xref: /openbmc/linux/net/core/net_namespace.c (revision ff291d00)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20 
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25 
26 /*
27  *	Our network namespace constructor/destructor lists
28  */
29 
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 /* Used only if there are !async pernet_operations registered */
33 DEFINE_MUTEX(net_mutex);
34 
35 LIST_HEAD(net_namespace_list);
36 EXPORT_SYMBOL_GPL(net_namespace_list);
37 
38 struct net init_net = {
39 	.count		= REFCOUNT_INIT(1),
40 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
41 };
42 EXPORT_SYMBOL(init_net);
43 
44 static bool init_net_initialized;
45 static unsigned nr_sync_pernet_ops;
46 /*
47  * net_sem: protects: pernet_list, net_generic_ids, nr_sync_pernet_ops,
48  * init_net_initialized and first_device pointer.
49  */
50 DECLARE_RWSEM(net_sem);
51 
52 #define MIN_PERNET_OPS_ID	\
53 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
54 
55 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
56 
57 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
58 
59 static struct net_generic *net_alloc_generic(void)
60 {
61 	struct net_generic *ng;
62 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
63 
64 	ng = kzalloc(generic_size, GFP_KERNEL);
65 	if (ng)
66 		ng->s.len = max_gen_ptrs;
67 
68 	return ng;
69 }
70 
71 static int net_assign_generic(struct net *net, unsigned int id, void *data)
72 {
73 	struct net_generic *ng, *old_ng;
74 
75 	BUG_ON(id < MIN_PERNET_OPS_ID);
76 
77 	old_ng = rcu_dereference_protected(net->gen,
78 					   lockdep_is_held(&net_sem));
79 	if (old_ng->s.len > id) {
80 		old_ng->ptr[id] = data;
81 		return 0;
82 	}
83 
84 	ng = net_alloc_generic();
85 	if (ng == NULL)
86 		return -ENOMEM;
87 
88 	/*
89 	 * Some synchronisation notes:
90 	 *
91 	 * The net_generic explores the net->gen array inside rcu
92 	 * read section. Besides once set the net->gen->ptr[x]
93 	 * pointer never changes (see rules in netns/generic.h).
94 	 *
95 	 * That said, we simply duplicate this array and schedule
96 	 * the old copy for kfree after a grace period.
97 	 */
98 
99 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
100 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
101 	ng->ptr[id] = data;
102 
103 	rcu_assign_pointer(net->gen, ng);
104 	kfree_rcu(old_ng, s.rcu);
105 	return 0;
106 }
107 
108 static int ops_init(const struct pernet_operations *ops, struct net *net)
109 {
110 	int err = -ENOMEM;
111 	void *data = NULL;
112 
113 	if (ops->id && ops->size) {
114 		data = kzalloc(ops->size, GFP_KERNEL);
115 		if (!data)
116 			goto out;
117 
118 		err = net_assign_generic(net, *ops->id, data);
119 		if (err)
120 			goto cleanup;
121 	}
122 	err = 0;
123 	if (ops->init)
124 		err = ops->init(net);
125 	if (!err)
126 		return 0;
127 
128 cleanup:
129 	kfree(data);
130 
131 out:
132 	return err;
133 }
134 
135 static void ops_free(const struct pernet_operations *ops, struct net *net)
136 {
137 	if (ops->id && ops->size) {
138 		kfree(net_generic(net, *ops->id));
139 	}
140 }
141 
142 static void ops_exit_list(const struct pernet_operations *ops,
143 			  struct list_head *net_exit_list)
144 {
145 	struct net *net;
146 	if (ops->exit) {
147 		list_for_each_entry(net, net_exit_list, exit_list)
148 			ops->exit(net);
149 	}
150 	if (ops->exit_batch)
151 		ops->exit_batch(net_exit_list);
152 }
153 
154 static void ops_free_list(const struct pernet_operations *ops,
155 			  struct list_head *net_exit_list)
156 {
157 	struct net *net;
158 	if (ops->size && ops->id) {
159 		list_for_each_entry(net, net_exit_list, exit_list)
160 			ops_free(ops, net);
161 	}
162 }
163 
164 /* should be called with nsid_lock held */
165 static int alloc_netid(struct net *net, struct net *peer, int reqid)
166 {
167 	int min = 0, max = 0;
168 
169 	if (reqid >= 0) {
170 		min = reqid;
171 		max = reqid + 1;
172 	}
173 
174 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
175 }
176 
177 /* This function is used by idr_for_each(). If net is equal to peer, the
178  * function returns the id so that idr_for_each() stops. Because we cannot
179  * returns the id 0 (idr_for_each() will not stop), we return the magic value
180  * NET_ID_ZERO (-1) for it.
