1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/types.h> 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/device.h> 12 13 #include <net/page_pool.h> 14 #include <net/xdp.h> 15 16 #include <linux/dma-direction.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/page-flags.h> 19 #include <linux/mm.h> /* for put_page() */ 20 #include <linux/poison.h> 21 #include <linux/ethtool.h> 22 23 #include <trace/events/page_pool.h> 24 25 #define DEFER_TIME (msecs_to_jiffies(1000)) 26 #define DEFER_WARN_INTERVAL (60 * HZ) 27 28 #define BIAS_MAX LONG_MAX 29 30 #ifdef CONFIG_PAGE_POOL_STATS 31 /* alloc_stat_inc is intended to be used in softirq context */ 32 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 33 /* recycle_stat_inc is safe to use when preemption is possible. */ 34 #define recycle_stat_inc(pool, __stat) \ 35 do { \ 36 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 37 this_cpu_inc(s->__stat); \ 38 } while (0) 39 40 #define recycle_stat_add(pool, __stat, val) \ 41 do { \ 42 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 43 this_cpu_add(s->__stat, val); \ 44 } while (0) 45 46 static const char pp_stats[][ETH_GSTRING_LEN] = { 47 "rx_pp_alloc_fast", 48 "rx_pp_alloc_slow", 49 "rx_pp_alloc_slow_ho", 50 "rx_pp_alloc_empty", 51 "rx_pp_alloc_refill", 52 "rx_pp_alloc_waive", 53 "rx_pp_recycle_cached", 54 "rx_pp_recycle_cache_full", 55 "rx_pp_recycle_ring", 56 "rx_pp_recycle_ring_full", 57 "rx_pp_recycle_released_ref", 58 }; 59 60 bool page_pool_get_stats(struct page_pool *pool, 61 struct page_pool_stats *stats) 62 { 63 int cpu = 0; 64 65 if (!stats) 66 return false; 67 68 /* The caller is responsible to initialize stats. */ 69 stats->alloc_stats.fast += pool->alloc_stats.fast; 70 stats->alloc_stats.slow += pool->alloc_stats.slow; 71 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 72 stats->alloc_stats.empty += pool->alloc_stats.empty; 73 stats->alloc_stats.refill += pool->alloc_stats.refill; 74 stats->alloc_stats.waive += pool->alloc_stats.waive; 75 76 for_each_possible_cpu(cpu) { 77 const struct page_pool_recycle_stats *pcpu = 78 per_cpu_ptr(pool->recycle_stats, cpu); 79 80 stats->recycle_stats.cached += pcpu->cached; 81 stats->recycle_stats.cache_full += pcpu->cache_full; 82 stats->recycle_stats.ring += pcpu->ring; 83 stats->recycle_stats.ring_full += pcpu->ring_full; 84 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 85 } 86 87 return true; 88 } 89 EXPORT_SYMBOL(page_pool_get_stats); 90 91 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 92 { 93 int i; 94 95 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 96 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 97 data += ETH_GSTRING_LEN; 98 } 99 100 return data; 101 } 102 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 103 104 int page_pool_ethtool_stats_get_count(void) 105 { 106 return ARRAY_SIZE(pp_stats); 107 } 108 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 109 110 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats) 111 { 112 struct page_pool_stats *pool_stats = stats; 113 114 *data++ = pool_stats->alloc_stats.fast; 115 *data++ = pool_stats->alloc_stats.slow; 116 *data++ = pool_stats->alloc_stats.slow_high_order; 117 *data++ = pool_stats->alloc_stats.empty; 118 *data++ = pool_stats->alloc_stats.refill; 119 *data++ = pool_stats->alloc_stats.waive; 120 *data++ = pool_stats->recycle_stats.cached; 121 *data++ = pool_stats->recycle_stats.cache_full; 122 *data++ = pool_stats->recycle_stats.ring; 123 *data++ = pool_stats->recycle_stats.ring_full; 124 *data++ = pool_stats->recycle_stats.released_refcnt; 125 126 return data; 127 } 128 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 129 130 #else 131 #define alloc_stat_inc(pool, __stat) 