1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/workqueue.h> 4 #include <linux/rtnetlink.h> 5 #include <linux/cache.h> 6 #include <linux/slab.h> 7 #include <linux/list.h> 8 #include <linux/delay.h> 9 #include <linux/sched.h> 10 #include <linux/idr.h> 11 #include <linux/rculist.h> 12 #include <linux/nsproxy.h> 13 #include <linux/fs.h> 14 #include <linux/proc_ns.h> 15 #include <linux/file.h> 16 #include <linux/export.h> 17 #include <linux/user_namespace.h> 18 #include <linux/net_namespace.h> 19 #include <linux/sched/task.h> 20 21 #include <net/sock.h> 22 #include <net/netlink.h> 23 #include <net/net_namespace.h> 24 #include <net/netns/generic.h> 25 26 /* 27 * Our network namespace constructor/destructor lists 28 */ 29 30 static LIST_HEAD(pernet_list); 31 static struct list_head *first_device = &pernet_list; 32 DEFINE_MUTEX(net_mutex); 33 34 LIST_HEAD(net_namespace_list); 35 EXPORT_SYMBOL_GPL(net_namespace_list); 36 37 struct net init_net = { 38 .count = ATOMIC_INIT(1), 39 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 40 }; 41 EXPORT_SYMBOL(init_net); 42 43 static bool init_net_initialized; 44 45 #define MIN_PERNET_OPS_ID \ 46 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 47 48 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 49 50 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 51 52 static struct net_generic *net_alloc_generic(void) 53 { 54 struct net_generic *ng; 55 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 56 57 ng = kzalloc(generic_size, GFP_KERNEL); 58 if (ng) 59 ng->s.len = max_gen_ptrs; 60 61 return ng; 62 } 63 64 static int net_assign_generic(struct net *net, unsigned int id, void *data) 65 { 66 struct net_generic *ng, *old_ng; 67 68 BUG_ON(!mutex_is_locked(&net_mutex)); 69 BUG_ON(id < MIN_PERNET_OPS_ID); 70 71 old_ng = rcu_dereference_protected(net->gen, 72 lockdep_is_held(&net_mutex)); 73 if (old_ng->s.len > id) { 74 old_ng->ptr[id] = data; 75 return 0; 76 } 77 78 ng = net_alloc_generic(); 79 if (ng == NULL) 80 return -ENOMEM; 81 82 /* 83 * Some synchronisation notes: 84 * 85 * The net_generic explores the net->gen array inside rcu 86 * read section. Besides once set the net->gen->ptr[x] 87 * pointer never changes (see rules in netns/generic.h). 88 * 89 * That said, we simply duplicate this array and schedule 90 * the old copy for kfree after a grace period. 91 */ 92 93 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 94 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 95 ng->ptr[id] = data; 96 97 rcu_assign_pointer(net->gen, ng); 98 kfree_rcu(old_ng, s.rcu); 99 return 0; 100 } 101 102 static int ops_init(const struct pernet_operations *ops, struct net *net) 103 { 104 int err = -ENOMEM; 105 void *data = NULL; 106 107 if (ops->id && ops->size) { 108 data = kzalloc(ops->size, GFP_KERNEL); 109 if (!data) 110 goto out; 111 112 err = net_assign_generic(net, *ops->id, data); 113 if (err) 114 goto cleanup; 115 } 116 err = 0; 117 if (ops->init) 118 err = ops->init(net); 119 if (!err) 120 return 0; 121 122 cleanup: 123 kfree(data); 124 125 out: 126 return err; 127 } 128 129 static void ops_free(const struct pernet_operations *ops, struct net *net) 130 { 131 if (ops->id && ops->size) { 132 kfree(net_generic(net, *ops->id)); 133 } 134 } 135 136 static void ops_exit_list(const struct pernet_operations *ops, 137 struct list_head *net_exit_list) 138 { 139 struct net *net; 140 if (ops->exit) { 141 list_for_each_entry(net, net_exit_list, exit_list) 142 ops->exit(net); 143 } 144 if (ops->exit_batch) 145 ops->exit_batch(net_exit_list); 146 } 147 148 static void ops_free_list(const struct pernet_operations *ops, 149 struct list_head *net_exit_list) 150 { 151 struct net *net; 152 if (ops->size && ops->id) { 153 list_for_each_entry(net, net_exit_list, exit_list) 154 ops_free(ops, net); 155 } 156 } 157 158 /* should be called with