1 /* 2 * Authors: 3 * Copyright 2001, 2002 by Robert Olsson <robert.olsson@its.uu.se> 4 * Uppsala University and 5 * Swedish University of Agricultural Sciences 6 * 7 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 8 * Ben Greear <greearb@candelatech.com> 9 * Jens Låås <jens.laas@data.slu.se> 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 * 16 * 17 * A tool for loading the network with preconfigurated packets. 18 * The tool is implemented as a linux module. Parameters are output 19 * device, delay (to hard_xmit), number of packets, and whether 20 * to use multiple SKBs or just the same one. 21 * pktgen uses the installed interface's output routine. 22 * 23 * Additional hacking by: 24 * 25 * Jens.Laas@data.slu.se 26 * Improved by ANK. 010120. 27 * Improved by ANK even more. 010212. 28 * MAC address typo fixed. 010417 --ro 29 * Integrated. 020301 --DaveM 30 * Added multiskb option 020301 --DaveM 31 * Scaling of results. 020417--sigurdur@linpro.no 32 * Significant re-work of the module: 33 * * Convert to threaded model to more efficiently be able to transmit 34 * and receive on multiple interfaces at once. 35 * * Converted many counters to __u64 to allow longer runs. 36 * * Allow configuration of ranges, like min/max IP address, MACs, 37 * and UDP-ports, for both source and destination, and can 38 * set to use a random distribution or sequentially walk the range. 39 * * Can now change most values after starting. 40 * * Place 12-byte packet in UDP payload with magic number, 41 * sequence number, and timestamp. 42 * * Add receiver code that detects dropped pkts, re-ordered pkts, and 43 * latencies (with micro-second) precision. 44 * * Add IOCTL interface to easily get counters & configuration. 45 * --Ben Greear <greearb@candelatech.com> 46 * 47 * Renamed multiskb to clone_skb and cleaned up sending core for two distinct 48 * skb modes. A clone_skb=0 mode for Ben "ranges" work and a clone_skb != 0 49 * as a "fastpath" with a configurable number of clones after alloc's. 50 * clone_skb=0 means all packets are allocated this also means ranges time 51 * stamps etc can be used. clone_skb=100 means 1 malloc is followed by 100 52 * clones. 53 * 54 * Also moved to /proc/net/pktgen/ 55 * --ro 56 * 57 * Sept 10: Fixed threading/locking. Lots of bone-headed and more clever 58 * mistakes. Also merged in DaveM's patch in the -pre6 patch. 59 * --Ben Greear <greearb@candelatech.com> 60 * 61 * Integrated to 2.5.x 021029 --Lucio Maciel (luciomaciel@zipmail.com.br) 62 * 63 * 64 * 021124 Finished major redesign and rewrite for new functionality. 65 * See Documentation/networking/pktgen.txt for how to use this. 66 * 67 * The new operation: 68 * For each CPU one thread/process is created at start. This process checks 69 * for running devices in the if_list and sends packets until count is 0 it 70 * also the thread checks the thread->control which is used for inter-process 71 * communication. controlling process "posts" operations to the threads this 72 * way. 73 * The if_list is RCU protected, and the if_lock remains to protect updating 74 * of if_list, from "add_device" as it invoked from userspace (via proc write). 75 * 76 * By design there should only be *one* "controlling" process. In practice 77 * multiple write accesses gives unpredictable result. Understood by "write" 78 * to /proc gives result code thats should be read be the "writer". 79 * For practical use this should be no problem. 80 * 81 * Note when adding devices to a specific CPU there good idea to also assign 82 * /proc/irq/XX/smp_affinity so TX-interrupts gets bound to the same CPU. 83 * --ro 84 * 85 * Fix refcount off by one if first packet fails, potential null deref, 86 * memleak 030710- KJP 87 * 88 * First "ranges" functionality for ipv6 030726 --ro 89 * 90 * Included flow support. 030802 ANK. 91 * 92 * Fixed unaligned access on IA-64 Grant Grundler <grundler@parisc-linux.org> 93 * 94 * Remove if fix from added Harald Welte <laforge@netfilter.org> 040419 95 * ia64 compilation fix from Aron Griffis <aron@hp.com> 040604 96 * 97 * New xmit() return, do_div and misc clean up by Stephen Hemminger 98 * <shemminger@osdl.org> 040923 99 * 100 * Randy Dunlap fixed u64 printk compiler warning 101 * 102 * Remove FCS from BW calculation. Lennert Buytenhek <buytenh@wantstofly.org> 103 * New time handling. Lennert Buytenhek <buytenh@wantstofly.org> 041213 104 * 105 * Corrections from Nikolai Malykh (nmalykh@bilim.com) 106 * Removed unused flags F_SET_SRCMAC & F_SET_SRCIP 041230 107 * 108 * interruptible_sleep_on_timeout() replaced Nishanth Aravamudan <nacc@us.ibm.com> 109 * 050103 110 * 111 * MPLS support by Steven Whitehouse <steve@chygwyn.com> 112 * 113 * 802.1Q/Q-in-Q support by Francesco Fondelli (FF) <francesco.fondelli@gmail.com> 114 * 115 * Fixed src_mac command to set source mac of packet to value specified in 116 * command by Adit Ranadive <adit.262@gmail.com> 117 * 118 */ 119 120 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 121 122 #include <linux/sys.h> 123 #include <linux/types.h> 124 #include <linux/module.h> 125 #include <linux/moduleparam.h> 126 #include <linux/kernel.h> 127 #include <linux/mutex.h> 128 #include <linux/sched.h> 129 #include <linux/slab.h> 130 #include <linux/vmalloc.h> 131 #include <linux/unistd.h> 132 #include <linux/string.h> 133 #include <linux/ptrace.h> 134 #include <linux/errno.h> 135 #include <linux/ioport.h> 136 #include <linux/interrupt.h> 137 #include <linux/capability.h> 138 #include <linux/hrtimer.h> 139 #include <linux/freezer.h> 140 #include <linux/delay.h> 141 #include <linux/timer.h> 142 #include <linux/list.h> 143 #include <linux/init.h> 144 #include <linux/skbuff.h> 145 #include <linux/netdevice.h> 146 #include <linux/inet.h> 147 #include <linux/inetdevice.h> 148 #include <linux/rtnetlink.h> 149 #include <linux/if_arp.h> 150 #include <linux/if_vlan.h> 151 #include <linux/in.h> 152 #include <linux/ip.h> 153 #include <linux/ipv6.h> 154 #include <linux/udp.h> 155 #include <linux/proc_fs.h> 156 #include <linux/seq_file.h> 157 #include <linux/wait.h> 158 #include <linux/etherdevice.h> 159 #include <linux/kthread.h> 160 #include <linux/prefetch.h> 161 #include <net/net_namespace.h> 162 #include <net/checksum.h> 163 #include <net/ipv6.h> 164 #include <net/udp.h> 165 #include <net/ip6_checksum.h> 166 #include <net/addrconf.h> 167 #ifdef CONFIG_XFRM 168 #include <net/xfrm.h> 169 #endif 170 #include <net/netns/generic.h> 171 #include <asm/byteorder.h> 172 #include <linux/rcupdate.h> 173 #include <linux/bitops.h> 174 #include <linux/io.h> 175 #include <linux/timex.h> 176 #include <linux/uaccess.h> 177 #include <asm/dma.h> 178 #include <asm/div64.h> /* do_div */ 179 180 #define VERSION "2.75" 181 #define IP_NAME_SZ 32 182 #define MAX_MPLS_LABELS 16 /* This is the max label stack depth */ 183 #define MPLS_STACK_BOTTOM htonl(0x00000100) 184 185 #define func_enter() pr_debug("entering %s\n", __func__); 186 187 #define PKT_FLAGS \ 188 pf(IPV6) /* Interface in IPV6 Mode */ \ 189 pf(IPSRC_RND) /* IP-Src Random */ \ 190 pf(IPDST_RND) /* IP-Dst Random */ \ 191 pf(TXSIZE_RND) /* Transmit size is random */ \ 192 pf(UDPSRC_RND) /* UDP-Src Random */ \ 193 pf(UDPDST_RND) /* UDP-Dst Random */ \ 194 pf(UDPCSUM) /* Include UDP checksum */ \ 195 pf(NO_TIMESTAMP) /* Don't timestamp packets (default TS) */ \ 196 pf(MPLS_RND) /* Random MPLS labels */ \ 197 pf(QUEUE_MAP_RND) /* queue map Random */ \ 198 pf(QUEUE_MAP_CPU) /* queue map mirrors smp_processor_id() */ \ 199 pf(FLOW_SEQ) /* Sequential flows */ \ 200 pf(IPSEC) /* ipsec on for flows */ \ 201 pf(MACSRC_RND) /* MAC-Src Random */ \ 202 pf(MACDST_RND) /* MAC-Dst Random */ \ 203 pf(VID_RND) /* Random VLAN ID */ \ 204 pf(SVID_RND) /* Random SVLAN ID */ \ 205 pf(NODE) /* Node memory alloc*/ \ 206 207 #define pf(flag) flag##_SHIFT, 208 enum pkt_flags { 209 PKT_FLAGS 210 }; 211 #undef pf 212 213 /* Device flag bits */ 214 #define pf(flag) static const __u32 F_##flag = (1<<flag##_SHIFT); 215 PKT_FLAGS 216 #undef pf 217 218 #define pf(flag) __stringify(flag), 219 static char *pkt_flag_names[] = { 220 PKT_FLAGS 221 }; 222 #undef pf 223 224 #define NR_PKT_FLAGS ARRAY_SIZE(pkt_flag_names) 225 226 /* Thread control flag bits */ 227 #define T_STOP (1<<0) /* Stop run */ 228 #define T_RUN (1<<1) /* Start run */ 229 #define T_REMDEVALL (1<<2) /* Remove all devs */ 230 #define T_REMDEV (1<<3) /* Remove one dev */ 231 232 /* Xmit modes */ 233 #define M_START_XMIT 0 /* Default normal TX */ 234 #define M_NETIF_RECEIVE 1 /* Inject packets into stack */ 235 #define M_QUEUE_XMIT 2 /* Inject packet into qdisc */ 236 237 /* If lock -- protects updating of if_list */ 238 #define if_lock(t) mutex_lock(&(t->if_lock)); 239 #define if_unlock(t) mutex_unlock(&(t->if_lock)); 240 241 /* Used to help with determining the pkts on receive */ 242 #define PKTGEN_MAGIC 0xbe9be955 243 #define PG_PROC_DIR "pktgen" 244 #define PGCTRL "pgctrl" 245 246 #define MAX_CFLOWS 65536 247 248 #define VLAN_TAG_SIZE(x) ((x)->vlan_id == 0xffff ? 0 : 4) 249 #define SVLAN_TAG_SIZE(x) ((x)->svlan_id == 0xffff ? 0 : 4) 250 251 struct flow_state { 252 __be32 cur_daddr; 253 int count; 254 #ifdef CONFIG_XFRM 255 struct xfrm_state *x; 256 #endif 257 __u32 flags; 258 }; 259 260 /* flow flag bits */ 261 #define F_INIT (1<<0) /* flow has been initialized */ 262 263 struct pktgen_dev { 264 /* 265 * Try to keep frequent/infrequent used vars. separated. 266 */ 267 struct proc_dir_entry *entry; /* proc file */ 268 struct pktgen_thread *pg_thread;/* the owner */ 269 struct list_head list; /* chaining in the thread's run-queue */ 270 struct rcu_head rcu; /* freed by RCU */ 271 272 int running; /* if false, the test will stop */ 273 274 /* If min != max, then we will either do a linear iteration, or 275 * we will do a random selection from within the range. 276 */ 277 __u32 flags; 278 int xmit_mode; 279 int min_pkt_size; 280 int max_pkt_size; 281 int pkt_overhead; /* overhead for MPLS, VLANs, IPSEC etc */ 282 int nfrags; 283 int removal_mark; /* non-zero => the device is marked for 284 * removal by worker thread */ 285 286 struct page *page; 287 u64 delay; /* nano-seconds */ 288 289 __u64 count; /* Default No packets to send */ 290 __u64 sofar; /* How many pkts we've sent so far */ 291 __u64 tx_bytes; /* How many bytes we've transmitted */ 292 __u64 errors; /* Errors when trying to transmit, */ 293 294 /* runtime counters relating to clone_skb */ 295 296 __u32 clone_count; 297 int last_ok; /* Was last skb sent? 298 * Or a failed transmit of some sort? 299 * This will keep sequence numbers in order 300 */ 301 ktime_t next_tx; 302 ktime_t started_at; 303 ktime_t stopped_at; 304 u64 idle_acc; /* nano-seconds */ 305 306 __u32 seq_num; 307 308 int clone_skb; /* 309 * Use multiple SKBs during packet gen. 310 * If this number is greater than 1, then 311 * that many copies of the same packet will be 312 * sent before a new packet is allocated. 313 * If you want to send 1024 identical packets 314 * before creating a new packet, 315 * set clone_skb to 1024. 316 */ 317 318 char dst_min[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */ 319 char dst_max[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */ 320 char src_min[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */ 321 char src_max[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */ 322 323 struct in6_addr in6_saddr; 324 struct in6_addr in6_daddr; 325 struct in6_addr cur_in6_daddr; 326 struct in6_addr cur_in6_saddr; 327 /* For ranges */ 328 struct in6_addr min_in6_daddr; 329 struct in6_addr max_in6_daddr; 330 struct in6_addr min_in6_saddr; 331 struct in6_addr max_in6_saddr; 332 333 /* If we're doing ranges, random or incremental, then this 334 * defines the min/max for those ranges. 335 */ 336 __be32 saddr_min; /* inclusive, source IP address */ 337 __be32 saddr_max; /* exclusive, source IP address */ 338 __be32 daddr_min; /* inclusive, dest IP address */ 339 __be32 daddr_max; /* exclusive, dest IP address */ 340 341 __u16 udp_src_min; /* inclusive, source UDP port */ 342 __u16 udp_src_max; /* exclusive, source UDP port */ 343 __u16 udp_dst_min; /* inclusive, dest UDP port */ 344 __u16 udp_dst_max; /* exclusive, dest UDP port */ 345 346 /* DSCP + ECN */ 347 __u8 tos; /* six MSB of (former) IPv4 TOS 348 are for dscp codepoint */ 349 __u8 traffic_class; /* ditto for the (former) Traffic Class in IPv6 350 (see RFC 3260, sec. 4) */ 351 352 /* MPLS */ 353 unsigned int nr_labels; /* Depth of stack, 0 = no MPLS */ 354 __be32 labels[MAX_MPLS_LABELS]; 355 356 /* VLAN/SVLAN (802.1Q/Q-in-Q) */ 357 __u8 vlan_p; 358 __u8 vlan_cfi; 359 __u16 vlan_id; /* 0xffff means no vlan tag */ 360 361 __u8 svlan_p; 362 __u8 svlan_cfi; 363 __u16 svlan_id; /* 0xffff means no svlan tag */ 364 365 __u32 src_mac_count; /* How many MACs to iterate through */ 366 __u32 dst_mac_count; /* How many MACs to iterate through */ 367 368 unsigned char dst_mac[ETH_ALEN]; 369 unsigned char src_mac[ETH_ALEN]; 370 371 __u32 cur_dst_mac_offset; 372 __u32 cur_src_mac_offset; 373 __be32 cur_saddr; 374 __be32 cur_daddr; 375 __u16 ip_id; 376 __u16 cur_udp_dst; 377 __u16 cur_udp_src; 378 __u16 cur_queue_map; 379 __u32 cur_pkt_size; 380 __u32 last_pkt_size; 381 382 __u8 hh[14]; 383 /* = { 384 0x00, 0x80, 0xC8, 0x79, 0xB3, 0xCB, 385 386 We fill in SRC address later 387 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 388 0x08, 0x00 389 }; 390 */ 391 __u16 pad; /* pad out the hh struct to an even 16 bytes */ 392 393 struct sk_buff *skb; /* skb we are to transmit next, used for when we 394 * are transmitting the same one multiple times 395 */ 396 struct net_device *odev; /* The out-going device. 