1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/types.h> 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/device.h> 12 13 #include <net/page_pool.h> 14 #include <net/xdp.h> 15 16 #include <linux/dma-direction.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/page-flags.h> 19 #include <linux/mm.h> /* for put_page() */ 20 #include <linux/poison.h> 21 #include <linux/ethtool.h> 22 #include <linux/netdevice.h> 23 24 #include <trace/events/page_pool.h> 25 26 #define DEFER_TIME (msecs_to_jiffies(1000)) 27 #define DEFER_WARN_INTERVAL (60 * HZ) 28 29 #define BIAS_MAX LONG_MAX 30 31 #ifdef CONFIG_PAGE_POOL_STATS 32 /* alloc_stat_inc is intended to be used in softirq context */ 33 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 34 /* recycle_stat_inc is safe to use when preemption is possible. */ 35 #define recycle_stat_inc(pool, __stat) \ 36 do { \ 37 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 38 this_cpu_inc(s->__stat); \ 39 } while (0) 40 41 #define recycle_stat_add(pool, __stat, val) \ 42 do { \ 43 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 44 this_cpu_add(s->__stat, val); \ 45 } while (0) 46 47 static const char pp_stats[][ETH_GSTRING_LEN] = { 48 "rx_pp_alloc_fast", 49 "rx_pp_alloc_slow", 50 "rx_pp_alloc_slow_ho", 51 "rx_pp_alloc_empty", 52 "rx_pp_alloc_refill", 53 "rx_pp_alloc_waive", 54 "rx_pp_recycle_cached", 55 "rx_pp_recycle_cache_full", 56 "rx_pp_recycle_ring", 57 "rx_pp_recycle_ring_full", 58 "rx_pp_recycle_released_ref", 59 }; 60 61 bool page_pool_get_stats(struct page_pool *pool, 62 struct page_pool_stats *stats) 63 { 64 int cpu = 0; 65 66 if (!stats) 67 return false; 68 69 /* The caller is responsible to initialize stats. */ 70 stats->alloc_stats.fast += pool->alloc_stats.fast; 71 stats->alloc_stats.slow += pool->alloc_stats.slow; 72 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 73 stats->alloc_stats.empty += pool->alloc_stats.empty; 74 stats->alloc_stats.refill += pool->alloc_stats.refill; 75 stats->alloc_stats.waive += pool->alloc_stats.waive; 76 77 for_each_possible_cpu(cpu) { 78 const struct page_pool_recycle_stats *pcpu = 79 per_cpu_ptr(pool->recycle_stats, cpu); 80 81 stats->recycle_stats.cached += pcpu->cached; 82 stats->recycle_stats.cache_full += pcpu->cache_full; 83 stats->recycle_stats.ring += pcpu->ring; 84 stats->recycle_stats.ring_full += pcpu->ring_full; 85 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 86 } 87 88 return true; 89 } 90 EXPORT_SYMBOL(page_pool_get_stats); 91 92 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 93 { 94 int i; 95 96 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 97 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 98 data += ETH_GSTRING_LEN; 99 } 100 101 return data; 102 } 103 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 104 105 int page_pool_ethtool_stats_get_count(void) 106 { 107 return ARRAY_SIZE(pp_stats); 108 } 109 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 110 111 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats) 112 { 113 struct page_pool_stats *pool_stats = stats; 114 115 *data++ = pool_stats->alloc_stats.fast; 116 *data++ = pool_stats->alloc_stats.slow; 117 *data++ = pool_stats->alloc_stats.slow_high_order; 118 *data++ = pool_stats->alloc_stats.empty; 119 *data++ = pool_stats->alloc_stats.refill; 120 *data++ = pool_stats->alloc_stats.waive; 121 *data++ = pool_stats->recycle_stats.cached; 122 *data++ = pool_stats->recycle_stats.cache_full; 123 *data++ = pool_stats->recycle_stats.ring; 124 *data++ = pool_stats->recycle_stats.ring_full; 125 *data++ = pool_stats->recycle_stats.released_refcnt; 126 127 return data; 128 } 129 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 130 131 #else 132 #define alloc_stat_inc(pool, __stat) 133 #define recycle_stat_inc(pool, __stat) 134 #define recycle_stat_add(pool, __stat, val) 135 #endif 136 137 static bool page_pool_producer_lock(struct page_pool *pool) 138 __acquires(&pool->ring.producer_lock) 139 { 140 bool in_softirq = in_softirq(); 141 142 if (in_softirq) 143 spin_lock(&pool->ring.producer_lock); 144 else 145 spin_lock_bh(&pool->ring.producer_lock); 146 147 return in_softirq; 148 } 149 150 static void page_pool_producer_unlock(struct page_pool *pool, 151 bool in_softirq) 152 __releases(&pool->ring.producer_lock) 153 { 154 if (in_softirq) 155 spin_unlock(&pool->ring.producer_lock); 156 else 157 spin_unlock_bh(&pool->ring.producer_lock); 158 } 159 160 static int page_pool_init(struct page_pool *pool, 161 const struct page_pool_params *params) 162 { 163 unsigned int ring_qsize = 1024; /* Default */ 164 165 memcpy(&pool->p, params, sizeof(pool->p)); 166 167 /* Validate only known flags were used */ 168 if (pool->p.flags & ~(PP_FLAG_ALL)) 169 return -EINVAL; 170 171 if (pool->p.pool_size) 172 ring_qsize = pool->p.pool_size; 173 174 /* Sanity limit mem that can be pinned down */ 175 if (ring_qsize > 32768) 176 return -E2BIG; 177 178 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 179 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 180 * which is the XDP_TX use-case. 181 */ 182 if (pool->p.flags & PP_FLAG_DMA_MAP) { 183 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 184 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 185 return -EINVAL; 186 } 187 188 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) { 189 /* In order to request DMA-sync-for-device the page 190 * needs to be mapped 191 */ 192 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 193 return -EINVAL; 194 195 if (!pool->p.max_len) 196 return -EINVAL; 197 198 /* pool->p.offset has to be set according to the address 199 * offset used by the DMA engine to start copying rx data 200 */ 201 } 202 203 if (PAGE_POOL_DMA_USE_PP_FRAG_COUNT && 204 pool->p.flags & PP_FLAG_PAGE_FRAG) 205 return -EINVAL; 206 207 #ifdef CONFIG_PAGE_POOL_STATS 208 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 209 if (!pool->recycle_stats) 210 return -ENOMEM; 211 #endif 212 213 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) 214 return -ENOMEM; 215 216 atomic_set(&pool->pages_state_release_cnt, 0); 217 218 /* Driver calling page_pool_create() also call page_pool_destroy() */ 219 refcount_set(&pool->user_cnt, 1); 220 221 if (pool->p.flags & PP_FLAG_DMA_MAP) 222 get_device(pool->p.dev); 223 224 return 0; 225 } 226 227 struct page_pool *page_pool_create(const struct page_pool_params *params) 228 { 229 struct page_pool *pool; 230 int err; 231 232 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 233 if (!pool) 234 return ERR_PTR(-ENOMEM); 235 236 err = page_pool_init(pool, params); 237 if (err < 0) { 238 pr_warn("%s() gave up with errno %d\n", __func__, err); 239 kfree(pool); 240 return ERR_PTR(err); 241 } 242 243 return pool; 244 } 245 EXPORT_SYMBOL(page_pool_create); 246 247 static void page_pool_return_page(struct page_pool *pool, struct page *page); 248 249 noinline 250 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool) 251 { 252 struct ptr_ring *r = &pool->ring; 253 struct page *page; 254 int pref_nid; /* preferred NUMA node */ 255 256 /* Quicker fallback, avoid locks when ring is empty */ 257 if (__ptr_ring_empty(r)) { 258 alloc_stat_inc(pool, empty); 259 return NULL; 260 } 261 262 /* Softirq guarantee CPU and thus NUMA node is stable. This, 263 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 264 */ 265 #ifdef CONFIG_NUMA 266 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 267 #else 268 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 269 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 270 #endif 271 272 /* Refill alloc array, but only if NUMA match */ 273 do { 274 page = __ptr_ring_consume(r); 275 if (unlikely(!page)) 276 break; 277 278 if (likely(page_to_nid(page) == pref_nid)) { 279 pool->alloc.cache[pool->alloc.count++] = page; 280 } else { 281 /* NUMA mismatch; 282 * (1) release 1 page to page-allocator and 283 * (2) break out to fallthrough to alloc_pages_node. 284 * This limit stress on page buddy alloactor. 