1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * page_pool.c
4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
5 * Copyright (C) 2016 Red Hat, Inc.
6 */
7
8 #include <linux/types.h>
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/device.h>
12
13 #include <net/page_pool/helpers.h>
14 #include <net/xdp.h>
15
16 #include <linux/dma-direction.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/page-flags.h>
19 #include <linux/mm.h> /* for put_page() */
20 #include <linux/poison.h>
21 #include <linux/ethtool.h>
22 #include <linux/netdevice.h>
23
24 #include <trace/events/page_pool.h>
25
26 #define DEFER_TIME (msecs_to_jiffies(1000))
27 #define DEFER_WARN_INTERVAL (60 * HZ)
28
29 #define BIAS_MAX LONG_MAX
30
31 #ifdef CONFIG_PAGE_POOL_STATS
32 /* alloc_stat_inc is intended to be used in softirq context */
33 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++)
34 /* recycle_stat_inc is safe to use when preemption is possible. */
35 #define recycle_stat_inc(pool, __stat) \
36 do { \
37 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
38 this_cpu_inc(s->__stat); \
39 } while (0)
40
41 #define recycle_stat_add(pool, __stat, val) \
42 do { \
43 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
44 this_cpu_add(s->__stat, val); \
45 } while (0)
46
47 static const char pp_stats[][ETH_GSTRING_LEN] = {
48 "rx_pp_alloc_fast",
49 "rx_pp_alloc_slow",
50 "rx_pp_alloc_slow_ho",
51 "rx_pp_alloc_empty",
52 "rx_pp_alloc_refill",
53 "rx_pp_alloc_waive",
54 "rx_pp_recycle_cached",
55 "rx_pp_recycle_cache_full",
56 "rx_pp_recycle_ring",
57 "rx_pp_recycle_ring_full",
58 "rx_pp_recycle_released_ref",
59 };
60
61 /**
62 * page_pool_get_stats() - fetch page pool stats
63 * @pool: pool from which page was allocated
64 * @stats: struct page_pool_stats to fill in
65 *
66 * Retrieve statistics about the page_pool. This API is only available
67 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``.
68 * A pointer to a caller allocated struct page_pool_stats structure
69 * is passed to this API which is filled in. The caller can then report
70 * those stats to the user (perhaps via ethtool, debugfs, etc.).
71 */
page_pool_get_stats(struct page_pool * pool,struct page_pool_stats * stats)72 bool page_pool_get_stats(struct page_pool *pool,
73 struct page_pool_stats *stats)
74 {
75 int cpu = 0;
76
77 if (!stats)
78 return false;
79
80 /* The caller is responsible to initialize stats. */
81 stats->alloc_stats.fast += pool->alloc_stats.fast;
82 stats->alloc_stats.slow += pool->alloc_stats.slow;
83 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
84 stats->alloc_stats.empty += pool->alloc_stats.empty;
85 stats->alloc_stats.refill += pool->alloc_stats.refill;
86 stats->alloc_stats.waive += pool->alloc_stats.waive;
87
88 for_each_possible_cpu(cpu) {
89 const struct page_pool_recycle_stats *pcpu =
90 per_cpu_ptr(pool->recycle_stats, cpu);
91
92 stats->recycle_stats.cached += pcpu->cached;
93 stats->recycle_stats.cache_full += pcpu->cache_full;
94 stats->recycle_stats.ring += pcpu->ring;
95 stats->recycle_stats.ring_full += pcpu->ring_full;
96 stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
97 }
98
99 return true;
100 }
101 EXPORT_SYMBOL(page_pool_get_stats);
102
page_pool_ethtool_stats_get_strings(u8 * data)103 u8 *page_pool_ethtool_stats_get_strings(u8 *data)
104 {
105 int i;
106
107 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
108 memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
109 data += ETH_GSTRING_LEN;
110 }
111
112 return data;
113 }
114 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
115
page_pool_ethtool_stats_get_count(void)116 int page_pool_ethtool_stats_get_count(void)
117 {
118 return ARRAY_SIZE(pp_stats);
119 }