181  */
182 #define NET_ID_ZERO -1
183 static int net_eq_idr(int id, void *net, void *peer)
184 {
185 	if (net_eq(net, peer))
186 		return id ? : NET_ID_ZERO;
187 	return 0;
188 }
189 
190 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
191  * is set to true, thus the caller knows that the new id must be notified via
192  * rtnl.
193  */
194 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
195 {
196 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
197 	bool alloc_it = *alloc;
198 
199 	*alloc = false;
200 
201 	/* Magic value for id 0. */
202 	if (id == NET_ID_ZERO)
203 		return 0;
204 	if (id > 0)
205 		return id;
206 
207 	if (alloc_it) {
208 		id = alloc_netid(net, peer, -1);
209 		*alloc = true;
210 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
211 	}
212 
213 	return NETNSA_NSID_NOT_ASSIGNED;
214 }
215 
216 /* should be called with nsid_lock held */
217 static int __peernet2id(struct net *net, struct net *peer)
218 {
219 	bool no = false;
220 
221 	return __peernet2id_alloc(net, peer, &no);
222 }
223 
224 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
225 /* This function returns the id of a peer netns. If no id is assigned, one will
226  * be allocated and returned.
227  */
228 int peernet2id_alloc(struct net *net, struct net *peer)
229 {
230 	bool alloc = false, alive = false;
231 	int id;
232 
233 	if (refcount_read(&net->count) == 0)
234 		return NETNSA_NSID_NOT_ASSIGNED;
235 	spin_lock_bh(&net->nsid_lock);
236 	/*
237 	 * When peer is obtained from RCU lists, we may race with
238 	 * its cleanup. Check whether it's alive, and this guarantees
239 	 * we never hash a peer back to net->netns_ids, after it has
240 	 * just been idr_remove()'d from there in cleanup_net().
241 	 */
242 	if (maybe_get_net(peer))
243 		alive = alloc = true;
244 	id = __peernet2id_alloc(net, peer, &alloc);
245 	spin_unlock_bh(&net->nsid_lock);
246 	if (alloc && id >= 0)
247 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
248 	if (alive)
249 		put_net(peer);
250 	return id;
251 }
252 EXPORT_SYMBOL_GPL(peernet2id_alloc);
253 
254 /* This function returns, if assigned, the id of a peer netns. */
255 int peernet2id(struct net *net, struct net *peer)
256 {
257 	int id;
258 
259 	spin_lock_bh(&net->nsid_lock);
260 	id = __peernet2id(net, peer);
261 	spin_unlock_bh(&net->nsid_lock);
262 	return id;
263 }
264 EXPORT_SYMBOL(peernet2id);
265 
266 /* This function returns true is the peer netns has an id assigned into the
267  * current netns.
268  */
269 bool peernet_has_id(struct net *net, struct net *peer)
270 {
271 	return peernet2id(net, peer) >= 0;
272 }
273 
274 struct net *get_net_ns_by_id(struct net *net, int id)
275 {
276 	struct net *peer;
277 
278 	if (id < 0)
279 		return NULL;
280 
281 	rcu_read_lock();
282 	peer = idr_find(&net->netns_ids, id);
283 	if (peer)
284 		peer = maybe_get_net(peer);
285 	rcu_read_unlock();
286 
287 	return peer;
288 }
289 
290 /*
291  * setup_net runs the initializers for the network namespace object.
292  */
293 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
294 {
295 	/* Must be called with net_sem held */
296 	const struct pernet_operations *ops, *saved_ops;
297 	int error = 0;
298 	LIST_HEAD(net_exit_list);
299 
300 	refcount_set(&net->count, 1);
301 	refcount_set(&net->passive, 1);
302 	net->dev_base_seq = 1;
303 	net->user_ns = user_ns;
304 	idr_init(&net->netns_ids);
305 	spin_lock_init(&net->nsid_lock);
306 
307 	list_for_each_entry(ops, &pernet_list, list) {
308 		error = ops_init(ops, net);
309 		if (error < 0)
310 			goto out_undo;
311 	}
312 	rtnl_lock();
313 	list_add_tail_rcu(&net->list, &net_namespace_list);
314 	rtnl_unlock();
315 out:
316 	return error;
317 
318 out_undo:
319 	/* Walk through the list backwards calling the exit functions
320 	 * for the pernet modules whose init functions did not fail.
