1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/mctp.h> 74 #include <net/page_pool.h> 75 76 #include <linux/uaccess.h> 77 #include <trace/events/skb.h> 78 #include <linux/highmem.h> 79 #include <linux/capability.h> 80 #include <linux/user_namespace.h> 81 #include <linux/indirect_call_wrapper.h> 82 #include <linux/textsearch.h> 83 84 #include "dev.h" 85 #include "sock_destructor.h" 86 87 struct kmem_cache *skbuff_cache __ro_after_init; 88 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 89 #ifdef CONFIG_SKB_EXTENSIONS 90 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 91 #endif 92 93 /* skb_small_head_cache and related code is only supported 94 * for CONFIG_SLAB and CONFIG_SLUB. 95 * As soon as SLOB is removed from the kernel, we can clean up this. 96 */ 97 #if !defined(CONFIG_SLOB) 98 # define HAVE_SKB_SMALL_HEAD_CACHE 1 99 #endif 100 101 #ifdef HAVE_SKB_SMALL_HEAD_CACHE 102 static struct kmem_cache *skb_small_head_cache __ro_after_init; 103 104 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 105 106 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 107 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 108 * size, and we can differentiate heads from skb_small_head_cache 109 * vs system slabs by looking at their size (skb_end_offset()). 110 */ 111 #define SKB_SMALL_HEAD_CACHE_SIZE \ 112 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 113 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 114 SKB_SMALL_HEAD_SIZE) 115 116 #define SKB_SMALL_HEAD_HEADROOM \ 117 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 118 #endif /* HAVE_SKB_SMALL_HEAD_CACHE */ 119 120 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 121 EXPORT_SYMBOL(sysctl_max_skb_frags); 122 123 #undef FN 124 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 125 const char * const drop_reasons[] = { 126 [SKB_CONSUMED] = "CONSUMED", 127 DEFINE_DROP_REASON(FN, FN) 128 }; 129 EXPORT_SYMBOL(drop_reasons); 130 131 /** 132 * skb_panic - private function for out-of-line support 133 * @skb: buffer 134 * @sz: size 135 * @addr: address 136 * @msg: skb_over_panic or skb_under_panic 137 * 138 * Out-of-line support for skb_put() and skb_push(). 139 * Called via the wrapper skb_over_panic() or skb_under_panic(). 140 * Keep out of line to prevent kernel bloat. 141 * __builtin_return_address is not used because it is not always reliable. 142 */ 143 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 144 const char msg[]) 145 { 146 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 147 msg, addr, skb->len, sz, skb->head, skb->data, 148 (unsigned long)skb->tail, (unsigned long)skb->end, 149 skb->dev ? skb->dev->name : "<NULL>"); 150 BUG(); 151 } 152 153 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 154 { 155 skb_panic(skb, sz, addr, __func__); 156 } 157 158 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 159 { 160 skb_panic(skb, sz, addr, __func__); 161 } 162 163 #define NAPI_SKB_CACHE_SIZE 64 164 #define NAPI_SKB_CACHE_BULK 16 165 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 166 167 #if PAGE_SIZE == SZ_4K 168 169 #define NAPI_HAS_SMALL_PAGE_FRAG 1 170 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 171 172 /* specialized page frag allocator using a single order 0 page 173 * and slicing it into 1K sized fragment. Constrained to systems 174 * with a very limited amount of 1K fragments fitting a single 175 * page - to avoid excessive truesize underestimation 176 */ 177 178 struct page_frag_1k { 179 void *va; 180 u16 offset; 181 bool pfmemalloc; 182 }; 183 184 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 185 { 186 struct page *page; 187 int offset; 188 189 offset = nc->offset - SZ_1K; 190 if (likely(offset >= 0)) 191 goto use_frag; 192 193 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 194 if (!page) 195 return NULL; 196 197 nc->va = page_address(page); 198 nc->pfmemalloc = page_is_pfmemalloc(page); 199 offset = PAGE_SIZE - SZ_1K; 200 page_ref_add(page, offset / SZ_1K); 201 202 use_frag: 203 nc->offset = offset; 204 return nc->va + offset; 205 } 206 #else 207 208 /* the small page is actually unused in this build; add dummy helpers 209 * to please the compiler and avoid later preprocessor's conditionals 210 */ 211 #define NAPI_HAS_SMALL_PAGE_FRAG 0 212 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 213 214 struct page_frag_1k { 215 }; 216 217 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 218 { 219 return NULL; 220 } 221 222 #endif 223 224 struct napi_alloc_cache { 225 struct page_frag_cache page; 226 struct page_frag_1k page_small; 227 unsigned int skb_count; 228 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 229 }; 230 231 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 232 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 233 234 /* Double check that napi_get_frags() allocates skbs with 235 * skb->head being backed by slab, not a page fragment. 236 * This is to make sure bug fixed in 3226b158e67c 237 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 238 * does not accidentally come back. 239 */ 240 void napi_get_frags_check(struct napi_struct *napi) 241 { 242 struct sk_buff *skb; 243 244 local_bh_disable(); 245 skb = napi_get_frags(napi); 246 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 247 napi_free_frags(napi); 248 local_bh_enable(); 249 } 250 251 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 252 { 253 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 254 255 fragsz = SKB_DATA_ALIGN(fragsz); 256 257 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 258 } 259 EXPORT_SYMBOL(__napi_alloc_frag_align); 260 261 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 262 { 263 void *data; 264 265 fragsz = SKB_DATA_ALIGN(fragsz); 266 if (in_hardirq() || irqs_disabled()) { 267 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 268 269 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 270 } else { 271 struct napi_alloc_cache *nc; 272 273 local_bh_disable(); 274 nc = this_cpu_ptr(&napi_alloc_cache); 275 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 276 local_bh_enable(); 277 } 278 return data; 279 } 280 EXPORT_SYMBOL(__netdev_alloc_frag_align); 281 282 static struct sk_buff *napi_skb_cache_get(void) 283 { 284 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 285 struct sk_buff *skb; 286 287 if (unlikely(!nc->skb_count)) { 288 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache, 289 GFP_ATOMIC, 290 NAPI_SKB_CACHE_BULK, 291 nc->skb_cache); 292 if (unlikely(!nc->skb_count)) 293 return NULL; 294 } 295 296 skb = nc->skb_cache[--nc->skb_count]; 297 kasan_unpoison_object_data(skbuff_cache, skb); 298 299 return skb; 300 } 301 302 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 303 unsigned int size) 304 { 305 struct skb_shared_info *shinfo; 306 307 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 308 309 /* Assumes caller memset cleared SKB */ 310 skb->truesize = SKB_TRUESIZE(size); 311 refcount_set(&skb->users, 1); 312 skb->head = data; 313 skb->data = data; 314 skb_reset_tail_pointer(skb); 315 skb_set_end_offset(skb, size); 316 skb->mac_header = (typeof(skb->mac_header))~0U; 317 skb->transport_header = (typeof(skb->transport_header))~0U; 318 skb->alloc_cpu = raw_smp_processor_id(); 319 /* make sure we initialize shinfo sequentially */ 320 shinfo = skb_shinfo(skb); 321 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 322 atomic_set(&shinfo->dataref, 1); 323 324 skb_set_kcov_handle(skb, kcov_common_handle()); 325 } 326 327 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 328 unsigned int *size) 329 { 330 void *resized; 331 332 /* Must find the allocation size (and grow it to match). */ 333 *size = ksize(data); 334 /* krealloc() will immediately return "data" when 335 * "ksize(data)" is requested: it is the existing upper 336 * bounds. As a result, GFP_ATOMIC will be ignored. Note 337 * that this "new" pointer needs to be passed back to the 338 * caller for use so the __alloc_size hinting will be 339 * tracked correctly. 340 */ 341 resized = krealloc(data, *size, GFP_ATOMIC); 342 WARN_ON_ONCE(resized != data); 343 return resized; 344 } 345 346 /* build_skb() variant which can operate on slab buffers. 347 * Note that this should be used sparingly as slab buffers 348 * cannot be combined efficiently by GRO! 349 */ 350 struct sk_buff *slab_build_skb(void *data) 351 { 352 struct sk_buff *skb; 353 unsigned int size; 354 355 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 356 if (unlikely(!skb)) 357 return NULL; 358 359 memset(skb, 0, offsetof(struct sk_buff, tail)); 360 data = __slab_build_skb(skb, data, &size); 361 __finalize_skb_around(skb, data, size); 362 363 return skb; 364 } 365 EXPORT_SYMBOL(slab_build_skb); 366 367 /* Caller must provide SKB that is memset cleared */ 368 static void __build_skb_around(struct sk_buff *skb, void *data, 369 unsigned int frag_size) 370 { 371 unsigned int size = frag_size; 372 373 /* frag_size == 0 is considered deprecated now. Callers 374 * using slab buffer should use slab_build_skb() instead. 375 */ 376 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 377 data = __slab_build_skb(skb, data, &size); 378 379 __finalize_skb_around(skb, data, size); 380 } 381 382 /** 383 * __build_skb - build a network buffer 384 * @data: data buffer provided by caller 385 * @frag_size: size of data (must not be 0) 386 * 387 * Allocate a new &sk_buff. Caller provides space holding head and 388 * skb_shared_info. @data must have been allocated from the page 389 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 390 * allocation is deprecated, and callers should use slab_build_skb() 391 * instead.) 392 * The return is the new skb buffer. 393 * On a failure the return is %NULL, and @data is not freed. 394 * Notes : 395 * Before IO, driver allocates only data buffer where NIC put incoming frame 396 * Driver should add room at head (NET_SKB_PAD) and 397 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 398 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 399 * before giving packet to stack. 400 * RX rings only contains data buffers, not full skbs. 401 */ 402 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 403 { 404 struct sk_buff *skb; 405 406 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 407 if (unlikely(!skb)) 408 return NULL; 409 410 memset(skb, 0, offsetof(struct sk_buff, tail)); 411 __build_skb_around(skb, data, frag_size); 412 413 return skb; 414 } 415 416 /* build_skb() is wrapper over __build_skb(), that specifically 417 * takes care of skb->head and skb->pfmemalloc 418 */ 419 struct sk_buff *build_skb(void *data, unsigned int frag_size) 420 { 421 struct sk_buff *skb = __build_skb(data, frag_size); 422 423 if (skb && frag_size) { 424 skb->head_frag = 1; 425 if (page_is_pfmemalloc(virt_to_head_page(data))) 426 skb->pfmemalloc = 1; 427 } 428 return skb; 429 } 430 EXPORT_SYMBOL(build_skb); 431 432 /** 433 * build_skb_around - build a network buffer around provided skb 434 * @skb: sk_buff provide by caller, must be memset cleared 435 * @data: data buffer provided by caller 436 * @frag_size: size of data 437 */ 438 struct sk_buff *build_skb_around(struct sk_buff *skb, 439 void *data, unsigned int frag_size) 440 { 441 if (unlikely(!skb)) 442 return NULL; 443 444 __build_skb_around(skb, data, frag_size); 445 446 if (frag_size) { 447 skb->head_frag = 1; 448 if (page_is_pfmemalloc(virt_to_head_page(data))) 449 skb->pfmemalloc = 1; 450 } 451 return skb; 452 } 453 EXPORT_SYMBOL(build_skb_around); 454 455 /** 456 * __napi_build_skb - build a network buffer 457 * @data: data buffer provided by caller 458 * @frag_size: size of data 459 * 460 * Version of __build_skb() that uses NAPI percpu caches to obtain 461 * skbuff_head instead of inplace allocation. 462 * 463 * Returns a new &sk_buff on success, %NULL on allocation failure. 464 */ 465 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 466 { 467 struct sk_buff *skb; 468 469 skb = napi_skb_cache_get(); 470 if (unlikely(!skb)) 471 return NULL; 472 473 memset(skb, 0, offsetof(struct sk_buff, tail)); 474 __build_skb_around(skb, data, frag_size); 475 476 return skb; 477 } 478 479 /** 480 * napi_build_skb - build a network buffer 481 * @data: data buffer provided by caller 482 * @frag_size: size of data 483 * 484 * Version of __napi_build_skb() that takes care of skb->head_frag 485 * and skb->pfmemalloc when the data is a page or page fragment. 486 * 487 * Returns a new &sk_buff on success, %NULL on allocation failure. 488 */ 489 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 490 { 491 struct sk_buff *skb = __napi_build_skb(data, frag_size); 492 493 if (likely(skb) && frag_size) { 494 skb->head_frag = 1; 495 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 496 } 497 498 return skb; 499 } 500 EXPORT_SYMBOL(napi_build_skb); 501 502 /* 503 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 504 * the caller if emergency pfmemalloc reserves are being used. If it is and 505 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 506 * may be used. Otherwise, the packet data may be discarded until enough 507 * memory is free 508 */ 509 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 510 bool *pfmemalloc) 511 { 512 bool ret_pfmemalloc = false; 513 unsigned int obj_size; 514 void *obj; 515 516 obj_size = SKB_HEAD_ALIGN(*size); 517 #ifdef HAVE_SKB_SMALL_HEAD_CACHE 518 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 519 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 520 521 /* skb_small_head_cache has non power of two size, 522 * likely forcing SLUB to use order-3 pages. 523 * We deliberately attempt a NOMEMALLOC allocation only. 524 */ 525 obj = kmem_cache_alloc_node(skb_small_head_cache, 526 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 527 node); 528 if (obj) { 529 *size = SKB_SMALL_HEAD_CACHE_SIZE; 530 goto out; 531 } 532 } 533 #endif 534 *size = obj_size = kmalloc_size_roundup(obj_size); 535 /* 536 * Try a regular allocation, when that fails and we're not entitled 537 * to the reserves, fail. 538 */ 539 obj = kmalloc_node_track_caller(obj_size, 540 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 541 node); 542 if (obj || !(gfp_pfmemalloc_allowed(flags))) 543 goto out; 544 545 /* Try again but now we are using pfmemalloc reserves */ 546 ret_pfmemalloc = true; 547 obj = kmalloc_node_track_caller(obj_size, flags, node); 548 549 out: 550 if (pfmemalloc) 551 *pfmemalloc = ret_pfmemalloc; 552 553 return obj; 554 } 555 556 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 557 * 'private' fields and also do memory statistics to find all the 558 * [BEEP] leaks. 559 * 560 */ 561 562 /** 563 * __alloc_skb - allocate a network buffer 564 * @size: size to allocate 565 * @gfp_mask: allocation mask 566 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 567 * instead of head cache and allocate a cloned (child) skb. 568 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 569 * allocations in case the data is required for writeback 570 * @node: numa node to allocate memory on 571 * 572 * Allocate a new &sk_buff. The returned buffer has no headroom and a 573 * tail room of at least size bytes. The object has a reference count 574 * of one. The return is the buffer. On a failure the return is %NULL. 575 * 576 * Buffers may only be allocated from interrupts using a @gfp_mask of 577 * %GFP_ATOMIC. 578 */ 579 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 580 int flags, int node) 581 { 582 struct kmem_cache *cache; 583 struct sk_buff *skb; 584 bool pfmemalloc; 585 u8 *data; 586 587 cache = (flags & SKB_ALLOC_FCLONE) 588 ? skbuff_fclone_cache : skbuff_cache; 589 590 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 591 gfp_mask |= __GFP_MEMALLOC; 592 593 /* Get the HEAD */ 594 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 595 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 596 skb = napi_skb_cache_get(); 597 else 598 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 599 if (unlikely(!skb)) 600 return NULL; 601 prefetchw(skb); 602 603 /* We do our best to align skb_shared_info on a separate cache 604 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 605 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 606 * Both skb->head and skb_shared_info are cache line aligned. 607 */ 608 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 609 if (unlikely(!data)) 610 goto nodata; 611 /* kmalloc_size_roundup() might give us more room than requested. 612 * Put skb_shared_info exactly at the end of allocated zone, 613 * to allow max possible filling before reallocation. 614 */ 615 prefetchw(data + SKB_WITH_OVERHEAD(size)); 616 617 /* 618 * Only clear those fields we need to clear, not those that we will 619 * actually initialise below. Hence, don't put any more fields after 620 * the tail pointer in struct sk_buff! 621 */ 622 memset(skb, 0, offsetof(struct sk_buff, tail)); 623 __build_skb_around(skb, data, size); 624 skb->pfmemalloc = pfmemalloc; 625 626 if (flags & SKB_ALLOC_FCLONE) { 627 struct sk_buff_fclones *fclones; 628 629 fclones = container_of(skb, struct sk_buff_fclones, skb1); 630 631 skb->fclone = SKB_FCLONE_ORIG; 632 refcount_set(&fclones->fclone_ref, 1); 633 } 634 635 return skb; 636 637 nodata: 638 kmem_cache_free(cache, skb); 639 return NULL; 640 } 641 EXPORT_SYMBOL(__alloc_skb); 642 643 /** 644 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 645 * @dev: network device to receive on 646 * @len: length to allocate 647 * @gfp_mask: get_free_pages mask, passed to alloc_skb 648 * 649 * Allocate a new &sk_buff and assign it a usage count of one. The 650 * buffer has NET_SKB_PAD headroom built in. Users should allocate 651 * the headroom they think they need without accounting for the 652 * built in space. The built in space is used for optimisations. 653 * 654 * %NULL is returned if there is no free memory. 655 */ 656 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 657 gfp_t gfp_mask) 658 { 659 struct page_frag_cache *nc; 660 struct sk_buff *skb; 661 bool pfmemalloc; 662 void *data; 663 664 len += NET_SKB_PAD; 665 666 /* If requested length is either too small or too big, 667 * we use kmalloc() for skb->head allocation. 668 */ 669 if (len <= SKB_WITH_OVERHEAD(1024) || 670 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 671 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 672 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 673 if (!skb) 674 goto skb_fail; 675 goto skb_success; 676 } 677 678 len = SKB_HEAD_ALIGN(len); 679 680 if (sk_memalloc_socks()) 681 gfp_mask |= __GFP_MEMALLOC; 682 683 if (in_hardirq() || irqs_disabled()) { 684 nc = this_cpu_ptr(&netdev_alloc_cache); 685 data = page_frag_alloc(nc, len, gfp_mask); 686 pfmemalloc = nc->pfmemalloc; 687 } else { 688 local_bh_disable(); 689 nc = this_cpu_ptr(&napi_alloc_cache.page); 690 data = page_frag_alloc(nc, len, gfp_mask); 691 pfmemalloc = nc->pfmemalloc; 692 local_bh_enable(); 693 } 694 695 if (unlikely(!data)) 696 return NULL; 697 698 skb = __build_skb(data, len); 699 if (unlikely(!skb)) { 700 skb_free_frag(data); 701 return NULL; 702 } 703 704 if (pfmemalloc) 705 skb->pfmemalloc = 1; 706 skb->head_frag = 1; 707 708 skb_success: 709 skb_reserve(skb, NET_SKB_PAD); 710 skb->dev = dev; 711 712 skb_fail: 713 return skb; 714 } 715 EXPORT_SYMBOL(__netdev_alloc_skb); 716 717 /** 718 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 719 * @napi: napi instance this buffer was allocated for 720 * @len: length to allocate 721 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 722 * 723 * Allocate a new sk_buff for use in NAPI receive. This buffer will 724 * attempt to allocate the head from a special reserved region used 725 * only for NAPI Rx allocation. By doing this we can save several 726 * CPU cycles by avoiding having to disable and re-enable IRQs. 727 * 728 * %NULL is returned if there is no free memory. 729 */ 730 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 731 gfp_t gfp_mask) 732 { 733 struct napi_alloc_cache *nc; 734 struct sk_buff *skb; 735 bool pfmemalloc; 736 void *data; 737 738 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 739 len += NET_SKB_PAD + NET_IP_ALIGN; 740 741 /* If requested length is either too small or too big, 742 * we use kmalloc() for skb->head allocation. 743 * When the small frag allocator is available, prefer it over kmalloc 744 * for small fragments 745 */ 746 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 747 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 748 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 749 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 750 NUMA_NO_NODE); 751 if (!skb) 752 goto skb_fail; 753 goto skb_success; 754 } 755 756 nc = this_cpu_ptr(&napi_alloc_cache); 757 758 if (sk_memalloc_socks()) 759 gfp_mask |= __GFP_MEMALLOC; 760 761 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 762 /* we are artificially inflating the allocation size, but 763 * that is not as bad as it may look like, as: 764 * - 'len' less than GRO_MAX_HEAD makes little sense 765 * - On most systems, larger 'len' values lead to fragment 766 * size above 512 bytes 767 * - kmalloc would use the kmalloc-1k slab for such values 768 * - Builds with smaller GRO_MAX_HEAD will very likely do 769 * little networking, as that implies no WiFi and no 770 * tunnels support, and 32 bits arches. 771 */ 772 len = SZ_1K; 773 774 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 775 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 776 } else { 777 len = SKB_HEAD_ALIGN(len); 778 779 data = page_frag_alloc(&nc->page, len, gfp_mask); 780 pfmemalloc = nc->page.pfmemalloc; 781 } 782 783 if (unlikely(!data)) 784 return NULL; 785 786 skb = __napi_build_skb(data, len); 787 if (unlikely(!skb)) { 788 skb_free_frag(data); 789 return NULL; 790 } 791 792 if (pfmemalloc) 793 skb->pfmemalloc = 1; 794 skb->head_frag = 1; 795 796 skb_success: 797 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 798 skb->dev = napi->dev; 799 800 skb_fail: 801 return skb; 802 } 803 EXPORT_SYMBOL(__napi_alloc_skb); 804 805 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 806 int size, unsigned int truesize) 807 { 808 skb_fill_page_desc(skb, i, page, off, size); 809 skb->len += size; 810 skb->data_len += size; 811 skb->truesize += truesize; 812 } 813 EXPORT_SYMBOL(skb_add_rx_frag); 814 815 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 816 unsigned int truesize) 817 { 818 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 819 820 skb_frag_size_add(frag, size); 821 skb->len += size; 822 skb->data_len += size; 823 skb->truesize += truesize; 824 } 825 EXPORT_SYMBOL(skb_coalesce_rx_frag); 826 827 static void skb_drop_list(struct sk_buff **listp) 828 { 829 kfree_skb_list(*listp); 830 *listp = NULL; 831 } 832 833 static inline void skb_drop_fraglist(struct sk_buff *skb) 834 { 835 skb_drop_list(&skb_shinfo(skb)->frag_list); 836 } 837 838 static void skb_clone_fraglist(struct sk_buff *skb) 839 { 840 struct sk_buff *list; 841 842 skb_walk_frags(skb, list) 843 skb_get(list); 844 } 845 846 static bool skb_pp_recycle(struct sk_buff *skb, void *data) 847 { 848 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 849 return false; 850 return page_pool_return_skb_page(virt_to_page(data)); 851 } 852 853 static void skb_kfree_head(void *head, unsigned int end_offset) 854 { 855 #ifdef HAVE_SKB_SMALL_HEAD_CACHE 856 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 857 kmem_cache_free(skb_small_head_cache, head); 858 else 859 #endif 860 kfree(head); 861 } 862 863 static void skb_free_head(struct sk_buff *skb) 864 { 865 unsigned char *head = skb->head; 866 867 if (skb->head_frag) { 868 if (skb_pp_recycle(skb, head)) 869 return; 870 skb_free_frag(head); 871 } else { 872 skb_kfree_head(head, skb_end_offset(skb)); 873 } 874 } 875 876 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 877 { 878 struct skb_shared_info *shinfo = skb_shinfo(skb); 879 int i; 880 881 if (skb->cloned && 882 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 883 &shinfo->dataref)) 884 goto exit; 885 886 if (skb_zcopy(skb)) { 887 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 888 889 skb_zcopy_clear(skb, true); 890 if (skip_unref) 891 goto free_head; 892 } 893 894 for (i = 0; i < shinfo->nr_frags; i++) 895 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 896 897 free_head: 898 if (shinfo->frag_list) 899 kfree_skb_list_reason(shinfo->frag_list, reason); 900 901 skb_free_head(skb); 902 exit: 903 /* When we clone an SKB we copy the reycling bit. The pp_recycle 904 * bit is only set on the head though, so in order to avoid races 905 * while trying to recycle fragments on __skb_frag_unref() we need 906 * to make one SKB responsible for triggering the recycle path. 907 * So disable the recycling bit if an SKB is cloned and we have 908 * additional references to the fragmented part of the SKB. 909 * Eventually the last SKB will have the recycling bit set and it's 910 * dataref set to 0, which will trigger the recycling 911 */ 912 skb->pp_recycle = 0; 913 } 914 915 /* 916 * Free an skbuff by memory without cleaning the state. 