132 #define recycle_stat_inc(pool, __stat) 133 #define recycle_stat_add(pool, __stat, val) 134 #endif 135 136 static int page_pool_init(struct page_pool *pool, 137 const struct page_pool_params *params) 138 { 139 unsigned int ring_qsize = 1024; /* Default */ 140 141 memcpy(&pool->p, params, sizeof(pool->p)); 142 143 /* Validate only known flags were used */ 144 if (pool->p.flags & ~(PP_FLAG_ALL)) 145 return -EINVAL; 146 147 if (pool->p.pool_size) 148 ring_qsize = pool->p.pool_size; 149 150 /* Sanity limit mem that can be pinned down */ 151 if (ring_qsize > 32768) 152 return -E2BIG; 153 154 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 155 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 156 * which is the XDP_TX use-case. 157 */ 158 if (pool->p.flags & PP_FLAG_DMA_MAP) { 159 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 160 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 161 return -EINVAL; 162 } 163 164 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) { 165 /* In order to request DMA-sync-for-device the page 166 * needs to be mapped 167 */ 168 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 169 return -EINVAL; 170 171 if (!pool->p.max_len) 172 return -EINVAL; 173 174 /* pool->p.offset has to be set according to the address 175 * offset used by the DMA engine to start copying rx data 176 */ 177 } 178 179 if (PAGE_POOL_DMA_USE_PP_FRAG_COUNT && 180 pool->p.flags & PP_FLAG_PAGE_FRAG) 181 return -EINVAL; 182 183 #ifdef CONFIG_PAGE_POOL_STATS 184 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 185 if (!pool->recycle_stats) 186 return -ENOMEM; 187 #endif 188 189 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) 190 return -ENOMEM; 191 192 atomic_set(&pool->pages_state_release_cnt, 0); 193 194 /* Driver calling page_pool_create() also call page_pool_destroy() */ 195 refcount_set(&pool->user_cnt, 1); 196 197 if (pool->p.flags & PP_FLAG_DMA_MAP) 198 get_device(pool->p.dev); 199 200 return 0; 201 } 202 203 struct page_pool *page_pool_create(const struct page_pool_params *params) 204 { 205 struct page_pool *pool; 206 int err; 207 208 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 209 if (!pool) 210 return ERR_PTR(-ENOMEM); 211 212 err = page_pool_init(pool, params); 213 if (err < 0) { 214 pr_warn("%s() gave up with errno %d\n", __func__, err); 215 kfree(pool); 216 return ERR_PTR(err); 217 } 218 219 return pool; 220 } 221 EXPORT_SYMBOL(page_pool_create); 222 223 static void page_pool_return_page(struct page_pool *pool, struct page *page); 224 225 noinline 226 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool) 227 { 228 struct ptr_ring *r = &pool->ring; 229 struct page *page; 230 int pref_nid; /* preferred NUMA node */ 231 232 /* Quicker fallback, avoid locks when ring is empty */ 233 if (__ptr_ring_empty(r)) { 234 alloc_stat_inc(pool, empty); 235 return NULL; 236 } 237 238 /* Softirq guarantee CPU and thus NUMA node is stable. This, 239 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 240 */ 241 #ifdef CONFIG_NUMA 242 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 243 #else 244 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 245 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 246 #endif 247 248 /* Refill alloc array, but only if NUMA match */ 249 do { 250 page = __ptr_ring_consume(r); 251 if (unlikely(!page)) 252 break; 253 254 if (likely(page_to_nid(page) == pref_nid)) { 255 pool->alloc.cache[pool->alloc.count++] = page; 256 } else { 257 /* NUMA mismatch; 258 * (1) release 1 page to page-allocator and 259 * (2) break out to fallthrough to alloc_pages_node. 260 * This limit stress on page buddy alloactor. 