pos	= copy;
2481 	}
2482 
2483 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2484 		int end;
2485 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2486 
2487 		WARN_ON(start > offset + len);
2488 
2489 		end = start + skb_frag_size(frag);
2490 		if ((copy = end - offset) > 0) {
2491 			u32 p_off, p_len, copied;
2492 			struct page *p;
2493 			__wsum csum2;
2494 			u8 *vaddr;
2495 
2496 			if (copy > len)
2497 				copy = len;
2498 
2499 			skb_frag_foreach_page(frag,
2500 					      frag->page_offset + offset - start,
2501 					      copy, p, p_off, p_len, copied) {
2502 				vaddr = kmap_atomic(p);
2503 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2504 				kunmap_atomic(vaddr);
2505 				csum = ops->combine(csum, csum2, pos, p_len);
2506 				pos += p_len;
2507 			}
2508 
2509 			if (!(len -= copy))
2510 				return csum;
2511 			offset += copy;
2512 		}
2513 		start = end;
2514 	}
2515 
2516 	skb_walk_frags(skb, frag_iter) {
2517 		int end;
2518 
2519 		WARN_ON(start > offset + len);
2520 
2521 		end = start + frag_iter->len;
2522 		if ((copy = end - offset) > 0) {
2523 			__wsum csum2;
2524 			if (copy > len)
2525 				copy = len;
2526 			csum2 = __skb_checksum(frag_iter, offset - start,
2527 					       copy, 0, ops);
2528 			csum = ops->combine(csum, csum2, pos, copy);
2529 			if ((len -= copy) == 0)
2530 				return csum;
2531 			offset += copy;
2532 			pos    += copy;
2533 		}
2534 		start = end;
2535 	}
2536 	BUG_ON(len);
2537 
2538 	return csum;
2539 }
2540 EXPORT_SYMBOL(__skb_checksum);
2541 
2542 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2543 		    int len, __wsum csum)
2544 {
2545 	const struct skb_checksum_ops ops = {
2546 		.update  = csum_partial_ext,
2547 		.combine = csum_block_add_ext,
2548 	};
2549 
2550 	return __skb_checksum(skb, offset, len, csum, &ops);
2551 }
2552 EXPORT_SYMBOL(skb_checksum);
2553 
2554 /* Both of above in one bottle. */
2555 
2556 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2557 				    u8 *to, int len, __wsum csum)
2558 {
2559 	int start = skb_headlen(skb);
2560 	int i, copy = start - offset;
2561 	struct sk_buff *frag_iter;
2562 	int pos = 0;
2563 
2564 	/* Copy header. */
2565 	if (copy > 0) {
2566 		if (copy > len)
2567 			copy = len;
2568 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2569 						 copy, csum);
2570 		if ((len -= copy) == 0)
2571 			return csum;
2572 		offset += copy;
2573 		to     += copy;
2574 		pos	= copy;
2575 	}
2576 
2577 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2578 		int end;
2579 
2580 		WARN_ON(start > offset + len);
2581 
2582 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2583 		if ((copy = end - offset) > 0) {
2584 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2585 			u32 p_off, p_len, copied;
2586 			struct page *p;
2587 			__wsum csum2;
2588 			u8 *vaddr;
2589 
2590 			if (copy > len)
2591 				copy = len;
2592 
2593 			skb_frag_foreach_page(frag,
2594 					      frag->page_offset + offset - start,
2595 					      copy, p, p_off, p_len, copied) {
2596 				vaddr = kmap_atomic(p);
2597 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2598 								  to + copied,
2599 								  p_len, 0);
2600 				kunmap_atomic(vaddr);
2601 				csum = csum_block_add(csum, csum2, pos);
2602 				pos += p_len;
2603 			}
2604 
2605 			if (!(len -= copy))
2606 				return csum;
2607 			offset += copy;
2608 			to     += copy;
2609 		}
2610 		start = end;
2611 	}
2612 
2613 	skb_walk_frags(skb, frag_iter) {
2614 		__wsum csum2;
2615 		int end;
2616 
2617 		WARN_ON(start > offset + len);
2618 
2619 		end = start + frag_iter->len;
2620 		if ((copy = end - offset) > 0) {
2621 			if (copy > len)
2622 				copy = len;
2623 			csum2 = skb_copy_and_csum_bits(frag_iter,
2624 						       offset - start,
2625 						       to, copy, 0);
2626 			csum = csum_block_add(csum, csum2, pos);
2627 			if ((len -= copy) == 0)
2628 				return csum;
2629 			offset += copy;
2630 			to     += copy;
2631 			pos    += copy;
2632 		}
2633 		start = end;
2634 	}
2635 	BUG_ON(len);
2636 	return csum;
2637 }
2638 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2639 
2640 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2641 {
2642 	__sum16 sum;
2643 
2644 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2645 	/* See comments in __skb_checksum_complete(). */
2646 	if (likely(!sum)) {
2647 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2648 		    !skb->csum_complete_sw)
2649 			netdev_rx_csum_fault(skb->dev, skb);
2650 	}
2651 	if (!skb_shared(skb))
2652 		skb->csum_valid = !sum;
2653 	return sum;
2654 }
2655 EXPORT_SYMBOL(__skb_checksum_complete_head);
2656 
2657 /* This function assumes skb->csum already holds pseudo header's checksum,
2658  * which has been changed from the hardware checksum, for example, by
2659  * __skb_checksum_validate_complete(). And, the original skb->csum must
2660  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2661  *
2662  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2663  * zero. The new checksum is stored back into skb->csum unless the skb is
2664  * shared.
2665  */
2666 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2667 {
2668 	__wsum csum;
2669 	__sum16 sum;
2670 
2671 	csum = skb_checksum(skb, 0, skb->len, 0);
2672 
2673 	sum = csum_fold(csum_add(skb->csum, csum));
2674 	/* This check is inverted, because we already knew the hardware
2675 	 * checksum is invalid before calling this function. So, if the
2676 	 * re-computed checksum is valid instead, then we have a mismatch
2677 	 * between the original skb->csum and skb_checksum(). This means either
2678 	 * the original hardware checksum is incorrect or we screw up skb->csum
2679 	 * when moving skb->data around.
2680 	 */
2681 	if (likely(!sum)) {
2682 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2683 		    !skb->csum_complete_sw)
2684 			netdev_rx_csum_fault(skb->dev, skb);
2685 	}
2686 
2687 	if (!skb_shared(skb)) {
2688 		/* Save full packet checksum */
2689 		skb->csum = csum;
2690 		skb->ip_summed = CHECKSUM_COMPLETE;
2691 		skb->csum_complete_sw = 1;
2692 		skb->csum_valid = !sum;
2693 	}
2694 
2695 	return sum;
2696 }
2697 EXPORT_SYMBOL(__skb_checksum_complete);
2698 
2699 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2700 {
2701 	net_warn_ratelimited(
2702 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2703 		__func__);
2704 	return 0;
2705 }
2706 
2707 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2708 				       int offset, int len)
2709 {
2710 	net_warn_ratelimited(
2711 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2712 		__func__);
2713 	return 0;
2714 }
2715 
2716 static const struct skb_checksum_ops default_crc32c_ops = {
2717 	.update  = warn_crc32c_csum_update,
2718 	.combine = warn_crc32c_csum_combine,
2719 };
2720 
2721 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2722 	&default_crc32c_ops;
2723 EXPORT_SYMBOL(crc32c_csum_stub);
2724 
2725  /**
2726  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2727  *	@from: source buffer
2728  *
2729  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2730  *	into skb_zerocopy().
2731  */
2732 unsigned int
2733 skb_zerocopy_headlen(const struct sk_buff *from)
2734 {
2735 	unsigned int hlen = 0;
2736 
2737 	if (!from->head_frag ||
2738 	    skb_headlen(from) < L1_CACHE_BYTES ||
2739 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2740 		hlen = skb_headlen(from);
2741 
2742 	if (skb_has_frag_list(from))
2743 		hlen = from->len;
2744 
2745 	return hlen;
2746 }
2747 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2748 
2749 /**
2750  *	skb_zerocopy - Zero copy skb to skb
2751  *	@to: destination buffer
2752  *	@from: source buffer
2753  *	@len: number of bytes to copy from source buffer
2754  *	@hlen: size of linear headroom in destination buffer
2755  *
2756  *	Copies up to `len` bytes from `from` to `to` by creating references
2757  *	to the frags in the source buffer.
2758  *
2759  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2760  *	headroom in the `to` buffer.
2761  *
2762  *	Return value:
2763  *	0: everything is OK
2764  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2765  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2766  */
2767 int
2768 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2769 {
2770 	int i, j = 0;
2771 	int plen = 0; /* length of skb->head fragment */
2772 	int ret;
2773 	struct page *page;
2774 	unsigned int offset;
2775 
2776 	BUG_ON(!from->head_frag && !hlen);
2777 
2778 	/* dont bother with small payloads */
2779 	if (len <= skb_tailroom(to))
2780 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2781 
2782 	if (hlen) {
2783 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2784 		if (unlikely(ret))
2785 			return ret;
2786 		len -= hlen;
2787 	} else {
2788 		plen = min_t(int, skb_headlen(from), len);
2789 		if (plen) {
2790 			page = virt_to_head_page(from->head);
2791 			offset = from->data - (unsigned char *)page_address(page);
2792 			__skb_fill_page_desc(to, 0, page, offset, plen);
2793 			get_page(page);
2794 			j = 1;
2795 			len -= plen;
2796 		}
2797 	}
2798 
2799 	to->truesize += len + plen;
2800 	to->len += len + plen;
2801 	to->data_len += len + plen;
2802 
2803 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2804 		skb_tx_error(from);
2805 		return -ENOMEM;
2806 	}
2807 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2808 
2809 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2810 		if (!len)
2811 			break;
2812 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2813 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2814 		len -= skb_shinfo(to)->frags[j].size;
2815 		skb_frag_ref(to, j);
2816 		j++;
2817 	}
2818 	skb_shinfo(to)->nr_frags = j;
2819 
2820 	return 0;
2821 }
2822 EXPORT_SYMBOL_GPL(skb_zerocopy);
2823 
2824 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2825 {
2826 	__wsum csum;
2827 	long csstart;
2828 
2829 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2830 		csstart = skb_checksum_start_offset(skb);
2831 	else
2832 		csstart = skb_headlen(skb);
2833 
2834 	BUG_ON(csstart > skb_headlen(skb));
2835 
2836 	skb_copy_from_linear_data(skb, to, csstart);
2837 
2838 	csum = 0;
2839 	if (csstart != skb->len)
2840 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2841 					      skb->len - csstart, 0);
2842 
2843 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2844 		long csstuff = csstart + skb->csum_offset;
2845 
2846 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2847 	}
2848 }
2849 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2850 
2851 /**
2852  *	skb_dequeue - remove from the head of the queue
2853  *	@list: list to dequeue from
2854  *
2855  *	Remove the head of the list. The list lock is taken so the function
2856  *	may be used safely with other locking list functions. The head item is
2857  *	returned or %NULL if the list is empty.
2858  */
2859 
2860 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2861 {
2862 	unsigned long flags;
2863 	struct sk_buff *result;
2864 
2865 	spin_lock_irqsave(&list->lock, flags);
2866 	result = __skb_dequeue(list);
2867 	spin_unlock_irqrestore(&list->lock, flags);
2868 	return result;
2869 }
2870 EXPORT_SYMBOL(skb_dequeue);
2871 
2872 /**
2873  *	skb_dequeue_tail - remove from the tail of the queue
2874  *	@list: list to dequeue from
2875  *
2876  *	Remove the tail of the list. The list lock is taken so the function
2877  *	may be used safely with other locking list functions. The tail item is
2878  *	returned or %NULL if the list is empty.
