xref: /openbmc/linux/net/core/skbuff.c (revision 034f90b3)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82 
83 /**
84  *	skb_panic - private function for out-of-line support
85  *	@skb:	buffer
86  *	@sz:	size
87  *	@addr:	address
88  *	@msg:	skb_over_panic or skb_under_panic
89  *
90  *	Out-of-line support for skb_put() and skb_push().
91  *	Called via the wrapper skb_over_panic() or skb_under_panic().
92  *	Keep out of line to prevent kernel bloat.
93  *	__builtin_return_address is not used because it is not always reliable.
94  */
95 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
96 		      const char msg[])
97 {
98 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
99 		 msg, addr, skb->len, sz, skb->head, skb->data,
100 		 (unsigned long)skb->tail, (unsigned long)skb->end,
101 		 skb->dev ? skb->dev->name : "<NULL>");
102 	BUG();
103 }
104 
105 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
106 {
107 	skb_panic(skb, sz, addr, __func__);
108 }
109 
110 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
111 {
112 	skb_panic(skb, sz, addr, __func__);
113 }
114 
115 /*
116  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
117  * the caller if emergency pfmemalloc reserves are being used. If it is and
118  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
119  * may be used. Otherwise, the packet data may be discarded until enough
120  * memory is free
121  */
122 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
123 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
124 
125 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
126 			       unsigned long ip, bool *pfmemalloc)
127 {
128 	void *obj;
129 	bool ret_pfmemalloc = false;
130 
131 	/*
132 	 * Try a regular allocation, when that fails and we're not entitled
133 	 * to the reserves, fail.
134 	 */
135 	obj = kmalloc_node_track_caller(size,
136 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
137 					node);
138 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
139 		goto out;
140 
141 	/* Try again but now we are using pfmemalloc reserves */
142 	ret_pfmemalloc = true;
143 	obj = kmalloc_node_track_caller(size, flags, node);
144 
145 out:
146 	if (pfmemalloc)
147 		*pfmemalloc = ret_pfmemalloc;
148 
149 	return obj;
150 }
151 
152 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
153  *	'private' fields and also do memory statistics to find all the
154  *	[BEEP] leaks.
155  *
156  */
157 
158 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
159 {
160 	struct sk_buff *skb;
161 
162 	/* Get the HEAD */
163 	skb = kmem_cache_alloc_node(skbuff_head_cache,
164 				    gfp_mask & ~__GFP_DMA, node);
165 	if (!skb)
166 		goto out;
167 
168 	/*
169 	 * Only clear those fields we need to clear, not those that we will
170 	 * actually initialise below. Hence, don't put any more fields after
171 	 * the tail pointer in struct sk_buff!
172 	 */
173 	memset(skb, 0, offsetof(struct sk_buff, tail));
174 	skb->head = NULL;
175 	skb->truesize = sizeof(struct sk_buff);
176 	atomic_set(&skb->users, 1);
177 
178 	skb->mac_header = (typeof(skb->mac_header))~0U;
179 out:
180 	return skb;
181 }
182 
183 /**
184  *	__alloc_skb	-	allocate a network buffer
185  *	@size: size to allocate
186  *	@gfp_mask: allocation mask
187  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
188  *		instead of head cache and allocate a cloned (child) skb.
189  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
190  *		allocations in case the data is required for writeback
191  *	@node: numa node to allocate memory on
192  *
193  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
194  *	tail room of at least size bytes. The object has a reference count
195  *	of one. The return is the buffer. On a failure the return is %NULL.
196  *
197  *	Buffers may only be allocated from interrupts using a @gfp_mask of
198  *	%GFP_ATOMIC.
199  */
200 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
201 			    int flags, int node)
202 {
203 	struct kmem_cache *cache;
204 	struct skb_shared_info *shinfo;
205 	struct sk_buff *skb;
206 	u8 *data;
207 	bool pfmemalloc;
208 
209 	cache = (flags & SKB_ALLOC_FCLONE)
210 		? skbuff_fclone_cache : skbuff_head_cache;
211 
212 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
213 		gfp_mask |= __GFP_MEMALLOC;
214 
215 	/* Get the HEAD */
216 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
217 	if (!skb)
218 		goto out;
219 	prefetchw(skb);
220 
221 	/* We do our best to align skb_shared_info on a separate cache
222 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
223 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
224 	 * Both skb->head and skb_shared_info are cache line aligned.
225 	 */
226 	size = SKB_DATA_ALIGN(size);
227 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
228 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
229 	if (!data)
230 		goto nodata;
231 	/* kmalloc(size) might give us more room than requested.
232 	 * Put skb_shared_info exactly at the end of allocated zone,
233 	 * to allow max possible filling before reallocation.
234 	 */
235 	size = SKB_WITH_OVERHEAD(ksize(data));
236 	prefetchw(data + size);
237 
238 	/*
239 	 * Only clear those fields we need to clear, not those that we will
240 	 * actually initialise below. Hence, don't put any more fields after
241 	 * the tail pointer in struct sk_buff!
242 	 */
243 	memset(skb, 0, offsetof(struct sk_buff, tail));
244 	/* Account for allocated memory : skb + skb->head */
245 	skb->truesize = SKB_TRUESIZE(size);
246 	skb->pfmemalloc = pfmemalloc;
247 	atomic_set(&skb->users, 1);
248 	skb->head = data;
249 	skb->data = data;
250 	skb_reset_tail_pointer(skb);
251 	skb->end = skb->tail + size;
252 	skb->mac_header = (typeof(skb->mac_header))~0U;
253 	skb->transport_header = (typeof(skb->transport_header))~0U;
254 
255 	/* make sure we initialize shinfo sequentially */
256 	shinfo = skb_shinfo(skb);
257 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
258 	atomic_set(&shinfo->dataref, 1);
259 	kmemcheck_annotate_variable(shinfo->destructor_arg);
260 
261 	if (flags & SKB_ALLOC_FCLONE) {
262 		struct sk_buff_fclones *fclones;
263 
264 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
265 
266 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
267 		skb->fclone = SKB_FCLONE_ORIG;
268 		atomic_set(&fclones->fclone_ref, 1);
269 
270 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
271 		fclones->skb2.pfmemalloc = pfmemalloc;
272 	}
273 out:
274 	return skb;
275 nodata:
276 	kmem_cache_free(cache, skb);
277 	skb = NULL;
278 	goto out;
279 }
280 EXPORT_SYMBOL(__alloc_skb);
281 
282 /**
283  * build_skb - build a network buffer
284  * @data: data buffer provided by caller
285  * @frag_size: size of fragment, or 0 if head was kmalloced
286  *
287  * Allocate a new &sk_buff. Caller provides space holding head and
288  * skb_shared_info. @data must have been allocated by kmalloc() only if
289  * @frag_size is 0, otherwise data should come from the page allocator.
290  * The return is the new skb buffer.
291  * On a failure the return is %NULL, and @data is not freed.
292  * Notes :
293  *  Before IO, driver allocates only data buffer where NIC put incoming frame
294  *  Driver should add room at head (NET_SKB_PAD) and
295  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
296  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
297  *  before giving packet to stack.
298  *  RX rings only contains data buffers, not full skbs.
299  */
300 struct sk_buff *build_skb(void *data, unsigned int frag_size)
301 {
302 	struct skb_shared_info *shinfo;
303 	struct sk_buff *skb;
304 	unsigned int size = frag_size ? : ksize(data);
305 
306 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
307 	if (!skb)
308 		return NULL;
309 
310 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
311 
312 	memset(skb, 0, offsetof(struct sk_buff, tail));
313 	skb->truesize = SKB_TRUESIZE(size);
314 	skb->head_frag = frag_size != 0;
315 	atomic_set(&skb->users, 1);
316 	skb->head = data;
317 	skb->data = data;
318 	skb_reset_tail_pointer(skb);
319 	skb->end = skb->tail + size;
320 	skb->mac_header = (typeof(skb->mac_header))~0U;
321 	skb->transport_header = (typeof(skb->transport_header))~0U;
322 
323 	/* make sure we initialize shinfo sequentially */
324 	shinfo = skb_shinfo(skb);
325 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
326 	atomic_set(&shinfo->dataref, 1);
327 	kmemcheck_annotate_variable(shinfo->destructor_arg);
328 
329 	return skb;
330 }
331 EXPORT_SYMBOL(build_skb);
332 
333 struct netdev_alloc_cache {
334 	struct page_frag	frag;
335 	/* we maintain a pagecount bias, so that we dont dirty cache line
336 	 * containing page->_count every time we allocate a fragment.
337 	 */
338 	unsigned int		pagecnt_bias;
339 };
340 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
341 static DEFINE_PER_CPU(struct netdev_alloc_cache, napi_alloc_cache);
342 
343 static struct page *__page_frag_refill(struct netdev_alloc_cache *nc,
344 				       gfp_t gfp_mask)
345 {
346 	const unsigned int order = NETDEV_FRAG_PAGE_MAX_ORDER;
347 	struct page *page = NULL;
348 	gfp_t gfp = gfp_mask;
349 
350 	if (order) {
351 		gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY;
352 		page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
353 		nc->frag.size = PAGE_SIZE << (page ? order : 0);
354 	}
355 
356 	if (unlikely(!page))
357 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
358 
359 	nc->frag.page = page;
360 
361 	return page;
362 }
363 
364 static void *__alloc_page_frag(struct netdev_alloc_cache __percpu *cache,
365 			       unsigned int fragsz, gfp_t gfp_mask)
366 {
367 	struct netdev_alloc_cache *nc = this_cpu_ptr(cache);
368 	struct page *page = nc->frag.page;
369 	unsigned int size;
370 	int offset;
371 
372 	if (unlikely(!page)) {
373 refill:
374 		page = __page_frag_refill(nc, gfp_mask);
375 		if (!page)
376 			return NULL;
377 
378 		/* if size can vary use frag.size else just use PAGE_SIZE */
379 		size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
380 
381 		/* Even if we own the page, we do not use atomic_set().
382 		 * This would break get_page_unless_zero() users.
383 		 */
384 		atomic_add(size - 1, &page->_count);
385 
386 		/* reset page count bias and offset to start of new frag */
387 		nc->pagecnt_bias = size;
388 		nc->frag.offset = size;
389 	}
390 
391 	offset = nc->frag.offset - fragsz;
392 	if (unlikely(offset < 0)) {
393 		if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
394 			goto refill;
395 
396 		/* if size can vary use frag.size else just use PAGE_SIZE */
397 		size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
398 
399 		/* OK, page count is 0, we can safely set it */
400 		atomic_set(&page->_count, size);
401 
402 		/* reset page count bias and offset to start of new frag */
403 		nc->pagecnt_bias = size;
404 		offset = size - fragsz;
405 	}
406 
407 	nc->pagecnt_bias--;
408 	nc->frag.offset = offset;
409 
410 	return page_address(page) + offset;
411 }
412 
413 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
414 {
415 	unsigned long flags;
416 	void *data;
417 
418 	local_irq_save(flags);
419 	data = __alloc_page_frag(&netdev_alloc_cache, fragsz, gfp_mask);
420 	local_irq_restore(flags);
421 	return data;
422 }
423 
424 /**
425  * netdev_alloc_frag - allocate a page fragment
426  * @fragsz: fragment size
427  *
428  * Allocates a frag from a page for receive buffer.
429  * Uses GFP_ATOMIC allocations.
430  */
431 void *netdev_alloc_frag(unsigned int fragsz)
432 {
433 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
434 }
435 EXPORT_SYMBOL(netdev_alloc_frag);
436 
437 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
438 {
439 	return __alloc_page_frag(&napi_alloc_cache, fragsz, gfp_mask);
440 }
441 
442 void *napi_alloc_frag(unsigned int fragsz)
443 {
444 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
445 }
446 EXPORT_SYMBOL(napi_alloc_frag);
447 
448 /**
449  *	__alloc_rx_skb - allocate an skbuff for rx
450  *	@length: length to allocate
451  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
452  *	@flags:	If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
453  *		allocations in case we have to fallback to __alloc_skb()
454  *		If SKB_ALLOC_NAPI is set, page fragment will be allocated
455  *		from napi_cache instead of netdev_cache.
456  *
457  *	Allocate a new &sk_buff and assign it a usage count of one. The
458  *	buffer has unspecified headroom built in. Users should allocate
459  *	the headroom they think they need without accounting for the
460  *	built in space. The built in space is used for optimisations.
461  *
462  *	%NULL is returned if there is no free memory.
463  */
464 static struct sk_buff *__alloc_rx_skb(unsigned int length, gfp_t gfp_mask,
465 				      int flags)
466 {
467 	struct sk_buff *skb = NULL;
468 	unsigned int fragsz = SKB_DATA_ALIGN(length) +
469 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
470 
471 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
472 		void *data;
473 
474 		if (sk_memalloc_socks())
475 			gfp_mask |= __GFP_MEMALLOC;
476 
477 		data = (flags & SKB_ALLOC_NAPI) ?
478 			__napi_alloc_frag(fragsz, gfp_mask) :
479 			__netdev_alloc_frag(fragsz, gfp_mask);
480 
481 		if (likely(data)) {
482 			skb = build_skb(data, fragsz);
483 			if (unlikely(!skb))
484 				put_page(virt_to_head_page(data));
485 		}
486 	} else {
487 		skb = __alloc_skb(length, gfp_mask,
488 				  SKB_ALLOC_RX, NUMA_NO_NODE);
489 	}
490 	return skb;
491 }
492 
493 /**
494  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
495  *	@dev: network device to receive on
496  *	@length: length to allocate
497  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
498  *
499  *	Allocate a new &sk_buff and assign it a usage count of one. The
500  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
501  *	the headroom they think they need without accounting for the
502  *	built in space. The built in space is used for optimisations.
503  *
504  *	%NULL is returned if there is no free memory.
505  */
506 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
507 				   unsigned int length, gfp_t gfp_mask)
508 {
509 	struct sk_buff *skb;
510 
511 	length += NET_SKB_PAD;
512 	skb = __alloc_rx_skb(length, gfp_mask, 0);
513 
514 	if (likely(skb)) {
515 		skb_reserve(skb, NET_SKB_PAD);
516 		skb->dev = dev;
517 	}
518 
519 	return skb;
520 }
521 EXPORT_SYMBOL(__netdev_alloc_skb);
522 
523 /**
524  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
525  *	@napi: napi instance this buffer was allocated for
526  *	@length: length to allocate
527  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
528  *
529  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
530  *	attempt to allocate the head from a special reserved region used
531  *	only for NAPI Rx allocation.  By doing this we can save several
532  *	CPU cycles by avoiding having to disable and re-enable IRQs.
533  *
534  *	%NULL is returned if there is no free memory.
535  */
536 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
537 				 unsigned int length, gfp_t gfp_mask)
538 {
539 	struct sk_buff *skb;
540 
541 	length += NET_SKB_PAD + NET_IP_ALIGN;
542 	skb = __alloc_rx_skb(length, gfp_mask, SKB_ALLOC_NAPI);
543 
544 	if (likely(skb)) {
545 		skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
546 		skb->dev = napi->dev;
547 	}
548 
549 	return skb;
550 }
551 EXPORT_SYMBOL(__napi_alloc_skb);
552 
553 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
554 		     int size, unsigned int truesize)
555 {
556 	skb_fill_page_desc(skb, i, page, off, size);
557 	skb->len += size;
558 	skb->data_len += size;
559 	skb->truesize += truesize;
560 }
561 EXPORT_SYMBOL(skb_add_rx_frag);
562 
563 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
564 			  unsigned int truesize)
565 {
566 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
567 
568 	skb_frag_size_add(frag, size);
569 	skb->len += size;
570 	skb->data_len += size;
571 	skb->truesize += truesize;
572 }
573 EXPORT_SYMBOL(skb_coalesce_rx_frag);
574 
575 static void skb_drop_list(struct sk_buff **listp)
576 {
577 	kfree_skb_list(*listp);
578 	*listp = NULL;
579 }
580 
581 static inline void skb_drop_fraglist(struct sk_buff *skb)
582 {
583 	skb_drop_list(&skb_shinfo(skb)->frag_list);
584 }
585 
586 static void skb_clone_fraglist(struct sk_buff *skb)
587 {
588 	struct sk_buff *list;
589 
590 	skb_walk_frags(skb, list)
591 		skb_get(list);
592 }
593 
594 static void skb_free_head(struct sk_buff *skb)
595 {
596 	if (skb->head_frag)
597 		put_page(virt_to_head_page(skb->head));
598 	else
599 		kfree(skb->head);
600 }
601 
602 static void skb_release_data(struct sk_buff *skb)
603 {
604 	struct skb_shared_info *shinfo = skb_shinfo(skb);
605 	int i;
606 
607 	if (skb->cloned &&
608 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
609 			      &shinfo->dataref))
610 		return;
611 
612 	for (i = 0; i < shinfo->nr_frags; i++)
613 		__skb_frag_unref(&shinfo->frags[i]);
614 
615 	/*
616 	 * If skb buf is from userspace, we need to notify the caller
617 	 * the lower device DMA has done;
618 	 */
619 	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
620 		struct ubuf_info *uarg;
621 
622 		uarg = shinfo->destructor_arg;
623 		if (uarg->callback)
624 			uarg->callback(uarg, true);
625 	}
626 
627 	if (shinfo->frag_list)
628 		kfree_skb_list(shinfo->frag_list);
629 
630 	skb_free_head(skb);
631 }
632 
633 /*
634  *	Free an skbuff by memory without cleaning the state.
