1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/types.h> 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/device.h> 12 13 #include <net/page_pool.h> 14 #include <net/xdp.h> 15 16 #include <linux/dma-direction.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/page-flags.h> 19 #include <linux/mm.h> /* for put_page() */ 20 #include <linux/poison.h> 21 #include <linux/ethtool.h> 22 #include <linux/netdevice.h> 23 24 #include <trace/events/page_pool.h> 25 26 #define DEFER_TIME (msecs_to_jiffies(1000)) 27 #define DEFER_WARN_INTERVAL (60 * HZ) 28 29 #define BIAS_MAX LONG_MAX 30 31 #ifdef CONFIG_PAGE_POOL_STATS 32 /* alloc_stat_inc is intended to be used in softirq context */ 33 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 34 /* recycle_stat_inc is safe to use when preemption is possible. */ 35 #define recycle_stat_inc(pool, __stat) \ 36 do { \ 37 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 38 this_cpu_inc(s->__stat); \ 39 } while (0) 40 41 #define recycle_stat_add(pool, __stat, val) \ 42 do { \ 43 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 44 this_cpu_add(s->__stat, val); \ 45 } while (0) 46 47 static const char pp_stats[][ETH_GSTRING_LEN] = { 48 "rx_pp_alloc_fast", 49 "rx_pp_alloc_slow", 50 "rx_pp_alloc_slow_ho", 51 "rx_pp_alloc_empty", 52 "rx_pp_alloc_refill", 53 "rx_pp_alloc_waive", 54 "rx_pp_recycle_cached", 55 "rx_pp_recycle_cache_full", 56 "rx_pp_recycle_ring", 57 "rx_pp_recycle_ring_full", 58 "rx_pp_recycle_released_ref", 59 }; 60 61 bool page_pool_get_stats(struct page_pool *pool, 62 struct page_pool_stats *stats) 63 { 64 int cpu = 0; 65 66 if (!stats) 67 return false; 68 69 /* The caller is responsible to initialize stats. */ 70 stats->alloc_stats.fast += pool->alloc_stats.fast; 71 stats->alloc_stats.slow += pool->alloc_stats.slow; 72 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 73 stats->alloc_stats.empty += pool->alloc_stats.empty; 74 stats->alloc_stats.refill += pool->alloc_stats.refill; 75 stats->alloc_stats.waive += pool->alloc_stats.waive; 76 77 for_each_possible_cpu(cpu) { 78 const struct page_pool_recycle_stats *pcpu = 79 per_cpu_ptr(pool->recycle_stats, cpu); 80 81 stats->recycle_stats.cached += pcpu->cached; 82 stats->recycle_stats.cache_full += pcpu->cache_full; 83 stats->recycle_stats.ring += pcpu->ring; 84 stats->recycle_stats.ring_full += pcpu->ring_full; 85 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 86 } 87 88 return true; 89 } 90 EXPORT_SYMBOL(page_pool_get_stats); 91 92 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 93 { 94 int i; 95 96 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 97 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 98 data += ETH_GSTRING_LEN; 99 } 100 101 return data; 102 } 103 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 104 105 int page_pool_ethtool_stats_get_count(void) 106 { 107 return ARRAY_SIZE(pp_stats); 108 } 109 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 110 111 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats) 112 { 113 struct page_pool_stats *pool_stats = stats; 114 115 *data++ = pool_stats->alloc_stats.fast; 116 *data++ = pool_stats->alloc_stats.slow; 117 *data++ = pool_stats->alloc_stats.slow_high_order; 118 *data++ = pool_stats->alloc_stats.empty; 119 *data++ = pool_stats->alloc_stats.refill; 120 *data++ = pool_stats->alloc_stats.waive; 121 *data++ = pool_stats->recycle_stats.cached; 122 *data++ = pool_stats->recycle_stats.cache_full; 123 *data++ = pool_stats->recycle_stats.ring; 124 *data++ = pool_stats->recycle_stats.ring_full; 125 *data++ = pool_stats->recycle_stats.released_refcnt; 126 127 return data; 128 } 129 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 130 131 #else 132 #define alloc_stat_inc(pool, __stat) 133 #define recycle_stat_inc(pool, __stat) 134 #define recycle_stat_add(pool, __stat, val) 135 #endif 136 137 static int page_pool_init(struct page_pool *pool, 138 const struct page_pool_params *params) 139 { 140 unsigned int ring_qsize = 1024; /* Default */ 141 142 memcpy(&pool->p, params, sizeof(pool->p)); 143 144 /* Validate only known flags were used */ 145 if (pool->p.flags & ~(PP_FLAG_ALL)) 146 return -EINVAL; 147 148 if (pool->p.pool_size) 149 ring_qsize = pool->p.pool_size; 150 151 /* Sanity limit mem that can be pinned down */ 152 if (ring_qsize > 32768) 153 return -E2BIG; 154 155 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 156 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 157 * which is the XDP_TX use-case. 158 */ 159 if (pool->p.flags & PP_FLAG_DMA_MAP) { 160 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 161 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 162 return -EINVAL; 163 } 164 165 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) { 166 /* In order to request DMA-sync-for-device the page 167 * needs to be mapped 168 */ 169 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 170 return -EINVAL; 171 172 if (!pool->p.max_len) 173 return -EINVAL; 174 175 /* pool->p.offset has to be set according to the address 176 * offset used by the DMA engine to start copying rx data 177 */ 178 } 179 180 if (PAGE_POOL_DMA_USE_PP_FRAG_COUNT && 181 pool->p.flags & PP_FLAG_PAGE_FRAG) 182 return -EINVAL; 183 184 #ifdef CONFIG_PAGE_POOL_STATS 185 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 186 if (!pool->recycle_stats) 187 return -ENOMEM; 188 #endif 189 190 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) 191 return -ENOMEM; 192 193 atomic_set(&pool->pages_state_release_cnt, 0); 194 195 /* Driver calling page_pool_create() also call page_pool_destroy() */ 196 refcount_set(&pool->user_cnt, 1); 197 198 if (pool->p.flags & PP_FLAG_DMA_MAP) 199 get_device(pool->p.dev); 200 201 return 0; 202 } 203 204 struct page_pool *page_pool_create(const struct page_pool_params *params) 205 { 206 struct page_pool *pool; 207 int err; 208 209 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 210 if (!pool) 211 return ERR_PTR(-ENOMEM); 212 213 err = page_pool_init(pool, params); 214 if (err < 0) { 215 pr_warn("%s() gave up with errno %d\n", __func__, err); 216 kfree(pool); 217 return ERR_PTR(err); 218 } 219 220 return pool; 221 } 222 EXPORT_SYMBOL(page_pool_create); 223 224 static void page_pool_return_page(struct page_pool *pool, struct page *page); 225 226 noinline 227 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool) 228 { 229 struct ptr_ring *r = &pool->ring; 230 struct page *page; 231 int pref_nid; /* preferred NUMA node */ 232 233 /* Quicker fallback, avoid locks when ring is empty */ 234 if (__ptr_ring_empty(r)) { 235 alloc_stat_inc(pool, empty); 236 return NULL; 237 } 238 239 /* Softirq guarantee CPU and thus NUMA node is stable. This, 240 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 241 */ 242 #ifdef CONFIG_NUMA 243 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 244 #else 245 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 246 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 247 #endif 248 249 /* Refill alloc array, but only if NUMA match */ 250 do { 251 page = __ptr_ring_consume(r); 252 if (unlikely(!page)) 253 break; 254 255 if (likely(page_to_nid(page) == pref_nid)) { 256 pool->alloc.cache[pool->alloc.count++] = page; 257 } else { 258 /* NUMA mismatch; 259 * (1) release 1 page to page-allocator and 260 * (2) break out to fallthrough to alloc_pages_node. 261 * This limit stress on page buddy alloactor. 