2879  */
2880 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2881 {
2882 	unsigned long flags;
2883 	struct sk_buff *result;
2884 
2885 	spin_lock_irqsave(&list->lock, flags);
2886 	result = __skb_dequeue_tail(list);
2887 	spin_unlock_irqrestore(&list->lock, flags);
2888 	return result;
2889 }
2890 EXPORT_SYMBOL(skb_dequeue_tail);
2891 
2892 /**
2893  *	skb_queue_purge - empty a list
2894  *	@list: list to empty
2895  *
2896  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2897  *	the list and one reference dropped. This function takes the list
2898  *	lock and is atomic with respect to other list locking functions.
2899  */
2900 void skb_queue_purge(struct sk_buff_head *list)
2901 {
2902 	struct sk_buff *skb;
2903 	while ((skb = skb_dequeue(list)) != NULL)
2904 		kfree_skb(skb);
2905 }
2906 EXPORT_SYMBOL(skb_queue_purge);
2907 
2908 /**
2909  *	skb_rbtree_purge - empty a skb rbtree
2910  *	@root: root of the rbtree to empty
2911  *	Return value: the sum of truesizes of all purged skbs.
2912  *
2913  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2914  *	the list and one reference dropped. This function does not take
2915  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2916  *	out-of-order queue is protected by the socket lock).
2917  */
2918 unsigned int skb_rbtree_purge(struct rb_root *root)
2919 {
2920 	struct rb_node *p = rb_first(root);
2921 	unsigned int sum = 0;
2922 
2923 	while (p) {
2924 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2925 
2926 		p = rb_next(p);
2927 		rb_erase(&skb->rbnode, root);
2928 		sum += skb->truesize;
2929 		kfree_skb(skb);
2930 	}
2931 	return sum;
2932 }
2933 
2934 /**
2935  *	skb_queue_head - queue a buffer at the list head
2936  *	@list: list to use
2937  *	@newsk: buffer to queue
2938  *
2939  *	Queue a buffer at the start of the list. This function takes the
2940  *	list lock and can be used safely with other locking &sk_buff functions
2941  *	safely.
2942  *
2943  *	A buffer cannot be placed on two lists at the same time.
2944  */
2945 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2946 {
2947 	unsigned long flags;
2948 
2949 	spin_lock_irqsave(&list->lock, flags);
2950 	__skb_queue_head(list, newsk);
2951 	spin_unlock_irqrestore(&list->lock, flags);
2952 }
2953 EXPORT_SYMBOL(skb_queue_head);
2954 
2955 /**
2956  *	skb_queue_tail - queue a buffer at the list tail
2957  *	@list: list to use
2958  *	@newsk: buffer to queue
2959  *
2960  *	Queue a buffer at the tail of the list. This function takes the
2961  *	list lock and can be used safely with other locking &sk_buff functions
2962  *	safely.
2963  *
2964  *	A buffer cannot be placed on two lists at the same time.
2965  */
2966 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2967 {
2968 	unsigned long flags;
2969 
2970 	spin_lock_irqsave(&list->lock, flags);
2971 	__skb_queue_tail(list, newsk);
2972 	spin_unlock_irqrestore(&list->lock, flags);
2973 }
2974 EXPORT_SYMBOL(skb_queue_tail);
2975 
2976 /**
2977  *	skb_unlink	-	remove a buffer from a list
2978  *	@skb: buffer to remove
2979  *	@list: list to use
2980  *
2981  *	Remove a packet from a list. The list locks are taken and this
2982  *	function is atomic with respect to other list locked calls
2983  *
2984  *	You must know what list the SKB is on.
2985  */
2986 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2987 {
2988 	unsigned long flags;
2989 
2990 	spin_lock_irqsave(&list->lock, flags);
2991 	__skb_unlink(skb, list);
2992 	spin_unlock_irqrestore(&list->lock, flags);
2993 }
2994 EXPORT_SYMBOL(skb_unlink);
2995 
2996 /**
2997  *	skb_append	-	append a buffer
2998  *	@old: buffer to insert after
2999  *	@newsk: buffer to insert
3000  *	@list: list to use
3001  *
3002  *	Place a packet after a given packet in a list. The list locks are taken
3003  *	and this function is atomic with respect to other list locked calls.
3004  *	A buffer cannot be placed on two lists at the same time.
3005  */
3006 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3007 {
3008 	unsigned long flags;
3009 
3010 	spin_lock_irqsave(&list->lock, flags);
3011 	__skb_queue_after(list, old, newsk);
3012 	spin_unlock_irqrestore(&list->lock, flags);
3013 }
3014 EXPORT_SYMBOL(skb_append);
3015 
3016 static inline void skb_split_inside_header(struct sk_buff *skb,
3017 					   struct sk_buff* skb1,
3018 					   const u32 len, const int pos)
3019 {
3020 	int i;
3021 
3022 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3023 					 pos - len);
3024 	/* And move data appendix as is. */
3025 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3026 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3027 
3028 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3029 	skb_shinfo(skb)->nr_frags  = 0;
3030 	skb1->data_len		   = skb->data_len;
3031 	skb1->len		   += skb1->data_len;
3032 	skb->data_len		   = 0;
3033 	skb->len		   = len;
3034 	skb_set_tail_pointer(skb, len);
3035 }
3036 
3037 static inline void skb_split_no_header(struct sk_buff *skb,
3038 				       struct sk_buff* skb1,
3039 				       const u32 len, int pos)
3040 {
3041 	int i, k = 0;
3042 	const int nfrags = skb_shinfo(skb)->nr_frags;
3043 
3044 	skb_shinfo(skb)->nr_frags = 0;
3045 	skb1->len		  = skb1->data_len = skb->len - len;
3046 	skb->len		  = len;
3047 	skb->data_len		  = len - pos;
3048 
3049 	for (i = 0; i < nfrags; i++) {
3050 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3051 
3052 		if (pos + size > len) {
3053 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3054 
3055 			if (pos < len) {
3056 				/* Split frag.
3057 				 * We have two variants in this case:
3058 				 * 1. Move all the frag to the second
3059 				 *    part, if it is possible. F.e.
3060 				 *    this approach is mandatory for TUX,
3061 				 *    where splitting is expensive.
3062 				 * 2. Split is accurately. We make this.
3063 				 */
3064 				skb_frag_ref(skb, i);
3065 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3066 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3067 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3068 				skb_shinfo(skb)->nr_frags++;
3069 			}
3070 			k++;
3071 		} else
3072 			skb_shinfo(skb)->nr_frags++;
3073 		pos += size;
3074 	}
3075 	skb_shinfo(skb1)->nr_frags = k;
3076 }
3077 
3078 /**
3079  * skb_split - Split fragmented skb to two parts at length len.
3080  * @skb: the buffer to split
3081  * @skb1: the buffer to receive the second part
3082  * @len: new length for skb
3083  */
3084 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3085 {
3086 	int pos = skb_headlen(skb);
3087 
3088 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3089 				      SKBTX_SHARED_FRAG;
3090 	skb_zerocopy_clone(skb1, skb, 0);
3091 	if (len < pos)	/* Split line is inside header. */
3092 		skb_split_inside_header(skb, skb1, len, pos);
3093 	else		/* Second chunk has no header, nothing to copy. */
3094 		skb_split_no_header(skb, skb1, len, pos);
3095 }
3096 EXPORT_SYMBOL(skb_split);
3097 
3098 /* Shifting from/to a cloned skb is a no-go.
3099  *
3100  * Caller cannot keep skb_shinfo related pointers past calling here!
3101  */
3102 static int skb_prepare_for_shift(struct sk_buff *skb)
3103 {
3104 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3105 }
3106 
3107 /**
3108  * skb_shift - Shifts paged data partially from skb to another
3109  * @tgt: buffer into which tail data gets added
3110  * @skb: buffer from which the paged data comes from
3111  * @shiftlen: shift up to this many bytes
3112  *
3113  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3114  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3115  * It's up to caller to free skb if everything was shifted.
3116  *
3117  * If @tgt runs out of frags, the whole operation is aborted.
3118  *
3119  * Skb cannot include anything else but paged data while tgt is allowed
3120  * to have non-paged data as well.
3121  *
3122  * TODO: full sized shift could be optimized but that would need
3123  * specialized skb free'er to handle frags without up-to-date nr_frags.
3124  */
3125 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3126 {
3127 	int from, to, merge, todo;
3128 	struct skb_frag_struct *fragfrom, *fragto;
3129 
3130 	BUG_ON(shiftlen > skb->len);
3131 
3132 	if (skb_headlen(skb))
3133 		return 0;
3134 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3135 		return 0;
3136 
3137 	todo = shiftlen;
3138 	from = 0;
3139 	to = skb_shinfo(tgt)->nr_frags;
3140 	fragfrom = &skb_shinfo(skb)->frags[from];
3141 
3142 	/* Actual merge is delayed until the point when we know we can
3143 	 * commit all, so that we don't have to undo partial changes
3144 	 */
3145 	if (!to ||
3146 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3147 			      fragfrom->page_offset)) {
3148 		merge = -1;
3149 	} else {
3150 		merge = to - 1;
3151 
3152 		todo -= skb_frag_size(fragfrom);
3153 		if (todo < 0) {
3154 			if (skb_prepare_for_shift(skb) ||
3155 			    skb_prepare_for_shift(tgt))
3156 				return 0;
3157 
3158 			/* All previous frag pointers might be stale! */
3159 			fragfrom = &skb_shinfo(skb)->frags[from];
3160 			fragto = &skb_shinfo(tgt)->frags[merge];
3161 
3162 			skb_frag_size_add(fragto, shiftlen);
3163 			skb_frag_size_sub(fragfrom, shiftlen);
3164 			fragfrom->page_offset += shiftlen;
3165 
3166 			goto onlymerged;
3167 		}
3168 
3169 		from++;
3170 	}
3171 
3172 	/* Skip full, not-fitting skb to avoid expensive operations */
3173 	if ((shiftlen == skb->len) &&
3174 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3175 		return 0;
3176 
3177 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3178 		return 0;
3179 
3180 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3181 		if (to == MAX_SKB_FRAGS)
3182 			return 0;
3183 
3184 		fragfrom = &skb_shinfo(skb)->frags[from];
3185 		fragto = &skb_shinfo(tgt)->frags[to];
3186 
3187 		if (todo >= skb_frag_size(fragfrom)) {
3188 			*fragto = *fragfrom;
3189 			todo -= skb_frag_size(fragfrom);
3190 			from++;
3191 			to++;
3192 
3193 		} else {
3194 			__skb_frag_ref(fragfrom);
3195 			fragto->page = fragfrom->page;
3196 			fragto->page_offset = fragfrom->page_offset;
3197 			skb_frag_size_set(fragto, todo);
3198 
3199 			fragfrom->page_offset += todo;
3200 			skb_frag_size_sub(fragfrom, todo);
3201 			todo = 0;
3202 
3203 			to++;
3204 			break;
3205 		}
3206 	}
3207 
3208 	/* Ready to "commit" this state change to tgt */
3209 	skb_shinfo(tgt)->nr_frags = to;
3210 
3211 	if (merge >= 0) {
3212 		fragfrom = &skb_shinfo(skb)->frags[0];
3213 		fragto = &skb_shinfo(tgt)->frags[merge];
3214 
3215 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3216 		__skb_frag_unref(fragfrom);
3217 	}
3218 
3219 	/* Reposition in the original skb */
3220 	to = 0;
3221 	while (from < skb_shinfo(skb)->nr_frags)
3222 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3223 	skb_shinfo(skb)->nr_frags = to;
3224 
3225 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3226 
3227 onlymerged:
3228 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3229 	 * the other hand might need it if it needs to be resent
3230 	 */
3231 	tgt->ip_summed = CHECKSUM_PARTIAL;
3232 	skb->ip_summed = CHECKSUM_PARTIAL;
3233 
3234 	/* Yak, is it really working this way? Some helper please? */
3235 	skb->len -= shiftlen;
3236 	skb->data_len -= shiftlen;
3237 	skb->truesize -= shiftlen;
3238 	tgt->len += shiftlen;
3239 	tgt->data_len += shiftlen;
3240 	tgt->truesize += shiftlen;
3241 
3242 	return shiftlen;
3243 }
3244 
3245 /**
3246  * skb_prepare_seq_read - Prepare a sequential read of skb data
3247  * @skb: the buffer to read
3248  * @from: lower offset of data to be read
3249  * @to: upper offset of data to be read
3250  * @st: state variable
3251  *
3252  * Initializes the specified state variable. Must be called before
3253  * invoking skb_seq_read() for the first time.