635  */
636 static void kfree_skbmem(struct sk_buff *skb)
637 {
638 	struct sk_buff_fclones *fclones;
639 
640 	switch (skb->fclone) {
641 	case SKB_FCLONE_UNAVAILABLE:
642 		kmem_cache_free(skbuff_head_cache, skb);
643 		return;
644 
645 	case SKB_FCLONE_ORIG:
646 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
647 
648 		/* We usually free the clone (TX completion) before original skb
649 		 * This test would have no chance to be true for the clone,
650 		 * while here, branch prediction will be good.
651 		 */
652 		if (atomic_read(&fclones->fclone_ref) == 1)
653 			goto fastpath;
654 		break;
655 
656 	default: /* SKB_FCLONE_CLONE */
657 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
658 		break;
659 	}
660 	if (!atomic_dec_and_test(&fclones->fclone_ref))
661 		return;
662 fastpath:
663 	kmem_cache_free(skbuff_fclone_cache, fclones);
664 }
665 
666 static void skb_release_head_state(struct sk_buff *skb)
667 {
668 	skb_dst_drop(skb);
669 #ifdef CONFIG_XFRM
670 	secpath_put(skb->sp);
671 #endif
672 	if (skb->destructor) {
673 		WARN_ON(in_irq());
674 		skb->destructor(skb);
675 	}
676 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
677 	nf_conntrack_put(skb->nfct);
678 #endif
679 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
680 	nf_bridge_put(skb->nf_bridge);
681 #endif
682 }
683 
684 /* Free everything but the sk_buff shell. */
685 static void skb_release_all(struct sk_buff *skb)
686 {
687 	skb_release_head_state(skb);
688 	if (likely(skb->head))
689 		skb_release_data(skb);
690 }
691 
692 /**
693  *	__kfree_skb - private function
694  *	@skb: buffer
695  *
696  *	Free an sk_buff. Release anything attached to the buffer.
697  *	Clean the state. This is an internal helper function. Users should
698  *	always call kfree_skb
699  */
700 
701 void __kfree_skb(struct sk_buff *skb)
702 {
703 	skb_release_all(skb);
704 	kfree_skbmem(skb);
705 }
706 EXPORT_SYMBOL(__kfree_skb);
707 
708 /**
709  *	kfree_skb - free an sk_buff
710  *	@skb: buffer to free
711  *
712  *	Drop a reference to the buffer and free it if the usage count has
713  *	hit zero.
714  */
715 void kfree_skb(struct sk_buff *skb)
716 {
717 	if (unlikely(!skb))
718 		return;
719 	if (likely(atomic_read(&skb->users) == 1))
720 		smp_rmb();
721 	else if (likely(!atomic_dec_and_test(&skb->users)))
722 		return;
723 	trace_kfree_skb(skb, __builtin_return_address(0));
724 	__kfree_skb(skb);
725 }
726 EXPORT_SYMBOL(kfree_skb);
727 
728 void kfree_skb_list(struct sk_buff *segs)
729 {
730 	while (segs) {
731 		struct sk_buff *next = segs->next;
732 
733 		kfree_skb(segs);
734 		segs = next;
735 	}
736 }
737 EXPORT_SYMBOL(kfree_skb_list);
738 
739 /**
740  *	skb_tx_error - report an sk_buff xmit error
741  *	@skb: buffer that triggered an error
742  *
743  *	Report xmit error if a device callback is tracking this skb.
744  *	skb must be freed afterwards.
745  */
746 void skb_tx_error(struct sk_buff *skb)
747 {
748 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
749 		struct ubuf_info *uarg;
750 
751 		uarg = skb_shinfo(skb)->destructor_arg;
752 		if (uarg->callback)
753 			uarg->callback(uarg, false);
754 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
755 	}
756 }
757 EXPORT_SYMBOL(skb_tx_error);
758 
759 /**
760  *	consume_skb - free an skbuff
761  *	@skb: buffer to free
762  *
763  *	Drop a ref to the buffer and free it if the usage count has hit zero
764  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
765  *	is being dropped after a failure and notes that
766  */
767 void consume_skb(struct sk_buff *skb)
768 {
769 	if (unlikely(!skb))
770 		return;
771 	if (likely(atomic_read(&skb->users) == 1))
772 		smp_rmb();
773 	else if (likely(!atomic_dec_and_test(&skb->users)))
774 		return;
775 	trace_consume_skb(skb);
776 	__kfree_skb(skb);
777 }
778 EXPORT_SYMBOL(consume_skb);
779 
780 /* Make sure a field is enclosed inside headers_start/headers_end section */
781 #define CHECK_SKB_FIELD(field) \
782 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
783 		     offsetof(struct sk_buff, headers_start));	\
784 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
785 		     offsetof(struct sk_buff, headers_end));	\
786 
787 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
788 {
789 	new->tstamp		= old->tstamp;
790 	/* We do not copy old->sk */
791 	new->dev		= old->dev;
792 	memcpy(new->cb, old->cb, sizeof(old->cb));
793 	skb_dst_copy(new, old);
794 #ifdef CONFIG_XFRM
795 	new->sp			= secpath_get(old->sp);
796 #endif
797 	__nf_copy(new, old, false);
798 
799 	/* Note : this field could be in headers_start/headers_end section
800 	 * It is not yet because we do not want to have a 16 bit hole
801 	 */
802 	new->queue_mapping = old->queue_mapping;
803 
804 	memcpy(&new->headers_start, &old->headers_start,
805 	       offsetof(struct sk_buff, headers_end) -
806 	       offsetof(struct sk_buff, headers_start));
807 	CHECK_SKB_FIELD(protocol);
808 	CHECK_SKB_FIELD(csum);
809 	CHECK_SKB_FIELD(hash);
810 	CHECK_SKB_FIELD(priority);
811 	CHECK_SKB_FIELD(skb_iif);
812 	CHECK_SKB_FIELD(vlan_proto);
813 	CHECK_SKB_FIELD(vlan_tci);
814 	CHECK_SKB_FIELD(transport_header);
815 	CHECK_SKB_FIELD(network_header);
816 	CHECK_SKB_FIELD(mac_header);
817 	CHECK_SKB_FIELD(inner_protocol);
818 	CHECK_SKB_FIELD(inner_transport_header);
819 	CHECK_SKB_FIELD(inner_network_header);
820 	CHECK_SKB_FIELD(inner_mac_header);
821 	CHECK_SKB_FIELD(mark);
822 #ifdef CONFIG_NETWORK_SECMARK
823 	CHECK_SKB_FIELD(secmark);
824 #endif
825 #ifdef CONFIG_NET_RX_BUSY_POLL
826 	CHECK_SKB_FIELD(napi_id);
827 #endif
828 #ifdef CONFIG_XPS
829 	CHECK_SKB_FIELD(sender_cpu);
830 #endif
831 #ifdef CONFIG_NET_SCHED
832 	CHECK_SKB_FIELD(tc_index);
833 #ifdef CONFIG_NET_CLS_ACT
834 	CHECK_SKB_FIELD(tc_verd);
835 #endif
836 #endif
837 
838 }
839 
840 /*
841  * You should not add any new code to this function.  Add it to
842  * __copy_skb_header above instead.
843  */
844 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
845 {
846 #define C(x) n->x = skb->x
847 
848 	n->next = n->prev = NULL;
849 	n->sk = NULL;
850 	__copy_skb_header(n, skb);
851 
852 	C(len);
853 	C(data_len);
854 	C(mac_len);
855 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
856 	n->cloned = 1;
857 	n->nohdr = 0;
858 	n->destructor = NULL;
859 	C(tail);
860 	C(end);
861 	C(head);
862 	C(head_frag);
863 	C(data);
864 	C(truesize);
865 	atomic_set(&n->users, 1);
866 
867 	atomic_inc(&(skb_shinfo(skb)->dataref));
868 	skb->cloned = 1;
869 
870 	return n;
871 #undef C
872 }
873 
874 /**
875  *	skb_morph	-	morph one skb into another
876  *	@dst: the skb to receive the contents
877  *	@src: the skb to supply the contents
878  *
879  *	This is identical to skb_clone except that the target skb is
880  *	supplied by the user.
881  *
882  *	The target skb is returned upon exit.
883  */
884 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
885 {
886 	skb_release_all(dst);
887 	return __skb_clone(dst, src);
888 }
889 EXPORT_SYMBOL_GPL(skb_morph);
890 
891 /**
892  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
893  *	@skb: the skb to modify
894  *	@gfp_mask: allocation priority
895  *
896  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
897  *	It will copy all frags into kernel and drop the reference
898  *	to userspace pages.
899  *
900  *	If this function is called from an interrupt gfp_mask() must be
901  *	%GFP_ATOMIC.
902  *
903  *	Returns 0 on success or a negative error code on failure
904  *	to allocate kernel memory to copy to.
905  */
906 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
907 {
908 	int i;
909 	int num_frags = skb_shinfo(skb)->nr_frags;
910 	struct page *page, *head = NULL;
911 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
912 
913 	for (i = 0; i < num_frags; i++) {
914 		u8 *vaddr;
915 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
916 
917 		page = alloc_page(gfp_mask);
918 		if (!page) {
919 			while (head) {
920 				struct page *next = (struct page *)page_private(head);
921 				put_page(head);
922 				head = next;
923 			}
924 			return -ENOMEM;
925 		}
926 		vaddr = kmap_atomic(skb_frag_page(f));
927 		memcpy(page_address(page),
928 		       vaddr + f->page_offset, skb_frag_size(f));
929 		kunmap_atomic(vaddr);
930 		set_page_private(page, (unsigned long)head);
931 		head = page;
932 	}
933 
934 	/* skb frags release userspace buffers */
935 	for (i = 0; i < num_frags; i++)
936 		skb_frag_unref(skb, i);
937 
938 	uarg->callback(uarg, false);
939 
940 	/* skb frags point to kernel buffers */
941 	for (i = num_frags - 1; i >= 0; i--) {
942 		__skb_fill_page_desc(skb, i, head, 0,
943 				     skb_shinfo(skb)->frags[i].size);
944 		head = (struct page *)page_private(head);
945 	}
946 
947 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
948 	return 0;
949 }
950 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
951 
952 /**
953  *	skb_clone	-	duplicate an sk_buff
954  *	@skb: buffer to clone
955  *	@gfp_mask: allocation priority
956  *
957  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
958  *	copies share the same packet data but not structure. The new
959  *	buffer has a reference count of 1. If the allocation fails the
960  *	function returns %NULL otherwise the new buffer is returned.
961  *
962  *	If this function is called from an interrupt gfp_mask() must be
963  *	%GFP_ATOMIC.
964  */
965 
966 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
967 {
968 	struct sk_buff_fclones *fclones = container_of(skb,
969 						       struct sk_buff_fclones,
970 						       skb1);
971 	struct sk_buff *n;
972 
973 	if (skb_orphan_frags(skb, gfp_mask))
974 		return NULL;
975 
976 	if (skb->fclone == SKB_FCLONE_ORIG &&
977 	    atomic_read(&fclones->fclone_ref) == 1) {
978 		n = &fclones->skb2;
979 		atomic_set(&fclones->fclone_ref, 2);
980 	} else {
981 		if (skb_pfmemalloc(skb))
982 			gfp_mask |= __GFP_MEMALLOC;
983 
984 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
985 		if (!n)
986 			return NULL;
987 
988 		kmemcheck_annotate_bitfield(n, flags1);
989 		n->fclone = SKB_FCLONE_UNAVAILABLE;
990 	}
991 
992 	return __skb_clone(n, skb);
993 }
994 EXPORT_SYMBOL(skb_clone);
995 
996 static void skb_headers_offset_update(struct sk_buff *skb, int off)
997 {
998 	/* Only adjust this if it actually is csum_start rather than csum */
999 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1000 		skb->csum_start += off;
1001 	/* {transport,network,mac}_header and tail are relative to skb->head */
1002 	skb->transport_header += off;
1003 	skb->network_header   += off;
1004 	if (skb_mac_header_was_set(skb))
1005 		skb->mac_header += off;
1006 	skb->inner_transport_header += off;
1007 	skb->inner_network_header += off;
1008 	skb->inner_mac_header += off;
1009 }
1010 
1011 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1012 {
1013 	__copy_skb_header(new, old);
1014 
1015 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1016 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1017 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1018 }
1019 
1020 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1021 {
1022 	if (skb_pfmemalloc(skb))
1023 		return SKB_ALLOC_RX;
1024 	return 0;
1025 }
1026 
1027 /**
1028  *	skb_copy	-	create private copy of an sk_buff
1029  *	@skb: buffer to copy
1030  *	@gfp_mask: allocation priority
1031  *
1032  *	Make a copy of both an &sk_buff and its data. This is used when the
1033  *	caller wishes to modify the data and needs a private copy of the
1034  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1035  *	on success. The returned buffer has a reference count of 1.
1036  *
1037  *	As by-product this function converts non-linear &sk_buff to linear
1038  *	one, so that &sk_buff becomes completely private and caller is allowed
1039  *	to modify all the data of returned buffer. This means that this
1040  *	function is not recommended for use in circumstances when only
1041  *	header is going to be modified. Use pskb_copy() instead.
1042  */
1043 
1044 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1045 {
1046 	int headerlen = skb_headroom(skb);
1047 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1048 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1049 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1050 
1051 	if (!n)
1052 		return NULL;
1053 
1054 	/* Set the data pointer */
1055 	skb_reserve(n, headerlen);
1056 	/* Set the tail pointer and length */
1057 	skb_put(n, skb->len);
1058 
1059 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1060 		BUG();
1061 
1062 	copy_skb_header(n, skb);
1063 	return n;
1064 }
1065 EXPORT_SYMBOL(skb_copy);
1066 
1067 /**
1068  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1069  *	@skb: buffer to copy
1070  *	@headroom: headroom of new skb
1071  *	@gfp_mask: allocation priority
1072  *	@fclone: if true allocate the copy of the skb from the fclone
1073  *	cache instead of the head cache; it is recommended to set this
1074  *	to true for the cases where the copy will likely be cloned
1075  *
1076  *	Make a copy of both an &sk_buff and part of its data, located
1077  *	in header. Fragmented data remain shared. This is used when
1078  *	the caller wishes to modify only header of &sk_buff and needs
1079  *	private copy of the header to alter. Returns %NULL on failure
1080  *	or the pointer to the buffer on success.
1081  *	The returned buffer has a reference count of 1.
1082  */
1083 
1084 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1085 				   gfp_t gfp_mask, bool fclone)
1086 {
1087 	unsigned int size = skb_headlen(skb) + headroom;
1088 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1089 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1090 
1091 	if (!n)
1092 		goto out;
1093 
1094 	/* Set the data pointer */
1095 	skb_reserve(n, headroom);
1096 	/* Set the tail pointer and length */
1097 	skb_put(n, skb_headlen(skb));
1098 	/* Copy the bytes */
1099 	skb_copy_from_linear_data(skb, n->data, n->len);
1100 
1101 	n->truesize += skb->data_len;
1102 	n->data_len  = skb->data_len;
1103 	n->len	     = skb->len;
1104 
1105 	if (skb_shinfo(skb)->nr_frags) {
1106 		int i;
1107 
1108 		if (skb_orphan_frags(skb, gfp_mask)) {
1109 			kfree_skb(n);
1110 			n = NULL;
1111 			goto out;
1112 		}
1113 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1114 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1115 			skb_frag_ref(skb, i);
1116 		}
1117 		skb_shinfo(n)->nr_frags = i;
1118 	}
1119 
1120 	if (skb_has_frag_list(skb)) {
1121 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1122 		skb_clone_fraglist(n);
1123 	}
1124 
1125 	copy_skb_header(n, skb);
1126 out:
1127 	return n;
1128 }
1129 EXPORT_SYMBOL(__pskb_copy_fclone);
1130 
1131 /**
1132  *	pskb_expand_head - reallocate header of &sk_buff
1133  *	@skb: buffer to reallocate
1134  *	@nhead: room to add at head
1135  *	@ntail: room to add at tail
1136  *	@gfp_mask: allocation priority
1137  *
1138  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1139  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1140  *	reference count of 1. Returns zero in the case of success or error,
1141  *	if expansion failed. In the last case, &sk_buff is not changed.
1142  *
1143  *	All the pointers pointing into skb header may change and must be
1144  *	reloaded after call to this function.
