xref: /openbmc/linux/net/core/net_namespace.c (revision fceb6435)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20 
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25 
26 /*
27  *	Our network namespace constructor/destructor lists
28  */
29 
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 DEFINE_MUTEX(net_mutex);
33 
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36 
37 struct net init_net = {
38 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
39 };
40 EXPORT_SYMBOL(init_net);
41 
42 static bool init_net_initialized;
43 
44 #define MIN_PERNET_OPS_ID	\
45 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
46 
47 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
48 
49 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
50 
51 static struct net_generic *net_alloc_generic(void)
52 {
53 	struct net_generic *ng;
54 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
55 
56 	ng = kzalloc(generic_size, GFP_KERNEL);
57 	if (ng)
58 		ng->s.len = max_gen_ptrs;
59 
60 	return ng;
61 }
62 
63 static int net_assign_generic(struct net *net, unsigned int id, void *data)
64 {
65 	struct net_generic *ng, *old_ng;
66 
67 	BUG_ON(!mutex_is_locked(&net_mutex));
68 	BUG_ON(id < MIN_PERNET_OPS_ID);
69 
70 	old_ng = rcu_dereference_protected(net->gen,
71 					   lockdep_is_held(&net_mutex));
72 	if (old_ng->s.len > id) {
73 		old_ng->ptr[id] = data;
74 		return 0;
75 	}
76 
77 	ng = net_alloc_generic();
78 	if (ng == NULL)
79 		return -ENOMEM;
80 
81 	/*
82 	 * Some synchronisation notes:
83 	 *
84 	 * The net_generic explores the net->gen array inside rcu
85 	 * read section. Besides once set the net->gen->ptr[x]
86 	 * pointer never changes (see rules in netns/generic.h).
87 	 *
88 	 * That said, we simply duplicate this array and schedule
89 	 * the old copy for kfree after a grace period.
90 	 */
91 
92 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
93 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
94 	ng->ptr[id] = data;
95 
96 	rcu_assign_pointer(net->gen, ng);
97 	kfree_rcu(old_ng, s.rcu);
98 	return 0;
99 }
100 
101 static int ops_init(const struct pernet_operations *ops, struct net *net)
102 {
103 	int err = -ENOMEM;
104 	void *data = NULL;
105 
106 	if (ops->id && ops->size) {
107 		data = kzalloc(ops->size, GFP_KERNEL);
108 		if (!data)
109 			goto out;
110 
111 		err = net_assign_generic(net, *ops->id, data);
112 		if (err)
113 			goto cleanup;
114 	}
115 	err = 0;
116 	if (ops->init)
117 		err = ops->init(net);
118 	if (!err)
119 		return 0;
120 
121 cleanup:
122 	kfree(data);
123 
124 out:
125 	return err;
126 }
127 
128 static void ops_free(const struct pernet_operations *ops, struct net *net)
129 {
130 	if (ops->id && ops->size) {
131 		kfree(net_generic(net, *ops->id));
132 	}
133 }
134 
135 static void ops_exit_list(const struct pernet_operations *ops,
136 			  struct list_head *net_exit_list)
137 {
138 	struct net *net;
139 	if (ops->exit) {
140 		list_for_each_entry(net, net_exit_list, exit_list)
141 			ops->exit(net);
142 	}
143 	if (ops->exit_batch)
144 		ops->exit_batch(net_exit_list);
145 }
146 
147 static void ops_free_list(const struct pernet_operations *ops,
148 			  struct list_head *net_exit_list)
149 {
150 	struct net *net;
151 	if (ops->size && ops->id) {
152 		list_for_each_entry(net, net_exit_list, exit_list)
153 			ops_free(ops, net);
154 	}
155 }
156 
157 /* should be called with nsid_lock held */
158 static int alloc_netid(struct net *net, struct net *peer, int reqid)
159 {
160 	int min = 0, max = 0;
161 
162 	if (reqid >= 0) {
163 		min = reqid;
164 		max = reqid + 1;
165 	}
166 
167 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
168 }
169 
170 /* This function is used by idr_for_each(). If net is equal to peer, the
171  * function returns the id so that idr_for_each() stops. Because we cannot
172  * returns the id 0 (idr_for_each() will not stop), we return the magic value
173  * NET_ID_ZERO (-1) for it.