3254  */
3255 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3256 			  unsigned int to, struct skb_seq_state *st)
3257 {
3258 	st->lower_offset = from;
3259 	st->upper_offset = to;
3260 	st->root_skb = st->cur_skb = skb;
3261 	st->frag_idx = st->stepped_offset = 0;
3262 	st->frag_data = NULL;
3263 }
3264 EXPORT_SYMBOL(skb_prepare_seq_read);
3265 
3266 /**
3267  * skb_seq_read - Sequentially read skb data
3268  * @consumed: number of bytes consumed by the caller so far
3269  * @data: destination pointer for data to be returned
3270  * @st: state variable
3271  *
3272  * Reads a block of skb data at @consumed relative to the
3273  * lower offset specified to skb_prepare_seq_read(). Assigns
3274  * the head of the data block to @data and returns the length
3275  * of the block or 0 if the end of the skb data or the upper
3276  * offset has been reached.
3277  *
3278  * The caller is not required to consume all of the data
3279  * returned, i.e. @consumed is typically set to the number
3280  * of bytes already consumed and the next call to
3281  * skb_seq_read() will return the remaining part of the block.
3282  *
3283  * Note 1: The size of each block of data returned can be arbitrary,
3284  *       this limitation is the cost for zerocopy sequential
3285  *       reads of potentially non linear data.
3286  *
3287  * Note 2: Fragment lists within fragments are not implemented
3288  *       at the moment, state->root_skb could be replaced with
3289  *       a stack for this purpose.
3290  */
3291 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3292 			  struct skb_seq_state *st)
3293 {
3294 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3295 	skb_frag_t *frag;
3296 
3297 	if (unlikely(abs_offset >= st->upper_offset)) {
3298 		if (st->frag_data) {
3299 			kunmap_atomic(st->frag_data);
3300 			st->frag_data = NULL;
3301 		}
3302 		return 0;
3303 	}
3304 
3305 next_skb:
3306 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3307 
3308 	if (abs_offset < block_limit && !st->frag_data) {
3309 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3310 		return block_limit - abs_offset;
3311 	}
3312 
3313 	if (st->frag_idx == 0 && !st->frag_data)
3314 		st->stepped_offset += skb_headlen(st->cur_skb);
3315 
3316 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3317 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3318 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3319 
3320 		if (abs_offset < block_limit) {
3321 			if (!st->frag_data)
3322 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3323 
3324 			*data = (u8 *) st->frag_data + frag->page_offset +
3325 				(abs_offset - st->stepped_offset);
3326 
3327 			return block_limit - abs_offset;
3328 		}
3329 
3330 		if (st->frag_data) {
3331 			kunmap_atomic(st->frag_data);
3332 			st->frag_data = NULL;
3333 		}
3334 
3335 		st->frag_idx++;
3336 		st->stepped_offset += skb_frag_size(frag);
3337 	}
3338 
3339 	if (st->frag_data) {
3340 		kunmap_atomic(st->frag_data);
3341 		st->frag_data = NULL;
3342 	}
3343 
3344 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3345 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3346 		st->frag_idx = 0;
3347 		goto next_skb;
3348 	} else if (st->cur_skb->next) {
3349 		st->cur_skb = st->cur_skb->next;
3350 		st->frag_idx = 0;
3351 		goto next_skb;
3352 	}
3353 
3354 	return 0;
3355 }
3356 EXPORT_SYMBOL(skb_seq_read);
3357 
3358 /**
3359  * skb_abort_seq_read - Abort a sequential read of skb data
3360  * @st: state variable
3361  *
3362  * Must be called if skb_seq_read() was not called until it
3363  * returned 0.
3364  */
3365 void skb_abort_seq_read(struct skb_seq_state *st)
3366 {
3367 	if (st->frag_data)
3368 		kunmap_atomic(st->frag_data);
3369 }
3370 EXPORT_SYMBOL(skb_abort_seq_read);
3371 
3372 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3373 
3374 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3375 					  struct ts_config *conf,
3376 					  struct ts_state *state)
3377 {
3378 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3379 }
3380 
3381 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3382 {
3383 	skb_abort_seq_read(TS_SKB_CB(state));
3384 }
3385 
3386 /**
3387  * skb_find_text - Find a text pattern in skb data
3388  * @skb: the buffer to look in
3389  * @from: search offset
3390  * @to: search limit
3391  * @config: textsearch configuration
3392  *
3393  * Finds a pattern in the skb data according to the specified
3394  * textsearch configuration. Use textsearch_next() to retrieve
3395  * subsequent occurrences of the pattern. Returns the offset
3396  * to the first occurrence or UINT_MAX if no match was found.
3397  */
3398 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3399 			   unsigned int to, struct ts_config *config)
3400 {
3401 	struct ts_state state;
3402 	unsigned int ret;
3403 
3404 	config->get_next_block = skb_ts_get_next_block;
3405 	config->finish = skb_ts_finish;
3406 
3407 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3408 
3409 	ret = textsearch_find(config, &state);
3410 	return (ret <= to - from ? ret : UINT_MAX);
3411 }
3412 EXPORT_SYMBOL(skb_find_text);
3413 
3414 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3415 			 int offset, size_t size)
3416 {
3417 	int i = skb_shinfo(skb)->nr_frags;
3418 
3419 	if (skb_can_coalesce(skb, i, page, offset)) {
3420 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3421 	} else if (i < MAX_SKB_FRAGS) {
3422 		get_page(page);
3423 		skb_fill_page_desc(skb, i, page, offset, size);
3424 	} else {
3425 		return -EMSGSIZE;
3426 	}
3427 
3428 	return 0;
3429 }
3430 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3431 
3432 /**
3433  *	skb_pull_rcsum - pull skb and update receive checksum
3434  *	@skb: buffer to update
3435  *	@len: length of data pulled
3436  *
3437  *	This function performs an skb_pull on the packet and updates
3438  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3439  *	receive path processing instead of skb_pull unless you know
3440  *	that the checksum difference is zero (e.g., a valid IP header)
3441  *	or you are setting ip_summed to CHECKSUM_NONE.
3442  */
3443 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3444 {
3445 	unsigned char *data = skb->data;
3446 
3447 	BUG_ON(len > skb->len);
3448 	__skb_pull(skb, len);
3449 	skb_postpull_rcsum(skb, data, len);
3450 	return skb->data;
3451 }
3452 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3453 
3454 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3455 {
3456 	skb_frag_t head_frag;
3457 	struct page *page;
3458 
3459 	page = virt_to_head_page(frag_skb->head);
3460 	head_frag.page.p = page;
3461 	head_frag.page_offset = frag_skb->data -
3462 		(unsigned char *)page_address(page);
3463 	head_frag.size = skb_headlen(frag_skb);
3464 	return head_frag;
3465 }
3466 
3467 /**
3468  *	skb_segment - Perform protocol segmentation on skb.
3469  *	@head_skb: buffer to segment
3470  *	@features: features for the output path (see dev->features)
3471  *
3472  *	This function performs segmentation on the given skb.  It returns
3473  *	a pointer to the first in a list of new skbs for the segments.
3474  *	In case of error it returns ERR_PTR(err).
3475  */
3476 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3477 			    netdev_features_t features)
3478 {
3479 	struct sk_buff *segs = NULL;
3480 	struct sk_buff *tail = NULL;
3481 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3482 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3483 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3484 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3485 	struct sk_buff *frag_skb = head_skb;
3486 	unsigned int offset = doffset;
3487 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3488 	unsigned int partial_segs = 0;
3489 	unsigned int headroom;
3490 	unsigned int len = head_skb->len;
3491 	__be16 proto;
3492 	bool csum, sg;
3493 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3494 	int err = -ENOMEM;
3495 	int i = 0;
3496 	int pos;
3497 	int dummy;
3498 
3499 	__skb_push(head_skb, doffset);
3500 	proto = skb_network_protocol(head_skb, &dummy);
3501 	if (unlikely(!proto))
3502 		return ERR_PTR(-EINVAL);
3503 
3504 	sg = !!(features & NETIF_F_SG);
3505 	csum = !!can_checksum_protocol(features, proto);
3506 
3507 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3508 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3509 			struct sk_buff *iter;
3510 			unsigned int frag_len;
3511 
3512 			if (!list_skb ||
3513 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3514 				goto normal;
3515 
3516 			/* If we get here then all the required
3517 			 * GSO features except frag_list are supported.
3518 			 * Try to split the SKB to multiple GSO SKBs
3519 			 * with no frag_list.
3520 			 * Currently we can do that only when the buffers don't
3521 			 * have a linear part and all the buffers except
3522 			 * the last are of the same length.
3523 			 */
3524 			frag_len = list_skb->len;
3525 			skb_walk_frags(head_skb, iter) {
3526 				if (frag_len != iter->len && iter->next)
3527 					goto normal;
3528 				if (skb_headlen(iter) && !iter->head_frag)
3529 					goto normal;
3530 
3531 				len -= iter->len;
3532 			}
3533 
3534 			if (len != frag_len)
3535 				goto normal;
3536 		}
3537 
3538 		/* GSO partial only requires that we trim off any excess that
3539 		 * doesn't fit into an MSS sized block, so take care of that
3540 		 * now.