397 * Note that the device should have it's 398 * pg_info pointer pointing back to this 399 * device. 400 * Set when the user specifies the out-going 401 * device name (not when the inject is 402 * started as it used to do.) 403 */ 404 char odevname[32]; 405 struct flow_state *flows; 406 unsigned int cflows; /* Concurrent flows (config) */ 407 unsigned int lflow; /* Flow length (config) */ 408 unsigned int nflows; /* accumulated flows (stats) */ 409 unsigned int curfl; /* current sequenced flow (state)*/ 410 411 u16 queue_map_min; 412 u16 queue_map_max; 413 __u32 skb_priority; /* skb priority field */ 414 unsigned int burst; /* number of duplicated packets to burst */ 415 int node; /* Memory node */ 416 417 #ifdef CONFIG_XFRM 418 __u8 ipsmode; /* IPSEC mode (config) */ 419 __u8 ipsproto; /* IPSEC type (config) */ 420 __u32 spi; 421 struct xfrm_dst xdst; 422 struct dst_ops dstops; 423 #endif 424 char result[512]; 425 }; 426 427 struct pktgen_hdr { 428 __be32 pgh_magic; 429 __be32 seq_num; 430 __be32 tv_sec; 431 __be32 tv_usec; 432 }; 433 434 435 static unsigned int pg_net_id __read_mostly; 436 437 struct pktgen_net { 438 struct net *net; 439 struct proc_dir_entry *proc_dir; 440 struct list_head pktgen_threads; 441 bool pktgen_exiting; 442 }; 443 444 struct pktgen_thread { 445 struct mutex if_lock; /* for list of devices */ 446 struct list_head if_list; /* All device here */ 447 struct list_head th_list; 448 struct task_struct *tsk; 449 char result[512]; 450 451 /* Field for thread to receive "posted" events terminate, 452 stop ifs etc. */ 453 454 u32 control; 455 int cpu; 456 457 wait_queue_head_t queue; 458 struct completion start_done; 459 struct pktgen_net *net; 460 }; 461 462 #define REMOVE 1 463 #define FIND 0 464 465 static const char version[] = 466 "Packet Generator for packet performance testing. " 467 "Version: " VERSION "\n"; 468 469 static int pktgen_remove_device(struct pktgen_thread *t, struct pktgen_dev *i); 470 static int pktgen_add_device(struct pktgen_thread *t, const char *ifname); 471 static struct pktgen_dev *pktgen_find_dev(struct pktgen_thread *t, 472 const char *ifname, bool exact); 473 static int pktgen_device_event(struct notifier_block *, unsigned long, void *); 474 static void pktgen_run_all_threads(struct pktgen_net *pn); 475 static void pktgen_reset_all_threads(struct pktgen_net *pn); 476 static void pktgen_stop_all_threads_ifs(struct pktgen_net *pn); 477 478 static void pktgen_stop(struct pktgen_thread *t); 479 static void pktgen_clear_counters(struct pktgen_dev *pkt_dev); 480 481 /* Module parameters, defaults. */ 482 static int pg_count_d __read_mostly = 1000; 483 static int pg_delay_d __read_mostly; 484 static int pg_clone_skb_d __read_mostly; 485 static int debug __read_mostly; 486 487 static DEFINE_MUTEX(pktgen_thread_lock); 488 489 static struct notifier_block pktgen_notifier_block = { 490 .notifier_call = pktgen_device_event, 491 }; 492 493 /* 494 * /proc handling functions 495 * 496 */ 497 498 static int pgctrl_show(struct seq_file *seq, void *v) 499 { 500 seq_puts(seq, version); 501 return 0; 502 } 503 504 static ssize_t pgctrl_write(struct file *file, const char __user *buf, 505 size_t count, loff_t *ppos) 506 { 507 char data[128]; 508 struct pktgen_net *pn = net_generic(current->nsproxy->net_ns, pg_net_id); 509 510 if (!capable(CAP_NET_ADMIN)) 511 return -EPERM; 512 513 if (count == 0) 514 return -EINVAL; 515 516 if (count > sizeof(data)) 517 count = sizeof(data); 518 519 if (copy_from_user(data, buf, count)) 520 return -EFAULT; 521 522 data[count - 1] = 0; /* Strip trailing '\n' and terminate string */ 523 524 if (!strcmp(data, "stop")) 525 pktgen_stop_all_threads_ifs(pn); 526 527 else if (!strcmp(data, "start")) 528 pktgen_run_all_threads(pn); 529 530 else if (!strcmp(data, "reset")) 531 pktgen_reset_all_threads(pn); 532 533 else 534 return -EINVAL; 535 536 return count; 537 } 538 539 static int pgctrl_open(struct inode *inode, struct file *file) 540 { 541 return single_open(file, pgctrl_show, PDE_DATA(inode)); 542 } 543 544 static const struct file_operations pktgen_fops = { 545 .open = pgctrl_open, 546 .read = seq_read, 547 .llseek = seq_lseek, 548 .write = pgctrl_write, 549 .release = single_release, 550 }; 551 552 static int pktgen_if_show(struct seq_file *seq, void *v) 553 { 554 const struct pktgen_dev *pkt_dev = seq->private; 555 ktime_t stopped; 556 unsigned int i; 557 u64 idle; 558 559 seq_printf(seq, 560 "Params: count %llu min_pkt_size: %u max_pkt_size: %u\n", 561 (unsigned long long)pkt_dev->count, pkt_dev->min_pkt_size, 562 pkt_dev->max_pkt_size); 563 564 seq_printf(seq, 565 " frags: %d delay: %llu clone_skb: %d ifname: %s\n", 566 pkt_dev->nfrags, (unsigned long long) pkt_dev->delay, 567 pkt_dev->clone_skb, pkt_dev->odevname); 568 569 seq_printf(seq, " flows: %u flowlen: %u\n", pkt_dev->cflows, 570 pkt_dev->lflow); 571 572 seq_printf(seq, 573 " queue_map_min: %u queue_map_max: %u\n", 574 pkt_dev->queue_map_min, 575 pkt_dev->queue_map_max); 576 577 if (pkt_dev->skb_priority) 578 seq_printf(seq, " skb_priority: %u\n", 579 pkt_dev->skb_priority); 580 581 if (pkt_dev->flags & F_IPV6) { 582 seq_printf(seq, 583 " saddr: %pI6c min_saddr: %pI6c max_saddr: %pI6c\n" 584 " daddr: %pI6c min_daddr: %pI6c max_daddr: %pI6c\n", 585 &pkt_dev->in6_saddr, 586 &pkt_dev->min_in6_saddr, &pkt_dev->max_in6_saddr, 587 &pkt_dev->in6_daddr, 588 &pkt_dev->min_in6_daddr, &pkt_dev->max_in6_daddr); 589 } else { 590 seq_printf(seq, 591 " dst_min: %s dst_max: %s\n", 592 pkt_dev->dst_min, pkt_dev->dst_max); 593 seq_printf(seq, 594 " src_min: %s src_max: %s\n", 595 pkt_dev->src_min, pkt_dev->src_max); 596 } 597 598 seq_puts(seq, " src_mac: "); 599 600 seq_printf(seq, "%pM ", 601 is_zero_ether_addr(pkt_dev->src_mac) ? 602 pkt_dev->odev->dev_addr : pkt_dev->src_mac); 603 604 seq_puts(seq, "dst_mac: "); 605 seq_printf(seq, "%pM\n", pkt_dev->dst_mac); 606 607 seq_printf(seq, 608 " udp_src_min: %d udp_src_max: %d" 609 " udp_dst_min: %d udp_dst_max: %d\n", 610 pkt_dev->udp_src_min, pkt_dev->udp_src_max, 611 pkt_dev->udp_dst_min, pkt_dev->udp_dst_max); 612 613 seq_printf(seq, 614 " src_mac_count: %d dst_mac_count: %d\n", 615 pkt_dev->src_mac_count, pkt_dev->dst_mac_count); 616 617 if (pkt_dev->nr_labels) { 618 seq_puts(seq, " mpls: "); 619 for (i = 0; i < pkt_dev->nr_labels; i++) 620 seq_printf(seq, "%08x%s", ntohl(pkt_dev->labels[i]), 621 i == pkt_dev->nr_labels-1 ? "\n" : ", "); 622 } 623 624 if (pkt_dev->vlan_id != 0xffff) 625 seq_printf(seq, " vlan_id: %u vlan_p: %u vlan_cfi: %u\n", 626 pkt_dev->vlan_id, pkt_dev->vlan_p, 627 pkt_dev->vlan_cfi); 628 629 if (pkt_dev->svlan_id != 0xffff) 630 seq_printf(seq, " svlan_id: %u vlan_p: %u vlan_cfi: %u\n", 631 pkt_dev->svlan_id, pkt_dev->svlan_p, 632 pkt_dev->svlan_cfi); 633 634 if (pkt_dev->tos) 635 seq_printf(seq, " tos: 0x%02x\n", pkt_dev->tos); 636 637 if (pkt_dev->traffic_class) 638 seq_printf(seq, " traffic_class: 0x%02x\n", pkt_dev->traffic_class); 639 640 if (pkt_dev->burst > 1) 641 seq_printf(seq, " burst: %d\n", pkt_dev->burst); 642 643 if (pkt_dev->node >= 0) 644 seq_printf(seq, " node: %d\n", pkt_dev->node); 645 646 if (pkt_dev->xmit_mode == M_NETIF_RECEIVE) 647 seq_puts(seq, " xmit_mode: netif_receive\n"); 648 else if (pkt_dev->xmit_mode == M_QUEUE_XMIT) 649 seq_puts(seq, " xmit_mode: xmit_queue\n"); 650 651 seq_puts(seq, " Flags: "); 652 653 for (i = 0; i < NR_PKT_FLAGS; i++) { 654 if (i == F_FLOW_SEQ) 655 if (!pkt_dev->cflows) 656 continue; 657 658 if (pkt_dev->flags & (1 << i)) 659 seq_printf(seq, "%s ", pkt_flag_names[i]); 660 else if (i == F_FLOW_SEQ) 661 seq_puts(seq, "FLOW_RND "); 662 663 #ifdef CONFIG_XFRM 664 if (i == F_IPSEC && pkt_dev->spi) 665 seq_printf(seq, "spi:%u", pkt_dev->spi); 666 #endif 667 } 668 669 seq_puts(seq, "\n"); 670 671 /* not really stopped, more like last-running-at */ 672 stopped = pkt_dev->running ? ktime_get() : pkt_dev->stopped_at; 673 idle = pkt_dev->idle_acc; 674 do_div(idle, NSEC_PER_USEC); 675 676 seq_printf(seq, 677 "Current:\n pkts-sofar: %llu errors: %llu\n", 678 (unsigned long long)pkt_dev->sofar, 679 (unsigned long long)pkt_dev->errors); 680 681 seq_printf(seq, 682 " started: %lluus stopped: %lluus idle: %lluus\n", 683 (unsigned long long) ktime_to_us(pkt_dev->started_at), 684 (unsigned long long) ktime_to_us(stopped), 685 (unsigned long long) idle); 686 687 seq_printf(seq, 688 " seq_num: %d cur_dst_mac_offset: %d cur_src_mac_offset: %d\n", 689 pkt_dev->seq_num, pkt_dev->cur_dst_mac_offset, 690 pkt_dev->cur_src_mac_offset); 691 692 if (pkt_dev->flags & F_IPV6) { 693 seq_printf(seq, " cur_saddr: %pI6c cur_daddr: %pI6c\n", 694 &pkt_dev->cur_in6_saddr, 695 &pkt_dev->cur_in6_daddr); 696 } else 697 seq_printf(seq, " cur_saddr: %pI4 cur_daddr: %pI4\n", 698 &pkt_dev->cur_saddr, &pkt_dev->cur_daddr); 699 700 seq_printf(seq, " cur_udp_dst: %d cur_udp_src: %d\n", 701 pkt_dev->cur_udp_dst, pkt_dev->cur_udp_src); 702 703 seq_printf(seq, " cur_queue_map: %u\n", pkt_dev->cur_queue_map); 704 705 seq_printf(seq, " flows: %u\n", pkt_dev->nflows); 706 707 if (pkt_dev->result[0]) 708 seq_printf(seq, "Result: %s\n", pkt_dev->result); 709 else 710 seq_puts(seq, "Result: Idle\n"); 711 712 return 0; 713 } 714 715 716 static int hex32_arg(const char __user *user_buffer, unsigned long maxlen, 717 __u32 *num) 718 { 719 int i = 0; 720 *num = 0; 721 722 for (; i < maxlen; i++) { 723 int value; 724 char c; 725 *num <<= 4; 726 if (get_user(c, &user_buffer[i])) 727 return -EFAULT; 728 value = hex_to_bin(c); 729 if (value >= 0) 730 *num |= value; 731 else 732 break; 733 } 734 return i; 735 } 736 737 static int count_trail_chars(const char __user * user_buffer, 738 unsigned int maxlen) 739 { 740 int i; 741 742 for (i = 0; i < maxlen; i++) { 743 char c; 744 if (get_user(c, &user_buffer[i])) 745 return -EFAULT; 746 switch (c) { 747 case '\"': 748 case '\n': 749 case '\r': 750 case '\t': 751 case ' ': 752 case '=': 753 break; 754 default: 755 goto done; 756 } 757 } 758 done: 759 return i; 760 } 761 762 static long num_arg(const char __user *user_buffer, unsigned long maxlen, 763 unsigned long *num) 764 { 765 int i; 766 *num = 0; 767 768 for (i = 0; i < maxlen; i++) { 769 char c; 770 if (get_user(c, &user_buffer[i])) 771 return -EFAULT; 772 if ((c >= '0') && (c <= '9')) { 773 *num *= 10; 774 *num += c - '0'; 775 } else 776 break; 777 } 778 return i; 779 } 780 781 static int strn_len(const char __user * user_buffer, unsigned int maxlen) 782 { 783 int i; 784 785 for (i = 0; i < maxlen; i++) { 786 char c; 787 if (get_user(c, &user_buffer[i])) 788 return -EFAULT; 789 switch (c) { 790 case '\"': 791 case '\n': 792 case '\r': 793 case '\t': 794 case ' ': 795 goto done_str; 796 default: 797 break; 798 } 799 } 800 done_str: 801 return i; 802 } 803 804 static ssize_t get_labels(const char __user *buffer, struct pktgen_dev *pkt_dev) 805 { 806 unsigned int n = 0; 807 char c; 808 ssize_t i = 0; 809 int len; 810 811 pkt_dev->nr_labels = 0; 812 do { 813 __u32 tmp; 814 len = hex32_arg(&buffer[i], 8, &tmp); 815 if (len <= 0) 816 return len; 817 pkt_dev->labels[n] = htonl(tmp); 818 if (pkt_dev->labels[n] & MPLS_STACK_BOTTOM) 819 pkt_dev->flags |= F_MPLS_RND; 820 i += len; 821 if (get_user(c, &buffer[i])) 822 return -EFAULT; 823 i++; 824 n++; 825 if (n >= MAX_MPLS_LABELS) 826 return -E2BIG; 827 } while (c == ','); 828 829 pkt_dev->nr_labels = n; 830 return i; 831 } 832 833 static __u32 pktgen_read_flag(const char *f, bool *disable) 834 { 835 __u32 i; 836 837 if (f[0] == '!') { 838 *disable = true; 839 f++; 840 } 841 842 for (i = 0; i < NR_PKT_FLAGS; i++) { 843 if (!IS_ENABLED(CONFIG_XFRM) && i == IPSEC_SHIFT) 844 continue; 845 846 /* allow only disabling ipv6 flag */ 847 if (!*disable && i == IPV6_SHIFT) 848 continue; 849 850 if (strcmp(f, pkt_flag_names[i]) == 0) 851 return 1 << i; 852 } 853 854 if (strcmp(f, "FLOW_RND") == 0) { 855 *disable = !