nsid_lock held */ 159 static int alloc_netid(struct net *net, struct net *peer, int reqid) 160 { 161 int min = 0, max = 0; 162 163 if (reqid >= 0) { 164 min = reqid; 165 max = reqid + 1; 166 } 167 168 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 169 } 170 171 /* This function is used by idr_for_each(). If net is equal to peer, the 172 * function returns the id so that idr_for_each() stops. Because we cannot 173 * returns the id 0 (idr_for_each() will not stop), we return the magic value 174 * NET_ID_ZERO (-1) for it. 175 */ 176 #define NET_ID_ZERO -1 177 static int net_eq_idr(int id, void *net, void *peer) 178 { 179 if (net_eq(net, peer)) 180 return id ? : NET_ID_ZERO; 181 return 0; 182 } 183 184 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc 185 * is set to true, thus the caller knows that the new id must be notified via 186 * rtnl. 187 */ 188 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc) 189 { 190 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 191 bool alloc_it = *alloc; 192 193 *alloc = false; 194 195 /* Magic value for id 0. */ 196 if (id == NET_ID_ZERO) 197 return 0; 198 if (id > 0) 199 return id; 200 201 if (alloc_it) { 202 id = alloc_netid(net, peer, -1); 203 *alloc = true; 204 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED; 205 } 206 207 return NETNSA_NSID_NOT_ASSIGNED; 208 } 209 210 /* should be called with nsid_lock held */ 211 static int __peernet2id(struct net *net, struct net *peer) 212 { 213 bool no = false; 214 215 return __peernet2id_alloc(net, peer, &no); 216 } 217 218 static void rtnl_net_notifyid(struct net *net, int cmd, int id); 219 /* This function returns the id of a peer netns. If no id is assigned, one will 220 * be allocated and returned. 221 */ 222 int peernet2id_alloc(struct net *net, struct net *peer) 223 { 224 bool alloc; 225 int id; 226 227 if (atomic_read(&net->count) == 0) 228 return NETNSA_NSID_NOT_ASSIGNED; 229 spin_lock_bh(&net->nsid_lock); 230 alloc = atomic_read(&peer->count) == 0 ? false : true; 231 id = __peernet2id_alloc(net, peer, &alloc); 232 spin_unlock_bh(&net->nsid_lock); 233 if (alloc && id >= 0) 234 rtnl_net_notifyid(net, RTM_NEWNSID, id); 235 return id; 236 } 237 238 /* This function returns, if assigned, the id of a peer netns. */ 239 int peernet2id(struct net *net, struct net *peer) 240 { 241 int id; 242 243 spin_lock_bh(&net->nsid_lock); 244 id = __peernet2id(net, peer); 245 spin_unlock_bh(&net->nsid_lock); 246 return id; 247 } 248 EXPORT_SYMBOL(peernet2id); 249 250 /* This function returns true is the peer netns has an id assigned into the 251 * current netns. 252 */ 253 bool peernet_has_id(struct net *net, struct net *peer) 254 { 255 return peernet2id(net, peer) >= 0; 256 } 257 258 struct net *get_net_ns_by_id(struct net *net, int id) 259 { 260 struct net *peer; 261 262 if (id < 0) 263 return NULL; 264 265 rcu_read_lock(); 266 spin_lock_bh(&net->nsid_lock); 267 peer = idr_find(&net->netns_ids, id); 268 if (peer) 269 get_net(peer); 270 spin_unlock_bh(&net->nsid_lock); 271 rcu_read_unlock(); 272 273 return peer; 274 } 275 276 /* 277 * setup_net runs the initializers for the network namespace object. 278 */ 279 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 280 { 281 /* Must be called with net_mutex held */ 282 const struct pernet_operations *ops, *saved_ops; 283 int error = 0; 284 LIST_HEAD(net_exit_list); 285 286 atomic_set(&net->count, 1); 287 atomic_set(&net->passive, 1); 288 net->dev_base_seq = 1; 289 net->user_ns = user_ns; 290 idr_init(&net->netns_ids); 291 spin_lock_init(&net->nsid_lock); 292 293 list_for_each_entry(ops, &pernet_list, list) { 294 error = ops_init(ops, net); 295 if (error < 0) 296 goto out_undo; 297 } 298 out: 299 return error; 300 301 out_undo: 302 /* Walk through the list backwards calling the exit functions 303 * for the pernet modules whose