3541 		 */
3542 		partial_segs = len / mss;
3543 		if (partial_segs > 1)
3544 			mss *= partial_segs;
3545 		else
3546 			partial_segs = 0;
3547 	}
3548 
3549 normal:
3550 	headroom = skb_headroom(head_skb);
3551 	pos = skb_headlen(head_skb);
3552 
3553 	do {
3554 		struct sk_buff *nskb;
3555 		skb_frag_t *nskb_frag;
3556 		int hsize;
3557 		int size;
3558 
3559 		if (unlikely(mss == GSO_BY_FRAGS)) {
3560 			len = list_skb->len;
3561 		} else {
3562 			len = head_skb->len - offset;
3563 			if (len > mss)
3564 				len = mss;
3565 		}
3566 
3567 		hsize = skb_headlen(head_skb) - offset;
3568 		if (hsize < 0)
3569 			hsize = 0;
3570 		if (hsize > len || !sg)
3571 			hsize = len;
3572 
3573 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3574 		    (skb_headlen(list_skb) == len || sg)) {
3575 			BUG_ON(skb_headlen(list_skb) > len);
3576 
3577 			i = 0;
3578 			nfrags = skb_shinfo(list_skb)->nr_frags;
3579 			frag = skb_shinfo(list_skb)->frags;
3580 			frag_skb = list_skb;
3581 			pos += skb_headlen(list_skb);
3582 
3583 			while (pos < offset + len) {
3584 				BUG_ON(i >= nfrags);
3585 
3586 				size = skb_frag_size(frag);
3587 				if (pos + size > offset + len)
3588 					break;
3589 
3590 				i++;
3591 				pos += size;
3592 				frag++;
3593 			}
3594 
3595 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3596 			list_skb = list_skb->next;
3597 
3598 			if (unlikely(!nskb))
3599 				goto err;
3600 
3601 			if (unlikely(pskb_trim(nskb, len))) {
3602 				kfree_skb(nskb);
3603 				goto err;
3604 			}
3605 
3606 			hsize = skb_end_offset(nskb);
3607 			if (skb_cow_head(nskb, doffset + headroom)) {
3608 				kfree_skb(nskb);
3609 				goto err;
3610 			}
3611 
3612 			nskb->truesize += skb_end_offset(nskb) - hsize;
3613 			skb_release_head_state(nskb);
3614 			__skb_push(nskb, doffset);
3615 		} else {
3616 			nskb = __alloc_skb(hsize + doffset + headroom,
3617 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3618 					   NUMA_NO_NODE);
3619 
3620 			if (unlikely(!nskb))
3621 				goto err;
3622 
3623 			skb_reserve(nskb, headroom);
3624 			__skb_put(nskb, doffset);
3625 		}
3626 
3627 		if (segs)
3628 			tail->next = nskb;
3629 		else
3630 			segs = nskb;
3631 		tail = nskb;
3632 
3633 		__copy_skb_header(nskb, head_skb);
3634 
3635 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3636 		skb_reset_mac_len(nskb);
3637 
3638 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3639 						 nskb->data - tnl_hlen,
3640 						 doffset + tnl_hlen);
3641 
3642 		if (nskb->len == len + doffset)
3643 			goto perform_csum_check;
3644 
3645 		if (!sg) {
3646 			if (!nskb->remcsum_offload)
3647 				nskb->ip_summed = CHECKSUM_NONE;
3648 			SKB_GSO_CB(nskb)->csum =
3649 				skb_copy_and_csum_bits(head_skb, offset,
3650 						       skb_put(nskb, len),
3651 						       len, 0);
3652 			SKB_GSO_CB(nskb)->csum_start =
3653 				skb_headroom(nskb) + doffset;
3654 			continue;
3655 		}
3656 
3657 		nskb_frag = skb_shinfo(nskb)->frags;
3658 
3659 		skb_copy_from_linear_data_offset(head_skb, offset,
3660 						 skb_put(nskb, hsize), hsize);
3661 
3662 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3663 					      SKBTX_SHARED_FRAG;
3664 
3665 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3666 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3667 			goto err;
3668 
3669 		while (pos < offset + len) {
3670 			if (i >= nfrags) {
3671 				i = 0;
3672 				nfrags = skb_shinfo(list_skb)->nr_frags;
3673 				frag = skb_shinfo(list_skb)->frags;
3674 				frag_skb = list_skb;
3675 				if (!skb_headlen(list_skb)) {
3676 					BUG_ON(!nfrags);
3677 				} else {
3678 					BUG_ON(!list_skb->head_frag);
3679 
3680 					/* to make room for head_frag. */
3681 					i--;
3682 					frag--;
3683 				}
3684 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3685 				    skb_zerocopy_clone(nskb, frag_skb,
3686 						       GFP_ATOMIC))
3687 					goto err;
3688 
3689 				list_skb = list_skb->next;
3690 			}
3691 
3692 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3693 				     MAX_SKB_FRAGS)) {
3694 				net_warn_ratelimited(
3695 					"skb_segment: too many frags: %u %u\n",
3696 					pos, mss);
3697 				err = -EINVAL;
3698 				goto err;
3699 			}
3700 
3701 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3702 			__skb_frag_ref(nskb_frag);
3703 			size = skb_frag_size(nskb_frag);
3704 
3705 			if (pos < offset) {
3706 				nskb_frag->page_offset += offset - pos;
3707 				skb_frag_size_sub(nskb_frag, offset - pos);
3708 			}
3709 
3710 			skb_shinfo(nskb)->nr_frags++;
3711 
3712 			if (pos + size <= offset + len) {
3713 				i++;
3714 				frag++;
3715 				pos += size;
3716 			} else {
3717 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3718 				goto skip_fraglist;
3719 			}
3720 
3721 			nskb_frag++;
3722 		}
3723 
3724 skip_fraglist:
3725 		nskb->data_len = len - hsize;
3726 		nskb->len += nskb->data_len;
3727 		nskb->truesize += nskb->data_len;
3728 
3729 perform_csum_check:
3730 		if (!csum) {
3731 			if (skb_has_shared_frag(nskb) &&
3732 			    __skb_linearize(nskb))
3733 				goto err;
3734 
3735 			if (!nskb->remcsum_offload)
3736 				nskb->ip_summed = CHECKSUM_NONE;
3737 			SKB_GSO_CB(nskb)->csum =
3738 				skb_checksum(nskb, doffset,
3739 					     nskb->len - doffset, 0);
3740 			SKB_GSO_CB(nskb)->csum_start =
3741 				skb_headroom(nskb) + doffset;
3742 		}
3743 	} while ((offset += len) < head_skb->len);
3744 
3745 	/* Some callers want to get the end of the list.
3746 	 * Put it in segs->prev to avoid walking the list.
3747 	 * (see validate_xmit_skb_list() for example)
3748 	 */
3749 	segs->prev = tail;
3750 
3751 	if (partial_segs) {
3752 		struct sk_buff *iter;
3753 		int type = skb_shinfo(head_skb)->gso_type;
3754 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3755 
3756 		/* Update type to add partial and then remove dodgy if set */
3757 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3758 		type &= ~SKB_GSO_DODGY;
3759 
3760 		/* Update GSO info and prepare to start updating headers on
3761 		 * our way back down the stack of protocols.
3762 		 */
3763 		for (iter = segs; iter; iter = iter->next) {
3764 			skb_shinfo(iter)->gso_size = gso_size;
3765 			skb_shinfo(iter)->gso_segs = partial_segs;
3766 			skb_shinfo(iter)->gso_type = type;
3767 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3768 		}
3769 
3770 		if (tail->len - doffset <= gso_size)
3771 			skb_shinfo(tail)->gso_size = 0;
3772 		else if (tail != segs)
3773 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3774 	}
3775 
3776 	/* Following permits correct backpressure, for protocols
3777 	 * using skb_set_owner_w().
3778 	 * Idea is to tranfert ownership from head_skb to last segment.
3779 	 */
3780 	if (head_skb->destructor == sock_wfree) {
3781 		swap(tail->truesize, head_skb->truesize);
3782 		swap(tail->destructor, head_skb->destructor);
3783 		swap(tail->sk, head_skb->sk);
3784 	}
3785 	return segs;
3786 
3787 err:
3788 	kfree_skb_list(segs);
3789 	return ERR_PTR(err);
3790 }
3791 EXPORT_SYMBOL_GPL(skb_segment);
3792 
3793 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3794 {
3795 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3796 	unsigned int offset = skb_gro_offset(skb);
3797 	unsigned int headlen = skb_headlen(skb);
3798 	unsigned int len = skb_gro_len(skb);
3799 	unsigned int delta_truesize;
3800 	struct sk_buff *lp;
3801 
3802 	if (unlikely(p->len + len >= 65536))
3803 		return -E2BIG;
3804 
3805 	lp = NAPI_GRO_CB(p)->last;
3806 	pinfo = skb_shinfo(lp);
3807 
3808 	if (headlen <= offset) {
3809 		skb_frag_t *frag;
3810 		skb_frag_t *frag2;
3811 		int i = skbinfo->nr_frags;
3812 		int nr_frags = pinfo->nr_frags + i;
3813 
3814 		if (nr_frags > MAX_SKB_FRAGS)
3815 			goto merge;
3816 
3817 		offset -= headlen;
3818 		pinfo->nr_frags = nr_frags;
3819 		skbinfo->nr_frags = 0;
3820 
3821 		frag = pinfo->frags + nr_frags;
3822 		frag2 = skbinfo->frags + i;
3823 		do {
3824 			*--frag = *--frag2;
3825 		} while (--i);
3826 
3827 		frag->page_offset += offset;
3828 		skb_frag_size_sub(frag, offset);
3829 
3830 		/* all fragments truesize : remove (head size + sk_buff) */
3831 		delta_truesize = skb->truesize -
3832 				 SKB_TRUESIZE(skb_end_offset(skb));
3833 
3834 		skb->truesize -= skb->data_len;
3835 		skb->len -= skb->data_len;
3836 		skb->data_len = 0;
3837 
3838 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3839 		goto done;
3840 	} else if (skb->head_frag) {
3841 		int nr_frags = pinfo->nr_frags;
3842 		skb_frag_t *frag = pinfo->frags + nr_frags;
3843 		struct page *page = virt_to_head_page(skb->head);
3844 		unsigned int first_size = headlen - offset;
3845 		unsigned int first_offset;
3846 
3847 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3848 			goto merge;
3849 
3850 		first_offset = skb->data -
3851 			       (unsigned char *)page_address(page) +
3852 			       offset;
3853 
3854 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3855 
3856 		frag->page.p	  = page;
3857 		frag->page_offset = first_offset;
3858 		skb_frag_size_set(frag, first_size);
3859 
3860 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3861 		/* We dont need to clear skbinfo->nr_frags here */
3862 
3863 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3864 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3865 		goto done;
3866 	}
3867 
3868 merge:
3869 	delta_truesize = skb->truesize;
3870 	if (offset > headlen) {
3871 		unsigned int eat = offset - headlen;
3872 
3873 		skbinfo->frags[0].page_offset += eat;
3874 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3875 		skb->data_len -= eat;
3876 		skb->len -= eat;
3877 		offset = headlen;
3878 	}
3879 
3880 	__skb_pull(skb, offset);
3881 
3882 	if (NAPI_GRO_CB(p)->last == p)
3883 		skb_shinfo(p)->frag_list = skb;
3884 	else
3885 		NAPI_GRO_CB(p)->last->next = skb;
3886 	NAPI_GRO_CB(p)->last = skb;
3887 	__skb_header_release(skb);
3888 	lp = p;
3889 
3890 done:
3891 	NAPI_GRO_CB(p)->count++;
3892 	p->data_len += len;
3893 	p->truesize += delta_truesize;
3894 	p->len += len;
3895 	if (lp != p) {
3896 		lp->data_len += len;
3897 		lp->truesize += delta_truesize;
3898 		lp->len += len;
3899 	}
3900 	NAPI_GRO_CB(skb)->same_flow = 1;
3901 	return 0;
3902 }
3903 EXPORT_SYMBOL_GPL(skb_gro_receive);
3904 
3905 void __init skb_init(void)
3906 {
3907 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3908 					      sizeof(struct sk_buff),
3909 					      0,
3910 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3911 					      offsetof(struct sk_buff, cb),
3912 					      sizeof_field(struct sk_buff, cb),
3913 					      NULL);
3914 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3915 						sizeof(struct sk_buff_fclones),
3916 						0,
3917 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3918 						NULL);
3919 }
3920 
3921 static int
3922 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3923 	       unsigned int recursion_level)
3924 {
3925 	int start = skb_headlen(skb);
3926 	int i, copy = start - offset;
3927 	struct sk_buff *frag_iter;
3928 	int elt = 0;
3929 
3930 	if (unlikely(recursion_level >= 24))
3931 		return -EMSGSIZE;
3932 
3933 	if (copy > 0) {
3934 		if (copy > len)
3935 			copy = len;
3936 		sg_set_buf(sg, skb->data + offset, copy);
3937 		elt++;
3938 		if ((len -= copy) == 0)
3939 			return elt;
3940 		offset += copy;
3941 	}
3942 
3943 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3944 		int end;
3945 
3946 		WARN_ON(start > offset + len);
3947 
3948 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3949 		if ((copy = end - offset) > 0) {
3950 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3951 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3952 				return -EMSGSIZE;
3953 
3954 			if (copy > len)
3955 				copy = len;
3956 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3957 					frag->page_offset+offset-start);
3958 			elt++;
3959 			if (!(len -= copy))
3960 				return elt;
3961 			offset += copy;
3962 		}
3963 		start = end;
3964 	}
3965 
3966 	skb_walk_frags(skb, frag_iter) {
3967 		int end, ret;
3968 
3969 		WARN_ON(start > offset + len);
3970 
3971 		end = start + frag_iter->len;
3972 		if ((copy = end - offset) > 0) {
3973 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3974 				return -EMSGSIZE;
3975 
3976 			if (copy > len)
3977 				copy = len;
3978 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3979 					      copy, recursion_level + 1);
3980 			if (unlikely(ret < 0))
3981 				return ret;
3982 			elt += ret;
3983 			if ((len -= copy) == 0)
3984 				return elt;
3985 			offset += copy;
3986 		}
3987 		start = end;
3988 	}
3989 	BUG_ON(len);
3990 	return elt;
3991 }
3992 
3993 /**
3994  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3995  *	@skb: Socket buffer containing the buffers to be mapped
3996  *	@sg: The scatter-gather list to map into
3997  *	@offset: The offset into the buffer's contents to start mapping
3998  *	@len: Length of buffer space to be mapped
3999  *
4000  *	Fill the specified scatter-gather list with mappings/pointers into a
4001  *	region of the buffer space attached to a socket buffer. Returns either
4002  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4003  *	could not fit.