120 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
121
page_pool_ethtool_stats_get(u64 * data,void * stats)122 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats)
123 {
124 struct page_pool_stats *pool_stats = stats;
125
126 *data++ = pool_stats->alloc_stats.fast;
127 *data++ = pool_stats->alloc_stats.slow;
128 *data++ = pool_stats->alloc_stats.slow_high_order;
129 *data++ = pool_stats->alloc_stats.empty;
130 *data++ = pool_stats->alloc_stats.refill;
131 *data++ = pool_stats->alloc_stats.waive;
132 *data++ = pool_stats->recycle_stats.cached;
133 *data++ = pool_stats->recycle_stats.cache_full;
134 *data++ = pool_stats->recycle_stats.ring;
135 *data++ = pool_stats->recycle_stats.ring_full;
136 *data++ = pool_stats->recycle_stats.released_refcnt;
137
138 return data;
139 }
140 EXPORT_SYMBOL(page_pool_ethtool_stats_get);
141
142 #else
143 #define alloc_stat_inc(pool, __stat)
144 #define recycle_stat_inc(pool, __stat)
145 #define recycle_stat_add(pool, __stat, val)
146 #endif
147
page_pool_producer_lock(struct page_pool * pool)148 static bool page_pool_producer_lock(struct page_pool *pool)
149 __acquires(&pool->ring.producer_lock)
150 {
151 bool in_softirq = in_softirq();
152
153 if (in_softirq)
154 spin_lock(&pool->ring.producer_lock);
155 else
156 spin_lock_bh(&pool->ring.producer_lock);
157
158 return in_softirq;
159 }
160
page_pool_producer_unlock(struct page_pool * pool,bool in_softirq)161 static void page_pool_producer_unlock(struct page_pool *pool,
162 bool in_softirq)
163 __releases(&pool->ring.producer_lock)
164 {
165 if (in_softirq)
166 spin_unlock(&pool->ring.producer_lock);
167 else
168 spin_unlock_bh(&pool->ring.producer_lock);
169 }
170
page_pool_init(struct page_pool * pool,const struct page_pool_params * params)171 static int page_pool_init(struct page_pool *pool,
172 const struct page_pool_params *params)
173 {
174 unsigned int ring_qsize = 1024; /* Default */
175
176 memcpy(&pool->p, params, sizeof(pool->p));
177
178 /* Validate only known flags were used */
179 if (pool->p.flags & ~(PP_FLAG_ALL))
180 return -EINVAL;
181
182 if (pool->p.pool_size)
183 ring_qsize = pool->p.pool_size;
184
185 /* Sanity limit mem that can be pinned down */
186 if (ring_qsize > 32768)
187 return -E2BIG;
188
189 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
190 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
191 * which is the XDP_TX use-case.
192 */
193 if (pool->p.flags & PP_FLAG_DMA_MAP) {
194 if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
195 (pool->p.dma_dir != DMA_BIDIRECTIONAL))
196 return -EINVAL;
197 }
198
199 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) {
200 /* In order to request DMA-sync-for-device the page
201 * needs to be mapped
202 */
203 if (!(pool->p.flags & PP_FLAG_DMA_MAP))
204 return -EINVAL;
205
206 if (!pool->p.max_len)
207 return -EINVAL;
208
209 /* pool->p.offset has to be set according to the address
210 * offset used by the DMA engine to start copying rx data
211 */
212 }
213
214 if (PAGE_POOL_DMA_USE_PP_FRAG_COUNT &&
215 pool->p.flags & PP_FLAG_PAGE_FRAG)
216 return -EINVAL;
217
218 #ifdef CONFIG_PAGE_POOL_STATS
219 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
220 if (!pool->recycle_stats)
221 return -ENOMEM;
222 #endif
223
224 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) {
225 #ifdef CONFIG_PAGE_POOL_STATS
226 free_percpu(pool->recycle_stats);
227 #endif
228 return -ENOMEM;
229 }
230
231 atomic_set(&pool->pages_state_release_cnt, 0);
232
233 /* Driver calling page_pool_create() also call page_pool_destroy() */
234 refcount_set(&pool->user_cnt, 1);
235
236 if (pool->p.flags & PP_FLAG_DMA_MAP)
237 get_device(pool->p.dev);
238
239 return 0;
240 }
241
242 /**
243 * page_pool_create() - create a page pool.