261 */ 262 page_pool_return_page(pool, page); 263 alloc_stat_inc(pool, waive); 264 page = NULL; 265 break; 266 } 267 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 268 269 /* Return last page */ 270 if (likely(pool->alloc.count > 0)) { 271 page = pool->alloc.cache[--pool->alloc.count]; 272 alloc_stat_inc(pool, refill); 273 } 274 275 return page; 276 } 277 278 /* fast path */ 279 static struct page *__page_pool_get_cached(struct page_pool *pool) 280 { 281 struct page *page; 282 283 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 284 if (likely(pool->alloc.count)) { 285 /* Fast-path */ 286 page = pool->alloc.cache[--pool->alloc.count]; 287 alloc_stat_inc(pool, fast); 288 } else { 289 page = page_pool_refill_alloc_cache(pool); 290 } 291 292 return page; 293 } 294 295 static void page_pool_dma_sync_for_device(struct page_pool *pool, 296 struct page *page, 297 unsigned int dma_sync_size) 298 { 299 dma_addr_t dma_addr = page_pool_get_dma_addr(page); 300 301 dma_sync_size = min(dma_sync_size, pool->p.max_len); 302 dma_sync_single_range_for_device(pool->p.dev, dma_addr, 303 pool->p.offset, dma_sync_size, 304 pool->p.dma_dir); 305 } 306 307 static bool page_pool_dma_map(struct page_pool *pool, struct page *page) 308 { 309 dma_addr_t dma; 310 311 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 312 * since dma_addr_t can be either 32 or 64 bits and does not always fit 313 * into page private data (i.e 32bit cpu with 64bit DMA caps) 314 * This mapping is kept for lifetime of page, until leaving pool. 315 */ 316 dma = dma_map_page_attrs(pool->p.dev, page, 0, 317 (PAGE_SIZE << pool->p.order), 318 pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 319 if (dma_mapping_error(pool->p.dev, dma)) 320 return false; 321 322 page_pool_set_dma_addr(page, dma); 323 324 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 325 page_pool_dma_sync_for_device(pool, page, pool->p.max_len); 326 327 return true; 328 } 329 330 static void page_pool_set_pp_info(struct page_pool *pool, 331 struct page *page) 332 { 333 page->pp = pool; 334 page->pp_magic |= PP_SIGNATURE; 335 if (pool->p.init_callback) 336 pool->p.init_callback(page, pool->p.init_arg); 337 } 338 339 static void page_pool_clear_pp_info(struct page *page) 340 { 341 page->pp_magic = 0; 342 page->pp = NULL; 343 } 344 345 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 346 gfp_t gfp) 347 { 348 struct page *page; 349 350 gfp |= __GFP_COMP; 351 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 352 if (unlikely(!page)) 353 return NULL; 354 355 if ((pool->p.flags & PP_FLAG_DMA_MAP) && 356 unlikely(!page_pool_dma_map(pool, page))) { 357 put_page(page); 358 return NULL; 359 } 360 361 alloc_stat_inc(pool, slow_high_order); 362 page_pool_set_pp_info(pool, page); 363 364 /* Track how many pages are held 'in-flight' */ 365 pool->pages_state_hold_cnt++; 366 trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt); 367 return page; 368 } 369 370 /* slow path */ 371 noinline 372 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool, 373 gfp_t gfp) 374 { 375 const int bulk = PP_ALLOC_CACHE_REFILL; 376 unsigned int pp_flags = pool->p.flags; 377 unsigned int pp_order = pool->p.order; 378 struct page *page; 379 int i, nr_pages; 380 381 /* Don't support bulk alloc for high-order pages */ 382 if (unlikely(pp_order)) 383 return __page_pool_alloc_page_order(pool, gfp); 384 385 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 386 if (unlikely(pool->alloc.count > 0)) 387 return pool->alloc.cache[--pool->alloc.count]; 388 389 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */ 390 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 391 392 nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk, 393 pool->alloc.cache); 394 if (unlikely(!nr_pages)) 395 return NULL; 396 397 /* Pages have been filled into alloc.cache array, but count is zero and 398 * page element have not been (possibly) DMA mapped. 