285 */ 286 page_pool_return_page(pool, page); 287 alloc_stat_inc(pool, waive); 288 page = NULL; 289 break; 290 } 291 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 292 293 /* Return last page */ 294 if (likely(pool->alloc.count > 0)) { 295 page = pool->alloc.cache[--pool->alloc.count]; 296 alloc_stat_inc(pool, refill); 297 } 298 299 return page; 300 } 301 302 /* fast path */ 303 static struct page *__page_pool_get_cached(struct page_pool *pool) 304 { 305 struct page *page; 306 307 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 308 if (likely(pool->alloc.count)) { 309 /* Fast-path */ 310 page = pool->alloc.cache[--pool->alloc.count]; 311 alloc_stat_inc(pool, fast); 312 } else { 313 page = page_pool_refill_alloc_cache(pool); 314 } 315 316 return page; 317 } 318 319 static void page_pool_dma_sync_for_device(struct page_pool *pool, 320 struct page *page, 321 unsigned int dma_sync_size) 322 { 323 dma_addr_t dma_addr = page_pool_get_dma_addr(page); 324 325 dma_sync_size = min(dma_sync_size, pool->p.max_len); 326 dma_sync_single_range_for_device(pool->p.dev, dma_addr, 327 pool->p.offset, dma_sync_size, 328 pool->p.dma_dir); 329 } 330 331 static bool page_pool_dma_map(struct page_pool *pool, struct page *page) 332 { 333 dma_addr_t dma; 334 335 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 336 * since dma_addr_t can be either 32 or 64 bits and does not always fit 337 * into page private data (i.e 32bit cpu with 64bit DMA caps) 338 * This mapping is kept for lifetime of page, until leaving pool. 339 */ 340 dma = dma_map_page_attrs(pool->p.dev, page, 0, 341 (PAGE_SIZE << pool->p.order), 342 pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC | 343 DMA_ATTR_WEAK_ORDERING); 344 if (dma_mapping_error(pool->p.dev, dma)) 345 return false; 346 347 page_pool_set_dma_addr(page, dma); 348 349 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 350 page_pool_dma_sync_for_device(pool, page, pool->p.max_len); 351 352 return true; 353 } 354 355 static void page_pool_set_pp_info(struct page_pool *pool, 356 struct page *page) 357 { 358 page->pp = pool; 359 page->pp_magic |= PP_SIGNATURE; 360 if (pool->p.init_callback) 361 pool->p.init_callback(page, pool->p.init_arg); 362 } 363 364 static void page_pool_clear_pp_info(struct page *page) 365 { 366 page->pp_magic = 0; 367 page->pp = NULL; 368 } 369 370 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 371 gfp_t gfp) 372 { 373 struct page *page; 374 375 gfp |= __GFP_COMP; 376 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 377 if (unlikely(!page)) 378 return NULL; 379 380 if ((pool->p.flags & PP_FLAG_DMA_MAP) && 381 unlikely(!page_pool_dma_map(pool, page))) { 382 put_page(page); 383 return NULL; 384 } 385 386 alloc_stat_inc(pool, slow_high_order); 387 page_pool_set_pp_info(pool, page); 388 389 /* Track how many pages are held 'in-flight' */ 390 pool->pages_state_hold_cnt++; 391 trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt); 392 return page; 393 } 394 395 /* slow path */ 396 noinline 397 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool, 398 gfp_t gfp) 399 { 400 const int bulk = PP_ALLOC_CACHE_REFILL; 401 unsigned int pp_flags = pool->p.flags; 402 unsigned int pp_order = pool->p.order; 403 struct page *page; 404 int i, nr_pages; 405 406 /* Don't support bulk alloc for high-order pages */ 407 if (unlikely(pp_order)) 408 return __page_pool_alloc_page_order(pool, gfp); 409 410 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 411 if (unlikely(pool->alloc.count > 0)) 412 return pool->alloc.cache[--pool->alloc.count]; 413 414 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */ 415 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 416 417 nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk, 418 pool->alloc.cache); 419 if (unlikely(!nr_pages)) 420 return NULL; 421 422 /* Pages have been filled into alloc.cache array, but count is zero and 423 * page element have not been (possibly) DMA mapped. 