244 * @params: parameters, see struct page_pool_params
245 */
page_pool_create(const struct page_pool_params * params)246 struct page_pool *page_pool_create(const struct page_pool_params *params)
247 {
248 struct page_pool *pool;
249 int err;
250
251 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
252 if (!pool)
253 return ERR_PTR(-ENOMEM);
254
255 err = page_pool_init(pool, params);
256 if (err < 0) {
257 pr_warn("%s() gave up with errno %d\n", __func__, err);
258 kfree(pool);
259 return ERR_PTR(err);
260 }
261
262 return pool;
263 }
264 EXPORT_SYMBOL(page_pool_create);
265
266 static void page_pool_return_page(struct page_pool *pool, struct page *page);
267
268 noinline
page_pool_refill_alloc_cache(struct page_pool * pool)269 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool)
270 {
271 struct ptr_ring *r = &pool->ring;
272 struct page *page;
273 int pref_nid; /* preferred NUMA node */
274
275 /* Quicker fallback, avoid locks when ring is empty */
276 if (__ptr_ring_empty(r)) {
277 alloc_stat_inc(pool, empty);
278 return NULL;
279 }
280
281 /* Softirq guarantee CPU and thus NUMA node is stable. This,
282 * assumes CPU refilling driver RX-ring will also run RX-NAPI.
283 */
284 #ifdef CONFIG_NUMA
285 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
286 #else
287 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
288 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
289 #endif
290
291 /* Refill alloc array, but only if NUMA match */
292 do {
293 page = __ptr_ring_consume(r);
294 if (unlikely(!page))
295 break;
296
297 if (likely(page_to_nid(page) == pref_nid)) {
298 pool->alloc.cache[pool->alloc.count++] = page;
299 } else {
300 /* NUMA mismatch;
301 * (1) release 1 page to page-allocator and
302 * (2) break out to fallthrough to alloc_pages_node.
303 * This limit stress on page buddy alloactor.
304 */
305 page_pool_return_page(pool, page);
306 alloc_stat_inc(pool, waive);
307 page = NULL;
308 break;
309 }
310 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
311
312 /* Return last page */
313 if (likely(pool->alloc.count > 0)) {
314 page = pool->alloc.cache[--pool->alloc.count];
315 alloc_stat_inc(pool, refill);
316 }
317
318 return page;
319 }
320
321 /* fast path */
__page_pool_get_cached(struct page_pool * pool)322 static struct page *__page_pool_get_cached(struct page_pool *pool)
323 {
324 struct page *page;
325
326 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
327 if (likely(pool->alloc.count)) {
328 /* Fast-path */
329 page = pool->alloc.cache[--pool->alloc.count];
330 alloc_stat_inc(pool, fast);
331 } else {
332 page = page_pool_refill_alloc_cache(pool);
333 }
334
335 return page;
336 }
337
page_pool_dma_sync_for_device(struct page_pool * pool,struct page * page,unsigned int dma_sync_size)338 static void page_pool_dma_sync_for_device(struct page_pool *pool,
339 struct page *page,
340 unsigned int dma_sync_size)
341 {
342 dma_addr_t dma_addr = page_pool_get_dma_addr(page);
343
344 dma_sync_size = min(dma_sync_size, pool->p.max_len);
345 dma_sync_single_range_for_device(pool->p.dev, dma_addr,
346 pool->p.offset, dma_sync_size,
347 pool->p.dma_dir);
348 }
349
page_pool_dma_map(struct page_pool * pool,struct page * page)350 static bool page_pool_dma_map(struct page_pool *pool, struct page *page)
351 {
352 dma_addr_t dma;
353
354 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr
355 * since dma_addr_t can be either 32 or 64 bits and does not always fit
356 * into page private data (i.e 32bit cpu with 64bit DMA caps)
357 * This mapping is kept for lifetime of page, until leaving pool.