1145  */
1146 
1147 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1148 		     gfp_t gfp_mask)
1149 {
1150 	int i;
1151 	u8 *data;
1152 	int size = nhead + skb_end_offset(skb) + ntail;
1153 	long off;
1154 
1155 	BUG_ON(nhead < 0);
1156 
1157 	if (skb_shared(skb))
1158 		BUG();
1159 
1160 	size = SKB_DATA_ALIGN(size);
1161 
1162 	if (skb_pfmemalloc(skb))
1163 		gfp_mask |= __GFP_MEMALLOC;
1164 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1165 			       gfp_mask, NUMA_NO_NODE, NULL);
1166 	if (!data)
1167 		goto nodata;
1168 	size = SKB_WITH_OVERHEAD(ksize(data));
1169 
1170 	/* Copy only real data... and, alas, header. This should be
1171 	 * optimized for the cases when header is void.
1172 	 */
1173 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1174 
1175 	memcpy((struct skb_shared_info *)(data + size),
1176 	       skb_shinfo(skb),
1177 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1178 
1179 	/*
1180 	 * if shinfo is shared we must drop the old head gracefully, but if it
1181 	 * is not we can just drop the old head and let the existing refcount
1182 	 * be since all we did is relocate the values
1183 	 */
1184 	if (skb_cloned(skb)) {
1185 		/* copy this zero copy skb frags */
1186 		if (skb_orphan_frags(skb, gfp_mask))
1187 			goto nofrags;
1188 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1189 			skb_frag_ref(skb, i);
1190 
1191 		if (skb_has_frag_list(skb))
1192 			skb_clone_fraglist(skb);
1193 
1194 		skb_release_data(skb);
1195 	} else {
1196 		skb_free_head(skb);
1197 	}
1198 	off = (data + nhead) - skb->head;
1199 
1200 	skb->head     = data;
1201 	skb->head_frag = 0;
1202 	skb->data    += off;
1203 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1204 	skb->end      = size;
1205 	off           = nhead;
1206 #else
1207 	skb->end      = skb->head + size;
1208 #endif
1209 	skb->tail	      += off;
1210 	skb_headers_offset_update(skb, nhead);
1211 	skb->cloned   = 0;
1212 	skb->hdr_len  = 0;
1213 	skb->nohdr    = 0;
1214 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1215 	return 0;
1216 
1217 nofrags:
1218 	kfree(data);
1219 nodata:
1220 	return -ENOMEM;
1221 }
1222 EXPORT_SYMBOL(pskb_expand_head);
1223 
1224 /* Make private copy of skb with writable head and some headroom */
1225 
1226 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1227 {
1228 	struct sk_buff *skb2;
1229 	int delta = headroom - skb_headroom(skb);
1230 
1231 	if (delta <= 0)
1232 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1233 	else {
1234 		skb2 = skb_clone(skb, GFP_ATOMIC);
1235 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1236 					     GFP_ATOMIC)) {
1237 			kfree_skb(skb2);
1238 			skb2 = NULL;
1239 		}
1240 	}
1241 	return skb2;
1242 }
1243 EXPORT_SYMBOL(skb_realloc_headroom);
1244 
1245 /**
1246  *	skb_copy_expand	-	copy and expand sk_buff
1247  *	@skb: buffer to copy
1248  *	@newheadroom: new free bytes at head
1249  *	@newtailroom: new free bytes at tail
1250  *	@gfp_mask: allocation priority
1251  *
1252  *	Make a copy of both an &sk_buff and its data and while doing so
1253  *	allocate additional space.
1254  *
1255  *	This is used when the caller wishes to modify the data and needs a
1256  *	private copy of the data to alter as well as more space for new fields.
1257  *	Returns %NULL on failure or the pointer to the buffer
1258  *	on success. The returned buffer has a reference count of 1.
1259  *
1260  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1261  *	is called from an interrupt.
1262  */
1263 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1264 				int newheadroom, int newtailroom,
1265 				gfp_t gfp_mask)
1266 {
1267 	/*
1268 	 *	Allocate the copy buffer
1269 	 */
1270 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1271 					gfp_mask, skb_alloc_rx_flag(skb),
1272 					NUMA_NO_NODE);
1273 	int oldheadroom = skb_headroom(skb);
1274 	int head_copy_len, head_copy_off;
1275 
1276 	if (!n)
1277 		return NULL;
1278 
1279 	skb_reserve(n, newheadroom);
1280 
1281 	/* Set the tail pointer and length */
1282 	skb_put(n, skb->len);
1283 
1284 	head_copy_len = oldheadroom;
1285 	head_copy_off = 0;
1286 	if (newheadroom <= head_copy_len)
1287 		head_copy_len = newheadroom;
1288 	else
1289 		head_copy_off = newheadroom - head_copy_len;
1290 
1291 	/* Copy the linear header and data. */
1292 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1293 			  skb->len + head_copy_len))
1294 		BUG();
1295 
1296 	copy_skb_header(n, skb);
1297 
1298 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1299 
1300 	return n;
1301 }
1302 EXPORT_SYMBOL(skb_copy_expand);
1303 
1304 /**
1305  *	skb_pad			-	zero pad the tail of an skb
1306  *	@skb: buffer to pad
1307  *	@pad: space to pad
1308  *
1309  *	Ensure that a buffer is followed by a padding area that is zero
1310  *	filled. Used by network drivers which may DMA or transfer data
1311  *	beyond the buffer end onto the wire.
1312  *
1313  *	May return error in out of memory cases. The skb is freed on error.
1314  */
1315 
1316 int skb_pad(struct sk_buff *skb, int pad)
1317 {
1318 	int err;
1319 	int ntail;
1320 
1321 	/* If the skbuff is non linear tailroom is always zero.. */
1322 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1323 		memset(skb->data+skb->len, 0, pad);
1324 		return 0;
1325 	}
1326 
1327 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1328 	if (likely(skb_cloned(skb) || ntail > 0)) {
1329 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1330 		if (unlikely(err))
1331 			goto free_skb;
1332 	}
1333 
1334 	/* FIXME: The use of this function with non-linear skb's really needs
1335 	 * to be audited.
1336 	 */
1337 	err = skb_linearize(skb);
1338 	if (unlikely(err))
1339 		goto free_skb;
1340 
1341 	memset(skb->data + skb->len, 0, pad);
1342 	return 0;
1343 
1344 free_skb:
1345 	kfree_skb(skb);
1346 	return err;
1347 }
1348 EXPORT_SYMBOL(skb_pad);
1349 
1350 /**
1351  *	pskb_put - add data to the tail of a potentially fragmented buffer
1352  *	@skb: start of the buffer to use
1353  *	@tail: tail fragment of the buffer to use
1354  *	@len: amount of data to add
1355  *
1356  *	This function extends the used data area of the potentially
1357  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1358  *	@skb itself. If this would exceed the total buffer size the kernel
1359  *	will panic. A pointer to the first byte of the extra data is
1360  *	returned.
1361  */
1362 
1363 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1364 {
1365 	if (tail != skb) {
1366 		skb->data_len += len;
1367 		skb->len += len;
1368 	}
1369 	return skb_put(tail, len);
1370 }
1371 EXPORT_SYMBOL_GPL(pskb_put);
1372 
1373 /**
1374  *	skb_put - add data to a buffer
1375  *	@skb: buffer to use
1376  *	@len: amount of data to add
1377  *
1378  *	This function extends the used data area of the buffer. If this would
1379  *	exceed the total buffer size the kernel will panic. A pointer to the
1380  *	first byte of the extra data is returned.
1381  */
1382 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1383 {
1384 	unsigned char *tmp = skb_tail_pointer(skb);
1385 	SKB_LINEAR_ASSERT(skb);
1386 	skb->tail += len;
1387 	skb->len  += len;
1388 	if (unlikely(skb->tail > skb->end))
1389 		skb_over_panic(skb, len, __builtin_return_address(0));
1390 	return tmp;
1391 }
1392 EXPORT_SYMBOL(skb_put);
1393 
1394 /**
1395  *	skb_push - add data to the start of a buffer
1396  *	@skb: buffer to use
1397  *	@len: amount of data to add
1398  *
1399  *	This function extends the used data area of the buffer at the buffer
1400  *	start. If this would exceed the total buffer headroom the kernel will
1401  *	panic. A pointer to the first byte of the extra data is returned.
1402  */
1403 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1404 {
1405 	skb->data -= len;
1406 	skb->len  += len;
1407 	if (unlikely(skb->data<skb->head))
1408 		skb_under_panic(skb, len, __builtin_return_address(0));
1409 	return skb->data;
1410 }
1411 EXPORT_SYMBOL(skb_push);
1412 
1413 /**
1414  *	skb_pull - remove data from the start of a buffer
1415  *	@skb: buffer to use
1416  *	@len: amount of data to remove
1417  *
1418  *	This function removes data from the start of a buffer, returning
1419  *	the memory to the headroom. A pointer to the next data in the buffer
1420  *	is returned. Once the data has been pulled future pushes will overwrite
1421  *	the old data.
1422  */
1423 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1424 {
1425 	return skb_pull_inline(skb, len);
1426 }
1427 EXPORT_SYMBOL(skb_pull);
1428 
1429 /**
1430  *	skb_trim - remove end from a buffer
1431  *	@skb: buffer to alter
1432  *	@len: new length
1433  *
1434  *	Cut the length of a buffer down by removing data from the tail. If
1435  *	the buffer is already under the length specified it is not modified.
1436  *	The skb must be linear.
1437  */
1438 void skb_trim(struct sk_buff *skb, unsigned int len)
1439 {
1440 	if (skb->len > len)
1441 		__skb_trim(skb, len);
1442 }
1443 EXPORT_SYMBOL(skb_trim);
1444 
1445 /* Trims skb to length len. It can change skb pointers.
1446  */
1447 
1448 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1449 {
1450 	struct sk_buff **fragp;
1451 	struct sk_buff *frag;
1452 	int offset = skb_headlen(skb);
1453 	int nfrags = skb_shinfo(skb)->nr_frags;
1454 	int i;
1455 	int err;
1456 
1457 	if (skb_cloned(skb) &&
1458 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1459 		return err;
1460 
1461 	i = 0;
1462 	if (offset >= len)
1463 		goto drop_pages;
1464 
1465 	for (; i < nfrags; i++) {
1466 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1467 
1468 		if (end < len) {
1469 			offset = end;
1470 			continue;
1471 		}
1472 
1473 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1474 
1475 drop_pages:
1476 		skb_shinfo(skb)->nr_frags = i;
1477 
1478 		for (; i < nfrags; i++)
1479 			skb_frag_unref(skb, i);
1480 
1481 		if (skb_has_frag_list(skb))
1482 			skb_drop_fraglist(skb);
1483 		goto done;
1484 	}
1485 
1486 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1487 	     fragp = &frag->next) {
1488 		int end = offset + frag->len;
1489 
1490 		if (skb_shared(frag)) {
1491 			struct sk_buff *nfrag;
1492 
1493 			nfrag = skb_clone(frag, GFP_ATOMIC);
1494 			if (unlikely(!nfrag))
1495 				return -ENOMEM;
1496 
1497 			nfrag->next = frag->next;
1498 			consume_skb(frag);
1499 			frag = nfrag;
1500 			*fragp = frag;
1501 		}
1502 
1503 		if (end < len) {
1504 			offset = end;
1505 			continue;
1506 		}
1507 
1508 		if (end > len &&
1509 		    unlikely((err = pskb_trim(frag, len - offset))))
1510 			return err;
1511 
1512 		if (frag->next)
1513 			skb_drop_list(&frag->next);
1514 		break;
1515 	}
1516 
1517 done:
1518 	if (len > skb_headlen(skb)) {
1519 		skb->data_len -= skb->len - len;
1520 		skb->len       = len;
1521 	} else {
1522 		skb->len       = len;
1523 		skb->data_len  = 0;
1524 		skb_set_tail_pointer(skb, len);
1525 	}
1526 
1527 	return 0;
1528 }
1529 EXPORT_SYMBOL(___pskb_trim);
1530 
1531 /**
1532  *	__pskb_pull_tail - advance tail of skb header
1533  *	@skb: buffer to reallocate
1534  *	@delta: number of bytes to advance tail
1535  *
1536  *	The function makes a sense only on a fragmented &sk_buff,
1537  *	it expands header moving its tail forward and copying necessary
1538  *	data from fragmented part.
1539  *
1540  *	&sk_buff MUST have reference count of 1.
1541  *
1542  *	Returns %NULL (and &sk_buff does not change) if pull failed
1543  *	or value of new tail of skb in the case of success.
1544  *
1545  *	All the pointers pointing into skb header may change and must be
1546  *	reloaded after call to this function.
1547  */
1548 
1549 /* Moves tail of skb head forward, copying data from fragmented part,
1550  * when it is necessary.
1551  * 1. It may fail due to malloc failure.
1552  * 2. It may change skb pointers.
1553  *
1554  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1555  */
1556 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1557 {
1558 	/* If skb has not enough free space at tail, get new one
1559 	 * plus 128 bytes for future expansions. If we have enough
1560 	 * room at tail, reallocate without expansion only if skb is cloned.
1561 	 */
1562 	int i, k, eat = (skb->tail + delta) - skb->end;
1563 
1564 	if (eat > 0 || skb_cloned(skb)) {
1565 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1566 				     GFP_ATOMIC))
1567 			return NULL;
1568 	}
1569 
1570 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1571 		BUG();
1572 
1573 	/* Optimization: no fragments, no reasons to preestimate
1574 	 * size of pulled pages. Superb.
1575 	 */
1576 	if (!skb_has_frag_list(skb))
1577 		goto pull_pages;
1578 
1579 	/* Estimate size of pulled pages. */
1580 	eat = delta;
1581 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1582 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1583 
1584 		if (size >= eat)
1585 			goto pull_pages;
1586 		eat -= size;
1587 	}
1588 
1589 	/* If we need update frag list, we are in troubles.
1590 	 * Certainly, it possible to add an offset to skb data,
1591 	 * but taking into account that pulling is expected to
1592 	 * be very rare operation, it is worth to fight against
1593 	 * further bloating skb head and crucify ourselves here instead.
1594 	 * Pure masohism, indeed. 8)8)
1595 	 */
1596 	if (eat) {
1597 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1598 		struct sk_buff *clone = NULL;
1599 		struct sk_buff *insp = NULL;
1600 
1601 		do {
1602 			BUG_ON(!list);
1603 
1604 			if (list->len <= eat) {
1605 				/* Eaten as whole. */
1606 				eat -= list->len;
1607 				list = list->next;
1608 				insp = list;
1609 			} else {
1610 				/* Eaten partially. */
1611 
1612 				if (skb_shared(list)) {
1613 					/* Sucks! We need to fork list. :-( */
1614 					clone = skb_clone(list, GFP_ATOMIC);
1615 					if (!clone)
1616 						return NULL;
1617 					insp = list->next;
1618 					list = clone;
1619 				} else {
1620 					/* This may be pulled without
1621 					 * problems. */
1622 					insp = list;
1623 				}
1624 				if (!pskb_pull(list, eat)) {
1625 					kfree_skb(clone);
1626 					return NULL;
1627 				}
1628 				break;
1629 			}
1630 		} while (eat);
1631 
1632 		/* Free pulled out fragments. */
1633 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1634 			skb_shinfo(skb)->frag_list = list->next;
1635 			kfree_skb(list);
1636 		}
1637 		/* And insert new clone at head. */
1638 		if (clone) {
1639 			clone->next = list;
1640 			skb_shinfo(skb)->frag_list = clone;
1641 		}
1642 	}
1643 	/* Success! Now we may commit changes to skb data. */
1644 
1645 pull_pages:
1646 	eat = delta;
1647 	k = 0;
1648 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1649 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1650 
1651 		if (size <= eat) {
1652 			skb_frag_unref(skb, i);
1653 			eat -= size;
1654 		} else {
1655 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1656 			if (eat) {
1657 				skb_shinfo(skb)->frags[k].page_offset += eat;
1658 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1659 				eat = 0;
1660 			}
1661 			k++;
1662 		}
1663 	}
1664 	skb_shinfo(skb)->nr_frags = k;
1665 
1666 	skb->tail     += delta;
1667 	skb->data_len -= delta;
1668 
1669 	return skb_tail_pointer(skb);
1670 }
1671 EXPORT_SYMBOL(__pskb_pull_tail);
1672 
1673 /**
1674  *	skb_copy_bits - copy bits from skb to kernel buffer
1675  *	@skb: source skb
1676  *	@offset: offset in source
1677  *	@to: destination buffer
1678  *	@len: number of bytes to copy
1679  *
1680  *	Copy the specified number of bytes from the source skb to the
1681  *	destination buffer.
1682  *
1683  *	CAUTION ! :
1684  *		If its prototype is ever changed,
1685  *		check arch/{*}/net/{*}.S files,
1686  *		since it is called from BPF assembly code.