424 */ 425 for (i = 0; i < nr_pages; i++) { 426 page = pool->alloc.cache[i]; 427 if ((pp_flags & PP_FLAG_DMA_MAP) && 428 unlikely(!page_pool_dma_map(pool, page))) { 429 put_page(page); 430 continue; 431 } 432 433 page_pool_set_pp_info(pool, page); 434 pool->alloc.cache[pool->alloc.count++] = page; 435 /* Track how many pages are held 'in-flight' */ 436 pool->pages_state_hold_cnt++; 437 trace_page_pool_state_hold(pool, page, 438 pool->pages_state_hold_cnt); 439 } 440 441 /* Return last page */ 442 if (likely(pool->alloc.count > 0)) { 443 page = pool->alloc.cache[--pool->alloc.count]; 444 alloc_stat_inc(pool, slow); 445 } else { 446 page = NULL; 447 } 448 449 /* When page just alloc'ed is should/must have refcnt 1. */ 450 return page; 451 } 452 453 /* For using page_pool replace: alloc_pages() API calls, but provide 454 * synchronization guarantee for allocation side. 455 */ 456 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 457 { 458 struct page *page; 459 460 /* Fast-path: Get a page from cache */ 461 page = __page_pool_get_cached(pool); 462 if (page) 463 return page; 464 465 /* Slow-path: cache empty, do real allocation */ 466 page = __page_pool_alloc_pages_slow(pool, gfp); 467 return page; 468 } 469 EXPORT_SYMBOL(page_pool_alloc_pages); 470 471 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 472 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 473 */ 474 #define _distance(a, b) (s32)((a) - (b)) 475 476 static s32 page_pool_inflight(struct page_pool *pool) 477 { 478 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 479 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 480 s32 inflight; 481 482 inflight = _distance(hold_cnt, release_cnt); 483 484 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 485 WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight); 486 487 return inflight; 488 } 489 490 /* Disconnects a page (from a page_pool). API users can have a need 491 * to disconnect a page (from a page_pool), to allow it to be used as 492 * a regular page (that will eventually be returned to the normal 493 * page-allocator via put_page). 494 */ 495 void page_pool_release_page(struct page_pool *pool, struct page *page) 496 { 497 dma_addr_t dma; 498 int count; 499 500 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 501 /* Always account for inflight pages, even if we didn't 502 * map them 503 */ 504 goto skip_dma_unmap; 505 506 dma = page_pool_get_dma_addr(page); 507 508 /* When page is unmapped, it cannot be returned to our pool */ 509 dma_unmap_page_attrs(pool->p.dev, dma, 510 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 511 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 512 page_pool_set_dma_addr(page, 0); 513 skip_dma_unmap: 514 page_pool_clear_pp_info(page); 515 516 /* This may be the last page returned, releasing the pool, so 517 * it is not safe to reference pool afterwards. 518 */ 519 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 520 trace_page_pool_state_release(pool, page, count); 521 } 522 EXPORT_SYMBOL(page_pool_release_page); 523 524 /* Return a page to the page allocator, cleaning up our state */ 525 static void page_pool_return_page(struct page_pool *pool, struct page *page) 526 { 527 page_pool_release_page(pool, page); 528 529 put_page(page); 530 /* An optimization would be to call __free_pages(page, pool->p.order) 531 * knowing page is not part of page-cache (thus avoiding a 532 * __page_cache_release() call). 533 */ 534 } 535 536 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page) 537 { 538 int ret; 539 /* BH protection not needed if current is softirq */ 540 if (in_softirq()) 541 ret = ptr_ring_produce(&pool->ring, page); 542 else 543 ret = ptr_ring_produce_bh(&pool->ring, page); 544 545 if (!ret) { 546 recycle_stat_inc(pool, ring); 547 return true; 548 } 549 550 return false; 551 } 552 553 /* Only allow direct recycling in special circumstances, into the 554 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 555 * 556 * Caller must provide appropriate safe context. 