*disable; 856 return F_FLOW_SEQ; 857 } 858 859 return 0; 860 } 861 862 static ssize_t pktgen_if_write(struct file *file, 863 const char __user * user_buffer, size_t count, 864 loff_t * offset) 865 { 866 struct seq_file *seq = file->private_data; 867 struct pktgen_dev *pkt_dev = seq->private; 868 int i, max, len; 869 char name[16], valstr[32]; 870 unsigned long value = 0; 871 char *pg_result = NULL; 872 int tmp = 0; 873 char buf[128]; 874 875 pg_result = &(pkt_dev->result[0]); 876 877 if (count < 1) { 878 pr_warn("wrong command format\n"); 879 return -EINVAL; 880 } 881 882 max = count; 883 tmp = count_trail_chars(user_buffer, max); 884 if (tmp < 0) { 885 pr_warn("illegal format\n"); 886 return tmp; 887 } 888 i = tmp; 889 890 /* Read variable name */ 891 892 len = strn_len(&user_buffer[i], sizeof(name) - 1); 893 if (len < 0) 894 return len; 895 896 memset(name, 0, sizeof(name)); 897 if (copy_from_user(name, &user_buffer[i], len)) 898 return -EFAULT; 899 i += len; 900 901 max = count - i; 902 len = count_trail_chars(&user_buffer[i], max); 903 if (len < 0) 904 return len; 905 906 i += len; 907 908 if (debug) { 909 size_t copy = min_t(size_t, count + 1, 1024); 910 char *tp = strndup_user(user_buffer, copy); 911 912 if (IS_ERR(tp)) 913 return PTR_ERR(tp); 914 915 pr_debug("%s,%zu buffer -:%s:-\n", name, count, tp); 916 kfree(tp); 917 } 918 919 if (!strcmp(name, "min_pkt_size")) { 920 len = num_arg(&user_buffer[i], 10, &value); 921 if (len < 0) 922 return len; 923 924 i += len; 925 if (value < 14 + 20 + 8) 926 value = 14 + 20 + 8; 927 if (value != pkt_dev->min_pkt_size) { 928 pkt_dev->min_pkt_size = value; 929 pkt_dev->cur_pkt_size = value; 930 } 931 sprintf(pg_result, "OK: min_pkt_size=%u", 932 pkt_dev->min_pkt_size); 933 return count; 934 } 935 936 if (!strcmp(name, "max_pkt_size")) { 937 len = num_arg(&user_buffer[i], 10, &value); 938 if (len < 0) 939 return len; 940 941 i += len; 942 if (value < 14 + 20 + 8) 943 value = 14 + 20 + 8; 944 if (value != pkt_dev->max_pkt_size) { 945 pkt_dev->max_pkt_size = value; 946 pkt_dev->cur_pkt_size = value; 947 } 948 sprintf(pg_result, "OK: max_pkt_size=%u", 949 pkt_dev->max_pkt_size); 950 return count; 951 } 952 953 /* Shortcut for min = max */ 954 955 if (!strcmp(name, "pkt_size")) { 956 len = num_arg(&user_buffer[i], 10, &value); 957 if (len < 0) 958 return len; 959 960 i += len; 961 if (value < 14 + 20 + 8) 962 value = 14 + 20 + 8; 963 if (value != pkt_dev->min_pkt_size) { 964 pkt_dev->min_pkt_size = value; 965 pkt_dev->max_pkt_size = value; 966 pkt_dev->cur_pkt_size = value; 967 } 968 sprintf(pg_result, "OK: pkt_size=%u", pkt_dev->min_pkt_size); 969 return count; 970 } 971 972 if (!strcmp(name, "debug")) { 973 len = num_arg(&user_buffer[i], 10, &value); 974 if (len < 0) 975 return len; 976 977 i += len; 978 debug = value; 979 sprintf(pg_result, "OK: debug=%u", debug); 980 return count; 981 } 982 983 if (!strcmp(name, "frags")) { 984 len = num_arg(&user_buffer[i], 10, &value); 985 if (len < 0) 986 return len; 987 988 i += len; 989 pkt_dev->nfrags = value; 990 sprintf(pg_result, "OK: frags=%u", pkt_dev->nfrags); 991 return count; 992 } 993 if (!strcmp(name, "delay")) { 994 len = num_arg(&user_buffer[i], 10, &value); 995 if (len < 0) 996 return len; 997 998 i += len; 999 if (value == 0x7FFFFFFF) 1000 pkt_dev->delay = ULLONG_MAX; 1001 else 1002 pkt_dev->delay = (u64)value; 1003 1004 sprintf(pg_result, "OK: delay=%llu", 1005 (unsigned long long) pkt_dev->delay); 1006 return count; 1007 } 1008 if (!strcmp(name, "rate")) { 1009 len = num_arg(&user_buffer[i], 10, &value); 1010 if (len < 0) 1011 return len; 1012 1013 i += len; 1014 if (!value) 1015 return len; 1016 pkt_dev->delay = pkt_dev->min_pkt_size*8*NSEC_PER_USEC/value; 1017 if (debug) 1018 pr_info("Delay set at: %llu ns\n", pkt_dev->delay); 1019 1020 sprintf(pg_result, "OK: rate=%lu", value); 1021 return count; 1022 } 1023 if (!strcmp(name, "ratep")) { 1024 len = num_arg(&user_buffer[i], 10, &value); 1025 if (len < 0) 1026 return len; 1027 1028 i += len; 1029 if (!value) 1030 return len; 1031 pkt_dev->delay = NSEC_PER_SEC/value; 1032 if (debug) 1033 pr_info("Delay set at: %llu ns\n", pkt_dev->delay); 1034 1035 sprintf(pg_result, "OK: rate=%lu", value); 1036 return count; 1037 } 1038 if (!strcmp(name, "udp_src_min")) { 1039 len = num_arg(&user_buffer[i], 10, &value); 1040 if (len < 0) 1041 return len; 1042 1043 i += len; 1044 if (value != pkt_dev->udp_src_min) { 1045 pkt_dev->udp_src_min = value; 1046 pkt_dev->cur_udp_src = value; 1047 } 1048 sprintf(pg_result, "OK: udp_src_min=%u", pkt_dev->udp_src_min); 1049 return count; 1050 } 1051 if (!strcmp(name, "udp_dst_min")) { 1052 len = num_arg(&user_buffer[i], 10, &value); 1053 if (len < 0) 1054 return len; 1055 1056 i += len; 1057 if (value != pkt_dev->udp_dst_min) { 1058 pkt_dev->udp_dst_min = value; 1059 pkt_dev->cur_udp_dst = value; 1060 } 1061 sprintf(pg_result, "OK: udp_dst_min=%u", pkt_dev->udp_dst_min); 1062 return count; 1063 } 1064 if (!strcmp(name, "udp_src_max")) { 1065 len = num_arg(&user_buffer[i], 10, &value); 1066 if (len < 0) 1067 return len; 1068 1069 i += len; 1070 if (value != pkt_dev->udp_src_max) { 1071 pkt_dev->udp_src_max = value; 1072 pkt_dev->cur_udp_src = value; 1073 } 1074 sprintf(pg_result, "OK: udp_src_max=%u", pkt_dev->udp_src_max); 1075 return count; 1076 } 1077 if (!strcmp(name, "udp_dst_max")) { 1078 len = num_arg(&user_buffer[i], 10, &value); 1079 if (len < 0) 1080 return len; 1081 1082 i += len; 1083 if (value != pkt_dev->udp_dst_max) { 1084 pkt_dev->udp_dst_max = value; 1085 pkt_dev->cur_udp_dst = value; 1086 } 1087 sprintf(pg_result, "OK: udp_dst_max=%u", pkt_dev->udp_dst_max); 1088 return count; 1089 } 1090 if (!strcmp(name, "clone_skb")) { 1091 len = num_arg(&user_buffer[i], 10, &value); 1092 if (len < 0) 1093 return len; 1094 if ((value > 0) && 1095 ((pkt_dev->xmit_mode == M_NETIF_RECEIVE) || 1096 !(pkt_dev->odev->priv_flags & IFF_TX_SKB_SHARING))) 1097 return -ENOTSUPP; 1098 i += len; 1099 pkt_dev->clone_skb = value; 1100 1101 sprintf(pg_result, "OK: clone_skb=%d", pkt_dev->clone_skb); 1102 return count; 1103 } 1104 if (!strcmp(name, "count")) { 1105 len = num_arg(&user_buffer[i], 10, &value); 1106 if (len < 0) 1107 return len; 1108 1109 i += len; 1110 pkt_dev->count = value; 1111 sprintf(pg_result, "OK: count=%llu", 1112 (unsigned long long)pkt_dev->count); 1113 return count; 1114 } 1115 if (!strcmp(name, "src_mac_count")) { 1116 len = num_arg(&user_buffer[i], 10, &value); 1117 if (len < 0) 1118 return len; 1119 1120 i += len; 1121 if (pkt_dev->src_mac_count != value) { 1122 pkt_dev->src_mac_count = value; 1123 pkt_dev->cur_src_mac_offset = 0; 1124 } 1125 sprintf(pg_result, "OK: src_mac_count=%d", 1126 pkt_dev->src_mac_count); 1127 return count; 1128 } 1129 if (!strcmp(name, "dst_mac_count")) { 1130 len = num_arg(&user_buffer[i], 10, &value); 1131 if (len < 0) 1132 return len; 1133 1134 i += len; 1135 if (pkt_dev->dst_mac_count != value) { 1136 pkt_dev->dst_mac_count = value; 1137 pkt_dev->cur_dst_mac_offset = 0; 1138 } 1139 sprintf(pg_result, "OK: dst_mac_count=%d", 1140 pkt_dev->dst_mac_count); 1141 return count; 1142 } 1143 if (!strcmp(name, "burst")) { 1144 len = num_arg(&user_buffer[i], 10, &value); 1145 if (len < 0) 1146 return len; 1147 1148 i += len; 1149 if ((value > 1) && 1150 ((pkt_dev->xmit_mode == M_QUEUE_XMIT) || 1151 ((pkt_dev->xmit_mode == M_START_XMIT) && 1152 (!(pkt_dev->odev->priv_flags & IFF_TX_SKB_SHARING))))) 1153 return -ENOTSUPP; 1154 pkt_dev->burst = value < 1 ? 1 : value; 1155 sprintf(pg_result, "OK: burst=%d", pkt_dev->burst); 1156 return count; 1157 } 1158 if (!strcmp(name, "node")) { 1159 len = num_arg(&user_buffer[i], 10, &value); 1160 if (len < 0) 1161 return len; 1162 1163 i += len; 1164 1165 if (node_possible(value)) { 1166 pkt_dev->node = value; 1167 sprintf(pg_result, "OK: node=%d", pkt_dev->node); 1168 if (pkt_dev->page) { 1169 put_page(pkt_dev->page); 1170 pkt_dev->page = NULL; 1171 } 1172 } 1173 else 1174 sprintf(pg_result, "ERROR: node not possible"); 1175 return count; 1176 } 1177 if (!strcmp(name, "xmit_mode")) { 1178 char f[32]; 1179 1180 memset(f, 0, 32); 1181 len = strn_len(&user_buffer[i], sizeof(f) - 1); 1182 if (len < 0) 1183 return len; 1184 1185 if (copy_from_user(f, &user_buffer[i], len)) 1186 return -EFAULT; 1187 i += len; 1188 1189 if (strcmp(f, "start_xmit") == 0) { 1190 pkt_dev->xmit_mode = M_START_XMIT; 1191 } else if (strcmp(f, "netif_receive") == 0) { 1192 /* clone_skb set earlier, not supported in this mode */ 1193 if (pkt_dev->clone_skb > 0) 1194 return -ENOTSUPP; 1195 1196 pkt_dev->xmit_mode = M_NETIF_RECEIVE; 1197 1198 /* make sure new packet is allocated every time 1199 * pktgen_xmit() is called 1200 */ 1201 pkt_dev->last_ok = 1; 1202 1203 /* override clone_skb if user passed default value 1204 * at module loading time 1205 */ 1206 pkt_dev->clone_skb = 0; 1207 } else if (strcmp(f, "queue_xmit") == 0) { 1208 pkt_dev->xmit_mode = M_QUEUE_XMIT; 1209 pkt_dev->last_ok = 1; 1210 } else { 1211 sprintf(pg_result, 1212 "xmit_mode -:%s:- unknown\nAvailable modes: %s", 1213 f, "start_xmit, netif_receive\n"); 1214 return count; 1215 } 1216 sprintf(pg_result, "OK: xmit_mode=%s", f); 1217 return count; 1218 } 1219 if (!strcmp(name, "flag")) { 1220 __u32 flag; 1221 char f[32]; 1222 bool disable = false; 1223 1224 memset(f, 0, 32); 1225 len = strn_len(&user_buffer[i], sizeof(f) - 1); 1226 if (len < 0) 1227 return len; 1228 1229 if (copy_from_user(f, &user_buffer[i], len)) 1230 return -EFAULT; 1231 i += len; 1232 1233 flag = pktgen_read_flag(f, &disable); 1234 1235 if (flag) { 1236 if (disable) 1237 pkt_dev->flags &= ~flag; 1238 else 1239 pkt_dev->flags |= flag; 1240 } else { 1241 sprintf(pg_result, 1242 "Flag -:%s:- unknown\nAvailable flags, (prepend ! to un-set flag):\n%s", 1243 f, 1244 "IPSRC_RND, IPDST_RND, UDPSRC_RND, UDPDST_RND, " 1245 "MACSRC_RND, MACDST_RND, TXSIZE_RND, IPV6, " 1246 "MPLS_RND, VID_RND, SVID_RND, FLOW_SEQ, " 1247 "QUEUE_MAP_RND, QUEUE_MAP_CPU, UDPCSUM, " 1248 "NO_TIMESTAMP, " 1249 #ifdef CONFIG_XFRM 1250 "IPSEC, " 1251 #endif 1252 "NODE_ALLOC\n"); 1253 return count; 1254 } 1255 sprintf(pg_result, "OK: flags=0x%x", pkt_dev->flags); 1256 return count; 1257 } 1258 if (!strcmp(name, "dst_min") || !strcmp(name, "dst")) { 1259 len = strn_len(&user_buffer[i], sizeof(pkt_dev->dst_min) - 1); 1260 if (len < 0) 1261 return len; 1262 1263 if (copy_from_user(buf, &user_buffer[i], len)) 1264 return -EFAULT; 1265 buf[len] = 0; 1266 if (strcmp(buf, pkt_dev->dst_min) != 0) { 1267 memset(pkt_dev->dst_min, 0, sizeof(pkt_dev->dst_min)); 1268 strncpy(pkt_dev->dst_min, buf, len); 1269 pkt_dev->daddr_min = in_aton(pkt_dev->dst_min); 1270 pkt_dev->cur_daddr = pkt_dev->daddr_min; 1271 } 1272 if (debug) 1273 pr_debug("dst_min set to: %s\n", pkt_dev->dst_min); 1274 i += len; 1275 sprintf(pg_result, "OK: dst_min=%s", pkt_dev->dst_min); 1276 return count; 1277 } 1278 if (!strcmp(name, "dst_max")) { 1279 len = strn_len(&user_buffer[i], sizeof(pkt_dev->dst_max) - 1); 1280 if (len < 0) 1281 return len; 1282 1283 1284 if (copy_from_user(buf, &user_buffer[i], len)) 1285 return -EFAULT; 1286 1287 buf[len] = 0; 1288 if (strcmp(buf, pkt_dev->dst_max) != 0) { 1289 memset(pkt_dev->dst_max, 0, sizeof(pkt_dev->dst_max)); 1290 strncpy(pkt_dev->dst_max, buf, len); 1291 pkt_dev->daddr_max = in_aton(pkt_dev->dst_max); 1292 pkt_dev->cur_daddr = pkt_dev->daddr_max; 1293 } 1294 if (debug) 1295 pr_debug("dst_max set to: %s\n", pkt_dev->dst_max); 1296 i += len; 1297 sprintf(pg_result, "OK: dst_max=%s", pkt_dev->dst_max); 1298 return count; 1299 } 1300 if (!strcmp(name, "dst6")) { 1301 len = strn_len(&user_buffer[i], sizeof(buf) - 1); 1302 if (len < 0) 1303 return len; 1304 1305 pkt_dev->flags |= F_IPV6; 1306 1307 if (copy_from_user(buf, &user_buffer[i], len)) 1308 return -EFAULT; 1309 buf[len] = 0; 1310 1311 in6_pton(buf, -1, pkt_dev->in6_daddr.s6_addr, -1, NULL); 1312 snprintf(buf, sizeof(buf), "%pI6c", &pkt_dev->in6_daddr); 1313 1314 pkt_dev->cur_in6_daddr = pkt_dev->in6_daddr; 1315 1316 if (debug) 1317 pr_debug("dst6 set to: %s\n", buf); 1318 1319 i += len; 1320 sprintf(pg_result, "OK: dst6=%s", buf); 1321 return count; 1322 } 1323 if (!strcmp(name, "dst6_min")) { 1324 len = strn_len(&user_buffer[i], sizeof(buf) - 1); 1325 if (len < 0) 1326 return len; 1327 1328 pkt_dev->flags |= F_IPV6; 1329 1330 if (copy_from_user(buf, &user_buffer[i], len)) 1331 return -EFAULT; 1332 buf[len] = 0; 1333 1334 in6_pton(buf, -1, pkt_dev->min_in6_daddr.s6_addr, -1, NULL); 1335 snprintf(buf, sizeof(buf), "%pI6c", &pkt_dev->min_in6_daddr); 1336 1337 pkt_dev->cur_in6_daddr = pkt_dev->min_in6_daddr; 1338 if (debug) 1339 pr_debug("dst6_min set to: %s\n", buf); 1340 1341 i += len; 1342 sprintf(pg_result, "OK: dst6_min=%s", buf); 1343 return count; 1344 } 1345 if (!strcmp(name, "dst6_max")) { 1346 len = strn_len(&user_buffer[i], sizeof(buf) - 1); 1347 if (len < 0) 1348 return len; 1349 1350 pkt_dev->flags |= F_IPV6; 1351 1352 if (copy_from_user(buf, &user_buffer[i], len)) 1353 return -EFAULT; 1354 buf[len] = 0; 1355 1356 in6_pton(buf, -1, pkt_dev->max_in6_daddr.s6_addr, -1, NULL); 1357 snprintf(buf, sizeof(buf), "%pI6c", &pkt_dev->max_in6_daddr); 1358 1359 if (debug) 1360 pr_debug("dst6_max set to: %s\n", buf); 1361 1362 i += len; 1363 sprintf(pg_result, "OK: dst6_max=%s", buf); 1364 return count; 1365 } 1366 if (!strcmp(name, "src6")) { 1367 len = strn_len(&user_buffer[i], sizeof(buf) - 1); 1368 if (len < 0) 1369 return len; 1370 1371 pkt_dev->flags |= F_IPV6; 1372 1373 if (copy_from_user(buf, &user_buffer[i], len)) 1374 return -EFAULT; 1375 buf[len] = 0; 1376 1377 in6_pton(buf, -1, pkt_dev->in6_saddr.s6_addr, -1, NULL); 1378 snprintf(buf, sizeof(buf), "%pI6c", &pkt_dev->in6_saddr); 1379 1380 pkt_dev->cur_in6_saddr = pkt_dev->in6_saddr; 1381 1382 if (debug) 1383 pr_debug("src6 set to: %s\n", buf); 1384 1385 i += len; 1386 sprintf(pg_result, "OK: src6=%s", buf); 1387 return count; 1388 } 1389 if (!strcmp(name, "src_min")) { 1390 len = strn_len(&user_buffer[i], sizeof(pkt_dev->src_min) - 1); 1391 if (len < 0) 1392 return len; 1393 1394 if (copy_from_user(buf, &user_buffer[i], len)) 1395 return -EFAULT; 1396 buf[len] = 0; 1397 if (strcmp(buf, pkt_dev->src_min) != 0) { 1398 memset(pkt_dev->src_min, 0, sizeof(pkt_dev->src_min)); 1399 strncpy(pkt_dev->src_min, buf, len); 1400 pkt_dev->saddr_min = in_aton(pkt_dev->src_min); 1401 pkt_dev->cur_saddr = pkt_dev->saddr_min; 1402 } 1403 if (debug) 1404 pr_debug("src_min set to: %s\n", pkt_dev->src_min); 1405 i += len; 1406 sprintf(pg_result, "OK: src_min=%s", pkt_dev->src_min); 1407 return count; 1408 } 1409 if (!strcmp(name, "src_max")) { 1410 len = strn_len(&user_buffer[i], sizeof(pkt_dev->src_max) - 1); 1411 if (len < 0) 1412 return len; 1413 1414 if (copy_from_user(buf, &user_buffer[i], len)) 1415 return -EFAULT; 1416 buf[len] = 0; 1417 if (strcmp(buf, pkt_dev->src_max) != 0) { 1418 memset(pkt_dev->src_max, 0, sizeof(pkt_dev->src_max)); 1419 strncpy(pkt_dev->src_max, buf, len); 1420 pkt_dev->saddr_max = in_aton(pkt_dev->src_max); 1421 pkt_dev->cur_saddr = pkt_dev->saddr_max; 1422 } 1423 if (debug) 1424 pr_debug("src_max set to: %s\n", pkt_dev->src_max); 1425 i += len; 1426 sprintf(pg_result, "OK: src_max=%s", pkt_dev->src_max); 1427 return count; 1428 } 1429 if (!strcmp(name, "dst_mac")) { 1430 len = strn_len(&user_buffer[i], sizeof(valstr) - 1); 1431 if (len < 0) 1432 return len; 1433 1434 memset(valstr, 0, sizeof(valstr)); 1435 if (copy_from_user(valstr, &user_buffer[i], len)) 1436 return -EFAULT; 1437 1438 if (!mac_pton(valstr, pkt_dev->dst_mac)) 1439 return -EINVAL; 1440 /* Set up Dest MAC */ 1441 ether_addr_copy(&pkt_dev->hh[0], pkt_dev->dst_mac); 1442 1443 sprintf(pg_result, "OK: dstmac %pM", pkt_dev->dst_mac); 1444 return count; 1445 } 1446 if (!strcmp(name, "src_mac")) { 1447 len = strn_len(&user_buffer[i], sizeof(valstr) - 1); 1448 if (len < 0) 1449 return len; 1450 1451 memset(valstr, 0, sizeof(valstr)); 1452 if (copy_from_user(valstr, &user_buffer[i], len)) 1453 return -EFAULT; 1454 1455 if (!mac_pton(valstr, pkt_dev->src_mac)) 1456 return -EINVAL; 1457 /* Set up Src MAC */ 1458 ether_addr_copy(&pkt_dev->hh[6], pkt_dev->src_mac); 1459 1460 sprintf(pg_result, "OK: srcmac %pM", pkt_dev->src_mac); 1461 return count; 1462 } 1463 1464 if (!strcmp(name, "clear_counters")) { 1465 pktgen_clear_counters(pkt_dev); 1466 sprintf(pg_result, "OK: Clearing counters.