xref: /openbmc/linux/net/core/net_namespace.c (revision fba143c6)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34 
35 struct net init_net = {
36 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39 
40 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
41 
42 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
43 
44 static struct net_generic *net_alloc_generic(void)
45 {
46 	struct net_generic *ng;
47 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
48 
49 	ng = kzalloc(generic_size, GFP_KERNEL);
50 	if (ng)
51 		ng->len = max_gen_ptrs;
52 
53 	return ng;
54 }
55 
56 static int net_assign_generic(struct net *net, int id, void *data)
57 {
58 	struct net_generic *ng, *old_ng;
59 
60 	BUG_ON(!mutex_is_locked(&net_mutex));
61 	BUG_ON(id == 0);
62 
63 	old_ng = rcu_dereference_protected(net->gen,
64 					   lockdep_is_held(&net_mutex));
65 	ng = old_ng;
66 	if (old_ng->len >= id)
67 		goto assign;
68 
69 	ng = net_alloc_generic();
70 	if (ng == NULL)
71 		return -ENOMEM;
72 
73 	/*
74 	 * Some synchronisation notes:
75 	 *
76 	 * The net_generic explores the net->gen array inside rcu
77 	 * read section. Besides once set the net->gen->ptr[x]
78 	 * pointer never changes (see rules in netns/generic.h).
79 	 *
80 	 * That said, we simply duplicate this array and schedule
81 	 * the old copy for kfree after a grace period.
82 	 */
83 
84 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
85 
86 	rcu_assign_pointer(net->gen, ng);
87 	kfree_rcu(old_ng, rcu);
88 assign:
89 	ng->ptr[id - 1] = data;
90 	return 0;
91 }
92 
93 static int ops_init(const struct pernet_operations *ops, struct net *net)
94 {
95 	int err = -ENOMEM;
96 	void *data = NULL;
97 
98 	if (ops->id && ops->size) {
99 		data = kzalloc(ops->size, GFP_KERNEL);
100 		if (!data)
101 			goto out;
102 
103 		err = net_assign_generic(net, *ops->id, data);
104 		if (err)
105 			goto cleanup;
106 	}
107 	err = 0;
108 	if (ops->init)
109 		err = ops->init(net);
110 	if (!err)
111 		return 0;
112 
113 cleanup:
114 	kfree(data);
115 
116 out:
117 	return err;
118 }
119 
120 static void ops_free(const struct pernet_operations *ops, struct net *net)
121 {
122 	if (ops->id && ops->size) {
123 		int id = *ops->id;
124 		kfree(net_generic(net, id));
125 	}
126 }
127 
128 static void ops_exit_list(const struct pernet_operations *ops,
129 			  struct list_head *net_exit_list)
130 {
131 	struct net *net;
132 	if (ops->exit) {
133 		list_for_each_entry(net, net_exit_list, exit_list)
134 			ops->exit(net);
135 	}
136 	if (ops->exit_batch)
137 		ops->exit_batch(net_exit_list);
138 }
139 
140 static void ops_free_list(const struct pernet_operations *ops,
141 			  struct list_head *net_exit_list)
142 {
143 	struct net *net;
144 	if (ops->size && ops->id) {
145 		list_for_each_entry(net, net_exit_list, exit_list)
146 			ops_free(ops, net);
147 	}
148 }
149 
150 /* should be called with nsid_lock held */
151 static int alloc_netid(struct net *net, struct net *peer, int reqid)
152 {
153 	int min = 0, max = 0;
154 
155 	if (reqid >= 0) {
156 		min = reqid;
157 		max = reqid + 1;
158 	}
159 
160 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
161 }
162 
163 /* This function is used by idr_for_each(). If net is equal to peer, the
164  * function returns the id so that idr_for_each() stops. Because we cannot
165  * returns the id 0 (idr_for_each() will not stop), we return the magic value
166  * NET_ID_ZERO (-1) for it.