321 	 */
322 	list_add(&net->exit_list, &net_exit_list);
323 	saved_ops = ops;
324 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
325 		ops_exit_list(ops, &net_exit_list);
326 
327 	ops = saved_ops;
328 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
329 		ops_free_list(ops, &net_exit_list);
330 
331 	rcu_barrier();
332 	goto out;
333 }
334 
335 static int __net_init net_defaults_init_net(struct net *net)
336 {
337 	net->core.sysctl_somaxconn = SOMAXCONN;
338 	return 0;
339 }
340 
341 static struct pernet_operations net_defaults_ops = {
342 	.init = net_defaults_init_net,
343 	.async = true,
344 };
345 
346 static __init int net_defaults_init(void)
347 {
348 	if (register_pernet_subsys(&net_defaults_ops))
349 		panic("Cannot initialize net default settings");
350 
351 	return 0;
352 }
353 
354 core_initcall(net_defaults_init);
355 
356 #ifdef CONFIG_NET_NS
357 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
358 {
359 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
360 }
361 
362 static void dec_net_namespaces(struct ucounts *ucounts)
363 {
364 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
365 }
366 
367 static struct kmem_cache *net_cachep;
368 static struct workqueue_struct *netns_wq;
369 
370 static struct net *net_alloc(void)
371 {
372 	struct net *net = NULL;
373 	struct net_generic *ng;
374 
375 	ng = net_alloc_generic();
376 	if (!ng)
377 		goto out;
378 
379 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
380 	if (!net)
381 		goto out_free;
382 
383 	rcu_assign_pointer(net->gen, ng);
384 out:
385 	return net;
386 
387 out_free:
388 	kfree(ng);
389 	goto out;
390 }
391 
392 static void net_free(struct net *net)
393 {
394 	kfree(rcu_access_pointer(net->gen));
395 	kmem_cache_free(net_cachep, net);
396 }
397 
398 void net_drop_ns(void *p)
399 {
400 	struct net *ns = p;
401 	if (ns && refcount_dec_and_test(&ns->passive))
402 		net_free(ns);
403 }
404 
405 struct net *copy_net_ns(unsigned long flags,
406 			struct user_namespace *user_ns, struct net *old_net)
407 {
408 	struct ucounts *ucounts;
409 	struct net *net;
410 	int rv;
411 
412 	if (!(flags & CLONE_NEWNET))
413 		return get_net(old_net);
414 
415 	ucounts = inc_net_namespaces(user_ns);
416 	if (!ucounts)
417 		return ERR_PTR(-ENOSPC);
418 
419 	net = net_alloc();
420 	if (!net) {
421 		rv = -ENOMEM;
422 		goto dec_ucounts;
423 	}
424 	refcount_set(&net->passive, 1);
425 	net->ucounts = ucounts;
426 	get_user_ns(user_ns);
427 
428 	rv = down_read_killable(&net_sem);
429 	if (rv < 0)
430 		goto put_userns;
431 	if (nr_sync_pernet_ops) {
432 		rv = mutex_lock_killable(&net_mutex);
433 		if (rv < 0)
434 			goto up_read;
435 	}
436 	rv = setup_net(net, user_ns);
437 	if (nr_sync_pernet_ops)
438 		mutex_unlock(&net_mutex);
439 up_read:
440 	up_read(&net_sem);
441 	if (rv < 0) {
442 put_userns:
443 		put_user_ns(user_ns);
444 		net_drop_ns(net);
445 dec_ucounts:
446 		dec_net_namespaces(ucounts);
447 		return ERR_PTR(rv);
448 	}
449 	return net;
450 }
451 
452 static void unhash_nsid(struct net *net, struct net *last)
453 {
454 	struct net *tmp;
455 	/* This function is only called from cleanup_net() work,
456 	 * and this work is the only process, that may delete
457 	 * a net from net_namespace_list. So, when the below
458 	 * is executing, the list may only grow. Thus, we do not
459 	 * use for_each_net_rcu() or rtnl_lock().