174  */
175 #define NET_ID_ZERO -1
176 static int net_eq_idr(int id, void *net, void *peer)
177 {
178 	if (net_eq(net, peer))
179 		return id ? : NET_ID_ZERO;
180 	return 0;
181 }
182 
183 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
184  * is set to true, thus the caller knows that the new id must be notified via
185  * rtnl.
186  */
187 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
188 {
189 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
190 	bool alloc_it = *alloc;
191 
192 	*alloc = false;
193 
194 	/* Magic value for id 0. */
195 	if (id == NET_ID_ZERO)
196 		return 0;
197 	if (id > 0)
198 		return id;
199 
200 	if (alloc_it) {
201 		id = alloc_netid(net, peer, -1);
202 		*alloc = true;
203 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
204 	}
205 
206 	return NETNSA_NSID_NOT_ASSIGNED;
207 }
208 
209 /* should be called with nsid_lock held */
210 static int __peernet2id(struct net *net, struct net *peer)
211 {
212 	bool no = false;
213 
214 	return __peernet2id_alloc(net, peer, &no);
215 }
216 
217 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
218 /* This function returns the id of a peer netns. If no id is assigned, one will
219  * be allocated and returned.
220  */
221 int peernet2id_alloc(struct net *net, struct net *peer)
222 {
223 	bool alloc;
224 	int id;
225 
226 	if (atomic_read(&net->count) == 0)
227 		return NETNSA_NSID_NOT_ASSIGNED;
228 	spin_lock_bh(&net->nsid_lock);
229 	alloc = atomic_read(&peer->count) == 0 ? false : true;
230 	id = __peernet2id_alloc(net, peer, &alloc);
231 	spin_unlock_bh(&net->nsid_lock);
232 	if (alloc && id >= 0)
233 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
234 	return id;
235 }
236 
237 /* This function returns, if assigned, the id of a peer netns. */
238 int peernet2id(struct net *net, struct net *peer)
239 {
240 	int id;
241 
242 	spin_lock_bh(&net->nsid_lock);
243 	id = __peernet2id(net, peer);
244 	spin_unlock_bh(&net->nsid_lock);
245 	return id;
246 }
247 EXPORT_SYMBOL(peernet2id);
248 
249 /* This function returns true is the peer netns has an id assigned into the
250  * current netns.
251  */
252 bool peernet_has_id(struct net *net, struct net *peer)
253 {
254 	return peernet2id(net, peer) >= 0;
255 }
256 
257 struct net *get_net_ns_by_id(struct net *net, int id)
258 {
259 	struct net *peer;
260 
261 	if (id < 0)
262 		return NULL;
263 
264 	rcu_read_lock();
265 	spin_lock_bh(&net->nsid_lock);
266 	peer = idr_find(&net->netns_ids, id);
267 	if (peer)
268 		get_net(peer);
269 	spin_unlock_bh(&net->nsid_lock);
270 	rcu_read_unlock();
271 
272 	return peer;
273 }
274 
275 /*
276  * setup_net runs the initializers for the network namespace object.
277  */
278 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
279 {
280 	/* Must be called with net_mutex held */
281 	const struct pernet_operations *ops, *saved_ops;
282 	int error = 0;
283 	LIST_HEAD(net_exit_list);
284 
285 	atomic_set(&net->count, 1);
286 	atomic_set(&net->passive, 1);
287 	net->dev_base_seq = 1;
288 	net->user_ns = user_ns;
289 	idr_init(&net->netns_ids);
290 	spin_lock_init(&net->nsid_lock);
291 
292 	list_for_each_entry(ops, &pernet_list, list) {
293 		error = ops_init(ops, net);
294 		if (error < 0)
295 			goto out_undo;
296 	}
297 out:
298 	return error;
299 
300 out_undo:
301 	/* Walk through the list backwards calling the exit functions
302 	 * for the pernet modules whose init functions did not fail.