\n"); 1467 return count; 1468 } 1469 1470 if (!strcmp(name, "flows")) { 1471 len = num_arg(&user_buffer[i], 10, &value); 1472 if (len < 0) 1473 return len; 1474 1475 i += len; 1476 if (value > MAX_CFLOWS) 1477 value = MAX_CFLOWS; 1478 1479 pkt_dev->cflows = value; 1480 sprintf(pg_result, "OK: flows=%u", pkt_dev->cflows); 1481 return count; 1482 } 1483 #ifdef CONFIG_XFRM 1484 if (!strcmp(name, "spi")) { 1485 len = num_arg(&user_buffer[i], 10, &value); 1486 if (len < 0) 1487 return len; 1488 1489 i += len; 1490 pkt_dev->spi = value; 1491 sprintf(pg_result, "OK: spi=%u", pkt_dev->spi); 1492 return count; 1493 } 1494 #endif 1495 if (!strcmp(name, "flowlen")) { 1496 len = num_arg(&user_buffer[i], 10, &value); 1497 if (len < 0) 1498 return len; 1499 1500 i += len; 1501 pkt_dev->lflow = value; 1502 sprintf(pg_result, "OK: flowlen=%u", pkt_dev->lflow); 1503 return count; 1504 } 1505 1506 if (!strcmp(name, "queue_map_min")) { 1507 len = num_arg(&user_buffer[i], 5, &value); 1508 if (len < 0) 1509 return len; 1510 1511 i += len; 1512 pkt_dev->queue_map_min = value; 1513 sprintf(pg_result, "OK: queue_map_min=%u", pkt_dev->queue_map_min); 1514 return count; 1515 } 1516 1517 if (!strcmp(name, "queue_map_max")) { 1518 len = num_arg(&user_buffer[i], 5, &value); 1519 if (len < 0) 1520 return len; 1521 1522 i += len; 1523 pkt_dev->queue_map_max = value; 1524 sprintf(pg_result, "OK: queue_map_max=%u", pkt_dev->queue_map_max); 1525 return count; 1526 } 1527 1528 if (!strcmp(name, "mpls")) { 1529 unsigned int n, cnt; 1530 1531 len = get_labels(&user_buffer[i], pkt_dev); 1532 if (len < 0) 1533 return len; 1534 i += len; 1535 cnt = sprintf(pg_result, "OK: mpls="); 1536 for (n = 0; n < pkt_dev->nr_labels; n++) 1537 cnt += sprintf(pg_result + cnt, 1538 "%08x%s", ntohl(pkt_dev->labels[n]), 1539 n == pkt_dev->nr_labels-1 ? "" : ","); 1540 1541 if (pkt_dev->nr_labels && pkt_dev->vlan_id != 0xffff) { 1542 pkt_dev->vlan_id = 0xffff; /* turn off VLAN/SVLAN */ 1543 pkt_dev->svlan_id = 0xffff; 1544 1545 if (debug) 1546 pr_debug("VLAN/SVLAN auto turned off\n"); 1547 } 1548 return count; 1549 } 1550 1551 if (!strcmp(name, "vlan_id")) { 1552 len = num_arg(&user_buffer[i], 4, &value); 1553 if (len < 0) 1554 return len; 1555 1556 i += len; 1557 if (value <= 4095) { 1558 pkt_dev->vlan_id = value; /* turn on VLAN */ 1559 1560 if (debug) 1561 pr_debug("VLAN turned on\n"); 1562 1563 if (debug && pkt_dev->nr_labels) 1564 pr_debug("MPLS auto turned off\n"); 1565 1566 pkt_dev->nr_labels = 0; /* turn off MPLS */ 1567 sprintf(pg_result, "OK: vlan_id=%u", pkt_dev->vlan_id); 1568 } else { 1569 pkt_dev->vlan_id = 0xffff; /* turn off VLAN/SVLAN */ 1570 pkt_dev->svlan_id = 0xffff; 1571 1572 if (debug) 1573 pr_debug("VLAN/SVLAN turned off\n"); 1574 } 1575 return count; 1576 } 1577 1578 if (!strcmp(name, "vlan_p")) { 1579 len = num_arg(&user_buffer[i], 1, &value); 1580 if (len < 0) 1581 return len; 1582 1583 i += len; 1584 if ((value <= 7) && (pkt_dev->vlan_id != 0xffff)) { 1585 pkt_dev->vlan_p = value; 1586 sprintf(pg_result, "OK: vlan_p=%u", pkt_dev->vlan_p); 1587 } else { 1588 sprintf(pg_result, "ERROR: vlan_p must be 0-7"); 1589 } 1590 return count; 1591 } 1592 1593 if (!strcmp(name, "vlan_cfi")) { 1594 len = num_arg(&user_buffer[i], 1, &value); 1595 if (len < 0) 1596 return len; 1597 1598 i += len; 1599 if ((value <= 1) && (pkt_dev->vlan_id != 0xffff)) { 1600 pkt_dev->vlan_cfi = value; 1601 sprintf(pg_result, "OK: vlan_cfi=%u", pkt_dev->vlan_cfi); 1602 } else { 1603 sprintf(pg_result, "ERROR: vlan_cfi must be 0-1"); 1604 } 1605 return count; 1606 } 1607 1608 if (!strcmp(name, "svlan_id")) { 1609 len = num_arg(&user_buffer[i], 4, &value); 1610 if (len < 0) 1611 return len; 1612 1613 i += len; 1614 if ((value <= 4095) && ((pkt_dev->vlan_id != 0xffff))) { 1615 pkt_dev->svlan_id = value; /* turn on SVLAN */ 1616 1617 if (debug) 1618 pr_debug("SVLAN turned on\n"); 1619 1620 if (debug && pkt_dev->nr_labels) 1621 pr_debug("MPLS auto turned off\n"); 1622 1623 pkt_dev->nr_labels = 0; /* turn off MPLS */ 1624 sprintf(pg_result, "OK: svlan_id=%u", pkt_dev->svlan_id); 1625 } else { 1626 pkt_dev->vlan_id = 0xffff; /* turn off VLAN/SVLAN */ 1627 pkt_dev->svlan_id = 0xffff; 1628 1629 if (debug) 1630 pr_debug("VLAN/SVLAN turned off\n"); 1631 } 1632 return count; 1633 } 1634 1635 if (!strcmp(name, "svlan_p")) { 1636 len = num_arg(&user_buffer[i], 1, &value); 1637 if (len < 0) 1638 return len; 1639 1640 i += len; 1641 if ((value <= 7) && (pkt_dev->svlan_id != 0xffff)) { 1642 pkt_dev->svlan_p = value; 1643 sprintf(pg_result, "OK: svlan_p=%u", pkt_dev->svlan_p); 1644 } else { 1645 sprintf(pg_result, "ERROR: svlan_p must be 0-7"); 1646 } 1647 return count; 1648 } 1649 1650 if (!strcmp(name, "svlan_cfi")) { 1651 len = num_arg(&user_buffer[i], 1, &value); 1652 if (len < 0) 1653 return len; 1654 1655 i += len; 1656 if ((value <= 1) && (pkt_dev->svlan_id != 0xffff)) { 1657 pkt_dev->svlan_cfi = value; 1658 sprintf(pg_result, "OK: svlan_cfi=%u", pkt_dev->svlan_cfi); 1659 } else { 1660 sprintf(pg_result, "ERROR: svlan_cfi must be 0-1"); 1661 } 1662 return count; 1663 } 1664 1665 if (!strcmp(name, "tos")) { 1666 __u32 tmp_value = 0; 1667 len = hex32_arg(&user_buffer[i], 2, &tmp_value); 1668 if (len < 0) 1669 return len; 1670 1671 i += len; 1672 if (len == 2) { 1673 pkt_dev->tos = tmp_value; 1674 sprintf(pg_result, "OK: tos=0x%02x", pkt_dev->tos); 1675 } else { 1676 sprintf(pg_result, "ERROR: tos must be 00-ff"); 1677 } 1678 return count; 1679 } 1680 1681 if (!strcmp(name, "traffic_class")) { 1682 __u32 tmp_value = 0; 1683 len = hex32_arg(&user_buffer[i], 2, &tmp_value); 1684 if (len < 0) 1685 return len; 1686 1687 i += len; 1688 if (len == 2) { 1689 pkt_dev->traffic_class = tmp_value; 1690 sprintf(pg_result, "OK: traffic_class=0x%02x", pkt_dev->traffic_class); 1691 } else { 1692 sprintf(pg_result, "ERROR: traffic_class must be 00-ff"); 1693 } 1694 return count; 1695 } 1696 1697 if (!strcmp(name, "skb_priority")) { 1698 len = num_arg(&user_buffer[i], 9, &value); 1699 if (len < 0) 1700 return len; 1701 1702 i += len; 1703 pkt_dev->skb_priority = value; 1704 sprintf(pg_result, "OK: skb_priority=%i", 1705 pkt_dev->skb_priority); 1706 return count; 1707 } 1708 1709 sprintf(pkt_dev->result, "No such parameter \"%s\"", name); 1710 return -EINVAL; 1711 } 1712 1713 static int pktgen_if_open(struct inode *inode, struct file *file) 1714 { 1715 return single_open(file, pktgen_if_show, PDE_DATA(inode)); 1716 } 1717 1718 static const struct file_operations pktgen_if_fops = { 1719 .open = pktgen_if_open, 1720 .read = seq_read, 1721 .llseek = seq_lseek, 1722 .write = pktgen_if_write, 1723 .release = single_release, 1724 }; 1725 1726 static int pktgen_thread_show(struct seq_file *seq, void *v) 1727 { 1728 struct pktgen_thread *t = seq->private; 1729 const struct pktgen_dev *pkt_dev; 1730 1731 BUG_ON(!t); 1732 1733 seq_puts(seq, "Running: "); 1734 1735 rcu_read_lock(); 1736 list_for_each_entry_rcu(pkt_dev, &t->if_list, list) 1737 if (pkt_dev->running) 1738 seq_printf(seq, "%s ", pkt_dev->odevname); 1739 1740 seq_puts(seq, "\nStopped: "); 1741 1742 list_for_each_entry_rcu(pkt_dev, &t->if_list, list) 1743 if (!pkt_dev->running) 1744 seq_printf(seq, "%s ", pkt_dev->odevname); 1745 1746 if (t->result[0]) 1747 seq_printf(seq, "\nResult: %s\n", t->result); 1748 else 1749 seq_puts(seq, "\nResult: NA\n"); 1750 1751 rcu_read_unlock(); 1752 1753 return 0; 1754 } 1755 1756 static ssize_t pktgen_thread_write(struct file *file, 1757 const char __user * user_buffer, 1758 size_t count, loff_t * offset) 1759 { 1760 struct seq_file *seq = file->private_data; 1761 struct pktgen_thread *t = seq->private; 1762 int i, max, len, ret; 1763 char name[40]; 1764 char *pg_result; 1765 1766 if (count < 1) { 1767 // sprintf(pg_result, "Wrong command format"); 1768 return -EINVAL; 1769 } 1770 1771 max = count; 1772 len = count_trail_chars(user_buffer, max); 1773 if (len < 0) 1774 return len; 1775 1776 i = len; 1777 1778 /* Read variable name */ 1779 1780 len = strn_len(&user_buffer[i], sizeof(name) - 1); 1781 if (len < 0) 1782 return len; 1783 1784 memset(name, 0, sizeof(name)); 1785 if (copy_from_user(name, &user_buffer[i], len)) 1786 return -EFAULT; 1787 i += len; 1788 1789 max = count - i; 1790 len = count_trail_chars(&user_buffer[i], max); 1791 if (len < 0) 1792 return len; 1793 1794 i += len; 1795 1796 if (debug) 1797 pr_debug("t=%s, count=%lu\n", name, (unsigned long)count); 1798 1799 if (!t) { 1800 pr_err("ERROR: No thread\n"); 1801 ret = -EINVAL; 1802 goto out; 1803 } 1804 1805 pg_result = &(t->result[0]); 1806 1807 if (!strcmp(name, "add_device")) { 1808 char f[32]; 1809 memset(f, 0, 32); 1810 len = strn_len(&user_buffer[i], sizeof(f) - 1); 1811 if (len < 0) { 1812 ret = len; 1813 goto out; 1814 } 1815 if (copy_from_user(f, &user_buffer[i], len)) 1816 return -EFAULT; 1817 i += len; 1818 mutex_lock(&pktgen_thread_lock); 1819 ret = pktgen_add_device(t, f); 1820 mutex_unlock(&pktgen_thread_lock); 1821 if (!ret) { 1822 ret = count; 1823 sprintf(pg_result, "OK: add_device=%s", f); 1824 } else 1825 sprintf(pg_result, "ERROR: can not add device %s", f); 1826 goto out; 1827 } 1828 1829 if (!strcmp(name, "rem_device_all")) { 1830 mutex_lock(&pktgen_thread_lock); 1831 t->control |= T_REMDEVALL; 1832 mutex_unlock(&pktgen_thread_lock); 1833 schedule_timeout_interruptible(msecs_to_jiffies(125)); /* Propagate thread->control */ 1834 ret = count; 1835 sprintf(pg_result, "OK: rem_device_all"); 1836 goto out; 1837 } 1838 1839 if (!strcmp(name, "max_before_softirq")) { 1840 sprintf(pg_result, "OK: Note! max_before_softirq is obsoleted -- Do not use"); 1841 ret = count; 1842 goto out; 1843 } 1844 1845 ret = -EINVAL; 1846 out: 1847 return ret; 1848 } 1849 1850 static int pktgen_thread_open(struct inode *inode, struct file *file) 1851 { 1852 return single_open(file, pktgen_thread_show, PDE_DATA(inode)); 1853 } 1854 1855 static const struct file_operations pktgen_thread_fops = { 1856 .open = pktgen_thread_open, 1857 .read = seq_read, 1858 .llseek = seq_lseek, 1859 .write = pktgen_thread_write, 1860 .release = single_release, 1861 }; 1862 1863 /* Think find or remove for NN */ 1864 static struct pktgen_dev *__pktgen_NN_threads(const struct pktgen_net *pn, 1865 const char *ifname, int remove) 1866 { 1867 struct pktgen_thread *t; 1868 struct pktgen_dev *pkt_dev = NULL; 1869 bool exact = (remove == FIND); 1870 1871 list_for_each_entry(t, &pn->pktgen_threads, th_list) { 1872 pkt_dev = pktgen_find_dev(t, ifname, exact); 1873 if (pkt_dev) { 1874 if (remove) { 1875 pkt_dev->removal_mark = 1; 1876 t->control |= T_REMDEV; 1877 } 1878 break; 1879 } 1880 } 1881 return pkt_dev; 1882 } 1883 1884 /* 1885 * mark a device for removal 1886 */ 1887 static void pktgen_mark_device(const struct pktgen_net *pn, const char *ifname) 1888 { 1889 struct pktgen_dev *pkt_dev = NULL; 1890 const int max_tries = 10, msec_per_try = 125; 1891 int i = 0; 1892 1893 mutex_lock(&pktgen_thread_lock); 1894 pr_debug("%s: marking %s for removal\n", __func__, ifname); 1895 1896 while (1) { 1897 1898 pkt_dev = __pktgen_NN_threads(pn, ifname, REMOVE); 1899 if (pkt_dev == NULL) 1900 break; /* success */ 1901 1902 mutex_unlock(&pktgen_thread_lock); 1903 pr_debug("%s: waiting for %s to disappear....