917 */ 918 static void kfree_skbmem(struct sk_buff *skb) 919 { 920 struct sk_buff_fclones *fclones; 921 922 switch (skb->fclone) { 923 case SKB_FCLONE_UNAVAILABLE: 924 kmem_cache_free(skbuff_cache, skb); 925 return; 926 927 case SKB_FCLONE_ORIG: 928 fclones = container_of(skb, struct sk_buff_fclones, skb1); 929 930 /* We usually free the clone (TX completion) before original skb 931 * This test would have no chance to be true for the clone, 932 * while here, branch prediction will be good. 933 */ 934 if (refcount_read(&fclones->fclone_ref) == 1) 935 goto fastpath; 936 break; 937 938 default: /* SKB_FCLONE_CLONE */ 939 fclones = container_of(skb, struct sk_buff_fclones, skb2); 940 break; 941 } 942 if (!refcount_dec_and_test(&fclones->fclone_ref)) 943 return; 944 fastpath: 945 kmem_cache_free(skbuff_fclone_cache, fclones); 946 } 947 948 void skb_release_head_state(struct sk_buff *skb) 949 { 950 skb_dst_drop(skb); 951 if (skb->destructor) { 952 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 953 skb->destructor(skb); 954 } 955 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 956 nf_conntrack_put(skb_nfct(skb)); 957 #endif 958 skb_ext_put(skb); 959 } 960 961 /* Free everything but the sk_buff shell. */ 962 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 963 { 964 skb_release_head_state(skb); 965 if (likely(skb->head)) 966 skb_release_data(skb, reason); 967 } 968 969 /** 970 * __kfree_skb - private function 971 * @skb: buffer 972 * 973 * Free an sk_buff. Release anything attached to the buffer. 974 * Clean the state. This is an internal helper function. Users should 975 * always call kfree_skb 976 */ 977 978 void __kfree_skb(struct sk_buff *skb) 979 { 980 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 981 kfree_skbmem(skb); 982 } 983 EXPORT_SYMBOL(__kfree_skb); 984 985 static __always_inline 986 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 987 { 988 if (unlikely(!skb_unref(skb))) 989 return false; 990 991 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX); 992 993 if (reason == SKB_CONSUMED) 994 trace_consume_skb(skb, __builtin_return_address(0)); 995 else 996 trace_kfree_skb(skb, __builtin_return_address(0), reason); 997 return true; 998 } 999 1000 /** 1001 * kfree_skb_reason - free an sk_buff with special reason 1002 * @skb: buffer to free 1003 * @reason: reason why this skb is dropped 1004 * 1005 * Drop a reference to the buffer and free it if the usage count has 1006 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1007 * tracepoint. 1008 */ 1009 void __fix_address 1010 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1011 { 1012 if (__kfree_skb_reason(skb, reason)) 1013 __kfree_skb(skb); 1014 } 1015 EXPORT_SYMBOL(kfree_skb_reason); 1016 1017 #define KFREE_SKB_BULK_SIZE 16 1018 1019 struct skb_free_array { 1020 unsigned int skb_count; 1021 void *skb_array[KFREE_SKB_BULK_SIZE]; 1022 }; 1023 1024 static void kfree_skb_add_bulk(struct sk_buff *skb, 1025 struct skb_free_array *sa, 1026 enum skb_drop_reason reason) 1027 { 1028 /* if SKB is a clone, don't handle this case */ 1029 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1030 __kfree_skb(skb); 1031 return; 1032 } 1033 1034 skb_release_all(skb, reason); 1035 sa->skb_array[sa->skb_count++] = skb; 1036 1037 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1038 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE, 1039 sa->skb_array); 1040 sa->skb_count = 0; 1041 } 1042 } 1043 1044 void __fix_address 1045 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1046 { 1047 struct skb_free_array sa; 1048 1049 sa.skb_count = 0; 1050 1051 while (segs) { 1052 struct sk_buff *next = segs->next; 1053 1054 if (__kfree_skb_reason(segs, reason)) { 1055 skb_poison_list(segs); 1056 kfree_skb_add_bulk(segs, &sa, reason); 1057 } 1058 1059 segs = next; 1060 } 1061 1062 if (sa.skb_count) 1063 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array); 1064 } 1065 EXPORT_SYMBOL(kfree_skb_list_reason); 1066 1067 /* Dump skb information and contents. 1068 * 1069 * Must only be called from net_ratelimit()-ed paths. 1070 * 1071 * Dumps whole packets if full_pkt, only headers otherwise. 1072 */ 1073 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1074 { 1075 struct skb_shared_info *sh = skb_shinfo(skb); 1076 struct net_device *dev = skb->dev; 1077 struct sock *sk = skb->sk; 1078 struct sk_buff *list_skb; 1079 bool has_mac, has_trans; 1080 int headroom, tailroom; 1081 int i, len, seg_len; 1082 1083 if (full_pkt) 1084 len = skb->len; 1085 else 1086 len = min_t(int, skb->len, MAX_HEADER + 128); 1087 1088 headroom = skb_headroom(skb); 1089 tailroom = skb_tailroom(skb); 1090 1091 has_mac = skb_mac_header_was_set(skb); 1092 has_trans = skb_transport_header_was_set(skb); 1093 1094 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1095 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1096 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1097 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1098 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1099 level, skb->len, headroom, skb_headlen(skb), tailroom, 1100 has_mac ? skb->mac_header : -1, 1101 has_mac ? skb_mac_header_len(skb) : -1, 1102 skb->network_header, 1103 has_trans ? skb_network_header_len(skb) : -1, 1104 has_trans ? skb->transport_header : -1, 1105 sh->tx_flags, sh->nr_frags, 1106 sh->gso_size, sh->gso_type, sh->gso_segs, 1107 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1108 skb->csum_valid, skb->csum_level, 1109 skb->hash, skb->sw_hash, skb->l4_hash, 1110 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1111 1112 if (dev) 1113 printk("%sdev name=%s feat=%pNF\n", 1114 level, dev->name, &dev->features); 1115 if (sk) 1116 printk("%ssk family=%hu type=%u proto=%u\n", 1117 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1118 1119 if (full_pkt && headroom) 1120 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1121 16, 1, skb->head, headroom, false); 1122 1123 seg_len = min_t(int, skb_headlen(skb), len); 1124 if (seg_len) 1125 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1126 16, 1, skb->data, seg_len, false); 1127 len -= seg_len; 1128 1129 if (full_pkt && tailroom) 1130 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1131 16, 1, skb_tail_pointer(skb), tailroom, false); 1132 1133 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1134 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1135 u32 p_off, p_len, copied; 1136 struct page *p; 1137 u8 *vaddr; 1138 1139 skb_frag_foreach_page(frag, skb_frag_off(frag), 1140 skb_frag_size(frag), p, p_off, p_len, 1141 copied) { 1142 seg_len = min_t(int, p_len, len); 1143 vaddr = kmap_atomic(p); 1144 print_hex_dump(level, "skb frag: ", 1145 DUMP_PREFIX_OFFSET, 1146 16, 1, vaddr + p_off, seg_len, false); 1147 kunmap_atomic(vaddr); 1148 len -= seg_len; 1149 if (!len) 1150 break; 1151 } 1152 } 1153 1154 if (full_pkt && skb_has_frag_list(skb)) { 1155 printk("skb fraglist:\n"); 1156 skb_walk_frags(skb, list_skb) 1157 skb_dump(level, list_skb, true); 1158 } 1159 } 1160 EXPORT_SYMBOL(skb_dump); 1161 1162 /** 1163 * skb_tx_error - report an sk_buff xmit error 1164 * @skb: buffer that triggered an error 1165 * 1166 * Report xmit error if a device callback is tracking this skb. 1167 * skb must be freed afterwards. 1168 */ 1169 void skb_tx_error(struct sk_buff *skb) 1170 { 1171 if (skb) { 1172 skb_zcopy_downgrade_managed(skb); 1173 skb_zcopy_clear(skb, true); 1174 } 1175 } 1176 EXPORT_SYMBOL(skb_tx_error); 1177 1178 #ifdef CONFIG_TRACEPOINTS 1179 /** 1180 * consume_skb - free an skbuff 1181 * @skb: buffer to free 1182 * 1183 * Drop a ref to the buffer and free it if the usage count has hit zero 1184 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1185 * is being dropped after a failure and notes that 1186 */ 1187 void consume_skb(struct sk_buff *skb) 1188 { 1189 if (!skb_unref(skb)) 1190 return; 1191 1192 trace_consume_skb(skb, __builtin_return_address(0)); 1193 __kfree_skb(skb); 1194 } 1195 EXPORT_SYMBOL(consume_skb); 1196 #endif 1197 1198 /** 1199 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1200 * @skb: buffer to free 1201 * 1202 * Alike consume_skb(), but this variant assumes that this is the last 1203 * skb reference and all the head states have been already dropped 1204 */ 1205 void __consume_stateless_skb(struct sk_buff *skb) 1206 { 1207 trace_consume_skb(skb, __builtin_return_address(0)); 1208 skb_release_data(skb, SKB_CONSUMED); 1209 kfree_skbmem(skb); 1210 } 1211 1212 static void napi_skb_cache_put(struct sk_buff *skb) 1213 { 1214 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1215 u32 i; 1216 1217 kasan_poison_object_data(skbuff_cache, skb); 1218 nc->skb_cache[nc->skb_count++] = skb; 1219 1220 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1221 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1222 kasan_unpoison_object_data(skbuff_cache, 1223 nc->skb_cache[i]); 1224 1225 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF, 1226 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1227 nc->skb_count = NAPI_SKB_CACHE_HALF; 1228 } 1229 } 1230 1231 void __kfree_skb_defer(struct sk_buff *skb) 1232 { 1233 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1234 napi_skb_cache_put(skb); 1235 } 1236 1237 void napi_skb_free_stolen_head(struct sk_buff *skb) 1238 { 1239 if (unlikely(skb->slow_gro)) { 1240 nf_reset_ct(skb); 1241 skb_dst_drop(skb); 1242 skb_ext_put(skb); 1243 skb_orphan(skb); 1244 skb->slow_gro = 0; 1245 } 1246 napi_skb_cache_put(skb); 1247 } 1248 1249 void napi_consume_skb(struct sk_buff *skb, int budget) 1250 { 1251 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1252 if (unlikely(!budget)) { 1253 dev_consume_skb_any(skb); 1254 return; 1255 } 1256 1257 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1258 1259 if (!skb_unref(skb)) 1260 return; 1261 1262 /* if reaching here SKB is ready to free */ 1263 trace_consume_skb(skb, __builtin_return_address(0)); 1264 1265 /* if SKB is a clone, don't handle this case */ 1266 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1267 __kfree_skb(skb); 1268 return; 1269 } 1270 1271 skb_release_all(skb, SKB_CONSUMED); 1272 napi_skb_cache_put(skb); 1273 } 1274 EXPORT_SYMBOL(napi_consume_skb); 1275 1276 /* Make sure a field is contained by headers group */ 1277 #define CHECK_SKB_FIELD(field) \ 1278 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1279 offsetof(struct sk_buff, headers.field)); \ 1280 1281 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1282 { 1283 new->tstamp = old->tstamp; 1284 /* We do not copy old->sk */ 1285 new->dev = old->dev; 1286 memcpy(new->cb, old->cb, sizeof(old->cb)); 1287 skb_dst_copy(new, old); 1288 __skb_ext_copy(new, old); 1289 __nf_copy(new, old, false); 1290 1291 /* Note : this field could be in the headers group. 1292 * It is not yet because we do not want to have a 16 bit hole 1293 */ 1294 new->queue_mapping = old->queue_mapping; 1295 1296 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1297 CHECK_SKB_FIELD(protocol); 1298 CHECK_SKB_FIELD(csum); 1299 CHECK_SKB_FIELD(hash); 1300 CHECK_SKB_FIELD(priority); 1301 CHECK_SKB_FIELD(skb_iif); 1302 CHECK_SKB_FIELD(vlan_proto); 1303 CHECK_SKB_FIELD(vlan_tci); 1304 CHECK_SKB_FIELD(transport_header); 1305 CHECK_SKB_FIELD(network_header); 1306 CHECK_SKB_FIELD(mac_header); 1307 CHECK_SKB_FIELD(inner_protocol); 1308 CHECK_SKB_FIELD(inner_transport_header); 1309 CHECK_SKB_FIELD(inner_network_header); 1310 CHECK_SKB_FIELD(inner_mac_header); 1311 CHECK_SKB_FIELD(mark); 1312 #ifdef CONFIG_NETWORK_SECMARK 1313 CHECK_SKB_FIELD(secmark); 1314 #endif 1315 #ifdef CONFIG_NET_RX_BUSY_POLL 1316 CHECK_SKB_FIELD(napi_id); 1317 #endif 1318 CHECK_SKB_FIELD(alloc_cpu); 1319 #ifdef CONFIG_XPS 1320 CHECK_SKB_FIELD(sender_cpu); 1321 #endif 1322 #ifdef CONFIG_NET_SCHED 1323 CHECK_SKB_FIELD(tc_index); 1324 #endif 1325 1326 } 1327 1328 /* 1329 * You should not add any new code to this function. Add it to 1330 * __copy_skb_header above instead. 1331 */ 1332 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1333 { 1334 #define C(x) n->x = skb->x 1335 1336 n->next = n->prev = NULL; 1337 n->sk = NULL; 1338 __copy_skb_header(n, skb); 1339 1340 C(len); 1341 C(data_len); 1342 C(mac_len); 1343 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1344 n->cloned = 1; 1345 n->nohdr = 0; 1346 n->peeked = 0; 1347 C(pfmemalloc); 1348 C(pp_recycle); 1349 n->destructor = NULL; 1350 C(tail); 1351 C(end); 1352 C(head); 1353 C(head_frag); 1354 C(data); 1355 C(truesize); 1356 refcount_set(&n->users, 1); 1357 1358 atomic_inc(&(skb_shinfo(skb)->dataref)); 1359 skb->cloned = 1; 1360 1361 return n; 1362 #undef C 1363 } 1364 1365 /** 1366 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1367 * @first: first sk_buff of the msg 1368 */ 1369 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1370 { 1371 struct sk_buff *n; 1372 1373 n = alloc_skb(0, GFP_ATOMIC); 1374 if (!n) 1375 return NULL; 1376 1377 n->len = first->len; 1378 n->data_len = first->len; 1379 n->truesize = first->truesize; 1380 1381 skb_shinfo(n)->frag_list = first; 1382 1383 __copy_skb_header(n, first); 1384 n->destructor = NULL; 1385 1386 return n; 1387 } 1388 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1389 1390 /** 1391 * skb_morph - morph one skb into another 1392 * @dst: the skb to receive the contents 1393 * @src: the skb to supply the contents 1394 * 1395 * This is identical to skb_clone except that the target skb is 1396 * supplied by the user. 1397 * 1398 * The target skb is returned upon exit. 1399 */ 1400 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1401 { 1402 skb_release_all(dst, SKB_CONSUMED); 1403 return __skb_clone(dst, src); 1404 } 1405 EXPORT_SYMBOL_GPL(skb_morph); 1406 1407 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1408 { 1409 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1410 struct user_struct *user; 1411 1412 if (capable(CAP_IPC_LOCK) || !size) 1413 return 0; 1414 1415 rlim = rlimit(RLIMIT_MEMLOCK); 1416 if (rlim == RLIM_INFINITY) 1417 return 0; 1418 1419 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1420 max_pg = rlim >> PAGE_SHIFT; 1421 user = mmp->user ? : current_user(); 1422 1423 old_pg = atomic_long_read(&user->locked_vm); 1424 do { 1425 new_pg = old_pg + num_pg; 1426 if (new_pg > max_pg) 1427 return -ENOBUFS; 1428 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1429 1430 if (!mmp->user) { 1431 mmp->user = get_uid(user); 1432 mmp->num_pg = num_pg; 1433 } else { 1434 mmp->num_pg += num_pg; 1435 } 1436 1437 return 0; 1438 } 1439 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1440 1441 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1442 { 1443 if (mmp->user) { 1444 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1445 free_uid(mmp->user); 1446 } 1447 } 1448 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1449 1450 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1451 { 1452 struct ubuf_info_msgzc *uarg; 1453 struct sk_buff *skb; 1454 1455 WARN_ON_ONCE(!in_task()); 1456 1457 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1458 if (!skb) 1459 return NULL; 1460 1461 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1462 uarg = (void *)skb->cb; 1463 uarg->mmp.user = NULL; 1464 1465 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1466 kfree_skb(skb); 1467 return NULL; 1468 } 1469 1470 uarg->ubuf.callback = msg_zerocopy_callback; 1471 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1472 uarg->len = 1; 1473 uarg->bytelen = size; 1474 uarg->zerocopy = 1; 1475 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1476 refcount_set(&uarg->ubuf.refcnt, 1); 1477 sock_hold(sk); 1478 1479 return &uarg->ubuf; 1480 } 1481 1482 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1483 { 1484 return container_of((void *)uarg, struct sk_buff, cb); 1485 } 1486 1487 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1488 struct ubuf_info *uarg) 1489 { 1490 if (uarg) { 1491 struct ubuf_info_msgzc *uarg_zc; 1492 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1493 u32 bytelen, next; 1494 1495 /* there might be non MSG_ZEROCOPY users */ 1496 if (uarg->callback != msg_zerocopy_callback) 1497 return NULL; 1498 1499 /* realloc only when socket is locked (TCP, UDP cork), 1500 * so uarg->len and sk_zckey access is serialized 1501 */ 1502 if (!sock_owned_by_user(sk)) { 1503 WARN_ON_ONCE(1); 1504 return NULL; 1505 } 1506 1507 uarg_zc = uarg_to_msgzc(uarg); 1508 bytelen = uarg_zc->bytelen + size; 1509 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1510 /* TCP can create new skb to attach new uarg */ 1511 if (sk->sk_type == SOCK_STREAM) 1512 goto new_alloc; 1513 return NULL; 1514 } 1515 1516 next = (u32)atomic_read(&sk->sk_zckey); 1517 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1518 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1519 return NULL; 1520 uarg_zc->len++; 1521 uarg_zc->bytelen = bytelen; 1522 atomic_set(&sk->sk_zckey, ++next); 1523 1524 /* no extra ref when appending to datagram (MSG_MORE) */ 1525 if (sk->sk_type == SOCK_STREAM) 1526 net_zcopy_get(uarg); 1527 1528 return uarg; 1529 } 1530 } 1531 1532 new_alloc: 1533 return msg_zerocopy_alloc(sk, size); 1534 } 1535 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1536 1537 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1538 { 1539 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1540 u32 old_lo, old_hi; 1541 u64 sum_len; 1542 1543 old_lo = serr->ee.ee_info; 1544 old_hi = serr->ee.ee_data; 1545 sum_len = old_hi - old_lo + 1ULL + len; 1546 1547 if (sum_len >= (1ULL << 32)) 1548 return false; 1549 1550 if (lo != old_hi + 1) 1551 return false; 1552 1553 serr->ee.ee_data += len; 1554 return true; 1555 } 1556 1557 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1558 { 1559 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1560 struct sock_exterr_skb *serr; 1561 struct sock *sk = skb->sk; 1562 struct sk_buff_head *q; 1563 unsigned long flags; 1564 bool is_zerocopy; 1565 u32 lo, hi; 1566 u16 len; 1567 1568 mm_unaccount_pinned_pages(&uarg->mmp); 1569 1570 /* if !len, there was only 1 call, and it was aborted 1571 * so do not queue a completion notification 1572 */ 1573 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1574 goto release; 1575 1576 len = uarg->len; 1577 lo = uarg->id; 1578 hi = uarg->id + len - 1; 1579 is_zerocopy = uarg->zerocopy; 1580 1581 serr = SKB_EXT_ERR(skb); 1582 memset(serr, 0, sizeof(*serr)); 1583 serr->ee.ee_errno = 0; 1584 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1585 serr->ee.ee_data = hi; 1586 serr->ee.ee_info = lo; 1587 if (!is_zerocopy) 1588 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1589 1590 q = &sk->sk_error_queue; 1591 spin_lock_irqsave(&q->lock, flags); 1592 tail = skb_peek_tail(q); 1593 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1594 !skb_zerocopy_notify_extend(tail, lo, len)) { 1595 __skb_queue_tail(q, skb); 1596 skb = NULL; 1597 } 1598 spin_unlock_irqrestore(&q->lock, flags); 1599 1600 sk_error_report(sk); 1601 1602 release: 1603 consume_skb(skb); 1604 sock_put(sk); 1605 } 1606 1607 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1608 bool success) 1609 { 1610 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1611 1612 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1613 1614 if (refcount_dec_and_test(&uarg->refcnt)) 1615 __msg_zerocopy_callback(uarg_zc); 1616 } 1617 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1618 1619 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1620 { 1621 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1622 1623 atomic_dec(&sk->sk_zckey); 1624 uarg_to_msgzc(uarg)->len--; 1625 1626 if (have_uref) 1627 msg_zerocopy_callback(NULL, uarg, true); 1628 } 1629 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1630 1631 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1632 struct msghdr *msg, int len, 1633 struct ubuf_info *uarg) 1634 { 1635 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1636 int err, orig_len = skb->len; 1637 1638 /* An skb can only point to one uarg. This edge case happens when 1639 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1640 */ 1641 if (orig_uarg && uarg != orig_uarg) 1642 return -EEXIST; 1643 1644 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1645 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1646 struct sock *save_sk = skb->sk; 1647 1648 /* Streams do not free skb on error. Reset to prev state. */ 1649 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1650 skb->sk = sk; 1651 ___pskb_trim(skb, orig_len); 1652 skb->sk = save_sk; 1653 return err; 1654 } 1655 1656 skb_zcopy_set(skb, uarg, NULL); 1657 return skb->len - orig_len; 1658 } 1659 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1660 1661 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1662 { 1663 int i; 1664 1665 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1666 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1667 skb_frag_ref(skb, i); 1668 } 1669 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1670 1671 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1672 gfp_t gfp_mask) 1673 { 1674 if (skb_zcopy(orig)) { 1675 if (skb_zcopy(nskb)) { 1676 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1677 if (!gfp_mask) { 1678 WARN_ON_ONCE(1); 1679 return -ENOMEM; 1680 } 1681 if (skb_uarg(nskb) == skb_uarg(orig)) 1682 return 0; 1683 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1684 return -EIO; 1685 } 1686 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1687 } 1688 return 0; 1689 } 1690 1691 /** 1692 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1693 * @skb: the skb to modify 1694 * @gfp_mask: allocation priority 1695 * 1696 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1697 * It will copy all frags into kernel and drop the reference 1698 * to userspace pages. 1699 * 1700 * If this function is called from an interrupt gfp_mask() must be 1701 * %GFP_ATOMIC. 