167  */
168 #define NET_ID_ZERO -1
169 static int net_eq_idr(int id, void *net, void *peer)
170 {
171 	if (net_eq(net, peer))
172 		return id ? : NET_ID_ZERO;
173 	return 0;
174 }
175 
176 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
177  * is set to true, thus the caller knows that the new id must be notified via
178  * rtnl.
179  */
180 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
181 {
182 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
183 	bool alloc_it = *alloc;
184 
185 	*alloc = false;
186 
187 	/* Magic value for id 0. */
188 	if (id == NET_ID_ZERO)
189 		return 0;
190 	if (id > 0)
191 		return id;
192 
193 	if (alloc_it) {
194 		id = alloc_netid(net, peer, -1);
195 		*alloc = true;
196 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
197 	}
198 
199 	return NETNSA_NSID_NOT_ASSIGNED;
200 }
201 
202 /* should be called with nsid_lock held */
203 static int __peernet2id(struct net *net, struct net *peer)
204 {
205 	bool no = false;
206 
207 	return __peernet2id_alloc(net, peer, &no);
208 }
209 
210 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
211 /* This function returns the id of a peer netns. If no id is assigned, one will
212  * be allocated and returned.
213  */
214 int peernet2id_alloc(struct net *net, struct net *peer)
215 {
216 	bool alloc;
217 	int id;
218 
219 	spin_lock_bh(&net->nsid_lock);
220 	alloc = atomic_read(&peer->count) == 0 ? false : true;
221 	id = __peernet2id_alloc(net, peer, &alloc);
222 	spin_unlock_bh(&net->nsid_lock);
223 	if (alloc && id >= 0)
224 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
225 	return id;
226 }
227 EXPORT_SYMBOL(peernet2id_alloc);
228 
229 /* This function returns, if assigned, the id of a peer netns. */
230 int peernet2id(struct net *net, struct net *peer)
231 {
232 	int id;
233 
234 	spin_lock_bh(&net->nsid_lock);
235 	id = __peernet2id(net, peer);
236 	spin_unlock_bh(&net->nsid_lock);
237 	return id;
238 }
239 
240 /* This function returns true is the peer netns has an id assigned into the
241  * current netns.
242  */
243 bool peernet_has_id(struct net *net, struct net *peer)
244 {
245 	return peernet2id(net, peer) >= 0;
246 }
247 
248 struct net *get_net_ns_by_id(struct net *net, int id)
249 {
250 	struct net *peer;
251 
252 	if (id < 0)
253 		return NULL;
254 
255 	rcu_read_lock();
256 	spin_lock_bh(&net->nsid_lock);
257 	peer = idr_find(&net->netns_ids, id);
258 	if (peer)
259 		get_net(peer);
260 	spin_unlock_bh(&net->nsid_lock);
261 	rcu_read_unlock();
262 
263 	return peer;
264 }
265 
266 /*
267  * setup_net runs the initializers for the network namespace object.
268  */
269 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
270 {
271 	/* Must be called with net_mutex held */
272 	const struct pernet_operations *ops, *saved_ops;
273 	int error = 0;
274 	LIST_HEAD(net_exit_list);
275 
276 	atomic_set(&net->count, 1);
277 	atomic_set(&net->passive, 1);
278 	net->dev_base_seq = 1;
279 	net->user_ns = user_ns;
280 	idr_init(&net->netns_ids);
281 	spin_lock_init(&net->nsid_lock);
282 
283 	list_for_each_entry(ops, &pernet_list, list) {
284 		error = ops_init(ops, net);
285 		if (error < 0)
286 			goto out_undo;
287 	}
288 out:
289 	return error;
290 
291 out_undo:
292 	/* Walk through the list backwards calling the exit functions
293 	 * for the pernet modules whose init functions did not fail.