init functions did not fail. 304 */ 305 list_add(&net->exit_list, &net_exit_list); 306 saved_ops = ops; 307 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 308 ops_exit_list(ops, &net_exit_list); 309 310 ops = saved_ops; 311 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 312 ops_free_list(ops, &net_exit_list); 313 314 rcu_barrier(); 315 goto out; 316 } 317 318 static int __net_init net_defaults_init_net(struct net *net) 319 { 320 net->core.sysctl_somaxconn = SOMAXCONN; 321 return 0; 322 } 323 324 static struct pernet_operations net_defaults_ops = { 325 .init = net_defaults_init_net, 326 }; 327 328 static __init int net_defaults_init(void) 329 { 330 if (register_pernet_subsys(&net_defaults_ops)) 331 panic("Cannot initialize net default settings"); 332 333 return 0; 334 } 335 336 core_initcall(net_defaults_init); 337 338 #ifdef CONFIG_NET_NS 339 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 340 { 341 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 342 } 343 344 static void dec_net_namespaces(struct ucounts *ucounts) 345 { 346 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 347 } 348 349 static struct kmem_cache *net_cachep; 350 static struct workqueue_struct *netns_wq; 351 352 static struct net *net_alloc(void) 353 { 354 struct net *net = NULL; 355 struct net_generic *ng; 356 357 ng = net_alloc_generic(); 358 if (!ng) 359 goto out; 360 361 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 362 if (!net) 363 goto out_free; 364 365 rcu_assign_pointer(net->gen, ng); 366 out: 367 return net; 368 369 out_free: 370 kfree(ng); 371 goto out; 372 } 373 374 static void net_free(struct net *net) 375 { 376 kfree(rcu_access_pointer(net->gen)); 377 kmem_cache_free(net_cachep, net); 378 } 379 380 void net_drop_ns(void *p) 381 { 382 struct net *ns = p; 383 if (ns && atomic_dec_and_test(&ns->passive)) 384 net_free(ns); 385 } 386 387 struct net *copy_net_ns(unsigned long flags, 388 struct user_namespace *user_ns, struct net *old_net) 389 { 390 struct ucounts *ucounts; 391 struct net *net; 392 int rv; 393 394 if (!(flags & CLONE_NEWNET)) 395 return get_net(old_net); 396 397 ucounts = inc_net_namespaces(user_ns); 398 if (!ucounts) 399 return ERR_PTR(-ENOSPC); 400 401 net = net_alloc(); 402 if (!net) { 403 dec_net_namespaces(ucounts); 404 return ERR_PTR(-ENOMEM); 405 } 406 407 get_user_ns(user_ns); 408 409 rv = mutex_lock_killable(&net_mutex); 410 if (rv < 0) { 411 net_free(net); 412 dec_net_namespaces(ucounts); 413 put_user_ns(user_ns); 414 return ERR_PTR(rv); 415 } 416 417 net->ucounts = ucounts; 418 rv = setup_net(net, user_ns); 419 if (rv == 0) { 420 rtnl_lock(); 421 list_add_tail_rcu(&net->list, &net_namespace_list); 422 rtnl_unlock(); 423 } 424 mutex_unlock(&net_mutex); 425 if (rv < 0) { 426 dec_net_namespaces(ucounts); 427 put_user_ns(user_ns); 428 net_drop_ns(net); 429 return ERR_PTR(rv); 430 } 431 return net; 432 } 433 434 static DEFINE_SPINLOCK(cleanup_list_lock); 435 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */ 436 437 static void cleanup_net(struct work_struct *work) 438 { 439 const struct pernet_operations *ops; 440 struct net *net, *tmp; 441 struct list_head net_kill_list; 442 LIST_HEAD(net_exit_list); 443 444 /* Atomically snapshot the list of namespaces to cleanup */ 445 spin_lock_irq(&cleanup_list_lock); 446 list_replace_init(&cleanup_list, &net_kill_list); 447 spin_unlock_irq(&cleanup_list_lock); 448 449 mutex_lock(&net_mutex); 450 451 /* Don't let anyone else find us. */ 452 rtnl_lock(); 453 list_for_each_entry(net, &net_kill_list, cleanup_list) { 454 list_del_rcu(&net->list); 455 list_add_tail(&net->exit_list, &net_exit_list); 456 for_each_net(tmp) { 457 int id; 458 459 spin_lock_bh(&tmp->nsid_lock); 460 id = __peernet2id(tmp, net); 461 if (id >= 0) 462 idr_remove(&tmp->netns_ids, id); 463 spin_unlock_bh(&tmp->nsid_lock); 464 if (id >= 0) 465 rtnl_net_notifyid(tmp, RTM_DELNSID, id); 466 } 467 spin_lock_bh(&net->nsid_lock); 468 idr_destroy(&net->netns_ids); 469 spin_unlock_bh(&net->nsid_lock); 470 471 } 472 rtnl_unlock(); 473 474 /* 475 * Another CPU might be rcu-iterating the list, wait for it. 476 * This needs to be before calling the exit() notifiers, so 477 * the rcu_barrier() below isn't sufficient alone. 