\n", 1904 __func__, ifname); 1905 schedule_timeout_interruptible(msecs_to_jiffies(msec_per_try)); 1906 mutex_lock(&pktgen_thread_lock); 1907 1908 if (++i >= max_tries) { 1909 pr_err("%s: timed out after waiting %d msec for device %s to be removed\n", 1910 __func__, msec_per_try * i, ifname); 1911 break; 1912 } 1913 1914 } 1915 1916 mutex_unlock(&pktgen_thread_lock); 1917 } 1918 1919 static void pktgen_change_name(const struct pktgen_net *pn, struct net_device *dev) 1920 { 1921 struct pktgen_thread *t; 1922 1923 mutex_lock(&pktgen_thread_lock); 1924 1925 list_for_each_entry(t, &pn->pktgen_threads, th_list) { 1926 struct pktgen_dev *pkt_dev; 1927 1928 if_lock(t); 1929 list_for_each_entry(pkt_dev, &t->if_list, list) { 1930 if (pkt_dev->odev != dev) 1931 continue; 1932 1933 proc_remove(pkt_dev->entry); 1934 1935 pkt_dev->entry = proc_create_data(dev->name, 0600, 1936 pn->proc_dir, 1937 &pktgen_if_fops, 1938 pkt_dev); 1939 if (!pkt_dev->entry) 1940 pr_err("can't move proc entry for '%s'\n", 1941 dev->name); 1942 break; 1943 } 1944 if_unlock(t); 1945 } 1946 mutex_unlock(&pktgen_thread_lock); 1947 } 1948 1949 static int pktgen_device_event(struct notifier_block *unused, 1950 unsigned long event, void *ptr) 1951 { 1952 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1953 struct pktgen_net *pn = net_generic(dev_net(dev), pg_net_id); 1954 1955 if (pn->pktgen_exiting) 1956 return NOTIFY_DONE; 1957 1958 /* It is OK that we do not hold the group lock right now, 1959 * as we run under the RTNL lock. 1960 */ 1961 1962 switch (event) { 1963 case NETDEV_CHANGENAME: 1964 pktgen_change_name(pn, dev); 1965 break; 1966 1967 case NETDEV_UNREGISTER: 1968 pktgen_mark_device(pn, dev->name); 1969 break; 1970 } 1971 1972 return NOTIFY_DONE; 1973 } 1974 1975 static struct net_device *pktgen_dev_get_by_name(const struct pktgen_net *pn, 1976 struct pktgen_dev *pkt_dev, 1977 const char *ifname) 1978 { 1979 char b[IFNAMSIZ+5]; 1980 int i; 1981 1982 for (i = 0; ifname[i] != '@'; i++) { 1983 if (i == IFNAMSIZ) 1984 break; 1985 1986 b[i] = ifname[i]; 1987 } 1988 b[i] = 0; 1989 1990 return dev_get_by_name(pn->net, b); 1991 } 1992 1993 1994 /* Associate pktgen_dev with a device. */ 1995 1996 static int pktgen_setup_dev(const struct pktgen_net *pn, 1997 struct pktgen_dev *pkt_dev, const char *ifname) 1998 { 1999 struct net_device *odev; 2000 int err; 2001 2002 /* Clean old setups */ 2003 if (pkt_dev->odev) { 2004 dev_put(pkt_dev->odev); 2005 pkt_dev->odev = NULL; 2006 } 2007 2008 odev = pktgen_dev_get_by_name(pn, pkt_dev, ifname); 2009 if (!odev) { 2010 pr_err("no such netdevice: \"%s\"\n", ifname); 2011 return -ENODEV; 2012 } 2013 2014 if (odev->type != ARPHRD_ETHER) { 2015 pr_err("not an ethernet device: \"%s\"\n", ifname); 2016 err = -EINVAL; 2017 } else if (!netif_running(odev)) { 2018 pr_err("device is down: \"%s\"\n", ifname); 2019 err = -ENETDOWN; 2020 } else { 2021 pkt_dev->odev = odev; 2022 return 0; 2023 } 2024 2025 dev_put(odev); 2026 return err; 2027 } 2028 2029 /* Read pkt_dev from the interface and set up internal pktgen_dev 2030 * structure to have the right information to create/send packets 2031 */ 2032 static void pktgen_setup_inject(struct pktgen_dev *pkt_dev) 2033 { 2034 int ntxq; 2035 2036 if (!pkt_dev->odev) { 2037 pr_err("ERROR: pkt_dev->odev == NULL in setup_inject\n"); 2038 sprintf(pkt_dev->result, 2039 "ERROR: pkt_dev->odev == NULL in setup_inject.\n"); 2040 return; 2041 } 2042 2043 /* make sure that we don't pick a non-existing transmit queue */ 2044 ntxq = pkt_dev->odev->real_num_tx_queues; 2045 2046 if (ntxq <= pkt_dev->queue_map_min) { 2047 pr_warn("WARNING: Requested queue_map_min (zero-based) (%d) exceeds valid range [0 - %d] for (%d) queues on %s, resetting\n", 2048 pkt_dev->queue_map_min, (ntxq ?: 1) - 1, ntxq, 2049 pkt_dev->odevname); 2050 pkt_dev->queue_map_min = (ntxq ?: 1) - 1; 2051 } 2052 if (pkt_dev->queue_map_max >= ntxq) { 2053 pr_warn("WARNING: Requested queue_map_max (zero-based) (%d) exceeds valid range [0 - %d] for (%d) queues on %s, resetting\n", 2054 pkt_dev->queue_map_max, (ntxq ?: 1) - 1, ntxq, 2055 pkt_dev->odevname); 2056 pkt_dev->queue_map_max = (ntxq ?: 1) - 1; 2057 } 2058 2059 /* Default to the interface's mac if not explicitly set. */ 2060 2061 if (is_zero_ether_addr(pkt_dev->src_mac)) 2062 ether_addr_copy(&(pkt_dev->hh[6]), pkt_dev->odev->dev_addr); 2063 2064 /* Set up Dest MAC */ 2065 ether_addr_copy(&(pkt_dev->hh[0]), pkt_dev->dst_mac); 2066 2067 if (pkt_dev->flags & F_IPV6) { 2068 int i, set = 0, err = 1; 2069 struct inet6_dev *idev; 2070 2071 if (pkt_dev->min_pkt_size == 0) { 2072 pkt_dev->min_pkt_size = 14 + sizeof(struct ipv6hdr) 2073 + sizeof(struct udphdr) 2074 + sizeof(struct pktgen_hdr) 2075 + pkt_dev->pkt_overhead; 2076 } 2077 2078 for (i = 0; i < sizeof(struct in6_addr); i++) 2079 if (pkt_dev->cur_in6_saddr.s6_addr[i]) { 2080 set = 1; 2081 break; 2082 } 2083 2084 if (!set) { 2085 2086 /* 2087 * Use linklevel address if unconfigured. 2088 * 2089 * use ipv6_get_lladdr if/when it's get exported 2090 */ 2091 2092 rcu_read_lock(); 2093 idev = __in6_dev_get(pkt_dev->odev); 2094 if (idev) { 2095 struct inet6_ifaddr *ifp; 2096 2097 read_lock_bh(&idev->lock); 2098 list_for_each_entry(ifp, &idev->addr_list, if_list) { 2099 if ((ifp->scope & IFA_LINK) && 2100 !(ifp->flags & IFA_F_TENTATIVE)) { 2101 pkt_dev->cur_in6_saddr = ifp->addr; 2102 err = 0; 2103 break; 2104 } 2105 } 2106 read_unlock_bh(&idev->lock); 2107 } 2108 rcu_read_unlock(); 2109 if (err) 2110 pr_err("ERROR: IPv6 link address not available\n"); 2111 } 2112 } else { 2113 if (pkt_dev->min_pkt_size == 0) { 2114 pkt_dev->min_pkt_size = 14 + sizeof(struct iphdr) 2115 + sizeof(struct udphdr) 2116 + sizeof(struct pktgen_hdr) 2117 + pkt_dev->pkt_overhead; 2118 } 2119 2120 pkt_dev->saddr_min = 0; 2121 pkt_dev->saddr_max = 0; 2122 if (strlen(pkt_dev->src_min) == 0) { 2123 2124 struct in_device *in_dev; 2125 2126 rcu_read_lock(); 2127 in_dev = __in_dev_get_rcu(pkt_dev->odev); 2128 if (in_dev) { 2129 if (in_dev->ifa_list) { 2130 pkt_dev->saddr_min = 2131 in_dev->ifa_list->ifa_address; 2132 pkt_dev->saddr_max = pkt_dev->saddr_min; 2133 } 2134 } 2135 rcu_read_unlock(); 2136 } else { 2137 pkt_dev->saddr_min = in_aton(pkt_dev->src_min); 2138 pkt_dev->saddr_max = in_aton(pkt_dev->src_max); 2139 } 2140 2141 pkt_dev->daddr_min = in_aton(pkt_dev->dst_min); 2142 pkt_dev->daddr_max = in_aton(pkt_dev->dst_max); 2143 } 2144 /* Initialize current values. */ 2145 pkt_dev->cur_pkt_size = pkt_dev->min_pkt_size; 2146 if (pkt_dev->min_pkt_size > pkt_dev->max_pkt_size) 2147 pkt_dev->max_pkt_size = pkt_dev->min_pkt_size; 2148 2149 pkt_dev->cur_dst_mac_offset = 0; 2150 pkt_dev->cur_src_mac_offset = 0; 2151 pkt_dev->cur_saddr = pkt_dev->saddr_min; 2152 pkt_dev->cur_daddr = pkt_dev->daddr_min; 2153 pkt_dev->cur_udp_dst = pkt_dev->udp_dst_min; 2154 pkt_dev->cur_udp_src = pkt_dev->udp_src_min; 2155 pkt_dev->nflows = 0; 2156 } 2157 2158 2159 static void spin(struct pktgen_dev *pkt_dev, ktime_t spin_until) 2160 { 2161 ktime_t start_time, end_time; 2162 s64 remaining; 2163 struct hrtimer_sleeper t; 2164 2165 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2166 hrtimer_set_expires(&t.timer, spin_until); 2167 2168 remaining = ktime_to_ns(hrtimer_expires_remaining(&t.timer)); 2169 if (remaining <= 0) 2170 goto out; 2171 2172 start_time = ktime_get(); 2173 if (remaining < 100000) { 2174 /* for small delays (<100us), just loop until limit is reached */ 2175 do { 2176 end_time = ktime_get(); 2177 } while (ktime_compare(end_time, spin_until) < 0); 2178 } else { 2179 /* see do_nanosleep */ 2180 hrtimer_init_sleeper(&t, current); 2181 do { 2182 set_current_state(TASK_INTERRUPTIBLE); 2183 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS); 2184 2185 if (likely(t.task)) 2186 schedule(); 2187 2188 hrtimer_cancel(&t.timer); 2189 } while (t.task && pkt_dev->running && !signal_pending(current)); 2190 __set_current_state(TASK_RUNNING); 2191 end_time = ktime_get(); 2192 } 2193 2194 pkt_dev->idle_acc += ktime_to_ns(ktime_sub(end_time, start_time)); 2195 out: 2196 pkt_dev->next_tx = ktime_add_ns(spin_until, pkt_dev->delay); 2197 destroy_hrtimer_on_stack(&t.timer); 2198 } 2199 2200 static inline void set_pkt_overhead(struct pktgen_dev *pkt_dev) 2201 { 2202 pkt_dev->pkt_overhead = 0; 2203 pkt_dev->pkt_overhead += pkt_dev->nr_labels*sizeof(u32); 2204 pkt_dev->pkt_overhead += VLAN_TAG_SIZE(pkt_dev); 2205 pkt_dev->pkt_overhead += SVLAN_TAG_SIZE(pkt_dev); 2206 } 2207 2208 static inline int f_seen(const struct pktgen_dev *pkt_dev, int flow) 2209 { 2210 return !!(pkt_dev->flows[flow].flags & F_INIT); 2211 } 2212 2213 static inline int f_pick(struct pktgen_dev *pkt_dev) 2214 { 2215 int flow = pkt_dev->curfl; 2216 2217 if (pkt_dev->flags & F_FLOW_SEQ) { 2218 if (pkt_dev->flows[flow].count >= pkt_dev->lflow) { 2219 /* reset time */ 2220 pkt_dev->flows[flow].count = 0; 2221 pkt_dev->flows[flow].flags = 0; 2222 pkt_dev->curfl += 1; 2223 if (pkt_dev->curfl >= pkt_dev->cflows) 2224 pkt_dev->curfl = 0; /*reset */ 2225 } 2226 } else { 2227 flow = prandom_u32() % pkt_dev->cflows; 2228 pkt_dev->curfl = flow; 2229 2230 if (pkt_dev->flows[flow].count > pkt_dev->lflow) { 2231 pkt_dev->flows[flow].count = 0; 2232 pkt_dev->flows[flow].flags = 0; 2233 } 2234 } 2235 2236 return pkt_dev->curfl; 2237 } 2238 2239 2240 #ifdef CONFIG_XFRM 2241 /* If there was already an IPSEC SA, we keep it as is, else 2242 * we go look for it ... 2243 */ 2244 #define DUMMY_MARK 0 2245 static void get_ipsec_sa(struct pktgen_dev *pkt_dev, int flow) 2246 { 2247 struct xfrm_state *x = pkt_dev->flows[flow].x; 2248 struct pktgen_net *pn = net_generic(dev_net(pkt_dev->odev), pg_net_id); 2249 if (!x) { 2250 2251 if (pkt_dev->spi) { 2252 /* We need as quick as possible to find the right SA 2253 * Searching with minimum criteria to archieve this. 2254 */ 2255 x = xfrm_state_lookup_byspi(pn->net, htonl(pkt_dev->spi), AF_INET); 2256 } else { 2257 /* slow path: we dont already have xfrm_state */ 2258 x = xfrm_stateonly_find(pn->net, DUMMY_MARK, 2259 (xfrm_address_t *)&pkt_dev->cur_daddr, 2260 (xfrm_address_t *)&pkt_dev->cur_saddr, 2261 AF_INET, 2262 pkt_dev->ipsmode, 2263 pkt_dev->ipsproto, 0); 2264 } 2265 if (x) { 2266 pkt_dev->flows[flow].x = x; 2267 set_pkt_overhead(pkt_dev); 2268 pkt_dev->pkt_overhead += x->props.header_len; 2269 } 2270 2271 } 2272 } 2273 #endif 2274 static void set_cur_queue_map(struct pktgen_dev *pkt_dev) 2275 { 2276 2277 if (pkt_dev->flags & F_QUEUE_MAP_CPU) 2278 pkt_dev->cur_queue_map = smp_processor_id(); 2279 2280 else if (pkt_dev->queue_map_min <= pkt_dev->queue_map_max) { 2281 __u16 t; 2282 if (pkt_dev->flags & F_QUEUE_MAP_RND) { 2283 t = prandom_u32() % 2284 (pkt_dev->queue_map_max - 2285 pkt_dev->queue_map_min + 1) 2286 + pkt_dev->queue_map_min; 2287 } else { 2288 t = pkt_dev->cur_queue_map + 1; 2289 if (t > pkt_dev->queue_map_max) 2290 t = pkt_dev->queue_map_min; 2291 } 2292 pkt_dev->cur_queue_map = t; 2293 } 2294 pkt_dev->cur_queue_map = pkt_dev->cur_queue_map % pkt_dev->odev->real_num_tx_queues; 2295 } 2296 2297 /* Increment/randomize headers according to flags and current values 2298 * for IP src/dest, UDP src/dst port, MAC-Addr src/dst 2299 */ 2300 static void mod_cur_headers(struct pktgen_dev *pkt_dev) 2301 { 2302 __u32 imn; 2303 __u32 imx; 2304 int flow = 0; 2305 2306 if (pkt_dev->cflows) 2307 flow = f_pick(pkt_dev); 2308 2309 /* Deal with source MAC */ 2310 if (pkt_dev->src_mac_count > 1) { 2311 __u32 mc; 2312 __u32 tmp; 2313 2314 if (pkt_dev->flags & F_MACSRC_RND) 2315 mc = prandom_u32() % pkt_dev->src_mac_count; 2316 else { 2317 mc = pkt_dev->cur_src_mac_offset++; 2318 if (pkt_dev->cur_src_mac_offset >= 2319 pkt_dev->src_mac_count) 2320 pkt_dev->cur_src_mac_offset = 0; 2321 } 2322 2323 tmp = pkt_dev->src_mac[5] + (mc & 0xFF); 2324 pkt_dev->hh[11] = tmp; 2325 tmp = (pkt_dev->src_mac[4] + ((mc >> 8) & 0xFF) + (tmp >> 8)); 2326 pkt_dev->hh[10] = tmp; 2327 tmp = (pkt_dev->src_mac[3] + ((mc >> 16) & 0xFF) + (tmp >> 8)); 2328 pkt_dev->hh[9] = tmp; 2329 tmp = (pkt_dev->src_mac[2] + ((mc >> 24) & 0xFF) + (tmp >> 8)); 2330 pkt_dev->hh[8] = tmp; 2331 tmp = (pkt_dev->src_mac[1] + (tmp >> 8)); 2332 pkt_dev->hh[7] = tmp; 2333 } 2334 2335 /* Deal with Destination MAC */ 2336 if (pkt_dev->dst_mac_count > 1) { 2337 __u32 mc; 2338 __u32 tmp; 2339 2340 if (pkt_dev->flags & F_MACDST_RND) 2341 mc = prandom_u32() % pkt_dev->dst_mac_count; 2342 2343 else { 2344 mc = pkt_dev->cur_dst_mac_offset++; 2345 if (pkt_dev->cur_dst_mac_offset >= 2346 pkt_dev->dst_mac_count) { 2347 pkt_dev->cur_dst_mac_offset = 0; 2348 } 2349 } 2350 2351 tmp = pkt_dev->dst_mac[5] + (mc & 0xFF); 2352 pkt_dev->hh[5] = tmp; 2353 tmp = (pkt_dev->dst_mac[4] + ((mc >> 8) & 0xFF) + (tmp >> 8)); 2354 pkt_dev->hh[4] = tmp; 2355 tmp = (pkt_dev->dst_mac[3] + ((mc >> 16) & 0xFF) + (tmp >> 8)); 2356 pkt_dev->hh[3] = tmp; 2357 tmp = (pkt_dev->dst_mac[2] + ((mc >> 24) & 0xFF) + (tmp >> 8)); 2358 pkt_dev->hh[2] = tmp; 2359 tmp = (pkt_dev->dst_mac[1] + (tmp >> 8)); 2360 pkt_dev->hh[1] = tmp; 2361 } 2362 2363 if (pkt_dev->flags & F_MPLS_RND) { 2364 unsigned int i; 2365 for (i = 0; i < pkt_dev->nr_labels; i++) 2366 if (pkt_dev->labels[i] & MPLS_STACK_BOTTOM) 2367 pkt_dev->labels[i] = MPLS_STACK_BOTTOM | 2368 ((__force __be32)prandom_u32() & 2369 htonl(0x000fffff)); 2370 } 2371 2372 if ((pkt_dev->flags & F_VID_RND) && (pkt_dev->vlan_id != 0xffff)) { 2373 pkt_dev->vlan_id = prandom_u32() & (4096 - 1); 2374 } 2375 2376 if ((pkt_dev->flags & F_SVID_RND) && (pkt_dev->svlan_id != 0xffff)) { 2377 pkt_dev->svlan_id = prandom_u32() & (4096 - 1); 2378 } 2379 2380 if (pkt_dev->udp_src_min < pkt_dev->udp_src_max) { 2381 if (pkt_dev->flags & F_UDPSRC_RND) 2382 pkt_dev->cur_udp_src = prandom_u32() % 2383 (pkt_dev->udp_src_max - pkt_dev->udp_src_min) 2384 + pkt_dev->udp_src_min; 2385 2386 else { 2387 pkt_dev->cur_udp_src++; 2388 if (pkt_dev->cur_udp_src >= pkt_dev->udp_src_max) 2389 pkt_dev->cur_udp_src = pkt_dev->udp_src_min; 2390 } 2391 } 2392 2393 if (pkt_dev->udp_dst_min < pkt_dev->udp_dst_max) { 2394 if (pkt_dev->flags & F_UDPDST_RND) { 2395 pkt_dev->cur_udp_dst = prandom_u32() % 2396 (pkt_dev->udp_dst_max - pkt_dev->udp_dst_min) 2397 + pkt_dev->udp_dst_min; 2398 } else { 2399 pkt_dev->cur_udp_dst++; 2400 if (pkt_dev->cur_udp_dst >= pkt_dev->udp_dst_max) 2401 pkt_dev->cur_udp_dst = pkt_dev->udp_dst_min; 2402 } 2403 } 2404 2405 if (!