294 	 */
295 	list_add(&net->exit_list, &net_exit_list);
296 	saved_ops = ops;
297 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
298 		ops_exit_list(ops, &net_exit_list);
299 
300 	ops = saved_ops;
301 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
302 		ops_free_list(ops, &net_exit_list);
303 
304 	rcu_barrier();
305 	goto out;
306 }
307 
308 
309 #ifdef CONFIG_NET_NS
310 static struct kmem_cache *net_cachep;
311 static struct workqueue_struct *netns_wq;
312 
313 static struct net *net_alloc(void)
314 {
315 	struct net *net = NULL;
316 	struct net_generic *ng;
317 
318 	ng = net_alloc_generic();
319 	if (!ng)
320 		goto out;
321 
322 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
323 	if (!net)
324 		goto out_free;
325 
326 	rcu_assign_pointer(net->gen, ng);
327 out:
328 	return net;
329 
330 out_free:
331 	kfree(ng);
332 	goto out;
333 }
334 
335 static void net_free(struct net *net)
336 {
337 	kfree(rcu_access_pointer(net->gen));
338 	kmem_cache_free(net_cachep, net);
339 }
340 
341 void net_drop_ns(void *p)
342 {
343 	struct net *ns = p;
344 	if (ns && atomic_dec_and_test(&ns->passive))
345 		net_free(ns);
346 }
347 
348 struct net *copy_net_ns(unsigned long flags,
349 			struct user_namespace *user_ns, struct net *old_net)
350 {
351 	struct net *net;
352 	int rv;
353 
354 	if (!(flags & CLONE_NEWNET))
355 		return get_net(old_net);
356 
357 	net = net_alloc();
358 	if (!net)
359 		return ERR_PTR(-ENOMEM);
360 
361 	get_user_ns(user_ns);
362 
363 	mutex_lock(&net_mutex);
364 	rv = setup_net(net, user_ns);
365 	if (rv == 0) {
366 		rtnl_lock();
367 		list_add_tail_rcu(&net->list, &net_namespace_list);
368 		rtnl_unlock();
369 	}
370 	mutex_unlock(&net_mutex);
371 	if (rv < 0) {
372 		put_user_ns(user_ns);
373 		net_drop_ns(net);
374 		return ERR_PTR(rv);
375 	}
376 	return net;
377 }
378 
379 static DEFINE_SPINLOCK(cleanup_list_lock);
380 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
381 
382 static void cleanup_net(struct work_struct *work)
383 {
384 	const struct pernet_operations *ops;
385 	struct net *net, *tmp;
386 	struct list_head net_kill_list;
387 	LIST_HEAD(net_exit_list);
388 
389 	/* Atomically snapshot the list of namespaces to cleanup */
390 	spin_lock_irq(&cleanup_list_lock);
391 	list_replace_init(&cleanup_list, &net_kill_list);
392 	spin_unlock_irq(&cleanup_list_lock);
393 
394 	mutex_lock(&net_mutex);
395 
396 	/* Don't let anyone else find us. */
397 	rtnl_lock();
398 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
399 		list_del_rcu(&net->list);
400 		list_add_tail(&net->exit_list, &net_exit_list);
401 		for_each_net(tmp) {
402 			int id;
403 
404 			spin_lock_bh(&tmp->nsid_lock);
405 			id = __peernet2id(tmp, net);
406 			if (id >= 0)
407 				idr_remove(&tmp->netns_ids, id);
408 			spin_unlock_bh(&tmp->nsid_lock);
409 			if (id >= 0)
410 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
411 		}
412 		spin_lock_bh(&net->nsid_lock);
413 		idr_destroy(&net->netns_ids);
414 		spin_unlock_bh(&net->nsid_lock);
415 
416 	}
417 	rtnl_unlock();
418 
419 	/*
420 	 * Another CPU might be rcu-iterating the list, wait for it.
421 	 * This needs to be before calling the exit() notifiers, so
422 	 * the rcu_barrier() below isn't sufficient alone.
423 	 */
424 	synchronize_rcu();
425 
426 	/* Run all of the network namespace exit methods */
427 	list_for_each_entry_reverse(ops, &pernet_list, list)
428 		ops_exit_list(ops, &net_exit_list);
429 
430 	/* Free the net generic variables */
431 	list_for_each_entry_reverse(ops, &pernet_list, list)
432 		ops_free_list(ops, &net_exit_list);
433 
434 	mutex_unlock(&net_mutex);
435 
436 	/* Ensure there are no outstanding rcu callbacks using this
437 	 * network namespace.