478 */ 479 synchronize_rcu(); 480 481 /* Run all of the network namespace exit methods */ 482 list_for_each_entry_reverse(ops, &pernet_list, list) 483 ops_exit_list(ops, &net_exit_list); 484 485 /* Free the net generic variables */ 486 list_for_each_entry_reverse(ops, &pernet_list, list) 487 ops_free_list(ops, &net_exit_list); 488 489 mutex_unlock(&net_mutex); 490 491 /* Ensure there are no outstanding rcu callbacks using this 492 * network namespace. 493 */ 494 rcu_barrier(); 495 496 /* Finally it is safe to free my network namespace structure */ 497 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 498 list_del_init(&net->exit_list); 499 dec_net_namespaces(net->ucounts); 500 put_user_ns(net->user_ns); 501 net_drop_ns(net); 502 } 503 } 504 static DECLARE_WORK(net_cleanup_work, cleanup_net); 505 506 void __put_net(struct net *net) 507 { 508 /* Cleanup the network namespace in process context */ 509 unsigned long flags; 510 511 spin_lock_irqsave(&cleanup_list_lock, flags); 512 list_add(&net->cleanup_list, &cleanup_list); 513 spin_unlock_irqrestore(&cleanup_list_lock, flags); 514 515 queue_work(netns_wq, &net_cleanup_work); 516 } 517 EXPORT_SYMBOL_GPL(__put_net); 518 519 struct net *get_net_ns_by_fd(int fd) 520 { 521 struct file *file; 522 struct ns_common *ns; 523 struct net *net; 524 525 file = proc_ns_fget(fd); 526 if (IS_ERR(file)) 527 return ERR_CAST(file); 528 529 ns = get_proc_ns(file_inode(file)); 530 if (ns->ops == &netns_operations) 531 net = get_net(container_of(ns, struct net, ns)); 532 else 533 net = ERR_PTR(-EINVAL); 534 535 fput(file); 536 return net; 537 } 538 539 #else 540 struct net *get_net_ns_by_fd(int fd) 541 { 542 return ERR_PTR(-EINVAL); 543 } 544 #endif 545 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 546 547 struct net *get_net_ns_by_pid(pid_t pid) 548 { 549 struct task_struct *tsk; 550 struct net *net; 551 552 /* Lookup the network namespace */ 553 net = ERR_PTR(-ESRCH); 554 rcu_read_lock(); 555 tsk = find_task_by_vpid(pid); 556 if (tsk) { 557 struct nsproxy *nsproxy; 558 task_lock(tsk); 559 nsproxy = tsk->nsproxy; 560 if (nsproxy) 561 net = get_net(nsproxy->net_ns); 562 task_unlock(tsk); 563 } 564 rcu_read_unlock(); 565 return net; 566 } 567 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 568 569 static __net_init int net_ns_net_init(struct net *net) 570 { 571 #ifdef CONFIG_NET_NS 572 net->ns.ops = &netns_operations; 573 #endif 574 return ns_alloc_inum(&net->ns); 575 } 576 577 static __net_exit void net_ns_net_exit(struct net *net) 578 { 579 ns_free_inum(&net->ns); 580 } 581 582 static struct pernet_operations __net_initdata net_ns_ops = { 583 .init = net_ns_net_init, 584 .exit = net_ns_net_exit, 585 }; 586 587 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 588 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 589 [NETNSA_NSID] = { .type = NLA_S32 }, 590 [NETNSA_PID] = { .type = NLA_U32 }, 591 [NETNSA_FD] = { .type = NLA_U32 }, 592 }; 593 594 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 595 struct netlink_ext_ack *extack) 596 { 597 struct net *net = sock_net(skb->sk); 598 struct nlattr *tb[NETNSA_MAX + 1]; 599 struct net *peer; 600 int nsid, err; 601 602 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, 603 rtnl_net_policy, extack); 604 if (err < 0) 605 return err; 606 if (!tb[NETNSA_NSID]) 607 return -EINVAL; 608 nsid = nla_get_s32(tb[NETNSA_NSID]); 609 610 if (tb[NETNSA_PID]) 611 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 