460 	 */
461 	for_each_net(tmp) {
462 		int id;
463 
464 		spin_lock_bh(&tmp->nsid_lock);
465 		id = __peernet2id(tmp, net);
466 		if (id >= 0)
467 			idr_remove(&tmp->netns_ids, id);
468 		spin_unlock_bh(&tmp->nsid_lock);
469 		if (id >= 0)
470 			rtnl_net_notifyid(tmp, RTM_DELNSID, id);
471 		if (tmp == last)
472 			break;
473 	}
474 	spin_lock_bh(&net->nsid_lock);
475 	idr_destroy(&net->netns_ids);
476 	spin_unlock_bh(&net->nsid_lock);
477 }
478 
479 static DEFINE_SPINLOCK(cleanup_list_lock);
480 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
481 
482 static void cleanup_net(struct work_struct *work)
483 {
484 	const struct pernet_operations *ops;
485 	struct net *net, *tmp, *last;
486 	struct list_head net_kill_list;
487 	LIST_HEAD(net_exit_list);
488 
489 	/* Atomically snapshot the list of namespaces to cleanup */
490 	spin_lock_irq(&cleanup_list_lock);
491 	list_replace_init(&cleanup_list, &net_kill_list);
492 	spin_unlock_irq(&cleanup_list_lock);
493 
494 	down_read(&net_sem);
495 	if (nr_sync_pernet_ops)
496 		mutex_lock(&net_mutex);
497 
498 	/* Don't let anyone else find us. */
499 	rtnl_lock();
500 	list_for_each_entry(net, &net_kill_list, cleanup_list)
501 		list_del_rcu(&net->list);
502 	/* Cache last net. After we unlock rtnl, no one new net
503 	 * added to net_namespace_list can assign nsid pointer
504 	 * to a net from net_kill_list (see peernet2id_alloc()).
505 	 * So, we skip them in unhash_nsid().
506 	 *
507 	 * Note, that unhash_nsid() does not delete nsid links
508 	 * between net_kill_list's nets, as they've already
509 	 * deleted from net_namespace_list. But, this would be
510 	 * useless anyway, as netns_ids are destroyed there.
511 	 */
512 	last = list_last_entry(&net_namespace_list, struct net, list);
513 	rtnl_unlock();
514 
515 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
516 		unhash_nsid(net, last);
517 		list_add_tail(&net->exit_list, &net_exit_list);
518 	}
519 
520 	/*
521 	 * Another CPU might be rcu-iterating the list, wait for it.
522 	 * This needs to be before calling the exit() notifiers, so
523 	 * the rcu_barrier() below isn't sufficient alone.
524 	 */
525 	synchronize_rcu();
526 
527 	/* Run all of the network namespace exit methods */
528 	list_for_each_entry_reverse(ops, &pernet_list, list)
529 		ops_exit_list(ops, &net_exit_list);
530 
531 	if (nr_sync_pernet_ops)
532 		mutex_unlock(&net_mutex);
533 
534 	/* Free the net generic variables */
535 	list_for_each_entry_reverse(ops, &pernet_list, list)
536 		ops_free_list(ops, &net_exit_list);
537 
538 	up_read(&net_sem);
539 
540 	/* Ensure there are no outstanding rcu callbacks using this
541 	 * network namespace.
542 	 */
543 	rcu_barrier();
544 
545 	/* Finally it is safe to free my network namespace structure */
546 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
547 		list_del_init(&net->exit_list);
548 		dec_net_namespaces(net->ucounts);
549 		put_user_ns(net->user_ns);
550 		net_drop_ns(net);
551 	}
552 }
553 
554 /**
555  * net_ns_barrier - wait until concurrent net_cleanup_work is done
556  *
557  * cleanup_net runs from work queue and will first remove namespaces
558  * from the global list, then run net exit functions.
559  *
560  * Call this in module exit path to make sure that all netns
561  * ->exit ops have been invoked before the function is removed.