1702 * 1703 * Returns 0 on success or a negative error code on failure 1704 * to allocate kernel memory to copy to. 1705 */ 1706 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1707 { 1708 int num_frags = skb_shinfo(skb)->nr_frags; 1709 struct page *page, *head = NULL; 1710 int i, new_frags; 1711 u32 d_off; 1712 1713 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1714 return -EINVAL; 1715 1716 if (!num_frags) 1717 goto release; 1718 1719 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1720 for (i = 0; i < new_frags; i++) { 1721 page = alloc_page(gfp_mask); 1722 if (!page) { 1723 while (head) { 1724 struct page *next = (struct page *)page_private(head); 1725 put_page(head); 1726 head = next; 1727 } 1728 return -ENOMEM; 1729 } 1730 set_page_private(page, (unsigned long)head); 1731 head = page; 1732 } 1733 1734 page = head; 1735 d_off = 0; 1736 for (i = 0; i < num_frags; i++) { 1737 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1738 u32 p_off, p_len, copied; 1739 struct page *p; 1740 u8 *vaddr; 1741 1742 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1743 p, p_off, p_len, copied) { 1744 u32 copy, done = 0; 1745 vaddr = kmap_atomic(p); 1746 1747 while (done < p_len) { 1748 if (d_off == PAGE_SIZE) { 1749 d_off = 0; 1750 page = (struct page *)page_private(page); 1751 } 1752 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1753 memcpy(page_address(page) + d_off, 1754 vaddr + p_off + done, copy); 1755 done += copy; 1756 d_off += copy; 1757 } 1758 kunmap_atomic(vaddr); 1759 } 1760 } 1761 1762 /* skb frags release userspace buffers */ 1763 for (i = 0; i < num_frags; i++) 1764 skb_frag_unref(skb, i); 1765 1766 /* skb frags point to kernel buffers */ 1767 for (i = 0; i < new_frags - 1; i++) { 1768 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1769 head = (struct page *)page_private(head); 1770 } 1771 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1772 skb_shinfo(skb)->nr_frags = new_frags; 1773 1774 release: 1775 skb_zcopy_clear(skb, false); 1776 return 0; 1777 } 1778 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1779 1780 /** 1781 * skb_clone - duplicate an sk_buff 1782 * @skb: buffer to clone 1783 * @gfp_mask: allocation priority 1784 * 1785 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1786 * copies share the same packet data but not structure. The new 1787 * buffer has a reference count of 1. If the allocation fails the 1788 * function returns %NULL otherwise the new buffer is returned. 1789 * 1790 * If this function is called from an interrupt gfp_mask() must be 1791 * %GFP_ATOMIC. 1792 */ 1793 1794 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1795 { 1796 struct sk_buff_fclones *fclones = container_of(skb, 1797 struct sk_buff_fclones, 1798 skb1); 1799 struct sk_buff *n; 1800 1801 if (skb_orphan_frags(skb, gfp_mask)) 1802 return NULL; 1803 1804 if (skb->fclone == SKB_FCLONE_ORIG && 1805 refcount_read(&fclones->fclone_ref) == 1) { 1806 n = &fclones->skb2; 1807 refcount_set(&fclones->fclone_ref, 2); 1808 n->fclone = SKB_FCLONE_CLONE; 1809 } else { 1810 if (skb_pfmemalloc(skb)) 1811 gfp_mask |= __GFP_MEMALLOC; 1812 1813 n = kmem_cache_alloc(skbuff_cache, gfp_mask); 1814 if (!n) 1815 return NULL; 1816 1817 n->fclone = SKB_FCLONE_UNAVAILABLE; 1818 } 1819 1820 return __skb_clone(n, skb); 1821 } 1822 EXPORT_SYMBOL(skb_clone); 1823 1824 void skb_headers_offset_update(struct sk_buff *skb, int off) 1825 { 1826 /* Only adjust this if it actually is csum_start rather than csum */ 1827 if (skb->ip_summed == CHECKSUM_PARTIAL) 1828 skb->csum_start += off; 1829 /* {transport,network,mac}_header and tail are relative to skb->head */ 1830 skb->transport_header += off; 1831 skb->network_header += off; 1832 if (skb_mac_header_was_set(skb)) 1833 skb->mac_header += off; 1834 skb->inner_transport_header += off; 1835 skb->inner_network_header += off; 1836 skb->inner_mac_header += off; 1837 } 1838 EXPORT_SYMBOL(skb_headers_offset_update); 1839 1840 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1841 { 1842 __copy_skb_header(new, old); 1843 1844 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1845 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1846 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1847 } 1848 EXPORT_SYMBOL(skb_copy_header); 1849 1850 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1851 { 1852 if (skb_pfmemalloc(skb)) 1853 return SKB_ALLOC_RX; 1854 return 0; 1855 } 1856 1857 /** 1858 * skb_copy - create private copy of an sk_buff 1859 * @skb: buffer to copy 1860 * @gfp_mask: allocation priority 1861 * 1862 * Make a copy of both an &sk_buff and its data. This is used when the 1863 * caller wishes to modify the data and needs a private copy of the 1864 * data to alter. Returns %NULL on failure or the pointer to the buffer 1865 * on success. The returned buffer has a reference count of 1. 1866 * 1867 * As by-product this function converts non-linear &sk_buff to linear 1868 * one, so that &sk_buff becomes completely private and caller is allowed 1869 * to modify all the data of returned buffer. This means that this 1870 * function is not recommended for use in circumstances when only 1871 * header is going to be modified. Use pskb_copy() instead. 1872 */ 1873 1874 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1875 { 1876 int headerlen = skb_headroom(skb); 1877 unsigned int size = skb_end_offset(skb) + skb->data_len; 1878 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1879 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1880 1881 if (!n) 1882 return NULL; 1883 1884 /* Set the data pointer */ 1885 skb_reserve(n, headerlen); 1886 /* Set the tail pointer and length */ 1887 skb_put(n, skb->len); 1888 1889 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1890 1891 skb_copy_header(n, skb); 1892 return n; 1893 } 1894 EXPORT_SYMBOL(skb_copy); 1895 1896 /** 1897 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1898 * @skb: buffer to copy 1899 * @headroom: headroom of new skb 1900 * @gfp_mask: allocation priority 1901 * @fclone: if true allocate the copy of the skb from the fclone 1902 * cache instead of the head cache; it is recommended to set this 1903 * to true for the cases where the copy will likely be cloned 1904 * 1905 * Make a copy of both an &sk_buff and part of its data, located 1906 * in header. Fragmented data remain shared. This is used when 1907 * the caller wishes to modify only header of &sk_buff and needs 1908 * private copy of the header to alter. Returns %NULL on failure 1909 * or the pointer to the buffer on success. 1910 * The returned buffer has a reference count of 1. 1911 */ 1912 1913 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1914 gfp_t gfp_mask, bool fclone) 1915 { 1916 unsigned int size = skb_headlen(skb) + headroom; 1917 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1918 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1919 1920 if (!n) 1921 goto out; 1922 1923 /* Set the data pointer */ 1924 skb_reserve(n, headroom); 1925 /* Set the tail pointer and length */ 1926 skb_put(n, skb_headlen(skb)); 1927 /* Copy the bytes */ 1928 skb_copy_from_linear_data(skb, n->data, n->len); 1929 1930 n->truesize += skb->data_len; 1931 n->data_len = skb->data_len; 1932 n->len = skb->len; 1933 1934 if (skb_shinfo(skb)->nr_frags) { 1935 int i; 1936 1937 if (skb_orphan_frags(skb, gfp_mask) || 1938 skb_zerocopy_clone(n, skb, gfp_mask)) { 1939 kfree_skb(n); 1940 n = NULL; 1941 goto out; 1942 } 1943 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1944 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1945 skb_frag_ref(skb, i); 1946 } 1947 skb_shinfo(n)->nr_frags = i; 1948 } 1949 1950 if (skb_has_frag_list(skb)) { 1951 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1952 skb_clone_fraglist(n); 1953 } 1954 1955 skb_copy_header(n, skb); 1956 out: 1957 return n; 1958 } 1959 EXPORT_SYMBOL(__pskb_copy_fclone); 1960 1961 /** 1962 * pskb_expand_head - reallocate header of &sk_buff 1963 * @skb: buffer to reallocate 1964 * @nhead: room to add at head 1965 * @ntail: room to add at tail 1966 * @gfp_mask: allocation priority 1967 * 1968 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1969 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1970 * reference count of 1. Returns zero in the case of success or error, 1971 * if expansion failed. In the last case, &sk_buff is not changed. 1972 * 1973 * All the pointers pointing into skb header may change and must be 1974 * reloaded after call to this function. 1975 */ 1976 1977 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1978 gfp_t gfp_mask) 1979 { 1980 unsigned int osize = skb_end_offset(skb); 1981 unsigned int size = osize + nhead + ntail; 1982 long off; 1983 u8 *data; 1984 int i; 1985 1986 BUG_ON(nhead < 0); 1987 1988 BUG_ON(skb_shared(skb)); 1989 1990 skb_zcopy_downgrade_managed(skb); 1991 1992 if (skb_pfmemalloc(skb)) 1993 gfp_mask |= __GFP_MEMALLOC; 1994 1995 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 1996 if (!data) 1997 goto nodata; 1998 size = SKB_WITH_OVERHEAD(size); 1999 2000 /* Copy only real data... and, alas, header. This should be 2001 * optimized for the cases when header is void. 2002 */ 2003 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2004 2005 memcpy((struct skb_shared_info *)(data + size), 2006 skb_shinfo(skb), 2007 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2008 2009 /* 2010 * if shinfo is shared we must drop the old head gracefully, but if it 2011 * is not we can just drop the old head and let the existing refcount 2012 * be since all we did is relocate the values 2013 */ 2014 if (skb_cloned(skb)) { 2015 if (skb_orphan_frags(skb, gfp_mask)) 2016 goto nofrags; 2017 if (skb_zcopy(skb)) 2018 refcount_inc(&skb_uarg(skb)->refcnt); 2019 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2020 skb_frag_ref(skb, i); 2021 2022 if (skb_has_frag_list(skb)) 2023 skb_clone_fraglist(skb); 2024 2025 skb_release_data(skb, SKB_CONSUMED); 2026 } else { 2027 skb_free_head(skb); 2028 } 2029 off = (data + nhead) - skb->head; 2030 2031 skb->head = data; 2032 skb->head_frag = 0; 2033 skb->data += off; 2034 2035 skb_set_end_offset(skb, size); 2036 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2037 off = nhead; 2038 #endif 2039 skb->tail += off; 2040 skb_headers_offset_update(skb, nhead); 2041 skb->cloned = 0; 2042 skb->hdr_len = 0; 2043 skb->nohdr = 0; 2044 atomic_set(&skb_shinfo(skb)->dataref, 1); 2045 2046 skb_metadata_clear(skb); 2047 2048 /* It is not generally safe to change skb->truesize. 2049 * For the moment, we really care of rx path, or 2050 * when skb is orphaned (not attached to a socket). 2051 */ 2052 if (!skb->sk || skb->destructor == sock_edemux) 2053 skb->truesize += size - osize; 2054 2055 return 0; 2056 2057 nofrags: 2058 skb_kfree_head(data, size); 2059 nodata: 2060 return -ENOMEM; 2061 } 2062 EXPORT_SYMBOL(pskb_expand_head); 2063 2064 /* Make private copy of skb with writable head and some headroom */ 2065 2066 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2067 { 2068 struct sk_buff *skb2; 2069 int delta = headroom - skb_headroom(skb); 2070 2071 if (delta <= 0) 2072 skb2 = pskb_copy(skb, GFP_ATOMIC); 2073 else { 2074 skb2 = skb_clone(skb, GFP_ATOMIC); 2075 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2076 GFP_ATOMIC)) { 2077 kfree_skb(skb2); 2078 skb2 = NULL; 2079 } 2080 } 2081 return skb2; 2082 } 2083 EXPORT_SYMBOL(skb_realloc_headroom); 2084 2085 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2086 { 2087 unsigned int saved_end_offset, saved_truesize; 2088 struct skb_shared_info *shinfo; 2089 int res; 2090 2091 saved_end_offset = skb_end_offset(skb); 2092 saved_truesize = skb->truesize; 2093 2094 res = pskb_expand_head(skb, 0, 0, pri); 2095 if (res) 2096 return res; 2097 2098 skb->truesize = saved_truesize; 2099 2100 if (likely(skb_end_offset(skb) == saved_end_offset)) 2101 return 0; 2102 2103 shinfo = skb_shinfo(skb); 2104 2105 /* We are about to change back skb->end, 2106 * we need to move skb_shinfo() to its new location. 2107 */ 2108 memmove(skb->head + saved_end_offset, 2109 shinfo, 2110 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2111 2112 skb_set_end_offset(skb, saved_end_offset); 2113 2114 return 0; 2115 } 2116 2117 /** 2118 * skb_expand_head - reallocate header of &sk_buff 2119 * @skb: buffer to reallocate 2120 * @headroom: needed headroom 2121 * 2122 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2123 * if possible; copies skb->sk to new skb as needed 2124 * and frees original skb in case of failures. 2125 * 2126 * It expect increased headroom and generates warning otherwise. 2127 */ 2128 2129 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2130 { 2131 int delta = headroom - skb_headroom(skb); 2132 int osize = skb_end_offset(skb); 2133 struct sock *sk = skb->sk; 2134 2135 if (WARN_ONCE(delta <= 0, 2136 "%s is expecting an increase in the headroom", __func__)) 2137 return skb; 2138 2139 delta = SKB_DATA_ALIGN(delta); 2140 /* pskb_expand_head() might crash, if skb is shared. */ 2141 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2142 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2143 2144 if (unlikely(!nskb)) 2145 goto fail; 2146 2147 if (sk) 2148 skb_set_owner_w(nskb, sk); 2149 consume_skb(skb); 2150 skb = nskb; 2151 } 2152 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2153 goto fail; 2154 2155 if (sk && is_skb_wmem(skb)) { 2156 delta = skb_end_offset(skb) - osize; 2157 refcount_add(delta, &sk->sk_wmem_alloc); 2158 skb->truesize += delta; 2159 } 2160 return skb; 2161 2162 fail: 2163 kfree_skb(skb); 2164 return NULL; 2165 } 2166 EXPORT_SYMBOL(skb_expand_head); 2167 2168 /** 2169 * skb_copy_expand - copy and expand sk_buff 2170 * @skb: buffer to copy 2171 * @newheadroom: new free bytes at head 2172 * @newtailroom: new free bytes at tail 2173 * @gfp_mask: allocation priority 2174 * 2175 * Make a copy of both an &sk_buff and its data and while doing so 2176 * allocate additional space. 2177 * 2178 * This is used when the caller wishes to modify the data and needs a 2179 * private copy of the data to alter as well as more space for new fields. 2180 * Returns %NULL on failure or the pointer to the buffer 2181 * on success. The returned buffer has a reference count of 1. 2182 * 2183 * You must pass %GFP_ATOMIC as the allocation priority if this function 2184 * is called from an interrupt. 2185 */ 2186 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2187 int newheadroom, int newtailroom, 2188 gfp_t gfp_mask) 2189 { 2190 /* 2191 * Allocate the copy buffer 2192 */ 2193 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2194 gfp_mask, skb_alloc_rx_flag(skb), 2195 NUMA_NO_NODE); 2196 int oldheadroom = skb_headroom(skb); 2197 int head_copy_len, head_copy_off; 2198 2199 if (!n) 2200 return NULL; 2201 2202 skb_reserve(n, newheadroom); 2203 2204 /* Set the tail pointer and length */ 2205 skb_put(n, skb->len); 2206 2207 head_copy_len = oldheadroom; 2208 head_copy_off = 0; 2209 if (newheadroom <= head_copy_len) 2210 head_copy_len = newheadroom; 2211 else 2212 head_copy_off = newheadroom - head_copy_len; 2213 2214 /* Copy the linear header and data. */ 2215 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2216 skb->len + head_copy_len)); 2217 2218 skb_copy_header(n, skb); 2219 2220 skb_headers_offset_update(n, newheadroom - oldheadroom); 2221 2222 return n; 2223 } 2224 EXPORT_SYMBOL(skb_copy_expand); 2225 2226 /** 2227 * __skb_pad - zero pad the tail of an skb 2228 * @skb: buffer to pad 2229 * @pad: space to pad 2230 * @free_on_error: free buffer on error 2231 * 2232 * Ensure that a buffer is followed by a padding area that is zero 2233 * filled. Used by network drivers which may DMA or transfer data 2234 * beyond the buffer end onto the wire. 2235 * 2236 * May return error in out of memory cases. The skb is freed on error 2237 * if @free_on_error is true. 2238 */ 2239 2240 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2241 { 2242 int err; 2243 int ntail; 2244 2245 /* If the skbuff is non linear tailroom is always zero.. */ 2246 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2247 memset(skb->data+skb->len, 0, pad); 2248 return 0; 2249 } 2250 2251 ntail = skb->data_len + pad - (skb->end - skb->tail); 2252 if (likely(skb_cloned(skb) || ntail > 0)) { 2253 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2254 if (unlikely(err)) 2255 goto free_skb; 2256 } 2257 2258 /* FIXME: The use of this function with non-linear skb's really needs 2259 * to be audited. 2260 */ 2261 err = skb_linearize(skb); 2262 if (unlikely(err)) 2263 goto free_skb; 2264 2265 memset(skb->data + skb->len, 0, pad); 2266 return 0; 2267 2268 free_skb: 2269 if (free_on_error) 2270 kfree_skb(skb); 2271 return err; 2272 } 2273 EXPORT_SYMBOL(__skb_pad); 2274 2275 /** 2276 * pskb_put - add data to the tail of a potentially fragmented buffer 2277 * @skb: start of the buffer to use 2278 * @tail: tail fragment of the buffer to use 2279 * @len: amount of data to add 2280 * 2281 * This function extends the used data area of the potentially 2282 * fragmented buffer. @tail must be the last fragment of @skb -- or 2283 * @skb itself. If this would exceed the total buffer size the kernel 2284 * will panic. A pointer to the first byte of the extra data is 2285 * returned. 2286 */ 2287 2288 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2289 { 2290 if (tail != skb) { 2291 skb->data_len += len; 2292 skb->len += len; 2293 } 2294 return skb_put(tail, len); 2295 } 2296 EXPORT_SYMBOL_GPL(pskb_put); 2297 2298 /** 2299 * skb_put - add data to a buffer 2300 * @skb: buffer to use 2301 * @len: amount of data to add 2302 * 2303 * This function extends the used data area of the buffer. If this would 2304 * exceed the total buffer size the kernel will panic. A pointer to the 2305 * first byte of the extra data is returned. 2306 */ 2307 void *skb_put(struct sk_buff *skb, unsigned int len) 2308 { 2309 void *tmp = skb_tail_pointer(skb); 2310 SKB_LINEAR_ASSERT(skb); 2311 skb->tail += len; 2312 skb->len += len; 2313 if (unlikely(skb->tail > skb->end)) 2314 skb_over_panic(skb, len, __builtin_return_address(0)); 2315 return tmp; 2316 } 2317 EXPORT_SYMBOL(skb_put); 2318 2319 /** 2320 * skb_push - add data to the start of a buffer 2321 * @skb: buffer to use 2322 * @len: amount of data to add 2323 * 2324 * This function extends the used data area of the buffer at the buffer 2325 * start. If this would exceed the total buffer headroom the kernel will 2326 * panic. A pointer to the first byte of the extra data is returned. 2327 */ 2328 void *skb_push(struct sk_buff *skb, unsigned int len) 2329 { 2330 skb->data -= len; 2331 skb->len += len; 2332 if (unlikely(skb->data < skb->head)) 2333 skb_under_panic(skb, len, __builtin_return_address(0)); 2334 return skb->data; 2335 } 2336 EXPORT_SYMBOL(skb_push); 2337 2338 /** 2339 * skb_pull - remove data from the start of a buffer 2340 * @skb: buffer to use 2341 * @len: amount of data to remove 2342 * 2343 * This function removes data from the start of a buffer, returning 2344 * the memory to the headroom. A pointer to the next data in the buffer 2345 * is returned. Once the data has been pulled future pushes will overwrite 2346 * the old data. 2347 */ 2348 void *skb_pull(struct sk_buff *skb, unsigned int len) 2349 { 2350 return skb_pull_inline(skb, len); 2351 } 2352 EXPORT_SYMBOL(skb_pull); 2353 2354 /** 2355 * skb_pull_data - remove data from the start of a buffer returning its 2356 * original position. 2357 * @skb: buffer to use 2358 * @len: amount of data to remove 2359 * 2360 * This function removes data from the start of a buffer, returning 2361 * the memory to the headroom. A pointer to the original data in the buffer 2362 * is returned after checking if there is enough data to pull. Once the 2363 * data has been pulled future pushes will overwrite the old data. 2364 */ 2365 void *skb_pull_data(struct sk_buff *skb, size_t len) 2366 { 2367 void *data = skb->data; 2368 2369 if (skb->len < len) 2370 return NULL; 2371 2372 skb_pull(skb, len); 2373 2374 return data; 2375 } 2376 EXPORT_SYMBOL(skb_pull_data); 2377 2378 /** 2379 * skb_trim - remove end from a buffer 2380 * @skb: buffer to alter 2381 * @len: new length 2382 * 2383 * Cut the length of a buffer down by removing data from the tail. If 2384 * the buffer is already under the length specified it is not modified. 2385 * The skb must be linear. 2386 */ 2387 void skb_trim(struct sk_buff *skb, unsigned int len) 2388 { 2389 if (skb->len > len) 2390 __skb_trim(skb, len); 2391 } 2392 EXPORT_SYMBOL(skb_trim); 2393 2394 /* Trims skb to length len. It can change skb pointers. 2395 */ 2396 2397 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2398 { 2399 struct sk_buff **fragp; 2400 struct sk_buff *frag; 2401 int offset = skb_headlen(skb); 2402 int nfrags = skb_shinfo(skb)->nr_frags; 2403 int i; 2404 int err; 2405 2406 if (skb_cloned(skb) && 2407 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2408 return err; 2409 2410 i = 0; 2411 if (offset >= len) 2412 goto drop_pages; 2413 2414 for (; i < nfrags; i++) { 2415 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2416 2417 if (end < len) { 2418 offset = end; 2419 continue; 2420 } 2421 2422 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2423 2424 drop_pages: 2425 skb_shinfo(skb)->nr_frags = i; 2426 2427 for (; i < nfrags; i++) 2428 skb_frag_unref(skb, i); 2429 2430 if (skb_has_frag_list(skb)) 2431 skb_drop_fraglist(skb); 2432 goto done; 2433 } 2434 2435 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2436 fragp = &frag->next) { 2437 int end = offset + frag->len; 2438 2439 if (skb_shared(frag)) { 2440 struct sk_buff *nfrag; 2441 2442 nfrag = skb_clone(frag, GFP_ATOMIC); 2443 if (unlikely(!nfrag)) 2444 return -ENOMEM; 2445 2446 nfrag->next = frag->next; 2447 consume_skb(frag); 2448 frag = nfrag; 2449 *fragp = frag; 2450 } 2451 2452 if (end < len) { 2453 offset = end; 2454 continue; 2455 } 2456 2457 if (end > len && 2458 unlikely((err = pskb_trim(frag, len - offset)))) 2459 return err; 2460 2461 if (frag->next) 2462 skb_drop_list(&frag->next); 2463 break; 2464 } 2465 2466 done: 2467 if (len > skb_headlen(skb)) { 2468 skb->data_len -= skb->len - len; 2469 skb->len = len; 2470 } else { 2471 skb->len = len; 2472 skb->data_len = 0; 2473 skb_set_tail_pointer(skb, len); 2474 } 2475 2476 if (!skb->sk || skb->destructor == sock_edemux) 2477 skb_condense(skb); 2478 return 0; 2479 } 2480 EXPORT_SYMBOL(___pskb_trim); 2481 2482 /* Note : use pskb_trim_rcsum() instead of calling this directly 2483 */ 2484 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2485 { 2486 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2487 int delta = skb->len - len; 2488 2489 skb->csum = csum_block_sub(skb->csum, 2490 skb_checksum(skb, len, delta, 0), 2491 len); 2492 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2493 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2494 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2495 2496 if (offset + sizeof(__sum16) > hdlen) 2497 return -EINVAL; 2498 } 2499 return __pskb_trim(skb, len); 2500 } 2501 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2502 2503 /** 2504 * __pskb_pull_tail - advance tail of skb header 2505 * @skb: buffer to reallocate 2506 * @delta: number of bytes to advance tail 2507 * 2508 * The function makes a sense only on a fragmented &sk_buff, 2509 * it expands header moving its tail forward and copying necessary 2510 * data from fragmented part. 2511 * 2512 * &sk_buff MUST have reference count of 1. 2513 * 2514 * Returns %NULL (and &sk_buff does not change) if pull failed 2515 * or value of new tail of skb in the case of success. 2516 * 2517 * All the pointers pointing into skb header may change and must be 2518 * reloaded after call to this function. 2519 */ 2520 2521 /* Moves tail of skb head forward, copying data from fragmented part, 2522 * when it is necessary. 2523 * 1. It may fail due to malloc failure. 2524 * 2. It may change skb pointers. 2525 * 2526 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2527 */ 2528 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2529 { 2530 /* If skb has not enough free space at tail, get new one 2531 * plus 128 bytes for future expansions. If we have enough 2532 * room at tail, reallocate without expansion only if skb is cloned. 2533 */ 2534 int i, k, eat = (skb->tail + delta) - skb->end; 2535 2536 if (eat > 0 || skb_cloned(skb)) { 2537 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2538 GFP_ATOMIC)) 2539 return NULL; 2540 } 2541 2542 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2543 skb_tail_pointer(skb), delta)); 2544 2545 /* Optimization: no fragments, no reasons to preestimate 2546 * size of pulled pages. Superb. 