(pkt_dev->flags & F_IPV6)) { 2406 2407 imn = ntohl(pkt_dev->saddr_min); 2408 imx = ntohl(pkt_dev->saddr_max); 2409 if (imn < imx) { 2410 __u32 t; 2411 if (pkt_dev->flags & F_IPSRC_RND) 2412 t = prandom_u32() % (imx - imn) + imn; 2413 else { 2414 t = ntohl(pkt_dev->cur_saddr); 2415 t++; 2416 if (t > imx) 2417 t = imn; 2418 2419 } 2420 pkt_dev->cur_saddr = htonl(t); 2421 } 2422 2423 if (pkt_dev->cflows && f_seen(pkt_dev, flow)) { 2424 pkt_dev->cur_daddr = pkt_dev->flows[flow].cur_daddr; 2425 } else { 2426 imn = ntohl(pkt_dev->daddr_min); 2427 imx = ntohl(pkt_dev->daddr_max); 2428 if (imn < imx) { 2429 __u32 t; 2430 __be32 s; 2431 if (pkt_dev->flags & F_IPDST_RND) { 2432 2433 do { 2434 t = prandom_u32() % 2435 (imx - imn) + imn; 2436 s = htonl(t); 2437 } while (ipv4_is_loopback(s) || 2438 ipv4_is_multicast(s) || 2439 ipv4_is_lbcast(s) || 2440 ipv4_is_zeronet(s) || 2441 ipv4_is_local_multicast(s)); 2442 pkt_dev->cur_daddr = s; 2443 } else { 2444 t = ntohl(pkt_dev->cur_daddr); 2445 t++; 2446 if (t > imx) { 2447 t = imn; 2448 } 2449 pkt_dev->cur_daddr = htonl(t); 2450 } 2451 } 2452 if (pkt_dev->cflows) { 2453 pkt_dev->flows[flow].flags |= F_INIT; 2454 pkt_dev->flows[flow].cur_daddr = 2455 pkt_dev->cur_daddr; 2456 #ifdef CONFIG_XFRM 2457 if (pkt_dev->flags & F_IPSEC) 2458 get_ipsec_sa(pkt_dev, flow); 2459 #endif 2460 pkt_dev->nflows++; 2461 } 2462 } 2463 } else { /* IPV6 * */ 2464 2465 if (!ipv6_addr_any(&pkt_dev->min_in6_daddr)) { 2466 int i; 2467 2468 /* Only random destinations yet */ 2469 2470 for (i = 0; i < 4; i++) { 2471 pkt_dev->cur_in6_daddr.s6_addr32[i] = 2472 (((__force __be32)prandom_u32() | 2473 pkt_dev->min_in6_daddr.s6_addr32[i]) & 2474 pkt_dev->max_in6_daddr.s6_addr32[i]); 2475 } 2476 } 2477 } 2478 2479 if (pkt_dev->min_pkt_size < pkt_dev->max_pkt_size) { 2480 __u32 t; 2481 if (pkt_dev->flags & F_TXSIZE_RND) { 2482 t = prandom_u32() % 2483 (pkt_dev->max_pkt_size - pkt_dev->min_pkt_size) 2484 + pkt_dev->min_pkt_size; 2485 } else { 2486 t = pkt_dev->cur_pkt_size + 1; 2487 if (t > pkt_dev->max_pkt_size) 2488 t = pkt_dev->min_pkt_size; 2489 } 2490 pkt_dev->cur_pkt_size = t; 2491 } 2492 2493 set_cur_queue_map(pkt_dev); 2494 2495 pkt_dev->flows[flow].count++; 2496 } 2497 2498 2499 #ifdef CONFIG_XFRM 2500 static u32 pktgen_dst_metrics[RTAX_MAX + 1] = { 2501 2502 [RTAX_HOPLIMIT] = 0x5, /* Set a static hoplimit */ 2503 }; 2504 2505 static int pktgen_output_ipsec(struct sk_buff *skb, struct pktgen_dev *pkt_dev) 2506 { 2507 struct xfrm_state *x = pkt_dev->flows[pkt_dev->curfl].x; 2508 int err = 0; 2509 struct net *net = dev_net(pkt_dev->odev); 2510 2511 if (!x) 2512 return 0; 2513 /* XXX: we dont support tunnel mode for now until 2514 * we resolve the dst issue */ 2515 if ((x->props.mode != XFRM_MODE_TRANSPORT) && (pkt_dev->spi == 0)) 2516 return 0; 2517 2518 /* But when user specify an valid SPI, transformation 2519 * supports both transport/tunnel mode + ESP/AH type. 2520 */ 2521 if ((x->props.mode == XFRM_MODE_TUNNEL) && (pkt_dev->spi != 0)) 2522 skb->_skb_refdst = (unsigned long)&pkt_dev->xdst.u.dst | SKB_DST_NOREF; 2523 2524 rcu_read_lock_bh(); 2525 err = x->outer_mode->output(x, skb); 2526 rcu_read_unlock_bh(); 2527 if (err) { 2528 XFRM_INC_STATS(net, LINUX_MIB_XFRMOUTSTATEMODEERROR); 2529 goto error; 2530 } 2531 err = x->type->output(x, skb); 2532 if (err) { 2533 XFRM_INC_STATS(net, LINUX_MIB_XFRMOUTSTATEPROTOERROR); 2534 goto error; 2535 } 2536 spin_lock_bh(&x->lock); 2537 x->curlft.bytes += skb->len; 2538 x->curlft.packets++; 2539 spin_unlock_bh(&x->lock); 2540 error: 2541 return err; 2542 } 2543 2544 static void free_SAs(struct pktgen_dev *pkt_dev) 2545 { 2546 if (pkt_dev->cflows) { 2547 /* let go of the SAs if we have them */ 2548 int i; 2549 for (i = 0; i < pkt_dev->cflows; i++) { 2550 struct xfrm_state *x = pkt_dev->flows[i].x; 2551 if (x) { 2552 xfrm_state_put(x); 2553 pkt_dev->flows[i].x = NULL; 2554 } 2555 } 2556 } 2557 } 2558 2559 static int process_ipsec(struct pktgen_dev *pkt_dev, 2560 struct sk_buff *skb, __be16 protocol) 2561 { 2562 if (pkt_dev->flags & F_IPSEC) { 2563 struct xfrm_state *x = pkt_dev->flows[pkt_dev->curfl].x; 2564 int nhead = 0; 2565 if (x) { 2566 struct ethhdr *eth; 2567 struct iphdr *iph; 2568 int ret; 2569 2570 nhead = x->props.header_len - skb_headroom(skb); 2571 if (nhead > 0) { 2572 ret = pskb_expand_head(skb, nhead, 0, GFP_ATOMIC); 2573 if (ret < 0) { 2574 pr_err("Error expanding ipsec packet %d\n", 2575 ret); 2576 goto err; 2577 } 2578 } 2579 2580 /* ipsec is not expecting ll header */ 2581 skb_pull(skb, ETH_HLEN); 2582 ret = pktgen_output_ipsec(skb, pkt_dev); 2583 if (ret) { 2584 pr_err("Error creating ipsec packet %d\n", ret); 2585 goto err; 2586 } 2587 /* restore ll */ 2588 eth = skb_push(skb, ETH_HLEN); 2589 memcpy(eth, pkt_dev->hh, 2 * ETH_ALEN); 2590 eth->h_proto = protocol; 2591 2592 /* Update IPv4 header len as well as checksum value */ 2593 iph = ip_hdr(skb); 2594 iph->tot_len = htons(skb->len - ETH_HLEN); 2595 ip_send_check(iph); 2596 } 2597 } 2598 return 1; 2599 err: 2600 kfree_skb(skb); 2601 return 0; 2602 } 2603 #endif 2604 2605 static void mpls_push(__be32 *mpls, struct pktgen_dev *pkt_dev) 2606 { 2607 unsigned int i; 2608 for (i = 0; i < pkt_dev->nr_labels; i++) 2609 *mpls++ = pkt_dev->labels[i] & ~MPLS_STACK_BOTTOM; 2610 2611 mpls--; 2612 *mpls |= MPLS_STACK_BOTTOM; 2613 } 2614 2615 static inline __be16 build_tci(unsigned int id, unsigned int cfi, 2616 unsigned int prio) 2617 { 2618 return htons(id | (cfi << 12) | (prio << 13)); 2619 } 2620 2621 static void pktgen_finalize_skb(struct pktgen_dev *pkt_dev, struct sk_buff *skb, 2622 int datalen) 2623 { 2624 struct timespec64 timestamp; 2625 struct pktgen_hdr *pgh; 2626 2627 pgh = skb_put(skb, sizeof(*pgh)); 2628 datalen -= sizeof(*pgh); 2629 2630 if (pkt_dev->nfrags <= 0) { 2631 skb_put_zero(skb, datalen); 2632 } else { 2633 int frags = pkt_dev->nfrags; 2634 int i, len; 2635 int frag_len; 2636 2637 2638 if (frags > MAX_SKB_FRAGS) 2639 frags = MAX_SKB_FRAGS; 2640 len = datalen - frags * PAGE_SIZE; 2641 if (len > 0) { 2642 skb_put_zero(skb, len); 2643 datalen = frags * PAGE_SIZE; 2644 } 2645 2646 i = 0; 2647 frag_len = (datalen/frags) < PAGE_SIZE ? 2648 (datalen/frags) : PAGE_SIZE; 2649 while (datalen > 0) { 2650 if (unlikely(!pkt_dev->page)) { 2651 int node = numa_node_id(); 2652 2653 if (pkt_dev->node >= 0 && (pkt_dev->flags & F_NODE)) 2654 node = pkt_dev->node; 2655 pkt_dev->page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 2656 if (!pkt_dev->page) 2657 break; 2658 } 2659 get_page(pkt_dev->page); 2660 skb_frag_set_page(skb, i, pkt_dev->page); 2661 skb_shinfo(skb)->frags[i].page_offset = 0; 2662 /*last fragment, fill rest of data*/ 2663 if (i == (frags - 1)) 2664 skb_frag_size_set(&skb_shinfo(skb)->frags[i], 2665 (datalen < PAGE_SIZE ? datalen : PAGE_SIZE)); 2666 else 2667 skb_frag_size_set(&skb_shinfo(skb)->frags[i], frag_len); 2668 datalen -= skb_frag_size(&skb_shinfo(skb)->frags[i]); 2669 skb->len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2670 skb->data_len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2671 i++; 2672 skb_shinfo(skb)->nr_frags = i; 2673 } 2674 } 2675 2676 /* Stamp the time, and sequence number, 2677 * convert them to network byte order 2678 */ 2679 pgh->pgh_magic = htonl(PKTGEN_MAGIC); 2680 pgh->seq_num = htonl(pkt_dev->seq_num); 2681 2682 if (pkt_dev->flags & F_NO_TIMESTAMP) { 2683 pgh->tv_sec = 0; 2684 pgh->tv_usec = 0; 2685 } else { 2686 /* 2687 * pgh->tv_sec wraps in y2106 when interpreted as unsigned 2688 * as done by wireshark, or y2038 when interpreted as signed. 2689 * This is probably harmless, but if anyone wants to improve 2690 * it, we could introduce a variant that puts 64-bit nanoseconds 2691 * into the respective header bytes. 2692 * This would also be slightly faster to read. 2693 */ 2694 ktime_get_real_ts64(×tamp); 2695 pgh->tv_sec = htonl(timestamp.tv_sec); 2696 pgh->tv_usec = htonl(timestamp.tv_nsec / NSEC_PER_USEC); 2697 } 2698 } 2699 2700 static struct sk_buff *pktgen_alloc_skb(struct net_device *dev, 2701 struct pktgen_dev *pkt_dev) 2702 { 2703 unsigned int extralen = LL_RESERVED_SPACE(dev); 2704 struct sk_buff *skb = NULL; 2705 unsigned int size; 2706 2707 size = pkt_dev->cur_pkt_size + 64 + extralen + pkt_dev->pkt_overhead; 2708 if (pkt_dev->flags & F_NODE) { 2709 int node = pkt_dev->node >= 0 ? pkt_dev->node : numa_node_id(); 2710 2711 skb = __alloc_skb(NET_SKB_PAD + size, GFP_NOWAIT, 0, node); 2712 if (likely(skb)) { 2713 skb_reserve(skb, NET_SKB_PAD); 2714 skb->dev = dev; 2715 } 2716 } else { 2717 skb = __netdev_alloc_skb(dev, size, GFP_NOWAIT); 2718 } 2719 2720 /* the caller pre-fetches from skb->data and reserves for the mac hdr */ 2721 if (likely(skb)) 2722 skb_reserve(skb, extralen - 16); 2723 2724 return skb; 2725 } 2726 2727 static struct sk_buff *fill_packet_ipv4(struct net_device *odev, 2728 struct pktgen_dev *pkt_dev) 2729 { 2730 struct sk_buff *skb = NULL; 2731 __u8 *eth; 2732 struct udphdr *udph; 2733 int datalen, iplen; 2734 struct iphdr *iph; 2735 __be16 protocol = htons(ETH_P_IP); 2736 __be32 *mpls; 2737 __be16 *vlan_tci = NULL; /* Encapsulates priority and VLAN ID */ 2738 __be16 *vlan_encapsulated_proto = NULL; /* packet type ID field (or len) for VLAN tag */ 2739 __be16 *svlan_tci = NULL; /* Encapsulates priority and SVLAN ID */ 2740 __be16 *svlan_encapsulated_proto = NULL; /* packet type ID field (or len) for SVLAN tag */ 2741 u16 queue_map; 2742 2743 if (pkt_dev->nr_labels) 2744 protocol = htons(ETH_P_MPLS_UC); 2745 2746 if (pkt_dev->vlan_id != 0xffff) 2747 protocol = htons(ETH_P_8021Q); 2748 2749 /* Update any of the values, used when we're incrementing various 2750 * fields. 2751 */ 2752 mod_cur_headers(pkt_dev); 2753 queue_map = pkt_dev->cur_queue_map; 2754 2755 skb = pktgen_alloc_skb(odev, pkt_dev); 2756 if (!skb) { 2757 sprintf(pkt_dev->result, "No memory"); 2758 return NULL; 2759 } 2760 2761 prefetchw(skb->data); 2762 skb_reserve(skb, 16); 2763 2764 /* Reserve for ethernet and IP header */ 2765 eth = skb_push(skb, 14); 2766 mpls = skb_put(skb, pkt_dev->nr_labels * sizeof(__u32)); 2767 if (pkt_dev->nr_labels) 2768 mpls_push(mpls, pkt_dev); 2769 2770 if (pkt_dev->vlan_id != 0xffff) { 2771 if (pkt_dev->svlan_id != 0xffff) { 2772 svlan_tci = skb_put(skb, sizeof(__be16)); 2773 *svlan_tci = build_tci(pkt_dev->svlan_id, 2774 pkt_dev->svlan_cfi, 2775 pkt_dev->svlan_p); 2776 svlan_encapsulated_proto = skb_put(skb, 2777 sizeof(__be16)); 2778 *svlan_encapsulated_proto = htons(ETH_P_8021Q); 2779 } 2780 vlan_tci = skb_put(skb, sizeof(__be16)); 2781 *vlan_tci = build_tci(pkt_dev->vlan_id, 2782 pkt_dev->vlan_cfi, 2783 pkt_dev->vlan_p); 2784 vlan_encapsulated_proto = skb_put(skb, sizeof(__be16)); 2785 *vlan_encapsulated_proto = htons(ETH_P_IP); 2786 } 2787 2788 skb_reset_mac_header(skb); 2789 skb_set_network_header(skb, skb->len); 2790 iph = skb_put(skb, sizeof(struct iphdr)); 2791 2792 skb_set_transport_header(skb, skb->len); 2793 udph = skb_put(skb, sizeof(struct udphdr)); 2794 skb_set_queue_mapping(skb, queue_map); 2795 skb->priority = pkt_dev->skb_priority; 2796 2797 memcpy(eth, pkt_dev->hh, 12); 2798 *(__be16 *) & eth[12] = protocol; 2799 2800 /* Eth + IPh + UDPh + mpls */ 2801 datalen = pkt_dev->cur_pkt_size - 14 - 20 - 8 - 2802 pkt_dev->pkt_overhead; 2803 if (datalen < 0 || datalen < sizeof(struct pktgen_hdr)) 2804 datalen = sizeof(struct pktgen_hdr); 2805 2806 udph->source = htons(pkt_dev->cur_udp_src); 2807 udph->dest = htons(pkt_dev->cur_udp_dst); 2808 udph->len = htons(datalen + 8); /* DATA + udphdr */ 2809 udph->check = 0; 2810 2811 iph->ihl = 5; 2812 iph->version = 4; 2813 iph->ttl = 32; 2814 iph->tos = pkt_dev->tos; 2815 iph->protocol = IPPROTO_UDP; /* UDP */ 2816 iph->saddr = pkt_dev->cur_saddr; 2817 iph->daddr = pkt_dev->cur_daddr; 2818 iph->id = htons(pkt_dev->ip_id); 2819 pkt_dev->ip_id++; 2820 iph->frag_off = 0; 2821 iplen = 20 + 8 + datalen; 2822 iph->tot_len = htons(iplen); 2823 ip_send_check(iph); 2824 skb->protocol = protocol; 2825 skb->dev = odev; 2826 skb->pkt_type = PACKET_HOST; 2827 2828 pktgen_finalize_skb(pkt_dev, skb, datalen); 2829 2830 if (!(pkt_dev->flags & F_UDPCSUM)) { 2831 skb->ip_summed = CHECKSUM_NONE; 2832 } else if (odev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM)) { 2833 skb->ip_summed = CHECKSUM_PARTIAL; 2834 skb->csum = 0; 2835 udp4_hwcsum(skb, iph->saddr, iph->daddr); 2836 } else { 2837 __wsum csum = skb_checksum(skb, skb_transport_offset(skb), datalen + 8, 0); 2838 2839 /* add protocol-dependent pseudo-header */ 2840 udph->check = csum_tcpudp_magic(iph->saddr, iph->daddr, 2841 datalen + 8, IPPROTO_UDP, csum); 2842 2843 if (udph->check == 0) 2844 udph->check = CSUM_MANGLED_0; 2845 } 2846 2847 #ifdef CONFIG_XFRM 2848 if (!process_ipsec(pkt_dev, skb, protocol)) 2849 return NULL; 2850 #endif 2851 2852 return skb; 2853 } 2854 2855 static struct sk_buff *fill_packet_ipv6(struct net_device *odev, 2856 struct pktgen_dev *pkt_dev) 2857 { 2858 struct sk_buff *skb = NULL; 2859 __u8 *eth; 2860 struct udphdr *udph; 2861 int datalen, udplen; 2862 struct ipv6hdr *iph; 2863 __be16 protocol = htons(ETH_P_IPV6); 2864 __be32 *mpls; 2865 __be16 *vlan_tci = NULL; /* Encapsulates priority and VLAN ID */ 2866 __be16 *vlan_encapsulated_proto = NULL; /* packet type ID field (or len) for VLAN tag */ 2867 __be16 *svlan_tci = NULL; /* Encapsulates priority and SVLAN ID */ 2868 __be16 *svlan_encapsulated_proto = NULL; /* packet type ID field (or len) for SVLAN tag */ 2869 u16 queue_map; 2870 2871 if (pkt_dev->nr_labels) 2872 protocol = htons(ETH_P_MPLS_UC); 2873 2874 if (pkt_dev->vlan_id != 0xffff) 2875 protocol = htons(ETH_P_8021Q); 2876 2877 /* Update any of the values, used when we're incrementing various 2878 * fields. 