438 	 */
439 	rcu_barrier();
440 
441 	/* Finally it is safe to free my network namespace structure */
442 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
443 		list_del_init(&net->exit_list);
444 		put_user_ns(net->user_ns);
445 		net_drop_ns(net);
446 	}
447 }
448 static DECLARE_WORK(net_cleanup_work, cleanup_net);
449 
450 void __put_net(struct net *net)
451 {
452 	/* Cleanup the network namespace in process context */
453 	unsigned long flags;
454 
455 	spin_lock_irqsave(&cleanup_list_lock, flags);
456 	list_add(&net->cleanup_list, &cleanup_list);
457 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
458 
459 	queue_work(netns_wq, &net_cleanup_work);
460 }
461 EXPORT_SYMBOL_GPL(__put_net);
462 
463 struct net *get_net_ns_by_fd(int fd)
464 {
465 	struct file *file;
466 	struct ns_common *ns;
467 	struct net *net;
468 
469 	file = proc_ns_fget(fd);
470 	if (IS_ERR(file))
471 		return ERR_CAST(file);
472 
473 	ns = get_proc_ns(file_inode(file));
474 	if (ns->ops == &netns_operations)
475 		net = get_net(container_of(ns, struct net, ns));
476 	else
477 		net = ERR_PTR(-EINVAL);
478 
479 	fput(file);
480 	return net;
481 }
482 
483 #else
484 struct net *get_net_ns_by_fd(int fd)
485 {
486 	return ERR_PTR(-EINVAL);
487 }
488 #endif
489 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
490 
491 struct net *get_net_ns_by_pid(pid_t pid)
492 {
493 	struct task_struct *tsk;
494 	struct net *net;
495 
496 	/* Lookup the network namespace */
497 	net = ERR_PTR(-ESRCH);
498 	rcu_read_lock();
499 	tsk = find_task_by_vpid(pid);
500 	if (tsk) {
501 		struct nsproxy *nsproxy;
502 		task_lock(tsk);
503 		nsproxy = tsk->nsproxy;
504 		if (nsproxy)
505 			net = get_net(nsproxy->net_ns);
506 		task_unlock(tsk);
507 	}
508 	rcu_read_unlock();
509 	return net;
510 }
511 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
512 
513 static __net_init int net_ns_net_init(struct net *net)
514 {
515 #ifdef CONFIG_NET_NS
516 	net->ns.ops = &netns_operations;
517 #endif
518 	return ns_alloc_inum(&net->ns);
519 }
520 
521 static __net_exit void net_ns_net_exit(struct net *net)
522 {
523 	ns_free_inum(&net->ns);
524 }
525 
526 static struct pernet_operations __net_initdata net_ns_ops = {
527 	.init = net_ns_net_init,
528 	.exit = net_ns_net_exit,
529 };
530 
531 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
532 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
533 	[NETNSA_NSID]		= { .type = NLA_S32 },
534 	[NETNSA_PID]		= { .type = NLA_U32 },
535 	[NETNSA_FD]		= { .type = NLA_U32 },
536 };
537 
538 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
539 {
540 	struct net *net = sock_net(skb->sk);
541 	struct nlattr *tb[NETNSA_MAX + 1];
542 	struct net *peer;
543 	int nsid, err;
544 
545 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
546 			  rtnl_net_policy);
547 	if (err < 0)
548 		return err;
549 	if (!tb[NETNSA_NSID])
550 		return -EINVAL;
551 	nsid = nla_get_s32(tb[NETNSA_NSID]);
552 
553 	if (tb[NETNSA_PID])
554 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
555 	else if (tb[NETNSA_FD])
556 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
557 	else
558 		return -EINVAL;
559 	if (IS_ERR(peer))
560 		return PTR_ERR(peer);
561 
562 	spin_lock_bh(&net->nsid_lock);
563 	if (__peernet2id(net, peer) >= 0) {
564 		spin_unlock_bh(&net->nsid_lock);
565 		err = -EEXIST;
566 		goto out;
567 	}
568 
569 	err = alloc_netid(net, peer, nsid);
570 	spin_unlock_bh(&net->nsid_lock);
571 	if (err >= 0) {
572 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
573 		err = 0;
574 	}
575 out:
576 	put_net(peer);
577 	return err;
578 }
579 
580 static int rtnl_net_get_size(void)
581 {
582 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
583 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
584 	       ;