2547 */ 2548 if (!skb_has_frag_list(skb)) 2549 goto pull_pages; 2550 2551 /* Estimate size of pulled pages. */ 2552 eat = delta; 2553 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2554 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2555 2556 if (size >= eat) 2557 goto pull_pages; 2558 eat -= size; 2559 } 2560 2561 /* If we need update frag list, we are in troubles. 2562 * Certainly, it is possible to add an offset to skb data, 2563 * but taking into account that pulling is expected to 2564 * be very rare operation, it is worth to fight against 2565 * further bloating skb head and crucify ourselves here instead. 2566 * Pure masohism, indeed. 8)8) 2567 */ 2568 if (eat) { 2569 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2570 struct sk_buff *clone = NULL; 2571 struct sk_buff *insp = NULL; 2572 2573 do { 2574 if (list->len <= eat) { 2575 /* Eaten as whole. */ 2576 eat -= list->len; 2577 list = list->next; 2578 insp = list; 2579 } else { 2580 /* Eaten partially. */ 2581 if (skb_is_gso(skb) && !list->head_frag && 2582 skb_headlen(list)) 2583 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2584 2585 if (skb_shared(list)) { 2586 /* Sucks! We need to fork list. :-( */ 2587 clone = skb_clone(list, GFP_ATOMIC); 2588 if (!clone) 2589 return NULL; 2590 insp = list->next; 2591 list = clone; 2592 } else { 2593 /* This may be pulled without 2594 * problems. */ 2595 insp = list; 2596 } 2597 if (!pskb_pull(list, eat)) { 2598 kfree_skb(clone); 2599 return NULL; 2600 } 2601 break; 2602 } 2603 } while (eat); 2604 2605 /* Free pulled out fragments. */ 2606 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2607 skb_shinfo(skb)->frag_list = list->next; 2608 consume_skb(list); 2609 } 2610 /* And insert new clone at head. */ 2611 if (clone) { 2612 clone->next = list; 2613 skb_shinfo(skb)->frag_list = clone; 2614 } 2615 } 2616 /* Success! Now we may commit changes to skb data. */ 2617 2618 pull_pages: 2619 eat = delta; 2620 k = 0; 2621 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2622 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2623 2624 if (size <= eat) { 2625 skb_frag_unref(skb, i); 2626 eat -= size; 2627 } else { 2628 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2629 2630 *frag = skb_shinfo(skb)->frags[i]; 2631 if (eat) { 2632 skb_frag_off_add(frag, eat); 2633 skb_frag_size_sub(frag, eat); 2634 if (!i) 2635 goto end; 2636 eat = 0; 2637 } 2638 k++; 2639 } 2640 } 2641 skb_shinfo(skb)->nr_frags = k; 2642 2643 end: 2644 skb->tail += delta; 2645 skb->data_len -= delta; 2646 2647 if (!skb->data_len) 2648 skb_zcopy_clear(skb, false); 2649 2650 return skb_tail_pointer(skb); 2651 } 2652 EXPORT_SYMBOL(__pskb_pull_tail); 2653 2654 /** 2655 * skb_copy_bits - copy bits from skb to kernel buffer 2656 * @skb: source skb 2657 * @offset: offset in source 2658 * @to: destination buffer 2659 * @len: number of bytes to copy 2660 * 2661 * Copy the specified number of bytes from the source skb to the 2662 * destination buffer. 2663 * 2664 * CAUTION ! : 2665 * If its prototype is ever changed, 2666 * check arch/{*}/net/{*}.S files, 2667 * since it is called from BPF assembly code. 2668 */ 2669 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2670 { 2671 int start = skb_headlen(skb); 2672 struct sk_buff *frag_iter; 2673 int i, copy; 2674 2675 if (offset > (int)skb->len - len) 2676 goto fault; 2677 2678 /* Copy header. */ 2679 if ((copy = start - offset) > 0) { 2680 if (copy > len) 2681 copy = len; 2682 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2683 if ((len -= copy) == 0) 2684 return 0; 2685 offset += copy; 2686 to += copy; 2687 } 2688 2689 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2690 int end; 2691 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2692 2693 WARN_ON(start > offset + len); 2694 2695 end = start + skb_frag_size(f); 2696 if ((copy = end - offset) > 0) { 2697 u32 p_off, p_len, copied; 2698 struct page *p; 2699 u8 *vaddr; 2700 2701 if (copy > len) 2702 copy = len; 2703 2704 skb_frag_foreach_page(f, 2705 skb_frag_off(f) + offset - start, 2706 copy, p, p_off, p_len, copied) { 2707 vaddr = kmap_atomic(p); 2708 memcpy(to + copied, vaddr + p_off, p_len); 2709 kunmap_atomic(vaddr); 2710 } 2711 2712 if ((len -= copy) == 0) 2713 return 0; 2714 offset += copy; 2715 to += copy; 2716 } 2717 start = end; 2718 } 2719 2720 skb_walk_frags(skb, frag_iter) { 2721 int end; 2722 2723 WARN_ON(start > offset + len); 2724 2725 end = start + frag_iter->len; 2726 if ((copy = end - offset) > 0) { 2727 if (copy > len) 2728 copy = len; 2729 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2730 goto fault; 2731 if ((len -= copy) == 0) 2732 return 0; 2733 offset += copy; 2734 to += copy; 2735 } 2736 start = end; 2737 } 2738 2739 if (!len) 2740 return 0; 2741 2742 fault: 2743 return -EFAULT; 2744 } 2745 EXPORT_SYMBOL(skb_copy_bits); 2746 2747 /* 2748 * Callback from splice_to_pipe(), if we need to release some pages 2749 * at the end of the spd in case we error'ed out in filling the pipe. 2750 */ 2751 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2752 { 2753 put_page(spd->pages[i]); 2754 } 2755 2756 static struct page *linear_to_page(struct page *page, unsigned int *len, 2757 unsigned int *offset, 2758 struct sock *sk) 2759 { 2760 struct page_frag *pfrag = sk_page_frag(sk); 2761 2762 if (!sk_page_frag_refill(sk, pfrag)) 2763 return NULL; 2764 2765 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2766 2767 memcpy(page_address(pfrag->page) + pfrag->offset, 2768 page_address(page) + *offset, *len); 2769 *offset = pfrag->offset; 2770 pfrag->offset += *len; 2771 2772 return pfrag->page; 2773 } 2774 2775 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2776 struct page *page, 2777 unsigned int offset) 2778 { 2779 return spd->nr_pages && 2780 spd->pages[spd->nr_pages - 1] == page && 2781 (spd->partial[spd->nr_pages - 1].offset + 2782 spd->partial[spd->nr_pages - 1].len == offset); 2783 } 2784 2785 /* 2786 * Fill page/offset/length into spd, if it can hold more pages. 2787 */ 2788 static bool spd_fill_page(struct splice_pipe_desc *spd, 2789 struct pipe_inode_info *pipe, struct page *page, 2790 unsigned int *len, unsigned int offset, 2791 bool linear, 2792 struct sock *sk) 2793 { 2794 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2795 return true; 2796 2797 if (linear) { 2798 page = linear_to_page(page, len, &offset, sk); 2799 if (!page) 2800 return true; 2801 } 2802 if (spd_can_coalesce(spd, page, offset)) { 2803 spd->partial[spd->nr_pages - 1].len += *len; 2804 return false; 2805 } 2806 get_page(page); 2807 spd->pages[spd->nr_pages] = page; 2808 spd->partial[spd->nr_pages].len = *len; 2809 spd->partial[spd->nr_pages].offset = offset; 2810 spd->nr_pages++; 2811 2812 return false; 2813 } 2814 2815 static bool __splice_segment(struct page *page, unsigned int poff, 2816 unsigned int plen, unsigned int *off, 2817 unsigned int *len, 2818 struct splice_pipe_desc *spd, bool linear, 2819 struct sock *sk, 2820 struct pipe_inode_info *pipe) 2821 { 2822 if (!*len) 2823 return true; 2824 2825 /* skip this segment if already processed */ 2826 if (*off >= plen) { 2827 *off -= plen; 2828 return false; 2829 } 2830 2831 /* ignore any bits we already processed */ 2832 poff += *off; 2833 plen -= *off; 2834 *off = 0; 2835 2836 do { 2837 unsigned int flen = min(*len, plen); 2838 2839 if (spd_fill_page(spd, pipe, page, &flen, poff, 2840 linear, sk)) 2841 return true; 2842 poff += flen; 2843 plen -= flen; 2844 *len -= flen; 2845 } while (*len && plen); 2846 2847 return false; 2848 } 2849 2850 /* 2851 * Map linear and fragment data from the skb to spd. It reports true if the 2852 * pipe is full or if we already spliced the requested length. 2853 */ 2854 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2855 unsigned int *offset, unsigned int *len, 2856 struct splice_pipe_desc *spd, struct sock *sk) 2857 { 2858 int seg; 2859 struct sk_buff *iter; 2860 2861 /* map the linear part : 2862 * If skb->head_frag is set, this 'linear' part is backed by a 2863 * fragment, and if the head is not shared with any clones then 2864 * we can avoid a copy since we own the head portion of this page. 2865 */ 2866 if (__splice_segment(virt_to_page(skb->data), 2867 (unsigned long) skb->data & (PAGE_SIZE - 1), 2868 skb_headlen(skb), 2869 offset, len, spd, 2870 skb_head_is_locked(skb), 2871 sk, pipe)) 2872 return true; 2873 2874 /* 2875 * then map the fragments 2876 */ 2877 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2878 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2879 2880 if (__splice_segment(skb_frag_page(f), 2881 skb_frag_off(f), skb_frag_size(f), 2882 offset, len, spd, false, sk, pipe)) 2883 return true; 2884 } 2885 2886 skb_walk_frags(skb, iter) { 2887 if (*offset >= iter->len) { 2888 *offset -= iter->len; 2889 continue; 2890 } 2891 /* __skb_splice_bits() only fails if the output has no room 2892 * left, so no point in going over the frag_list for the error 2893 * case. 2894 */ 2895 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2896 return true; 2897 } 2898 2899 return false; 2900 } 2901 2902 /* 2903 * Map data from the skb to a pipe. Should handle both the linear part, 2904 * the fragments, and the frag list. 2905 */ 2906 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2907 struct pipe_inode_info *pipe, unsigned int tlen, 2908 unsigned int flags) 2909 { 2910 struct partial_page partial[MAX_SKB_FRAGS]; 2911 struct page *pages[MAX_SKB_FRAGS]; 2912 struct splice_pipe_desc spd = { 2913 .pages = pages, 2914 .partial = partial, 2915 .nr_pages_max = MAX_SKB_FRAGS, 2916 .ops = &nosteal_pipe_buf_ops, 2917 .spd_release = sock_spd_release, 2918 }; 2919 int ret = 0; 2920 2921 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2922 2923 if (spd.nr_pages) 2924 ret = splice_to_pipe(pipe, &spd); 2925 2926 return ret; 2927 } 2928 EXPORT_SYMBOL_GPL(skb_splice_bits); 2929 2930 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2931 struct kvec *vec, size_t num, size_t size) 2932 { 2933 struct socket *sock = sk->sk_socket; 2934 2935 if (!sock) 2936 return -EINVAL; 2937 return kernel_sendmsg(sock, msg, vec, num, size); 2938 } 2939 2940 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2941 size_t size, int flags) 2942 { 2943 struct socket *sock = sk->sk_socket; 2944 2945 if (!sock) 2946 return -EINVAL; 2947 return kernel_sendpage(sock, page, offset, size, flags); 2948 } 2949 2950 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2951 struct kvec *vec, size_t num, size_t size); 2952 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2953 size_t size, int flags); 2954 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2955 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2956 { 2957 unsigned int orig_len = len; 2958 struct sk_buff *head = skb; 2959 unsigned short fragidx; 2960 int slen, ret; 2961 2962 do_frag_list: 2963 2964 /* Deal with head data */ 2965 while (offset < skb_headlen(skb) && len) { 2966 struct kvec kv; 2967 struct msghdr msg; 2968 2969 slen = min_t(int, len, skb_headlen(skb) - offset); 2970 kv.iov_base = skb->data + offset; 2971 kv.iov_len = slen; 2972 memset(&msg, 0, sizeof(msg)); 2973 msg.msg_flags = MSG_DONTWAIT; 2974 2975 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2976 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2977 if (ret <= 0) 2978 goto error; 2979 2980 offset += ret; 2981 len -= ret; 2982 } 2983 2984 /* All the data was skb head? */ 2985 if (!len) 2986 goto out; 2987 2988 /* Make offset relative to start of frags */ 2989 offset -= skb_headlen(skb); 2990 2991 /* Find where we are in frag list */ 2992 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2993 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2994 2995 if (offset < skb_frag_size(frag)) 2996 break; 2997 2998 offset -= skb_frag_size(frag); 2999 } 3000 3001 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3002 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3003 3004 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3005 3006 while (slen) { 3007 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 3008 sendpage_unlocked, sk, 3009 skb_frag_page(frag), 3010 skb_frag_off(frag) + offset, 3011 slen, MSG_DONTWAIT); 3012 if (ret <= 0) 3013 goto error; 3014 3015 len -= ret; 3016 offset += ret; 3017 slen -= ret; 3018 } 3019 3020 offset = 0; 3021 } 3022 3023 if (len) { 3024 /* Process any frag lists */ 3025 3026 if (skb == head) { 3027 if (skb_has_frag_list(skb)) { 3028 skb = skb_shinfo(skb)->frag_list; 3029 goto do_frag_list; 3030 } 3031 } else if (skb->next) { 3032 skb = skb->next; 3033 goto do_frag_list; 3034 } 3035 } 3036 3037 out: 3038 return orig_len - len; 3039 3040 error: 3041 return orig_len == len ? ret : orig_len - len; 3042 } 3043 3044 /* Send skb data on a socket. Socket must be locked. */ 3045 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3046 int len) 3047 { 3048 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 3049 kernel_sendpage_locked); 3050 } 3051 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3052 3053 /* Send skb data on a socket. Socket must be unlocked. */ 3054 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3055 { 3056 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 3057 sendpage_unlocked); 3058 } 3059 3060 /** 3061 * skb_store_bits - store bits from kernel buffer to skb 3062 * @skb: destination buffer 3063 * @offset: offset in destination 3064 * @from: source buffer 3065 * @len: number of bytes to copy 3066 * 3067 * Copy the specified number of bytes from the source buffer to the 3068 * destination skb. This function handles all the messy bits of 3069 * traversing fragment lists and such. 3070 */ 3071 3072 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3073 { 3074 int start = skb_headlen(skb); 3075 struct sk_buff *frag_iter; 3076 int i, copy; 3077 3078 if (offset > (int)skb->len - len) 3079 goto fault; 3080 3081 if ((copy = start - offset) > 0) { 3082 if (copy > len) 3083 copy = len; 3084 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3085 if ((len -= copy) == 0) 3086 return 0; 3087 offset += copy; 3088 from += copy; 3089 } 3090 3091 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3092 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3093 int end; 3094 3095 WARN_ON(start > offset + len); 3096 3097 end = start + skb_frag_size(frag); 3098 if ((copy = end - offset) > 0) { 3099 u32 p_off, p_len, copied; 3100 struct page *p; 3101 u8 *vaddr; 3102 3103 if (copy > len) 3104 copy = len; 3105 3106 skb_frag_foreach_page(frag, 3107 skb_frag_off(frag) + offset - start, 3108 copy, p, p_off, p_len, copied) { 3109 vaddr = kmap_atomic(p); 3110 memcpy(vaddr + p_off, from + copied, p_len); 3111 kunmap_atomic(vaddr); 3112 } 3113 3114 if ((len -= copy) == 0) 3115 return 0; 3116 offset += copy; 3117 from += copy; 3118 } 3119 start = end; 3120 } 3121 3122 skb_walk_frags(skb, frag_iter) { 3123 int end; 3124 3125 WARN_ON(start > offset + len); 3126 3127 end = start + frag_iter->len; 3128 if ((copy = end - offset) > 0) { 3129 if (copy > len) 3130 copy = len; 3131 if (skb_store_bits(frag_iter, offset - start, 3132 from, copy)) 3133 goto fault; 3134 if ((len -= copy) == 0) 3135 return 0; 3136 offset += copy; 3137 from += copy; 3138 } 3139 start = end; 3140 } 3141 if (!len) 3142 return 0; 3143 3144 fault: 3145 return -EFAULT; 3146 } 3147 EXPORT_SYMBOL(skb_store_bits); 3148 3149 /* Checksum skb data. */ 3150 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3151 __wsum csum, const struct skb_checksum_ops *ops) 3152 { 3153 int start = skb_headlen(skb); 3154 int i, copy = start - offset; 3155 struct sk_buff *frag_iter; 3156 int pos = 0; 3157 3158 /* Checksum header. */ 3159 if (copy > 0) { 3160 if (copy > len) 3161 copy = len; 3162 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3163 skb->data + offset, copy, csum); 3164 if ((len -= copy) == 0) 3165 return csum; 3166 offset += copy; 3167 pos = copy; 3168 } 3169 3170 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3171 int end; 3172 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3173 3174 WARN_ON(start > offset + len); 3175 3176 end = start + skb_frag_size(frag); 3177 if ((copy = end - offset) > 0) { 3178 u32 p_off, p_len, copied; 3179 struct page *p; 3180 __wsum csum2; 3181 u8 *vaddr; 3182 3183 if (copy > len) 3184 copy = len; 3185 3186 skb_frag_foreach_page(frag, 3187 skb_frag_off(frag) + offset - start, 3188 copy, p, p_off, p_len, copied) { 3189 vaddr = kmap_atomic(p); 3190 csum2 = INDIRECT_CALL_1(ops->update, 3191 csum_partial_ext, 3192 vaddr + p_off, p_len, 0); 3193 kunmap_atomic(vaddr); 3194 csum = INDIRECT_CALL_1(ops->combine, 3195 csum_block_add_ext, csum, 3196 csum2, pos, p_len); 3197 pos += p_len; 3198 } 3199 3200 if (!(len -= copy)) 3201 return csum; 3202 offset += copy; 3203 } 3204 start = end; 3205 } 3206 3207 skb_walk_frags(skb, frag_iter) { 3208 int end; 3209 3210 WARN_ON(start > offset + len); 3211 3212 end = start + frag_iter->len; 3213 if ((copy = end - offset) > 0) { 3214 __wsum csum2; 3215 if (copy > len) 3216 copy = len; 3217 csum2 = __skb_checksum(frag_iter, offset - start, 3218 copy, 0, ops); 3219 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3220 csum, csum2, pos, copy); 3221 if ((len -= copy) == 0) 3222 return csum; 3223 offset += copy; 3224 pos += copy; 3225 } 3226 start = end; 3227 } 3228 BUG_ON(len); 3229 3230 return csum; 3231 } 3232 EXPORT_SYMBOL(__skb_checksum); 3233 3234 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3235 int len, __wsum csum) 3236 { 3237 const struct skb_checksum_ops ops = { 3238 .update = csum_partial_ext, 3239 .combine = csum_block_add_ext, 3240 }; 3241 3242 return __skb_checksum(skb, offset, len, csum, &ops); 3243 } 3244 EXPORT_SYMBOL(skb_checksum); 3245 3246 /* Both of above in one bottle. */ 3247 3248 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3249 u8 *to, int len) 3250 { 3251 int start = skb_headlen(skb); 3252 int i, copy = start - offset; 3253 struct sk_buff *frag_iter; 3254 int pos = 0; 3255 __wsum csum = 0; 3256 3257 /* Copy header. */ 3258 if (copy > 0) { 3259 if (copy > len) 3260 copy = len; 3261 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3262 copy); 3263 if ((len -= copy) == 0) 3264 return csum; 3265 offset += copy; 3266 to += copy; 3267 pos = copy; 3268 } 3269 3270 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3271 int end; 3272 3273 WARN_ON(start > offset + len); 3274 3275 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3276 if ((copy = end - offset) > 0) { 3277 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3278 u32 p_off, p_len, copied; 3279 struct page *p; 3280 __wsum csum2; 3281 u8 *vaddr; 3282 3283 if (copy > len) 3284 copy = len; 3285 3286 skb_frag_foreach_page(frag, 3287 skb_frag_off(frag) + offset - start, 3288 copy, p, p_off, p_len, copied) { 3289 vaddr = kmap_atomic(p); 3290 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3291 to + copied, 3292 p_len); 3293 kunmap_atomic(vaddr); 3294 csum = csum_block_add(csum, csum2, pos); 3295 pos += p_len; 3296 } 3297 3298 if (!(len -= copy)) 3299 return csum; 3300 offset += copy; 3301 to += copy; 3302 } 3303 start = end; 3304 } 3305 3306 skb_walk_frags(skb, frag_iter) { 3307 __wsum csum2; 3308 int end; 3309 3310 WARN_ON(start > offset + len); 3311 3312 end = start + frag_iter->len; 3313 if ((copy = end - offset) > 0) { 3314 if (copy > len) 3315 copy = len; 3316 csum2 = skb_copy_and_csum_bits(frag_iter, 3317 offset - start, 3318 to, copy); 3319 csum = csum_block_add(csum, csum2, pos); 3320 if ((len -= copy) == 0) 3321 return csum; 3322 offset += copy; 3323 to += copy; 3324 pos += copy; 3325 } 3326 start = end; 3327 } 3328 BUG_ON(len); 3329 return csum; 3330 } 3331 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3332 3333 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3334 { 3335 __sum16 sum; 3336 3337 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3338 /* See comments in __skb_checksum_complete(). */ 3339 if (likely(!sum)) { 3340 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3341 !skb->csum_complete_sw) 3342 netdev_rx_csum_fault(skb->dev, skb); 3343 } 3344 if (!skb_shared(skb)) 3345 skb->csum_valid = !sum; 3346 return sum; 3347 } 3348 EXPORT_SYMBOL(__skb_checksum_complete_head); 3349 3350 /* This function assumes skb->csum already holds pseudo header's checksum, 3351 * which has been changed from the hardware checksum, for example, by 3352 * __skb_checksum_validate_complete(). And, the original skb->csum must 3353 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3354 * 3355 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3356 * zero. The new checksum is stored back into skb->csum unless the skb is 3357 * shared. 3358 */ 3359 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3360 { 3361 __wsum csum; 3362 __sum16 sum; 3363 3364 csum = skb_checksum(skb, 0, skb->len, 0); 3365 3366 sum = csum_fold(csum_add(skb->csum, csum)); 3367 /* This check is inverted, because we already knew the hardware 3368 * checksum is invalid before calling this function. So, if the 3369 * re-computed checksum is valid instead, then we have a mismatch 3370 * between the original skb->csum and skb_checksum(). This means either 3371 * the original hardware checksum is incorrect or we screw up skb->csum 3372 * when moving skb->data around. 3373 */ 3374 if (likely(!sum)) { 3375 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3376 !skb->csum_complete_sw) 3377 netdev_rx_csum_fault(skb->dev, skb); 3378 } 3379 3380 if (!skb_shared(skb)) { 3381 /* Save full packet checksum */ 3382 skb->csum = csum; 3383 skb->ip_summed = CHECKSUM_COMPLETE; 3384 skb->csum_complete_sw = 1; 3385 skb->csum_valid = !sum; 3386 } 3387 3388 return sum; 3389 } 3390 EXPORT_SYMBOL(__skb_checksum_complete); 3391 3392 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3393 { 3394 net_warn_ratelimited( 3395 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3396 __func__); 3397 return 0; 3398 } 3399 3400 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3401 int offset, int len) 3402 { 3403 net_warn_ratelimited( 3404 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3405 __func__); 3406 return 0; 3407 } 3408 3409 static const struct skb_checksum_ops default_crc32c_ops = { 3410 .update = warn_crc32c_csum_update, 3411 .combine = warn_crc32c_csum_combine, 3412 }; 3413 3414 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3415 &default_crc32c_ops; 3416 EXPORT_SYMBOL(crc32c_csum_stub); 3417 3418 /** 3419 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3420 * @from: source buffer 3421 * 3422 * Calculates the amount of linear headroom needed in the 'to' skb passed 3423 * into skb_zerocopy(). 3424 */ 3425 unsigned int 3426 skb_zerocopy_headlen(const struct sk_buff *from) 3427 { 3428 unsigned int hlen = 0; 3429 3430 if (!from->head_frag || 3431 skb_headlen(from) < L1_CACHE_BYTES || 3432 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3433 hlen = skb_headlen(from); 3434 if (!hlen) 3435 hlen = from->len; 3436 } 3437 3438 if (skb_has_frag_list(from)) 3439 hlen = from->len; 3440 3441 return hlen; 3442 } 3443 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3444 3445 /** 3446 * skb_zerocopy - Zero copy skb to skb 3447 * @to: destination buffer 3448 * @from: source buffer 3449 * @len: number of bytes to copy from source buffer 3450 * @hlen: size of linear headroom in destination buffer 3451 * 3452 * Copies up to `len` bytes from `from` to `to` by creating references 3453 * to the frags in the source buffer. 3454 * 3455 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3456 * headroom in the `to` buffer. 