358 */
359 dma = dma_map_page_attrs(pool->p.dev, page, 0,
360 (PAGE_SIZE << pool->p.order),
361 pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC |
362 DMA_ATTR_WEAK_ORDERING);
363 if (dma_mapping_error(pool->p.dev, dma))
364 return false;
365
366 page_pool_set_dma_addr(page, dma);
367
368 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
369 page_pool_dma_sync_for_device(pool, page, pool->p.max_len);
370
371 return true;
372 }
373
page_pool_set_pp_info(struct page_pool * pool,struct page * page)374 static void page_pool_set_pp_info(struct page_pool *pool,
375 struct page *page)
376 {
377 page->pp = pool;
378 page->pp_magic |= PP_SIGNATURE;
379 if (pool->p.init_callback)
380 pool->p.init_callback(page, pool->p.init_arg);
381 }
382
page_pool_clear_pp_info(struct page * page)383 static void page_pool_clear_pp_info(struct page *page)
384 {
385 page->pp_magic = 0;
386 page->pp = NULL;
387 }
388
__page_pool_alloc_page_order(struct page_pool * pool,gfp_t gfp)389 static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
390 gfp_t gfp)
391 {
392 struct page *page;
393
394 gfp |= __GFP_COMP;
395 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
396 if (unlikely(!page))
397 return NULL;
398
399 if ((pool->p.flags & PP_FLAG_DMA_MAP) &&
400 unlikely(!page_pool_dma_map(pool, page))) {
401 put_page(page);
402 return NULL;
403 }
404
405 alloc_stat_inc(pool, slow_high_order);
406 page_pool_set_pp_info(pool, page);
407
408 /* Track how many pages are held 'in-flight' */
409 pool->pages_state_hold_cnt++;
410 trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt);
411 return page;
412 }
413
414 /* slow path */
415 noinline
__page_pool_alloc_pages_slow(struct page_pool * pool,gfp_t gfp)416 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
417 gfp_t gfp)
418 {
419 const int bulk = PP_ALLOC_CACHE_REFILL;
420 unsigned int pp_flags = pool->p.flags;
421 unsigned int pp_order = pool->p.order;
422 struct page *page;
423 int i, nr_pages;
424
425 /* Don't support bulk alloc for high-order pages */
426 if (unlikely(pp_order))
427 return __page_pool_alloc_page_order(pool, gfp);
428
429 /* Unnecessary as alloc cache is empty, but guarantees zero count */
430 if (unlikely(pool->alloc.count > 0))
431 return pool->alloc.cache[--pool->alloc.count];
432
433 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */
434 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
435
436 nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk,
437 pool->alloc.cache);
438 if (unlikely(!nr_pages))
439 return NULL;
440
441 /* Pages have been filled into alloc.cache array, but count is zero and
442 * page element have not been (possibly) DMA mapped.
443 */
444 for (i = 0; i < nr_pages; i++) {
445 page = pool->alloc.cache[i];
446 if ((pp_flags & PP_FLAG_DMA_MAP) &&
447 unlikely(!page_pool_dma_map(pool, page))) {
448 put_page(page);
449 continue;
450 }
451
452 page_pool_set_pp_info(pool, page);
453 pool->alloc.cache[pool->alloc.count++] = page;
454 /* Track how many pages are held 'in-flight' */
455 pool->pages_state_hold_cnt++;
456 trace_page_pool_state_hold(pool, page,
457 pool->pages_state_hold_cnt);
458 }
459
460 /* Return last page */
461 if (likely(pool->alloc.count > 0)) {
462 page = pool->alloc.cache[--pool->alloc.count];
463 alloc_stat_inc(pool, slow);
464 } else {
465 page = NULL;
466 }
467
468 /* When page just alloc'ed is should/must have refcnt 1. */
469 return page;
470 }
471
472 /* For using page_pool replace: alloc_pages() API calls, but provide
473 * synchronization guarantee for allocation side.