1687  */
1688 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1689 {
1690 	int start = skb_headlen(skb);
1691 	struct sk_buff *frag_iter;
1692 	int i, copy;
1693 
1694 	if (offset > (int)skb->len - len)
1695 		goto fault;
1696 
1697 	/* Copy header. */
1698 	if ((copy = start - offset) > 0) {
1699 		if (copy > len)
1700 			copy = len;
1701 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1702 		if ((len -= copy) == 0)
1703 			return 0;
1704 		offset += copy;
1705 		to     += copy;
1706 	}
1707 
1708 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1709 		int end;
1710 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1711 
1712 		WARN_ON(start > offset + len);
1713 
1714 		end = start + skb_frag_size(f);
1715 		if ((copy = end - offset) > 0) {
1716 			u8 *vaddr;
1717 
1718 			if (copy > len)
1719 				copy = len;
1720 
1721 			vaddr = kmap_atomic(skb_frag_page(f));
1722 			memcpy(to,
1723 			       vaddr + f->page_offset + offset - start,
1724 			       copy);
1725 			kunmap_atomic(vaddr);
1726 
1727 			if ((len -= copy) == 0)
1728 				return 0;
1729 			offset += copy;
1730 			to     += copy;
1731 		}
1732 		start = end;
1733 	}
1734 
1735 	skb_walk_frags(skb, frag_iter) {
1736 		int end;
1737 
1738 		WARN_ON(start > offset + len);
1739 
1740 		end = start + frag_iter->len;
1741 		if ((copy = end - offset) > 0) {
1742 			if (copy > len)
1743 				copy = len;
1744 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1745 				goto fault;
1746 			if ((len -= copy) == 0)
1747 				return 0;
1748 			offset += copy;
1749 			to     += copy;
1750 		}
1751 		start = end;
1752 	}
1753 
1754 	if (!len)
1755 		return 0;
1756 
1757 fault:
1758 	return -EFAULT;
1759 }
1760 EXPORT_SYMBOL(skb_copy_bits);
1761 
1762 /*
1763  * Callback from splice_to_pipe(), if we need to release some pages
1764  * at the end of the spd in case we error'ed out in filling the pipe.
1765  */
1766 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1767 {
1768 	put_page(spd->pages[i]);
1769 }
1770 
1771 static struct page *linear_to_page(struct page *page, unsigned int *len,
1772 				   unsigned int *offset,
1773 				   struct sock *sk)
1774 {
1775 	struct page_frag *pfrag = sk_page_frag(sk);
1776 
1777 	if (!sk_page_frag_refill(sk, pfrag))
1778 		return NULL;
1779 
1780 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1781 
1782 	memcpy(page_address(pfrag->page) + pfrag->offset,
1783 	       page_address(page) + *offset, *len);
1784 	*offset = pfrag->offset;
1785 	pfrag->offset += *len;
1786 
1787 	return pfrag->page;
1788 }
1789 
1790 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1791 			     struct page *page,
1792 			     unsigned int offset)
1793 {
1794 	return	spd->nr_pages &&
1795 		spd->pages[spd->nr_pages - 1] == page &&
1796 		(spd->partial[spd->nr_pages - 1].offset +
1797 		 spd->partial[spd->nr_pages - 1].len == offset);
1798 }
1799 
1800 /*
1801  * Fill page/offset/length into spd, if it can hold more pages.
1802  */
1803 static bool spd_fill_page(struct splice_pipe_desc *spd,
1804 			  struct pipe_inode_info *pipe, struct page *page,
1805 			  unsigned int *len, unsigned int offset,
1806 			  bool linear,
1807 			  struct sock *sk)
1808 {
1809 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1810 		return true;
1811 
1812 	if (linear) {
1813 		page = linear_to_page(page, len, &offset, sk);
1814 		if (!page)
1815 			return true;
1816 	}
1817 	if (spd_can_coalesce(spd, page, offset)) {
1818 		spd->partial[spd->nr_pages - 1].len += *len;
1819 		return false;
1820 	}
1821 	get_page(page);
1822 	spd->pages[spd->nr_pages] = page;
1823 	spd->partial[spd->nr_pages].len = *len;
1824 	spd->partial[spd->nr_pages].offset = offset;
1825 	spd->nr_pages++;
1826 
1827 	return false;
1828 }
1829 
1830 static bool __splice_segment(struct page *page, unsigned int poff,
1831 			     unsigned int plen, unsigned int *off,
1832 			     unsigned int *len,
1833 			     struct splice_pipe_desc *spd, bool linear,
1834 			     struct sock *sk,
1835 			     struct pipe_inode_info *pipe)
1836 {
1837 	if (!*len)
1838 		return true;
1839 
1840 	/* skip this segment if already processed */
1841 	if (*off >= plen) {
1842 		*off -= plen;
1843 		return false;
1844 	}
1845 
1846 	/* ignore any bits we already processed */
1847 	poff += *off;
1848 	plen -= *off;
1849 	*off = 0;
1850 
1851 	do {
1852 		unsigned int flen = min(*len, plen);
1853 
1854 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1855 				  linear, sk))
1856 			return true;
1857 		poff += flen;
1858 		plen -= flen;
1859 		*len -= flen;
1860 	} while (*len && plen);
1861 
1862 	return false;
1863 }
1864 
1865 /*
1866  * Map linear and fragment data from the skb to spd. It reports true if the
1867  * pipe is full or if we already spliced the requested length.
1868  */
1869 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1870 			      unsigned int *offset, unsigned int *len,
1871 			      struct splice_pipe_desc *spd, struct sock *sk)
1872 {
1873 	int seg;
1874 
1875 	/* map the linear part :
1876 	 * If skb->head_frag is set, this 'linear' part is backed by a
1877 	 * fragment, and if the head is not shared with any clones then
1878 	 * we can avoid a copy since we own the head portion of this page.
1879 	 */
1880 	if (__splice_segment(virt_to_page(skb->data),
1881 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1882 			     skb_headlen(skb),
1883 			     offset, len, spd,
1884 			     skb_head_is_locked(skb),
1885 			     sk, pipe))
1886 		return true;
1887 
1888 	/*
1889 	 * then map the fragments
1890 	 */
1891 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1892 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1893 
1894 		if (__splice_segment(skb_frag_page(f),
1895 				     f->page_offset, skb_frag_size(f),
1896 				     offset, len, spd, false, sk, pipe))
1897 			return true;
1898 	}
1899 
1900 	return false;
1901 }
1902 
1903 /*
1904  * Map data from the skb to a pipe. Should handle both the linear part,
1905  * the fragments, and the frag list. It does NOT handle frag lists within
1906  * the frag list, if such a thing exists. We'd probably need to recurse to
1907  * handle that cleanly.
1908  */
1909 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1910 		    struct pipe_inode_info *pipe, unsigned int tlen,
1911 		    unsigned int flags)
1912 {
1913 	struct partial_page partial[MAX_SKB_FRAGS];
1914 	struct page *pages[MAX_SKB_FRAGS];
1915 	struct splice_pipe_desc spd = {
1916 		.pages = pages,
1917 		.partial = partial,
1918 		.nr_pages_max = MAX_SKB_FRAGS,
1919 		.flags = flags,
1920 		.ops = &nosteal_pipe_buf_ops,
1921 		.spd_release = sock_spd_release,
1922 	};
1923 	struct sk_buff *frag_iter;
1924 	struct sock *sk = skb->sk;
1925 	int ret = 0;
1926 
1927 	/*
1928 	 * __skb_splice_bits() only fails if the output has no room left,
1929 	 * so no point in going over the frag_list for the error case.
1930 	 */
1931 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1932 		goto done;
1933 	else if (!tlen)
1934 		goto done;
1935 
1936 	/*
1937 	 * now see if we have a frag_list to map
1938 	 */
1939 	skb_walk_frags(skb, frag_iter) {
1940 		if (!tlen)
1941 			break;
1942 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1943 			break;
1944 	}
1945 
1946 done:
1947 	if (spd.nr_pages) {
1948 		/*
1949 		 * Drop the socket lock, otherwise we have reverse
1950 		 * locking dependencies between sk_lock and i_mutex
1951 		 * here as compared to sendfile(). We enter here
1952 		 * with the socket lock held, and splice_to_pipe() will
1953 		 * grab the pipe inode lock. For sendfile() emulation,
1954 		 * we call into ->sendpage() with the i_mutex lock held
1955 		 * and networking will grab the socket lock.
1956 		 */
1957 		release_sock(sk);
1958 		ret = splice_to_pipe(pipe, &spd);
1959 		lock_sock(sk);
1960 	}
1961 
1962 	return ret;
1963 }
1964 
1965 /**
1966  *	skb_store_bits - store bits from kernel buffer to skb
1967  *	@skb: destination buffer
1968  *	@offset: offset in destination
1969  *	@from: source buffer
1970  *	@len: number of bytes to copy
1971  *
1972  *	Copy the specified number of bytes from the source buffer to the
1973  *	destination skb.  This function handles all the messy bits of
1974  *	traversing fragment lists and such.
1975  */
1976 
1977 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1978 {
1979 	int start = skb_headlen(skb);
1980 	struct sk_buff *frag_iter;
1981 	int i, copy;
1982 
1983 	if (offset > (int)skb->len - len)
1984 		goto fault;
1985 
1986 	if ((copy = start - offset) > 0) {
1987 		if (copy > len)
1988 			copy = len;
1989 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1990 		if ((len -= copy) == 0)
1991 			return 0;
1992 		offset += copy;
1993 		from += copy;
1994 	}
1995 
1996 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1997 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1998 		int end;
1999 
2000 		WARN_ON(start > offset + len);
2001 
2002 		end = start + skb_frag_size(frag);
2003 		if ((copy = end - offset) > 0) {
2004 			u8 *vaddr;
2005 
2006 			if (copy > len)
2007 				copy = len;
2008 
2009 			vaddr = kmap_atomic(skb_frag_page(frag));
2010 			memcpy(vaddr + frag->page_offset + offset - start,
2011 			       from, copy);
2012 			kunmap_atomic(vaddr);
2013 
2014 			if ((len -= copy) == 0)
2015 				return 0;
2016 			offset += copy;
2017 			from += copy;
2018 		}
2019 		start = end;
2020 	}
2021 
2022 	skb_walk_frags(skb, frag_iter) {
2023 		int end;
2024 
2025 		WARN_ON(start > offset + len);
2026 
2027 		end = start + frag_iter->len;
2028 		if ((copy = end - offset) > 0) {
2029 			if (copy > len)
2030 				copy = len;
2031 			if (skb_store_bits(frag_iter, offset - start,
2032 					   from, copy))
2033 				goto fault;
2034 			if ((len -= copy) == 0)
2035 				return 0;
2036 			offset += copy;
2037 			from += copy;
2038 		}
2039 		start = end;
2040 	}
2041 	if (!len)
2042 		return 0;
2043 
2044 fault:
2045 	return -EFAULT;
2046 }
2047 EXPORT_SYMBOL(skb_store_bits);
2048 
2049 /* Checksum skb data. */
2050 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2051 		      __wsum csum, const struct skb_checksum_ops *ops)
2052 {
2053 	int start = skb_headlen(skb);
2054 	int i, copy = start - offset;
2055 	struct sk_buff *frag_iter;
2056 	int pos = 0;
2057 
2058 	/* Checksum header. */
2059 	if (copy > 0) {
2060 		if (copy > len)
2061 			copy = len;
2062 		csum = ops->update(skb->data + offset, copy, csum);
2063 		if ((len -= copy) == 0)
2064 			return csum;
2065 		offset += copy;
2066 		pos	= copy;
2067 	}
2068 
2069 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2070 		int end;
2071 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2072 
2073 		WARN_ON(start > offset + len);
2074 
2075 		end = start + skb_frag_size(frag);
2076 		if ((copy = end - offset) > 0) {
2077 			__wsum csum2;
2078 			u8 *vaddr;
2079 
2080 			if (copy > len)
2081 				copy = len;
2082 			vaddr = kmap_atomic(skb_frag_page(frag));
2083 			csum2 = ops->update(vaddr + frag->page_offset +
2084 					    offset - start, copy, 0);
2085 			kunmap_atomic(vaddr);
2086 			csum = ops->combine(csum, csum2, pos, copy);
2087 			if (!(len -= copy))
2088 				return csum;
2089 			offset += copy;
2090 			pos    += copy;
2091 		}
2092 		start = end;
2093 	}
2094 
2095 	skb_walk_frags(skb, frag_iter) {
2096 		int end;
2097 
2098 		WARN_ON(start > offset + len);
2099 
2100 		end = start + frag_iter->len;
2101 		if ((copy = end - offset) > 0) {
2102 			__wsum csum2;
2103 			if (copy > len)
2104 				copy = len;
2105 			csum2 = __skb_checksum(frag_iter, offset - start,
2106 					       copy, 0, ops);
2107 			csum = ops->combine(csum, csum2, pos, copy);
2108 			if ((len -= copy) == 0)
2109 				return csum;
2110 			offset += copy;
2111 			pos    += copy;
2112 		}
2113 		start = end;
2114 	}
2115 	BUG_ON(len);
2116 
2117 	return csum;
2118 }
2119 EXPORT_SYMBOL(__skb_checksum);
2120 
2121 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2122 		    int len, __wsum csum)
2123 {
2124 	const struct skb_checksum_ops ops = {
2125 		.update  = csum_partial_ext,
2126 		.combine = csum_block_add_ext,
2127 	};
2128 
2129 	return __skb_checksum(skb, offset, len, csum, &ops);
2130 }
2131 EXPORT_SYMBOL(skb_checksum);
2132 
2133 /* Both of above in one bottle. */
2134 
2135 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2136 				    u8 *to, int len, __wsum csum)
2137 {
2138 	int start = skb_headlen(skb);
2139 	int i, copy = start - offset;
2140 	struct sk_buff *frag_iter;
2141 	int pos = 0;
2142 
2143 	/* Copy header. */
2144 	if (copy > 0) {
2145 		if (copy > len)
2146 			copy = len;
2147 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2148 						 copy, csum);
2149 		if ((len -= copy) == 0)
2150 			return csum;
2151 		offset += copy;
2152 		to     += copy;
2153 		pos	= copy;
2154 	}
2155 
2156 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2157 		int end;
2158 
2159 		WARN_ON(start > offset + len);
2160 
2161 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2162 		if ((copy = end - offset) > 0) {
2163 			__wsum csum2;
2164 			u8 *vaddr;
2165 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2166 
2167 			if (copy > len)
2168 				copy = len;
2169 			vaddr = kmap_atomic(skb_frag_page(frag));
2170 			csum2 = csum_partial_copy_nocheck(vaddr +
2171 							  frag->page_offset +
2172 							  offset - start, to,
2173 							  copy, 0);
2174 			kunmap_atomic(vaddr);
2175 			csum = csum_block_add(csum, csum2, pos);
2176 			if (!(len -= copy))
2177 				return csum;
2178 			offset += copy;
2179 			to     += copy;
2180 			pos    += copy;
2181 		}
2182 		start = end;
2183 	}
2184 
2185 	skb_walk_frags(skb, frag_iter) {
2186 		__wsum csum2;
2187 		int end;
2188 
2189 		WARN_ON(start > offset + len);
2190 
2191 		end = start + frag_iter->len;
2192 		if ((copy = end - offset) > 0) {
2193 			if (copy > len)
2194 				copy = len;
2195 			csum2 = skb_copy_and_csum_bits(frag_iter,
2196 						       offset - start,
2197 						       to, copy, 0);
2198 			csum = csum_block_add(csum, csum2, pos);
2199 			if ((len -= copy) == 0)
2200 				return csum;
2201 			offset += copy;
2202 			to     += copy;
2203 			pos    += copy;
2204 		}
2205 		start = end;
2206 	}
2207 	BUG_ON(len);
2208 	return csum;
2209 }
2210 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2211 
2212  /**
2213  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2214  *	@from: source buffer
2215  *
2216  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2217  *	into skb_zerocopy().
2218  */
2219 unsigned int
2220 skb_zerocopy_headlen(const struct sk_buff *from)
2221 {
2222 	unsigned int hlen = 0;
2223 
2224 	if (!from->head_frag ||
2225 	    skb_headlen(from) < L1_CACHE_BYTES ||
2226 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2227 		hlen = skb_headlen(from);
2228 
2229 	if (skb_has_frag_list(from))
2230 		hlen = from->len;
2231 
2232 	return hlen;
2233 }
2234 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2235 
2236 /**
2237  *	skb_zerocopy - Zero copy skb to skb
2238  *	@to: destination buffer
2239  *	@from: source buffer
2240  *	@len: number of bytes to copy from source buffer
2241  *	@hlen: size of linear headroom in destination buffer
2242  *
2243  *	Copies up to `len` bytes from `from` to `to` by creating references
2244  *	to the frags in the source buffer.
2245  *
2246  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2247  *	headroom in the `to` buffer.