3457 * 3458 * Return value: 3459 * 0: everything is OK 3460 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3461 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3462 */ 3463 int 3464 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3465 { 3466 int i, j = 0; 3467 int plen = 0; /* length of skb->head fragment */ 3468 int ret; 3469 struct page *page; 3470 unsigned int offset; 3471 3472 BUG_ON(!from->head_frag && !hlen); 3473 3474 /* dont bother with small payloads */ 3475 if (len <= skb_tailroom(to)) 3476 return skb_copy_bits(from, 0, skb_put(to, len), len); 3477 3478 if (hlen) { 3479 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3480 if (unlikely(ret)) 3481 return ret; 3482 len -= hlen; 3483 } else { 3484 plen = min_t(int, skb_headlen(from), len); 3485 if (plen) { 3486 page = virt_to_head_page(from->head); 3487 offset = from->data - (unsigned char *)page_address(page); 3488 __skb_fill_page_desc(to, 0, page, offset, plen); 3489 get_page(page); 3490 j = 1; 3491 len -= plen; 3492 } 3493 } 3494 3495 skb_len_add(to, len + plen); 3496 3497 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3498 skb_tx_error(from); 3499 return -ENOMEM; 3500 } 3501 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3502 3503 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3504 int size; 3505 3506 if (!len) 3507 break; 3508 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3509 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3510 len); 3511 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3512 len -= size; 3513 skb_frag_ref(to, j); 3514 j++; 3515 } 3516 skb_shinfo(to)->nr_frags = j; 3517 3518 return 0; 3519 } 3520 EXPORT_SYMBOL_GPL(skb_zerocopy); 3521 3522 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3523 { 3524 __wsum csum; 3525 long csstart; 3526 3527 if (skb->ip_summed == CHECKSUM_PARTIAL) 3528 csstart = skb_checksum_start_offset(skb); 3529 else 3530 csstart = skb_headlen(skb); 3531 3532 BUG_ON(csstart > skb_headlen(skb)); 3533 3534 skb_copy_from_linear_data(skb, to, csstart); 3535 3536 csum = 0; 3537 if (csstart != skb->len) 3538 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3539 skb->len - csstart); 3540 3541 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3542 long csstuff = csstart + skb->csum_offset; 3543 3544 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3545 } 3546 } 3547 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3548 3549 /** 3550 * skb_dequeue - remove from the head of the queue 3551 * @list: list to dequeue from 3552 * 3553 * Remove the head of the list. The list lock is taken so the function 3554 * may be used safely with other locking list functions. The head item is 3555 * returned or %NULL if the list is empty. 3556 */ 3557 3558 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3559 { 3560 unsigned long flags; 3561 struct sk_buff *result; 3562 3563 spin_lock_irqsave(&list->lock, flags); 3564 result = __skb_dequeue(list); 3565 spin_unlock_irqrestore(&list->lock, flags); 3566 return result; 3567 } 3568 EXPORT_SYMBOL(skb_dequeue); 3569 3570 /** 3571 * skb_dequeue_tail - remove from the tail of the queue 3572 * @list: list to dequeue from 3573 * 3574 * Remove the tail of the list. The list lock is taken so the function 3575 * may be used safely with other locking list functions. The tail item is 3576 * returned or %NULL if the list is empty. 3577 */ 3578 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3579 { 3580 unsigned long flags; 3581 struct sk_buff *result; 3582 3583 spin_lock_irqsave(&list->lock, flags); 3584 result = __skb_dequeue_tail(list); 3585 spin_unlock_irqrestore(&list->lock, flags); 3586 return result; 3587 } 3588 EXPORT_SYMBOL(skb_dequeue_tail); 3589 3590 /** 3591 * skb_queue_purge - empty a list 3592 * @list: list to empty 3593 * 3594 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3595 * the list and one reference dropped. This function takes the list 3596 * lock and is atomic with respect to other list locking functions. 3597 */ 3598 void skb_queue_purge(struct sk_buff_head *list) 3599 { 3600 struct sk_buff *skb; 3601 while ((skb = skb_dequeue(list)) != NULL) 3602 kfree_skb(skb); 3603 } 3604 EXPORT_SYMBOL(skb_queue_purge); 3605 3606 /** 3607 * skb_rbtree_purge - empty a skb rbtree 3608 * @root: root of the rbtree to empty 3609 * Return value: the sum of truesizes of all purged skbs. 3610 * 3611 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3612 * the list and one reference dropped. This function does not take 3613 * any lock. Synchronization should be handled by the caller (e.g., TCP 3614 * out-of-order queue is protected by the socket lock). 3615 */ 3616 unsigned int skb_rbtree_purge(struct rb_root *root) 3617 { 3618 struct rb_node *p = rb_first(root); 3619 unsigned int sum = 0; 3620 3621 while (p) { 3622 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3623 3624 p = rb_next(p); 3625 rb_erase(&skb->rbnode, root); 3626 sum += skb->truesize; 3627 kfree_skb(skb); 3628 } 3629 return sum; 3630 } 3631 3632 /** 3633 * skb_queue_head - queue a buffer at the list head 3634 * @list: list to use 3635 * @newsk: buffer to queue 3636 * 3637 * Queue a buffer at the start of the list. This function takes the 3638 * list lock and can be used safely with other locking &sk_buff functions 3639 * safely. 3640 * 3641 * A buffer cannot be placed on two lists at the same time. 3642 */ 3643 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3644 { 3645 unsigned long flags; 3646 3647 spin_lock_irqsave(&list->lock, flags); 3648 __skb_queue_head(list, newsk); 3649 spin_unlock_irqrestore(&list->lock, flags); 3650 } 3651 EXPORT_SYMBOL(skb_queue_head); 3652 3653 /** 3654 * skb_queue_tail - queue a buffer at the list tail 3655 * @list: list to use 3656 * @newsk: buffer to queue 3657 * 3658 * Queue a buffer at the tail of the list. This function takes the 3659 * list lock and can be used safely with other locking &sk_buff functions 3660 * safely. 3661 * 3662 * A buffer cannot be placed on two lists at the same time. 3663 */ 3664 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3665 { 3666 unsigned long flags; 3667 3668 spin_lock_irqsave(&list->lock, flags); 3669 __skb_queue_tail(list, newsk); 3670 spin_unlock_irqrestore(&list->lock, flags); 3671 } 3672 EXPORT_SYMBOL(skb_queue_tail); 3673 3674 /** 3675 * skb_unlink - remove a buffer from a list 3676 * @skb: buffer to remove 3677 * @list: list to use 3678 * 3679 * Remove a packet from a list. The list locks are taken and this 3680 * function is atomic with respect to other list locked calls 3681 * 3682 * You must know what list the SKB is on. 3683 */ 3684 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3685 { 3686 unsigned long flags; 3687 3688 spin_lock_irqsave(&list->lock, flags); 3689 __skb_unlink(skb, list); 3690 spin_unlock_irqrestore(&list->lock, flags); 3691 } 3692 EXPORT_SYMBOL(skb_unlink); 3693 3694 /** 3695 * skb_append - append a buffer 3696 * @old: buffer to insert after 3697 * @newsk: buffer to insert 3698 * @list: list to use 3699 * 3700 * Place a packet after a given packet in a list. The list locks are taken 3701 * and this function is atomic with respect to other list locked calls. 3702 * A buffer cannot be placed on two lists at the same time. 3703 */ 3704 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3705 { 3706 unsigned long flags; 3707 3708 spin_lock_irqsave(&list->lock, flags); 3709 __skb_queue_after(list, old, newsk); 3710 spin_unlock_irqrestore(&list->lock, flags); 3711 } 3712 EXPORT_SYMBOL(skb_append); 3713 3714 static inline void skb_split_inside_header(struct sk_buff *skb, 3715 struct sk_buff* skb1, 3716 const u32 len, const int pos) 3717 { 3718 int i; 3719 3720 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3721 pos - len); 3722 /* And move data appendix as is. */ 3723 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3724 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3725 3726 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3727 skb_shinfo(skb)->nr_frags = 0; 3728 skb1->data_len = skb->data_len; 3729 skb1->len += skb1->data_len; 3730 skb->data_len = 0; 3731 skb->len = len; 3732 skb_set_tail_pointer(skb, len); 3733 } 3734 3735 static inline void skb_split_no_header(struct sk_buff *skb, 3736 struct sk_buff* skb1, 3737 const u32 len, int pos) 3738 { 3739 int i, k = 0; 3740 const int nfrags = skb_shinfo(skb)->nr_frags; 3741 3742 skb_shinfo(skb)->nr_frags = 0; 3743 skb1->len = skb1->data_len = skb->len - len; 3744 skb->len = len; 3745 skb->data_len = len - pos; 3746 3747 for (i = 0; i < nfrags; i++) { 3748 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3749 3750 if (pos + size > len) { 3751 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3752 3753 if (pos < len) { 3754 /* Split frag. 3755 * We have two variants in this case: 3756 * 1. Move all the frag to the second 3757 * part, if it is possible. F.e. 3758 * this approach is mandatory for TUX, 3759 * where splitting is expensive. 3760 * 2. Split is accurately. We make this. 3761 */ 3762 skb_frag_ref(skb, i); 3763 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3764 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3765 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3766 skb_shinfo(skb)->nr_frags++; 3767 } 3768 k++; 3769 } else 3770 skb_shinfo(skb)->nr_frags++; 3771 pos += size; 3772 } 3773 skb_shinfo(skb1)->nr_frags = k; 3774 } 3775 3776 /** 3777 * skb_split - Split fragmented skb to two parts at length len. 3778 * @skb: the buffer to split 3779 * @skb1: the buffer to receive the second part 3780 * @len: new length for skb 3781 */ 3782 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3783 { 3784 int pos = skb_headlen(skb); 3785 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3786 3787 skb_zcopy_downgrade_managed(skb); 3788 3789 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3790 skb_zerocopy_clone(skb1, skb, 0); 3791 if (len < pos) /* Split line is inside header. */ 3792 skb_split_inside_header(skb, skb1, len, pos); 3793 else /* Second chunk has no header, nothing to copy. */ 3794 skb_split_no_header(skb, skb1, len, pos); 3795 } 3796 EXPORT_SYMBOL(skb_split); 3797 3798 /* Shifting from/to a cloned skb is a no-go. 3799 * 3800 * Caller cannot keep skb_shinfo related pointers past calling here! 3801 */ 3802 static int skb_prepare_for_shift(struct sk_buff *skb) 3803 { 3804 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3805 } 3806 3807 /** 3808 * skb_shift - Shifts paged data partially from skb to another 3809 * @tgt: buffer into which tail data gets added 3810 * @skb: buffer from which the paged data comes from 3811 * @shiftlen: shift up to this many bytes 3812 * 3813 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3814 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3815 * It's up to caller to free skb if everything was shifted. 3816 * 3817 * If @tgt runs out of frags, the whole operation is aborted. 3818 * 3819 * Skb cannot include anything else but paged data while tgt is allowed 3820 * to have non-paged data as well. 3821 * 3822 * TODO: full sized shift could be optimized but that would need 3823 * specialized skb free'er to handle frags without up-to-date nr_frags. 3824 */ 3825 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3826 { 3827 int from, to, merge, todo; 3828 skb_frag_t *fragfrom, *fragto; 3829 3830 BUG_ON(shiftlen > skb->len); 3831 3832 if (skb_headlen(skb)) 3833 return 0; 3834 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3835 return 0; 3836 3837 todo = shiftlen; 3838 from = 0; 3839 to = skb_shinfo(tgt)->nr_frags; 3840 fragfrom = &skb_shinfo(skb)->frags[from]; 3841 3842 /* Actual merge is delayed until the point when we know we can 3843 * commit all, so that we don't have to undo partial changes 3844 */ 3845 if (!to || 3846 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3847 skb_frag_off(fragfrom))) { 3848 merge = -1; 3849 } else { 3850 merge = to - 1; 3851 3852 todo -= skb_frag_size(fragfrom); 3853 if (todo < 0) { 3854 if (skb_prepare_for_shift(skb) || 3855 skb_prepare_for_shift(tgt)) 3856 return 0; 3857 3858 /* All previous frag pointers might be stale! */ 3859 fragfrom = &skb_shinfo(skb)->frags[from]; 3860 fragto = &skb_shinfo(tgt)->frags[merge]; 3861 3862 skb_frag_size_add(fragto, shiftlen); 3863 skb_frag_size_sub(fragfrom, shiftlen); 3864 skb_frag_off_add(fragfrom, shiftlen); 3865 3866 goto onlymerged; 3867 } 3868 3869 from++; 3870 } 3871 3872 /* Skip full, not-fitting skb to avoid expensive operations */ 3873 if ((shiftlen == skb->len) && 3874 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3875 return 0; 3876 3877 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3878 return 0; 3879 3880 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3881 if (to == MAX_SKB_FRAGS) 3882 return 0; 3883 3884 fragfrom = &skb_shinfo(skb)->frags[from]; 3885 fragto = &skb_shinfo(tgt)->frags[to]; 3886 3887 if (todo >= skb_frag_size(fragfrom)) { 3888 *fragto = *fragfrom; 3889 todo -= skb_frag_size(fragfrom); 3890 from++; 3891 to++; 3892 3893 } else { 3894 __skb_frag_ref(fragfrom); 3895 skb_frag_page_copy(fragto, fragfrom); 3896 skb_frag_off_copy(fragto, fragfrom); 3897 skb_frag_size_set(fragto, todo); 3898 3899 skb_frag_off_add(fragfrom, todo); 3900 skb_frag_size_sub(fragfrom, todo); 3901 todo = 0; 3902 3903 to++; 3904 break; 3905 } 3906 } 3907 3908 /* Ready to "commit" this state change to tgt */ 3909 skb_shinfo(tgt)->nr_frags = to; 3910 3911 if (merge >= 0) { 3912 fragfrom = &skb_shinfo(skb)->frags[0]; 3913 fragto = &skb_shinfo(tgt)->frags[merge]; 3914 3915 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3916 __skb_frag_unref(fragfrom, skb->pp_recycle); 3917 } 3918 3919 /* Reposition in the original skb */ 3920 to = 0; 3921 while (from < skb_shinfo(skb)->nr_frags) 3922 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3923 skb_shinfo(skb)->nr_frags = to; 3924 3925 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3926 3927 onlymerged: 3928 /* Most likely the tgt won't ever need its checksum anymore, skb on 3929 * the other hand might need it if it needs to be resent 3930 */ 3931 tgt->ip_summed = CHECKSUM_PARTIAL; 3932 skb->ip_summed = CHECKSUM_PARTIAL; 3933 3934 skb_len_add(skb, -shiftlen); 3935 skb_len_add(tgt, shiftlen); 3936 3937 return shiftlen; 3938 } 3939 3940 /** 3941 * skb_prepare_seq_read - Prepare a sequential read of skb data 3942 * @skb: the buffer to read 3943 * @from: lower offset of data to be read 3944 * @to: upper offset of data to be read 3945 * @st: state variable 3946 * 3947 * Initializes the specified state variable. Must be called before 3948 * invoking skb_seq_read() for the first time. 3949 */ 3950 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3951 unsigned int to, struct skb_seq_state *st) 3952 { 3953 st->lower_offset = from; 3954 st->upper_offset = to; 3955 st->root_skb = st->cur_skb = skb; 3956 st->frag_idx = st->stepped_offset = 0; 3957 st->frag_data = NULL; 3958 st->frag_off = 0; 3959 } 3960 EXPORT_SYMBOL(skb_prepare_seq_read); 3961 3962 /** 3963 * skb_seq_read - Sequentially read skb data 3964 * @consumed: number of bytes consumed by the caller so far 3965 * @data: destination pointer for data to be returned 3966 * @st: state variable 3967 * 3968 * Reads a block of skb data at @consumed relative to the 3969 * lower offset specified to skb_prepare_seq_read(). Assigns 3970 * the head of the data block to @data and returns the length 3971 * of the block or 0 if the end of the skb data or the upper 3972 * offset has been reached. 3973 * 3974 * The caller is not required to consume all of the data 3975 * returned, i.e. @consumed is typically set to the number 3976 * of bytes already consumed and the next call to 3977 * skb_seq_read() will return the remaining part of the block. 3978 * 3979 * Note 1: The size of each block of data returned can be arbitrary, 3980 * this limitation is the cost for zerocopy sequential 3981 * reads of potentially non linear data. 3982 * 3983 * Note 2: Fragment lists within fragments are not implemented 3984 * at the moment, state->root_skb could be replaced with 3985 * a stack for this purpose. 3986 */ 3987 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3988 struct skb_seq_state *st) 3989 { 3990 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3991 skb_frag_t *frag; 3992 3993 if (unlikely(abs_offset >= st->upper_offset)) { 3994 if (st->frag_data) { 3995 kunmap_atomic(st->frag_data); 3996 st->frag_data = NULL; 3997 } 3998 return 0; 3999 } 4000 4001 next_skb: 4002 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4003 4004 if (abs_offset < block_limit && !st->frag_data) { 4005 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4006 return block_limit - abs_offset; 4007 } 4008 4009 if (st->frag_idx == 0 && !st->frag_data) 4010 st->stepped_offset += skb_headlen(st->cur_skb); 4011 4012 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4013 unsigned int pg_idx, pg_off, pg_sz; 4014 4015 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4016 4017 pg_idx = 0; 4018 pg_off = skb_frag_off(frag); 4019 pg_sz = skb_frag_size(frag); 4020 4021 if (skb_frag_must_loop(skb_frag_page(frag))) { 4022 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4023 pg_off = offset_in_page(pg_off + st->frag_off); 4024 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4025 PAGE_SIZE - pg_off); 4026 } 4027 4028 block_limit = pg_sz + st->stepped_offset; 4029 if (abs_offset < block_limit) { 4030 if (!st->frag_data) 4031 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4032 4033 *data = (u8 *)st->frag_data + pg_off + 4034 (abs_offset - st->stepped_offset); 4035 4036 return block_limit - abs_offset; 4037 } 4038 4039 if (st->frag_data) { 4040 kunmap_atomic(st->frag_data); 4041 st->frag_data = NULL; 4042 } 4043 4044 st->stepped_offset += pg_sz; 4045 st->frag_off += pg_sz; 4046 if (st->frag_off == skb_frag_size(frag)) { 4047 st->frag_off = 0; 4048 st->frag_idx++; 4049 } 4050 } 4051 4052 if (st->frag_data) { 4053 kunmap_atomic(st->frag_data); 4054 st->frag_data = NULL; 4055 } 4056 4057 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4058 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4059 st->frag_idx = 0; 4060 goto next_skb; 4061 } else if (st->cur_skb->next) { 4062 st->cur_skb = st->cur_skb->next; 4063 st->frag_idx = 0; 4064 goto next_skb; 4065 } 4066 4067 return 0; 4068 } 4069 EXPORT_SYMBOL(skb_seq_read); 4070 4071 /** 4072 * skb_abort_seq_read - Abort a sequential read of skb data 4073 * @st: state variable 4074 * 4075 * Must be called if skb_seq_read() was not called until it 4076 * returned 0. 4077 */ 4078 void skb_abort_seq_read(struct skb_seq_state *st) 4079 { 4080 if (st->frag_data) 4081 kunmap_atomic(st->frag_data); 4082 } 4083 EXPORT_SYMBOL(skb_abort_seq_read); 4084 4085 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4086 4087 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4088 struct ts_config *conf, 4089 struct ts_state *state) 4090 { 4091 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4092 } 4093 4094 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4095 { 4096 skb_abort_seq_read(TS_SKB_CB(state)); 4097 } 4098 4099 /** 4100 * skb_find_text - Find a text pattern in skb data 4101 * @skb: the buffer to look in 4102 * @from: search offset 4103 * @to: search limit 4104 * @config: textsearch configuration 4105 * 4106 * Finds a pattern in the skb data according to the specified 4107 * textsearch configuration. Use textsearch_next() to retrieve 4108 * subsequent occurrences of the pattern. Returns the offset 4109 * to the first occurrence or UINT_MAX if no match was found. 4110 */ 4111 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4112 unsigned int to, struct ts_config *config) 4113 { 4114 struct ts_state state; 4115 unsigned int ret; 4116 4117 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4118 4119 config->get_next_block = skb_ts_get_next_block; 4120 config->finish = skb_ts_finish; 4121 4122 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4123 4124 ret = textsearch_find(config, &state); 4125 return (ret <= to - from ? ret : UINT_MAX); 4126 } 4127 EXPORT_SYMBOL(skb_find_text); 4128 4129 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4130 int offset, size_t size) 4131 { 4132 int i = skb_shinfo(skb)->nr_frags; 4133 4134 if (skb_can_coalesce(skb, i, page, offset)) { 4135 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4136 } else if (i < MAX_SKB_FRAGS) { 4137 skb_zcopy_downgrade_managed(skb); 4138 get_page(page); 4139 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4140 } else { 4141 return -EMSGSIZE; 4142 } 4143 4144 return 0; 4145 } 4146 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4147 4148 /** 4149 * skb_pull_rcsum - pull skb and update receive checksum 4150 * @skb: buffer to update 4151 * @len: length of data pulled 4152 * 4153 * This function performs an skb_pull on the packet and updates 4154 * the CHECKSUM_COMPLETE checksum. It should be used on 4155 * receive path processing instead of skb_pull unless you know 4156 * that the checksum difference is zero (e.g., a valid IP header) 4157 * or you are setting ip_summed to CHECKSUM_NONE. 4158 */ 4159 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4160 { 4161 unsigned char *data = skb->data; 4162 4163 BUG_ON(len > skb->len); 4164 __skb_pull(skb, len); 4165 skb_postpull_rcsum(skb, data, len); 4166 return skb->data; 4167 } 4168 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4169 4170 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4171 { 4172 skb_frag_t head_frag; 4173 struct page *page; 4174 4175 page = virt_to_head_page(frag_skb->head); 4176 __skb_frag_set_page(&head_frag, page); 4177 skb_frag_off_set(&head_frag, frag_skb->data - 4178 (unsigned char *)page_address(page)); 4179 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 4180 return head_frag; 4181 } 4182 4183 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4184 netdev_features_t features, 4185 unsigned int offset) 4186 { 4187 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4188 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4189 unsigned int delta_truesize = 0; 4190 unsigned int delta_len = 0; 4191 struct sk_buff *tail = NULL; 4192 struct sk_buff *nskb, *tmp; 4193 int len_diff, err; 4194 4195 skb_push(skb, -skb_network_offset(skb) + offset); 4196 4197 skb_shinfo(skb)->frag_list = NULL; 4198 4199 while (list_skb) { 4200 nskb = list_skb; 4201 list_skb = list_skb->next; 4202 4203 err = 0; 4204 delta_truesize += nskb->truesize; 4205 if (skb_shared(nskb)) { 4206 tmp = skb_clone(nskb, GFP_ATOMIC); 4207 if (tmp) { 4208 consume_skb(nskb); 4209 nskb = tmp; 4210 err = skb_unclone(nskb, GFP_ATOMIC); 4211 } else { 4212 err = -ENOMEM; 4213 } 4214 } 4215 4216 if (!tail) 4217 skb->next = nskb; 4218 else 4219 tail->next = nskb; 4220 4221 if (unlikely(err)) { 4222 nskb->next = list_skb; 4223 goto err_linearize; 4224 } 4225 4226 tail = nskb; 4227 4228 delta_len += nskb->len; 4229 4230 skb_push(nskb, -skb_network_offset(nskb) + offset); 4231 4232 skb_release_head_state(nskb); 4233 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4234 __copy_skb_header(nskb, skb); 4235 4236 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4237 nskb->transport_header += len_diff; 4238 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4239 nskb->data - tnl_hlen, 4240 offset + tnl_hlen); 4241 4242 if (skb_needs_linearize(nskb, features) && 4243 __skb_linearize(nskb)) 4244 goto err_linearize; 4245 } 4246 4247 skb->truesize = skb->truesize - delta_truesize; 4248 skb->data_len = skb->data_len - delta_len; 4249 skb->len = skb->len - delta_len; 4250 4251 skb_gso_reset(skb); 4252 4253 skb->prev = tail; 4254 4255 if (skb_needs_linearize(skb, features) && 4256 __skb_linearize(skb)) 4257 goto err_linearize; 4258 4259 skb_get(skb); 4260 4261 return skb; 4262 4263 err_linearize: 4264 kfree_skb_list(skb->next); 4265 skb->next = NULL; 4266 return ERR_PTR(-ENOMEM); 4267 } 4268 EXPORT_SYMBOL_GPL(skb_segment_list); 4269 4270 /** 4271 * skb_segment - Perform protocol segmentation on skb. 4272 * @head_skb: buffer to segment 4273 * @features: features for the output path (see dev->features) 4274 * 4275 * This function performs segmentation on the given skb. It returns 4276 * a pointer to the first in a list of new skbs for the segments. 