4004  */
4005 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4006 {
4007 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4008 
4009 	if (nsg <= 0)
4010 		return nsg;
4011 
4012 	sg_mark_end(&sg[nsg - 1]);
4013 
4014 	return nsg;
4015 }
4016 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4017 
4018 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4019  * sglist without mark the sg which contain last skb data as the end.
4020  * So the caller can mannipulate sg list as will when padding new data after
4021  * the first call without calling sg_unmark_end to expend sg list.
4022  *
4023  * Scenario to use skb_to_sgvec_nomark:
4024  * 1. sg_init_table
4025  * 2. skb_to_sgvec_nomark(payload1)
4026  * 3. skb_to_sgvec_nomark(payload2)
4027  *
4028  * This is equivalent to:
4029  * 1. sg_init_table
4030  * 2. skb_to_sgvec(payload1)
4031  * 3. sg_unmark_end
4032  * 4. skb_to_sgvec(payload2)
4033  *
4034  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4035  * is more preferable.
4036  */
4037 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4038 			int offset, int len)
4039 {
4040 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4041 }
4042 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4043 
4044 
4045 
4046 /**
4047  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4048  *	@skb: The socket buffer to check.
4049  *	@tailbits: Amount of trailing space to be added
4050  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4051  *
4052  *	Make sure that the data buffers attached to a socket buffer are
4053  *	writable. If they are not, private copies are made of the data buffers
4054  *	and the socket buffer is set to use these instead.
4055  *
4056  *	If @tailbits is given, make sure that there is space to write @tailbits
4057  *	bytes of data beyond current end of socket buffer.  @trailer will be
4058  *	set to point to the skb in which this space begins.
4059  *
4060  *	The number of scatterlist elements required to completely map the
4061  *	COW'd and extended socket buffer will be returned.
4062  */
4063 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4064 {
4065 	int copyflag;
4066 	int elt;
4067 	struct sk_buff *skb1, **skb_p;
4068 
4069 	/* If skb is cloned or its head is paged, reallocate
4070 	 * head pulling out all the pages (pages are considered not writable
4071 	 * at the moment even if they are anonymous).
4072 	 */
4073 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4074 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4075 		return -ENOMEM;
4076 
4077 	/* Easy case. Most of packets will go this way. */
4078 	if (!skb_has_frag_list(skb)) {
4079 		/* A little of trouble, not enough of space for trailer.
4080 		 * This should not happen, when stack is tuned to generate
4081 		 * good frames. OK, on miss we reallocate and reserve even more
4082 		 * space, 128 bytes is fair. */
4083 
4084 		if (skb_tailroom(skb) < tailbits &&
4085 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4086 			return -ENOMEM;
4087 
4088 		/* Voila! */
4089 		*trailer = skb;
4090 		return 1;
4091 	}
4092 
4093 	/* Misery. We are in troubles, going to mincer fragments... */
4094 
4095 	elt = 1;
4096 	skb_p = &skb_shinfo(skb)->frag_list;
4097 	copyflag = 0;
4098 
4099 	while ((skb1 = *skb_p) != NULL) {
4100 		int ntail = 0;
4101 
4102 		/* The fragment is partially pulled by someone,
4103 		 * this can happen on input. Copy it and everything
4104 		 * after it. */
4105 
4106 		if (skb_shared(skb1))
4107 			copyflag = 1;
4108 
4109 		/* If the skb is the last, worry about trailer. */
4110 
4111 		if (skb1->next == NULL && tailbits) {
4112 			if (skb_shinfo(skb1)->nr_frags ||
4113 			    skb_has_frag_list(skb1) ||
4114 			    skb_tailroom(skb1) < tailbits)
4115 				ntail = tailbits + 128;
4116 		}
4117 
4118 		if (copyflag ||
4119 		    skb_cloned(skb1) ||
4120 		    ntail ||
4121 		    skb_shinfo(skb1)->nr_frags ||
4122 		    skb_has_frag_list(skb1)) {
4123 			struct sk_buff *skb2;
4124 
4125 			/* Fuck, we are miserable poor guys... */
4126 			if (ntail == 0)
4127 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4128 			else
4129 				skb2 = skb_copy_expand(skb1,
4130 						       skb_headroom(skb1),
4131 						       ntail,
4132 						       GFP_ATOMIC);
4133 			if (unlikely(skb2 == NULL))
4134 				return -ENOMEM;
4135 
4136 			if (skb1->sk)
4137 				skb_set_owner_w(skb2, skb1->sk);
4138 
4139 			/* Looking around. Are we still alive?
4140 			 * OK, link new skb, drop old one */
4141 
4142 			skb2->next = skb1->next;
4143 			*skb_p = skb2;
4144 			kfree_skb(skb1);
4145 			skb1 = skb2;
4146 		}
4147 		elt++;
4148 		*trailer = skb1;
4149 		skb_p = &skb1->next;
4150 	}
4151 
4152 	return elt;
4153 }
4154 EXPORT_SYMBOL_GPL(skb_cow_data);
4155 
4156 static void sock_rmem_free(struct sk_buff *skb)
4157 {
4158 	struct sock *sk = skb->sk;
4159 
4160 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4161 }
4162 
4163 static void skb_set_err_queue(struct sk_buff *skb)
4164 {
4165 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4166 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4167 	 */
4168 	skb->pkt_type = PACKET_OUTGOING;
4169 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4170 }
4171 
4172 /*
4173  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4174  */
4175 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4176 {
4177 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4178 	    (unsigned int)sk->sk_rcvbuf)
4179 		return -ENOMEM;
4180 
4181 	skb_orphan(skb);
4182 	skb->sk = sk;
4183 	skb->destructor = sock_rmem_free;
4184 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4185 	skb_set_err_queue(skb);
4186 
4187 	/* before exiting rcu section, make sure dst is refcounted */
4188 	skb_dst_force(skb);
4189 
4190 	skb_queue_tail(&sk->sk_error_queue, skb);
4191 	if (!sock_flag(sk, SOCK_DEAD))
4192 		sk->sk_error_report(sk);
4193 	return 0;
4194 }
4195 EXPORT_SYMBOL(sock_queue_err_skb);
4196 
4197 static bool is_icmp_err_skb(const struct sk_buff *skb)
4198 {
4199 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4200 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4201 }
4202 
4203 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4204 {
4205 	struct sk_buff_head *q = &sk->sk_error_queue;
4206 	struct sk_buff *skb, *skb_next = NULL;
4207 	bool icmp_next = false;
4208 	unsigned long flags;
4209 
4210 	spin_lock_irqsave(&q->lock, flags);
4211 	skb = __skb_dequeue(q);
4212 	if (skb && (skb_next = skb_peek(q))) {
4213 		icmp_next = is_icmp_err_skb(skb_next);
4214 		if (icmp_next)
4215 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4216 	}
4217 	spin_unlock_irqrestore(&q->lock, flags);
4218 
4219 	if (is_icmp_err_skb(skb) && !icmp_next)
4220 		sk->sk_err = 0;
4221 
4222 	if (skb_next)
4223 		sk->sk_error_report(sk);
4224 
4225 	return skb;
4226 }
4227 EXPORT_SYMBOL(sock_dequeue_err_skb);
4228 
4229 /**
4230  * skb_clone_sk - create clone of skb, and take reference to socket
4231  * @skb: the skb to clone
4232  *
4233  * This function creates a clone of a buffer that holds a reference on
4234  * sk_refcnt.  Buffers created via this function are meant to be
4235  * returned using sock_queue_err_skb, or free via kfree_skb.
4236  *
4237  * When passing buffers allocated with this function to sock_queue_err_skb
4238  * it is necessary to wrap the call with sock_hold/sock_put in order to
4239  * prevent the socket from being released prior to being enqueued on
4240  * the sk_error_queue.
4241  */
4242 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4243 {
4244 	struct sock *sk = skb->sk;
4245 	struct sk_buff *clone;
4246 
4247 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4248 		return NULL;
4249 
4250 	clone = skb_clone(skb, GFP_ATOMIC);
4251 	if (!clone) {
4252 		sock_put(sk);
4253 		return NULL;
4254 	}
4255 
4256 	clone->sk = sk;
4257 	clone->destructor = sock_efree;
4258 
4259 	return clone;
4260 }
4261 EXPORT_SYMBOL(skb_clone_sk);
4262 
4263 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4264 					struct sock *sk,
4265 					int tstype,
4266 					bool opt_stats)
4267 {
4268 	struct sock_exterr_skb *serr;
4269 	int err;
4270 
4271 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4272 
4273 	serr = SKB_EXT_ERR(skb);
4274 	memset(serr, 0, sizeof(*serr));
4275 	serr->ee.ee_errno = ENOMSG;
4276 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4277 	serr->ee.ee_info = tstype;
4278 	serr->opt_stats = opt_stats;
4279 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4280 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4281 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4282 		if (sk->sk_protocol == IPPROTO_TCP &&
4283 		    sk->sk_type == SOCK_STREAM)
4284 			serr->ee.ee_data -= sk->sk_tskey;
4285 	}
4286 
4287 	err = sock_queue_err_skb(sk, skb);
4288 
4289 	if (err)
4290 		kfree_skb(skb);
4291 }
4292 
4293 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4294 {
4295 	bool ret;
4296 
4297 	if (likely(sysctl_tstamp_allow_data || tsonly))
4298 		return true;
4299 
4300 	read_lock_bh(&sk->sk_callback_lock);
4301 	ret = sk->sk_socket && sk->sk_socket->file &&
4302 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4303 	read_unlock_bh(&sk->sk_callback_lock);
4304 	return ret;
4305 }
4306 
4307 void skb_complete_tx_timestamp(struct sk_buff *skb,
4308 			       struct skb_shared_hwtstamps *hwtstamps)
4309 {
4310 	struct sock *sk = skb->sk;
4311 
4312 	if (!skb_may_tx_timestamp(sk, false))
4313 		goto err;
4314 
4315 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4316 	 * but only if the socket refcount is not zero.