303 	 */
304 	list_add(&net->exit_list, &net_exit_list);
305 	saved_ops = ops;
306 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
307 		ops_exit_list(ops, &net_exit_list);
308 
309 	ops = saved_ops;
310 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
311 		ops_free_list(ops, &net_exit_list);
312 
313 	rcu_barrier();
314 	goto out;
315 }
316 
317 
318 #ifdef CONFIG_NET_NS
319 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
320 {
321 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
322 }
323 
324 static void dec_net_namespaces(struct ucounts *ucounts)
325 {
326 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
327 }
328 
329 static struct kmem_cache *net_cachep;
330 static struct workqueue_struct *netns_wq;
331 
332 static struct net *net_alloc(void)
333 {
334 	struct net *net = NULL;
335 	struct net_generic *ng;
336 
337 	ng = net_alloc_generic();
338 	if (!ng)
339 		goto out;
340 
341 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
342 	if (!net)
343 		goto out_free;
344 
345 	rcu_assign_pointer(net->gen, ng);
346 out:
347 	return net;
348 
349 out_free:
350 	kfree(ng);
351 	goto out;
352 }
353 
354 static void net_free(struct net *net)
355 {
356 	kfree(rcu_access_pointer(net->gen));
357 	kmem_cache_free(net_cachep, net);
358 }
359 
360 void net_drop_ns(void *p)
361 {
362 	struct net *ns = p;
363 	if (ns && atomic_dec_and_test(&ns->passive))
364 		net_free(ns);
365 }
366 
367 struct net *copy_net_ns(unsigned long flags,
368 			struct user_namespace *user_ns, struct net *old_net)
369 {
370 	struct ucounts *ucounts;
371 	struct net *net;
372 	int rv;
373 
374 	if (!(flags & CLONE_NEWNET))
375 		return get_net(old_net);
376 
377 	ucounts = inc_net_namespaces(user_ns);
378 	if (!ucounts)
379 		return ERR_PTR(-ENOSPC);
380 
381 	net = net_alloc();
382 	if (!net) {
383 		dec_net_namespaces(ucounts);
384 		return ERR_PTR(-ENOMEM);
385 	}
386 
387 	get_user_ns(user_ns);
388 
389 	rv = mutex_lock_killable(&net_mutex);
390 	if (rv < 0) {
391 		net_free(net);
392 		dec_net_namespaces(ucounts);
393 		put_user_ns(user_ns);
394 		return ERR_PTR(rv);
395 	}
396 
397 	net->ucounts = ucounts;
398 	rv = setup_net(net, user_ns);
399 	if (rv == 0) {
400 		rtnl_lock();
401 		list_add_tail_rcu(&net->list, &net_namespace_list);
402 		rtnl_unlock();
403 	}
404 	mutex_unlock(&net_mutex);
405 	if (rv < 0) {
406 		dec_net_namespaces(ucounts);
407 		put_user_ns(user_ns);
408 		net_drop_ns(net);
409 		return ERR_PTR(rv);
410 	}
411 	return net;
412 }
413 
414 static DEFINE_SPINLOCK(cleanup_list_lock);
415 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
416 
417 static void cleanup_net(struct work_struct *work)
418 {
419 	const struct pernet_operations *ops;
420 	struct net *net, *tmp;
421 	struct list_head net_kill_list;
422 	LIST_HEAD(net_exit_list);
423 
424 	/* Atomically snapshot the list of namespaces to cleanup */
425 	spin_lock_irq(&cleanup_list_lock);
426 	list_replace_init(&cleanup_list, &net_kill_list);
427 	spin_unlock_irq(&cleanup_list_lock);
428 
429 	mutex_lock(&net_mutex);
430 
431 	/* Don't let anyone else find us. */
432 	rtnl_lock();
433 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
434 		list_del_rcu(&net->list);
435 		list_add_tail(&net->exit_list, &net_exit_list);
436 		for_each_net(tmp) {
437 			int id;
438 
439 			spin_lock_bh(&tmp->nsid_lock);
440 			id = __peernet2id(tmp, net);
441 			if (id >= 0)
442 				idr_remove(&tmp->netns_ids, id);
443 			spin_unlock_bh(&tmp->nsid_lock);
444 			if (id >= 0)
445 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
446 		}
447 		spin_lock_bh(&net->nsid_lock);
448 		idr_destroy(&net->netns_ids);
449 		spin_unlock_bh(&net->nsid_lock);
450 
451 	}
452 	rtnl_unlock();
453 
454 	/*
455 	 * Another CPU might be rcu-iterating the list, wait for it.
456 	 * This needs to be before calling the exit() notifiers, so
457 	 * the rcu_barrier() below isn't sufficient alone.
