xref: /openbmc/linux/net/core/page_pool.c (revision f14c1a14)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool.c
4  *	Author:	Jesper Dangaard Brouer <netoptimizer@brouer.com>
5  *	Copyright (C) 2016 Red Hat, Inc.
6  */
7 
8 #include <linux/types.h>
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/device.h>
12 
13 #include <net/page_pool.h>
14 #include <net/xdp.h>
15 
16 #include <linux/dma-direction.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/page-flags.h>
19 #include <linux/mm.h> /* for put_page() */
20 #include <linux/poison.h>
21 #include <linux/ethtool.h>
22 #include <linux/netdevice.h>
23 
24 #include <trace/events/page_pool.h>
25 
26 #define DEFER_TIME (msecs_to_jiffies(1000))
27 #define DEFER_WARN_INTERVAL (60 * HZ)
28 
29 #define BIAS_MAX	LONG_MAX
30 
31 #ifdef CONFIG_PAGE_POOL_STATS
32 /* alloc_stat_inc is intended to be used in softirq context */
33 #define alloc_stat_inc(pool, __stat)	(pool->alloc_stats.__stat++)
34 /* recycle_stat_inc is safe to use when preemption is possible. */
35 #define recycle_stat_inc(pool, __stat)							\
36 	do {										\
37 		struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;	\
38 		this_cpu_inc(s->__stat);						\
39 	} while (0)
40 
41 #define recycle_stat_add(pool, __stat, val)						\
42 	do {										\
43 		struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;	\
44 		this_cpu_add(s->__stat, val);						\
45 	} while (0)
46 
47 static const char pp_stats[][ETH_GSTRING_LEN] = {
48 	"rx_pp_alloc_fast",
49 	"rx_pp_alloc_slow",
50 	"rx_pp_alloc_slow_ho",
51 	"rx_pp_alloc_empty",
52 	"rx_pp_alloc_refill",
53 	"rx_pp_alloc_waive",
54 	"rx_pp_recycle_cached",
55 	"rx_pp_recycle_cache_full",
56 	"rx_pp_recycle_ring",
57 	"rx_pp_recycle_ring_full",
58 	"rx_pp_recycle_released_ref",
59 };
60 
61 /**
62  * page_pool_get_stats() - fetch page pool stats
63  * @pool:	pool from which page was allocated
64  * @stats:	struct page_pool_stats to fill in
65  *
66  * Retrieve statistics about the page_pool. This API is only available
67  * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``.
68  * A pointer to a caller allocated struct page_pool_stats structure
69  * is passed to this API which is filled in. The caller can then report
70  * those stats to the user (perhaps via ethtool, debugfs, etc.).
71  */
72 bool page_pool_get_stats(struct page_pool *pool,
73 			 struct page_pool_stats *stats)
74 {
75 	int cpu = 0;
76 
77 	if (!stats)
78 		return false;
79 
80 	/* The caller is responsible to initialize stats. */
81 	stats->alloc_stats.fast += pool->alloc_stats.fast;
82 	stats->alloc_stats.slow += pool->alloc_stats.slow;
83 	stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
84 	stats->alloc_stats.empty += pool->alloc_stats.empty;
85 	stats->alloc_stats.refill += pool->alloc_stats.refill;
86 	stats->alloc_stats.waive += pool->alloc_stats.waive;
87 
88 	for_each_possible_cpu(cpu) {
89 		const struct page_pool_recycle_stats *pcpu =
90 			per_cpu_ptr(pool->recycle_stats, cpu);
91 
92 		stats->recycle_stats.cached += pcpu->cached;
93 		stats->recycle_stats.cache_full += pcpu->cache_full;
94 		stats->recycle_stats.ring += pcpu->ring;
95 		stats->recycle_stats.ring_full += pcpu->ring_full;
96 		stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
97 	}
98 
99 	return true;
100 }
101 EXPORT_SYMBOL(page_pool_get_stats);
102 
103 u8 *page_pool_ethtool_stats_get_strings(u8 *data)
104 {
105 	int i;
106 
107 	for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
108 		memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
109 		data += ETH_GSTRING_LEN;
110 	}
111 
112 	return data;
113 }
114 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