562  */
563 void net_ns_barrier(void)
564 {
565 	down_write(&net_sem);
566 	mutex_lock(&net_mutex);
567 	mutex_unlock(&net_mutex);
568 	up_write(&net_sem);
569 }
570 EXPORT_SYMBOL(net_ns_barrier);
571 
572 static DECLARE_WORK(net_cleanup_work, cleanup_net);
573 
574 void __put_net(struct net *net)
575 {
576 	/* Cleanup the network namespace in process context */
577 	unsigned long flags;
578 
579 	spin_lock_irqsave(&cleanup_list_lock, flags);
580 	list_add(&net->cleanup_list, &cleanup_list);
581 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
582 
583 	queue_work(netns_wq, &net_cleanup_work);
584 }
585 EXPORT_SYMBOL_GPL(__put_net);
586 
587 struct net *get_net_ns_by_fd(int fd)
588 {
589 	struct file *file;
590 	struct ns_common *ns;
591 	struct net *net;
592 
593 	file = proc_ns_fget(fd);
594 	if (IS_ERR(file))
595 		return ERR_CAST(file);
596 
597 	ns = get_proc_ns(file_inode(file));
598 	if (ns->ops == &netns_operations)
599 		net = get_net(container_of(ns, struct net, ns));
600 	else
601 		net = ERR_PTR(-EINVAL);
602 
603 	fput(file);
604 	return net;
605 }
606 
607 #else
608 struct net *get_net_ns_by_fd(int fd)
609 {
610 	return ERR_PTR(-EINVAL);
611 }
612 #endif
613 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
614 
615 struct net *get_net_ns_by_pid(pid_t pid)
616 {
617 	struct task_struct *tsk;
618 	struct net *net;
619 
620 	/* Lookup the network namespace */
621 	net = ERR_PTR(-ESRCH);
622 	rcu_read_lock();
623 	tsk = find_task_by_vpid(pid);
624 	if (tsk) {
625 		struct nsproxy *nsproxy;
626 		task_lock(tsk);
627 		nsproxy = tsk->nsproxy;
628 		if (nsproxy)
629 			net = get_net(nsproxy->net_ns);
630 		task_unlock(tsk);
631 	}
632 	rcu_read_unlock();
633 	return net;
634 }
635 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
636 
637 static __net_init int net_ns_net_init(struct net *net)
638 {
639 #ifdef CONFIG_NET_NS
640 	net->ns.ops = &netns_operations;
641 #endif
642 	return ns_alloc_inum(&net->ns);
643 }
644 
645 static __net_exit void net_ns_net_exit(struct net *net)
646 {
647 	ns_free_inum(&net->ns);
648 }
649 
650 static struct pernet_operations __net_initdata net_ns_ops = {
651 	.init = net_ns_net_init,
652 	.exit = net_ns_net_exit,
653 	.async = true,
654 };
655 
656 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
657 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
658 	[NETNSA_NSID]		= { .type = NLA_S32 },
659 	[NETNSA_PID]		= { .type = NLA_U32 },
660 	[NETNSA_FD]		= { .type = NLA_U32 },
661 };
662 
663 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
664 			  struct netlink_ext_ack *extack)
665 {
666 	struct net *net = sock_net(skb->sk);
667 	struct nlattr *tb[NETNSA_MAX + 1];
668 	struct nlattr *nla;
669 	struct net *peer;
670 	int nsid, err;
671 
672 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
673 			  rtnl_net_policy, extack);
674 	if (err < 0)
675 		return err;
676 	if (!tb[NETNSA_NSID]) {
677 		NL_SET_ERR_MSG(extack, "nsid is missing");
678 		return -EINVAL;
679 	}
680 	nsid = nla_get_s32(tb[NETNSA_NSID]);
681 
682 	if (tb[NETNSA_PID]) {
683 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
684 		nla = tb[NETNSA_PID];
685 	} else if (tb[NETNSA_FD]) {
686 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
687 		nla = tb[NETNSA_FD];
688 	} else {
689 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
690 		return -EINVAL;
691 	}
692 	if (IS_ERR(peer)) {
693 		NL_SET_BAD_ATTR(extack, nla);
694 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
695 		return PTR_ERR(peer);
696 	}
697 
698 	spin_lock_bh(&net->nsid_lock);
699 	if (__peernet2id(net, peer) >= 0) {
700 		spin_unlock_bh(&net->nsid_lock);
701 		err = -EEXIST;
702 		NL_SET_BAD_ATTR(extack, nla);
703 		NL_SET_ERR_MSG(extack,
704 			       "Peer netns already has a nsid assigned");
705 		goto out;
706 	}
707 
708 	err = alloc_netid(net, peer, nsid);
709 	spin_unlock_bh(&net->nsid_lock);
710 	if (err >= 0) {
711 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
712 		err = 0;
713 	} else if (err == -ENOSPC && nsid >= 0) {
714 		err = -EEXIST;
715 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
716 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