458 	 */
459 	synchronize_rcu();
460 
461 	/* Run all of the network namespace exit methods */
462 	list_for_each_entry_reverse(ops, &pernet_list, list)
463 		ops_exit_list(ops, &net_exit_list);
464 
465 	/* Free the net generic variables */
466 	list_for_each_entry_reverse(ops, &pernet_list, list)
467 		ops_free_list(ops, &net_exit_list);
468 
469 	mutex_unlock(&net_mutex);
470 
471 	/* Ensure there are no outstanding rcu callbacks using this
472 	 * network namespace.
473 	 */
474 	rcu_barrier();
475 
476 	/* Finally it is safe to free my network namespace structure */
477 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
478 		list_del_init(&net->exit_list);
479 		dec_net_namespaces(net->ucounts);
480 		put_user_ns(net->user_ns);
481 		net_drop_ns(net);
482 	}
483 }
484 static DECLARE_WORK(net_cleanup_work, cleanup_net);
485 
486 void __put_net(struct net *net)
487 {
488 	/* Cleanup the network namespace in process context */
489 	unsigned long flags;
490 
491 	spin_lock_irqsave(&cleanup_list_lock, flags);
492 	list_add(&net->cleanup_list, &cleanup_list);
493 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
494 
495 	queue_work(netns_wq, &net_cleanup_work);
496 }
497 EXPORT_SYMBOL_GPL(__put_net);
498 
499 struct net *get_net_ns_by_fd(int fd)
500 {
501 	struct file *file;
502 	struct ns_common *ns;
503 	struct net *net;
504 
505 	file = proc_ns_fget(fd);
506 	if (IS_ERR(file))
507 		return ERR_CAST(file);
508 
509 	ns = get_proc_ns(file_inode(file));
510 	if (ns->ops == &netns_operations)
511 		net = get_net(container_of(ns, struct net, ns));
512 	else
513 		net = ERR_PTR(-EINVAL);
514 
515 	fput(file);
516 	return net;
517 }
518 
519 #else
520 struct net *get_net_ns_by_fd(int fd)
521 {
522 	return ERR_PTR(-EINVAL);
523 }
524 #endif
525 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
526 
527 struct net *get_net_ns_by_pid(pid_t pid)
528 {
529 	struct task_struct *tsk;
530 	struct net *net;
531 
532 	/* Lookup the network namespace */
533 	net = ERR_PTR(-ESRCH);
534 	rcu_read_lock();
535 	tsk = find_task_by_vpid(pid);
536 	if (tsk) {
537 		struct nsproxy *nsproxy;
538 		task_lock(tsk);
539 		nsproxy = tsk->nsproxy;
540 		if (nsproxy)
541 			net = get_net(nsproxy->net_ns);
542 		task_unlock(tsk);
543 	}
544 	rcu_read_unlock();
545 	return net;
546 }
547 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
548 
549 static __net_init int net_ns_net_init(struct net *net)
550 {
551 #ifdef CONFIG_NET_NS
552 	net->ns.ops = &netns_operations;
553 #endif
554 	return ns_alloc_inum(&net->ns);
555 }
556 
557 static __net_exit void net_ns_net_exit(struct net *net)
558 {
559 	ns_free_inum(&net->ns);
560 }
561 
562 static struct pernet_operations __net_initdata net_ns_ops = {
563 	.init = net_ns_net_init,
564 	.exit = net_ns_net_exit,
565 };
566 
567 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
568 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
569 	[NETNSA_NSID]		= { .type = NLA_S32 },
570 	[NETNSA_PID]		= { .type = NLA_U32 },
571 	[NETNSA_FD]		= { .type = NLA_U32 },
572 };
573 
574 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
575 {
576 	struct net *net = sock_net(skb->sk);
577 	struct nlattr *tb[NETNSA_MAX + 1];
578 	struct net *peer;
579 	int nsid, err;
580 
581 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
582 			  rtnl_net_policy, NULL);
583 	if (err < 0)
584 		return err;
585 	if (!tb[NETNSA_NSID])
586 		return -EINVAL;
587 	nsid = nla_get_s32(tb[NETNSA_NSID]);
588 
589 	if (tb[NETNSA_PID])
590 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
591 	else if (tb[NETNSA_FD])
592 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
593 	else
594 		return -EINVAL;
595 	if (IS_ERR(peer))
596 		return PTR_ERR(peer);
597 
598 	spin_lock_bh(&net->nsid_lock);
599 	if (__peernet2id(net, peer) >= 0) {
600 		spin_unlock_bh(&net->nsid_lock);
601 		err = -EEXIST;
602 		goto out;
603 	}
604 
605 	err = alloc_netid(net, peer, nsid);
606 	spin_unlock_bh(&net->nsid_lock);
607 	if (err >= 0) {
608 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