2248  *
2249  *	Return value:
2250  *	0: everything is OK
2251  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2252  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2253  */
2254 int
2255 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2256 {
2257 	int i, j = 0;
2258 	int plen = 0; /* length of skb->head fragment */
2259 	int ret;
2260 	struct page *page;
2261 	unsigned int offset;
2262 
2263 	BUG_ON(!from->head_frag && !hlen);
2264 
2265 	/* dont bother with small payloads */
2266 	if (len <= skb_tailroom(to))
2267 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2268 
2269 	if (hlen) {
2270 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2271 		if (unlikely(ret))
2272 			return ret;
2273 		len -= hlen;
2274 	} else {
2275 		plen = min_t(int, skb_headlen(from), len);
2276 		if (plen) {
2277 			page = virt_to_head_page(from->head);
2278 			offset = from->data - (unsigned char *)page_address(page);
2279 			__skb_fill_page_desc(to, 0, page, offset, plen);
2280 			get_page(page);
2281 			j = 1;
2282 			len -= plen;
2283 		}
2284 	}
2285 
2286 	to->truesize += len + plen;
2287 	to->len += len + plen;
2288 	to->data_len += len + plen;
2289 
2290 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2291 		skb_tx_error(from);
2292 		return -ENOMEM;
2293 	}
2294 
2295 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2296 		if (!len)
2297 			break;
2298 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2299 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2300 		len -= skb_shinfo(to)->frags[j].size;
2301 		skb_frag_ref(to, j);
2302 		j++;
2303 	}
2304 	skb_shinfo(to)->nr_frags = j;
2305 
2306 	return 0;
2307 }
2308 EXPORT_SYMBOL_GPL(skb_zerocopy);
2309 
2310 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2311 {
2312 	__wsum csum;
2313 	long csstart;
2314 
2315 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2316 		csstart = skb_checksum_start_offset(skb);
2317 	else
2318 		csstart = skb_headlen(skb);
2319 
2320 	BUG_ON(csstart > skb_headlen(skb));
2321 
2322 	skb_copy_from_linear_data(skb, to, csstart);
2323 
2324 	csum = 0;
2325 	if (csstart != skb->len)
2326 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2327 					      skb->len - csstart, 0);
2328 
2329 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2330 		long csstuff = csstart + skb->csum_offset;
2331 
2332 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2333 	}
2334 }
2335 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2336 
2337 /**
2338  *	skb_dequeue - remove from the head of the queue
2339  *	@list: list to dequeue from
2340  *
2341  *	Remove the head of the list. The list lock is taken so the function
2342  *	may be used safely with other locking list functions. The head item is
2343  *	returned or %NULL if the list is empty.
2344  */
2345 
2346 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2347 {
2348 	unsigned long flags;
2349 	struct sk_buff *result;
2350 
2351 	spin_lock_irqsave(&list->lock, flags);
2352 	result = __skb_dequeue(list);
2353 	spin_unlock_irqrestore(&list->lock, flags);
2354 	return result;
2355 }
2356 EXPORT_SYMBOL(skb_dequeue);
2357 
2358 /**
2359  *	skb_dequeue_tail - remove from the tail of the queue
2360  *	@list: list to dequeue from
2361  *
2362  *	Remove the tail of the list. The list lock is taken so the function
2363  *	may be used safely with other locking list functions. The tail item is
2364  *	returned or %NULL if the list is empty.
2365  */
2366 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2367 {
2368 	unsigned long flags;
2369 	struct sk_buff *result;
2370 
2371 	spin_lock_irqsave(&list->lock, flags);
2372 	result = __skb_dequeue_tail(list);
2373 	spin_unlock_irqrestore(&list->lock, flags);
2374 	return result;
2375 }
2376 EXPORT_SYMBOL(skb_dequeue_tail);
2377 
2378 /**
2379  *	skb_queue_purge - empty a list
2380  *	@list: list to empty
2381  *
2382  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2383  *	the list and one reference dropped. This function takes the list
2384  *	lock and is atomic with respect to other list locking functions.
2385  */
2386 void skb_queue_purge(struct sk_buff_head *list)
2387 {
2388 	struct sk_buff *skb;
2389 	while ((skb = skb_dequeue(list)) != NULL)
2390 		kfree_skb(skb);
2391 }
2392 EXPORT_SYMBOL(skb_queue_purge);
2393 
2394 /**
2395  *	skb_queue_head - queue a buffer at the list head
2396  *	@list: list to use
2397  *	@newsk: buffer to queue
2398  *
2399  *	Queue a buffer at the start of the list. This function takes the
2400  *	list lock and can be used safely with other locking &sk_buff functions
2401  *	safely.
2402  *
2403  *	A buffer cannot be placed on two lists at the same time.
2404  */
2405 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2406 {
2407 	unsigned long flags;
2408 
2409 	spin_lock_irqsave(&list->lock, flags);
2410 	__skb_queue_head(list, newsk);
2411 	spin_unlock_irqrestore(&list->lock, flags);
2412 }
2413 EXPORT_SYMBOL(skb_queue_head);
2414 
2415 /**
2416  *	skb_queue_tail - queue a buffer at the list tail
2417  *	@list: list to use
2418  *	@newsk: buffer to queue
2419  *
2420  *	Queue a buffer at the tail of the list. This function takes the
2421  *	list lock and can be used safely with other locking &sk_buff functions
2422  *	safely.
2423  *
2424  *	A buffer cannot be placed on two lists at the same time.
2425  */
2426 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2427 {
2428 	unsigned long flags;
2429 
2430 	spin_lock_irqsave(&list->lock, flags);
2431 	__skb_queue_tail(list, newsk);
2432 	spin_unlock_irqrestore(&list->lock, flags);
2433 }
2434 EXPORT_SYMBOL(skb_queue_tail);
2435 
2436 /**
2437  *	skb_unlink	-	remove a buffer from a list
2438  *	@skb: buffer to remove
2439  *	@list: list to use
2440  *
2441  *	Remove a packet from a list. The list locks are taken and this
2442  *	function is atomic with respect to other list locked calls
2443  *
2444  *	You must know what list the SKB is on.
2445  */
2446 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2447 {
2448 	unsigned long flags;
2449 
2450 	spin_lock_irqsave(&list->lock, flags);
2451 	__skb_unlink(skb, list);
2452 	spin_unlock_irqrestore(&list->lock, flags);
2453 }
2454 EXPORT_SYMBOL(skb_unlink);
2455 
2456 /**
2457  *	skb_append	-	append a buffer
2458  *	@old: buffer to insert after
2459  *	@newsk: buffer to insert
2460  *	@list: list to use
2461  *
2462  *	Place a packet after a given packet in a list. The list locks are taken
2463  *	and this function is atomic with respect to other list locked calls.
2464  *	A buffer cannot be placed on two lists at the same time.
2465  */
2466 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2467 {
2468 	unsigned long flags;
2469 
2470 	spin_lock_irqsave(&list->lock, flags);
2471 	__skb_queue_after(list, old, newsk);
2472 	spin_unlock_irqrestore(&list->lock, flags);
2473 }
2474 EXPORT_SYMBOL(skb_append);
2475 
2476 /**
2477  *	skb_insert	-	insert a buffer
2478  *	@old: buffer to insert before
2479  *	@newsk: buffer to insert
2480  *	@list: list to use
2481  *
2482  *	Place a packet before a given packet in a list. The list locks are
2483  * 	taken and this function is atomic with respect to other list locked
2484  *	calls.
2485  *
2486  *	A buffer cannot be placed on two lists at the same time.
2487  */
2488 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2489 {
2490 	unsigned long flags;
2491 
2492 	spin_lock_irqsave(&list->lock, flags);
2493 	__skb_insert(newsk, old->prev, old, list);
2494 	spin_unlock_irqrestore(&list->lock, flags);
2495 }
2496 EXPORT_SYMBOL(skb_insert);
2497 
2498 static inline void skb_split_inside_header(struct sk_buff *skb,
2499 					   struct sk_buff* skb1,
2500 					   const u32 len, const int pos)
2501 {
2502 	int i;
2503 
2504 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2505 					 pos - len);
2506 	/* And move data appendix as is. */
2507 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2508 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2509 
2510 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2511 	skb_shinfo(skb)->nr_frags  = 0;
2512 	skb1->data_len		   = skb->data_len;
2513 	skb1->len		   += skb1->data_len;
2514 	skb->data_len		   = 0;
2515 	skb->len		   = len;
2516 	skb_set_tail_pointer(skb, len);
2517 }
2518 
2519 static inline void skb_split_no_header(struct sk_buff *skb,
2520 				       struct sk_buff* skb1,
2521 				       const u32 len, int pos)
2522 {
2523 	int i, k = 0;
2524 	const int nfrags = skb_shinfo(skb)->nr_frags;
2525 
2526 	skb_shinfo(skb)->nr_frags = 0;
2527 	skb1->len		  = skb1->data_len = skb->len - len;
2528 	skb->len		  = len;
2529 	skb->data_len		  = len - pos;
2530 
2531 	for (i = 0; i < nfrags; i++) {
2532 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2533 
2534 		if (pos + size > len) {
2535 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2536 
2537 			if (pos < len) {
2538 				/* Split frag.
2539 				 * We have two variants in this case:
2540 				 * 1. Move all the frag to the second
2541 				 *    part, if it is possible. F.e.
2542 				 *    this approach is mandatory for TUX,
2543 				 *    where splitting is expensive.
2544 				 * 2. Split is accurately. We make this.
2545 				 */
2546 				skb_frag_ref(skb, i);
2547 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2548 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2549 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2550 				skb_shinfo(skb)->nr_frags++;
2551 			}
2552 			k++;
2553 		} else
2554 			skb_shinfo(skb)->nr_frags++;
2555 		pos += size;
2556 	}
2557 	skb_shinfo(skb1)->nr_frags = k;
2558 }
2559 
2560 /**
2561  * skb_split - Split fragmented skb to two parts at length len.
2562  * @skb: the buffer to split
2563  * @skb1: the buffer to receive the second part
2564  * @len: new length for skb
2565  */
2566 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2567 {
2568 	int pos = skb_headlen(skb);
2569 
2570 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2571 	if (len < pos)	/* Split line is inside header. */
2572 		skb_split_inside_header(skb, skb1, len, pos);
2573 	else		/* Second chunk has no header, nothing to copy. */
2574 		skb_split_no_header(skb, skb1, len, pos);
2575 }
2576 EXPORT_SYMBOL(skb_split);
2577 
2578 /* Shifting from/to a cloned skb is a no-go.
2579  *
2580  * Caller cannot keep skb_shinfo related pointers past calling here!
2581  */
2582 static int skb_prepare_for_shift(struct sk_buff *skb)
2583 {
2584 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2585 }
2586 
2587 /**
2588  * skb_shift - Shifts paged data partially from skb to another
2589  * @tgt: buffer into which tail data gets added
2590  * @skb: buffer from which the paged data comes from
2591  * @shiftlen: shift up to this many bytes
2592  *
2593  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2594  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2595  * It's up to caller to free skb if everything was shifted.
2596  *
2597  * If @tgt runs out of frags, the whole operation is aborted.
2598  *
2599  * Skb cannot include anything else but paged data while tgt is allowed
2600  * to have non-paged data as well.
2601  *
2602  * TODO: full sized shift could be optimized but that would need
2603  * specialized skb free'er to handle frags without up-to-date nr_frags.
2604  */
2605 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2606 {
2607 	int from, to, merge, todo;
2608 	struct skb_frag_struct *fragfrom, *fragto;
2609 
2610 	BUG_ON(shiftlen > skb->len);
2611 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2612 
2613 	todo = shiftlen;
2614 	from = 0;
2615 	to = skb_shinfo(tgt)->nr_frags;
2616 	fragfrom = &skb_shinfo(skb)->frags[from];
2617 
2618 	/* Actual merge is delayed until the point when we know we can
2619 	 * commit all, so that we don't have to undo partial changes
2620 	 */
2621 	if (!to ||
2622 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2623 			      fragfrom->page_offset)) {
2624 		merge = -1;
2625 	} else {
2626 		merge = to - 1;
2627 
2628 		todo -= skb_frag_size(fragfrom);
2629 		if (todo < 0) {
2630 			if (skb_prepare_for_shift(skb) ||
2631 			    skb_prepare_for_shift(tgt))
2632 				return 0;
2633 
2634 			/* All previous frag pointers might be stale! */
2635 			fragfrom = &skb_shinfo(skb)->frags[from];
2636 			fragto = &skb_shinfo(tgt)->frags[merge];
2637 
2638 			skb_frag_size_add(fragto, shiftlen);
2639 			skb_frag_size_sub(fragfrom, shiftlen);
2640 			fragfrom->page_offset += shiftlen;
2641 
2642 			goto onlymerged;
2643 		}
2644 
2645 		from++;
2646 	}
2647 
2648 	/* Skip full, not-fitting skb to avoid expensive operations */
2649 	if ((shiftlen == skb->len) &&
2650 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2651 		return 0;
2652 
2653 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2654 		return 0;
2655 
2656 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2657 		if (to == MAX_SKB_FRAGS)
2658 			return 0;
2659 
2660 		fragfrom = &skb_shinfo(skb)->frags[from];
2661 		fragto = &skb_shinfo(tgt)->frags[to];
2662 
2663 		if (todo >= skb_frag_size(fragfrom)) {
2664 			*fragto = *fragfrom;
2665 			todo -= skb_frag_size(fragfrom);
2666 			from++;
2667 			to++;
2668 
2669 		} else {
2670 			__skb_frag_ref(fragfrom);
2671 			fragto->page = fragfrom->page;
2672 			fragto->page_offset = fragfrom->page_offset;
2673 			skb_frag_size_set(fragto, todo);
2674 
2675 			fragfrom->page_offset += todo;
2676 			skb_frag_size_sub(fragfrom, todo);
2677 			todo = 0;
2678 
2679 			to++;
2680 			break;
2681 		}
2682 	}
2683 
2684 	/* Ready to "commit" this state change to tgt */
2685 	skb_shinfo(tgt)->nr_frags = to;
2686 
2687 	if (merge >= 0) {
2688 		fragfrom = &skb_shinfo(skb)->frags[0];
2689 		fragto = &skb_shinfo(tgt)->frags[merge];
2690 
2691 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2692 		__skb_frag_unref(fragfrom);
2693 	}
2694 
2695 	/* Reposition in the original skb */
2696 	to = 0;
2697 	while (from < skb_shinfo(skb)->nr_frags)
2698 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2699 	skb_shinfo(skb)->nr_frags = to;
2700 
2701 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2702 
2703 onlymerged:
2704 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2705 	 * the other hand might need it if it needs to be resent
2706 	 */
2707 	tgt->ip_summed = CHECKSUM_PARTIAL;
2708 	skb->ip_summed = CHECKSUM_PARTIAL;
2709 
2710 	/* Yak, is it really working this way? Some helper please? */
2711 	skb->len -= shiftlen;
2712 	skb->data_len -= shiftlen;
2713 	skb->truesize -= shiftlen;
2714 	tgt->len += shiftlen;
2715 	tgt->data_len += shiftlen;
2716 	tgt->truesize += shiftlen;
2717 
2718 	return shiftlen;
2719 }
2720 
2721 /**
2722  * skb_prepare_seq_read - Prepare a sequential read of skb data
2723  * @skb: the buffer to read
2724  * @from: lower offset of data to be read
2725  * @to: upper offset of data to be read
2726  * @st: state variable
2727  *
2728  * Initializes the specified state variable. Must be called before
2729  * invoking skb_seq_read() for the first time.
2730  */
2731 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2732 			  unsigned int to, struct skb_seq_state *st)
2733 {
2734 	st->lower_offset = from;
2735 	st->upper_offset = to;
2736 	st->root_skb = st->cur_skb = skb;
2737 	st->frag_idx = st->stepped_offset = 0;
2738 	st->frag_data = NULL;
2739 }
2740 EXPORT_SYMBOL(skb_prepare_seq_read);
2741 
2742 /**
2743  * skb_seq_read - Sequentially read skb data
2744  * @consumed: number of bytes consumed by the caller so far
2745  * @data: destination pointer for data to be returned
2746  * @st: state variable
2747  *
2748  * Reads a block of skb data at @consumed relative to the
2749  * lower offset specified to skb_prepare_seq_read(). Assigns
2750  * the head of the data block to @data and returns the length
2751  * of the block or 0 if the end of the skb data or the upper
2752  * offset has been reached.
2753  *
2754  * The caller is not required to consume all of the data
2755  * returned, i.e. @consumed is typically set to the number
2756  * of bytes already consumed and the next call to
2757  * skb_seq_read() will return the remaining part of the block.
2758  *
2759  * Note 1: The size of each block of data returned can be arbitrary,
2760  *       this limitation is the cost for zerocopy sequential
2761  *       reads of potentially non linear data.
2762  *
2763  * Note 2: Fragment lists within fragments are not implemented
2764  *       at the moment, state->root_skb could be replaced with
2765  *       a stack for this purpose.