399 */ 400 for (i = 0; i < nr_pages; i++) { 401 page = pool->alloc.cache[i]; 402 if ((pp_flags & PP_FLAG_DMA_MAP) && 403 unlikely(!page_pool_dma_map(pool, page))) { 404 put_page(page); 405 continue; 406 } 407 408 page_pool_set_pp_info(pool, page); 409 pool->alloc.cache[pool->alloc.count++] = page; 410 /* Track how many pages are held 'in-flight' */ 411 pool->pages_state_hold_cnt++; 412 trace_page_pool_state_hold(pool, page, 413 pool->pages_state_hold_cnt); 414 } 415 416 /* Return last page */ 417 if (likely(pool->alloc.count > 0)) { 418 page = pool->alloc.cache[--pool->alloc.count]; 419 alloc_stat_inc(pool, slow); 420 } else { 421 page = NULL; 422 } 423 424 /* When page just alloc'ed is should/must have refcnt 1. */ 425 return page; 426 } 427 428 /* For using page_pool replace: alloc_pages() API calls, but provide 429 * synchronization guarantee for allocation side. 430 */ 431 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 432 { 433 struct page *page; 434 435 /* Fast-path: Get a page from cache */ 436 page = __page_pool_get_cached(pool); 437 if (page) 438 return page; 439 440 /* Slow-path: cache empty, do real allocation */ 441 page = __page_pool_alloc_pages_slow(pool, gfp); 442 return page; 443 } 444 EXPORT_SYMBOL(page_pool_alloc_pages); 445 446 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 447 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 448 */ 449 #define _distance(a, b) (s32)((a) - (b)) 450 451 static s32 page_pool_inflight(struct page_pool *pool) 452 { 453 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 454 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 455 s32 inflight; 456 457 inflight = _distance(hold_cnt, release_cnt); 458 459 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 460 WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight); 461 462 return inflight; 463 } 464 465 /* Disconnects a page (from a page_pool). API users can have a need 466 * to disconnect a page (from a page_pool), to allow it to be used as 467 * a regular page (that will eventually be returned to the normal 468 * page-allocator via put_page). 469 */ 470 void page_pool_release_page(struct page_pool *pool, struct page *page) 471 { 472 dma_addr_t dma; 473 int count; 474 475 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 476 /* Always account for inflight pages, even if we didn't 477 * map them 478 */ 479 goto skip_dma_unmap; 480 481 dma = page_pool_get_dma_addr(page); 482 483 /* When page is unmapped, it cannot be returned to our pool */ 484 dma_unmap_page_attrs(pool->p.dev, dma, 485 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 486 DMA_ATTR_SKIP_CPU_SYNC); 487 page_pool_set_dma_addr(page, 0); 488 skip_dma_unmap: 489 page_pool_clear_pp_info(page); 490 491 /* This may be the last page returned, releasing the pool, so 492 * it is not safe to reference pool afterwards. 493 */ 494 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 495 trace_page_pool_state_release(pool, page, count); 496 } 497 EXPORT_SYMBOL(page_pool_release_page); 498 499 /* Return a page to the page allocator, cleaning up our state */ 500 static void page_pool_return_page(struct page_pool *pool, struct page *page) 501 { 502 page_pool_release_page(pool, page); 503 504 put_page(page); 505 /* An optimization would be to call __free_pages(page, pool->p.order) 506 * knowing page is not part of page-cache (thus avoiding a 507 * __page_cache_release() call). 