612 else if (tb[NETNSA_FD]) 613 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 614 else 615 return -EINVAL; 616 if (IS_ERR(peer)) 617 return PTR_ERR(peer); 618 619 spin_lock_bh(&net->nsid_lock); 620 if (__peernet2id(net, peer) >= 0) { 621 spin_unlock_bh(&net->nsid_lock); 622 err = -EEXIST; 623 goto out; 624 } 625 626 err = alloc_netid(net, peer, nsid); 627 spin_unlock_bh(&net->nsid_lock); 628 if (err >= 0) { 629 rtnl_net_notifyid(net, RTM_NEWNSID, err); 630 err = 0; 631 } 632 out: 633 put_net(peer); 634 return err; 635 } 636 637 static int rtnl_net_get_size(void) 638 { 639 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 640 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 641 ; 642 } 643 644 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags, 645 int cmd, struct net *net, int nsid) 646 { 647 struct nlmsghdr *nlh; 648 struct rtgenmsg *rth; 649 650 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags); 651 if (!nlh) 652 return -EMSGSIZE; 653 654 rth = nlmsg_data(nlh); 655 rth->rtgen_family = AF_UNSPEC; 656 657 if (nla_put_s32(skb, NETNSA_NSID, nsid)) 658 goto nla_put_failure; 659 660 nlmsg_end(skb, nlh); 661 return 0; 662 663 nla_put_failure: 664 nlmsg_cancel(skb, nlh); 665 return -EMSGSIZE; 666 } 667 668 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 669 struct netlink_ext_ack *extack) 670 { 671 struct net *net = sock_net(skb->sk); 672 struct nlattr *tb[NETNSA_MAX + 1]; 673 struct sk_buff *msg; 674 struct net *peer; 675 int err, id; 676 677 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, 678 rtnl_net_policy, extack); 679 if (err < 0) 680 return err; 681 if (tb[NETNSA_PID]) 682 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 683 else if (tb[NETNSA_FD]) 684 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 685 else 686 return -EINVAL; 687 688 if (IS_ERR(peer)) 689 return PTR_ERR(peer); 690 691 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 692 if (!msg) { 693 err = -ENOMEM; 694 goto out; 695 } 696 697 id = peernet2id(net, peer); 698 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0, 699 RTM_NEWNSID, net, id); 700 if (err < 0) 701 goto err_out; 702 703 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 704 goto out; 705 706 err_out: 707 nlmsg_free(msg); 708 out: 709 put_net(peer); 710 return err; 711 } 712 713 struct rtnl_net_dump_cb { 714 struct net *net; 715 struct sk_buff *skb; 716 struct netlink_callback *cb; 717 int idx; 718 int s_idx; 719 }; 720 721 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 722 { 723 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 724 int ret; 725 726 if (net_cb->idx < net_cb->s_idx) 727 goto cont; 728 729 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid, 730 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI, 731 RTM_NEWNSID, net_cb->net, id); 732 if (ret < 0) 733 return ret; 734 735 cont: 736 net_cb->idx++; 737 return 0; 738 } 739 740 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 741 { 742 struct net *net = sock_net(skb->sk); 743 struct rtnl_net_dump_cb net_cb = { 744 .net = net, 745 .skb = skb, 746 .cb = cb, 747 .idx = 0, 748 .s_idx = cb->args[0], 749 }; 750 751 spin_lock_bh(&net->nsid_lock); 752 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb); 753 spin_unlock_bh(&net->nsid_lock); 754 755 cb->args[0] = net_cb.idx; 756 return skb->len; 757 } 758 759 static void rtnl_net_notifyid(struct net *net, int cmd, int id) 760 { 761 struct sk_buff *msg; 762 int err = -ENOMEM; 763 764 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 765 if (!msg) 766 goto out; 767 768 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id); 769 if (err < 0) 770 goto err_out; 771 772 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0); 773 return; 774 775 err_out: 776 nlmsg_free(msg); 777 out: 778 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 