4317 	 */
4318 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4319 		*skb_hwtstamps(skb) = *hwtstamps;
4320 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4321 		sock_put(sk);
4322 		return;
4323 	}
4324 
4325 err:
4326 	kfree_skb(skb);
4327 }
4328 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4329 
4330 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4331 		     struct skb_shared_hwtstamps *hwtstamps,
4332 		     struct sock *sk, int tstype)
4333 {
4334 	struct sk_buff *skb;
4335 	bool tsonly, opt_stats = false;
4336 
4337 	if (!sk)
4338 		return;
4339 
4340 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4341 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4342 		return;
4343 
4344 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4345 	if (!skb_may_tx_timestamp(sk, tsonly))
4346 		return;
4347 
4348 	if (tsonly) {
4349 #ifdef CONFIG_INET
4350 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4351 		    sk->sk_protocol == IPPROTO_TCP &&
4352 		    sk->sk_type == SOCK_STREAM) {
4353 			skb = tcp_get_timestamping_opt_stats(sk);
4354 			opt_stats = true;
4355 		} else
4356 #endif
4357 			skb = alloc_skb(0, GFP_ATOMIC);
4358 	} else {
4359 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4360 	}
4361 	if (!skb)
4362 		return;
4363 
4364 	if (tsonly) {
4365 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4366 					     SKBTX_ANY_TSTAMP;
4367 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4368 	}
4369 
4370 	if (hwtstamps)
4371 		*skb_hwtstamps(skb) = *hwtstamps;
4372 	else
4373 		skb->tstamp = ktime_get_real();
4374 
4375 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4376 }
4377 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4378 
4379 void skb_tstamp_tx(struct sk_buff *orig_skb,
4380 		   struct skb_shared_hwtstamps *hwtstamps)
4381 {
4382 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4383 			       SCM_TSTAMP_SND);
4384 }
4385 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4386 
4387 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4388 {
4389 	struct sock *sk = skb->sk;
4390 	struct sock_exterr_skb *serr;
4391 	int err = 1;
4392 
4393 	skb->wifi_acked_valid = 1;
4394 	skb->wifi_acked = acked;
4395 
4396 	serr = SKB_EXT_ERR(skb);
4397 	memset(serr, 0, sizeof(*serr));
4398 	serr->ee.ee_errno = ENOMSG;
4399 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4400 
4401 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4402 	 * but only if the socket refcount is not zero.
4403 	 */
4404 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4405 		err = sock_queue_err_skb(sk, skb);
4406 		sock_put(sk);
4407 	}
4408 	if (err)
4409 		kfree_skb(skb);
4410 }
4411 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4412 
4413 /**
4414  * skb_partial_csum_set - set up and verify partial csum values for packet
4415  * @skb: the skb to set
4416  * @start: the number of bytes after skb->data to start checksumming.
4417  * @off: the offset from start to place the checksum.
4418  *
4419  * For untrusted partially-checksummed packets, we need to make sure the values
4420  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4421  *
4422  * This function checks and sets those values and skb->ip_summed: if this
4423  * returns false you should drop the packet.
4424  */
4425 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4426 {
4427 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4428 	u32 csum_start = skb_headroom(skb) + (u32)start;
4429 
4430 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4431 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4432 				     start, off, skb_headroom(skb), skb_headlen(skb));
4433 		return false;
4434 	}
4435 	skb->ip_summed = CHECKSUM_PARTIAL;
4436 	skb->csum_start = csum_start;
4437 	skb->csum_offset = off;
4438 	skb_set_transport_header(skb, start);
4439 	return true;
4440 }
4441 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4442 
4443 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4444 			       unsigned int max)
4445 {
4446 	if (skb_headlen(skb) >= len)
4447 		return 0;
4448 
4449 	/* If we need to pullup then pullup to the max, so we
4450 	 * won't need to do it again.
4451 	 */
4452 	if (max > skb->len)
4453 		max = skb->len;
4454 
4455 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4456 		return -ENOMEM;
4457 
4458 	if (skb_headlen(skb) < len)
4459 		return -EPROTO;
4460 
4461 	return 0;
4462 }
4463 
4464 #define MAX_TCP_HDR_LEN (15 * 4)
4465 
4466 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4467 				      typeof(IPPROTO_IP) proto,
4468 				      unsigned int off)
4469 {
4470 	switch (proto) {
4471 		int err;
4472 
4473 	case IPPROTO_TCP:
4474 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4475 					  off + MAX_TCP_HDR_LEN);
4476 		if (!err && !skb_partial_csum_set(skb, off,
4477 						  offsetof(struct tcphdr,
4478 							   check)))
4479 			err = -EPROTO;
4480 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4481 
4482 	case IPPROTO_UDP:
4483 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4484 					  off + sizeof(struct udphdr));
4485 		if (!err && !skb_partial_csum_set(skb, off,
4486 						  offsetof(struct udphdr,
4487 							   check)))
4488 			err = -EPROTO;
4489 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4490 	}
4491 
4492 	return ERR_PTR(-EPROTO);
4493 }
4494 
4495 /* This value should be large enough to cover a tagged ethernet header plus
4496  * maximally sized IP and TCP or UDP headers.
4497  */
4498 #define MAX_IP_HDR_LEN 128
4499 
4500 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4501 {
4502 	unsigned int off;
4503 	bool fragment;
4504 	__sum16 *csum;
4505 	int err;
4506 
4507 	fragment = false;
4508 
4509 	err = skb_maybe_pull_tail(skb,
4510 				  sizeof(struct iphdr),
4511 				  MAX_IP_HDR_LEN);
4512 	if (err < 0)
4513 		goto out;
4514 
4515 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4516 		fragment = true;
4517 
4518 	off = ip_hdrlen(skb);
4519 
4520 	err = -EPROTO;
4521 
4522 	if (fragment)
4523 		goto out;
4524 
4525 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4526 	if (IS_ERR(csum))
4527 		return PTR_ERR(csum);
4528 
4529 	if (recalculate)
4530 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4531 					   ip_hdr(skb)->daddr,
4532 					   skb->len - off,
4533 					   ip_hdr(skb)->protocol, 0);
4534 	err = 0;
4535 
4536 out:
4537 	return err;
4538 }
4539 
4540 /* This value should be large enough to cover a tagged ethernet header plus
4541  * an IPv6 header, all options, and a maximal TCP or UDP header.
4542  */
4543 #define MAX_IPV6_HDR_LEN 256
4544 
4545 #define OPT_HDR(type, skb, off) \
4546 	(type *)(skb_network_header(skb) + (off))
4547 
4548 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4549 {
4550 	int err;
4551 	u8 nexthdr;
4552 	unsigned int off;
4553 	unsigned int len;
4554 	bool fragment;
4555 	bool done;
4556 	__sum16 *csum;
4557 
4558 	fragment = false;
4559 	done = false;
4560 
4561 	off = sizeof(struct ipv6hdr);
4562 
4563 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4564 	if (err < 0)
4565 		goto out;
4566 
4567 	nexthdr = ipv6_hdr(skb)->nexthdr;
4568 
4569 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4570 	while (off <= len && !done) {
4571 		switch (nexthdr) {
4572 		case IPPROTO_DSTOPTS:
4573 		case IPPROTO_HOPOPTS:
4574 		case IPPROTO_ROUTING: {
4575 			struct ipv6_opt_hdr *hp;
4576 
4577 			err = skb_maybe_pull_tail(skb,
4578 						  off +
4579 						  sizeof(struct ipv6_opt_hdr),
4580 						  MAX_IPV6_HDR_LEN);
4581 			if (err < 0)
4582 				goto out;
4583 
4584 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4585 			nexthdr = hp->nexthdr;
4586 			off += ipv6_optlen(hp);
4587 			break;
4588 		}
4589 		case IPPROTO_AH: {
4590 			struct ip_auth_hdr *hp;
4591 
4592 			err = skb_maybe_pull_tail(skb,
4593 						  off +
4594 						  sizeof(struct ip_auth_hdr),
4595 						  MAX_IPV6_HDR_LEN);
4596 			if (err < 0)
4597 				goto out;
4598 
4599 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4600 			nexthdr = hp->nexthdr;
4601 			off += ipv6_authlen(hp);
4602 			break;
4603 		}
4604 		case IPPROTO_FRAGMENT: {
4605 			struct frag_hdr *hp;
4606 
4607 			err = skb_maybe_pull_tail(skb,
4608 						  off +
4609 						  sizeof(struct frag_hdr),
4610 						  MAX_IPV6_HDR_LEN);
4611 			if (err < 0)
4612 				goto out;
4613 
4614 			hp = OPT_HDR(struct frag_hdr, skb, off);
4615 
4616 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4617 				fragment = true;
4618 
4619 			nexthdr = hp->nexthdr;
4620 			off += sizeof(struct frag_hdr);
4621 			break;
4622 		}
4623 		default:
4624 			done = true;
4625 			break;
4626 		}
4627 	}
4628 
4629 	err = -EPROTO;
4630 
4631 	if (!done || fragment)
4632 		goto out;
4633 
4634 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4635 	if (IS_ERR(csum))
4636 		return PTR_ERR(csum);
4637 
4638 	if (recalculate)
4639 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4640 					 &ipv6_hdr(skb)->daddr,
4641 					 skb->len - off, nexthdr, 0);
4642 	err = 0;
4643 
4644 out:
4645 	return err;
4646 }
4647 
4648 /**
4649  * skb_checksum_setup - set up partial checksum offset
4650  * @skb: the skb to set up
4651  * @recalculate: if true the pseudo-header checksum will be recalculated
4652  */
4653 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4654 {
4655 	int err;
4656 
4657 	switch (skb->protocol) {
4658 	case htons(ETH_P_IP):
4659 		err = skb_checksum_setup_ipv4(skb, recalculate);
4660 		break;
4661 
4662 	case htons(ETH_P_IPV6):
4663 		err = skb_checksum_setup_ipv6(skb, recalculate);
4664 		break;
4665 
4666 	default:
4667 		err = -EPROTO;
4668 		break;
4669 	}
4670 
4671 	return err;
4672 }
4673 EXPORT_SYMBOL(skb_checksum_setup);
4674 
4675 /**
4676  * skb_checksum_maybe_trim - maybe trims the given skb
4677  * @skb: the skb to check
4678  * @transport_len: the data length beyond the network header
4679  *
4680  * Checks whether the given skb has data beyond the given transport length.
4681  * If so, returns a cloned skb trimmed to this transport length.
4682  * Otherwise returns the provided skb. Returns NULL in error cases
4683  * (e.g. transport_len exceeds skb length or out-of-memory).
4684  *
4685  * Caller needs to set the skb transport header and free any returned skb if it
4686  * differs from the provided skb.
4687  */
4688 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4689 					       unsigned int transport_len)
4690 {
4691 	struct sk_buff *skb_chk;
4692 	unsigned int len = skb_transport_offset(skb) + transport_len;
4693 	int ret;
4694 
4695 	if (skb->len < len)
4696 		return NULL;
4697 	else if (skb->len == len)
4698 		return skb;
4699 
4700 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4701 	if (!skb_chk)
4702 		return NULL;
4703 
4704 	ret = pskb_trim_rcsum(skb_chk, len);
4705 	if (ret) {
4706 		kfree_skb(skb_chk);
4707 		return NULL;
4708 	}
4709 
4710 	return skb_chk;
4711 }
4712 
4713 /**
4714  * skb_checksum_trimmed - validate checksum of an skb
4715  * @skb: the skb to check
4716  * @transport_len: the data length beyond the network header
4717  * @skb_chkf: checksum function to use
4718  *
4719  * Applies the given checksum function skb_chkf to the provided skb.
4720  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4721  *
4722  * If the skb has data beyond the given transport length, then a
4723  * trimmed & cloned skb is checked and returned.
4724  *
4725  * Caller needs to set the skb transport header and free any returned skb if it
4726  * differs from the provided skb.