115 
116 int page_pool_ethtool_stats_get_count(void)
117 {
118 	return ARRAY_SIZE(pp_stats);
119 }
120 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
121 
122 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats)
123 {
124 	struct page_pool_stats *pool_stats = stats;
125 
126 	*data++ = pool_stats->alloc_stats.fast;
127 	*data++ = pool_stats->alloc_stats.slow;
128 	*data++ = pool_stats->alloc_stats.slow_high_order;
129 	*data++ = pool_stats->alloc_stats.empty;
130 	*data++ = pool_stats->alloc_stats.refill;
131 	*data++ = pool_stats->alloc_stats.waive;
132 	*data++ = pool_stats->recycle_stats.cached;
133 	*data++ = pool_stats->recycle_stats.cache_full;
134 	*data++ = pool_stats->recycle_stats.ring;
135 	*data++ = pool_stats->recycle_stats.ring_full;
136 	*data++ = pool_stats->recycle_stats.released_refcnt;
137 
138 	return data;
139 }
140 EXPORT_SYMBOL(page_pool_ethtool_stats_get);
141 
142 #else
143 #define alloc_stat_inc(pool, __stat)
144 #define recycle_stat_inc(pool, __stat)
145 #define recycle_stat_add(pool, __stat, val)
146 #endif
147 
148 static bool page_pool_producer_lock(struct page_pool *pool)
149 	__acquires(&pool->ring.producer_lock)
150 {
151 	bool in_softirq = in_softirq();
152 
153 	if (in_softirq)
154 		spin_lock(&pool->ring.producer_lock);
155 	else
156 		spin_lock_bh(&pool->ring.producer_lock);
157 
158 	return in_softirq;
159 }
160 
161 static void page_pool_producer_unlock(struct page_pool *pool,
162 				      bool in_softirq)
163 	__releases(&pool->ring.producer_lock)
164 {
165 	if (in_softirq)
166 		spin_unlock(&pool->ring.producer_lock);
167 	else
168 		spin_unlock_bh(&pool->ring.producer_lock);
169 }
170 
171 static int page_pool_init(struct page_pool *pool,
172 			  const struct page_pool_params *params)
173 {
174 	unsigned int ring_qsize = 1024; /* Default */
175 
176 	memcpy(&pool->p, params, sizeof(pool->p));
177 
178 	/* Validate only known flags were used */
179 	if (pool->p.flags & ~(PP_FLAG_ALL))
180 		return -EINVAL;
181 
182 	if (pool->p.pool_size)
183 		ring_qsize = pool->p.pool_size;
184 
185 	/* Sanity limit mem that can be pinned down */
186 	if (ring_qsize > 32768)
187 		return -E2BIG;
188 
189 	/* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
190 	 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
191 	 * which is the XDP_TX use-case.
192 	 */
193 	if (pool->p.flags & PP_FLAG_DMA_MAP) {
194 		if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
195 		    (pool->p.dma_dir != DMA_BIDIRECTIONAL))
196 			return -EINVAL;
197 	}
198 
199 	if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) {
200 		/* In order to request DMA-sync-for-device the page
201 		 * needs to be mapped
202 		 */
203 		if (!(pool->p.flags & PP_FLAG_DMA_MAP))
204 			return -EINVAL;
205 
206 		if (!pool->p.max_len)
207 			return -EINVAL;
208 
209 		/* pool->p.offset has to be set according to the address
210 		 * offset used by the DMA engine to start copying rx data
211 		 */
212 	}
213 
214 	if (PAGE_POOL_DMA_USE_PP_FRAG_COUNT &&
215 	    pool->p.flags & PP_FLAG_PAGE_FRAG)
216 		return -EINVAL;
217 
218 #ifdef CONFIG_PAGE_POOL_STATS
219 	pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
220 	if (!pool->recycle_stats)
221 		return -ENOMEM;
222 #endif
223 
224 	if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0)
225 		return -ENOMEM;
226 
227 	atomic_set(&pool->pages_state_release_cnt, 0);
228 
229 	/* Driver calling page_pool_create() also call page_pool_destroy() */
230 	refcount_set(&pool->user_cnt, 1);
231 
232 	if (pool->p.flags & PP_FLAG_DMA_MAP)
233 		get_device(pool->p.dev);
234 
235 	return 0;
236 }
237 
238 /**
239  * page_pool_create() - create a page pool.