717 	}
718 out:
719 	put_net(peer);
720 	return err;
721 }
722 
723 static int rtnl_net_get_size(void)
724 {
725 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
726 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
727 	       ;
728 }
729 
730 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
731 			 int cmd, struct net *net, int nsid)
732 {
733 	struct nlmsghdr *nlh;
734 	struct rtgenmsg *rth;
735 
736 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
737 	if (!nlh)
738 		return -EMSGSIZE;
739 
740 	rth = nlmsg_data(nlh);
741 	rth->rtgen_family = AF_UNSPEC;
742 
743 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
744 		goto nla_put_failure;
745 
746 	nlmsg_end(skb, nlh);
747 	return 0;
748 
749 nla_put_failure:
750 	nlmsg_cancel(skb, nlh);
751 	return -EMSGSIZE;
752 }
753 
754 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
755 			  struct netlink_ext_ack *extack)
756 {
757 	struct net *net = sock_net(skb->sk);
758 	struct nlattr *tb[NETNSA_MAX + 1];
759 	struct nlattr *nla;
760 	struct sk_buff *msg;
761 	struct net *peer;
762 	int err, id;
763 
764 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
765 			  rtnl_net_policy, extack);
766 	if (err < 0)
767 		return err;
768 	if (tb[NETNSA_PID]) {
769 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
770 		nla = tb[NETNSA_PID];
771 	} else if (tb[NETNSA_FD]) {
772 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
773 		nla = tb[NETNSA_FD];
774 	} else {
775 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
776 		return -EINVAL;
777 	}
778 
779 	if (IS_ERR(peer)) {
780 		NL_SET_BAD_ATTR(extack, nla);
781 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
782 		return PTR_ERR(peer);
783 	}
784 
785 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
786 	if (!msg) {
787 		err = -ENOMEM;
788 		goto out;
789 	}
790 
791 	id = peernet2id(net, peer);
792 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
793 			    RTM_NEWNSID, net, id);
794 	if (err < 0)
795 		goto err_out;
796 
797 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
798 	goto out;
799 
800 err_out:
801 	nlmsg_free(msg);
802 out:
803 	put_net(peer);
804 	return err;
805 }
806 
807 struct rtnl_net_dump_cb {
808 	struct net *net;
809 	struct sk_buff *skb;
810 	struct netlink_callback *cb;
811 	int idx;
812 	int s_idx;
813 };
814 
815 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
816 {
817 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
818 	int ret;
819 
820 	if (net_cb->idx < net_cb->s_idx)
821 		goto cont;
822 
823 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
824 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
825 			    RTM_NEWNSID, net_cb->net, id);
826 	if (ret < 0)
827 		return ret;
828 
829 cont:
830 	net_cb->idx++;
831 	return 0;
832 }
833 
834 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
835 {
836 	struct net *net = sock_net(skb->sk);
837 	struct rtnl_net_dump_cb net_cb = {
838 		.net = net,
839 		.skb = skb,
840 		.cb = cb,
841 		.idx = 0,
842 		.s_idx = cb->args[0],
843 	};
844 
845 	spin_lock_bh(&net->nsid_lock);
846 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
847 	spin_unlock_bh(&net->nsid_lock);
848 
849 	cb->args[0] = net_cb.idx;
850 	return skb->len;
851 }
852 
853 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
854 {
855 	struct sk_buff *msg;
856 	int err = -ENOMEM;
857 
858 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
859 	if (!msg)
860 		goto out;
861 
862 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
863 	if (err < 0)
864 		goto err_out;
865 
866 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
867 	return;
868 
869 err_out:
870 	nlmsg_free(msg);
871 out:
872 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
873 }
874 
875 static int __init net_ns_init(void)
876 {
877 	struct net_generic *ng;
878 
879 #ifdef CONFIG_NET_NS
880 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
881 					SMP_CACHE_BYTES,
882 					SLAB_PANIC, NULL);
883 
884 	/* Create workqueue for cleanup */
885 	netns_wq = create_singlethread_workqueue("netns");
886 	if (!netns_wq)
887 		panic("Could not create netns workq");
888 #endif
889 
890 	ng = net_alloc_generic();