609 		err = 0;
610 	}
611 out:
612 	put_net(peer);
613 	return err;
614 }
615 
616 static int rtnl_net_get_size(void)
617 {
618 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
619 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
620 	       ;
621 }
622 
623 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
624 			 int cmd, struct net *net, int nsid)
625 {
626 	struct nlmsghdr *nlh;
627 	struct rtgenmsg *rth;
628 
629 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
630 	if (!nlh)
631 		return -EMSGSIZE;
632 
633 	rth = nlmsg_data(nlh);
634 	rth->rtgen_family = AF_UNSPEC;
635 
636 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
637 		goto nla_put_failure;
638 
639 	nlmsg_end(skb, nlh);
640 	return 0;
641 
642 nla_put_failure:
643 	nlmsg_cancel(skb, nlh);
644 	return -EMSGSIZE;
645 }
646 
647 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
648 {
649 	struct net *net = sock_net(skb->sk);
650 	struct nlattr *tb[NETNSA_MAX + 1];
651 	struct sk_buff *msg;
652 	struct net *peer;
653 	int err, id;
654 
655 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
656 			  rtnl_net_policy, NULL);
657 	if (err < 0)
658 		return err;
659 	if (tb[NETNSA_PID])
660 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
661 	else if (tb[NETNSA_FD])
662 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
663 	else
664 		return -EINVAL;
665 
666 	if (IS_ERR(peer))
667 		return PTR_ERR(peer);
668 
669 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
670 	if (!msg) {
671 		err = -ENOMEM;
672 		goto out;
673 	}
674 
675 	id = peernet2id(net, peer);
676 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
677 			    RTM_NEWNSID, net, id);
678 	if (err < 0)
679 		goto err_out;
680 
681 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
682 	goto out;
683 
684 err_out:
685 	nlmsg_free(msg);
686 out:
687 	put_net(peer);
688 	return err;
689 }
690 
691 struct rtnl_net_dump_cb {
692 	struct net *net;
693 	struct sk_buff *skb;
694 	struct netlink_callback *cb;
695 	int idx;
696 	int s_idx;
697 };
698 
699 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
700 {
701 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
702 	int ret;
703 
704 	if (net_cb->idx < net_cb->s_idx)
705 		goto cont;
706 
707 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
708 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
709 			    RTM_NEWNSID, net_cb->net, id);
710 	if (ret < 0)
711 		return ret;
712 
713 cont:
714 	net_cb->idx++;
715 	return 0;
716 }
717 
718 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
719 {
720 	struct net *net = sock_net(skb->sk);
721 	struct rtnl_net_dump_cb net_cb = {
722 		.net = net,
723 		.skb = skb,
724 		.cb = cb,
725 		.idx = 0,
726 		.s_idx = cb->args[0],
727 	};
728 
729 	spin_lock_bh(&net->nsid_lock);
730 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
731 	spin_unlock_bh(&net->nsid_lock);
732 
733 	cb->args[0] = net_cb.idx;
734 	return skb->len;
735 }
736 
737 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
738 {
739 	struct sk_buff *msg;
740 	int err = -ENOMEM;
741 
742 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
743 	if (!msg)
744 		goto out;
745 
746 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
747 	if (err < 0)
748 		goto err_out;
749 
750 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
751 	return;
752 
753 err_out:
754 	nlmsg_free(msg);
755 out:
756 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
757 }
758 
759 static int __init net_ns_init(void)
760 {
761 	struct net_generic *ng;
762 
763 #ifdef CONFIG_NET_NS
764 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
765 					SMP_CACHE_BYTES,
766 					SLAB_PANIC, NULL);
767 
768 	/* Create workqueue for cleanup */
769 	netns_wq = create_singlethread_workqueue("netns");
770 	if (!netns_wq)
771 		panic("Could not create netns workq");
772 #endif
773 
774 	ng = net_alloc_generic();
775 	if (!ng)
776 		panic("Could not allocate generic netns");
777 
778 	rcu_assign_pointer(init_net.gen, ng);
779 