474 */
page_pool_alloc_pages(struct page_pool * pool,gfp_t gfp)475 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
476 {
477 struct page *page;
478
479 /* Fast-path: Get a page from cache */
480 page = __page_pool_get_cached(pool);
481 if (page)
482 return page;
483
484 /* Slow-path: cache empty, do real allocation */
485 page = __page_pool_alloc_pages_slow(pool, gfp);
486 return page;
487 }
488 EXPORT_SYMBOL(page_pool_alloc_pages);
489
490 /* Calculate distance between two u32 values, valid if distance is below 2^(31)
491 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
492 */
493 #define _distance(a, b) (s32)((a) - (b))
494
page_pool_inflight(struct page_pool * pool)495 static s32 page_pool_inflight(struct page_pool *pool)
496 {
497 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
498 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
499 s32 inflight;
500
501 inflight = _distance(hold_cnt, release_cnt);
502
503 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
504 WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight);
505
506 return inflight;
507 }
508
509 /* Disconnects a page (from a page_pool). API users can have a need
510 * to disconnect a page (from a page_pool), to allow it to be used as
511 * a regular page (that will eventually be returned to the normal
512 * page-allocator via put_page).
513 */
page_pool_return_page(struct page_pool * pool,struct page * page)514 static void page_pool_return_page(struct page_pool *pool, struct page *page)
515 {
516 dma_addr_t dma;
517 int count;
518
519 if (!(pool->p.flags & PP_FLAG_DMA_MAP))
520 /* Always account for inflight pages, even if we didn't
521 * map them
522 */
523 goto skip_dma_unmap;
524
525 dma = page_pool_get_dma_addr(page);
526
527 /* When page is unmapped, it cannot be returned to our pool */
528 dma_unmap_page_attrs(pool->p.dev, dma,
529 PAGE_SIZE << pool->p.order, pool->p.dma_dir,
530 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
531 page_pool_set_dma_addr(page, 0);
532 skip_dma_unmap:
533 page_pool_clear_pp_info(page);
534
535 /* This may be the last page returned, releasing the pool, so
536 * it is not safe to reference pool afterwards.
537 */
538 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
539 trace_page_pool_state_release(pool, page, count);
540
541 put_page(page);
542 /* An optimization would be to call __free_pages(page, pool->p.order)
543 * knowing page is not part of page-cache (thus avoiding a
544 * __page_cache_release() call).
545 */
546 }
547
page_pool_recycle_in_ring(struct page_pool * pool,struct page * page)548 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page)
549 {
550 int ret;
551 /* BH protection not needed if current is softirq */
552 if (in_softirq())
553 ret = ptr_ring_produce(&pool->ring, page);
554 else
555 ret = ptr_ring_produce_bh(&pool->ring, page);
556
557 if (!ret) {
558 recycle_stat_inc(pool, ring);
559 return true;
560 }
561
562 return false;
563 }
564
565 /* Only allow direct recycling in special circumstances, into the
566 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case.
567 *
568 * Caller must provide appropriate safe context.
569 */
page_pool_recycle_in_cache(struct page * page,struct page_pool * pool)570 static bool page_pool_recycle_in_cache(struct page *page,
571 struct page_pool *pool)
572 {
573 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
574 recycle_stat_inc(pool, cache_full);
575 return false;
576 }
577
578 /* Caller MUST have verified/know (page_ref_count(page) == 1) */
579 pool->alloc.cache[pool->alloc.count++] = page;
580 recycle_stat_inc(pool, cached);
581 return true;
582 }
583
584 /* If the page refcnt == 1, this will try to recycle the page.
585 * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for
586 * the configured size min(dma_sync_size, pool->max_len).
587 * If the page refcnt != 1, then the page will be returned to memory
588 * subsystem.