262 */ 263 page_pool_return_page(pool, page); 264 alloc_stat_inc(pool, waive); 265 page = NULL; 266 break; 267 } 268 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 269 270 /* Return last page */ 271 if (likely(pool->alloc.count > 0)) { 272 page = pool->alloc.cache[--pool->alloc.count]; 273 alloc_stat_inc(pool, refill); 274 } 275 276 return page; 277 } 278 279 /* fast path */ 280 static struct page *__page_pool_get_cached(struct page_pool *pool) 281 { 282 struct page *page; 283 284 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 285 if (likely(pool->alloc.count)) { 286 /* Fast-path */ 287 page = pool->alloc.cache[--pool->alloc.count]; 288 alloc_stat_inc(pool, fast); 289 } else { 290 page = page_pool_refill_alloc_cache(pool); 291 } 292 293 return page; 294 } 295 296 static void page_pool_dma_sync_for_device(struct page_pool *pool, 297 struct page *page, 298 unsigned int dma_sync_size) 299 { 300 dma_addr_t dma_addr = page_pool_get_dma_addr(page); 301 302 dma_sync_size = min(dma_sync_size, pool->p.max_len); 303 dma_sync_single_range_for_device(pool->p.dev, dma_addr, 304 pool->p.offset, dma_sync_size, 305 pool->p.dma_dir); 306 } 307 308 static bool page_pool_dma_map(struct page_pool *pool, struct page *page) 309 { 310 dma_addr_t dma; 311 312 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 313 * since dma_addr_t can be either 32 or 64 bits and does not always fit 314 * into page private data (i.e 32bit cpu with 64bit DMA caps) 315 * This mapping is kept for lifetime of page, until leaving pool. 316 */ 317 dma = dma_map_page_attrs(pool->p.dev, page, 0, 318 (PAGE_SIZE << pool->p.order), 319 pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC | 320 DMA_ATTR_WEAK_ORDERING); 321 if (dma_mapping_error(pool->p.dev, dma)) 322 return false; 323 324 page_pool_set_dma_addr(page, dma); 325 326 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 327 page_pool_dma_sync_for_device(pool, page, pool->p.max_len); 328 329 return true; 330 } 331 332 static void page_pool_set_pp_info(struct page_pool *pool, 333 struct page *page) 334 { 335 page->pp = pool; 336 page->pp_magic |= PP_SIGNATURE; 337 if (pool->p.init_callback) 338 pool->p.init_callback(page, pool->p.init_arg); 339 } 340 341 static void page_pool_clear_pp_info(struct page *page) 342 { 343 page->pp_magic = 0; 344 page->pp = NULL; 345 } 346 347 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 348 gfp_t gfp) 349 { 350 struct page *page; 351 352 gfp |= __GFP_COMP; 353 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 354 if (unlikely(!page)) 355 return NULL; 356 357 if ((pool->p.flags & PP_FLAG_DMA_MAP) && 358 unlikely(!page_pool_dma_map(pool, page))) { 359 put_page(page); 360 return NULL; 361 } 362 363 alloc_stat_inc(pool, slow_high_order); 364 page_pool_set_pp_info(pool, page); 365 366 /* Track how many pages are held 'in-flight' */ 367 pool->pages_state_hold_cnt++; 368 trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt); 369 return page; 370 } 371 372 /* slow path */ 373 noinline 374 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool, 375 gfp_t gfp) 376 { 377 const int bulk = PP_ALLOC_CACHE_REFILL; 378 unsigned int pp_flags = pool->p.flags; 379 unsigned int pp_order = pool->p.order; 380 struct page *page; 381 int i, nr_pages; 382 383 /* Don't support bulk alloc for high-order pages */ 384 if (unlikely(pp_order)) 385 return __page_pool_alloc_page_order(pool, gfp); 386 387 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 388 if (unlikely(pool->alloc.count > 0)) 389 return pool->alloc.cache[--pool->alloc.count]; 390 391 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */ 392 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 393 394 nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk, 395 pool->alloc.cache); 396 if (unlikely(!nr_pages)) 397 return NULL; 398 399 /* Pages have been filled into alloc.cache array, but count is zero and 400 * page element have not been (possibly) DMA mapped. 