2879 */ 2880 mod_cur_headers(pkt_dev); 2881 queue_map = pkt_dev->cur_queue_map; 2882 2883 skb = pktgen_alloc_skb(odev, pkt_dev); 2884 if (!skb) { 2885 sprintf(pkt_dev->result, "No memory"); 2886 return NULL; 2887 } 2888 2889 prefetchw(skb->data); 2890 skb_reserve(skb, 16); 2891 2892 /* Reserve for ethernet and IP header */ 2893 eth = skb_push(skb, 14); 2894 mpls = skb_put(skb, pkt_dev->nr_labels * sizeof(__u32)); 2895 if (pkt_dev->nr_labels) 2896 mpls_push(mpls, pkt_dev); 2897 2898 if (pkt_dev->vlan_id != 0xffff) { 2899 if (pkt_dev->svlan_id != 0xffff) { 2900 svlan_tci = skb_put(skb, sizeof(__be16)); 2901 *svlan_tci = build_tci(pkt_dev->svlan_id, 2902 pkt_dev->svlan_cfi, 2903 pkt_dev->svlan_p); 2904 svlan_encapsulated_proto = skb_put(skb, 2905 sizeof(__be16)); 2906 *svlan_encapsulated_proto = htons(ETH_P_8021Q); 2907 } 2908 vlan_tci = skb_put(skb, sizeof(__be16)); 2909 *vlan_tci = build_tci(pkt_dev->vlan_id, 2910 pkt_dev->vlan_cfi, 2911 pkt_dev->vlan_p); 2912 vlan_encapsulated_proto = skb_put(skb, sizeof(__be16)); 2913 *vlan_encapsulated_proto = htons(ETH_P_IPV6); 2914 } 2915 2916 skb_reset_mac_header(skb); 2917 skb_set_network_header(skb, skb->len); 2918 iph = skb_put(skb, sizeof(struct ipv6hdr)); 2919 2920 skb_set_transport_header(skb, skb->len); 2921 udph = skb_put(skb, sizeof(struct udphdr)); 2922 skb_set_queue_mapping(skb, queue_map); 2923 skb->priority = pkt_dev->skb_priority; 2924 2925 memcpy(eth, pkt_dev->hh, 12); 2926 *(__be16 *) ð[12] = protocol; 2927 2928 /* Eth + IPh + UDPh + mpls */ 2929 datalen = pkt_dev->cur_pkt_size - 14 - 2930 sizeof(struct ipv6hdr) - sizeof(struct udphdr) - 2931 pkt_dev->pkt_overhead; 2932 2933 if (datalen < 0 || datalen < sizeof(struct pktgen_hdr)) { 2934 datalen = sizeof(struct pktgen_hdr); 2935 net_info_ratelimited("increased datalen to %d\n", datalen); 2936 } 2937 2938 udplen = datalen + sizeof(struct udphdr); 2939 udph->source = htons(pkt_dev->cur_udp_src); 2940 udph->dest = htons(pkt_dev->cur_udp_dst); 2941 udph->len = htons(udplen); 2942 udph->check = 0; 2943 2944 *(__be32 *) iph = htonl(0x60000000); /* Version + flow */ 2945 2946 if (pkt_dev->traffic_class) { 2947 /* Version + traffic class + flow (0) */ 2948 *(__be32 *)iph |= htonl(0x60000000 | (pkt_dev->traffic_class << 20)); 2949 } 2950 2951 iph->hop_limit = 32; 2952 2953 iph->payload_len = htons(udplen); 2954 iph->nexthdr = IPPROTO_UDP; 2955 2956 iph->daddr = pkt_dev->cur_in6_daddr; 2957 iph->saddr = pkt_dev->cur_in6_saddr; 2958 2959 skb->protocol = protocol; 2960 skb->dev = odev; 2961 skb->pkt_type = PACKET_HOST; 2962 2963 pktgen_finalize_skb(pkt_dev, skb, datalen); 2964 2965 if (!(pkt_dev->flags & F_UDPCSUM)) { 2966 skb->ip_summed = CHECKSUM_NONE; 2967 } else if (odev->features & (NETIF_F_HW_CSUM | NETIF_F_IPV6_CSUM)) { 2968 skb->ip_summed = CHECKSUM_PARTIAL; 2969 skb->csum_start = skb_transport_header(skb) - skb->head; 2970 skb->csum_offset = offsetof(struct udphdr, check); 2971 udph->check = ~csum_ipv6_magic(&iph->saddr, &iph->daddr, udplen, IPPROTO_UDP, 0); 2972 } else { 2973 __wsum csum = skb_checksum(skb, skb_transport_offset(skb), udplen, 0); 2974 2975 /* add protocol-dependent pseudo-header */ 2976 udph->check = csum_ipv6_magic(&iph->saddr, &iph->daddr, udplen, IPPROTO_UDP, csum); 2977 2978 if (udph->check == 0) 2979 udph->check = CSUM_MANGLED_0; 2980 } 2981 2982 return skb; 2983 } 2984 2985 static struct sk_buff *fill_packet(struct net_device *odev, 2986 struct pktgen_dev *pkt_dev) 2987 { 2988 if (pkt_dev->flags & F_IPV6) 2989 return fill_packet_ipv6(odev, pkt_dev); 2990 else 2991 return fill_packet_ipv4(odev, pkt_dev); 2992 } 2993 2994 static void pktgen_clear_counters(struct pktgen_dev *pkt_dev) 2995 { 2996 pkt_dev->seq_num = 1; 2997 pkt_dev->idle_acc = 0; 2998 pkt_dev->sofar = 0; 2999 pkt_dev->tx_bytes = 0; 3000 pkt_dev->errors = 0; 3001 } 3002 3003 /* Set up structure for sending pkts, clear counters */ 3004 3005 static void pktgen_run(struct pktgen_thread *t) 3006 { 3007 struct pktgen_dev *pkt_dev; 3008 int started = 0; 3009 3010 func_enter(); 3011 3012 rcu_read_lock(); 3013 list_for_each_entry_rcu(pkt_dev, &t->if_list, list) { 3014 3015 /* 3016 * setup odev and create initial packet. 3017 */ 3018 pktgen_setup_inject(pkt_dev); 3019 3020 if (pkt_dev->odev) { 3021 pktgen_clear_counters(pkt_dev); 3022 pkt_dev->skb = NULL; 3023 pkt_dev->started_at = pkt_dev->next_tx = ktime_get(); 3024 3025 set_pkt_overhead(pkt_dev); 3026 3027 strcpy(pkt_dev->result, "Starting"); 3028 pkt_dev->running = 1; /* Cranke yeself! */ 3029 started++; 3030 } else 3031 strcpy(pkt_dev->result, "Error starting"); 3032 } 3033 rcu_read_unlock(); 3034 if (started) 3035 t->control &= ~(T_STOP); 3036 } 3037 3038 static void pktgen_stop_all_threads_ifs(struct pktgen_net *pn) 3039 { 3040 struct pktgen_thread *t; 3041 3042 func_enter(); 3043 3044 mutex_lock(&pktgen_thread_lock); 3045 3046 list_for_each_entry(t, &pn->pktgen_threads, th_list) 3047 t->control |= T_STOP; 3048 3049 mutex_unlock(&pktgen_thread_lock); 3050 } 3051 3052 static int thread_is_running(const struct pktgen_thread *t) 3053 { 3054 const struct pktgen_dev *pkt_dev; 3055 3056 rcu_read_lock(); 3057 list_for_each_entry_rcu(pkt_dev, &t->if_list, list) 3058 if (pkt_dev->running) { 3059 rcu_read_unlock(); 3060 return 1; 3061 } 3062 rcu_read_unlock(); 3063 return 0; 3064 } 3065 3066 static int pktgen_wait_thread_run(struct pktgen_thread *t) 3067 { 3068 while (thread_is_running(t)) { 3069 3070 msleep_interruptible(100); 3071 3072 if (signal_pending(current)) 3073 goto signal; 3074 } 3075 return 1; 3076 signal: 3077 return 0; 3078 } 3079 3080 static int pktgen_wait_all_threads_run(struct pktgen_net *pn) 3081 { 3082 struct pktgen_thread *t; 3083 int sig = 1; 3084 3085 mutex_lock(&pktgen_thread_lock); 3086 3087 list_for_each_entry(t, &pn->pktgen_threads, th_list) { 3088 sig = pktgen_wait_thread_run(t); 3089 if (sig == 0) 3090 break; 3091 } 3092 3093 if (sig == 0) 3094 list_for_each_entry(t, &pn->pktgen_threads, th_list) 3095 t->control |= (T_STOP); 3096 3097 mutex_unlock(&pktgen_thread_lock); 3098 return sig; 3099 } 3100 3101 static void pktgen_run_all_threads(struct pktgen_net *pn) 3102 { 3103 struct pktgen_thread *t; 3104 3105 func_enter(); 3106 3107 mutex_lock(&pktgen_thread_lock); 3108 3109 list_for_each_entry(t, &pn->pktgen_threads, th_list) 3110 t->control |= (T_RUN); 3111 3112 mutex_unlock(&pktgen_thread_lock); 3113 3114 /* Propagate thread->control */ 3115 schedule_timeout_interruptible(msecs_to_jiffies(125)); 3116 3117 pktgen_wait_all_threads_run(pn); 3118 } 3119 3120 static void pktgen_reset_all_threads(struct pktgen_net *pn) 3121 { 3122 struct pktgen_thread *t; 3123 3124 func_enter(); 3125 3126 mutex_lock(&pktgen_thread_lock); 3127 3128 list_for_each_entry(t, &pn->pktgen_threads, th_list) 3129 t->control |= (T_REMDEVALL); 3130 3131 mutex_unlock(&pktgen_thread_lock); 3132 3133 /* Propagate thread->control */ 3134 schedule_timeout_interruptible(msecs_to_jiffies(125)); 3135 3136 pktgen_wait_all_threads_run(pn); 3137 } 3138 3139 static void show_results(struct pktgen_dev *pkt_dev, int nr_frags) 3140 { 3141 __u64 bps, mbps, pps; 3142 char *p = pkt_dev->result; 3143 ktime_t elapsed = ktime_sub(pkt_dev->stopped_at, 3144 pkt_dev->started_at); 3145 ktime_t idle = ns_to_ktime(pkt_dev->idle_acc); 3146 3147 p += sprintf(p, "OK: %llu(c%llu+d%llu) usec, %llu (%dbyte,%dfrags)\n", 3148 (unsigned long long)ktime_to_us(elapsed), 3149 (unsigned long long)ktime_to_us(ktime_sub(elapsed, idle)), 3150 (unsigned long long)ktime_to_us(idle), 3151 (unsigned long long)pkt_dev->sofar, 3152 pkt_dev->cur_pkt_size, nr_frags); 3153 3154 pps = div64_u64(pkt_dev->sofar * NSEC_PER_SEC, 3155 ktime_to_ns(elapsed)); 3156 3157 bps = pps * 8 * pkt_dev->cur_pkt_size; 3158 3159 mbps = bps; 3160 do_div(mbps, 1000000); 3161 p += sprintf(p, " %llupps %lluMb/sec (%llubps) errors: %llu", 3162 (unsigned long long)pps, 3163 (unsigned long long)mbps, 3164 (unsigned long long)bps, 3165 (unsigned long long)pkt_dev->errors); 3166 } 3167 3168 /* Set stopped-at timer, remove from running list, do counters & statistics */ 3169 static int pktgen_stop_device(struct pktgen_dev *pkt_dev) 3170 { 3171 int nr_frags = pkt_dev->skb ? skb_shinfo(pkt_dev->skb)->nr_frags : -1; 3172 3173 if (!pkt_dev->running) { 3174 pr_warn("interface: %s is already stopped\n", 3175 pkt_dev->odevname); 3176 return -EINVAL; 3177 } 3178 3179 pkt_dev->running = 0; 3180 kfree_skb(pkt_dev->skb); 3181 pkt_dev->skb = NULL; 3182 pkt_dev->stopped_at = ktime_get(); 3183 3184 show_results(pkt_dev, nr_frags); 3185 3186 return 0; 3187 } 3188 3189 static struct pktgen_dev *next_to_run(struct pktgen_thread *t) 3190 { 3191 struct pktgen_dev *pkt_dev, *best = NULL; 3192 3193 rcu_read_lock(); 3194 list_for_each_entry_rcu(pkt_dev, &t->if_list, list) { 3195 if (!pkt_dev->running) 3196 continue; 3197 if (best == NULL) 3198 best = pkt_dev; 3199 else if (ktime_compare(pkt_dev->next_tx, best->next_tx) < 0) 3200 best = pkt_dev; 3201 } 3202 rcu_read_unlock(); 3203 3204 return best; 3205 } 3206 3207 static void pktgen_stop(struct pktgen_thread *t) 3208 { 3209 struct pktgen_dev *pkt_dev; 3210 3211 func_enter(); 3212 3213 rcu_read_lock(); 3214 3215 list_for_each_entry_rcu(pkt_dev, &t->if_list, list) { 3216 pktgen_stop_device(pkt_dev); 3217 } 3218 3219 rcu_read_unlock(); 3220 } 3221 3222 /* 3223 * one of our devices needs to be removed - find it 3224 * and remove it 3225 */ 3226 static void pktgen_rem_one_if(struct pktgen_thread *t) 3227 { 3228 struct list_head *q, *n; 3229 struct pktgen_dev *cur; 3230 3231 func_enter(); 3232 3233 list_for_each_safe(q, n, &t->if_list) { 3234 cur = list_entry(q, struct pktgen_dev, list); 3235 3236 if (!cur->removal_mark) 3237 continue; 3238 3239 kfree_skb(cur->skb); 3240 cur->skb = NULL; 3241 3242 pktgen_remove_device(t, cur); 3243 3244 break; 3245 } 3246 } 3247 3248 static void pktgen_rem_all_ifs(struct pktgen_thread *t) 3249 { 3250 struct list_head *q, *n; 3251 struct pktgen_dev *cur; 3252 3253 func_enter(); 3254 3255 /* Remove all devices, free mem */ 3256 3257 list_for_each_safe(q, n, &t->if_list) { 3258 cur = list_entry(q, struct pktgen_dev, list); 3259 3260 kfree_skb(cur->skb); 3261 cur->skb = NULL; 3262 3263 pktgen_remove_device(t, cur); 3264 } 3265 } 3266 3267 static void pktgen_rem_thread(struct pktgen_thread *t) 3268 { 3269 /* Remove from the thread list */ 3270 remove_proc_entry(t->tsk->comm, t->net->proc_dir); 3271 } 3272 3273 static void pktgen_resched(struct pktgen_dev *pkt_dev) 3274 { 3275 ktime_t idle_start = ktime_get(); 3276 schedule(); 3277 pkt_dev->idle_acc += ktime_to_ns(ktime_sub(ktime_get(), idle_start)); 3278 } 3279 3280 static void pktgen_wait_for_skb(struct pktgen_dev *pkt_dev) 3281 { 3282 ktime_t idle_start = ktime_get(); 3283 3284 while (refcount_read(&(pkt_dev->skb->users)) != 1) { 3285 if (signal_pending(current)) 3286 break; 3287 3288 if (need_resched()) 3289 pktgen_resched(pkt_dev); 3290 else 3291 cpu_relax(); 3292 } 3293 pkt_dev->idle_acc += ktime_to_ns(ktime_sub(ktime_get(), idle_start)); 3294 } 3295 3296 static void pktgen_xmit(struct pktgen_dev *pkt_dev) 3297 { 3298 unsigned int burst = READ_ONCE(pkt_dev->burst); 3299 struct net_device *odev = pkt_dev->odev; 3300 struct netdev_queue *txq; 3301 struct sk_buff *skb; 3302 int ret; 3303 3304 /* If device is offline, then don't send */ 3305 if (unlikely(!netif_running(odev) || !netif_carrier_ok(odev))) { 3306 pktgen_stop_device(pkt_dev); 3307 return; 3308 } 3309 3310 /* This is max DELAY, this has special meaning of 3311 * "never transmit" 3312 */ 3313 if (unlikely(pkt_dev->delay == ULLONG_MAX)) { 3314 pkt_dev->next_tx = ktime_add_ns(ktime_get(), ULONG_MAX); 3315 return; 3316 } 3317 3318 /* If no skb or clone count exhausted then get new one */ 3319 if (!pkt_dev->skb || (pkt_dev->last_ok && 3320 ++pkt_dev->clone_count >= pkt_dev->clone_skb)) { 3321 /* build a new pkt */ 3322 kfree_skb(pkt_dev->skb); 3323 3324 pkt_dev->skb = fill_packet(odev, pkt_dev); 3325 if (pkt_dev->skb == NULL) { 3326 pr_err("ERROR: couldn't allocate skb in fill_packet\n"); 3327 schedule(); 3328 pkt_dev->clone_count--; /* back out increment, OOM */ 3329 return; 3330 } 3331 pkt_dev->last_pkt_size = pkt_dev->skb->len; 3332 pkt_dev->clone_count = 0; /* reset counter */ 3333 } 3334 3335 if (pkt_dev->delay && pkt_dev->last_ok) 3336 spin(pkt_dev, pkt_dev->next_tx); 3337 3338 if (pkt_dev->xmit_mode == M_NETIF_RECEIVE) { 3339 skb = pkt_dev->skb; 3340 skb->protocol = eth_type_trans(skb, skb->dev); 3341 refcount_add(burst, &skb->users); 3342 local_bh_disable(); 3343 do { 3344 ret = netif_receive_skb(skb); 3345 if (ret == NET_RX_DROP) 3346 pkt_dev->errors++; 3347 pkt_dev->sofar++; 3348 pkt_dev->seq_num++; 3349 if (refcount_read(&skb->users) != burst) { 3350 /* skb was queued by rps/rfs or taps, 3351 * so cannot reuse this skb 3352 */ 3353 WARN_ON(refcount_sub_and_test(burst - 1, &skb->users)); 3354 /* get out of the loop and wait 3355 * until skb is consumed 3356 */ 3357 break; 3358 } 3359 /* skb was 'freed' by stack, so clean few 3360 * bits and reuse it 3361 */ 3362 skb_reset_tc(skb); 3363 } while (--burst > 0); 3364 goto out; /* Skips xmit_mode M_START_XMIT */ 3365 } else if (pkt_dev->xmit_mode == M_QUEUE_XMIT) { 3366 local_bh_disable(); 3367 refcount_inc(&pkt_dev->skb->users); 3368 3369 ret = dev_queue_xmit(pkt_dev->skb); 3370 switch (ret) { 3371 case NET_XMIT_SUCCESS: 3372 pkt_dev->sofar++; 3373 pkt_dev->seq_num++; 3374 pkt_dev->tx_bytes += pkt_dev->last_pkt_size; 3375 break; 3376 case NET_XMIT_DROP: 3377 case NET_XMIT_CN: 3378 /* These are all valid return codes for a qdisc but 3379 * indicate packets are being dropped or will likely 3380 * be dropped soon. 3381 */ 3382 case NETDEV_TX_BUSY: 3383 /* qdisc may call dev_hard_start_xmit directly in cases 3384 * where no queues exist e.g. loopback device, virtual 3385 * devices, etc. In this case we need to handle 3386 * NETDEV_TX_ codes. 