2766  */
2767 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2768 			  struct skb_seq_state *st)
2769 {
2770 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2771 	skb_frag_t *frag;
2772 
2773 	if (unlikely(abs_offset >= st->upper_offset)) {
2774 		if (st->frag_data) {
2775 			kunmap_atomic(st->frag_data);
2776 			st->frag_data = NULL;
2777 		}
2778 		return 0;
2779 	}
2780 
2781 next_skb:
2782 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2783 
2784 	if (abs_offset < block_limit && !st->frag_data) {
2785 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2786 		return block_limit - abs_offset;
2787 	}
2788 
2789 	if (st->frag_idx == 0 && !st->frag_data)
2790 		st->stepped_offset += skb_headlen(st->cur_skb);
2791 
2792 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2793 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2794 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2795 
2796 		if (abs_offset < block_limit) {
2797 			if (!st->frag_data)
2798 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2799 
2800 			*data = (u8 *) st->frag_data + frag->page_offset +
2801 				(abs_offset - st->stepped_offset);
2802 
2803 			return block_limit - abs_offset;
2804 		}
2805 
2806 		if (st->frag_data) {
2807 			kunmap_atomic(st->frag_data);
2808 			st->frag_data = NULL;
2809 		}
2810 
2811 		st->frag_idx++;
2812 		st->stepped_offset += skb_frag_size(frag);
2813 	}
2814 
2815 	if (st->frag_data) {
2816 		kunmap_atomic(st->frag_data);
2817 		st->frag_data = NULL;
2818 	}
2819 
2820 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2821 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2822 		st->frag_idx = 0;
2823 		goto next_skb;
2824 	} else if (st->cur_skb->next) {
2825 		st->cur_skb = st->cur_skb->next;
2826 		st->frag_idx = 0;
2827 		goto next_skb;
2828 	}
2829 
2830 	return 0;
2831 }
2832 EXPORT_SYMBOL(skb_seq_read);
2833 
2834 /**
2835  * skb_abort_seq_read - Abort a sequential read of skb data
2836  * @st: state variable
2837  *
2838  * Must be called if skb_seq_read() was not called until it
2839  * returned 0.
2840  */
2841 void skb_abort_seq_read(struct skb_seq_state *st)
2842 {
2843 	if (st->frag_data)
2844 		kunmap_atomic(st->frag_data);
2845 }
2846 EXPORT_SYMBOL(skb_abort_seq_read);
2847 
2848 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2849 
2850 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2851 					  struct ts_config *conf,
2852 					  struct ts_state *state)
2853 {
2854 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2855 }
2856 
2857 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2858 {
2859 	skb_abort_seq_read(TS_SKB_CB(state));
2860 }
2861 
2862 /**
2863  * skb_find_text - Find a text pattern in skb data
2864  * @skb: the buffer to look in
2865  * @from: search offset
2866  * @to: search limit
2867  * @config: textsearch configuration
2868  * @state: uninitialized textsearch state variable
2869  *
2870  * Finds a pattern in the skb data according to the specified
2871  * textsearch configuration. Use textsearch_next() to retrieve
2872  * subsequent occurrences of the pattern. Returns the offset
2873  * to the first occurrence or UINT_MAX if no match was found.
2874  */
2875 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2876 			   unsigned int to, struct ts_config *config,
2877 			   struct ts_state *state)
2878 {
2879 	unsigned int ret;
2880 
2881 	config->get_next_block = skb_ts_get_next_block;
2882 	config->finish = skb_ts_finish;
2883 
2884 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2885 
2886 	ret = textsearch_find(config, state);
2887 	return (ret <= to - from ? ret : UINT_MAX);
2888 }
2889 EXPORT_SYMBOL(skb_find_text);
2890 
2891 /**
2892  * skb_append_datato_frags - append the user data to a skb
2893  * @sk: sock  structure
2894  * @skb: skb structure to be appended with user data.
2895  * @getfrag: call back function to be used for getting the user data
2896  * @from: pointer to user message iov
2897  * @length: length of the iov message
2898  *
2899  * Description: This procedure append the user data in the fragment part
2900  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2901  */
2902 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2903 			int (*getfrag)(void *from, char *to, int offset,
2904 					int len, int odd, struct sk_buff *skb),
2905 			void *from, int length)
2906 {
2907 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2908 	int copy;
2909 	int offset = 0;
2910 	int ret;
2911 	struct page_frag *pfrag = &current->task_frag;
2912 
2913 	do {
2914 		/* Return error if we don't have space for new frag */
2915 		if (frg_cnt >= MAX_SKB_FRAGS)
2916 			return -EMSGSIZE;
2917 
2918 		if (!sk_page_frag_refill(sk, pfrag))
2919 			return -ENOMEM;
2920 
2921 		/* copy the user data to page */
2922 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2923 
2924 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2925 			      offset, copy, 0, skb);
2926 		if (ret < 0)
2927 			return -EFAULT;
2928 
2929 		/* copy was successful so update the size parameters */
2930 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2931 				   copy);
2932 		frg_cnt++;
2933 		pfrag->offset += copy;
2934 		get_page(pfrag->page);
2935 
2936 		skb->truesize += copy;
2937 		atomic_add(copy, &sk->sk_wmem_alloc);
2938 		skb->len += copy;
2939 		skb->data_len += copy;
2940 		offset += copy;
2941 		length -= copy;
2942 
2943 	} while (length > 0);
2944 
2945 	return 0;
2946 }
2947 EXPORT_SYMBOL(skb_append_datato_frags);
2948 
2949 /**
2950  *	skb_pull_rcsum - pull skb and update receive checksum
2951  *	@skb: buffer to update
2952  *	@len: length of data pulled
2953  *
2954  *	This function performs an skb_pull on the packet and updates
2955  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2956  *	receive path processing instead of skb_pull unless you know
2957  *	that the checksum difference is zero (e.g., a valid IP header)
2958  *	or you are setting ip_summed to CHECKSUM_NONE.
2959  */
2960 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2961 {
2962 	BUG_ON(len > skb->len);
2963 	skb->len -= len;
2964 	BUG_ON(skb->len < skb->data_len);
2965 	skb_postpull_rcsum(skb, skb->data, len);
2966 	return skb->data += len;
2967 }
2968 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2969 
2970 /**
2971  *	skb_segment - Perform protocol segmentation on skb.
2972  *	@head_skb: buffer to segment
2973  *	@features: features for the output path (see dev->features)
2974  *
2975  *	This function performs segmentation on the given skb.  It returns
2976  *	a pointer to the first in a list of new skbs for the segments.
2977  *	In case of error it returns ERR_PTR(err).
2978  */
2979 struct sk_buff *skb_segment(struct sk_buff *head_skb,
2980 			    netdev_features_t features)
2981 {
2982 	struct sk_buff *segs = NULL;
2983 	struct sk_buff *tail = NULL;
2984 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
2985 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
2986 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
2987 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
2988 	struct sk_buff *frag_skb = head_skb;
2989 	unsigned int offset = doffset;
2990 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
2991 	unsigned int headroom;
2992 	unsigned int len;
2993 	__be16 proto;
2994 	bool csum;
2995 	int sg = !!(features & NETIF_F_SG);
2996 	int nfrags = skb_shinfo(head_skb)->nr_frags;
2997 	int err = -ENOMEM;
2998 	int i = 0;
2999 	int pos;
3000 	int dummy;
3001 
3002 	__skb_push(head_skb, doffset);
3003 	proto = skb_network_protocol(head_skb, &dummy);
3004 	if (unlikely(!proto))
3005 		return ERR_PTR(-EINVAL);
3006 
3007 	csum = !head_skb->encap_hdr_csum &&
3008 	    !!can_checksum_protocol(features, proto);
3009 
3010 	headroom = skb_headroom(head_skb);
3011 	pos = skb_headlen(head_skb);
3012 
3013 	do {
3014 		struct sk_buff *nskb;
3015 		skb_frag_t *nskb_frag;
3016 		int hsize;
3017 		int size;
3018 
3019 		len = head_skb->len - offset;
3020 		if (len > mss)
3021 			len = mss;
3022 
3023 		hsize = skb_headlen(head_skb) - offset;
3024 		if (hsize < 0)
3025 			hsize = 0;
3026 		if (hsize > len || !sg)
3027 			hsize = len;
3028 
3029 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3030 		    (skb_headlen(list_skb) == len || sg)) {
3031 			BUG_ON(skb_headlen(list_skb) > len);
3032 
3033 			i = 0;
3034 			nfrags = skb_shinfo(list_skb)->nr_frags;
3035 			frag = skb_shinfo(list_skb)->frags;
3036 			frag_skb = list_skb;
3037 			pos += skb_headlen(list_skb);
3038 
3039 			while (pos < offset + len) {
3040 				BUG_ON(i >= nfrags);
3041 
3042 				size = skb_frag_size(frag);
3043 				if (pos + size > offset + len)
3044 					break;
3045 
3046 				i++;
3047 				pos += size;
3048 				frag++;
3049 			}
3050 
3051 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3052 			list_skb = list_skb->next;
3053 
3054 			if (unlikely(!nskb))
3055 				goto err;
3056 
3057 			if (unlikely(pskb_trim(nskb, len))) {
3058 				kfree_skb(nskb);
3059 				goto err;
3060 			}
3061 
3062 			hsize = skb_end_offset(nskb);
3063 			if (skb_cow_head(nskb, doffset + headroom)) {
3064 				kfree_skb(nskb);
3065 				goto err;
3066 			}
3067 
3068 			nskb->truesize += skb_end_offset(nskb) - hsize;
3069 			skb_release_head_state(nskb);
3070 			__skb_push(nskb, doffset);
3071 		} else {
3072 			nskb = __alloc_skb(hsize + doffset + headroom,
3073 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3074 					   NUMA_NO_NODE);
3075 
3076 			if (unlikely(!nskb))
3077 				goto err;
3078 
3079 			skb_reserve(nskb, headroom);
3080 			__skb_put(nskb, doffset);
3081 		}
3082 
3083 		if (segs)
3084 			tail->next = nskb;
3085 		else
3086 			segs = nskb;
3087 		tail = nskb;
3088 
3089 		__copy_skb_header(nskb, head_skb);
3090 
3091 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3092 		skb_reset_mac_len(nskb);
3093 
3094 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3095 						 nskb->data - tnl_hlen,
3096 						 doffset + tnl_hlen);
3097 
3098 		if (nskb->len == len + doffset)
3099 			goto perform_csum_check;
3100 
3101 		if (!sg && !nskb->remcsum_offload) {
3102 			nskb->ip_summed = CHECKSUM_NONE;
3103 			nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3104 							    skb_put(nskb, len),
3105 							    len, 0);
3106 			SKB_GSO_CB(nskb)->csum_start =
3107 			    skb_headroom(nskb) + doffset;
3108 			continue;
3109 		}
3110 
3111 		nskb_frag = skb_shinfo(nskb)->frags;
3112 
3113 		skb_copy_from_linear_data_offset(head_skb, offset,
3114 						 skb_put(nskb, hsize), hsize);
3115 
3116 		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3117 			SKBTX_SHARED_FRAG;
3118 
3119 		while (pos < offset + len) {
3120 			if (i >= nfrags) {
3121 				BUG_ON(skb_headlen(list_skb));
3122 
3123 				i = 0;
3124 				nfrags = skb_shinfo(list_skb)->nr_frags;
3125 				frag = skb_shinfo(list_skb)->frags;
3126 				frag_skb = list_skb;
3127 
3128 				BUG_ON(!nfrags);
3129 
3130 				list_skb = list_skb->next;
3131 			}
3132 
3133 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3134 				     MAX_SKB_FRAGS)) {
3135 				net_warn_ratelimited(
3136 					"skb_segment: too many frags: %u %u\n",
3137 					pos, mss);
3138 				goto err;
3139 			}
3140 
3141 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3142 				goto err;
3143 
3144 			*nskb_frag = *frag;
3145 			__skb_frag_ref(nskb_frag);
3146 			size = skb_frag_size(nskb_frag);
3147 
3148 			if (pos < offset) {
3149 				nskb_frag->page_offset += offset - pos;
3150 				skb_frag_size_sub(nskb_frag, offset - pos);
3151 			}
3152 
3153 			skb_shinfo(nskb)->nr_frags++;
3154 
3155 			if (pos + size <= offset + len) {
3156 				i++;
3157 				frag++;
3158 				pos += size;
3159 			} else {
3160 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3161 				goto skip_fraglist;
3162 			}
3163 
3164 			nskb_frag++;
3165 		}
3166 
3167 skip_fraglist:
3168 		nskb->data_len = len - hsize;
3169 		nskb->len += nskb->data_len;
3170 		nskb->truesize += nskb->data_len;
3171 
3172 perform_csum_check:
3173 		if (!csum && !nskb->remcsum_offload) {
3174 			nskb->csum = skb_checksum(nskb, doffset,
3175 						  nskb->len - doffset, 0);
3176 			nskb->ip_summed = CHECKSUM_NONE;
3177 			SKB_GSO_CB(nskb)->csum_start =
3178 			    skb_headroom(nskb) + doffset;
3179 		}
3180 	} while ((offset += len) < head_skb->len);
3181 
3182 	/* Some callers want to get the end of the list.
3183 	 * Put it in segs->prev to avoid walking the list.
3184 	 * (see validate_xmit_skb_list() for example)
3185 	 */
3186 	segs->prev = tail;
3187 
3188 	/* Following permits correct backpressure, for protocols
3189 	 * using skb_set_owner_w().
3190 	 * Idea is to tranfert ownership from head_skb to last segment.
3191 	 */
3192 	if (head_skb->destructor == sock_wfree) {
3193 		swap(tail->truesize, head_skb->truesize);
3194 		swap(tail->destructor, head_skb->destructor);
3195 		swap(tail->sk, head_skb->sk);
3196 	}
3197 	return segs;
3198 
3199 err:
3200 	kfree_skb_list(segs);
3201 	return ERR_PTR(err);
3202 }
3203 EXPORT_SYMBOL_GPL(skb_segment);
3204 
3205 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3206 {
3207 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3208 	unsigned int offset = skb_gro_offset(skb);
3209 	unsigned int headlen = skb_headlen(skb);
3210 	struct sk_buff *nskb, *lp, *p = *head;
3211 	unsigned int len = skb_gro_len(skb);
3212 	unsigned int delta_truesize;
3213 	unsigned int headroom;
3214 
3215 	if (unlikely(p->len + len >= 65536))
3216 		return -E2BIG;
3217 
3218 	lp = NAPI_GRO_CB(p)->last;
3219 	pinfo = skb_shinfo(lp);
3220 
3221 	if (headlen <= offset) {
3222 		skb_frag_t *frag;
3223 		skb_frag_t *frag2;
3224 		int i = skbinfo->nr_frags;
3225 		int nr_frags = pinfo->nr_frags + i;
3226 
3227 		if (nr_frags > MAX_SKB_FRAGS)
3228 			goto merge;
3229 
3230 		offset -= headlen;
3231 		pinfo->nr_frags = nr_frags;
3232 		skbinfo->nr_frags = 0;
3233 
3234 		frag = pinfo->frags + nr_frags;
3235 		frag2 = skbinfo->frags + i;
3236 		do {
3237 			*--frag = *--frag2;
3238 		} while (--i);
3239 
3240 		frag->page_offset += offset;
3241 		skb_frag_size_sub(frag, offset);
3242 
3243 		/* all fragments truesize : remove (head size + sk_buff) */
3244 		delta_truesize = skb->truesize -
3245 				 SKB_TRUESIZE(skb_end_offset(skb));
3246 
3247 		skb->truesize -= skb->data_len;
3248 		skb->len -= skb->data_len;
3249 		skb->data_len = 0;
3250 
3251 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3252 		goto done;
3253 	} else if (skb->head_frag) {
3254 		int nr_frags = pinfo->nr_frags;
3255 		skb_frag_t *frag = pinfo->frags + nr_frags;
3256 		struct page *page = virt_to_head_page(skb->head);
3257 		unsigned int first_size = headlen - offset;
3258 		unsigned int first_offset;
3259 
3260 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3261 			goto merge;
3262 
3263 		first_offset = skb->data -
3264 			       (unsigned char *)page_address(page) +
3265 			       offset;
3266 
3267 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3268 
3269 		frag->page.p	  = page;
3270 		frag->page_offset = first_offset;
3271 		skb_frag_size_set(frag, first_size);
3272 
3273 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3274 		/* We dont need to clear skbinfo->nr_frags here */
3275 
3276 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3277 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3278 		goto done;
3279 	}
3280 	/* switch back to head shinfo */
3281 	pinfo = skb_shinfo(p);
3282 
3283 	if (pinfo->frag_list)
3284 		goto merge;
3285 	if (skb_gro_len(p) != pinfo->gso_size)
3286 		return -E2BIG;
3287 
3288 	headroom = skb_headroom(p);
3289 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3290 	if (unlikely(!nskb))
3291 		return -ENOMEM;
3292 
3293 	__copy_skb_header(nskb, p);
3294 	nskb->mac_len = p->mac_len;
3295 
3296 	skb_reserve(nskb, headroom);
3297 	__skb_put(nskb, skb_gro_offset(p));
3298 
3299 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3300 	skb_set_network_header(nskb, skb_network_offset(p));
3301 	skb_set_transport_header(nskb, skb_transport_offset(p));
3302 
3303 	__skb_pull(p, skb_gro_offset(p));
3304 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
3305 	       p->data - skb_mac_header(p));
3306 
3307 	skb_shinfo(nskb)->frag_list = p;
3308 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3309 	pinfo->gso_size = 0;
3310 	__skb_header_release(p);
3311 	NAPI_GRO_CB(nskb)->last = p;
3312 
3313 	nskb->data_len += p->len;
3314 	nskb->truesize += p->truesize;
3315 	nskb->len += p->len;
3316 
3317 	*head = nskb;
3318 	nskb->next = p->next;
3319 	p->next = NULL;
3320 
3321 	p = nskb;
3322 
3323 merge:
3324 	delta_truesize = skb->truesize;
3325 	if (offset > headlen) {
3326 		unsigned int eat = offset - headlen;
3327 
3328 		skbinfo->frags[0].page_offset += eat;
3329 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3330 		skb->data_len -= eat;
3331 		skb->len -= eat;
3332 		offset = headlen;
3333 	}
3334 
3335 	__skb_pull(skb, offset);
3336 
3337 	if (NAPI_GRO_CB(p)->last == p)
3338 		skb_shinfo(p)->frag_list = skb;
3339 	else
3340 		NAPI_GRO_CB(p)->last->next = skb;
3341 	NAPI_GRO_CB(p)->last = skb;
3342 	__skb_header_release(skb);
3343 	lp = p;
3344 
3345 done:
3346 	NAPI_GRO_CB(p)->count++;
3347 	p->data_len += len;
3348 	p->truesize += delta_truesize;
3349 	p->len += len;
3350 	if (lp != p) {
3351 		lp->data_len += len;
3352 		lp->truesize += delta_truesize;
3353 		lp->len += len;
3354 	}
3355 	NAPI_GRO_CB(skb)->same_flow = 1;
3356 	return 0;
3357 }
3358 
3359 void __init skb_init(void)
3360 {
3361 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3362 					      sizeof(struct sk_buff),
3363 					      0,
3364 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3365 					      NULL);
3366 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3367 						sizeof(struct sk_buff_fclones),
3368 						0,
3369 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3370 						NULL);
3371 }
3372 
3373 /**
3374  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3375  *	@skb: Socket buffer containing the buffers to be mapped
3376  *	@sg: The scatter-gather list to map into
3377  *	@offset: The offset into the buffer's contents to start mapping
3378  *	@len: Length of buffer space to be mapped
3379  *
3380  *	Fill the specified scatter-gather list with mappings/pointers into a
3381  *	region of the buffer space attached to a socket buffer.