508 */ 509 } 510 511 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page) 512 { 513 int ret; 514 /* BH protection not needed if current is serving softirq */ 515 if (in_serving_softirq()) 516 ret = ptr_ring_produce(&pool->ring, page); 517 else 518 ret = ptr_ring_produce_bh(&pool->ring, page); 519 520 if (!ret) { 521 recycle_stat_inc(pool, ring); 522 return true; 523 } 524 525 return false; 526 } 527 528 /* Only allow direct recycling in special circumstances, into the 529 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 530 * 531 * Caller must provide appropriate safe context. 532 */ 533 static bool page_pool_recycle_in_cache(struct page *page, 534 struct page_pool *pool) 535 { 536 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 537 recycle_stat_inc(pool, cache_full); 538 return false; 539 } 540 541 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 542 pool->alloc.cache[pool->alloc.count++] = page; 543 recycle_stat_inc(pool, cached); 544 return true; 545 } 546 547 /* If the page refcnt == 1, this will try to recycle the page. 548 * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for 549 * the configured size min(dma_sync_size, pool->max_len). 550 * If the page refcnt != 1, then the page will be returned to memory 551 * subsystem. 552 */ 553 static __always_inline struct page * 554 __page_pool_put_page(struct page_pool *pool, struct page *page, 555 unsigned int dma_sync_size, bool allow_direct) 556 { 557 /* This allocator is optimized for the XDP mode that uses 558 * one-frame-per-page, but have fallbacks that act like the 559 * regular page allocator APIs. 560 * 561 * refcnt == 1 means page_pool owns page, and can recycle it. 562 * 563 * page is NOT reusable when allocated when system is under 564 * some pressure. (page_is_pfmemalloc) 565 */ 566 if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) { 567 /* Read barrier done in page_ref_count / READ_ONCE */ 568 569 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 570 page_pool_dma_sync_for_device(pool, page, 571 dma_sync_size); 572 573 if (allow_direct && in_serving_softirq() && 574 page_pool_recycle_in_cache(page, pool)) 575 return NULL; 576 577 /* Page found as candidate for recycling */ 578 return page; 579 } 580 /* Fallback/non-XDP mode: API user have elevated refcnt. 581 * 582 * Many drivers split up the page into fragments, and some 583 * want to keep doing this to save memory and do refcnt based 584 * recycling. Support this use case too, to ease drivers 585 * switching between XDP/non-XDP. 586 * 587 * In-case page_pool maintains the DMA mapping, API user must 588 * call page_pool_put_page once. In this elevated refcnt 589 * case, the DMA is unmapped/released, as driver is likely 590 * doing refcnt based recycle tricks, meaning another process 591 * will be invoking put_page. 592 */ 593 recycle_stat_inc(pool, released_refcnt); 594 /* Do not replace this with page_pool_return_page() */ 595 page_pool_release_page(pool, page); 596 put_page(page); 597 598 return NULL; 599 } 600 601 void page_pool_put_defragged_page(struct page_pool *pool, struct page *page, 602 unsigned int dma_sync_size, bool allow_direct) 603 { 604 page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct); 605 if (page && !page_pool_recycle_in_ring(pool, page)) { 606 /* Cache full, fallback to free pages */ 607 recycle_stat_inc(pool, ring_full); 608 page_pool_return_page(pool, page); 609 } 610 } 611 EXPORT_SYMBOL(page_pool_put_defragged_page); 612 613 /* Caller must not use data area after call, as this function overwrites it */ 614 void page_pool_put_page_bulk(struct page_pool *pool, void **data, 615 int count) 616 { 617 int i, bulk_len = 0; 618 619 for (i = 0; i < count; i++) { 620 struct page *page = virt_to_head_page(data[i]); 621 622 /* It is not the last user for the page frag case */ 623 if (!page_pool_is_last_frag(pool, page)) 624 continue; 625 