3387 */ 3388 default: 3389 pkt_dev->errors++; 3390 net_info_ratelimited("%s xmit error: %d\n", 3391 pkt_dev->odevname, ret); 3392 break; 3393 } 3394 goto out; 3395 } 3396 3397 txq = skb_get_tx_queue(odev, pkt_dev->skb); 3398 3399 local_bh_disable(); 3400 3401 HARD_TX_LOCK(odev, txq, smp_processor_id()); 3402 3403 if (unlikely(netif_xmit_frozen_or_drv_stopped(txq))) { 3404 ret = NETDEV_TX_BUSY; 3405 pkt_dev->last_ok = 0; 3406 goto unlock; 3407 } 3408 refcount_add(burst, &pkt_dev->skb->users); 3409 3410 xmit_more: 3411 ret = netdev_start_xmit(pkt_dev->skb, odev, txq, --burst > 0); 3412 3413 switch (ret) { 3414 case NETDEV_TX_OK: 3415 pkt_dev->last_ok = 1; 3416 pkt_dev->sofar++; 3417 pkt_dev->seq_num++; 3418 pkt_dev->tx_bytes += pkt_dev->last_pkt_size; 3419 if (burst > 0 && !netif_xmit_frozen_or_drv_stopped(txq)) 3420 goto xmit_more; 3421 break; 3422 case NET_XMIT_DROP: 3423 case NET_XMIT_CN: 3424 /* skb has been consumed */ 3425 pkt_dev->errors++; 3426 break; 3427 default: /* Drivers are not supposed to return other values! */ 3428 net_info_ratelimited("%s xmit error: %d\n", 3429 pkt_dev->odevname, ret); 3430 pkt_dev->errors++; 3431 /* fallthru */ 3432 case NETDEV_TX_BUSY: 3433 /* Retry it next time */ 3434 refcount_dec(&(pkt_dev->skb->users)); 3435 pkt_dev->last_ok = 0; 3436 } 3437 if (unlikely(burst)) 3438 WARN_ON(refcount_sub_and_test(burst, &pkt_dev->skb->users)); 3439 unlock: 3440 HARD_TX_UNLOCK(odev, txq); 3441 3442 out: 3443 local_bh_enable(); 3444 3445 /* If pkt_dev->count is zero, then run forever */ 3446 if ((pkt_dev->count != 0) && (pkt_dev->sofar >= pkt_dev->count)) { 3447 pktgen_wait_for_skb(pkt_dev); 3448 3449 /* Done with this */ 3450 pktgen_stop_device(pkt_dev); 3451 } 3452 } 3453 3454 /* 3455 * Main loop of the thread goes here 3456 */ 3457 3458 static int pktgen_thread_worker(void *arg) 3459 { 3460 DEFINE_WAIT(wait); 3461 struct pktgen_thread *t = arg; 3462 struct pktgen_dev *pkt_dev = NULL; 3463 int cpu = t->cpu; 3464 3465 BUG_ON(smp_processor_id() != cpu); 3466 3467 init_waitqueue_head(&t->queue); 3468 complete(&t->start_done); 3469 3470 pr_debug("starting pktgen/%d: pid=%d\n", cpu, task_pid_nr(current)); 3471 3472 set_freezable(); 3473 3474 while (!kthread_should_stop()) { 3475 pkt_dev = next_to_run(t); 3476 3477 if (unlikely(!pkt_dev && t->control == 0)) { 3478 if (t->net->pktgen_exiting) 3479 break; 3480 wait_event_interruptible_timeout(t->queue, 3481 t->control != 0, 3482 HZ/10); 3483 try_to_freeze(); 3484 continue; 3485 } 3486 3487 if (likely(pkt_dev)) { 3488 pktgen_xmit(pkt_dev); 3489 3490 if (need_resched()) 3491 pktgen_resched(pkt_dev); 3492 else 3493 cpu_relax(); 3494 } 3495 3496 if (t->control & T_STOP) { 3497 pktgen_stop(t); 3498 t->control &= ~(T_STOP); 3499 } 3500 3501 if (t->control & T_RUN) { 3502 pktgen_run(t); 3503 t->control &= ~(T_RUN); 3504 } 3505 3506 if (t->control & T_REMDEVALL) { 3507 pktgen_rem_all_ifs(t); 3508 t->control &= ~(T_REMDEVALL); 3509 } 3510 3511 if (t->control & T_REMDEV) { 3512 pktgen_rem_one_if(t); 3513 t->control &= ~(T_REMDEV); 3514 } 3515 3516 try_to_freeze(); 3517 } 3518 3519 pr_debug("%s stopping all device\n", t->tsk->comm); 3520 pktgen_stop(t); 3521 3522 pr_debug("%s removing all device\n", t->tsk->comm); 3523 pktgen_rem_all_ifs(t); 3524 3525 pr_debug("%s removing thread\n", t->tsk->comm); 3526 pktgen_rem_thread(t); 3527 3528 return 0; 3529 } 3530 3531 static struct pktgen_dev *pktgen_find_dev(struct pktgen_thread *t, 3532 const char *ifname, bool exact) 3533 { 3534 struct pktgen_dev *p, *pkt_dev = NULL; 3535 size_t len = strlen(ifname); 3536 3537 rcu_read_lock(); 3538 list_for_each_entry_rcu(p, &t->if_list, list) 3539 if (strncmp(p->odevname, ifname, len) == 0) { 3540 if (p->odevname[len]) { 3541 if (exact || p->odevname[len] != '@') 3542 continue; 3543 } 3544 pkt_dev = p; 3545 break; 3546 } 3547 3548 rcu_read_unlock(); 3549 pr_debug("find_dev(%s) returning %p\n", ifname, pkt_dev); 3550 return pkt_dev; 3551 } 3552 3553 /* 3554 * Adds a dev at front of if_list. 3555 */ 3556 3557 static int add_dev_to_thread(struct pktgen_thread *t, 3558 struct pktgen_dev *pkt_dev) 3559 { 3560 int rv = 0; 3561 3562 /* This function cannot be called concurrently, as its called 3563 * under pktgen_thread_lock mutex, but it can run from 3564 * userspace on another CPU than the kthread. The if_lock() 3565 * is used here to sync with concurrent instances of 3566 * _rem_dev_from_if_list() invoked via kthread, which is also 3567 * updating the if_list */ 3568 if_lock(t); 3569 3570 if (pkt_dev->pg_thread) { 3571 pr_err("ERROR: already assigned to a thread\n"); 3572 rv = -EBUSY; 3573 goto out; 3574 } 3575 3576 pkt_dev->running = 0; 3577 pkt_dev->pg_thread = t; 3578 list_add_rcu(&pkt_dev->list, &t->if_list); 3579 3580 out: 3581 if_unlock(t); 3582 return rv; 3583 } 3584 3585 /* Called under thread lock */ 3586 3587 static int pktgen_add_device(struct pktgen_thread *t, const char *ifname) 3588 { 3589 struct pktgen_dev *pkt_dev; 3590 int err; 3591 int node = cpu_to_node(t->cpu); 3592 3593 /* We don't allow a device to be on several threads */ 3594 3595 pkt_dev = __pktgen_NN_threads(t->net, ifname, FIND); 3596 if (pkt_dev) { 3597 pr_err("ERROR: interface already used\n"); 3598 return -EBUSY; 3599 } 3600 3601 pkt_dev = kzalloc_node(sizeof(struct pktgen_dev), GFP_KERNEL, node); 3602 if (!pkt_dev) 3603 return -ENOMEM; 3604 3605 strcpy(pkt_dev->odevname, ifname); 3606 pkt_dev->flows = vzalloc_node(MAX_CFLOWS * sizeof(struct flow_state), 3607 node); 3608 if (pkt_dev->flows == NULL) { 3609 kfree(pkt_dev); 3610 return -ENOMEM; 3611 } 3612 3613 pkt_dev->removal_mark = 0; 3614 pkt_dev->nfrags = 0; 3615 pkt_dev->delay = pg_delay_d; 3616 pkt_dev->count = pg_count_d; 3617 pkt_dev->sofar = 0; 3618 pkt_dev->udp_src_min = 9; /* sink port */ 3619 pkt_dev->udp_src_max = 9; 3620 pkt_dev->udp_dst_min = 9; 3621 pkt_dev->udp_dst_max = 9; 3622 pkt_dev->vlan_p = 0; 3623 pkt_dev->vlan_cfi = 0; 3624 pkt_dev->vlan_id = 0xffff; 3625 pkt_dev->svlan_p = 0; 3626 pkt_dev->svlan_cfi = 0; 3627 pkt_dev->svlan_id = 0xffff; 3628 pkt_dev->burst = 1; 3629 pkt_dev->node = -1; 3630 3631 err = pktgen_setup_dev(t->net, pkt_dev, ifname); 3632 if (err) 3633 goto out1; 3634 if (pkt_dev->odev->priv_flags & IFF_TX_SKB_SHARING) 3635 pkt_dev->clone_skb = pg_clone_skb_d; 3636 3637 pkt_dev->entry = proc_create_data(ifname, 0600, t->net->proc_dir, 3638 &pktgen_if_fops, pkt_dev); 3639 if (!pkt_dev->entry) { 3640 pr_err("cannot create %s/%s procfs entry\n", 3641 PG_PROC_DIR, ifname); 3642 err = -EINVAL; 3643 goto out2; 3644 } 3645 #ifdef CONFIG_XFRM 3646 pkt_dev->ipsmode = XFRM_MODE_TRANSPORT; 3647 pkt_dev->ipsproto = IPPROTO_ESP; 3648 3649 /* xfrm tunnel mode needs additional dst to extract outter 3650 * ip header protocol/ttl/id field, here creat a phony one. 3651 * instead of looking for a valid rt, which definitely hurting 3652 * performance under such circumstance. 3653 */ 3654 pkt_dev->dstops.family = AF_INET; 3655 pkt_dev->xdst.u.dst.dev = pkt_dev->odev; 3656 dst_init_metrics(&pkt_dev->xdst.u.dst, pktgen_dst_metrics, false); 3657 pkt_dev->xdst.child = &pkt_dev->xdst.u.dst; 3658 pkt_dev->xdst.u.dst.ops = &pkt_dev->dstops; 3659 #endif 3660 3661 return add_dev_to_thread(t, pkt_dev); 3662 out2: 3663 dev_put(pkt_dev->odev); 3664 out1: 3665 #ifdef CONFIG_XFRM 3666 free_SAs(pkt_dev); 3667 #endif 3668 vfree(pkt_dev->flows); 3669 kfree(pkt_dev); 3670 return err; 3671 } 3672 3673 static int __net_init pktgen_create_thread(int cpu, struct pktgen_net *pn) 3674 { 3675 struct pktgen_thread *t; 3676 struct proc_dir_entry *pe; 3677 struct task_struct *p; 3678 3679 t = kzalloc_node(sizeof(struct pktgen_thread), GFP_KERNEL, 3680 cpu_to_node(cpu)); 3681 if (!t) { 3682 pr_err("ERROR: out of memory, can't create new thread\n"); 3683 return -ENOMEM; 3684 } 3685 3686 mutex_init(&t->if_lock); 3687 t->cpu = cpu; 3688 3689 INIT_LIST_HEAD(&t->if_list); 3690 3691 list_add_tail(&t->th_list, &pn->pktgen_threads); 3692 init_completion(&t->start_done); 3693 3694 p = kthread_create_on_node(pktgen_thread_worker, 3695 t, 3696 cpu_to_node(cpu), 3697 "kpktgend_%d", cpu); 3698 if (IS_ERR(p)) { 3699 pr_err("kernel_thread() failed for cpu %d\n", t->cpu); 3700 list_del(&t->th_list); 3701 kfree(t); 3702 return PTR_ERR(p); 3703 } 3704 kthread_bind(p, cpu); 3705 t->tsk = p; 3706 3707 pe = proc_create_data(t->tsk->comm, 0600, pn->proc_dir, 3708 &pktgen_thread_fops, t); 3709 if (!pe) { 3710 pr_err("cannot create %s/%s procfs entry\n", 3711 PG_PROC_DIR, t->tsk->comm); 3712 kthread_stop(p); 3713 list_del(&t->th_list); 3714 kfree(t); 3715 return -EINVAL; 3716 } 3717 3718 t->net = pn; 3719 get_task_struct(p); 3720 wake_up_process(p); 3721 wait_for_completion(&t->start_done); 3722 3723 return 0; 3724 } 3725 3726 /* 3727 * Removes a device from the thread if_list. 3728 */ 3729 static void _rem_dev_from_if_list(struct pktgen_thread *t, 3730 struct pktgen_dev *pkt_dev) 3731 { 3732 struct list_head *q, *n; 3733 struct pktgen_dev *p; 3734 3735 if_lock(t); 3736 list_for_each_safe(q, n, &t->if_list) { 3737 p = list_entry(q, struct pktgen_dev, list); 3738 if (p == pkt_dev) 3739 list_del_rcu(&p->list); 3740 } 3741 if_unlock(t); 3742 } 3743 3744 static int pktgen_remove_device(struct pktgen_thread *t, 3745 struct pktgen_dev *pkt_dev) 3746 { 3747 pr_debug("remove_device pkt_dev=%p\n", pkt_dev); 3748 3749 if (pkt_dev->running) { 3750 pr_warn("WARNING: trying to remove a running interface, stopping it now\n"); 3751 pktgen_stop_device(pkt_dev); 3752 } 3753 3754 /* Dis-associate from the interface */ 3755 3756 if (pkt_dev->odev) { 3757 dev_put(pkt_dev->odev); 3758 pkt_dev->odev = NULL; 3759 } 3760 3761 /* Remove proc before if_list entry, because add_device uses 3762 * list to determine if interface already exist, avoid race 3763 * with proc_create_data() */ 3764 proc_remove(pkt_dev->entry); 3765 3766 /* And update the thread if_list */ 3767 _rem_dev_from_if_list(t, pkt_dev); 3768 3769 #ifdef CONFIG_XFRM 3770 free_SAs(pkt_dev); 3771 #endif 3772 vfree(pkt_dev->flows); 3773 if (pkt_dev->page) 3774 put_page(pkt_dev->page); 3775 kfree_rcu(pkt_dev, rcu); 3776 return 0; 3777 } 3778 3779 static int __net_init pg_net_init(struct net *net) 3780 { 3781 struct pktgen_net *pn = net_generic(net, pg_net_id); 3782 struct proc_dir_entry *pe; 3783 int cpu, ret = 0; 3784 3785 pn->net = net; 3786 INIT_LIST_HEAD(&pn->pktgen_threads); 3787 pn->pktgen_exiting = false; 3788 pn->proc_dir = proc_mkdir(PG_PROC_DIR, pn->net->proc_net); 3789 if (!pn->proc_dir) { 3790 pr_warn("cannot create /proc/net/%s\n", PG_PROC_DIR); 3791 return -ENODEV; 3792 } 3793 pe = proc_create(PGCTRL, 0600, pn->proc_dir, &pktgen_fops); 3794 if (pe == NULL) { 3795 pr_err("cannot create %s procfs entry\n", PGCTRL); 3796 ret = -EINVAL; 3797 goto remove; 3798 } 3799 3800 for_each_online_cpu(cpu) { 3801 int err; 3802 3803 err = pktgen_create_thread(cpu, pn); 3804 if (err) 3805 pr_warn("Cannot create thread for cpu %d (%d)\n", 3806 cpu, err); 3807 } 3808 3809 if (list_empty(&pn->pktgen_threads)) { 3810 pr_err("Initialization failed for all threads\n"); 3811 ret = -ENODEV; 3812 goto remove_entry; 3813 } 3814 3815 return 0; 3816 3817 remove_entry: 3818 remove_proc_entry(PGCTRL, pn->proc_dir); 3819 remove: 3820 remove_proc_entry(PG_PROC_DIR, pn->net->proc_net); 3821 return ret; 3822 } 3823 3824 static void __net_exit pg_net_exit(struct net *net) 3825 { 3826 struct pktgen_net *pn = net_generic(net, pg_net_id); 3827 struct pktgen_thread *t; 3828 struct list_head *q, *n; 3829 LIST_HEAD(list); 3830 3831 /* Stop all interfaces & threads */ 3832 pn->pktgen_exiting = true; 3833 3834 mutex_lock(&pktgen_thread_lock); 3835 list_splice_init(&pn->pktgen_threads, &list); 3836 mutex_unlock(&pktgen_thread_lock); 3837 3838 list_for_each_safe(q, n, &list) { 3839 t = list_entry(q, struct pktgen_thread, th_list); 3840 list_del(&t->th_list); 3841 kthread_stop(t->tsk); 3842 put_task_struct(t->tsk); 3843 kfree(t); 3844 } 3845 3846 remove_proc_entry(PGCTRL, pn->proc_dir); 3847 remove_proc_entry(PG_PROC_DIR, pn->net->proc_net); 3848 } 3849 3850 static struct pernet_operations pg_net_ops = { 3851 .init = pg_net_init, 3852 .exit = pg_net_exit, 3853 .id = &pg_net_id, 3854 .size = sizeof(struct pktgen_net), 3855 }; 3856 3857 static int __init pg_init(void) 3858 { 3859 int ret = 0; 3860 3861 pr_info("%s", version); 3862 ret = register_pernet_subsys(&pg_net_ops); 3863 if (ret) 3864 return ret; 3865 ret = register_netdevice_notifier(&pktgen_notifier_block); 3866 if (ret) 3867 unregister_pernet_subsys(&pg_net_ops); 3868 3869 return ret; 3870 } 3871 3872 static void __exit pg_cleanup(void) 3873 { 3874 unregister_netdevice_notifier(&pktgen_notifier_block); 3875 unregister_pernet_subsys(&pg_net_ops); 3876 /* Don't need rcu_barrier() due to use of kfree_rcu() */ 3877 } 3878 3879 module_init(pg_init); 3880 module_exit(pg_cleanup); 3881 3882 MODULE_AUTHOR("Robert Olsson <robert.olsson@its.uu.se>"); 3883 MODULE_DESCRIPTION("Packet Generator tool"); 3884 MODULE_LICENSE("GPL"); 3885 MODULE_VERSION(VERSION); 3886 module_param(pg_count_d, int, 0); 3887 MODULE_PARM_DESC(pg_count_d, "Default number of packets to inject"); 3888 module_param(pg_delay_d, int, 0); 3889 MODULE_PARM_DESC(pg_delay_d, "Default delay between packets (nanoseconds)"); 3890 module_param(pg_clone_skb_d, int, 0); 3891 MODULE_PARM_DESC(pg_clone_skb_d, "Default number of copies of the same packet"); 3892 module_param(debug, int, 0); 3893 MODULE_PARM_DESC(debug, "Enable debugging of pktgen module"); 3894