4277 * In case of error it returns ERR_PTR(err). 4278 */ 4279 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4280 netdev_features_t features) 4281 { 4282 struct sk_buff *segs = NULL; 4283 struct sk_buff *tail = NULL; 4284 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4285 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 4286 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4287 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4288 struct sk_buff *frag_skb = head_skb; 4289 unsigned int offset = doffset; 4290 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4291 unsigned int partial_segs = 0; 4292 unsigned int headroom; 4293 unsigned int len = head_skb->len; 4294 __be16 proto; 4295 bool csum, sg; 4296 int nfrags = skb_shinfo(head_skb)->nr_frags; 4297 int err = -ENOMEM; 4298 int i = 0; 4299 int pos; 4300 4301 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4302 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4303 struct sk_buff *check_skb; 4304 4305 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4306 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4307 /* gso_size is untrusted, and we have a frag_list with 4308 * a linear non head_frag item. 4309 * 4310 * If head_skb's headlen does not fit requested gso_size, 4311 * it means that the frag_list members do NOT terminate 4312 * on exact gso_size boundaries. Hence we cannot perform 4313 * skb_frag_t page sharing. Therefore we must fallback to 4314 * copying the frag_list skbs; we do so by disabling SG. 4315 */ 4316 features &= ~NETIF_F_SG; 4317 break; 4318 } 4319 } 4320 } 4321 4322 __skb_push(head_skb, doffset); 4323 proto = skb_network_protocol(head_skb, NULL); 4324 if (unlikely(!proto)) 4325 return ERR_PTR(-EINVAL); 4326 4327 sg = !!(features & NETIF_F_SG); 4328 csum = !!can_checksum_protocol(features, proto); 4329 4330 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4331 if (!(features & NETIF_F_GSO_PARTIAL)) { 4332 struct sk_buff *iter; 4333 unsigned int frag_len; 4334 4335 if (!list_skb || 4336 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4337 goto normal; 4338 4339 /* If we get here then all the required 4340 * GSO features except frag_list are supported. 4341 * Try to split the SKB to multiple GSO SKBs 4342 * with no frag_list. 4343 * Currently we can do that only when the buffers don't 4344 * have a linear part and all the buffers except 4345 * the last are of the same length. 4346 */ 4347 frag_len = list_skb->len; 4348 skb_walk_frags(head_skb, iter) { 4349 if (frag_len != iter->len && iter->next) 4350 goto normal; 4351 if (skb_headlen(iter) && !iter->head_frag) 4352 goto normal; 4353 4354 len -= iter->len; 4355 } 4356 4357 if (len != frag_len) 4358 goto normal; 4359 } 4360 4361 /* GSO partial only requires that we trim off any excess that 4362 * doesn't fit into an MSS sized block, so take care of that 4363 * now. 4364 */ 4365 partial_segs = len / mss; 4366 if (partial_segs > 1) 4367 mss *= partial_segs; 4368 else 4369 partial_segs = 0; 4370 } 4371 4372 normal: 4373 headroom = skb_headroom(head_skb); 4374 pos = skb_headlen(head_skb); 4375 4376 do { 4377 struct sk_buff *nskb; 4378 skb_frag_t *nskb_frag; 4379 int hsize; 4380 int size; 4381 4382 if (unlikely(mss == GSO_BY_FRAGS)) { 4383 len = list_skb->len; 4384 } else { 4385 len = head_skb->len - offset; 4386 if (len > mss) 4387 len = mss; 4388 } 4389 4390 hsize = skb_headlen(head_skb) - offset; 4391 4392 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4393 (skb_headlen(list_skb) == len || sg)) { 4394 BUG_ON(skb_headlen(list_skb) > len); 4395 4396 i = 0; 4397 nfrags = skb_shinfo(list_skb)->nr_frags; 4398 frag = skb_shinfo(list_skb)->frags; 4399 frag_skb = list_skb; 4400 pos += skb_headlen(list_skb); 4401 4402 while (pos < offset + len) { 4403 BUG_ON(i >= nfrags); 4404 4405 size = skb_frag_size(frag); 4406 if (pos + size > offset + len) 4407 break; 4408 4409 i++; 4410 pos += size; 4411 frag++; 4412 } 4413 4414 nskb = skb_clone(list_skb, GFP_ATOMIC); 4415 list_skb = list_skb->next; 4416 4417 if (unlikely(!nskb)) 4418 goto err; 4419 4420 if (unlikely(pskb_trim(nskb, len))) { 4421 kfree_skb(nskb); 4422 goto err; 4423 } 4424 4425 hsize = skb_end_offset(nskb); 4426 if (skb_cow_head(nskb, doffset + headroom)) { 4427 kfree_skb(nskb); 4428 goto err; 4429 } 4430 4431 nskb->truesize += skb_end_offset(nskb) - hsize; 4432 skb_release_head_state(nskb); 4433 __skb_push(nskb, doffset); 4434 } else { 4435 if (hsize < 0) 4436 hsize = 0; 4437 if (hsize > len || !sg) 4438 hsize = len; 4439 4440 nskb = __alloc_skb(hsize + doffset + headroom, 4441 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4442 NUMA_NO_NODE); 4443 4444 if (unlikely(!nskb)) 4445 goto err; 4446 4447 skb_reserve(nskb, headroom); 4448 __skb_put(nskb, doffset); 4449 } 4450 4451 if (segs) 4452 tail->next = nskb; 4453 else 4454 segs = nskb; 4455 tail = nskb; 4456 4457 __copy_skb_header(nskb, head_skb); 4458 4459 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4460 skb_reset_mac_len(nskb); 4461 4462 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4463 nskb->data - tnl_hlen, 4464 doffset + tnl_hlen); 4465 4466 if (nskb->len == len + doffset) 4467 goto perform_csum_check; 4468 4469 if (!sg) { 4470 if (!csum) { 4471 if (!nskb->remcsum_offload) 4472 nskb->ip_summed = CHECKSUM_NONE; 4473 SKB_GSO_CB(nskb)->csum = 4474 skb_copy_and_csum_bits(head_skb, offset, 4475 skb_put(nskb, 4476 len), 4477 len); 4478 SKB_GSO_CB(nskb)->csum_start = 4479 skb_headroom(nskb) + doffset; 4480 } else { 4481 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4482 goto err; 4483 } 4484 continue; 4485 } 4486 4487 nskb_frag = skb_shinfo(nskb)->frags; 4488 4489 skb_copy_from_linear_data_offset(head_skb, offset, 4490 skb_put(nskb, hsize), hsize); 4491 4492 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4493 SKBFL_SHARED_FRAG; 4494 4495 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4496 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4497 goto err; 4498 4499 while (pos < offset + len) { 4500 if (i >= nfrags) { 4501 i = 0; 4502 nfrags = skb_shinfo(list_skb)->nr_frags; 4503 frag = skb_shinfo(list_skb)->frags; 4504 frag_skb = list_skb; 4505 if (!skb_headlen(list_skb)) { 4506 BUG_ON(!nfrags); 4507 } else { 4508 BUG_ON(!list_skb->head_frag); 4509 4510 /* to make room for head_frag. */ 4511 i--; 4512 frag--; 4513 } 4514 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4515 skb_zerocopy_clone(nskb, frag_skb, 4516 GFP_ATOMIC)) 4517 goto err; 4518 4519 list_skb = list_skb->next; 4520 } 4521 4522 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4523 MAX_SKB_FRAGS)) { 4524 net_warn_ratelimited( 4525 "skb_segment: too many frags: %u %u\n", 4526 pos, mss); 4527 err = -EINVAL; 4528 goto err; 4529 } 4530 4531 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4532 __skb_frag_ref(nskb_frag); 4533 size = skb_frag_size(nskb_frag); 4534 4535 if (pos < offset) { 4536 skb_frag_off_add(nskb_frag, offset - pos); 4537 skb_frag_size_sub(nskb_frag, offset - pos); 4538 } 4539 4540 skb_shinfo(nskb)->nr_frags++; 4541 4542 if (pos + size <= offset + len) { 4543 i++; 4544 frag++; 4545 pos += size; 4546 } else { 4547 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4548 goto skip_fraglist; 4549 } 4550 4551 nskb_frag++; 4552 } 4553 4554 skip_fraglist: 4555 nskb->data_len = len - hsize; 4556 nskb->len += nskb->data_len; 4557 nskb->truesize += nskb->data_len; 4558 4559 perform_csum_check: 4560 if (!csum) { 4561 if (skb_has_shared_frag(nskb) && 4562 __skb_linearize(nskb)) 4563 goto err; 4564 4565 if (!nskb->remcsum_offload) 4566 nskb->ip_summed = CHECKSUM_NONE; 4567 SKB_GSO_CB(nskb)->csum = 4568 skb_checksum(nskb, doffset, 4569 nskb->len - doffset, 0); 4570 SKB_GSO_CB(nskb)->csum_start = 4571 skb_headroom(nskb) + doffset; 4572 } 4573 } while ((offset += len) < head_skb->len); 4574 4575 /* Some callers want to get the end of the list. 4576 * Put it in segs->prev to avoid walking the list. 4577 * (see validate_xmit_skb_list() for example) 4578 */ 4579 segs->prev = tail; 4580 4581 if (partial_segs) { 4582 struct sk_buff *iter; 4583 int type = skb_shinfo(head_skb)->gso_type; 4584 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4585 4586 /* Update type to add partial and then remove dodgy if set */ 4587 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4588 type &= ~SKB_GSO_DODGY; 4589 4590 /* Update GSO info and prepare to start updating headers on 4591 * our way back down the stack of protocols. 4592 */ 4593 for (iter = segs; iter; iter = iter->next) { 4594 skb_shinfo(iter)->gso_size = gso_size; 4595 skb_shinfo(iter)->gso_segs = partial_segs; 4596 skb_shinfo(iter)->gso_type = type; 4597 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4598 } 4599 4600 if (tail->len - doffset <= gso_size) 4601 skb_shinfo(tail)->gso_size = 0; 4602 else if (tail != segs) 4603 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4604 } 4605 4606 /* Following permits correct backpressure, for protocols 4607 * using skb_set_owner_w(). 4608 * Idea is to tranfert ownership from head_skb to last segment. 4609 */ 4610 if (head_skb->destructor == sock_wfree) { 4611 swap(tail->truesize, head_skb->truesize); 4612 swap(tail->destructor, head_skb->destructor); 4613 swap(tail->sk, head_skb->sk); 4614 } 4615 return segs; 4616 4617 err: 4618 kfree_skb_list(segs); 4619 return ERR_PTR(err); 4620 } 4621 EXPORT_SYMBOL_GPL(skb_segment); 4622 4623 #ifdef CONFIG_SKB_EXTENSIONS 4624 #define SKB_EXT_ALIGN_VALUE 8 4625 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4626 4627 static const u8 skb_ext_type_len[] = { 4628 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4629 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4630 #endif 4631 #ifdef CONFIG_XFRM 4632 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4633 #endif 4634 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4635 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4636 #endif 4637 #if IS_ENABLED(CONFIG_MPTCP) 4638 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4639 #endif 4640 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4641 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4642 #endif 4643 }; 4644 4645 static __always_inline unsigned int skb_ext_total_length(void) 4646 { 4647 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4648 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4649 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4650 #endif 4651 #ifdef CONFIG_XFRM 4652 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4653 #endif 4654 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4655 skb_ext_type_len[TC_SKB_EXT] + 4656 #endif 4657 #if IS_ENABLED(CONFIG_MPTCP) 4658 skb_ext_type_len[SKB_EXT_MPTCP] + 4659 #endif 4660 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4661 skb_ext_type_len[SKB_EXT_MCTP] + 4662 #endif 4663 0; 4664 } 4665 4666 static void skb_extensions_init(void) 4667 { 4668 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4669 BUILD_BUG_ON(skb_ext_total_length() > 255); 4670 4671 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4672 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4673 0, 4674 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4675 NULL); 4676 } 4677 #else 4678 static void skb_extensions_init(void) {} 4679 #endif 4680 4681 void __init skb_init(void) 4682 { 4683 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4684 sizeof(struct sk_buff), 4685 0, 4686 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4687 offsetof(struct sk_buff, cb), 4688 sizeof_field(struct sk_buff, cb), 4689 NULL); 4690 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4691 sizeof(struct sk_buff_fclones), 4692 0, 4693 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4694 NULL); 4695 #ifdef HAVE_SKB_SMALL_HEAD_CACHE 4696 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 4697 * struct skb_shared_info is located at the end of skb->head, 4698 * and should not be copied to/from user. 4699 */ 4700 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 4701 SKB_SMALL_HEAD_CACHE_SIZE, 4702 0, 4703 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 4704 0, 4705 SKB_SMALL_HEAD_HEADROOM, 4706 NULL); 4707 #endif 4708 skb_extensions_init(); 4709 } 4710 4711 static int 4712 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4713 unsigned int recursion_level) 4714 { 4715 int start = skb_headlen(skb); 4716 int i, copy = start - offset; 4717 struct sk_buff *frag_iter; 4718 int elt = 0; 4719 4720 if (unlikely(recursion_level >= 24)) 4721 return -EMSGSIZE; 4722 4723 if (copy > 0) { 4724 if (copy > len) 4725 copy = len; 4726 sg_set_buf(sg, skb->data + offset, copy); 4727 elt++; 4728 if ((len -= copy) == 0) 4729 return elt; 4730 offset += copy; 4731 } 4732 4733 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4734 int end; 4735 4736 WARN_ON(start > offset + len); 4737 4738 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4739 if ((copy = end - offset) > 0) { 4740 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4741 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4742 return -EMSGSIZE; 4743 4744 if (copy > len) 4745 copy = len; 4746 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4747 skb_frag_off(frag) + offset - start); 4748 elt++; 4749 if (!(len -= copy)) 4750 return elt; 4751 offset += copy; 4752 } 4753 start = end; 4754 } 4755 4756 skb_walk_frags(skb, frag_iter) { 4757 int end, ret; 4758 4759 WARN_ON(start > offset + len); 4760 4761 end = start + frag_iter->len; 4762 if ((copy = end - offset) > 0) { 4763 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4764 return -EMSGSIZE; 4765 4766 if (copy > len) 4767 copy = len; 4768 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4769 copy, recursion_level + 1); 4770 if (unlikely(ret < 0)) 4771 return ret; 4772 elt += ret; 4773 if ((len -= copy) == 0) 4774 return elt; 4775 offset += copy; 4776 } 4777 start = end; 4778 } 4779 BUG_ON(len); 4780 return elt; 4781 } 4782 4783 /** 4784 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4785 * @skb: Socket buffer containing the buffers to be mapped 4786 * @sg: The scatter-gather list to map into 4787 * @offset: The offset into the buffer's contents to start mapping 4788 * @len: Length of buffer space to be mapped 4789 * 4790 * Fill the specified scatter-gather list with mappings/pointers into a 4791 * region of the buffer space attached to a socket buffer. Returns either 4792 * the number of scatterlist items used, or -EMSGSIZE if the contents 4793 * could not fit. 4794 */ 4795 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4796 { 4797 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4798 4799 if (nsg <= 0) 4800 return nsg; 4801 4802 sg_mark_end(&sg[nsg - 1]); 4803 4804 return nsg; 4805 } 4806 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4807 4808 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4809 * sglist without mark the sg which contain last skb data as the end. 4810 * So the caller can mannipulate sg list as will when padding new data after 4811 * the first call without calling sg_unmark_end to expend sg list. 4812 * 4813 * Scenario to use skb_to_sgvec_nomark: 4814 * 1. sg_init_table 4815 * 2. skb_to_sgvec_nomark(payload1) 4816 * 3. skb_to_sgvec_nomark(payload2) 4817 * 4818 * This is equivalent to: 4819 * 1. sg_init_table 4820 * 2. skb_to_sgvec(payload1) 4821 * 3. sg_unmark_end 4822 * 4. skb_to_sgvec(payload2) 4823 * 4824 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4825 * is more preferable. 4826 */ 4827 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4828 int offset, int len) 4829 { 4830 return __skb_to_sgvec(skb, sg, offset, len, 0); 4831 } 4832 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4833 4834 4835 4836 /** 4837 * skb_cow_data - Check that a socket buffer's data buffers are writable 4838 * @skb: The socket buffer to check. 4839 * @tailbits: Amount of trailing space to be added 4840 * @trailer: Returned pointer to the skb where the @tailbits space begins 4841 * 4842 * Make sure that the data buffers attached to a socket buffer are 4843 * writable. If they are not, private copies are made of the data buffers 4844 * and the socket buffer is set to use these instead. 4845 * 4846 * If @tailbits is given, make sure that there is space to write @tailbits 4847 * bytes of data beyond current end of socket buffer. @trailer will be 4848 * set to point to the skb in which this space begins. 4849 * 4850 * The number of scatterlist elements required to completely map the 4851 * COW'd and extended socket buffer will be returned. 4852 */ 4853 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4854 { 4855 int copyflag; 4856 int elt; 4857 struct sk_buff *skb1, **skb_p; 4858 4859 /* If skb is cloned or its head is paged, reallocate 4860 * head pulling out all the pages (pages are considered not writable 4861 * at the moment even if they are anonymous). 4862 */ 4863 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4864 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4865 return -ENOMEM; 4866 4867 /* Easy case. Most of packets will go this way. */ 4868 if (!skb_has_frag_list(skb)) { 4869 /* A little of trouble, not enough of space for trailer. 4870 * This should not happen, when stack is tuned to generate 4871 * good frames. OK, on miss we reallocate and reserve even more 4872 * space, 128 bytes is fair. */ 4873 4874 if (skb_tailroom(skb) < tailbits && 4875 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4876 return -ENOMEM; 4877 4878 /* Voila! */ 4879 *trailer = skb; 4880 return 1; 4881 } 4882 4883 /* Misery. We are in troubles, going to mincer fragments... */ 4884 4885 elt = 1; 4886 skb_p = &skb_shinfo(skb)->frag_list; 4887 copyflag = 0; 4888 4889 while ((skb1 = *skb_p) != NULL) { 4890 int ntail = 0; 4891 4892 /* The fragment is partially pulled by someone, 4893 * this can happen on input. Copy it and everything 4894 * after it. */ 4895 4896 if (skb_shared(skb1)) 4897 copyflag = 1; 4898 4899 /* If the skb is the last, worry about trailer. */ 4900 4901 if (skb1->next == NULL && tailbits) { 4902 if (skb_shinfo(skb1)->nr_frags || 4903 skb_has_frag_list(skb1) || 4904 skb_tailroom(skb1) < tailbits) 4905 ntail = tailbits + 128; 4906 } 4907 4908 if (copyflag || 4909 skb_cloned(skb1) || 4910 ntail || 4911 skb_shinfo(skb1)->nr_frags || 4912 skb_has_frag_list(skb1)) { 4913 struct sk_buff *skb2; 4914 4915 /* Fuck, we are miserable poor guys... */ 4916 if (ntail == 0) 4917 skb2 = skb_copy(skb1, GFP_ATOMIC); 4918 else 4919 skb2 = skb_copy_expand(skb1, 4920 skb_headroom(skb1), 4921 ntail, 4922 GFP_ATOMIC); 4923 if (unlikely(skb2 == NULL)) 4924 return -ENOMEM; 4925 4926 if (skb1->sk) 4927 skb_set_owner_w(skb2, skb1->sk); 4928 4929 /* Looking around. Are we still alive? 4930 * OK, link new skb, drop old one */ 4931 4932 skb2->next = skb1->next; 4933 *skb_p = skb2; 4934 kfree_skb(skb1); 4935 skb1 = skb2; 4936 } 4937 elt++; 4938 *trailer = skb1; 4939 skb_p = &skb1->next; 4940 } 4941 4942 return elt; 4943 } 4944 EXPORT_SYMBOL_GPL(skb_cow_data); 4945 4946 static void sock_rmem_free(struct sk_buff *skb) 4947 { 4948 struct sock *sk = skb->sk; 4949 4950 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4951 } 4952 4953 static void skb_set_err_queue(struct sk_buff *skb) 4954 { 4955 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4956 * So, it is safe to (mis)use it to mark skbs on the error queue. 4957 */ 4958 skb->pkt_type = PACKET_OUTGOING; 4959 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4960 } 4961 4962 /* 4963 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4964 */ 4965 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4966 { 4967 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4968 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4969 return -ENOMEM; 4970 4971 skb_orphan(skb); 4972 skb->sk = sk; 4973 skb->destructor = sock_rmem_free; 4974 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4975 skb_set_err_queue(skb); 4976 4977 /* before exiting rcu section, make sure dst is refcounted */ 4978 skb_dst_force(skb); 4979 4980 skb_queue_tail(&sk->sk_error_queue, skb); 4981 if (!sock_flag(sk, SOCK_DEAD)) 4982 sk_error_report(sk); 4983 return 0; 4984 } 4985 EXPORT_SYMBOL(sock_queue_err_skb); 4986 4987 static bool is_icmp_err_skb(const struct sk_buff *skb) 4988 { 4989 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4990 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4991 } 4992 4993 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4994 { 4995 struct sk_buff_head *q = &sk->sk_error_queue; 4996 struct sk_buff *skb, *skb_next = NULL; 4997 bool icmp_next = false; 4998 unsigned long flags; 4999 5000 spin_lock_irqsave(&q->lock, flags); 5001 skb = __skb_dequeue(q); 5002 if (skb && (skb_next = skb_peek(q))) { 5003 icmp_next = is_icmp_err_skb(skb_next); 5004 if (icmp_next) 5005 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5006 } 5007 spin_unlock_irqrestore(&q->lock, flags); 5008 5009 if (is_icmp_err_skb(skb) && !icmp_next) 5010 sk->sk_err = 0; 5011 5012 if (skb_next) 5013 sk_error_report(sk); 5014 5015 return skb; 5016 } 5017 EXPORT_SYMBOL(sock_dequeue_err_skb); 5018 5019 /** 5020 * skb_clone_sk - create clone of skb, and take reference to socket 5021 * @skb: the skb to clone 5022 * 5023 * This function creates a clone of a buffer that holds a reference on 5024 * sk_refcnt. Buffers created via this function are meant to be 5025 * returned using sock_queue_err_skb, or free via kfree_skb. 5026 * 5027 * When passing buffers allocated with this function to sock_queue_err_skb 5028 * it is necessary to wrap the call with sock_hold/sock_put in order to 5029 * prevent the socket from being released prior to being enqueued on 5030 * the sk_error_queue. 