4727  */
4728 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4729 				     unsigned int transport_len,
4730 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4731 {
4732 	struct sk_buff *skb_chk;
4733 	unsigned int offset = skb_transport_offset(skb);
4734 	__sum16 ret;
4735 
4736 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4737 	if (!skb_chk)
4738 		goto err;
4739 
4740 	if (!pskb_may_pull(skb_chk, offset))
4741 		goto err;
4742 
4743 	skb_pull_rcsum(skb_chk, offset);
4744 	ret = skb_chkf(skb_chk);
4745 	skb_push_rcsum(skb_chk, offset);
4746 
4747 	if (ret)
4748 		goto err;
4749 
4750 	return skb_chk;
4751 
4752 err:
4753 	if (skb_chk && skb_chk != skb)
4754 		kfree_skb(skb_chk);
4755 
4756 	return NULL;
4757 
4758 }
4759 EXPORT_SYMBOL(skb_checksum_trimmed);
4760 
4761 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4762 {
4763 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4764 			     skb->dev->name);
4765 }
4766 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4767 
4768 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4769 {
4770 	if (head_stolen) {
4771 		skb_release_head_state(skb);
4772 		kmem_cache_free(skbuff_head_cache, skb);
4773 	} else {
4774 		__kfree_skb(skb);
4775 	}
4776 }
4777 EXPORT_SYMBOL(kfree_skb_partial);
4778 
4779 /**
4780  * skb_try_coalesce - try to merge skb to prior one
4781  * @to: prior buffer
4782  * @from: buffer to add
4783  * @fragstolen: pointer to boolean
4784  * @delta_truesize: how much more was allocated than was requested
4785  */
4786 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4787 		      bool *fragstolen, int *delta_truesize)
4788 {
4789 	struct skb_shared_info *to_shinfo, *from_shinfo;
4790 	int i, delta, len = from->len;
4791 
4792 	*fragstolen = false;
4793 
4794 	if (skb_cloned(to))
4795 		return false;
4796 
4797 	if (len <= skb_tailroom(to)) {
4798 		if (len)
4799 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4800 		*delta_truesize = 0;
4801 		return true;
4802 	}
4803 
4804 	to_shinfo = skb_shinfo(to);
4805 	from_shinfo = skb_shinfo(from);
4806 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4807 		return false;
4808 	if (skb_zcopy(to) || skb_zcopy(from))
4809 		return false;
4810 
4811 	if (skb_headlen(from) != 0) {
4812 		struct page *page;
4813 		unsigned int offset;
4814 
4815 		if (to_shinfo->nr_frags +
4816 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4817 			return false;
4818 
4819 		if (skb_head_is_locked(from))
4820 			return false;
4821 
4822 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4823 
4824 		page = virt_to_head_page(from->head);
4825 		offset = from->data - (unsigned char *)page_address(page);
4826 
4827 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4828 				   page, offset, skb_headlen(from));
4829 		*fragstolen = true;
4830 	} else {
4831 		if (to_shinfo->nr_frags +
4832 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4833 			return false;
4834 
4835 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4836 	}
4837 
4838 	WARN_ON_ONCE(delta < len);
4839 
4840 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4841 	       from_shinfo->frags,
4842 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4843 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4844 
4845 	if (!skb_cloned(from))
4846 		from_shinfo->nr_frags = 0;
4847 
4848 	/* if the skb is not cloned this does nothing
4849 	 * since we set nr_frags to 0.
4850 	 */
4851 	for (i = 0; i < from_shinfo->nr_frags; i++)
4852 		__skb_frag_ref(&from_shinfo->frags[i]);
4853 
4854 	to->truesize += delta;
4855 	to->len += len;
4856 	to->data_len += len;
4857 
4858 	*delta_truesize = delta;
4859 	return true;
4860 }
4861 EXPORT_SYMBOL(skb_try_coalesce);
4862 
4863 /**
4864  * skb_scrub_packet - scrub an skb
4865  *
4866  * @skb: buffer to clean
4867  * @xnet: packet is crossing netns
4868  *
4869  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4870  * into/from a tunnel. Some information have to be cleared during these
4871  * operations.
4872  * skb_scrub_packet can also be used to clean a skb before injecting it in
4873  * another namespace (@xnet == true). We have to clear all information in the
4874  * skb that could impact namespace isolation.
4875  */
4876 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4877 {
4878 	skb->pkt_type = PACKET_HOST;
4879 	skb->skb_iif = 0;
4880 	skb->ignore_df = 0;
4881 	skb_dst_drop(skb);
4882 	secpath_reset(skb);
4883 	nf_reset(skb);
4884 	nf_reset_trace(skb);
4885 
4886 #ifdef CONFIG_NET_SWITCHDEV
4887 	skb->offload_fwd_mark = 0;
4888 	skb->offload_l3_fwd_mark = 0;
4889 #endif
4890 
4891 	if (!xnet)
4892 		return;
4893 
4894 	ipvs_reset(skb);
4895 	skb->mark = 0;
4896 	skb->tstamp = 0;
4897 }
4898 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4899 
4900 /**
4901  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4902  *
4903  * @skb: GSO skb
4904  *
4905  * skb_gso_transport_seglen is used to determine the real size of the
4906  * individual segments, including Layer4 headers (TCP/UDP).
4907  *
4908  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4909  */
4910 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4911 {
4912 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4913 	unsigned int thlen = 0;
4914 
4915 	if (skb->encapsulation) {
4916 		thlen = skb_inner_transport_header(skb) -
4917 			skb_transport_header(skb);
4918 
4919 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4920 			thlen += inner_tcp_hdrlen(skb);
4921 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4922 		thlen = tcp_hdrlen(skb);
4923 	} else if (unlikely(skb_is_gso_sctp(skb))) {
4924 		thlen = sizeof(struct sctphdr);
4925 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4926 		thlen = sizeof(struct udphdr);
4927 	}
4928 	/* UFO sets gso_size to the size of the fragmentation
4929 	 * payload, i.e. the size of the L4 (UDP) header is already
4930 	 * accounted for.
4931 	 */
4932 	return thlen + shinfo->gso_size;
4933 }
4934 
4935 /**
4936  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4937  *
4938  * @skb: GSO skb
4939  *
4940  * skb_gso_network_seglen is used to determine the real size of the
4941  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4942  *
4943  * The MAC/L2 header is not accounted for.
4944  */
4945 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4946 {
4947 	unsigned int hdr_len = skb_transport_header(skb) -
4948 			       skb_network_header(skb);
4949 
4950 	return hdr_len + skb_gso_transport_seglen(skb);
4951 }
4952 
4953 /**
4954  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4955  *
4956  * @skb: GSO skb
4957  *
4958  * skb_gso_mac_seglen is used to determine the real size of the
4959  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4960  * headers (TCP/UDP).
4961  */
4962 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4963 {
4964 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4965 
4966 	return hdr_len + skb_gso_transport_seglen(skb);
4967 }
4968 
4969 /**
4970  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4971  *
4972  * There are a couple of instances where we have a GSO skb, and we
4973  * want to determine what size it would be after it is segmented.
4974  *
4975  * We might want to check:
4976  * -    L3+L4+payload size (e.g. IP forwarding)
4977  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4978  *
4979  * This is a helper to do that correctly considering GSO_BY_FRAGS.
4980  *
4981  * @skb: GSO skb
4982  *
4983  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
4984  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
4985  *
4986  * @max_len: The maximum permissible length.
4987  *
4988  * Returns true if the segmented length <= max length.
4989  */
4990 static inline bool skb_gso_size_check(const struct sk_buff *skb,
4991 				      unsigned int seg_len,
4992 				      unsigned int max_len) {
4993 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4994 	const struct sk_buff *iter;
4995 
4996 	if (shinfo->gso_size != GSO_BY_FRAGS)
4997 		return seg_len <= max_len;
4998 
4999 	/* Undo this so we can re-use header sizes */
5000 	seg_len -= GSO_BY_FRAGS;
5001 
5002 	skb_walk_frags(skb, iter) {
5003 		if (seg_len + skb_headlen(iter) > max_len)
5004 			return false;
5005 	}
5006 
5007 	return true;
5008 }
5009 
5010 /**
5011  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5012  *
5013  * @skb: GSO skb
5014  * @mtu: MTU to validate against
5015  *
5016  * skb_gso_validate_network_len validates if a given skb will fit a
5017  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5018  * payload.
5019  */
5020 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5021 {
5022 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5023 }
5024 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5025 
5026 /**
5027  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5028  *
5029  * @skb: GSO skb
5030  * @len: length to validate against
5031  *
5032  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5033  * length once split, including L2, L3 and L4 headers and the payload.
5034  */
5035 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5036 {
5037 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5038 }
5039 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5040 
5041 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5042 {
5043 	int mac_len;
5044 
5045 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5046 		kfree_skb(skb);
5047 		return NULL;
5048 	}
5049 
5050 	mac_len = skb->data - skb_mac_header(skb);
5051 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5052 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5053 			mac_len - VLAN_HLEN - ETH_TLEN);
5054 	}
5055 	skb->mac_header += VLAN_HLEN;
5056 	return skb;
5057 }
5058 
5059 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5060 {
5061 	struct vlan_hdr *vhdr;
5062 	u16 vlan_tci;
5063 
5064 	if (unlikely(skb_vlan_tag_present(skb))) {
5065 		/* vlan_tci is already set-up so leave this for another time */
5066 		return skb;
5067 	}
5068 
5069 	skb = skb_share_check(skb, GFP_ATOMIC);
5070 	if (unlikely(!skb))
5071 		goto err_free;
5072 
5073 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5074 		goto err_free;
5075 
5076 	vhdr = (struct vlan_hdr *)skb->data;
5077 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5078 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5079 
5080 	skb_pull_rcsum(skb, VLAN_HLEN);
5081 	vlan_set_encap_proto(skb, vhdr);
5082 
5083 	skb = skb_reorder_vlan_header(skb);
5084 	if (unlikely(!skb))
5085 		goto err_free;
5086 
5087 	skb_reset_network_header(skb);
5088 	skb_reset_transport_header(skb);
5089 	skb_reset_mac_len(skb);
5090 
5091 	return skb;
5092 
5093 err_free:
5094 	kfree_skb(skb);
5095 	return NULL;
5096 }
5097 EXPORT_SYMBOL(skb_vlan_untag);
5098 
5099 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5100 {
5101 	if (!pskb_may_pull(skb, write_len))
5102 		return -ENOMEM;
5103 
5104 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5105 		return 0;
5106 
5107 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5108 }
5109 EXPORT_SYMBOL(skb_ensure_writable);
5110 
5111 /* remove VLAN header from packet and update csum accordingly.
5112  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5113  */
5114 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5115 {
5116 	struct vlan_hdr *vhdr;
5117 	int offset = skb->data - skb_mac_header(skb);
5118 	int err;
5119 
5120 	if (WARN_ONCE(offset,
5121 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5122 		      offset)) {
5123 		return -EINVAL;
5124 	}
5125 
5126 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5127 	if (unlikely(err))
5128 		return err;
5129 
5130 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5131 
5132 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5133 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5134 
5135 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5136 	__skb_pull(skb, VLAN_HLEN);
5137 
5138 	vlan_set_encap_proto(skb, vhdr);
5139 	skb->mac_header += VLAN_HLEN;
5140 
5141 	if (skb_network_offset(skb) < ETH_HLEN)
5142 		skb_set_network_header(skb, ETH_HLEN);
5143 
5144 	skb_reset_mac_len(skb);
5145 
5146 	return err;
5147 }
5148 EXPORT_SYMBOL(__skb_vlan_pop);
5149 
5150 /* Pop a vlan tag either from hwaccel or from payload.
5151  * Expects skb->data at mac header.
5152  */
5153 int skb_vlan_pop(struct sk_buff *skb)
5154 {
5155 	u16 vlan_tci;
5156 	__be16 vlan_proto;
5157 	int err;
5158 
5159 	if (likely(skb_vlan_tag_present(skb))) {
5160 		__vlan_hwaccel_clear_tag(skb);
5161 	} else {
5162 		if (unlikely(!eth_type_vlan(skb->protocol)))
5163 			return 0;
5164 
5165 		err = __skb_vlan_pop(skb, &vlan_tci);
5166 		if (err)
5167 			return err;
5168 	}
5169 	/* move next vlan tag to hw accel tag */
5170 	if (likely(!eth_type_vlan(skb->protocol)))
5171 		return 0;
5172 
5173 	vlan_proto = skb->protocol;
5174 	err = __skb_vlan_pop(skb, &vlan_tci);
5175 	if (unlikely(err))
5176 		return err;
5177 
5178 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5179 	return 0;
5180 }
5181 EXPORT_SYMBOL(skb_vlan_pop);
5182 
5183 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5184  * Expects skb->data at mac header.