891 	if (!ng)
892 		panic("Could not allocate generic netns");
893 
894 	rcu_assign_pointer(init_net.gen, ng);
895 
896 	down_write(&net_sem);
897 	if (setup_net(&init_net, &init_user_ns))
898 		panic("Could not setup the initial network namespace");
899 
900 	init_net_initialized = true;
901 	up_write(&net_sem);
902 
903 	register_pernet_subsys(&net_ns_ops);
904 
905 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
906 		      RTNL_FLAG_DOIT_UNLOCKED);
907 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
908 		      RTNL_FLAG_DOIT_UNLOCKED);
909 
910 	return 0;
911 }
912 
913 pure_initcall(net_ns_init);
914 
915 #ifdef CONFIG_NET_NS
916 static int __register_pernet_operations(struct list_head *list,
917 					struct pernet_operations *ops)
918 {
919 	struct net *net;
920 	int error;
921 	LIST_HEAD(net_exit_list);
922 
923 	list_add_tail(&ops->list, list);
924 	if (ops->init || (ops->id && ops->size)) {
925 		for_each_net(net) {
926 			error = ops_init(ops, net);
927 			if (error)
928 				goto out_undo;
929 			list_add_tail(&net->exit_list, &net_exit_list);
930 		}
931 	}
932 	return 0;
933 
934 out_undo:
935 	/* If I have an error cleanup all namespaces I initialized */
936 	list_del(&ops->list);
937 	ops_exit_list(ops, &net_exit_list);
938 	ops_free_list(ops, &net_exit_list);
939 	return error;
940 }
941 
942 static void __unregister_pernet_operations(struct pernet_operations *ops)
943 {
944 	struct net *net;
945 	LIST_HEAD(net_exit_list);
946 
947 	list_del(&ops->list);
948 	for_each_net(net)
949 		list_add_tail(&net->exit_list, &net_exit_list);
950 	ops_exit_list(ops, &net_exit_list);
951 	ops_free_list(ops, &net_exit_list);
952 }
953 
954 #else
955 
956 static int __register_pernet_operations(struct list_head *list,
957 					struct pernet_operations *ops)
958 {
959 	if (!init_net_initialized) {
960 		list_add_tail(&ops->list, list);
961 		return 0;
962 	}
963 
964 	return ops_init(ops, &init_net);
965 }
966 
967 static void __unregister_pernet_operations(struct pernet_operations *ops)
968 {
969 	if (!init_net_initialized) {
970 		list_del(&ops->list);
971 	} else {
972 		LIST_HEAD(net_exit_list);
973 		list_add(&init_net.exit_list, &net_exit_list);
974 		ops_exit_list(ops, &net_exit_list);
975 		ops_free_list(ops, &net_exit_list);
976 	}
977 }
978 
979 #endif /* CONFIG_NET_NS */
980 
981 static DEFINE_IDA(net_generic_ids);
982 
983 static int register_pernet_operations(struct list_head *list,
984 				      struct pernet_operations *ops)
985 {
986 	int error;
987 
988 	if (ops->id) {
989 again:
990 		error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
991 		if (error < 0) {
992 			if (error == -EAGAIN) {
993 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
994 				goto again;
995 			}
996 			return error;
997 		}
998 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
999 	}
1000 	error = __register_pernet_operations(list, ops);
1001 	if (error) {
1002 		rcu_barrier();
1003 		if (ops->id)
1004 			ida_remove(&net_generic_ids, *ops->id);
1005 	} else if (!ops->async) {
1006 		pr_info_once("Pernet operations %ps are sync.\n", ops);
1007 		nr_sync_pernet_ops++;
1008 	}
1009 
1010 	return error;
1011 }
1012 
1013 static void unregister_pernet_operations(struct pernet_operations *ops)
1014 {
1015 	if (!ops->async)
1016 		BUG_ON(nr_sync_pernet_ops-- == 0);
1017 	__unregister_pernet_operations(ops);
1018 	rcu_barrier();
1019 	if (ops->id)
1020 		ida_remove(&net_generic_ids, *ops->id);
1021 }
1022 
1023 /**
1024  *      register_pernet_subsys - register a network namespace subsystem
1025  *	@ops:  pernet operations structure for the subsystem
1026  *
1027  *	Register a subsystem which has init and exit functions
1028  *	that are called when network namespaces are created and
1029  *	destroyed respectively.
1030  *
1031  *	When registered all network namespace init functions are
1032  *	called for every existing network namespace.  Allowing kernel
1033  *	modules to have a race free view of the set of network namespaces.
1034  *
1035  *	When a new network namespace is created all of the init
1036  *	methods are called in the order in which they were registered.