5031 */ 5032 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5033 { 5034 struct sock *sk = skb->sk; 5035 struct sk_buff *clone; 5036 5037 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5038 return NULL; 5039 5040 clone = skb_clone(skb, GFP_ATOMIC); 5041 if (!clone) { 5042 sock_put(sk); 5043 return NULL; 5044 } 5045 5046 clone->sk = sk; 5047 clone->destructor = sock_efree; 5048 5049 return clone; 5050 } 5051 EXPORT_SYMBOL(skb_clone_sk); 5052 5053 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5054 struct sock *sk, 5055 int tstype, 5056 bool opt_stats) 5057 { 5058 struct sock_exterr_skb *serr; 5059 int err; 5060 5061 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5062 5063 serr = SKB_EXT_ERR(skb); 5064 memset(serr, 0, sizeof(*serr)); 5065 serr->ee.ee_errno = ENOMSG; 5066 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5067 serr->ee.ee_info = tstype; 5068 serr->opt_stats = opt_stats; 5069 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5070 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 5071 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5072 if (sk_is_tcp(sk)) 5073 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5074 } 5075 5076 err = sock_queue_err_skb(sk, skb); 5077 5078 if (err) 5079 kfree_skb(skb); 5080 } 5081 5082 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5083 { 5084 bool ret; 5085 5086 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5087 return true; 5088 5089 read_lock_bh(&sk->sk_callback_lock); 5090 ret = sk->sk_socket && sk->sk_socket->file && 5091 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5092 read_unlock_bh(&sk->sk_callback_lock); 5093 return ret; 5094 } 5095 5096 void skb_complete_tx_timestamp(struct sk_buff *skb, 5097 struct skb_shared_hwtstamps *hwtstamps) 5098 { 5099 struct sock *sk = skb->sk; 5100 5101 if (!skb_may_tx_timestamp(sk, false)) 5102 goto err; 5103 5104 /* Take a reference to prevent skb_orphan() from freeing the socket, 5105 * but only if the socket refcount is not zero. 5106 */ 5107 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5108 *skb_hwtstamps(skb) = *hwtstamps; 5109 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5110 sock_put(sk); 5111 return; 5112 } 5113 5114 err: 5115 kfree_skb(skb); 5116 } 5117 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5118 5119 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5120 const struct sk_buff *ack_skb, 5121 struct skb_shared_hwtstamps *hwtstamps, 5122 struct sock *sk, int tstype) 5123 { 5124 struct sk_buff *skb; 5125 bool tsonly, opt_stats = false; 5126 5127 if (!sk) 5128 return; 5129 5130 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5131 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5132 return; 5133 5134 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5135 if (!skb_may_tx_timestamp(sk, tsonly)) 5136 return; 5137 5138 if (tsonly) { 5139 #ifdef CONFIG_INET 5140 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5141 sk_is_tcp(sk)) { 5142 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5143 ack_skb); 5144 opt_stats = true; 5145 } else 5146 #endif 5147 skb = alloc_skb(0, GFP_ATOMIC); 5148 } else { 5149 skb = skb_clone(orig_skb, GFP_ATOMIC); 5150 } 5151 if (!skb) 5152 return; 5153 5154 if (tsonly) { 5155 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5156 SKBTX_ANY_TSTAMP; 5157 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5158 } 5159 5160 if (hwtstamps) 5161 *skb_hwtstamps(skb) = *hwtstamps; 5162 else 5163 __net_timestamp(skb); 5164 5165 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5166 } 5167 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5168 5169 void skb_tstamp_tx(struct sk_buff *orig_skb, 5170 struct skb_shared_hwtstamps *hwtstamps) 5171 { 5172 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5173 SCM_TSTAMP_SND); 5174 } 5175 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5176 5177 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5178 { 5179 struct sock *sk = skb->sk; 5180 struct sock_exterr_skb *serr; 5181 int err = 1; 5182 5183 skb->wifi_acked_valid = 1; 5184 skb->wifi_acked = acked; 5185 5186 serr = SKB_EXT_ERR(skb); 5187 memset(serr, 0, sizeof(*serr)); 5188 serr->ee.ee_errno = ENOMSG; 5189 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5190 5191 /* Take a reference to prevent skb_orphan() from freeing the socket, 5192 * but only if the socket refcount is not zero. 5193 */ 5194 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5195 err = sock_queue_err_skb(sk, skb); 5196 sock_put(sk); 5197 } 5198 if (err) 5199 kfree_skb(skb); 5200 } 5201 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5202 5203 /** 5204 * skb_partial_csum_set - set up and verify partial csum values for packet 5205 * @skb: the skb to set 5206 * @start: the number of bytes after skb->data to start checksumming. 5207 * @off: the offset from start to place the checksum. 5208 * 5209 * For untrusted partially-checksummed packets, we need to make sure the values 5210 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5211 * 5212 * This function checks and sets those values and skb->ip_summed: if this 5213 * returns false you should drop the packet. 5214 */ 5215 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5216 { 5217 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5218 u32 csum_start = skb_headroom(skb) + (u32)start; 5219 5220 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 5221 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5222 start, off, skb_headroom(skb), skb_headlen(skb)); 5223 return false; 5224 } 5225 skb->ip_summed = CHECKSUM_PARTIAL; 5226 skb->csum_start = csum_start; 5227 skb->csum_offset = off; 5228 skb_set_transport_header(skb, start); 5229 return true; 5230 } 5231 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5232 5233 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5234 unsigned int max) 5235 { 5236 if (skb_headlen(skb) >= len) 5237 return 0; 5238 5239 /* If we need to pullup then pullup to the max, so we 5240 * won't need to do it again. 5241 */ 5242 if (max > skb->len) 5243 max = skb->len; 5244 5245 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5246 return -ENOMEM; 5247 5248 if (skb_headlen(skb) < len) 5249 return -EPROTO; 5250 5251 return 0; 5252 } 5253 5254 #define MAX_TCP_HDR_LEN (15 * 4) 5255 5256 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5257 typeof(IPPROTO_IP) proto, 5258 unsigned int off) 5259 { 5260 int err; 5261 5262 switch (proto) { 5263 case IPPROTO_TCP: 5264 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5265 off + MAX_TCP_HDR_LEN); 5266 if (!err && !skb_partial_csum_set(skb, off, 5267 offsetof(struct tcphdr, 5268 check))) 5269 err = -EPROTO; 5270 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5271 5272 case IPPROTO_UDP: 5273 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5274 off + sizeof(struct udphdr)); 5275 if (!err && !skb_partial_csum_set(skb, off, 5276 offsetof(struct udphdr, 5277 check))) 5278 err = -EPROTO; 5279 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5280 } 5281 5282 return ERR_PTR(-EPROTO); 5283 } 5284 5285 /* This value should be large enough to cover a tagged ethernet header plus 5286 * maximally sized IP and TCP or UDP headers. 5287 */ 5288 #define MAX_IP_HDR_LEN 128 5289 5290 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5291 { 5292 unsigned int off; 5293 bool fragment; 5294 __sum16 *csum; 5295 int err; 5296 5297 fragment = false; 5298 5299 err = skb_maybe_pull_tail(skb, 5300 sizeof(struct iphdr), 5301 MAX_IP_HDR_LEN); 5302 if (err < 0) 5303 goto out; 5304 5305 if (ip_is_fragment(ip_hdr(skb))) 5306 fragment = true; 5307 5308 off = ip_hdrlen(skb); 5309 5310 err = -EPROTO; 5311 5312 if (fragment) 5313 goto out; 5314 5315 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5316 if (IS_ERR(csum)) 5317 return PTR_ERR(csum); 5318 5319 if (recalculate) 5320 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5321 ip_hdr(skb)->daddr, 5322 skb->len - off, 5323 ip_hdr(skb)->protocol, 0); 5324 err = 0; 5325 5326 out: 5327 return err; 5328 } 5329 5330 /* This value should be large enough to cover a tagged ethernet header plus 5331 * an IPv6 header, all options, and a maximal TCP or UDP header. 5332 */ 5333 #define MAX_IPV6_HDR_LEN 256 5334 5335 #define OPT_HDR(type, skb, off) \ 5336 (type *)(skb_network_header(skb) + (off)) 5337 5338 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5339 { 5340 int err; 5341 u8 nexthdr; 5342 unsigned int off; 5343 unsigned int len; 5344 bool fragment; 5345 bool done; 5346 __sum16 *csum; 5347 5348 fragment = false; 5349 done = false; 5350 5351 off = sizeof(struct ipv6hdr); 5352 5353 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5354 if (err < 0) 5355 goto out; 5356 5357 nexthdr = ipv6_hdr(skb)->nexthdr; 5358 5359 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5360 while (off <= len && !done) { 5361 switch (nexthdr) { 5362 case IPPROTO_DSTOPTS: 5363 case IPPROTO_HOPOPTS: 5364 case IPPROTO_ROUTING: { 5365 struct ipv6_opt_hdr *hp; 5366 5367 err = skb_maybe_pull_tail(skb, 5368 off + 5369 sizeof(struct ipv6_opt_hdr), 5370 MAX_IPV6_HDR_LEN); 5371 if (err < 0) 5372 goto out; 5373 5374 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5375 nexthdr = hp->nexthdr; 5376 off += ipv6_optlen(hp); 5377 break; 5378 } 5379 case IPPROTO_AH: { 5380 struct ip_auth_hdr *hp; 5381 5382 err = skb_maybe_pull_tail(skb, 5383 off + 5384 sizeof(struct ip_auth_hdr), 5385 MAX_IPV6_HDR_LEN); 5386 if (err < 0) 5387 goto out; 5388 5389 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5390 nexthdr = hp->nexthdr; 5391 off += ipv6_authlen(hp); 5392 break; 5393 } 5394 case IPPROTO_FRAGMENT: { 5395 struct frag_hdr *hp; 5396 5397 err = skb_maybe_pull_tail(skb, 5398 off + 5399 sizeof(struct frag_hdr), 5400 MAX_IPV6_HDR_LEN); 5401 if (err < 0) 5402 goto out; 5403 5404 hp = OPT_HDR(struct frag_hdr, skb, off); 5405 5406 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5407 fragment = true; 5408 5409 nexthdr = hp->nexthdr; 5410 off += sizeof(struct frag_hdr); 5411 break; 5412 } 5413 default: 5414 done = true; 5415 break; 5416 } 5417 } 5418 5419 err = -EPROTO; 5420 5421 if (!done || fragment) 5422 goto out; 5423 5424 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5425 if (IS_ERR(csum)) 5426 return PTR_ERR(csum); 5427 5428 if (recalculate) 5429 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5430 &ipv6_hdr(skb)->daddr, 5431 skb->len - off, nexthdr, 0); 5432 err = 0; 5433 5434 out: 5435 return err; 5436 } 5437 5438 /** 5439 * skb_checksum_setup - set up partial checksum offset 5440 * @skb: the skb to set up 5441 * @recalculate: if true the pseudo-header checksum will be recalculated 5442 */ 5443 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5444 { 5445 int err; 5446 5447 switch (skb->protocol) { 5448 case htons(ETH_P_IP): 5449 err = skb_checksum_setup_ipv4(skb, recalculate); 5450 break; 5451 5452 case htons(ETH_P_IPV6): 5453 err = skb_checksum_setup_ipv6(skb, recalculate); 5454 break; 5455 5456 default: 5457 err = -EPROTO; 5458 break; 5459 } 5460 5461 return err; 5462 } 5463 EXPORT_SYMBOL(skb_checksum_setup); 5464 5465 /** 5466 * skb_checksum_maybe_trim - maybe trims the given skb 5467 * @skb: the skb to check 5468 * @transport_len: the data length beyond the network header 5469 * 5470 * Checks whether the given skb has data beyond the given transport length. 5471 * If so, returns a cloned skb trimmed to this transport length. 5472 * Otherwise returns the provided skb. Returns NULL in error cases 5473 * (e.g. transport_len exceeds skb length or out-of-memory). 5474 * 5475 * Caller needs to set the skb transport header and free any returned skb if it 5476 * differs from the provided skb. 5477 */ 5478 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5479 unsigned int transport_len) 5480 { 5481 struct sk_buff *skb_chk; 5482 unsigned int len = skb_transport_offset(skb) + transport_len; 5483 int ret; 5484 5485 if (skb->len < len) 5486 return NULL; 5487 else if (skb->len == len) 5488 return skb; 5489 5490 skb_chk = skb_clone(skb, GFP_ATOMIC); 5491 if (!skb_chk) 5492 return NULL; 5493 5494 ret = pskb_trim_rcsum(skb_chk, len); 5495 if (ret) { 5496 kfree_skb(skb_chk); 5497 return NULL; 5498 } 5499 5500 return skb_chk; 5501 } 5502 5503 /** 5504 * skb_checksum_trimmed - validate checksum of an skb 5505 * @skb: the skb to check 5506 * @transport_len: the data length beyond the network header 5507 * @skb_chkf: checksum function to use 5508 * 5509 * Applies the given checksum function skb_chkf to the provided skb. 5510 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5511 * 5512 * If the skb has data beyond the given transport length, then a 5513 * trimmed & cloned skb is checked and returned. 5514 * 5515 * Caller needs to set the skb transport header and free any returned skb if it 5516 * differs from the provided skb. 5517 */ 5518 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5519 unsigned int transport_len, 5520 __sum16(*skb_chkf)(struct sk_buff *skb)) 5521 { 5522 struct sk_buff *skb_chk; 5523 unsigned int offset = skb_transport_offset(skb); 5524 __sum16 ret; 5525 5526 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5527 if (!skb_chk) 5528 goto err; 5529 5530 if (!pskb_may_pull(skb_chk, offset)) 5531 goto err; 5532 5533 skb_pull_rcsum(skb_chk, offset); 5534 ret = skb_chkf(skb_chk); 5535 skb_push_rcsum(skb_chk, offset); 5536 5537 if (ret) 5538 goto err; 5539 5540 return skb_chk; 5541 5542 err: 5543 if (skb_chk && skb_chk != skb) 5544 kfree_skb(skb_chk); 5545 5546 return NULL; 5547 5548 } 5549 EXPORT_SYMBOL(skb_checksum_trimmed); 5550 5551 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5552 { 5553 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5554 skb->dev->name); 5555 } 5556 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5557 5558 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5559 { 5560 if (head_stolen) { 5561 skb_release_head_state(skb); 5562 kmem_cache_free(skbuff_cache, skb); 5563 } else { 5564 __kfree_skb(skb); 5565 } 5566 } 5567 EXPORT_SYMBOL(kfree_skb_partial); 5568 5569 /** 5570 * skb_try_coalesce - try to merge skb to prior one 5571 * @to: prior buffer 5572 * @from: buffer to add 5573 * @fragstolen: pointer to boolean 5574 * @delta_truesize: how much more was allocated than was requested 5575 */ 5576 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5577 bool *fragstolen, int *delta_truesize) 5578 { 5579 struct skb_shared_info *to_shinfo, *from_shinfo; 5580 int i, delta, len = from->len; 5581 5582 *fragstolen = false; 5583 5584 if (skb_cloned(to)) 5585 return false; 5586 5587 /* In general, avoid mixing slab allocated and page_pool allocated 5588 * pages within the same SKB. However when @to is not pp_recycle and 5589 * @from is cloned, we can transition frag pages from page_pool to 5590 * reference counted. 5591 * 5592 * On the other hand, don't allow coalescing two pp_recycle SKBs if 5593 * @from is cloned, in case the SKB is using page_pool fragment 5594 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5595 * references for cloned SKBs at the moment that would result in 5596 * inconsistent reference counts. 5597 */ 5598 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from))) 5599 return false; 5600 5601 if (len <= skb_tailroom(to)) { 5602 if (len) 5603 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5604 *delta_truesize = 0; 5605 return true; 5606 } 5607 5608 to_shinfo = skb_shinfo(to); 5609 from_shinfo = skb_shinfo(from); 5610 if (to_shinfo->frag_list || from_shinfo->frag_list) 5611 return false; 5612 if (skb_zcopy(to) || skb_zcopy(from)) 5613 return false; 5614 5615 if (skb_headlen(from) != 0) { 5616 struct page *page; 5617 unsigned int offset; 5618 5619 if (to_shinfo->nr_frags + 5620 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5621 return false; 5622 5623 if (skb_head_is_locked(from)) 5624 return false; 5625 5626 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5627 5628 page = virt_to_head_page(from->head); 5629 offset = from->data - (unsigned char *)page_address(page); 5630 5631 skb_fill_page_desc(to, to_shinfo->nr_frags, 5632 page, offset, skb_headlen(from)); 5633 *fragstolen = true; 5634 } else { 5635 if (to_shinfo->nr_frags + 5636 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5637 return false; 5638 5639 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5640 } 5641 5642 WARN_ON_ONCE(delta < len); 5643 5644 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5645 from_shinfo->frags, 5646 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5647 to_shinfo->nr_frags += from_shinfo->nr_frags; 5648 5649 if (!skb_cloned(from)) 5650 from_shinfo->nr_frags = 0; 5651 5652 /* if the skb is not cloned this does nothing 5653 * since we set nr_frags to 0. 5654 */ 5655 for (i = 0; i < from_shinfo->nr_frags; i++) 5656 __skb_frag_ref(&from_shinfo->frags[i]); 5657 5658 to->truesize += delta; 5659 to->len += len; 5660 to->data_len += len; 5661 5662 *delta_truesize = delta; 5663 return true; 5664 } 5665 EXPORT_SYMBOL(skb_try_coalesce); 5666 5667 /** 5668 * skb_scrub_packet - scrub an skb 5669 * 5670 * @skb: buffer to clean 5671 * @xnet: packet is crossing netns 5672 * 5673 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5674 * into/from a tunnel. Some information have to be cleared during these 5675 * operations. 5676 * skb_scrub_packet can also be used to clean a skb before injecting it in 5677 * another namespace (@xnet == true). We have to clear all information in the 5678 * skb that could impact namespace isolation. 5679 */ 5680 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5681 { 5682 skb->pkt_type = PACKET_HOST; 5683 skb->skb_iif = 0; 5684 skb->ignore_df = 0; 5685 skb_dst_drop(skb); 5686 skb_ext_reset(skb); 5687 nf_reset_ct(skb); 5688 nf_reset_trace(skb); 5689 5690 #ifdef CONFIG_NET_SWITCHDEV 5691 skb->offload_fwd_mark = 0; 5692 skb->offload_l3_fwd_mark = 0; 5693 #endif 5694 5695 if (!xnet) 5696 return; 5697 5698 ipvs_reset(skb); 5699 skb->mark = 0; 5700 skb_clear_tstamp(skb); 5701 } 5702 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5703 5704 /** 5705 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5706 * 5707 * @skb: GSO skb 5708 * 5709 * skb_gso_transport_seglen is used to determine the real size of the 5710 * individual segments, including Layer4 headers (TCP/UDP). 5711 * 5712 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5713 */ 5714 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5715 { 5716 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5717 unsigned int thlen = 0; 5718 5719 if (skb->encapsulation) { 5720 thlen = skb_inner_transport_header(skb) - 5721 skb_transport_header(skb); 5722 5723 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5724 thlen += inner_tcp_hdrlen(skb); 5725 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5726 thlen = tcp_hdrlen(skb); 5727 } else if (unlikely(skb_is_gso_sctp(skb))) { 5728 thlen = sizeof(struct sctphdr); 5729 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5730 thlen = sizeof(struct udphdr); 5731 } 5732 /* UFO sets gso_size to the size of the fragmentation 5733 * payload, i.e. the size of the L4 (UDP) header is already 5734 * accounted for. 5735 */ 5736 return thlen + shinfo->gso_size; 5737 } 5738 5739 /** 5740 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5741 * 5742 * @skb: GSO skb 5743 * 5744 * skb_gso_network_seglen is used to determine the real size of the 5745 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5746 * 5747 * The MAC/L2 header is not accounted for. 5748 */ 5749 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5750 { 5751 unsigned int hdr_len = skb_transport_header(skb) - 5752 skb_network_header(skb); 5753 5754 return hdr_len + skb_gso_transport_seglen(skb); 5755 } 5756 5757 /** 5758 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5759 * 5760 * @skb: GSO skb 5761 * 5762 * skb_gso_mac_seglen is used to determine the real size of the 5763 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5764 * headers (TCP/UDP). 5765 */ 5766 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5767 { 5768 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5769 5770 return hdr_len + skb_gso_transport_seglen(skb); 5771 } 5772 5773 /** 5774 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5775 * 5776 * There are a couple of instances where we have a GSO skb, and we 5777 * want to determine what size it would be after it is segmented. 5778 * 5779 * We might want to check: 5780 * - L3+L4+payload size (e.g. IP forwarding) 5781 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5782 * 5783 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5784 * 5785 * @skb: GSO skb 5786 * 5787 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5788 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5789 * 5790 * @max_len: The maximum permissible length. 5791 * 5792 * Returns true if the segmented length <= max length. 5793 */ 5794 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5795 unsigned int seg_len, 5796 unsigned int max_len) { 5797 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5798 const struct sk_buff *iter; 5799 5800 if (shinfo->gso_size != GSO_BY_FRAGS) 5801 return seg_len <= max_len; 5802 5803 /* Undo this so we can re-use header sizes */ 5804 seg_len -= GSO_BY_FRAGS; 5805 5806 skb_walk_frags(skb, iter) { 5807 if (seg_len + skb_headlen(iter) > max_len) 5808 return false; 5809 } 5810 5811 return true; 5812 } 5813 5814 /** 5815 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5816 * 5817 * @skb: GSO skb 5818 * @mtu: MTU to validate against 5819 * 5820 * skb_gso_validate_network_len validates if a given skb will fit a 5821 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5822 * payload. 5823 */ 5824 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5825 { 5826 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5827 } 5828 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5829 5830 /** 5831 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5832 * 5833 * @skb: GSO skb 5834 * @len: length to validate against 5835 * 5836 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5837 * length once split, including L2, L3 and L4 headers and the payload. 5838 */ 5839 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5840 { 5841 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5842 } 5843 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5844 5845 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5846 { 5847 int mac_len, meta_len; 5848 void *meta; 5849 5850 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5851 kfree_skb(skb); 5852 return NULL; 5853 } 5854 5855 mac_len = skb->data - skb_mac_header(skb); 5856 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5857 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5858 mac_len - VLAN_HLEN - ETH_TLEN); 5859 } 5860 5861 meta_len = skb_metadata_len(skb); 5862 if (meta_len) { 5863 meta = skb_metadata_end(skb) - meta_len; 5864 memmove(meta + VLAN_HLEN, meta, meta_len); 5865 } 5866 5867 skb->mac_header += VLAN_HLEN; 5868 return skb; 5869 } 5870 5871 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5872 { 5873 struct vlan_hdr *vhdr; 5874 u16 vlan_tci; 5875 5876 if (unlikely(skb_vlan_tag_present(skb))) { 5877 /* vlan_tci is already set-up so leave this for another time */ 5878 return skb; 5879 } 5880 5881 skb = skb_share_check(skb, GFP_ATOMIC); 5882 if (unlikely(!skb)) 5883 goto err_free; 5884 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5885 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5886 goto err_free; 5887 5888 vhdr = (struct vlan_hdr *)skb->data; 5889 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5890 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5891 5892 skb_pull_rcsum(skb, VLAN_HLEN); 5893 vlan_set_encap_proto(skb, vhdr); 5894 5895 skb = skb_reorder_vlan_header(skb); 5896 if (unlikely(!skb)) 5897 goto err_free; 5898 5899 skb_reset_network_header(skb); 5900 if (!skb_transport_header_was_set(skb)) 5901 skb_reset_transport_header(skb); 5902 skb_reset_mac_len(skb); 5903 5904 return skb; 5905 5906 err_free: 5907 kfree_skb(skb); 5908 return NULL; 5909 } 5910 EXPORT_SYMBOL(skb_vlan_untag); 5911 5912 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5913 { 5914 if (!pskb_may_pull(skb, write_len)) 5915 return -ENOMEM; 5916 5917 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5918 return 0; 5919 5920 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5921 } 5922 EXPORT_SYMBOL(skb_ensure_writable); 5923 5924 /* remove VLAN header from packet and update csum accordingly. 5925 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5926 */ 5927 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5928 { 5929 struct vlan_hdr *vhdr; 5930 int offset = skb->data - skb_mac_header(skb); 5931 int err; 5932 5933 if (WARN_ONCE(offset, 5934 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5935 offset)) { 5936 return -EINVAL; 5937 } 5938 5939 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5940 if (unlikely(err)) 5941 return err; 5942 5943 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5944 5945 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5946 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5947 5948 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5949 __skb_pull(skb, VLAN_HLEN); 5950 5951 vlan_set_encap_proto(skb, vhdr); 5952 skb->mac_header += VLAN_HLEN; 5953 5954 if (skb_network_offset(skb) < ETH_HLEN) 5955 skb_set_network_header(skb, ETH_HLEN); 5956 5957 skb_reset_mac_len(skb); 5958 5959 return err; 5960 } 5961 EXPORT_SYMBOL(__skb_vlan_pop); 5962 5963 /* Pop a vlan tag either from hwaccel or from payload. 5964 * Expects skb->data at mac header. 