557 */ 558 static bool page_pool_recycle_in_cache(struct page *page, 559 struct page_pool *pool) 560 { 561 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 562 recycle_stat_inc(pool, cache_full); 563 return false; 564 } 565 566 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 567 pool->alloc.cache[pool->alloc.count++] = page; 568 recycle_stat_inc(pool, cached); 569 return true; 570 } 571 572 /* If the page refcnt == 1, this will try to recycle the page. 573 * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for 574 * the configured size min(dma_sync_size, pool->max_len). 575 * If the page refcnt != 1, then the page will be returned to memory 576 * subsystem. 577 */ 578 static __always_inline struct page * 579 __page_pool_put_page(struct page_pool *pool, struct page *page, 580 unsigned int dma_sync_size, bool allow_direct) 581 { 582 /* This allocator is optimized for the XDP mode that uses 583 * one-frame-per-page, but have fallbacks that act like the 584 * regular page allocator APIs. 585 * 586 * refcnt == 1 means page_pool owns page, and can recycle it. 587 * 588 * page is NOT reusable when allocated when system is under 589 * some pressure. (page_is_pfmemalloc) 590 */ 591 if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) { 592 /* Read barrier done in page_ref_count / READ_ONCE */ 593 594 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 595 page_pool_dma_sync_for_device(pool, page, 596 dma_sync_size); 597 598 if (allow_direct && in_softirq() && 599 page_pool_recycle_in_cache(page, pool)) 600 return NULL; 601 602 /* Page found as candidate for recycling */ 603 return page; 604 } 605 /* Fallback/non-XDP mode: API user have elevated refcnt. 606 * 607 * Many drivers split up the page into fragments, and some 608 * want to keep doing this to save memory and do refcnt based 609 * recycling. Support this use case too, to ease drivers 610 * switching between XDP/non-XDP. 611 * 612 * In-case page_pool maintains the DMA mapping, API user must 613 * call page_pool_put_page once. In this elevated refcnt 614 * case, the DMA is unmapped/released, as driver is likely 615 * doing refcnt based recycle tricks, meaning another process 616 * will be invoking put_page. 617 */ 618 recycle_stat_inc(pool, released_refcnt); 619 /* Do not replace this with page_pool_return_page() */ 620 page_pool_release_page(pool, page); 621 put_page(page); 622 623 return NULL; 624 } 625 626 void page_pool_put_defragged_page(struct page_pool *pool, struct page *page, 627 unsigned int dma_sync_size, bool allow_direct) 628 { 629 page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct); 630 if (page && !page_pool_recycle_in_ring(pool, page)) { 631 /* Cache full, fallback to free pages */ 632 recycle_stat_inc(pool, ring_full); 633 page_pool_return_page(pool, page); 634 } 635 } 636 EXPORT_SYMBOL(page_pool_put_defragged_page); 637 638 /* Caller must not use data area after call, as this function overwrites it */ 639 void page_pool_put_page_bulk(struct page_pool *pool, void **data, 640 int count) 641 { 642 int i, bulk_len = 0; 643 bool in_softirq; 644 645 for (i = 0; i < count; i++) { 646 struct page *page = virt_to_head_page(data[i]); 647 648 /* It is not the last user for the page frag case */ 649 if (!page_pool_is_last_frag(pool, page)) 650 continue; 651 652 page = __page_pool_put_page(pool, page, -1, false); 653 /* Approved for bulk recycling in ptr_ring cache */ 654 if (page) 655 data[bulk_len++] = page; 656 } 657 658 if (unlikely(!bulk_len)) 659 return; 660 661 /* Bulk producer into ptr_ring page_pool cache */ 662 in_softirq = page_pool_producer_lock(pool); 663 for (i = 0; i < bulk_len; i++) { 664 if (__ptr_ring_produce(&pool->ring, data[i])) { 665 /* ring full */ 666 