589 */
590 static __always_inline struct page *
__page_pool_put_page(struct page_pool * pool,struct page * page,unsigned int dma_sync_size,bool allow_direct)591 __page_pool_put_page(struct page_pool *pool, struct page *page,
592 unsigned int dma_sync_size, bool allow_direct)
593 {
594 lockdep_assert_no_hardirq();
595
596 /* This allocator is optimized for the XDP mode that uses
597 * one-frame-per-page, but have fallbacks that act like the
598 * regular page allocator APIs.
599 *
600 * refcnt == 1 means page_pool owns page, and can recycle it.
601 *
602 * page is NOT reusable when allocated when system is under
603 * some pressure. (page_is_pfmemalloc)
604 */
605 if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) {
606 /* Read barrier done in page_ref_count / READ_ONCE */
607
608 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
609 page_pool_dma_sync_for_device(pool, page,
610 dma_sync_size);
611
612 if (allow_direct && in_softirq() &&
613 page_pool_recycle_in_cache(page, pool))
614 return NULL;
615
616 /* Page found as candidate for recycling */
617 return page;
618 }
619 /* Fallback/non-XDP mode: API user have elevated refcnt.
620 *
621 * Many drivers split up the page into fragments, and some
622 * want to keep doing this to save memory and do refcnt based
623 * recycling. Support this use case too, to ease drivers
624 * switching between XDP/non-XDP.
625 *
626 * In-case page_pool maintains the DMA mapping, API user must
627 * call page_pool_put_page once. In this elevated refcnt
628 * case, the DMA is unmapped/released, as driver is likely
629 * doing refcnt based recycle tricks, meaning another process
630 * will be invoking put_page.
631 */
632 recycle_stat_inc(pool, released_refcnt);
633 page_pool_return_page(pool, page);
634
635 return NULL;
636 }
637
page_pool_put_defragged_page(struct page_pool * pool,struct page * page,unsigned int dma_sync_size,bool allow_direct)638 void page_pool_put_defragged_page(struct page_pool *pool, struct page *page,
639 unsigned int dma_sync_size, bool allow_direct)
640 {
641 page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct);
642 if (page && !page_pool_recycle_in_ring(pool, page)) {
643 /* Cache full, fallback to free pages */
644 recycle_stat_inc(pool, ring_full);
645 page_pool_return_page(pool, page);
646 }
647 }
648 EXPORT_SYMBOL(page_pool_put_defragged_page);
649
650 /**
651 * page_pool_put_page_bulk() - release references on multiple pages
652 * @pool: pool from which pages were allocated
653 * @data: array holding page pointers
654 * @count: number of pages in @data
655 *
656 * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring
657 * producer lock. If the ptr_ring is full, page_pool_put_page_bulk()
658 * will release leftover pages to the page allocator.
659 * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx
660 * completion loop for the XDP_REDIRECT use case.
661 *
662 * Please note the caller must not use data area after running
663 * page_pool_put_page_bulk(), as this function overwrites it.
664 */
page_pool_put_page_bulk(struct page_pool * pool,void ** data,int count)665 void page_pool_put_page_bulk(struct page_pool *pool, void **data,
666 int count)
667 {
668 int i, bulk_len = 0;
669 bool in_softirq;
670
671 for (i = 0; i < count; i++) {
672 struct page *page = virt_to_head_page(data[i]);
673
674 /* It is not the last user for the page frag case */
675 if (!page_pool_is_last_frag(pool, page))
676 continue;
677
678 page = __page_pool_put_page(pool, page, -1, false);
679 /* Approved for bulk recycling in ptr_ring cache */
680 if (page)
681 data[bulk_len++] = page;
682 }
683
684 if (unlikely(!bulk_len))
685 return;
686
687 /* Bulk producer into ptr_ring page_pool cache */
688 in_softirq = page_pool_producer_lock(pool);
689 for (i = 0; i < bulk_len; i++) {
690 if (__ptr_ring_produce(&pool->ring, data[i])) {
691 /* ring full */