401 */ 402 for (i = 0; i < nr_pages; i++) { 403 page = pool->alloc.cache[i]; 404 if ((pp_flags & PP_FLAG_DMA_MAP) && 405 unlikely(!page_pool_dma_map(pool, page))) { 406 put_page(page); 407 continue; 408 } 409 410 page_pool_set_pp_info(pool, page); 411 pool->alloc.cache[pool->alloc.count++] = page; 412 /* Track how many pages are held 'in-flight' */ 413 pool->pages_state_hold_cnt++; 414 trace_page_pool_state_hold(pool, page, 415 pool->pages_state_hold_cnt); 416 } 417 418 /* Return last page */ 419 if (likely(pool->alloc.count > 0)) { 420 page = pool->alloc.cache[--pool->alloc.count]; 421 alloc_stat_inc(pool, slow); 422 } else { 423 page = NULL; 424 } 425 426 /* When page just alloc'ed is should/must have refcnt 1. */ 427 return page; 428 } 429 430 /* For using page_pool replace: alloc_pages() API calls, but provide 431 * synchronization guarantee for allocation side. 432 */ 433 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 434 { 435 struct page *page; 436 437 /* Fast-path: Get a page from cache */ 438 page = __page_pool_get_cached(pool); 439 if (page) 440 return page; 441 442 /* Slow-path: cache empty, do real allocation */ 443 page = __page_pool_alloc_pages_slow(pool, gfp); 444 return page; 445 } 446 EXPORT_SYMBOL(page_pool_alloc_pages); 447 448 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 449 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 450 */ 451 #define _distance(a, b) (s32)((a) - (b)) 452 453 static s32 page_pool_inflight(struct page_pool *pool) 454 { 455 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 456 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 457 s32 inflight; 458 459 inflight = _distance(hold_cnt, release_cnt); 460 461 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 462 WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight); 463 464 return inflight; 465 } 466 467 /* Disconnects a page (from a page_pool). API users can have a need 468 * to disconnect a page (from a page_pool), to allow it to be used as 469 * a regular page (that will eventually be returned to the normal 470 * page-allocator via put_page). 471 */ 472 void page_pool_release_page(struct page_pool *pool, struct page *page) 473 { 474 dma_addr_t dma; 475 int count; 476 477 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 478 /* Always account for inflight pages, even if we didn't 479 * map them 480 */ 481 goto skip_dma_unmap; 482 483 dma = page_pool_get_dma_addr(page); 484 485 /* When page is unmapped, it cannot be returned to our pool */ 486 dma_unmap_page_attrs(pool->p.dev, dma, 487 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 488 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 489 page_pool_set_dma_addr(page, 0); 490 skip_dma_unmap: 491 page_pool_clear_pp_info(page); 492 493 /* This may be the last page returned, releasing the pool, so 494 * it is not safe to reference pool afterwards. 495 */ 496 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 497 trace_page_pool_state_release(pool, page, count); 498 } 499 EXPORT_SYMBOL(page_pool_release_page); 500 501 /* Return a page to the page allocator, cleaning up our state */ 502 static void page_pool_return_page(struct page_pool *pool, struct page *page) 503 { 504 page_pool_release_page(pool, page); 505 506 put_page(page); 507 /* An optimization would be to call __free_pages(page, pool->p.order) 508 * knowing page is not part of page-cache (thus avoiding a 509 * __page_cache_release() call). 510 */ 511 } 512 513 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page) 514 { 515 int ret; 516 /* BH protection not needed if current is softirq */ 517 if (in_softirq()) 518 ret = ptr_ring_produce(&pool->ring, page); 519 else 520 ret = ptr_ring_produce_bh(&pool->ring, page); 521 522 if (!ret) { 523 recycle_stat_inc(pool, ring); 524 return true; 525 } 526 527 return false; 528 } 529 530 /* Only allow direct recycling in special circumstances, into the 531 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 532 * 533 * Caller must provide appropriate safe context. 