780 	mutex_lock(&net_mutex);
781 	if (setup_net(&init_net, &init_user_ns))
782 		panic("Could not setup the initial network namespace");
783 
784 	init_net_initialized = true;
785 
786 	rtnl_lock();
787 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
788 	rtnl_unlock();
789 
790 	mutex_unlock(&net_mutex);
791 
792 	register_pernet_subsys(&net_ns_ops);
793 
794 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
795 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
796 		      NULL);
797 
798 	return 0;
799 }
800 
801 pure_initcall(net_ns_init);
802 
803 #ifdef CONFIG_NET_NS
804 static int __register_pernet_operations(struct list_head *list,
805 					struct pernet_operations *ops)
806 {
807 	struct net *net;
808 	int error;
809 	LIST_HEAD(net_exit_list);
810 
811 	list_add_tail(&ops->list, list);
812 	if (ops->init || (ops->id && ops->size)) {
813 		for_each_net(net) {
814 			error = ops_init(ops, net);
815 			if (error)
816 				goto out_undo;
817 			list_add_tail(&net->exit_list, &net_exit_list);
818 		}
819 	}
820 	return 0;
821 
822 out_undo:
823 	/* If I have an error cleanup all namespaces I initialized */
824 	list_del(&ops->list);
825 	ops_exit_list(ops, &net_exit_list);
826 	ops_free_list(ops, &net_exit_list);
827 	return error;
828 }
829 
830 static void __unregister_pernet_operations(struct pernet_operations *ops)
831 {
832 	struct net *net;
833 	LIST_HEAD(net_exit_list);
834 
835 	list_del(&ops->list);
836 	for_each_net(net)
837 		list_add_tail(&net->exit_list, &net_exit_list);
838 	ops_exit_list(ops, &net_exit_list);
839 	ops_free_list(ops, &net_exit_list);
840 }
841 
842 #else
843 
844 static int __register_pernet_operations(struct list_head *list,
845 					struct pernet_operations *ops)
846 {
847 	if (!init_net_initialized) {
848 		list_add_tail(&ops->list, list);
849 		return 0;
850 	}
851 
852 	return ops_init(ops, &init_net);
853 }
854 
855 static void __unregister_pernet_operations(struct pernet_operations *ops)
856 {
857 	if (!init_net_initialized) {
858 		list_del(&ops->list);
859 	} else {
860 		LIST_HEAD(net_exit_list);
861 		list_add(&init_net.exit_list, &net_exit_list);
862 		ops_exit_list(ops, &net_exit_list);
863 		ops_free_list(ops, &net_exit_list);
864 	}
865 }
866 
867 #endif /* CONFIG_NET_NS */
868 
869 static DEFINE_IDA(net_generic_ids);
870 
871 static int register_pernet_operations(struct list_head *list,
872 				      struct pernet_operations *ops)
873 {
874 	int error;
875 
876 	if (ops->id) {
877 again:
878 		error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
879 		if (error < 0) {
880 			if (error == -EAGAIN) {
881 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
882 				goto again;
883 			}
884 			return error;
885 		}
886 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
887 	}
888 	error = __register_pernet_operations(list, ops);
889 	if (error) {
890 		rcu_barrier();
891 		if (ops->id)
892 			ida_remove(&net_generic_ids, *ops->id);
893 	}
894 
895 	return error;
896 }
897 
898 static void unregister_pernet_operations(struct pernet_operations *ops)
899 {
900 
901 	__unregister_pernet_operations(ops);
902 	rcu_barrier();
903 	if (ops->id)
904 		ida_remove(&net_generic_ids, *ops->id);
905 }
906 
907 /**
908  *      register_pernet_subsys - register a network namespace subsystem
909  *	@ops:  pernet operations structure for the subsystem
910  *
911  *	Register a subsystem which has init and exit functions
912  *	that are called when network namespaces are created and
913  *	destroyed respectively.
914  *
915  *	When registered all network namespace init functions are
916  *	called for every existing network namespace.  Allowing kernel
917  *	modules to have a race free view of the set of network namespaces.
918  *
919  *	When a new network namespace is created all of the init
920  *	methods are called in the order in which they were registered.
921  *
922  *	When a network namespace is destroyed all of the exit methods
923  *	are called in the reverse of the order with which they were
924  *	registered.