240  * @params: parameters, see struct page_pool_params
241  */
242 struct page_pool *page_pool_create(const struct page_pool_params *params)
243 {
244 	struct page_pool *pool;
245 	int err;
246 
247 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
248 	if (!pool)
249 		return ERR_PTR(-ENOMEM);
250 
251 	err = page_pool_init(pool, params);
252 	if (err < 0) {
253 		pr_warn("%s() gave up with errno %d\n", __func__, err);
254 		kfree(pool);
255 		return ERR_PTR(err);
256 	}
257 
258 	return pool;
259 }
260 EXPORT_SYMBOL(page_pool_create);
261 
262 static void page_pool_return_page(struct page_pool *pool, struct page *page);
263 
264 noinline
265 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool)
266 {
267 	struct ptr_ring *r = &pool->ring;
268 	struct page *page;
269 	int pref_nid; /* preferred NUMA node */
270 
271 	/* Quicker fallback, avoid locks when ring is empty */
272 	if (__ptr_ring_empty(r)) {
273 		alloc_stat_inc(pool, empty);
274 		return NULL;
275 	}
276 
277 	/* Softirq guarantee CPU and thus NUMA node is stable. This,
278 	 * assumes CPU refilling driver RX-ring will also run RX-NAPI.
279 	 */
280 #ifdef CONFIG_NUMA
281 	pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
282 #else
283 	/* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
284 	pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
285 #endif
286 
287 	/* Refill alloc array, but only if NUMA match */
288 	do {
289 		page = __ptr_ring_consume(r);
290 		if (unlikely(!page))
291 			break;
292 
293 		if (likely(page_to_nid(page) == pref_nid)) {
294 			pool->alloc.cache[pool->alloc.count++] = page;
295 		} else {
296 			/* NUMA mismatch;
297 			 * (1) release 1 page to page-allocator and
298 			 * (2) break out to fallthrough to alloc_pages_node.
299 			 * This limit stress on page buddy alloactor.
300 			 */
301 			page_pool_return_page(pool, page);
302 			alloc_stat_inc(pool, waive);
303 			page = NULL;
304 			break;
305 		}
306 	} while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
307 
308 	/* Return last page */
309 	if (likely(pool->alloc.count > 0)) {
310 		page = pool->alloc.cache[--pool->alloc.count];
311 		alloc_stat_inc(pool, refill);
312 	}
313 
314 	return page;
315 }
316 
317 /* fast path */
318 static struct page *__page_pool_get_cached(struct page_pool *pool)
319 {
320 	struct page *page;
321 
322 	/* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
323 	if (likely(pool->alloc.count)) {
324 		/* Fast-path */
325 		page = pool->alloc.cache[--pool->alloc.count];
326 		alloc_stat_inc(pool, fast);
327 	} else {
328 		page = page_pool_refill_alloc_cache(pool);
329 	}
330 
331 	return page;
332 }
333 
334 static void page_pool_dma_sync_for_device(struct page_pool *pool,
335 					  struct page *page,
336 					  unsigned int dma_sync_size)
337 {
338 	dma_addr_t dma_addr = page_pool_get_dma_addr(page);
339 
340 	dma_sync_size = min(dma_sync_size, pool->p.max_len);
341 	dma_sync_single_range_for_device(pool->p.dev, dma_addr,
342 					 pool->p.offset, dma_sync_size,
343 					 pool->p.dma_dir);
344 }
345 
346 static bool page_pool_dma_map(struct page_pool *pool, struct page *page)
347 {
348 	dma_addr_t dma;
349 
350 	/* Setup DMA mapping: use 'struct page' area for storing DMA-addr
351 	 * since dma_addr_t can be either 32 or 64 bits and does not always fit
352 	 * into page private data (i.e 32bit cpu with 64bit DMA caps)
353 	 * This mapping is kept for lifetime of page, until leaving pool.