534 */ 535 static bool page_pool_recycle_in_cache(struct page *page, 536 struct page_pool *pool) 537 { 538 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 539 recycle_stat_inc(pool, cache_full); 540 return false; 541 } 542 543 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 544 pool->alloc.cache[pool->alloc.count++] = page; 545 recycle_stat_inc(pool, cached); 546 return true; 547 } 548 549 /* If the page refcnt == 1, this will try to recycle the page. 550 * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for 551 * the configured size min(dma_sync_size, pool->max_len). 552 * If the page refcnt != 1, then the page will be returned to memory 553 * subsystem. 554 */ 555 static __always_inline struct page * 556 __page_pool_put_page(struct page_pool *pool, struct page *page, 557 unsigned int dma_sync_size, bool allow_direct) 558 { 559 /* This allocator is optimized for the XDP mode that uses 560 * one-frame-per-page, but have fallbacks that act like the 561 * regular page allocator APIs. 562 * 563 * refcnt == 1 means page_pool owns page, and can recycle it. 564 * 565 * page is NOT reusable when allocated when system is under 566 * some pressure. (page_is_pfmemalloc) 567 */ 568 if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) { 569 /* Read barrier done in page_ref_count / READ_ONCE */ 570 571 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 572 page_pool_dma_sync_for_device(pool, page, 573 dma_sync_size); 574 575 if (allow_direct && in_softirq() && 576 page_pool_recycle_in_cache(page, pool)) 577 return NULL; 578 579 /* Page found as candidate for recycling */ 580 return page; 581 } 582 /* Fallback/non-XDP mode: API user have elevated refcnt. 583 * 584 * Many drivers split up the page into fragments, and some 585 * want to keep doing this to save memory and do refcnt based 586 * recycling. Support this use case too, to ease drivers 587 * switching between XDP/non-XDP. 588 * 589 * In-case page_pool maintains the DMA mapping, API user must 590 * call page_pool_put_page once. In this elevated refcnt 591 * case, the DMA is unmapped/released, as driver is likely 592 * doing refcnt based recycle tricks, meaning another process 593 * will be invoking put_page. 594 */ 595 recycle_stat_inc(pool, released_refcnt); 596 /* Do not replace this with page_pool_return_page() */ 597 page_pool_release_page(pool, page); 598 put_page(page); 599 600 return NULL; 601 } 602 603 void page_pool_put_defragged_page(struct page_pool *pool, struct page *page, 604 unsigned int dma_sync_size, bool allow_direct) 605 { 606 page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct); 607 if (page && !page_pool_recycle_in_ring(pool, page)) { 608 /* Cache full, fallback to free pages */ 609 recycle_stat_inc(pool, ring_full); 610 page_pool_return_page(pool, page); 611 } 612 } 613 EXPORT_SYMBOL(page_pool_put_defragged_page); 614 615 /* Caller must not use data area after call, as this function overwrites it */ 616 void page_pool_put_page_bulk(struct page_pool *pool, void **data, 617 int count) 618 { 619 int i, bulk_len = 0; 620 621 for (i = 0; i < count; i++) { 622 struct page *page = virt_to_head_page(data[i]); 623 624 /* It is not the last user for the page frag case */ 625 if (!page_pool_is_last_frag(pool, page)) 626 continue; 627 628 page = __page_pool_put_page(pool, page, -1, false); 629 /* Approved for bulk recycling in ptr_ring cache */ 630 if (page) 631 data[bulk_len++] = page; 632 } 633 634 if (unlikely(!bulk_len)) 635 return; 636 637 /* Bulk producer into ptr_ring page_pool cache */ 638 page_pool_ring_lock(pool); 639 for (i = 0; i < bulk_len; i++) { 640 if (__ptr_ring_produce(&pool->ring, data[i])) { 641 /* ring full */ 642 recycle_stat_inc(pool, ring_full); 643 break; 644 } 645 } 646 recycle_stat_add(pool, ring, i); 647 page_pool_ring_unlock(pool); 648 649 /* Hopefully all pages was return into