5965 */ 5966 int skb_vlan_pop(struct sk_buff *skb) 5967 { 5968 u16 vlan_tci; 5969 __be16 vlan_proto; 5970 int err; 5971 5972 if (likely(skb_vlan_tag_present(skb))) { 5973 __vlan_hwaccel_clear_tag(skb); 5974 } else { 5975 if (unlikely(!eth_type_vlan(skb->protocol))) 5976 return 0; 5977 5978 err = __skb_vlan_pop(skb, &vlan_tci); 5979 if (err) 5980 return err; 5981 } 5982 /* move next vlan tag to hw accel tag */ 5983 if (likely(!eth_type_vlan(skb->protocol))) 5984 return 0; 5985 5986 vlan_proto = skb->protocol; 5987 err = __skb_vlan_pop(skb, &vlan_tci); 5988 if (unlikely(err)) 5989 return err; 5990 5991 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5992 return 0; 5993 } 5994 EXPORT_SYMBOL(skb_vlan_pop); 5995 5996 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5997 * Expects skb->data at mac header. 5998 */ 5999 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6000 { 6001 if (skb_vlan_tag_present(skb)) { 6002 int offset = skb->data - skb_mac_header(skb); 6003 int err; 6004 6005 if (WARN_ONCE(offset, 6006 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6007 offset)) { 6008 return -EINVAL; 6009 } 6010 6011 err = __vlan_insert_tag(skb, skb->vlan_proto, 6012 skb_vlan_tag_get(skb)); 6013 if (err) 6014 return err; 6015 6016 skb->protocol = skb->vlan_proto; 6017 skb->mac_len += VLAN_HLEN; 6018 6019 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6020 } 6021 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6022 return 0; 6023 } 6024 EXPORT_SYMBOL(skb_vlan_push); 6025 6026 /** 6027 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6028 * 6029 * @skb: Socket buffer to modify 6030 * 6031 * Drop the Ethernet header of @skb. 6032 * 6033 * Expects that skb->data points to the mac header and that no VLAN tags are 6034 * present. 6035 * 6036 * Returns 0 on success, -errno otherwise. 6037 */ 6038 int skb_eth_pop(struct sk_buff *skb) 6039 { 6040 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6041 skb_network_offset(skb) < ETH_HLEN) 6042 return -EPROTO; 6043 6044 skb_pull_rcsum(skb, ETH_HLEN); 6045 skb_reset_mac_header(skb); 6046 skb_reset_mac_len(skb); 6047 6048 return 0; 6049 } 6050 EXPORT_SYMBOL(skb_eth_pop); 6051 6052 /** 6053 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6054 * 6055 * @skb: Socket buffer to modify 6056 * @dst: Destination MAC address of the new header 6057 * @src: Source MAC address of the new header 6058 * 6059 * Prepend @skb with a new Ethernet header. 6060 * 6061 * Expects that skb->data points to the mac header, which must be empty. 6062 * 6063 * Returns 0 on success, -errno otherwise. 6064 */ 6065 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6066 const unsigned char *src) 6067 { 6068 struct ethhdr *eth; 6069 int err; 6070 6071 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6072 return -EPROTO; 6073 6074 err = skb_cow_head(skb, sizeof(*eth)); 6075 if (err < 0) 6076 return err; 6077 6078 skb_push(skb, sizeof(*eth)); 6079 skb_reset_mac_header(skb); 6080 skb_reset_mac_len(skb); 6081 6082 eth = eth_hdr(skb); 6083 ether_addr_copy(eth->h_dest, dst); 6084 ether_addr_copy(eth->h_source, src); 6085 eth->h_proto = skb->protocol; 6086 6087 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6088 6089 return 0; 6090 } 6091 EXPORT_SYMBOL(skb_eth_push); 6092 6093 /* Update the ethertype of hdr and the skb csum value if required. */ 6094 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6095 __be16 ethertype) 6096 { 6097 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6098 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6099 6100 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6101 } 6102 6103 hdr->h_proto = ethertype; 6104 } 6105 6106 /** 6107 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6108 * the packet 6109 * 6110 * @skb: buffer 6111 * @mpls_lse: MPLS label stack entry to push 6112 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6113 * @mac_len: length of the MAC header 6114 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6115 * ethernet 6116 * 6117 * Expects skb->data at mac header. 6118 * 6119 * Returns 0 on success, -errno otherwise. 6120 */ 6121 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6122 int mac_len, bool ethernet) 6123 { 6124 struct mpls_shim_hdr *lse; 6125 int err; 6126 6127 if (unlikely(!eth_p_mpls(mpls_proto))) 6128 return -EINVAL; 6129 6130 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6131 if (skb->encapsulation) 6132 return -EINVAL; 6133 6134 err = skb_cow_head(skb, MPLS_HLEN); 6135 if (unlikely(err)) 6136 return err; 6137 6138 if (!skb->inner_protocol) { 6139 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6140 skb_set_inner_protocol(skb, skb->protocol); 6141 } 6142 6143 skb_push(skb, MPLS_HLEN); 6144 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6145 mac_len); 6146 skb_reset_mac_header(skb); 6147 skb_set_network_header(skb, mac_len); 6148 skb_reset_mac_len(skb); 6149 6150 lse = mpls_hdr(skb); 6151 lse->label_stack_entry = mpls_lse; 6152 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6153 6154 if (ethernet && mac_len >= ETH_HLEN) 6155 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6156 skb->protocol = mpls_proto; 6157 6158 return 0; 6159 } 6160 EXPORT_SYMBOL_GPL(skb_mpls_push); 6161 6162 /** 6163 * skb_mpls_pop() - pop the outermost MPLS header 6164 * 6165 * @skb: buffer 6166 * @next_proto: ethertype of header after popped MPLS header 6167 * @mac_len: length of the MAC header 6168 * @ethernet: flag to indicate if the packet is ethernet 6169 * 6170 * Expects skb->data at mac header. 6171 * 6172 * Returns 0 on success, -errno otherwise. 6173 */ 6174 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6175 bool ethernet) 6176 { 6177 int err; 6178 6179 if (unlikely(!eth_p_mpls(skb->protocol))) 6180 return 0; 6181 6182 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6183 if (unlikely(err)) 6184 return err; 6185 6186 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6187 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6188 mac_len); 6189 6190 __skb_pull(skb, MPLS_HLEN); 6191 skb_reset_mac_header(skb); 6192 skb_set_network_header(skb, mac_len); 6193 6194 if (ethernet && mac_len >= ETH_HLEN) { 6195 struct ethhdr *hdr; 6196 6197 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6198 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6199 skb_mod_eth_type(skb, hdr, next_proto); 6200 } 6201 skb->protocol = next_proto; 6202 6203 return 0; 6204 } 6205 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6206 6207 /** 6208 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6209 * 6210 * @skb: buffer 6211 * @mpls_lse: new MPLS label stack entry to update to 6212 * 6213 * Expects skb->data at mac header. 6214 * 6215 * Returns 0 on success, -errno otherwise. 6216 */ 6217 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6218 { 6219 int err; 6220 6221 if (unlikely(!eth_p_mpls(skb->protocol))) 6222 return -EINVAL; 6223 6224 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6225 if (unlikely(err)) 6226 return err; 6227 6228 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6229 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6230 6231 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6232 } 6233 6234 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6235 6236 return 0; 6237 } 6238 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6239 6240 /** 6241 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6242 * 6243 * @skb: buffer 6244 * 6245 * Expects skb->data at mac header. 6246 * 6247 * Returns 0 on success, -errno otherwise. 6248 */ 6249 int skb_mpls_dec_ttl(struct sk_buff *skb) 6250 { 6251 u32 lse; 6252 u8 ttl; 6253 6254 if (unlikely(!eth_p_mpls(skb->protocol))) 6255 return -EINVAL; 6256 6257 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6258 return -ENOMEM; 6259 6260 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6261 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6262 if (!--ttl) 6263 return -EINVAL; 6264 6265 lse &= ~MPLS_LS_TTL_MASK; 6266 lse |= ttl << MPLS_LS_TTL_SHIFT; 6267 6268 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6269 } 6270 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6271 6272 /** 6273 * alloc_skb_with_frags - allocate skb with page frags 6274 * 6275 * @header_len: size of linear part 6276 * @data_len: needed length in frags 6277 * @max_page_order: max page order desired. 6278 * @errcode: pointer to error code if any 6279 * @gfp_mask: allocation mask 6280 * 6281 * This can be used to allocate a paged skb, given a maximal order for frags. 6282 */ 6283 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6284 unsigned long data_len, 6285 int max_page_order, 6286 int *errcode, 6287 gfp_t gfp_mask) 6288 { 6289 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 6290 unsigned long chunk; 6291 struct sk_buff *skb; 6292 struct page *page; 6293 int i; 6294 6295 *errcode = -EMSGSIZE; 6296 /* Note this test could be relaxed, if we succeed to allocate 6297 * high order pages... 6298 */ 6299 if (npages > MAX_SKB_FRAGS) 6300 return NULL; 6301 6302 *errcode = -ENOBUFS; 6303 skb = alloc_skb(header_len, gfp_mask); 6304 if (!skb) 6305 return NULL; 6306 6307 skb->truesize += npages << PAGE_SHIFT; 6308 6309 for (i = 0; npages > 0; i++) { 6310 int order = max_page_order; 6311 6312 while (order) { 6313 if (npages >= 1 << order) { 6314 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6315 __GFP_COMP | 6316 __GFP_NOWARN, 6317 order); 6318 if (page) 6319 goto fill_page; 6320 /* Do not retry other high order allocations */ 6321 order = 1; 6322 max_page_order = 0; 6323 } 6324 order--; 6325 } 6326 page = alloc_page(gfp_mask); 6327 if (!page) 6328 goto failure; 6329 fill_page: 6330 chunk = min_t(unsigned long, data_len, 6331 PAGE_SIZE << order); 6332 skb_fill_page_desc(skb, i, page, 0, chunk); 6333 data_len -= chunk; 6334 npages -= 1 << order; 6335 } 6336 return skb; 6337 6338 failure: 6339 kfree_skb(skb); 6340 return NULL; 6341 } 6342 EXPORT_SYMBOL(alloc_skb_with_frags); 6343 6344 /* carve out the first off bytes from skb when off < headlen */ 6345 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6346 const int headlen, gfp_t gfp_mask) 6347 { 6348 int i; 6349 unsigned int size = skb_end_offset(skb); 6350 int new_hlen = headlen - off; 6351 u8 *data; 6352 6353 if (skb_pfmemalloc(skb)) 6354 gfp_mask |= __GFP_MEMALLOC; 6355 6356 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6357 if (!data) 6358 return -ENOMEM; 6359 size = SKB_WITH_OVERHEAD(size); 6360 6361 /* Copy real data, and all frags */ 6362 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6363 skb->len -= off; 6364 6365 memcpy((struct skb_shared_info *)(data + size), 6366 skb_shinfo(skb), 6367 offsetof(struct skb_shared_info, 6368 frags[skb_shinfo(skb)->nr_frags])); 6369 if (skb_cloned(skb)) { 6370 /* drop the old head gracefully */ 6371 if (skb_orphan_frags(skb, gfp_mask)) { 6372 skb_kfree_head(data, size); 6373 return -ENOMEM; 6374 } 6375 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6376 skb_frag_ref(skb, i); 6377 if (skb_has_frag_list(skb)) 6378 skb_clone_fraglist(skb); 6379 skb_release_data(skb, SKB_CONSUMED); 6380 } else { 6381 /* we can reuse existing recount- all we did was 6382 * relocate values 6383 */ 6384 skb_free_head(skb); 6385 } 6386 6387 skb->head = data; 6388 skb->data = data; 6389 skb->head_frag = 0; 6390 skb_set_end_offset(skb, size); 6391 skb_set_tail_pointer(skb, skb_headlen(skb)); 6392 skb_headers_offset_update(skb, 0); 6393 skb->cloned = 0; 6394 skb->hdr_len = 0; 6395 skb->nohdr = 0; 6396 atomic_set(&skb_shinfo(skb)->dataref, 1); 6397 6398 return 0; 6399 } 6400 6401 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6402 6403 /* carve out the first eat bytes from skb's frag_list. May recurse into 6404 * pskb_carve() 6405 */ 6406 static int pskb_carve_frag_list(struct sk_buff *skb, 6407 struct skb_shared_info *shinfo, int eat, 6408 gfp_t gfp_mask) 6409 { 6410 struct sk_buff *list = shinfo->frag_list; 6411 struct sk_buff *clone = NULL; 6412 struct sk_buff *insp = NULL; 6413 6414 do { 6415 if (!list) { 6416 pr_err("Not enough bytes to eat. Want %d\n", eat); 6417 return -EFAULT; 6418 } 6419 if (list->len <= eat) { 6420 /* Eaten as whole. */ 6421 eat -= list->len; 6422 list = list->next; 6423 insp = list; 6424 } else { 6425 /* Eaten partially. */ 6426 if (skb_shared(list)) { 6427 clone = skb_clone(list, gfp_mask); 6428 if (!clone) 6429 return -ENOMEM; 6430 insp = list->next; 6431 list = clone; 6432 } else { 6433 /* This may be pulled without problems. */ 6434 insp = list; 6435 } 6436 if (pskb_carve(list, eat, gfp_mask) < 0) { 6437 kfree_skb(clone); 6438 return -ENOMEM; 6439 } 6440 break; 6441 } 6442 } while (eat); 6443 6444 /* Free pulled out fragments. */ 6445 while ((list = shinfo->frag_list) != insp) { 6446 shinfo->frag_list = list->next; 6447 consume_skb(list); 6448 } 6449 /* And insert new clone at head. */ 6450 if (clone) { 6451 clone->next = list; 6452 shinfo->frag_list = clone; 6453 } 6454 return 0; 6455 } 6456 6457 /* carve off first len bytes from skb. Split line (off) is in the 6458 * non-linear part of skb 6459 */ 6460 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6461 int pos, gfp_t gfp_mask) 6462 { 6463 int i, k = 0; 6464 unsigned int size = skb_end_offset(skb); 6465 u8 *data; 6466 const int nfrags = skb_shinfo(skb)->nr_frags; 6467 struct skb_shared_info *shinfo; 6468 6469 if (skb_pfmemalloc(skb)) 6470 gfp_mask |= __GFP_MEMALLOC; 6471 6472 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6473 if (!data) 6474 return -ENOMEM; 6475 size = SKB_WITH_OVERHEAD(size); 6476 6477 memcpy((struct skb_shared_info *)(data + size), 6478 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6479 if (skb_orphan_frags(skb, gfp_mask)) { 6480 skb_kfree_head(data, size); 6481 return -ENOMEM; 6482 } 6483 shinfo = (struct skb_shared_info *)(data + size); 6484 for (i = 0; i < nfrags; i++) { 6485 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6486 6487 if (pos + fsize > off) { 6488 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6489 6490 if (pos < off) { 6491 /* Split frag. 6492 * We have two variants in this case: 6493 * 1. Move all the frag to the second 6494 * part, if it is possible. F.e. 6495 * this approach is mandatory for TUX, 6496 * where splitting is expensive. 6497 * 2. Split is accurately. We make this. 6498 */ 6499 skb_frag_off_add(&shinfo->frags[0], off - pos); 6500 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6501 } 6502 skb_frag_ref(skb, i); 6503 k++; 6504 } 6505 pos += fsize; 6506 } 6507 shinfo->nr_frags = k; 6508 if (skb_has_frag_list(skb)) 6509 skb_clone_fraglist(skb); 6510 6511 /* split line is in frag list */ 6512 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6513 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6514 if (skb_has_frag_list(skb)) 6515 kfree_skb_list(skb_shinfo(skb)->frag_list); 6516 skb_kfree_head(data, size); 6517 return -ENOMEM; 6518 } 6519 skb_release_data(skb, SKB_CONSUMED); 6520 6521 skb->head = data; 6522 skb->head_frag = 0; 6523 skb->data = data; 6524 skb_set_end_offset(skb, size); 6525 skb_reset_tail_pointer(skb); 6526 skb_headers_offset_update(skb, 0); 6527 skb->cloned = 0; 6528 skb->hdr_len = 0; 6529 skb->nohdr = 0; 6530 skb->len -= off; 6531 skb->data_len = skb->len; 6532 atomic_set(&skb_shinfo(skb)->dataref, 1); 6533 return 0; 6534 } 6535 6536 /* remove len bytes from the beginning of the skb */ 6537 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6538 { 6539 int headlen = skb_headlen(skb); 6540 6541 if (len < headlen) 6542 return pskb_carve_inside_header(skb, len, headlen, gfp); 6543 else 6544 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6545 } 6546 6547 /* Extract to_copy bytes starting at off from skb, and return this in 6548 * a new skb 6549 */ 6550 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6551 int to_copy, gfp_t gfp) 6552 { 6553 struct sk_buff *clone = skb_clone(skb, gfp); 6554 6555 if (!clone) 6556 return NULL; 6557 6558 if (pskb_carve(clone, off, gfp) < 0 || 6559 pskb_trim(clone, to_copy)) { 6560 kfree_skb(clone); 6561 return NULL; 6562 } 6563 return clone; 6564 } 6565 EXPORT_SYMBOL(pskb_extract); 6566 6567 /** 6568 * skb_condense - try to get rid of fragments/frag_list if possible 6569 * @skb: buffer 6570 * 6571 * Can be used to save memory before skb is added to a busy queue. 6572 * If packet has bytes in frags and enough tail room in skb->head, 6573 * pull all of them, so that we can free the frags right now and adjust 6574 * truesize. 6575 * Notes: 6576 * We do not reallocate skb->head thus can not fail. 6577 * Caller must re-evaluate skb->truesize if needed. 6578 */ 6579 void skb_condense(struct sk_buff *skb) 6580 { 6581 if (skb->data_len) { 6582 if (skb->data_len > skb->end - skb->tail || 6583 skb_cloned(skb)) 6584 return; 6585 6586 /* Nice, we can free page frag(s) right now */ 6587 __pskb_pull_tail(skb, skb->data_len); 6588 } 6589 /* At this point, skb->truesize might be over estimated, 6590 * because skb had a fragment, and fragments do not tell 6591 * their truesize. 6592 * When we pulled its content into skb->head, fragment 6593 * was freed, but __pskb_pull_tail() could not possibly 6594 * adjust skb->truesize, not knowing the frag truesize. 6595 */ 6596 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6597 } 6598 EXPORT_SYMBOL(skb_condense); 6599 6600 #ifdef CONFIG_SKB_EXTENSIONS 6601 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6602 { 6603 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6604 } 6605 6606 /** 6607 * __skb_ext_alloc - allocate a new skb extensions storage 6608 * 6609 * @flags: See kmalloc(). 6610 * 6611 * Returns the newly allocated pointer. The pointer can later attached to a 6612 * skb via __skb_ext_set(). 6613 * Note: caller must handle the skb_ext as an opaque data. 6614 */ 6615 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6616 { 6617 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6618 6619 if (new) { 6620 memset(new->offset, 0, sizeof(new->offset)); 6621 refcount_set(&new->refcnt, 1); 6622 } 6623 6624 return new; 6625 } 6626 6627 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6628 unsigned int old_active) 6629 { 6630 struct skb_ext *new; 6631 6632 if (refcount_read(&old->refcnt) == 1) 6633 return old; 6634 6635 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6636 if (!new) 6637 return NULL; 6638 6639 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6640 refcount_set(&new->refcnt, 1); 6641 6642 #ifdef CONFIG_XFRM 6643 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6644 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6645 unsigned int i; 6646 6647 for (i = 0; i < sp->len; i++) 6648 xfrm_state_hold(sp->xvec[i]); 6649 } 6650 #endif 6651 __skb_ext_put(old); 6652 return new; 6653 } 6654 6655 /** 6656 * __skb_ext_set - attach the specified extension storage to this skb 6657 * @skb: buffer 6658 * @id: extension id 6659 * @ext: extension storage previously allocated via __skb_ext_alloc() 6660 * 6661 * Existing extensions, if any, are cleared. 6662 * 6663 * Returns the pointer to the extension. 6664 */ 6665 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6666 struct skb_ext *ext) 6667 { 6668 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6669 6670 skb_ext_put(skb); 6671 newlen = newoff + skb_ext_type_len[id]; 6672 ext->chunks = newlen; 6673 ext->offset[id] = newoff; 6674 skb->extensions = ext; 6675 skb->active_extensions = 1 << id; 6676 return skb_ext_get_ptr(ext, id); 6677 } 6678 6679 /** 6680 * skb_ext_add - allocate space for given extension, COW if needed 6681 * @skb: buffer 6682 * @id: extension to allocate space for 6683 * 6684 * Allocates enough space for the given extension. 6685 * If the extension is already present, a pointer to that extension 6686 * is returned. 6687 * 6688 * If the skb was cloned, COW applies and the returned memory can be 6689 * modified without changing the extension space of clones buffers. 6690 * 6691 * Returns pointer to the extension or NULL on allocation failure. 6692 */ 6693 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6694 { 6695 struct skb_ext *new, *old = NULL; 6696 unsigned int newlen, newoff; 6697 6698 if (skb->active_extensions) { 6699 old = skb->extensions; 6700 6701 new = skb_ext_maybe_cow(old, skb->active_extensions); 6702 if (!new) 6703 return NULL; 6704 6705 if (__skb_ext_exist(new, id)) 6706 goto set_active; 6707 6708 newoff = new->chunks; 6709 } else { 6710 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6711 6712 new = __skb_ext_alloc(GFP_ATOMIC); 6713 if (!new) 6714 return NULL; 6715 } 6716 6717 newlen = newoff + skb_ext_type_len[id]; 6718 new->chunks = newlen; 6719 new->offset[id] = newoff; 6720 set_active: 6721 skb->slow_gro = 1; 6722 skb->extensions = new; 6723 skb->active_extensions |= 1 << id; 6724 return skb_ext_get_ptr(new, id); 6725 } 6726 EXPORT_SYMBOL(skb_ext_add); 6727 6728 #ifdef CONFIG_XFRM 6729 static void skb_ext_put_sp(struct sec_path *sp) 6730 { 6731 unsigned int i; 6732 6733 for (i = 0; i < sp->len; i++) 6734 xfrm_state_put(sp->xvec[i]); 6735 } 6736 #endif 6737 6738 #ifdef CONFIG_MCTP_FLOWS 6739 static void skb_ext_put_mctp(struct mctp_flow *flow) 6740 { 6741 if (flow->key) 6742 mctp_key_unref(flow->key); 6743 } 6744 #endif 6745 6746 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6747 { 6748 struct skb_ext *ext = skb->extensions; 6749 6750 skb->active_extensions &= ~(1 << id); 6751 if (skb->active_extensions == 0) { 6752 skb->extensions = NULL; 6753 __skb_ext_put(ext); 6754 #ifdef CONFIG_XFRM 6755 } else if (id == SKB_EXT_SEC_PATH && 6756 refcount_read(&ext->refcnt) == 1) { 6757 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6758 6759 skb_ext_put_sp(sp); 6760 sp->len = 0; 6761 #endif 6762 } 6763 } 6764 EXPORT_SYMBOL(__skb_ext_del); 6765 6766 void __skb_ext_put(struct skb_ext *ext) 6767 { 6768 /* If this is last clone, nothing can increment 6769 * it after check passes. Avoids one atomic op. 6770 */ 6771 if (refcount_read(&ext->refcnt) == 1) 6772 goto free_now; 6773 6774 if (!refcount_dec_and_test(&ext->refcnt)) 6775 return; 6776 free_now: 6777 #ifdef CONFIG_XFRM 6778 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6779 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6780 #endif 6781 #ifdef CONFIG_MCTP_FLOWS 6782 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6783 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6784 #endif 6785 6786 kmem_cache_free(skbuff_ext_cache, ext); 6787 } 6788 EXPORT_SYMBOL(__skb_ext_put); 6789 #endif /* CONFIG_SKB_EXTENSIONS */ 6790 6791 /** 6792 * skb_attempt_defer_free - queue skb for remote freeing 6793 * @skb: buffer 6794 * 6795 * Put @skb in a per-cpu list, using the cpu which 6796 * allocated the skb/pages to reduce false sharing 6797 * and memory zone spinlock contention. 6798 */ 6799 void skb_attempt_defer_free(struct sk_buff *skb) 6800 { 6801 int cpu = skb->alloc_cpu; 6802 struct softnet_data *sd; 6803 unsigned long flags; 6804 unsigned int defer_max; 6805 bool kick; 6806 6807 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6808 !cpu_online(cpu) || 6809 cpu == raw_smp_processor_id()) { 6810 nodefer: __kfree_skb(skb); 6811 return; 6812 } 6813 6814 sd = &per_cpu(softnet_data, cpu); 6815 defer_max = READ_ONCE(sysctl_skb_defer_max); 6816 if (READ_ONCE(sd->defer_count) >= defer_max) 6817 goto nodefer; 6818 6819 spin_lock_irqsave(&sd->defer_lock, flags); 6820 /* Send an IPI every time queue reaches half capacity. */ 6821 kick = sd->defer_count == (defer_max >> 1); 6822 /* Paired with the READ_ONCE() few lines above */ 6823 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6824 6825 skb->next = sd->defer_list; 6826 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6827 WRITE_ONCE(sd->defer_list, skb); 6828 spin_unlock_irqrestore(&sd->defer_lock, flags); 6829 6830 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6831 * if we are unlucky enough (this seems very unlikely). 6832 */ 6833 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6834 smp_call_function_single_async(cpu, &sd->defer_csd); 6835 } 6836