354 	 */
355 	dma = dma_map_page_attrs(pool->p.dev, page, 0,
356 				 (PAGE_SIZE << pool->p.order),
357 				 pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC |
358 						  DMA_ATTR_WEAK_ORDERING);
359 	if (dma_mapping_error(pool->p.dev, dma))
360 		return false;
361 
362 	page_pool_set_dma_addr(page, dma);
363 
364 	if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
365 		page_pool_dma_sync_for_device(pool, page, pool->p.max_len);
366 
367 	return true;
368 }
369 
370 static void page_pool_set_pp_info(struct page_pool *pool,
371 				  struct page *page)
372 {
373 	page->pp = pool;
374 	page->pp_magic |= PP_SIGNATURE;
375 	if (pool->p.init_callback)
376 		pool->p.init_callback(page, pool->p.init_arg);
377 }
378 
379 static void page_pool_clear_pp_info(struct page *page)
380 {
381 	page->pp_magic = 0;
382 	page->pp = NULL;
383 }
384 
385 static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
386 						 gfp_t gfp)
387 {
388 	struct page *page;
389 
390 	gfp |= __GFP_COMP;
391 	page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
392 	if (unlikely(!page))
393 		return NULL;
394 
395 	if ((pool->p.flags & PP_FLAG_DMA_MAP) &&
396 	    unlikely(!page_pool_dma_map(pool, page))) {
397 		put_page(page);
398 		return NULL;
399 	}
400 
401 	alloc_stat_inc(pool, slow_high_order);
402 	page_pool_set_pp_info(pool, page);
403 
404 	/* Track how many pages are held 'in-flight' */
405 	pool->pages_state_hold_cnt++;
406 	trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt);
407 	return page;
408 }
409 
410 /* slow path */
411 noinline
412 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
413 						 gfp_t gfp)
414 {
415 	const int bulk = PP_ALLOC_CACHE_REFILL;
416 	unsigned int pp_flags = pool->p.flags;
417 	unsigned int pp_order = pool->p.order;
418 	struct page *page;
419 	int i, nr_pages;
420 
421 	/* Don't support bulk alloc for high-order pages */
422 	if (unlikely(pp_order))
423 		return __page_pool_alloc_page_order(pool, gfp);
424 
425 	/* Unnecessary as alloc cache is empty, but guarantees zero count */
426 	if (unlikely(pool->alloc.count > 0))
427 		return pool->alloc.cache[--pool->alloc.count];
428 
429 	/* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */
430 	memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
431 
432 	nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk,
433 					       pool->alloc.cache);
434 	if (unlikely(!nr_pages))
435 		return NULL;
436 
437 	/* Pages have been filled into alloc.cache array, but count is zero and
438 	 * page element have not been (possibly) DMA mapped.
439 	 */
440 	for (i = 0; i < nr_pages; i++) {
441 		page = pool->alloc.cache[i];
442 		if ((pp_flags & PP_FLAG_DMA_MAP) &&
443 		    unlikely(!page_pool_dma_map(pool, page))) {
444 			put_page(page);
445 			continue;
446 		}
447 
448 		page_pool_set_pp_info(pool, page);
449 		pool->alloc.cache[pool->alloc.count++] = page;
450 		/* Track how many pages are held 'in-flight' */
451 		pool->pages_state_hold_cnt++;
452 		trace_page_pool_state_hold(pool, page,
453 					   pool->pages_state_hold_cnt);
454 	}
455 
456 	/* Return last page */
457 	if (likely(pool->alloc.count > 0)) {
458 		page = pool->alloc.cache[--pool->alloc.count];
459 		alloc_stat_inc(pool, slow);
460 	} else {
461 		page = NULL;
462 	}
463 
464 	/* When page just alloc'ed is should/must have refcnt 1. */
465 	return page;
466 }
467 
468 /* For using page_pool replace: alloc_pages() API calls, but provide
469  * synchronization guarantee for allocation side.