ptr_ring */ 650 if (likely(i == bulk_len)) 651 return; 652 653 /* ptr_ring cache full, free remaining pages outside producer lock 654 * since put_page() with refcnt == 1 can be an expensive operation 655 */ 656 for (; i < bulk_len; i++) 657 page_pool_return_page(pool, data[i]); 658 } 659 EXPORT_SYMBOL(page_pool_put_page_bulk); 660 661 static struct page *page_pool_drain_frag(struct page_pool *pool, 662 struct page *page) 663 { 664 long drain_count = BIAS_MAX - pool->frag_users; 665 666 /* Some user is still using the page frag */ 667 if (likely(page_pool_defrag_page(page, drain_count))) 668 return NULL; 669 670 if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) { 671 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 672 page_pool_dma_sync_for_device(pool, page, -1); 673 674 return page; 675 } 676 677 page_pool_return_page(pool, page); 678 return NULL; 679 } 680 681 static void page_pool_free_frag(struct page_pool *pool) 682 { 683 long drain_count = BIAS_MAX - pool->frag_users; 684 struct page *page = pool->frag_page; 685 686 pool->frag_page = NULL; 687 688 if (!page || page_pool_defrag_page(page, drain_count)) 689 return; 690 691 page_pool_return_page(pool, page); 692 } 693 694 struct page *page_pool_alloc_frag(struct page_pool *pool, 695 unsigned int *offset, 696 unsigned int size, gfp_t gfp) 697 { 698 unsigned int max_size = PAGE_SIZE << pool->p.order; 699 struct page *page = pool->frag_page; 700 701 if (WARN_ON(!(pool->p.flags & PP_FLAG_PAGE_FRAG) || 702 size > max_size)) 703 return NULL; 704 705 size = ALIGN(size, dma_get_cache_alignment()); 706 *offset = pool->frag_offset; 707 708 if (page && *offset + size > max_size) { 709 page = page_pool_drain_frag(pool, page); 710 if (page) { 711 alloc_stat_inc(pool, fast); 712 goto frag_reset; 713 } 714 } 715 716 if (!page) { 717 page = page_pool_alloc_pages(pool, gfp); 718 if (unlikely(!page)) { 719 pool->frag_page = NULL; 720 return NULL; 721 } 722 723 pool->frag_page = page; 724 725 frag_reset: 726 pool->frag_users = 1; 727 *offset = 0; 728 pool->frag_offset = size; 729 page_pool_fragment_page(page, BIAS_MAX); 730 return page; 731 } 732 733 pool->frag_users++; 734 pool->frag_offset = *offset + size; 735 alloc_stat_inc(pool, fast); 736 return page; 737 } 738 EXPORT_SYMBOL(page_pool_alloc_frag); 739 740 static void page_pool_empty_ring(struct page_pool *pool) 741 { 742 struct page *page; 743 744 /* Empty recycle ring */ 745 while ((page = ptr_ring_consume_bh(&pool->ring))) { 746 /* Verify the refcnt invariant of cached pages */ 747 if (!(page_ref_count(page) == 1)) 748 pr_crit("%s() page_pool refcnt %d violation\n", 749 __func__, page_ref_count(page)); 750 751 page_pool_return_page(pool, page); 752 } 753 } 754 755 static void page_pool_free(struct page_pool *pool) 756 { 757 if (pool->disconnect) 758 pool->disconnect(pool); 759 760 ptr_ring_cleanup(&pool->ring, NULL); 761 762 if (pool->p.flags & PP_FLAG_DMA_MAP) 763 put_device(pool->p.dev); 764 765 #ifdef CONFIG_PAGE_POOL_STATS 766 free_percpu(pool->recycle_stats); 767 #endif 768 kfree(pool); 769 } 770 771 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 772 { 773 struct page *page; 774 775 if (pool->destroy_cnt) 776 return; 777 778 /* Empty alloc cache, assume caller made sure this is 779 * no-longer in use, and page_pool_alloc_pages() cannot be 780 * call concurrently. 781 */ 782 while (pool->alloc.count) { 783 page = pool->alloc.cache[--pool->alloc.count]; 784 page_pool_return_page(pool, page); 785 } 786 } 787 788 static void page_pool_scrub(struct page_pool *pool) 789 { 790 page_pool_empty_alloc_cache_once(pool); 791 pool->destroy_cnt++; 792 793 /* No more consumers should exist, but producers could still 794 * be in-flight. 