3382  */
3383 static int
3384 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3385 {
3386 	int start = skb_headlen(skb);
3387 	int i, copy = start - offset;
3388 	struct sk_buff *frag_iter;
3389 	int elt = 0;
3390 
3391 	if (copy > 0) {
3392 		if (copy > len)
3393 			copy = len;
3394 		sg_set_buf(sg, skb->data + offset, copy);
3395 		elt++;
3396 		if ((len -= copy) == 0)
3397 			return elt;
3398 		offset += copy;
3399 	}
3400 
3401 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3402 		int end;
3403 
3404 		WARN_ON(start > offset + len);
3405 
3406 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3407 		if ((copy = end - offset) > 0) {
3408 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3409 
3410 			if (copy > len)
3411 				copy = len;
3412 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3413 					frag->page_offset+offset-start);
3414 			elt++;
3415 			if (!(len -= copy))
3416 				return elt;
3417 			offset += copy;
3418 		}
3419 		start = end;
3420 	}
3421 
3422 	skb_walk_frags(skb, frag_iter) {
3423 		int end;
3424 
3425 		WARN_ON(start > offset + len);
3426 
3427 		end = start + frag_iter->len;
3428 		if ((copy = end - offset) > 0) {
3429 			if (copy > len)
3430 				copy = len;
3431 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3432 					      copy);
3433 			if ((len -= copy) == 0)
3434 				return elt;
3435 			offset += copy;
3436 		}
3437 		start = end;
3438 	}
3439 	BUG_ON(len);
3440 	return elt;
3441 }
3442 
3443 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3444  * sglist without mark the sg which contain last skb data as the end.
3445  * So the caller can mannipulate sg list as will when padding new data after
3446  * the first call without calling sg_unmark_end to expend sg list.
3447  *
3448  * Scenario to use skb_to_sgvec_nomark:
3449  * 1. sg_init_table
3450  * 2. skb_to_sgvec_nomark(payload1)
3451  * 3. skb_to_sgvec_nomark(payload2)
3452  *
3453  * This is equivalent to:
3454  * 1. sg_init_table
3455  * 2. skb_to_sgvec(payload1)
3456  * 3. sg_unmark_end
3457  * 4. skb_to_sgvec(payload2)
3458  *
3459  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3460  * is more preferable.
3461  */
3462 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3463 			int offset, int len)
3464 {
3465 	return __skb_to_sgvec(skb, sg, offset, len);
3466 }
3467 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3468 
3469 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3470 {
3471 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3472 
3473 	sg_mark_end(&sg[nsg - 1]);
3474 
3475 	return nsg;
3476 }
3477 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3478 
3479 /**
3480  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3481  *	@skb: The socket buffer to check.
3482  *	@tailbits: Amount of trailing space to be added
3483  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3484  *
3485  *	Make sure that the data buffers attached to a socket buffer are
3486  *	writable. If they are not, private copies are made of the data buffers
3487  *	and the socket buffer is set to use these instead.
3488  *
3489  *	If @tailbits is given, make sure that there is space to write @tailbits
3490  *	bytes of data beyond current end of socket buffer.  @trailer will be
3491  *	set to point to the skb in which this space begins.
3492  *
3493  *	The number of scatterlist elements required to completely map the
3494  *	COW'd and extended socket buffer will be returned.
3495  */
3496 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3497 {
3498 	int copyflag;
3499 	int elt;
3500 	struct sk_buff *skb1, **skb_p;
3501 
3502 	/* If skb is cloned or its head is paged, reallocate
3503 	 * head pulling out all the pages (pages are considered not writable
3504 	 * at the moment even if they are anonymous).
3505 	 */
3506 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3507 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3508 		return -ENOMEM;
3509 
3510 	/* Easy case. Most of packets will go this way. */
3511 	if (!skb_has_frag_list(skb)) {
3512 		/* A little of trouble, not enough of space for trailer.
3513 		 * This should not happen, when stack is tuned to generate
3514 		 * good frames. OK, on miss we reallocate and reserve even more
3515 		 * space, 128 bytes is fair. */
3516 
3517 		if (skb_tailroom(skb) < tailbits &&
3518 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3519 			return -ENOMEM;
3520 
3521 		/* Voila! */
3522 		*trailer = skb;
3523 		return 1;
3524 	}
3525 
3526 	/* Misery. We are in troubles, going to mincer fragments... */
3527 
3528 	elt = 1;
3529 	skb_p = &skb_shinfo(skb)->frag_list;
3530 	copyflag = 0;
3531 
3532 	while ((skb1 = *skb_p) != NULL) {
3533 		int ntail = 0;
3534 
3535 		/* The fragment is partially pulled by someone,
3536 		 * this can happen on input. Copy it and everything
3537 		 * after it. */
3538 
3539 		if (skb_shared(skb1))
3540 			copyflag = 1;
3541 
3542 		/* If the skb is the last, worry about trailer. */
3543 
3544 		if (skb1->next == NULL && tailbits) {
3545 			if (skb_shinfo(skb1)->nr_frags ||
3546 			    skb_has_frag_list(skb1) ||
3547 			    skb_tailroom(skb1) < tailbits)
3548 				ntail = tailbits + 128;
3549 		}
3550 
3551 		if (copyflag ||
3552 		    skb_cloned(skb1) ||
3553 		    ntail ||
3554 		    skb_shinfo(skb1)->nr_frags ||
3555 		    skb_has_frag_list(skb1)) {
3556 			struct sk_buff *skb2;
3557 
3558 			/* Fuck, we are miserable poor guys... */
3559 			if (ntail == 0)
3560 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3561 			else
3562 				skb2 = skb_copy_expand(skb1,
3563 						       skb_headroom(skb1),
3564 						       ntail,
3565 						       GFP_ATOMIC);
3566 			if (unlikely(skb2 == NULL))
3567 				return -ENOMEM;
3568 
3569 			if (skb1->sk)
3570 				skb_set_owner_w(skb2, skb1->sk);
3571 
3572 			/* Looking around. Are we still alive?
3573 			 * OK, link new skb, drop old one */
3574 
3575 			skb2->next = skb1->next;
3576 			*skb_p = skb2;
3577 			kfree_skb(skb1);
3578 			skb1 = skb2;
3579 		}
3580 		elt++;
3581 		*trailer = skb1;
3582 		skb_p = &skb1->next;
3583 	}
3584 
3585 	return elt;
3586 }
3587 EXPORT_SYMBOL_GPL(skb_cow_data);
3588 
3589 static void sock_rmem_free(struct sk_buff *skb)
3590 {
3591 	struct sock *sk = skb->sk;
3592 
3593 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3594 }
3595 
3596 /*
3597  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3598  */
3599 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3600 {
3601 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3602 	    (unsigned int)sk->sk_rcvbuf)
3603 		return -ENOMEM;
3604 
3605 	skb_orphan(skb);
3606 	skb->sk = sk;
3607 	skb->destructor = sock_rmem_free;
3608 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3609 
3610 	/* before exiting rcu section, make sure dst is refcounted */
3611 	skb_dst_force(skb);
3612 
3613 	skb_queue_tail(&sk->sk_error_queue, skb);
3614 	if (!sock_flag(sk, SOCK_DEAD))
3615 		sk->sk_data_ready(sk);
3616 	return 0;
3617 }
3618 EXPORT_SYMBOL(sock_queue_err_skb);
3619 
3620 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3621 {
3622 	struct sk_buff_head *q = &sk->sk_error_queue;
3623 	struct sk_buff *skb, *skb_next;
3624 	unsigned long flags;
3625 	int err = 0;
3626 
3627 	spin_lock_irqsave(&q->lock, flags);
3628 	skb = __skb_dequeue(q);
3629 	if (skb && (skb_next = skb_peek(q)))
3630 		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3631 	spin_unlock_irqrestore(&q->lock, flags);
3632 
3633 	sk->sk_err = err;
3634 	if (err)
3635 		sk->sk_error_report(sk);
3636 
3637 	return skb;
3638 }
3639 EXPORT_SYMBOL(sock_dequeue_err_skb);
3640 
3641 /**
3642  * skb_clone_sk - create clone of skb, and take reference to socket
3643  * @skb: the skb to clone
3644  *
3645  * This function creates a clone of a buffer that holds a reference on
3646  * sk_refcnt.  Buffers created via this function are meant to be
3647  * returned using sock_queue_err_skb, or free via kfree_skb.
3648  *
3649  * When passing buffers allocated with this function to sock_queue_err_skb
3650  * it is necessary to wrap the call with sock_hold/sock_put in order to
3651  * prevent the socket from being released prior to being enqueued on
3652  * the sk_error_queue.
3653  */
3654 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3655 {
3656 	struct sock *sk = skb->sk;
3657 	struct sk_buff *clone;
3658 
3659 	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3660 		return NULL;
3661 
3662 	clone = skb_clone(skb, GFP_ATOMIC);
3663 	if (!clone) {
3664 		sock_put(sk);
3665 		return NULL;
3666 	}
3667 
3668 	clone->sk = sk;
3669 	clone->destructor = sock_efree;
3670 
3671 	return clone;
3672 }
3673 EXPORT_SYMBOL(skb_clone_sk);
3674 
3675 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3676 					struct sock *sk,
3677 					int tstype)
3678 {
3679 	struct sock_exterr_skb *serr;
3680 	int err;
3681 
3682 	serr = SKB_EXT_ERR(skb);
3683 	memset(serr, 0, sizeof(*serr));
3684 	serr->ee.ee_errno = ENOMSG;
3685 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3686 	serr->ee.ee_info = tstype;
3687 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3688 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3689 		if (sk->sk_protocol == IPPROTO_TCP)
3690 			serr->ee.ee_data -= sk->sk_tskey;
3691 	}
3692 
3693 	err = sock_queue_err_skb(sk, skb);
3694 
3695 	if (err)
3696 		kfree_skb(skb);
3697 }
3698 
3699 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3700 {
3701 	bool ret;
3702 
3703 	if (likely(sysctl_tstamp_allow_data || tsonly))
3704 		return true;
3705 
3706 	read_lock_bh(&sk->sk_callback_lock);
3707 	ret = sk->sk_socket && sk->sk_socket->file &&
3708 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3709 	read_unlock_bh(&sk->sk_callback_lock);
3710 	return ret;
3711 }
3712 
3713 void skb_complete_tx_timestamp(struct sk_buff *skb,
3714 			       struct skb_shared_hwtstamps *hwtstamps)
3715 {
3716 	struct sock *sk = skb->sk;
3717 
3718 	if (!skb_may_tx_timestamp(sk, false))
3719 		return;
3720 
3721 	/* take a reference to prevent skb_orphan() from freeing the socket */
3722 	sock_hold(sk);
3723 
3724 	*skb_hwtstamps(skb) = *hwtstamps;
3725 	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3726 
3727 	sock_put(sk);
3728 }
3729 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3730 
3731 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3732 		     struct skb_shared_hwtstamps *hwtstamps,
3733 		     struct sock *sk, int tstype)
3734 {
3735 	struct sk_buff *skb;
3736 	bool tsonly;
3737 
3738 	if (!sk)
3739 		return;
3740 
3741 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3742 	if (!skb_may_tx_timestamp(sk, tsonly))
3743 		return;
3744 
3745 	if (tsonly)
3746 		skb = alloc_skb(0, GFP_ATOMIC);
3747 	else
3748 		skb = skb_clone(orig_skb, GFP_ATOMIC);
3749 	if (!skb)
3750 		return;
3751 
3752 	if (tsonly) {
3753 		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3754 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3755 	}
3756 
3757 	if (hwtstamps)
3758 		*skb_hwtstamps(skb) = *hwtstamps;
3759 	else
3760 		skb->tstamp = ktime_get_real();
3761 
3762 	__skb_complete_tx_timestamp(skb, sk, tstype);
3763 }
3764 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3765 
3766 void skb_tstamp_tx(struct sk_buff *orig_skb,
3767 		   struct skb_shared_hwtstamps *hwtstamps)
3768 {
3769 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3770 			       SCM_TSTAMP_SND);
3771 }
3772 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3773 
3774 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3775 {
3776 	struct sock *sk = skb->sk;
3777 	struct sock_exterr_skb *serr;
3778 	int err;
3779 
3780 	skb->wifi_acked_valid = 1;
3781 	skb->wifi_acked = acked;
3782 
3783 	serr = SKB_EXT_ERR(skb);
3784 	memset(serr, 0, sizeof(*serr));
3785 	serr->ee.ee_errno = ENOMSG;
3786 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3787 
3788 	/* take a reference to prevent skb_orphan() from freeing the socket */
3789 	sock_hold(sk);
3790 
3791 	err = sock_queue_err_skb(sk, skb);
3792 	if (err)
3793 		kfree_skb(skb);
3794 
3795 	sock_put(sk);
3796 }
3797 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3798 
3799 
3800 /**
3801  * skb_partial_csum_set - set up and verify partial csum values for packet
3802  * @skb: the skb to set
3803  * @start: the number of bytes after skb->data to start checksumming.
3804  * @off: the offset from start to place the checksum.
3805  *
3806  * For untrusted partially-checksummed packets, we need to make sure the values
3807  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3808  *
3809  * This function checks and sets those values and skb->ip_summed: if this
3810  * returns false you should drop the packet.
3811  */
3812 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3813 {
3814 	if (unlikely(start > skb_headlen(skb)) ||
3815 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3816 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3817 				     start, off, skb_headlen(skb));
3818 		return false;
3819 	}
3820 	skb->ip_summed = CHECKSUM_PARTIAL;
3821 	skb->csum_start = skb_headroom(skb) + start;
3822 	skb->csum_offset = off;
3823 	skb_set_transport_header(skb, start);
3824 	return true;
3825 }
3826 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3827 
3828 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3829 			       unsigned int max)
3830 {
3831 	if (skb_headlen(skb) >= len)
3832 		return 0;
3833 
3834 	/* If we need to pullup then pullup to the max, so we
3835 	 * won't need to do it again.
3836 	 */
3837 	if (max > skb->len)
3838 		max = skb->len;
3839 
3840 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3841 		return -ENOMEM;
3842 
3843 	if (skb_headlen(skb) < len)
3844 		return -EPROTO;
3845 
3846 	return 0;
3847 }
3848 
3849 #define MAX_TCP_HDR_LEN (15 * 4)
3850 
3851 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3852 				      typeof(IPPROTO_IP) proto,
3853 				      unsigned int off)
3854 {
3855 	switch (proto) {
3856 		int err;
3857 
3858 	case IPPROTO_TCP:
3859 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3860 					  off + MAX_TCP_HDR_LEN);
3861 		if (!err && !skb_partial_csum_set(skb, off,
3862 						  offsetof(struct tcphdr,
3863 							   check)))
3864 			err = -EPROTO;
3865 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3866 
3867 	case IPPROTO_UDP:
3868 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3869 					  off + sizeof(struct udphdr));
3870 		if (!err && !skb_partial_csum_set(skb, off,
3871 						  offsetof(struct udphdr,
3872 							   check)))
3873 			err = -EPROTO;
3874 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3875 	}
3876 
3877 	return ERR_PTR(-EPROTO);
3878 }
3879 
3880 /* This value should be large enough to cover a tagged ethernet header plus
3881  * maximally sized IP and TCP or UDP headers.