585 }
586 
587 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
588 			 int cmd, struct net *net, int nsid)
589 {
590 	struct nlmsghdr *nlh;
591 	struct rtgenmsg *rth;
592 
593 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
594 	if (!nlh)
595 		return -EMSGSIZE;
596 
597 	rth = nlmsg_data(nlh);
598 	rth->rtgen_family = AF_UNSPEC;
599 
600 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
601 		goto nla_put_failure;
602 
603 	nlmsg_end(skb, nlh);
604 	return 0;
605 
606 nla_put_failure:
607 	nlmsg_cancel(skb, nlh);
608 	return -EMSGSIZE;
609 }
610 
611 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
612 {
613 	struct net *net = sock_net(skb->sk);
614 	struct nlattr *tb[NETNSA_MAX + 1];
615 	struct sk_buff *msg;
616 	struct net *peer;
617 	int err, id;
618 
619 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
620 			  rtnl_net_policy);
621 	if (err < 0)
622 		return err;
623 	if (tb[NETNSA_PID])
624 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
625 	else if (tb[NETNSA_FD])
626 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
627 	else
628 		return -EINVAL;
629 
630 	if (IS_ERR(peer))
631 		return PTR_ERR(peer);
632 
633 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
634 	if (!msg) {
635 		err = -ENOMEM;
636 		goto out;
637 	}
638 
639 	id = peernet2id(net, peer);
640 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
641 			    RTM_NEWNSID, net, id);
642 	if (err < 0)
643 		goto err_out;
644 
645 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
646 	goto out;
647 
648 err_out:
649 	nlmsg_free(msg);
650 out:
651 	put_net(peer);
652 	return err;
653 }
654 
655 struct rtnl_net_dump_cb {
656 	struct net *net;
657 	struct sk_buff *skb;
658 	struct netlink_callback *cb;
659 	int idx;
660 	int s_idx;
661 };
662 
663 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
664 {
665 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
666 	int ret;
667 
668 	if (net_cb->idx < net_cb->s_idx)
669 		goto cont;
670 
671 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
672 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
673 			    RTM_NEWNSID, net_cb->net, id);
674 	if (ret < 0)
675 		return ret;
676 
677 cont:
678 	net_cb->idx++;
679 	return 0;
680 }
681 
682 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
683 {
684 	struct net *net = sock_net(skb->sk);
685 	struct rtnl_net_dump_cb net_cb = {
686 		.net = net,
687 		.skb = skb,
688 		.cb = cb,
689 		.idx = 0,
690 		.s_idx = cb->args[0],
691 	};
692 
693 	spin_lock_bh(&net->nsid_lock);
694 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
695 	spin_unlock_bh(&net->nsid_lock);
696 
697 	cb->args[0] = net_cb.idx;
698 	return skb->len;
699 }
700 
701 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
702 {
703 	struct sk_buff *msg;
704 	int err = -ENOMEM;
705 
706 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
707 	if (!msg)
708 		goto out;
709 
710 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
711 	if (err < 0)
712 		goto err_out;
713 
714 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
715 	return;
716 
717 err_out:
718 	nlmsg_free(msg);
719 out:
720 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
721 }
722 
723 static int __init net_ns_init(void)
724 {
725 	struct net_generic *ng;
726 
727 #ifdef CONFIG_NET_NS
728 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
729 					SMP_CACHE_BYTES,
730 					SLAB_PANIC, NULL);
731 
732 	/* Create workqueue for cleanup */
733 	netns_wq = create_singlethread_workqueue("netns");
734 	if (!netns_wq)
735 		panic("Could not create netns workq");
736 #endif
737 
738 	ng = net_alloc_generic();
739 	if (!ng)
740 		panic("Could not allocate generic netns");
741 
742 	rcu_assign_pointer(init_net.gen, ng);
743 
744 	mutex_lock(&net_mutex);