470  */
471 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
472 {
473 	struct page *page;
474 
475 	/* Fast-path: Get a page from cache */
476 	page = __page_pool_get_cached(pool);
477 	if (page)
478 		return page;
479 
480 	/* Slow-path: cache empty, do real allocation */
481 	page = __page_pool_alloc_pages_slow(pool, gfp);
482 	return page;
483 }
484 EXPORT_SYMBOL(page_pool_alloc_pages);
485 
486 /* Calculate distance between two u32 values, valid if distance is below 2^(31)
487  *  https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
488  */
489 #define _distance(a, b)	(s32)((a) - (b))
490 
491 static s32 page_pool_inflight(struct page_pool *pool)
492 {
493 	u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
494 	u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
495 	s32 inflight;
496 
497 	inflight = _distance(hold_cnt, release_cnt);
498 
499 	trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
500 	WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight);
501 
502 	return inflight;
503 }
504 
505 /* Disconnects a page (from a page_pool).  API users can have a need
506  * to disconnect a page (from a page_pool), to allow it to be used as
507  * a regular page (that will eventually be returned to the normal
508  * page-allocator via put_page).
509  */
510 static void page_pool_return_page(struct page_pool *pool, struct page *page)
511 {
512 	dma_addr_t dma;
513 	int count;
514 
515 	if (!(pool->p.flags & PP_FLAG_DMA_MAP))
516 		/* Always account for inflight pages, even if we didn't
517 		 * map them
518 		 */
519 		goto skip_dma_unmap;
520 
521 	dma = page_pool_get_dma_addr(page);
522 
523 	/* When page is unmapped, it cannot be returned to our pool */
524 	dma_unmap_page_attrs(pool->p.dev, dma,
525 			     PAGE_SIZE << pool->p.order, pool->p.dma_dir,
526 			     DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
527 	page_pool_set_dma_addr(page, 0);
528 skip_dma_unmap:
529 	page_pool_clear_pp_info(page);
530 
531 	/* This may be the last page returned, releasing the pool, so
532 	 * it is not safe to reference pool afterwards.
533 	 */
534 	count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
535 	trace_page_pool_state_release(pool, page, count);
536 
537 	put_page(page);
538 	/* An optimization would be to call __free_pages(page, pool->p.order)
539 	 * knowing page is not part of page-cache (thus avoiding a
540 	 * __page_cache_release() call).
541 	 */
542 }
543 
544 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page)
545 {
546 	int ret;
547 	/* BH protection not needed if current is softirq */
548 	if (in_softirq())
549 		ret = ptr_ring_produce(&pool->ring, page);
550 	else
551 		ret = ptr_ring_produce_bh(&pool->ring, page);
552 
553 	if (!ret) {
554 		recycle_stat_inc(pool, ring);
555 		return true;
556 	}
557 
558 	return false;
559 }
560 
561 /* Only allow direct recycling in special circumstances, into the
562  * alloc side cache.  E.g. during RX-NAPI processing for XDP_DROP use-case.
563  *
564  * Caller must provide appropriate safe context.
565  */
566 static bool page_pool_recycle_in_cache(struct page *page,
567 				       struct page_pool *pool)
568 {
569 	if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
570 		recycle_stat_inc(pool, cache_full);
571 		return false;
572 	}
573 
574 	/* Caller MUST have verified/know (page_ref_count(page) == 1) */
575 	pool->alloc.cache[pool->alloc.count++] = page;
576 	recycle_stat_inc(pool, cached);
577 	return true;
578 }
579 
580 /* If the page refcnt == 1, this will try to recycle the page.
581  * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for
582  * the configured size min(dma_sync_size, pool->max_len).
583  * If the page refcnt != 1, then the page will be returned to memory
584  * subsystem.
585  */
586 static __always_inline struct page *
587 __page_pool_put_page(struct page_pool *pool, struct page *page,
588 		     unsigned int dma_sync_size, bool allow_direct)
589 {
590 	/* This allocator is optimized for the XDP mode that uses
591 	 * one-frame-per-page, but have fallbacks that act like the
592 	 * regular page allocator APIs.
593 	 *
594 	 * refcnt == 1 means page_pool owns page, and can recycle it.
595 	 *
596 	 * page is NOT reusable when allocated when system is under
597 	 * some pressure. (page_is_pfmemalloc)
598 	 */
599 	if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) {
600 		/* Read barrier done in page_ref_count / READ_ONCE */
601 
602 		if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
603 			page_pool_dma_sync_for_device(pool, page,
604 						      dma_sync_size);
605 
606 		if (allow_direct && in_softirq() &&
607 		    page_pool_recycle_in_cache(page, pool))
608 			return NULL;
609 
610 		/* Page found as candidate for recycling */
611 		return page;
612 	}
613 	/* Fallback/non-XDP mode: API user have elevated refcnt.