626 page = __page_pool_put_page(pool, page, -1, false); 627 /* Approved for bulk recycling in ptr_ring cache */ 628 if (page) 629 data[bulk_len++] = page; 630 } 631 632 if (unlikely(!bulk_len)) 633 return; 634 635 /* Bulk producer into ptr_ring page_pool cache */ 636 page_pool_ring_lock(pool); 637 for (i = 0; i < bulk_len; i++) { 638 if (__ptr_ring_produce(&pool->ring, data[i])) { 639 /* ring full */ 640 recycle_stat_inc(pool, ring_full); 641 break; 642 } 643 } 644 recycle_stat_add(pool, ring, i); 645 page_pool_ring_unlock(pool); 646 647 /* Hopefully all pages was return into ptr_ring */ 648 if (likely(i == bulk_len)) 649 return; 650 651 /* ptr_ring cache full, free remaining pages outside producer lock 652 * since put_page() with refcnt == 1 can be an expensive operation 653 */ 654 for (; i < bulk_len; i++) 655 page_pool_return_page(pool, data[i]); 656 } 657 EXPORT_SYMBOL(page_pool_put_page_bulk); 658 659 static struct page *page_pool_drain_frag(struct page_pool *pool, 660 struct page *page) 661 { 662 long drain_count = BIAS_MAX - pool->frag_users; 663 664 /* Some user is still using the page frag */ 665 if (likely(page_pool_defrag_page(page, drain_count))) 666 return NULL; 667 668 if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) { 669 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 670 page_pool_dma_sync_for_device(pool, page, -1); 671 672 return page; 673 } 674 675 page_pool_return_page(pool, page); 676 return NULL; 677 } 678 679 static void page_pool_free_frag(struct page_pool *pool) 680 { 681 long drain_count = BIAS_MAX - pool->frag_users; 682 struct page *page = pool->frag_page; 683 684 pool->frag_page = NULL; 685 686 if (!page || page_pool_defrag_page(page, drain_count)) 687 return; 688 689 page_pool_return_page(pool, page); 690 } 691 692 struct page *page_pool_alloc_frag(struct page_pool *pool, 693 unsigned int *offset, 694 unsigned int size, gfp_t gfp) 695 { 696 unsigned int max_size = PAGE_SIZE << pool->p.order; 697 struct page *page = pool->frag_page; 698 699 if (WARN_ON(!(pool->p.flags & PP_FLAG_PAGE_FRAG) || 700 size > max_size)) 701 return NULL; 702 703 size = ALIGN(size, dma_get_cache_alignment()); 704 *offset = pool->frag_offset; 705 706 if (page && *offset + size > max_size) { 707 page = page_pool_drain_frag(pool, page); 708 if (page) { 709 alloc_stat_inc(pool, fast); 710 goto frag_reset; 711 } 712 } 713 714 if (!page) { 715 page = page_pool_alloc_pages(pool, gfp); 716 if (unlikely(!page)) { 717 pool->frag_page = NULL; 718 return NULL; 719 } 720 721 pool->frag_page = page; 722 723 frag_reset: 724 pool->frag_users = 1; 725 *offset = 0; 726 pool->frag_offset = size; 727 page_pool_fragment_page(page, BIAS_MAX); 728 return page; 729 } 730 731 pool->frag_users++; 732 pool->frag_offset = *offset + size; 733 alloc_stat_inc(pool, fast); 734 return page; 735 } 736 EXPORT_SYMBOL(page_pool_alloc_frag); 737 738 static void page_pool_empty_ring(struct page_pool *pool) 739 { 740 struct page *page; 741 742 /* Empty recycle ring */ 743 while ((page = ptr_ring_consume_bh(&pool->ring))) { 744 /* Verify the refcnt invariant of cached pages */ 745 if (!(page_ref_count(page) == 1)) 746 pr_crit("%s() page_pool refcnt %d violation\n", 747 __func__, page_ref_count(page)); 748 749 page_pool_return_page(pool, page); 750 } 751 } 752 753 static void page_pool_free(struct page_pool *pool) 754 { 755 if (pool->disconnect) 756 pool->disconnect(pool); 757 758 ptr_ring_cleanup(&pool->ring, NULL); 759 760 if (pool->p.flags & PP_FLAG_DMA_MAP) 761 put_device(pool->p.dev); 762 763 #ifdef CONFIG_PAGE_POOL_STATS 764 free_percpu(pool->recycle_stats); 765 #endif 766 kfree(pool); 767 } 768 769 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 770 { 771 struct page *page; 772 773 if (pool->destroy_cnt) 774 return; 775 776 /* Empty alloc cache, assume caller made sure this is 777 * no-longer in use, and page_pool_alloc_pages() cannot be 778 * call concurrently. 