692 recycle_stat_inc(pool, ring_full);
693 break;
694 }
695 }
696 recycle_stat_add(pool, ring, i);
697 page_pool_producer_unlock(pool, in_softirq);
698
699 /* Hopefully all pages was return into ptr_ring */
700 if (likely(i == bulk_len))
701 return;
702
703 /* ptr_ring cache full, free remaining pages outside producer lock
704 * since put_page() with refcnt == 1 can be an expensive operation
705 */
706 for (; i < bulk_len; i++)
707 page_pool_return_page(pool, data[i]);
708 }
709 EXPORT_SYMBOL(page_pool_put_page_bulk);
710
page_pool_drain_frag(struct page_pool * pool,struct page * page)711 static struct page *page_pool_drain_frag(struct page_pool *pool,
712 struct page *page)
713 {
714 long drain_count = BIAS_MAX - pool->frag_users;
715
716 /* Some user is still using the page frag */
717 if (likely(page_pool_defrag_page(page, drain_count)))
718 return NULL;
719
720 if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) {
721 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
722 page_pool_dma_sync_for_device(pool, page, -1);
723
724 return page;
725 }
726
727 page_pool_return_page(pool, page);
728 return NULL;
729 }
730
page_pool_free_frag(struct page_pool * pool)731 static void page_pool_free_frag(struct page_pool *pool)
732 {
733 long drain_count = BIAS_MAX - pool->frag_users;
734 struct page *page = pool->frag_page;
735
736 pool->frag_page = NULL;
737
738 if (!page || page_pool_defrag_page(page, drain_count))
739 return;
740
741 page_pool_return_page(pool, page);
742 }
743
page_pool_alloc_frag(struct page_pool * pool,unsigned int * offset,unsigned int size,gfp_t gfp)744 struct page *page_pool_alloc_frag(struct page_pool *pool,
745 unsigned int *offset,
746 unsigned int size, gfp_t gfp)
747 {
748 unsigned int max_size = PAGE_SIZE << pool->p.order;
749 struct page *page = pool->frag_page;
750
751 if (WARN_ON(!(pool->p.flags & PP_FLAG_PAGE_FRAG) ||
752 size > max_size))
753 return NULL;
754
755 size = ALIGN(size, dma_get_cache_alignment());
756 *offset = pool->frag_offset;
757
758 if (page && *offset + size > max_size) {
759 page = page_pool_drain_frag(pool, page);
760 if (page) {
761 alloc_stat_inc(pool, fast);
762 goto frag_reset;
763 }
764 }
765
766 if (!page) {
767 page = page_pool_alloc_pages(pool, gfp);
768 if (unlikely(!page)) {
769 pool->frag_page = NULL;
770 return NULL;
771 }
772
773 pool->frag_page = page;
774
775 frag_reset:
776 pool->frag_users = 1;
777 *offset = 0;
778 pool->frag_offset = size;
779 page_pool_fragment_page(page, BIAS_MAX);
780 return page;
781 }
782
783 pool->frag_users++;
784 pool->frag_offset = *offset + size;
785 alloc_stat_inc(pool, fast);
786 return page;
787 }
788 EXPORT_SYMBOL(page_pool_alloc_frag);
789
page_pool_empty_ring(struct page_pool * pool)790 static void page_pool_empty_ring(struct page_pool *pool)
791 {
792 struct page *page;
793
794 /* Empty recycle ring */
795 while ((page = ptr_ring_consume_bh(&pool->ring))) {
796 /* Verify the refcnt invariant of cached pages */
797 if (!(page_ref_count(page) == 1))
798 pr_crit("%s() page_pool refcnt %d violation\n",
799 __func__, page_ref_count(page));
800
801 page_pool_return_page(pool, page);
802 }
803 }
804
page_pool_free(struct page_pool * pool)805 static void page_pool_free(struct page_pool *pool)
806 {
807 if (pool->disconnect)
808 pool->disconnect(pool);
809
810 ptr_ring_cleanup(&pool->ring, NULL);
811
812 if (pool->p.flags & PP_FLAG_DMA_MAP)
813 put_device(pool->p.dev);
814
815 #ifdef CONFIG_PAGE_POOL_STATS
816 free_percpu(pool->recycle_stats);
817 #endif
818 kfree(pool);
819 }
820
page_pool_empty_alloc_cache_once(struct page_pool * pool)821 static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
822 {
823 struct page *page;
824
825 if (pool->destroy_cnt)
826 return;
827
828 /* Empty alloc cache, assume caller made sure this is
829 * no-longer in use, and page_pool_alloc_pages() cannot be
830 * call concurrently.