5185  */
5186 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5187 {
5188 	if (skb_vlan_tag_present(skb)) {
5189 		int offset = skb->data - skb_mac_header(skb);
5190 		int err;
5191 
5192 		if (WARN_ONCE(offset,
5193 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5194 			      offset)) {
5195 			return -EINVAL;
5196 		}
5197 
5198 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5199 					skb_vlan_tag_get(skb));
5200 		if (err)
5201 			return err;
5202 
5203 		skb->protocol = skb->vlan_proto;
5204 		skb->mac_len += VLAN_HLEN;
5205 
5206 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5207 	}
5208 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5209 	return 0;
5210 }
5211 EXPORT_SYMBOL(skb_vlan_push);
5212 
5213 /**
5214  * alloc_skb_with_frags - allocate skb with page frags
5215  *
5216  * @header_len: size of linear part
5217  * @data_len: needed length in frags
5218  * @max_page_order: max page order desired.
5219  * @errcode: pointer to error code if any
5220  * @gfp_mask: allocation mask
5221  *
5222  * This can be used to allocate a paged skb, given a maximal order for frags.
5223  */
5224 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5225 				     unsigned long data_len,
5226 				     int max_page_order,
5227 				     int *errcode,
5228 				     gfp_t gfp_mask)
5229 {
5230 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5231 	unsigned long chunk;
5232 	struct sk_buff *skb;
5233 	struct page *page;
5234 	gfp_t gfp_head;
5235 	int i;
5236 
5237 	*errcode = -EMSGSIZE;
5238 	/* Note this test could be relaxed, if we succeed to allocate
5239 	 * high order pages...
5240 	 */
5241 	if (npages > MAX_SKB_FRAGS)
5242 		return NULL;
5243 
5244 	gfp_head = gfp_mask;
5245 	if (gfp_head & __GFP_DIRECT_RECLAIM)
5246 		gfp_head |= __GFP_RETRY_MAYFAIL;
5247 
5248 	*errcode = -ENOBUFS;
5249 	skb = alloc_skb(header_len, gfp_head);
5250 	if (!skb)
5251 		return NULL;
5252 
5253 	skb->truesize += npages << PAGE_SHIFT;
5254 
5255 	for (i = 0; npages > 0; i++) {
5256 		int order = max_page_order;
5257 
5258 		while (order) {
5259 			if (npages >= 1 << order) {
5260 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5261 						   __GFP_COMP |
5262 						   __GFP_NOWARN,
5263 						   order);
5264 				if (page)
5265 					goto fill_page;
5266 				/* Do not retry other high order allocations */
5267 				order = 1;
5268 				max_page_order = 0;
5269 			}
5270 			order--;
5271 		}
5272 		page = alloc_page(gfp_mask);
5273 		if (!page)
5274 			goto failure;
5275 fill_page:
5276 		chunk = min_t(unsigned long, data_len,
5277 			      PAGE_SIZE << order);
5278 		skb_fill_page_desc(skb, i, page, 0, chunk);
5279 		data_len -= chunk;
5280 		npages -= 1 << order;
5281 	}
5282 	return skb;
5283 
5284 failure:
5285 	kfree_skb(skb);
5286 	return NULL;
5287 }
5288 EXPORT_SYMBOL(alloc_skb_with_frags);
5289 
5290 /* carve out the first off bytes from skb when off < headlen */
5291 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5292 				    const int headlen, gfp_t gfp_mask)
5293 {
5294 	int i;
5295 	int size = skb_end_offset(skb);
5296 	int new_hlen = headlen - off;
5297 	u8 *data;
5298 
5299 	size = SKB_DATA_ALIGN(size);
5300 
5301 	if (skb_pfmemalloc(skb))
5302 		gfp_mask |= __GFP_MEMALLOC;
5303 	data = kmalloc_reserve(size +
5304 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5305 			       gfp_mask, NUMA_NO_NODE, NULL);
5306 	if (!data)
5307 		return -ENOMEM;
5308 
5309 	size = SKB_WITH_OVERHEAD(ksize(data));
5310 
5311 	/* Copy real data, and all frags */
5312 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5313 	skb->len -= off;
5314 
5315 	memcpy((struct skb_shared_info *)(data + size),
5316 	       skb_shinfo(skb),
5317 	       offsetof(struct skb_shared_info,
5318 			frags[skb_shinfo(skb)->nr_frags]));
5319 	if (skb_cloned(skb)) {
5320 		/* drop the old head gracefully */
5321 		if (skb_orphan_frags(skb, gfp_mask)) {
5322 			kfree(data);
5323 			return -ENOMEM;
5324 		}
5325 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5326 			skb_frag_ref(skb, i);
5327 		if (skb_has_frag_list(skb))
5328 			skb_clone_fraglist(skb);
5329 		skb_release_data(skb);
5330 	} else {
5331 		/* we can reuse existing recount- all we did was
5332 		 * relocate values
5333 		 */
5334 		skb_free_head(skb);
5335 	}
5336 
5337 	skb->head = data;
5338 	skb->data = data;
5339 	skb->head_frag = 0;
5340 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5341 	skb->end = size;
5342 #else
5343 	skb->end = skb->head + size;
5344 #endif
5345 	skb_set_tail_pointer(skb, skb_headlen(skb));
5346 	skb_headers_offset_update(skb, 0);
5347 	skb->cloned = 0;
5348 	skb->hdr_len = 0;
5349 	skb->nohdr = 0;
5350 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5351 
5352 	return 0;
5353 }
5354 
5355 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5356 
5357 /* carve out the first eat bytes from skb's frag_list. May recurse into
5358  * pskb_carve()
5359  */
5360 static int pskb_carve_frag_list(struct sk_buff *skb,
5361 				struct skb_shared_info *shinfo, int eat,
5362 				gfp_t gfp_mask)
5363 {
5364 	struct sk_buff *list = shinfo->frag_list;
5365 	struct sk_buff *clone = NULL;
5366 	struct sk_buff *insp = NULL;
5367 
5368 	do {
5369 		if (!list) {
5370 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5371 			return -EFAULT;
5372 		}
5373 		if (list->len <= eat) {
5374 			/* Eaten as whole. */
5375 			eat -= list->len;
5376 			list = list->next;
5377 			insp = list;
5378 		} else {
5379 			/* Eaten partially. */
5380 			if (skb_shared(list)) {
5381 				clone = skb_clone(list, gfp_mask);
5382 				if (!clone)
5383 					return -ENOMEM;
5384 				insp = list->next;
5385 				list = clone;
5386 			} else {
5387 				/* This may be pulled without problems. */
5388 				insp = list;
5389 			}
5390 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5391 				kfree_skb(clone);
5392 				return -ENOMEM;
5393 			}
5394 			break;
5395 		}
5396 	} while (eat);
5397 
5398 	/* Free pulled out fragments. */
5399 	while ((list = shinfo->frag_list) != insp) {
5400 		shinfo->frag_list = list->next;
5401 		kfree_skb(list);
5402 	}
5403 	/* And insert new clone at head. */
5404 	if (clone) {
5405 		clone->next = list;
5406 		shinfo->frag_list = clone;
5407 	}
5408 	return 0;
5409 }
5410 
5411 /* carve off first len bytes from skb. Split line (off) is in the
5412  * non-linear part of skb
5413  */
5414 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5415 				       int pos, gfp_t gfp_mask)
5416 {
5417 	int i, k = 0;
5418 	int size = skb_end_offset(skb);
5419 	u8 *data;
5420 	const int nfrags = skb_shinfo(skb)->nr_frags;
5421 	struct skb_shared_info *shinfo;
5422 
5423 	size = SKB_DATA_ALIGN(size);
5424 
5425 	if (skb_pfmemalloc(skb))
5426 		gfp_mask |= __GFP_MEMALLOC;
5427 	data = kmalloc_reserve(size +
5428 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5429 			       gfp_mask, NUMA_NO_NODE, NULL);
5430 	if (!data)
5431 		return -ENOMEM;
5432 
5433 	size = SKB_WITH_OVERHEAD(ksize(data));
5434 
5435 	memcpy((struct skb_shared_info *)(data + size),
5436 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5437 					 frags[skb_shinfo(skb)->nr_frags]));
5438 	if (skb_orphan_frags(skb, gfp_mask)) {
5439 		kfree(data);
5440 		return -ENOMEM;
5441 	}
5442 	shinfo = (struct skb_shared_info *)(data + size);
5443 	for (i = 0; i < nfrags; i++) {
5444 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5445 
5446 		if (pos + fsize > off) {
5447 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5448 
5449 			if (pos < off) {
5450 				/* Split frag.
5451 				 * We have two variants in this case:
5452 				 * 1. Move all the frag to the second
5453 				 *    part, if it is possible. F.e.
5454 				 *    this approach is mandatory for TUX,
5455 				 *    where splitting is expensive.
5456 				 * 2. Split is accurately. We make this.
5457 				 */
5458 				shinfo->frags[0].page_offset += off - pos;
5459 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5460 			}
5461 			skb_frag_ref(skb, i);
5462 			k++;
5463 		}
5464 		pos += fsize;
5465 	}
5466 	shinfo->nr_frags = k;
5467 	if (skb_has_frag_list(skb))
5468 		skb_clone_fraglist(skb);
5469 
5470 	if (k == 0) {
5471 		/* split line is in frag list */
5472 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5473 	}
5474 	skb_release_data(skb);
5475 
5476 	skb->head = data;
5477 	skb->head_frag = 0;
5478 	skb->data = data;
5479 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5480 	skb->end = size;
5481 #else
5482 	skb->end = skb->head + size;
5483 #endif
5484 	skb_reset_tail_pointer(skb);
5485 	skb_headers_offset_update(skb, 0);
5486 	skb->cloned   = 0;
5487 	skb->hdr_len  = 0;
5488 	skb->nohdr    = 0;
5489 	skb->len -= off;
5490 	skb->data_len = skb->len;
5491 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5492 	return 0;
5493 }
5494 
5495 /* remove len bytes from the beginning of the skb */
5496 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5497 {
5498 	int headlen = skb_headlen(skb);
5499 
5500 	if (len < headlen)
5501 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5502 	else
5503 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5504 }
5505 
5506 /* Extract to_copy bytes starting at off from skb, and return this in
5507  * a new skb
5508  */
5509 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5510 			     int to_copy, gfp_t gfp)
5511 {
5512 	struct sk_buff  *clone = skb_clone(skb, gfp);
5513 
5514 	if (!clone)
5515 		return NULL;
5516 
5517 	if (pskb_carve(clone, off, gfp) < 0 ||
5518 	    pskb_trim(clone, to_copy)) {
5519 		kfree_skb(clone);
5520 		return NULL;
5521 	}
5522 	return clone;
5523 }
5524 EXPORT_SYMBOL(pskb_extract);
5525 
5526 /**
5527  * skb_condense - try to get rid of fragments/frag_list if possible
5528  * @skb: buffer
5529  *
5530  * Can be used to save memory before skb is added to a busy queue.
5531  * If packet has bytes in frags and enough tail room in skb->head,
5532  * pull all of them, so that we can free the frags right now and adjust
5533  * truesize.
5534  * Notes:
5535  *	We do not reallocate skb->head thus can not fail.
5536  *	Caller must re-evaluate skb->truesize if needed.
5537  */
5538 void skb_condense(struct sk_buff *skb)
5539 {
5540 	if (skb->data_len) {
5541 		if (skb->data_len > skb->end - skb->tail ||
5542 		    skb_cloned(skb))
5543 			return;
5544 
5545 		/* Nice, we can free page frag(s) right now */
5546 		__pskb_pull_tail(skb, skb->data_len);
5547 	}
5548 	/* At this point, skb->truesize might be over estimated,
5549 	 * because skb had a fragment, and fragments do not tell
5550 	 * their truesize.
5551 	 * When we pulled its content into skb->head, fragment
5552 	 * was freed, but __pskb_pull_tail() could not possibly
5553 	 * adjust skb->truesize, not knowing the frag truesize.
5554 	 */
5555 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5556 }
5557