614 	 *
615 	 * Many drivers split up the page into fragments, and some
616 	 * want to keep doing this to save memory and do refcnt based
617 	 * recycling. Support this use case too, to ease drivers
618 	 * switching between XDP/non-XDP.
619 	 *
620 	 * In-case page_pool maintains the DMA mapping, API user must
621 	 * call page_pool_put_page once.  In this elevated refcnt
622 	 * case, the DMA is unmapped/released, as driver is likely
623 	 * doing refcnt based recycle tricks, meaning another process
624 	 * will be invoking put_page.
625 	 */
626 	recycle_stat_inc(pool, released_refcnt);
627 	page_pool_return_page(pool, page);
628 
629 	return NULL;
630 }
631 
632 void page_pool_put_defragged_page(struct page_pool *pool, struct page *page,
633 				  unsigned int dma_sync_size, bool allow_direct)
634 {
635 	page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct);
636 	if (page && !page_pool_recycle_in_ring(pool, page)) {
637 		/* Cache full, fallback to free pages */
638 		recycle_stat_inc(pool, ring_full);
639 		page_pool_return_page(pool, page);
640 	}
641 }
642 EXPORT_SYMBOL(page_pool_put_defragged_page);
643 
644 /**
645  * page_pool_put_page_bulk() - release references on multiple pages
646  * @pool:	pool from which pages were allocated
647  * @data:	array holding page pointers
648  * @count:	number of pages in @data
649  *
650  * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring
651  * producer lock. If the ptr_ring is full, page_pool_put_page_bulk()
652  * will release leftover pages to the page allocator.
653  * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx
654  * completion loop for the XDP_REDIRECT use case.
655  *
656  * Please note the caller must not use data area after running
657  * page_pool_put_page_bulk(), as this function overwrites it.
658  */
659 void page_pool_put_page_bulk(struct page_pool *pool, void **data,
660 			     int count)
661 {
662 	int i, bulk_len = 0;
663 	bool in_softirq;
664 
665 	for (i = 0; i < count; i++) {
666 		struct page *page = virt_to_head_page(data[i]);
667 
668 		/* It is not the last user for the page frag case */
669 		if (!page_pool_is_last_frag(pool, page))
670 			continue;
671 
672 		page = __page_pool_put_page(pool, page, -1, false);
673 		/* Approved for bulk recycling in ptr_ring cache */
674 		if (page)
675 			data[bulk_len++] = page;
676 	}
677 
678 	if (unlikely(!bulk_len))
679 		return;
680 
681 	/* Bulk producer into ptr_ring page_pool cache */
682 	in_softirq = page_pool_producer_lock(pool);
683 	for (i = 0; i < bulk_len; i++) {
684 		if (__ptr_ring_produce(&pool->ring, data[i])) {
685 			/* ring full */
686 			recycle_stat_inc(pool, ring_full);
687 			break;
688 		}
689 	}
690 	recycle_stat_add(pool, ring, i);
691 	page_pool_producer_unlock(pool, in_softirq);
692 
693 	/* Hopefully all pages was return into ptr_ring */
694 	if (likely(i == bulk_len))
695 		return;
696 
697 	/* ptr_ring cache full, free remaining pages outside producer lock
698 	 * since put_page() with refcnt == 1 can be an expensive operation
699 	 */
700 	for (; i < bulk_len; i++)
701 		page_pool_return_page(pool, data[i]);
702 }
703 EXPORT_SYMBOL(page_pool_put_page_bulk);
704 
705 static struct page *page_pool_drain_frag(struct page_pool *pool,
706 					 struct page *page)
707 {
708 	long drain_count = BIAS_MAX - pool->frag_users;
709 