831 */
832 while (pool->alloc.count) {
833 page = pool->alloc.cache[--pool->alloc.count];
834 page_pool_return_page(pool, page);
835 }
836 }
837
page_pool_scrub(struct page_pool * pool)838 static void page_pool_scrub(struct page_pool *pool)
839 {
840 page_pool_empty_alloc_cache_once(pool);
841 pool->destroy_cnt++;
842
843 /* No more consumers should exist, but producers could still
844 * be in-flight.
845 */
846 page_pool_empty_ring(pool);
847 }
848
page_pool_release(struct page_pool * pool)849 static int page_pool_release(struct page_pool *pool)
850 {
851 int inflight;
852
853 page_pool_scrub(pool);
854 inflight = page_pool_inflight(pool);
855 if (!inflight)
856 page_pool_free(pool);
857
858 return inflight;
859 }
860
page_pool_release_retry(struct work_struct * wq)861 static void page_pool_release_retry(struct work_struct *wq)
862 {
863 struct delayed_work *dwq = to_delayed_work(wq);
864 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
865 int inflight;
866
867 inflight = page_pool_release(pool);
868 if (!inflight)
869 return;
870
871 /* Periodic warning */
872 if (time_after_eq(jiffies, pool->defer_warn)) {
873 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
874
875 pr_warn("%s() stalled pool shutdown %d inflight %d sec\n",
876 __func__, inflight, sec);
877 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
878 }
879
880 /* Still not ready to be disconnected, retry later */
881 schedule_delayed_work(&pool->release_dw, DEFER_TIME);
882 }
883
page_pool_use_xdp_mem(struct page_pool * pool,void (* disconnect)(void *),struct xdp_mem_info * mem)884 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
885 struct xdp_mem_info *mem)
886 {
887 refcount_inc(&pool->user_cnt);
888 pool->disconnect = disconnect;
889 pool->xdp_mem_id = mem->id;
890 }
891
page_pool_unlink_napi(struct page_pool * pool)892 void page_pool_unlink_napi(struct page_pool *pool)
893 {
894 if (!pool->p.napi)
895 return;
896
897 /* To avoid races with recycling and additional barriers make sure
898 * pool and NAPI are unlinked when NAPI is disabled.
899 */
900 WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state) ||
901 READ_ONCE(pool->p.napi->list_owner) != -1);
902
903 WRITE_ONCE(pool->p.napi, NULL);
904 }
905 EXPORT_SYMBOL(page_pool_unlink_napi);
906
page_pool_destroy(struct page_pool * pool)907 void page_pool_destroy(struct page_pool *pool)
908 {
909 if (!pool)
910 return;
911
912 if (!page_pool_put(pool))
913 return;
914
915 page_pool_unlink_napi(pool);
916 page_pool_free_frag(pool);
917
918 if (!page_pool_release(pool))
919 return;
920
921 pool->defer_start = jiffies;
922 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
923
924 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
925 schedule_delayed_work(&pool->release_dw, DEFER_TIME);
926 }
927 EXPORT_SYMBOL(page_pool_destroy);
928
929 /* Caller must provide appropriate safe context, e.g. NAPI. */
page_pool_update_nid(struct page_pool * pool,int new_nid)930 void page_pool_update_nid(struct page_pool *pool, int new_nid)
931 {
932 struct page *page;
933
934 trace_page_pool_update_nid(pool, new_nid);
935 pool->p.nid = new_nid;
936
937 /* Flush pool alloc cache, as refill will check NUMA node */
938 while (pool->alloc.count) {
939 page = pool->alloc.cache[--pool->alloc.count];
940 page_pool_return_page(pool, page);
941 }
942 }
943 EXPORT_SYMBOL(page_pool_update_nid);
944