1037  *
1038  *	When a network namespace is destroyed all of the exit methods
1039  *	are called in the reverse of the order with which they were
1040  *	registered.
1041  */
1042 int register_pernet_subsys(struct pernet_operations *ops)
1043 {
1044 	int error;
1045 	down_write(&net_sem);
1046 	error =  register_pernet_operations(first_device, ops);
1047 	up_write(&net_sem);
1048 	return error;
1049 }
1050 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1051 
1052 /**
1053  *      unregister_pernet_subsys - unregister a network namespace subsystem
1054  *	@ops: pernet operations structure to manipulate
1055  *
1056  *	Remove the pernet operations structure from the list to be
1057  *	used when network namespaces are created or destroyed.  In
1058  *	addition run the exit method for all existing network
1059  *	namespaces.
1060  */
1061 void unregister_pernet_subsys(struct pernet_operations *ops)
1062 {
1063 	down_write(&net_sem);
1064 	unregister_pernet_operations(ops);
1065 	up_write(&net_sem);
1066 }
1067 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1068 
1069 /**
1070  *      register_pernet_device - register a network namespace device
1071  *	@ops:  pernet operations structure for the subsystem
1072  *
1073  *	Register a device which has init and exit functions
1074  *	that are called when network namespaces are created and
1075  *	destroyed respectively.
1076  *
1077  *	When registered all network namespace init functions are
1078  *	called for every existing network namespace.  Allowing kernel
1079  *	modules to have a race free view of the set of network namespaces.
1080  *
1081  *	When a new network namespace is created all of the init
1082  *	methods are called in the order in which they were registered.
1083  *
1084  *	When a network namespace is destroyed all of the exit methods
1085  *	are called in the reverse of the order with which they were
1086  *	registered.
1087  */
1088 int register_pernet_device(struct pernet_operations *ops)
1089 {
1090 	int error;
1091 	down_write(&net_sem);
1092 	error = register_pernet_operations(&pernet_list, ops);
1093 	if (!error && (first_device == &pernet_list))
1094 		first_device = &ops->list;
1095 	up_write(&net_sem);
1096 	return error;
1097 }
1098 EXPORT_SYMBOL_GPL(register_pernet_device);
1099 
1100 /**
1101  *      unregister_pernet_device - unregister a network namespace netdevice
1102  *	@ops: pernet operations structure to manipulate
1103  *
1104  *	Remove the pernet operations structure from the list to be
1105  *	used when network namespaces are created or destroyed.  In
1106  *	addition run the exit method for all existing network
1107  *	namespaces.
1108  */
1109 void unregister_pernet_device(struct pernet_operations *ops)
1110 {
1111 	down_write(&net_sem);
1112 	if (&ops->list == first_device)
1113 		first_device = first_device->next;
1114 	unregister_pernet_operations(ops);
1115 	up_write(&net_sem);
1116 }
1117 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1118 
1119 #ifdef CONFIG_NET_NS
1120 static struct ns_common *netns_get(struct task_struct *task)
1121 {
1122 	struct net *net = NULL;
1123 	struct nsproxy *nsproxy;
1124 
1125 	task_lock(task);
1126 	nsproxy = task->nsproxy;
1127 	if (nsproxy)
1128 		net = get_net(nsproxy->net_ns);
1129 	task_unlock(task);
1130 
1131 	return net ? &net->ns : NULL;
1132 }
1133 
1134 static inline struct net *to_net_ns(struct ns_common *ns)
1135 {
1136 	return container_of(ns, struct net, ns);
1137 }
1138 
1139 static void netns_put(struct ns_common *ns)
1140 {
1141 	put_net(to_net_ns(ns));
1142 }
1143 
1144 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1145 {
1146 	struct net *net = to_net_ns(ns);
1147 
1148 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1149 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1150 		return -EPERM;
1151 
1152 	put_net(nsproxy->net_ns);
1153 	nsproxy->net_ns = get_net(net);
1154 	return 0;
1155 }
1156 
1157 static struct user_namespace *netns_owner(struct ns_common *ns)
1158 {
1159 	return to_net_ns(ns)->user_ns;
1160 }
1161 
1162 const struct proc_ns_operations netns_operations = {
1163 	.name		= "net",
1164 	.type		= CLONE_NEWNET,
1165 	.get		= netns_get,
1166 	.put		= netns_put,
1167 	.install	= netns_install,
1168 	.owner		= netns_owner,
1169 };
1170 #endif
1171