745 	if (setup_net(&init_net, &init_user_ns))
746 		panic("Could not setup the initial network namespace");
747 
748 	rtnl_lock();
749 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
750 	rtnl_unlock();
751 
752 	mutex_unlock(&net_mutex);
753 
754 	register_pernet_subsys(&net_ns_ops);
755 
756 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
757 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
758 		      NULL);
759 
760 	return 0;
761 }
762 
763 pure_initcall(net_ns_init);
764 
765 #ifdef CONFIG_NET_NS
766 static int __register_pernet_operations(struct list_head *list,
767 					struct pernet_operations *ops)
768 {
769 	struct net *net;
770 	int error;
771 	LIST_HEAD(net_exit_list);
772 
773 	list_add_tail(&ops->list, list);
774 	if (ops->init || (ops->id && ops->size)) {
775 		for_each_net(net) {
776 			error = ops_init(ops, net);
777 			if (error)
778 				goto out_undo;
779 			list_add_tail(&net->exit_list, &net_exit_list);
780 		}
781 	}
782 	return 0;
783 
784 out_undo:
785 	/* If I have an error cleanup all namespaces I initialized */
786 	list_del(&ops->list);
787 	ops_exit_list(ops, &net_exit_list);
788 	ops_free_list(ops, &net_exit_list);
789 	return error;
790 }
791 
792 static void __unregister_pernet_operations(struct pernet_operations *ops)
793 {
794 	struct net *net;
795 	LIST_HEAD(net_exit_list);
796 
797 	list_del(&ops->list);
798 	for_each_net(net)
799 		list_add_tail(&net->exit_list, &net_exit_list);
800 	ops_exit_list(ops, &net_exit_list);
801 	ops_free_list(ops, &net_exit_list);
802 }
803 
804 #else
805 
806 static int __register_pernet_operations(struct list_head *list,
807 					struct pernet_operations *ops)
808 {
809 	return ops_init(ops, &init_net);
810 }
811 
812 static void __unregister_pernet_operations(struct pernet_operations *ops)
813 {
814 	LIST_HEAD(net_exit_list);
815 	list_add(&init_net.exit_list, &net_exit_list);
816 	ops_exit_list(ops, &net_exit_list);
817 	ops_free_list(ops, &net_exit_list);
818 }
819 
820 #endif /* CONFIG_NET_NS */
821 
822 static DEFINE_IDA(net_generic_ids);
823 
824 static int register_pernet_operations(struct list_head *list,
825 				      struct pernet_operations *ops)
826 {
827 	int error;
828 
829 	if (ops->id) {
830 again:
831 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
832 		if (error < 0) {
833 			if (error == -EAGAIN) {
834 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
835 				goto again;
836 			}
837 			return error;
838 		}
839 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
840 	}
841 	error = __register_pernet_operations(list, ops);
842 	if (error) {
843 		rcu_barrier();
844 		if (ops->id)
845 			ida_remove(&net_generic_ids, *ops->id);
846 	}
847 
848 	return error;
849 }
850 
851 static void unregister_pernet_operations(struct pernet_operations *ops)
852 {
853 
854 	__unregister_pernet_operations(ops);
855 	rcu_barrier();
856 	if (ops->id)
857 		ida_remove(&net_generic_ids, *ops->id);
858 }
859 
860 /**
861  *      register_pernet_subsys - register a network namespace subsystem
862  *	@ops:  pernet operations structure for the subsystem
863  *
864  *	Register a subsystem which has init and exit functions
865  *	that are called when network namespaces are created and
866  *	destroyed respectively.
867  *
868  *	When registered all network namespace init functions are
869  *	called for every existing network namespace.  Allowing kernel
870  *	modules to have a race free view of the set of network namespaces.
871  *
872  *	When a new network namespace is created all of the init
873  *	methods are called in the order in which they were registered.
874  *
875  *	When a network namespace is destroyed all of the exit methods
876  *	are called in the reverse of the order with which they were
877  *	registered.