3882  */
3883 #define MAX_IP_HDR_LEN 128
3884 
3885 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3886 {
3887 	unsigned int off;
3888 	bool fragment;
3889 	__sum16 *csum;
3890 	int err;
3891 
3892 	fragment = false;
3893 
3894 	err = skb_maybe_pull_tail(skb,
3895 				  sizeof(struct iphdr),
3896 				  MAX_IP_HDR_LEN);
3897 	if (err < 0)
3898 		goto out;
3899 
3900 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3901 		fragment = true;
3902 
3903 	off = ip_hdrlen(skb);
3904 
3905 	err = -EPROTO;
3906 
3907 	if (fragment)
3908 		goto out;
3909 
3910 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3911 	if (IS_ERR(csum))
3912 		return PTR_ERR(csum);
3913 
3914 	if (recalculate)
3915 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3916 					   ip_hdr(skb)->daddr,
3917 					   skb->len - off,
3918 					   ip_hdr(skb)->protocol, 0);
3919 	err = 0;
3920 
3921 out:
3922 	return err;
3923 }
3924 
3925 /* This value should be large enough to cover a tagged ethernet header plus
3926  * an IPv6 header, all options, and a maximal TCP or UDP header.
3927  */
3928 #define MAX_IPV6_HDR_LEN 256
3929 
3930 #define OPT_HDR(type, skb, off) \
3931 	(type *)(skb_network_header(skb) + (off))
3932 
3933 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3934 {
3935 	int err;
3936 	u8 nexthdr;
3937 	unsigned int off;
3938 	unsigned int len;
3939 	bool fragment;
3940 	bool done;
3941 	__sum16 *csum;
3942 
3943 	fragment = false;
3944 	done = false;
3945 
3946 	off = sizeof(struct ipv6hdr);
3947 
3948 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3949 	if (err < 0)
3950 		goto out;
3951 
3952 	nexthdr = ipv6_hdr(skb)->nexthdr;
3953 
3954 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3955 	while (off <= len && !done) {
3956 		switch (nexthdr) {
3957 		case IPPROTO_DSTOPTS:
3958 		case IPPROTO_HOPOPTS:
3959 		case IPPROTO_ROUTING: {
3960 			struct ipv6_opt_hdr *hp;
3961 
3962 			err = skb_maybe_pull_tail(skb,
3963 						  off +
3964 						  sizeof(struct ipv6_opt_hdr),
3965 						  MAX_IPV6_HDR_LEN);
3966 			if (err < 0)
3967 				goto out;
3968 
3969 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3970 			nexthdr = hp->nexthdr;
3971 			off += ipv6_optlen(hp);
3972 			break;
3973 		}
3974 		case IPPROTO_AH: {
3975 			struct ip_auth_hdr *hp;
3976 
3977 			err = skb_maybe_pull_tail(skb,
3978 						  off +
3979 						  sizeof(struct ip_auth_hdr),
3980 						  MAX_IPV6_HDR_LEN);
3981 			if (err < 0)
3982 				goto out;
3983 
3984 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3985 			nexthdr = hp->nexthdr;
3986 			off += ipv6_authlen(hp);
3987 			break;
3988 		}
3989 		case IPPROTO_FRAGMENT: {
3990 			struct frag_hdr *hp;
3991 
3992 			err = skb_maybe_pull_tail(skb,
3993 						  off +
3994 						  sizeof(struct frag_hdr),
3995 						  MAX_IPV6_HDR_LEN);
3996 			if (err < 0)
3997 				goto out;
3998 
3999 			hp = OPT_HDR(struct frag_hdr, skb, off);
4000 
4001 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4002 				fragment = true;
4003 
4004 			nexthdr = hp->nexthdr;
4005 			off += sizeof(struct frag_hdr);
4006 			break;
4007 		}
4008 		default:
4009 			done = true;
4010 			break;
4011 		}
4012 	}
4013 
4014 	err = -EPROTO;
4015 
4016 	if (!done || fragment)
4017 		goto out;
4018 
4019 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4020 	if (IS_ERR(csum))
4021 		return PTR_ERR(csum);
4022 
4023 	if (recalculate)
4024 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4025 					 &ipv6_hdr(skb)->daddr,
4026 					 skb->len - off, nexthdr, 0);
4027 	err = 0;
4028 
4029 out:
4030 	return err;
4031 }
4032 
4033 /**
4034  * skb_checksum_setup - set up partial checksum offset
4035  * @skb: the skb to set up
4036  * @recalculate: if true the pseudo-header checksum will be recalculated
4037  */
4038 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4039 {
4040 	int err;
4041 
4042 	switch (skb->protocol) {
4043 	case htons(ETH_P_IP):
4044 		err = skb_checksum_setup_ipv4(skb, recalculate);
4045 		break;
4046 
4047 	case htons(ETH_P_IPV6):
4048 		err = skb_checksum_setup_ipv6(skb, recalculate);
4049 		break;
4050 
4051 	default:
4052 		err = -EPROTO;
4053 		break;
4054 	}
4055 
4056 	return err;
4057 }
4058 EXPORT_SYMBOL(skb_checksum_setup);
4059 
4060 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4061 {
4062 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4063 			     skb->dev->name);
4064 }
4065 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4066 
4067 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4068 {
4069 	if (head_stolen) {
4070 		skb_release_head_state(skb);
4071 		kmem_cache_free(skbuff_head_cache, skb);
4072 	} else {
4073 		__kfree_skb(skb);
4074 	}
4075 }
4076 EXPORT_SYMBOL(kfree_skb_partial);
4077 
4078 /**
4079  * skb_try_coalesce - try to merge skb to prior one
4080  * @to: prior buffer
4081  * @from: buffer to add
4082  * @fragstolen: pointer to boolean
4083  * @delta_truesize: how much more was allocated than was requested
4084  */
4085 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4086 		      bool *fragstolen, int *delta_truesize)
4087 {
4088 	int i, delta, len = from->len;
4089 
4090 	*fragstolen = false;
4091 
4092 	if (skb_cloned(to))
4093 		return false;
4094 
4095 	if (len <= skb_tailroom(to)) {
4096 		if (len)
4097 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4098 		*delta_truesize = 0;
4099 		return true;
4100 	}
4101 
4102 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4103 		return false;
4104 
4105 	if (skb_headlen(from) != 0) {
4106 		struct page *page;
4107 		unsigned int offset;
4108 
4109 		if (skb_shinfo(to)->nr_frags +
4110 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4111 			return false;
4112 
4113 		if (skb_head_is_locked(from))
4114 			return false;
4115 
4116 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4117 
4118 		page = virt_to_head_page(from->head);
4119 		offset = from->data - (unsigned char *)page_address(page);
4120 
4121 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4122 				   page, offset, skb_headlen(from));
4123 		*fragstolen = true;
4124 	} else {
4125 		if (skb_shinfo(to)->nr_frags +
4126 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4127 			return false;
4128 
4129 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4130 	}
4131 
4132 	WARN_ON_ONCE(delta < len);
4133 
4134 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4135 	       skb_shinfo(from)->frags,
4136 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4137 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4138 
4139 	if (!skb_cloned(from))
4140 		skb_shinfo(from)->nr_frags = 0;
4141 
4142 	/* if the skb is not cloned this does nothing
4143 	 * since we set nr_frags to 0.
4144 	 */
4145 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4146 		skb_frag_ref(from, i);
4147 
4148 	to->truesize += delta;
4149 	to->len += len;
4150 	to->data_len += len;
4151 
4152 	*delta_truesize = delta;
4153 	return true;
4154 }
4155 EXPORT_SYMBOL(skb_try_coalesce);
4156 
4157 /**
4158  * skb_scrub_packet - scrub an skb
4159  *
4160  * @skb: buffer to clean
4161  * @xnet: packet is crossing netns
4162  *
4163  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4164  * into/from a tunnel. Some information have to be cleared during these
4165  * operations.
4166  * skb_scrub_packet can also be used to clean a skb before injecting it in
4167  * another namespace (@xnet == true). We have to clear all information in the
4168  * skb that could impact namespace isolation.
4169  */
4170 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4171 {
4172 	if (xnet)
4173 		skb_orphan(skb);
4174 	skb->tstamp.tv64 = 0;
4175 	skb->pkt_type = PACKET_HOST;
4176 	skb->skb_iif = 0;
4177 	skb->ignore_df = 0;
4178 	skb_dst_drop(skb);
4179 	skb->mark = 0;
4180 	skb_sender_cpu_clear(skb);
4181 	skb_init_secmark(skb);
4182 	secpath_reset(skb);
4183 	nf_reset(skb);
4184 	nf_reset_trace(skb);
4185 }
4186 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4187 
4188 /**
4189  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4190  *
4191  * @skb: GSO skb
4192  *
4193  * skb_gso_transport_seglen is used to determine the real size of the
4194  * individual segments, including Layer4 headers (TCP/UDP).
4195  *
4196  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4197  */
4198 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4199 {
4200 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4201 	unsigned int thlen = 0;
4202 
4203 	if (skb->encapsulation) {
4204 		thlen = skb_inner_transport_header(skb) -
4205 			skb_transport_header(skb);
4206 
4207 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4208 			thlen += inner_tcp_hdrlen(skb);
4209 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4210 		thlen = tcp_hdrlen(skb);
4211 	}
4212 	/* UFO sets gso_size to the size of the fragmentation
4213 	 * payload, i.e. the size of the L4 (UDP) header is already
4214 	 * accounted for.
4215 	 */
4216 	return thlen + shinfo->gso_size;
4217 }
4218 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4219 
4220 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4221 {
4222 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4223 		kfree_skb(skb);
4224 		return NULL;
4225 	}
4226 
4227 	memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN);
4228 	skb->mac_header += VLAN_HLEN;
4229 	return skb;
4230 }
4231 
4232 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4233 {
4234 	struct vlan_hdr *vhdr;
4235 	u16 vlan_tci;
4236 
4237 	if (unlikely(skb_vlan_tag_present(skb))) {
4238 		/* vlan_tci is already set-up so leave this for another time */
4239 		return skb;
4240 	}
4241 
4242 	skb = skb_share_check(skb, GFP_ATOMIC);
4243 	if (unlikely(!skb))
4244 		goto err_free;
4245 
4246 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4247 		goto err_free;
4248 
4249 	vhdr = (struct vlan_hdr *)skb->data;
4250 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4251 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4252 
4253 	skb_pull_rcsum(skb, VLAN_HLEN);
4254 	vlan_set_encap_proto(skb, vhdr);
4255 
4256 	skb = skb_reorder_vlan_header(skb);
4257 	if (unlikely(!skb))
4258 		goto err_free;
4259 
4260 	skb_reset_network_header(skb);
4261 	skb_reset_transport_header(skb);
4262 	skb_reset_mac_len(skb);
4263 
4264 	return skb;
4265 
4266 err_free:
4267 	kfree_skb(skb);
4268 	return NULL;
4269 }
4270 EXPORT_SYMBOL(skb_vlan_untag);
4271 
4272 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4273 {
4274 	if (!pskb_may_pull(skb, write_len))
4275 		return -ENOMEM;
4276 
4277 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4278 		return 0;
4279 
4280 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4281 }
4282 EXPORT_SYMBOL(skb_ensure_writable);
4283 
4284 /* remove VLAN header from packet and update csum accordingly. */
4285 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4286 {
4287 	struct vlan_hdr *vhdr;
4288 	unsigned int offset = skb->data - skb_mac_header(skb);
4289 	int err;
4290 
4291 	__skb_push(skb, offset);
4292 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4293 	if (unlikely(err))
4294 		goto pull;
4295 
4296 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4297 
4298 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4299 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4300 
4301 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4302 	__skb_pull(skb, VLAN_HLEN);
4303 
4304 	vlan_set_encap_proto(skb, vhdr);
4305 	skb->mac_header += VLAN_HLEN;
4306 
4307 	if (skb_network_offset(skb) < ETH_HLEN)
4308 		skb_set_network_header(skb, ETH_HLEN);
4309 
4310 	skb_reset_mac_len(skb);
4311 pull:
4312 	__skb_pull(skb, offset);
4313 
4314 	return err;
4315 }
4316 
4317 int skb_vlan_pop(struct sk_buff *skb)
4318 {
4319 	u16 vlan_tci;
4320 	__be16 vlan_proto;
4321 	int err;
4322 
4323 	if (likely(skb_vlan_tag_present(skb))) {
4324 		skb->vlan_tci = 0;
4325 	} else {
4326 		if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4327 			      skb->protocol != htons(ETH_P_8021AD)) ||
4328 			     skb->len < VLAN_ETH_HLEN))
4329 			return 0;
4330 
4331 		err = __skb_vlan_pop(skb, &vlan_tci);
4332 		if (err)
4333 			return err;
4334 	}
4335 	/* move next vlan tag to hw accel tag */
4336 	if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4337 		    skb->protocol != htons(ETH_P_8021AD)) ||
4338 		   skb->len < VLAN_ETH_HLEN))
4339 		return 0;
4340 
4341 	vlan_proto = skb->protocol;
4342 	err = __skb_vlan_pop(skb, &vlan_tci);
4343 	if (unlikely(err))
4344 		return err;
4345 
4346 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4347 	return 0;
4348 }
4349 EXPORT_SYMBOL(skb_vlan_pop);
4350 
4351 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4352 {
4353 	if (skb_vlan_tag_present(skb)) {
4354 		unsigned int offset = skb->data - skb_mac_header(skb);
4355 		int err;
4356 
4357 		/* __vlan_insert_tag expect skb->data pointing to mac header.
4358 		 * So change skb->data before calling it and change back to
4359 		 * original position later
4360 		 */
4361 		__skb_push(skb, offset);
4362 		err = __vlan_insert_tag(skb, skb->vlan_proto,
4363 					skb_vlan_tag_get(skb));
4364 		if (err)
4365 			return err;
4366 		skb->protocol = skb->vlan_proto;
4367 		skb->mac_len += VLAN_HLEN;
4368 		__skb_pull(skb, offset);
4369 
4370 		if (skb->ip_summed == CHECKSUM_COMPLETE)
4371 			skb->csum = csum_add(skb->csum, csum_partial(skb->data
4372 					+ (2 * ETH_ALEN), VLAN_HLEN, 0));
4373 	}
4374 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4375 	return 0;
4376 }
4377 EXPORT_SYMBOL(skb_vlan_push);
4378 
4379 /**
4380  * alloc_skb_with_frags - allocate skb with page frags
4381  *
4382  * @header_len: size of linear part
4383  * @data_len: needed length in frags
4384  * @max_page_order: max page order desired.
4385  * @errcode: pointer to error code if any
4386  * @gfp_mask: allocation mask
4387  *
4388  * This can be used to allocate a paged skb, given a maximal order for frags.
4389  */
4390 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4391 				     unsigned long data_len,
4392 				     int max_page_order,
4393 				     int *errcode,
4394 				     gfp_t gfp_mask)
4395 {
4396 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4397 	unsigned long chunk;
4398 	struct sk_buff *skb;
4399 	struct page *page;
4400 	gfp_t gfp_head;
4401 	int i;
4402 
4403 	*errcode = -EMSGSIZE;
4404 	/* Note this test could be relaxed, if we succeed to allocate
4405 	 * high order pages...
4406 	 */
4407 	if (npages > MAX_SKB_FRAGS)
4408 		return NULL;
4409 
4410 	gfp_head = gfp_mask;
4411 	if (gfp_head & __GFP_WAIT)
4412 		gfp_head |= __GFP_REPEAT;
4413 
4414 	*errcode = -ENOBUFS;
4415 	skb = alloc_skb(header_len, gfp_head);
4416 	if (!skb)
4417 		return NULL;
4418 
4419 	skb->truesize += npages << PAGE_SHIFT;
4420 
4421 	for (i = 0; npages > 0; i++) {
4422 		int order = max_page_order;
4423 
4424 		while (order) {
4425 			if (npages >= 1 << order) {
4426 				page = alloc_pages(gfp_mask |
4427 						   __GFP_COMP |
4428 						   __GFP_NOWARN |
4429 						   __GFP_NORETRY,
4430 						   order);
4431 				if (page)
4432 					goto fill_page;
4433 				/* Do not retry other high order allocations */
4434 				order = 1;
4435 				max_page_order = 0;
4436 			}
4437 			order--;
4438 		}
4439 		page = alloc_page(gfp_mask);
4440 		if (!page)
4441 			goto failure;
4442 fill_page:
4443 		chunk = min_t(unsigned long, data_len,
4444 			      PAGE_SIZE << order);
4445 		skb_fill_page_desc(skb, i, page, 0, chunk);
4446 		data_len -= chunk;
4447 		npages -= 1 << order;
4448 	}
4449 	return skb;
4450 
4451 failure:
4452 	kfree_skb(skb);
4453 	return NULL;
4454 }
4455 EXPORT_SYMBOL(alloc_skb_with_frags);
4456