recycle_stat_inc(pool, ring_full); 667 break; 668 } 669 } 670 recycle_stat_add(pool, ring, i); 671 page_pool_producer_unlock(pool, in_softirq); 672 673 /* Hopefully all pages was return into ptr_ring */ 674 if (likely(i == bulk_len)) 675 return; 676 677 /* ptr_ring cache full, free remaining pages outside producer lock 678 * since put_page() with refcnt == 1 can be an expensive operation 679 */ 680 for (; i < bulk_len; i++) 681 page_pool_return_page(pool, data[i]); 682 } 683 EXPORT_SYMBOL(page_pool_put_page_bulk); 684 685 static struct page *page_pool_drain_frag(struct page_pool *pool, 686 struct page *page) 687 { 688 long drain_count = BIAS_MAX - pool->frag_users; 689 690 /* Some user is still using the page frag */ 691 if (likely(page_pool_defrag_page(page, drain_count))) 692 return NULL; 693 694 if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) { 695 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 696 page_pool_dma_sync_for_device(pool, page, -1); 697 698 return page; 699 } 700 701 page_pool_return_page(pool, page); 702 return NULL; 703 } 704 705 static void page_pool_free_frag(struct page_pool *pool) 706 { 707 long drain_count = BIAS_MAX - pool->frag_users; 708 struct page *page = pool->frag_page; 709 710 pool->frag_page = NULL; 711 712 if (!page || page_pool_defrag_page(page, drain_count)) 713 return; 714 715 page_pool_return_page(pool, page); 716 } 717 718 struct page *page_pool_alloc_frag(struct page_pool *pool, 719 unsigned int *offset, 720 unsigned int size, gfp_t gfp) 721 { 722 unsigned int max_size = PAGE_SIZE << pool->p.order; 723 struct page *page = pool->frag_page; 724 725 if (WARN_ON(!(pool->p.flags & PP_FLAG_PAGE_FRAG) || 726 size > max_size)) 727 return NULL; 728 729 size = ALIGN(size, dma_get_cache_alignment()); 730 *offset = pool->frag_offset; 731 732 if (page && *offset + size > max_size) { 733 page = page_pool_drain_frag(pool, page); 734 if (page) { 735 alloc_stat_inc(pool, fast); 736 goto frag_reset; 737 } 738 } 739 740 if (!page) { 741 page = page_pool_alloc_pages(pool, gfp); 742 if (unlikely(!page)) { 743 pool->frag_page = NULL; 744 return NULL; 745 } 746 747 pool->frag_page = page; 748 749 frag_reset: 750 pool->frag_users = 1; 751 *offset = 0; 752 pool->frag_offset = size; 753 page_pool_fragment_page(page, BIAS_MAX); 754 return page; 755 } 756 757 pool->frag_users++; 758 pool->frag_offset = *offset + size; 759 alloc_stat_inc(pool, fast); 760 return page; 761 } 762 EXPORT_SYMBOL(page_pool_alloc_frag); 763 764 static void page_pool_empty_ring(struct page_pool *pool) 765 { 766 struct page *page; 767 768 /* Empty recycle ring */ 769 while ((page = ptr_ring_consume_bh(&pool->ring))) { 770 /* Verify the refcnt invariant of cached pages */ 771 if (!(page_ref_count(page) == 1)) 772 pr_crit("%s() page_pool refcnt %d violation\n", 773 __func__, page_ref_count(page)); 774 775 page_pool_return_page(pool, page); 776 } 777 } 778 779 static void page_pool_free(struct page_pool *pool) 780 { 781 if (pool->disconnect) 782 pool->disconnect(pool); 783 784 ptr_ring_cleanup(&pool->ring, NULL); 785 786 if (pool->p.flags & PP_FLAG_DMA_MAP) 787 put_device(pool->p.dev); 788 789 #ifdef CONFIG_PAGE_POOL_STATS 790 free_percpu(pool->recycle_stats); 791 #endif 792 kfree(pool); 793 } 794 795 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 796 { 797 struct page *page; 798 799 if (pool->destroy_cnt) 800 return; 801 802 /* Empty alloc cache, assume caller made sure this is 803 * no-longer in use, and page_pool_alloc_pages() cannot be 804 * call concurrently. 805 */ 806 while (pool->alloc.count) { 807 page = pool->alloc.cache[--pool->alloc.count]; 808 page_pool_return_page(pool, page); 809 } 810 } 811 812 static void page_pool_scrub(struct page_pool *pool) 813 { 814 page_pool_empty_alloc_cache_once(pool); 815 pool->destroy_cnt++; 816 817 /* No more consumers should exist, but producers could still 818 * be in-flight. 