779 */ 780 while (pool->alloc.count) { 781 page = pool->alloc.cache[--pool->alloc.count]; 782 page_pool_return_page(pool, page); 783 } 784 } 785 786 static void page_pool_scrub(struct page_pool *pool) 787 { 788 page_pool_empty_alloc_cache_once(pool); 789 pool->destroy_cnt++; 790 791 /* No more consumers should exist, but producers could still 792 * be in-flight. 793 */ 794 page_pool_empty_ring(pool); 795 } 796 797 static int page_pool_release(struct page_pool *pool) 798 { 799 int inflight; 800 801 page_pool_scrub(pool); 802 inflight = page_pool_inflight(pool); 803 if (!inflight) 804 page_pool_free(pool); 805 806 return inflight; 807 } 808 809 static void page_pool_release_retry(struct work_struct *wq) 810 { 811 struct delayed_work *dwq = to_delayed_work(wq); 812 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 813 int inflight; 814 815 inflight = page_pool_release(pool); 816 if (!inflight) 817 return; 818 819 /* Periodic warning */ 820 if (time_after_eq(jiffies, pool->defer_warn)) { 821 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 822 823 pr_warn("%s() stalled pool shutdown %d inflight %d sec\n", 824 __func__, inflight, sec); 825 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 826 } 827 828 /* Still not ready to be disconnected, retry later */ 829 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 830 } 831 832 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 833 struct xdp_mem_info *mem) 834 { 835 refcount_inc(&pool->user_cnt); 836 pool->disconnect = disconnect; 837 pool->xdp_mem_id = mem->id; 838 } 839 840 void page_pool_destroy(struct page_pool *pool) 841 { 842 if (!pool) 843 return; 844 845 if (!page_pool_put(pool)) 846 return; 847 848 page_pool_free_frag(pool); 849 850 if (!page_pool_release(pool)) 851 return; 852 853 pool->defer_start = jiffies; 854 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 855 856 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 857 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 858 } 859 EXPORT_SYMBOL(page_pool_destroy); 860 861 /* Caller must provide appropriate safe context, e.g. NAPI. */ 862 void page_pool_update_nid(struct page_pool *pool, int new_nid) 863 { 864 struct page *page; 865 866 trace_page_pool_update_nid(pool, new_nid); 867 pool->p.nid = new_nid; 868 869 /* Flush pool alloc cache, as refill will check NUMA node */ 870 while (pool->alloc.count) { 871 page = pool->alloc.cache[--pool->alloc.count]; 872 page_pool_return_page(pool, page); 873 } 874 } 875 EXPORT_SYMBOL(page_pool_update_nid); 876 877 bool page_pool_return_skb_page(struct page *page) 878 { 879 struct page_pool *pp; 880 881 page = compound_head(page); 882 883 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 884 * in order to preserve any existing bits, such as bit 0 for the 885 * head page of compound page and bit 1 for pfmemalloc page, so 886 * mask those bits for freeing side when doing below checking, 887 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 888 * to avoid recycling the pfmemalloc page. 889 */ 890 if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE)) 891 return false; 892 893 pp = page->pp; 894 895 /* Driver set this to memory recycling info. Reset it on recycle. 896 * This will *not* work for NIC using a split-page memory model. 897 * The page will be returned to the pool here regardless of the 898 * 'flipped' fragment being in use or not. 899 */ 900 page_pool_put_full_page(pp, page, false); 901 902 return true; 903 } 904 EXPORT_SYMBOL(page_pool_return_skb_page); 905