878  */
879 int register_pernet_subsys(struct pernet_operations *ops)
880 {
881 	int error;
882 	mutex_lock(&net_mutex);
883 	error =  register_pernet_operations(first_device, ops);
884 	mutex_unlock(&net_mutex);
885 	return error;
886 }
887 EXPORT_SYMBOL_GPL(register_pernet_subsys);
888 
889 /**
890  *      unregister_pernet_subsys - unregister a network namespace subsystem
891  *	@ops: pernet operations structure to manipulate
892  *
893  *	Remove the pernet operations structure from the list to be
894  *	used when network namespaces are created or destroyed.  In
895  *	addition run the exit method for all existing network
896  *	namespaces.
897  */
898 void unregister_pernet_subsys(struct pernet_operations *ops)
899 {
900 	mutex_lock(&net_mutex);
901 	unregister_pernet_operations(ops);
902 	mutex_unlock(&net_mutex);
903 }
904 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
905 
906 /**
907  *      register_pernet_device - register a network namespace device
908  *	@ops:  pernet operations structure for the subsystem
909  *
910  *	Register a device which has init and exit functions
911  *	that are called when network namespaces are created and
912  *	destroyed respectively.
913  *
914  *	When registered all network namespace init functions are
915  *	called for every existing network namespace.  Allowing kernel
916  *	modules to have a race free view of the set of network namespaces.
917  *
918  *	When a new network namespace is created all of the init
919  *	methods are called in the order in which they were registered.
920  *
921  *	When a network namespace is destroyed all of the exit methods
922  *	are called in the reverse of the order with which they were
923  *	registered.
924  */
925 int register_pernet_device(struct pernet_operations *ops)
926 {
927 	int error;
928 	mutex_lock(&net_mutex);
929 	error = register_pernet_operations(&pernet_list, ops);
930 	if (!error && (first_device == &pernet_list))
931 		first_device = &ops->list;
932 	mutex_unlock(&net_mutex);
933 	return error;
934 }
935 EXPORT_SYMBOL_GPL(register_pernet_device);
936 
937 /**
938  *      unregister_pernet_device - unregister a network namespace netdevice
939  *	@ops: pernet operations structure to manipulate
940  *
941  *	Remove the pernet operations structure from the list to be
942  *	used when network namespaces are created or destroyed.  In
943  *	addition run the exit method for all existing network
944  *	namespaces.
945  */
946 void unregister_pernet_device(struct pernet_operations *ops)
947 {
948 	mutex_lock(&net_mutex);
949 	if (&ops->list == first_device)
950 		first_device = first_device->next;
951 	unregister_pernet_operations(ops);
952 	mutex_unlock(&net_mutex);
953 }
954 EXPORT_SYMBOL_GPL(unregister_pernet_device);
955 
956 #ifdef CONFIG_NET_NS
957 static struct ns_common *netns_get(struct task_struct *task)
958 {
959 	struct net *net = NULL;
960 	struct nsproxy *nsproxy;
961 
962 	task_lock(task);
963 	nsproxy = task->nsproxy;
964 	if (nsproxy)
965 		net = get_net(nsproxy->net_ns);
966 	task_unlock(task);
967 
968 	return net ? &net->ns : NULL;
969 }
970 
971 static inline struct net *to_net_ns(struct ns_common *ns)
972 {
973 	return container_of(ns, struct net, ns);
974 }
975 
976 static void netns_put(struct ns_common *ns)
977 {
978 	put_net(to_net_ns(ns));
979 }
980 
981 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
982 {
983 	struct net *net = to_net_ns(ns);
984 
985 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
986 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
987 		return -EPERM;
988 
989 	put_net(nsproxy->net_ns);
990 	nsproxy->net_ns = get_net(net);
991 	return 0;
992 }
993 
994 const struct proc_ns_operations netns_operations = {
995 	.name		= "net",
996 	.type		= CLONE_NEWNET,
997 	.get		= netns_get,
998 	.put		= netns_put,
999 	.install	= netns_install,
1000 };
1001 #endif
1002