925  */
926 int register_pernet_subsys(struct pernet_operations *ops)
927 {
928 	int error;
929 	mutex_lock(&net_mutex);
930 	error =  register_pernet_operations(first_device, ops);
931 	mutex_unlock(&net_mutex);
932 	return error;
933 }
934 EXPORT_SYMBOL_GPL(register_pernet_subsys);
935 
936 /**
937  *      unregister_pernet_subsys - unregister a network namespace subsystem
938  *	@ops: pernet operations structure to manipulate
939  *
940  *	Remove the pernet operations structure from the list to be
941  *	used when network namespaces are created or destroyed.  In
942  *	addition run the exit method for all existing network
943  *	namespaces.
944  */
945 void unregister_pernet_subsys(struct pernet_operations *ops)
946 {
947 	mutex_lock(&net_mutex);
948 	unregister_pernet_operations(ops);
949 	mutex_unlock(&net_mutex);
950 }
951 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
952 
953 /**
954  *      register_pernet_device - register a network namespace device
955  *	@ops:  pernet operations structure for the subsystem
956  *
957  *	Register a device which has init and exit functions
958  *	that are called when network namespaces are created and
959  *	destroyed respectively.
960  *
961  *	When registered all network namespace init functions are
962  *	called for every existing network namespace.  Allowing kernel
963  *	modules to have a race free view of the set of network namespaces.
964  *
965  *	When a new network namespace is created all of the init
966  *	methods are called in the order in which they were registered.
967  *
968  *	When a network namespace is destroyed all of the exit methods
969  *	are called in the reverse of the order with which they were
970  *	registered.
971  */
972 int register_pernet_device(struct pernet_operations *ops)
973 {
974 	int error;
975 	mutex_lock(&net_mutex);
976 	error = register_pernet_operations(&pernet_list, ops);
977 	if (!error && (first_device == &pernet_list))
978 		first_device = &ops->list;
979 	mutex_unlock(&net_mutex);
980 	return error;
981 }
982 EXPORT_SYMBOL_GPL(register_pernet_device);
983 
984 /**
985  *      unregister_pernet_device - unregister a network namespace netdevice
986  *	@ops: pernet operations structure to manipulate
987  *
988  *	Remove the pernet operations structure from the list to be
989  *	used when network namespaces are created or destroyed.  In
990  *	addition run the exit method for all existing network
991  *	namespaces.
992  */
993 void unregister_pernet_device(struct pernet_operations *ops)
994 {
995 	mutex_lock(&net_mutex);
996 	if (&ops->list == first_device)
997 		first_device = first_device->next;
998 	unregister_pernet_operations(ops);
999 	mutex_unlock(&net_mutex);
1000 }
1001 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1002 
1003 #ifdef CONFIG_NET_NS
1004 static struct ns_common *netns_get(struct task_struct *task)
1005 {
1006 	struct net *net = NULL;
1007 	struct nsproxy *nsproxy;
1008 
1009 	task_lock(task);
1010 	nsproxy = task->nsproxy;
1011 	if (nsproxy)
1012 		net = get_net(nsproxy->net_ns);
1013 	task_unlock(task);
1014 
1015 	return net ? &net->ns : NULL;
1016 }
1017 
1018 static inline struct net *to_net_ns(struct ns_common *ns)
1019 {
1020 	return container_of(ns, struct net, ns);
1021 }
1022 
1023 static void netns_put(struct ns_common *ns)
1024 {
1025 	put_net(to_net_ns(ns));
1026 }
1027 
1028 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1029 {
1030 	struct net *net = to_net_ns(ns);
1031 
1032 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1033 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1034 		return -EPERM;
1035 
1036 	put_net(nsproxy->net_ns);
1037 	nsproxy->net_ns = get_net(net);
1038 	return 0;
1039 }
1040 
1041 static struct user_namespace *netns_owner(struct ns_common *ns)
1042 {
1043 	return to_net_ns(ns)->user_ns;
1044 }
1045 
1046 const struct proc_ns_operations netns_operations = {
1047 	.name		= "net",
1048 	.type		= CLONE_NEWNET,
1049 	.get		= netns_get,
1050 	.put		= netns_put,
1051 	.install	= netns_install,
1052 	.owner		= netns_owner,
1053 };
1054 #endif
1055