819 */ 820 page_pool_empty_ring(pool); 821 } 822 823 static int page_pool_release(struct page_pool *pool) 824 { 825 int inflight; 826 827 page_pool_scrub(pool); 828 inflight = page_pool_inflight(pool); 829 if (!inflight) 830 page_pool_free(pool); 831 832 return inflight; 833 } 834 835 static void page_pool_release_retry(struct work_struct *wq) 836 { 837 struct delayed_work *dwq = to_delayed_work(wq); 838 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 839 int inflight; 840 841 inflight = page_pool_release(pool); 842 if (!inflight) 843 return; 844 845 /* Periodic warning */ 846 if (time_after_eq(jiffies, pool->defer_warn)) { 847 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 848 849 pr_warn("%s() stalled pool shutdown %d inflight %d sec\n", 850 __func__, inflight, sec); 851 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 852 } 853 854 /* Still not ready to be disconnected, retry later */ 855 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 856 } 857 858 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 859 struct xdp_mem_info *mem) 860 { 861 refcount_inc(&pool->user_cnt); 862 pool->disconnect = disconnect; 863 pool->xdp_mem_id = mem->id; 864 } 865 866 void page_pool_unlink_napi(struct page_pool *pool) 867 { 868 if (!pool->p.napi) 869 return; 870 871 /* To avoid races with recycling and additional barriers make sure 872 * pool and NAPI are unlinked when NAPI is disabled. 873 */ 874 WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state) || 875 READ_ONCE(pool->p.napi->list_owner) != -1); 876 877 WRITE_ONCE(pool->p.napi, NULL); 878 } 879 EXPORT_SYMBOL(page_pool_unlink_napi); 880 881 void page_pool_destroy(struct page_pool *pool) 882 { 883 if (!pool) 884 return; 885 886 if (!page_pool_put(pool)) 887 return; 888 889 page_pool_unlink_napi(pool); 890 page_pool_free_frag(pool); 891 892 if (!page_pool_release(pool)) 893 return; 894 895 pool->defer_start = jiffies; 896 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 897 898 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 899 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 900 } 901 EXPORT_SYMBOL(page_pool_destroy); 902 903 /* Caller must provide appropriate safe context, e.g. NAPI. */ 904 void page_pool_update_nid(struct page_pool *pool, int new_nid) 905 { 906 struct page *page; 907 908 trace_page_pool_update_nid(pool, new_nid); 909 pool->p.nid = new_nid; 910 911 /* Flush pool alloc cache, as refill will check NUMA node */ 912 while (pool->alloc.count) { 913 page = pool->alloc.cache[--pool->alloc.count]; 914 page_pool_return_page(pool, page); 915 } 916 } 917 EXPORT_SYMBOL(page_pool_update_nid); 918 919 bool page_pool_return_skb_page(struct page *page, bool napi_safe) 920 { 921 struct napi_struct *napi; 922 struct page_pool *pp; 923 bool allow_direct; 924 925 page = compound_head(page); 926 927 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 928 * in order to preserve any existing bits, such as bit 0 for the 929 * head page of compound page and bit 1 for pfmemalloc page, so 930 * mask those bits for freeing side when doing below checking, 931 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 932 * to avoid recycling the pfmemalloc page. 933 */ 934 if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE)) 935 return false; 936 937 pp = page->pp; 938 939 /* Allow direct recycle if we have reasons to believe that we are 940 * in the same context as the consumer would run, so there's 941 * no possible race. 942 */ 943 napi = READ_ONCE(pp->p.napi); 944 allow_direct = napi_safe && napi && 945 READ_ONCE(napi->list_owner) == smp_processor_id(); 946 947 /* Driver set this to memory recycling info. Reset it on recycle. 948 * This will *not* work for NIC using a split-page memory model. 949 * The page will be returned to the pool here regardless of the 950 * 'flipped' fragment being in use or not. 951 */ 952 page_pool_put_full_page(pp, page, allow_direct); 953 954 return true; 955 } 956 EXPORT_SYMBOL(page_pool_return_skb_page); 957