795 */ 796 page_pool_empty_ring(pool); 797 } 798 799 static int page_pool_release(struct page_pool *pool) 800 { 801 int inflight; 802 803 page_pool_scrub(pool); 804 inflight = page_pool_inflight(pool); 805 if (!inflight) 806 page_pool_free(pool); 807 808 return inflight; 809 } 810 811 static void page_pool_release_retry(struct work_struct *wq) 812 { 813 struct delayed_work *dwq = to_delayed_work(wq); 814 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 815 int inflight; 816 817 inflight = page_pool_release(pool); 818 if (!inflight) 819 return; 820 821 /* Periodic warning */ 822 if (time_after_eq(jiffies, pool->defer_warn)) { 823 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 824 825 pr_warn("%s() stalled pool shutdown %d inflight %d sec\n", 826 __func__, inflight, sec); 827 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 828 } 829 830 /* Still not ready to be disconnected, retry later */ 831 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 832 } 833 834 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 835 struct xdp_mem_info *mem) 836 { 837 refcount_inc(&pool->user_cnt); 838 pool->disconnect = disconnect; 839 pool->xdp_mem_id = mem->id; 840 } 841 842 void page_pool_unlink_napi(struct page_pool *pool) 843 { 844 if (!pool->p.napi) 845 return; 846 847 /* To avoid races with recycling and additional barriers make sure 848 * pool and NAPI are unlinked when NAPI is disabled. 849 */ 850 WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state) || 851 READ_ONCE(pool->p.napi->list_owner) != -1); 852 853 WRITE_ONCE(pool->p.napi, NULL); 854 } 855 EXPORT_SYMBOL(page_pool_unlink_napi); 856 857 void page_pool_destroy(struct page_pool *pool) 858 { 859 if (!pool) 860 return; 861 862 if (!page_pool_put(pool)) 863 return; 864 865 page_pool_unlink_napi(pool); 866 page_pool_free_frag(pool); 867 868 if (!page_pool_release(pool)) 869 return; 870 871 pool->defer_start = jiffies; 872 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 873 874 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 875 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 876 } 877 EXPORT_SYMBOL(page_pool_destroy); 878 879 /* Caller must provide appropriate safe context, e.g. NAPI. */ 880 void page_pool_update_nid(struct page_pool *pool, int new_nid) 881 { 882 struct page *page; 883 884 trace_page_pool_update_nid(pool, new_nid); 885 pool->p.nid = new_nid; 886 887 /* Flush pool alloc cache, as refill will check NUMA node */ 888 while (pool->alloc.count) { 889 page = pool->alloc.cache[--pool->alloc.count]; 890 page_pool_return_page(pool, page); 891 } 892 } 893 EXPORT_SYMBOL(page_pool_update_nid); 894 895 bool page_pool_return_skb_page(struct page *page, bool napi_safe) 896 { 897 struct napi_struct *napi; 898 struct page_pool *pp; 899 bool allow_direct; 900 901 page = compound_head(page); 902 903 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 904 * in order to preserve any existing bits, such as bit 0 for the 905 * head page of compound page and bit 1 for pfmemalloc page, so 906 * mask those bits for freeing side when doing below checking, 907 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 908 * to avoid recycling the pfmemalloc page. 909 */ 910 if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE)) 911 return false; 912 913 pp = page->pp; 914 915 /* Allow direct recycle if we have reasons to believe that we are 916 * in the same context as the consumer would run, so there's 917 * no possible race. 918 */ 919 napi = READ_ONCE(pp->p.napi); 920 allow_direct = napi_safe && napi && 921 READ_ONCE(napi->list_owner) == smp_processor_id(); 922 923 /* Driver set this to memory recycling info. Reset it on recycle. 924 * This will *not* work for NIC using a split-page memory model. 925 * The page will be returned to the pool here regardless of the 926 * 'flipped' fragment being in use or not. 927 */ 928 page_pool_put_full_page(pp, page, allow_direct); 929 930 return true; 931 } 932 EXPORT_SYMBOL(page_pool_return_skb_page); 933