710 	/* Some user is still using the page frag */
711 	if (likely(page_pool_defrag_page(page, drain_count)))
712 		return NULL;
713 
714 	if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) {
715 		if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
716 			page_pool_dma_sync_for_device(pool, page, -1);
717 
718 		return page;
719 	}
720 
721 	page_pool_return_page(pool, page);
722 	return NULL;
723 }
724 
725 static void page_pool_free_frag(struct page_pool *pool)
726 {
727 	long drain_count = BIAS_MAX - pool->frag_users;
728 	struct page *page = pool->frag_page;
729 
730 	pool->frag_page = NULL;
731 
732 	if (!page || page_pool_defrag_page(page, drain_count))
733 		return;
734 
735 	page_pool_return_page(pool, page);
736 }
737 
738 struct page *page_pool_alloc_frag(struct page_pool *pool,
739 				  unsigned int *offset,
740 				  unsigned int size, gfp_t gfp)
741 {
742 	unsigned int max_size = PAGE_SIZE << pool->p.order;
743 	struct page *page = pool->frag_page;
744 
745 	if (WARN_ON(!(pool->p.flags & PP_FLAG_PAGE_FRAG) ||
746 		    size > max_size))
747 		return NULL;
748 
749 	size = ALIGN(size, dma_get_cache_alignment());
750 	*offset = pool->frag_offset;
751 
752 	if (page && *offset + size > max_size) {
753 		page = page_pool_drain_frag(pool, page);
754 		if (page) {
755 			alloc_stat_inc(pool, fast);
756 			goto frag_reset;
757 		}
758 	}
759 
760 	if (!page) {
761 		page = page_pool_alloc_pages(pool, gfp);
762 		if (unlikely(!page)) {
763 			pool->frag_page = NULL;
764 			return NULL;
765 		}
766 
767 		pool->frag_page = page;
768 
769 frag_reset:
770 		pool->frag_users = 1;
771 		*offset = 0;
772 		pool->frag_offset = size;
773 		page_pool_fragment_page(page, BIAS_MAX);
774 		return page;
775 	}
776 
777 	pool->frag_users++;
778 	pool->frag_offset = *offset + size;
779 	alloc_stat_inc(pool, fast);
780 	return page;
781 }
782 EXPORT_SYMBOL(page_pool_alloc_frag);
783 
784 static void page_pool_empty_ring(struct page_pool *pool)
785 {
786 	struct page *page;
787 
788 	/* Empty recycle ring */
789 	while ((page = ptr_ring_consume_bh(&pool->ring))) {
790 		/* Verify the refcnt invariant of cached pages */
791 		if (!(page_ref_count(page) == 1))
792 			pr_crit("%s() page_pool refcnt %d violation\n",
793 				__func__, page_ref_count(page));
794 
795 		page_pool_return_page(pool, page);
796 	}
797 }
798 
799 static void page_pool_free(struct page_pool *pool)
800 {
801 	if (pool->disconnect)
802 		pool->disconnect(pool);
803 
804 	ptr_ring_cleanup(&pool->ring, NULL);
805 
806 	if (pool->p.flags & PP_FLAG_DMA_MAP)
807 		put_device(pool->p.dev);
808 
809 #ifdef CONFIG_PAGE_POOL_STATS
810 	free_percpu(pool->recycle_stats);
811 #endif
812 	kfree(pool);
813 }
814 
815 static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
816 {
817 	struct page *page;
818 
819 	if (pool->destroy_cnt)
820 		return;
821 
822 	/* Empty alloc cache, assume caller made sure this is
823 	 * no-longer in use, and page_pool_alloc_pages() cannot be
824 	 * call concurrently.
825 	 */
826 	while (pool->alloc.count) {
827 		page = pool->alloc.cache[--pool->alloc.count];
828 		page_pool_return_page(pool, page);
829 	}
830 }
831 
832 static void page_pool_scrub(struct page_pool *pool)
833 {
834 	page_pool_empty_alloc_cache_once(pool);
835 	pool->destroy_cnt++;
836 
837 	/* No more consumers should exist, but producers could still
838 	 * be in-flight.
839 	 */
840 	page_pool_empty_ring(pool);
841 }
842 
843 static int page_pool_release(struct page_pool *pool)
844 {
845 	int inflight;
846 
847 	page_pool_scrub(pool);
848 	inflight = page_pool_inflight(pool);
849 	if (!inflight)
850 		page_pool_free(pool);
851 
852 	return inflight;
853 }
854 
855 static void page_pool_release_retry(struct work_struct *wq)
856 {
857 	struct delayed_work *dwq = to_delayed_work(wq);
858 	struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
859 	int inflight;
860 
861 	inflight = page_pool_release(pool);
862 	if (!inflight)
863 		return;
864 
865 	/* Periodic warning */
866 	if (time_after_eq(jiffies, pool->defer_warn)) {
867 		int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
868 
869 		pr_warn("%s() stalled pool shutdown %d inflight %d sec\n",
870 			__func__, inflight, sec);
871 		pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
872 	}
873 
874 	/* Still not ready to be disconnected, retry later */
875 	schedule_delayed_work(&pool->release_dw, DEFER_TIME);
876 }
877 
878 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
879 			   struct xdp_mem_info *mem)
880 {
881 	refcount_inc(&pool->user_cnt);
882 	pool->disconnect = disconnect;
883 	pool->xdp_mem_id = mem->id;
884 }
885 
886 void page_pool_unlink_napi(struct page_pool *pool)
887 {
888 	if (!pool->p.napi)
889 		return;
890 
891 	/* To avoid races with recycling and additional barriers make sure
892 	 * pool and NAPI are unlinked when NAPI is disabled.
893 	 */
894 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state) ||
895 		READ_ONCE(pool->p.napi->list_owner) != -1);
896 
897 	WRITE_ONCE(pool->p.napi, NULL);
898 }
899 EXPORT_SYMBOL(page_pool_unlink_napi);
900 
901 void page_pool_destroy(struct page_pool *pool)
902 {
903 	if (!pool)
904 		return;
905 
906 	if (!page_pool_put(pool))
907 		return;
908 
909 	page_pool_unlink_napi(pool);
910 	page_pool_free_frag(pool);
911 
912 	if (!page_pool_release(pool))
913 		return;
914 
915 	pool->defer_start = jiffies;
916 	pool->defer_warn  = jiffies + DEFER_WARN_INTERVAL;
917 
918 	INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
919 	schedule_delayed_work(&pool->release_dw, DEFER_TIME);
920 }
921 EXPORT_SYMBOL(page_pool_destroy);
922 
923 /* Caller must provide appropriate safe context, e.g. NAPI. */
924 void page_pool_update_nid(struct page_pool *pool, int new_nid)
925 {
926 	struct page *page;
927 
928 	trace_page_pool_update_nid(pool, new_nid);
929 	pool->p.nid = new_nid;
930 
931 	/* Flush pool alloc cache, as refill will check NUMA node */
932 	while (pool->alloc.count) {
933 		page = pool->alloc.cache[--pool->alloc.count];
934 		page_pool_return_page(pool, page);
935 	}
936 }
937 EXPORT_SYMBOL(page_pool_update_nid);
938 
939 bool page_pool_return_skb_page(struct page *page, bool napi_safe)
940 {
941 	struct napi_struct *napi;
942 	struct page_pool *pp;
943 	bool allow_direct;
944 
945 	page = compound_head(page);
946 
947 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
948 	 * in order to preserve any existing bits, such as bit 0 for the
949 	 * head page of compound page and bit 1 for pfmemalloc page, so
950 	 * mask those bits for freeing side when doing below checking,
951 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
952 	 * to avoid recycling the pfmemalloc page.
953 	 */
954 	if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE))
955 		return false;
956 
957 	pp = page->pp;
958 
959 	/* Allow direct recycle if we have reasons to believe that we are
960 	 * in the same context as the consumer would run, so there's
961 	 * no possible race.
962 	 */
963 	napi = READ_ONCE(pp->p.napi);
964 	allow_direct = napi_safe && napi &&
965 		READ_ONCE(napi->list_owner) == smp_processor_id();
966 
967 	/* Driver set this to memory recycling info. Reset it on recycle.
968 	 * This will *not* work for NIC using a split-page memory model.
969 	 * The page will be returned to the pool here regardless of the
970 	 * 'flipped' fragment being in use or not.
971 	 */
972 	page_pool_put_full_page(pp, page, allow_direct);
973 
974 	return true;
975 }
976 EXPORT_SYMBOL(page_pool_return_skb_page);
977