779 } 780 781 static int __init net_ns_init(void) 782 { 783 struct net_generic *ng; 784 785 #ifdef CONFIG_NET_NS 786 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 787 SMP_CACHE_BYTES, 788 SLAB_PANIC, NULL); 789 790 /* Create workqueue for cleanup */ 791 netns_wq = create_singlethread_workqueue("netns"); 792 if (!netns_wq) 793 panic("Could not create netns workq"); 794 #endif 795 796 ng = net_alloc_generic(); 797 if (!ng) 798 panic("Could not allocate generic netns"); 799 800 rcu_assign_pointer(init_net.gen, ng); 801 802 mutex_lock(&net_mutex); 803 if (setup_net(&init_net, &init_user_ns)) 804 panic("Could not setup the initial network namespace"); 805 806 init_net_initialized = true; 807 808 rtnl_lock(); 809 list_add_tail_rcu(&init_net.list, &net_namespace_list); 810 rtnl_unlock(); 811 812 mutex_unlock(&net_mutex); 813 814 register_pernet_subsys(&net_ns_ops); 815 816 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL); 817 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 818 NULL); 819 820 return 0; 821 } 822 823 pure_initcall(net_ns_init); 824 825 #ifdef CONFIG_NET_NS 826 static int __register_pernet_operations(struct list_head *list, 827 struct pernet_operations *ops) 828 { 829 struct net *net; 830 int error; 831 LIST_HEAD(net_exit_list); 832 833 list_add_tail(&ops->list, list); 834 if (ops->init || (ops->id && ops->size)) { 835 for_each_net(net) { 836 error = ops_init(ops, net); 837 if (error) 838 goto out_undo; 839 list_add_tail(&net->exit_list, &net_exit_list); 840 } 841 } 842 return 0; 843 844 out_undo: 845 /* If I have an error cleanup all namespaces I initialized */ 846 list_del(&ops->list); 847 ops_exit_list(ops, &net_exit_list); 848 ops_free_list(ops, &net_exit_list); 849 return error; 850 } 851 852 static void __unregister_pernet_operations(struct pernet_operations *ops) 853 { 854 struct net *net; 855 LIST_HEAD(net_exit_list); 856 857 list_del(&ops->list); 858 for_each_net(net) 859 list_add_tail(&net->exit_list, &net_exit_list); 860 ops_exit_list(ops, &net_exit_list); 861 ops_free_list(ops, &net_exit_list); 862 } 863 864 #else 865 866 static int __register_pernet_operations(struct list_head *list, 867 struct pernet_operations *ops) 868 { 869 if (!init_net_initialized) { 870 list_add_tail(&ops->list, list); 871 return 0; 872 } 873 874 return ops_init(ops, &init_net); 875 } 876 877 static void __unregister_pernet_operations(struct pernet_operations *ops) 878 { 879 if (!init_net_initialized) { 880 list_del(&ops->list); 881 } else { 882 LIST_HEAD(net_exit_list); 883 list_add(&init_net.exit_list, &net_exit_list); 884 ops_exit_list(ops, &net_exit_list); 885 ops_free_list(ops, &net_exit_list); 886 } 887 } 888 889 #endif /* CONFIG_NET_NS */ 890 891 static DEFINE_IDA(net_generic_ids); 892 893 static int register_pernet_operations(struct list_head *list, 894 struct pernet_operations *ops) 895 { 896 int error; 897 898 if (ops->id) { 899 again: 900 error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id); 901 if (error < 0) { 902 if (error == -EAGAIN) { 903 ida_pre_get(&net_generic_ids, GFP_KERNEL); 904 goto again; 905 } 906 return error; 907 } 908 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 909 } 910 error = __register_pernet_operations(list, ops); 911 if (error) { 912 rcu_barrier(); 913 if (ops->id) 914 ida_remove(&net_generic_ids, *ops->id); 915 } 916 917 return error; 918 } 919 920 static void unregister_pernet_operations(struct pernet_operations *ops) 921 { 922 923 __unregister_pernet_operations(ops); 924 rcu_barrier(); 925 if (ops->id) 926 ida_remove(&net_generic_ids, *ops->id); 927 } 928 929 /** 930 * register_pernet_subsys - register a network namespace subsystem 931 * @ops: pernet operations structure for the subsystem 932 * 933 * Register a subsystem which has init and exit functions 934 * that are called when network namespaces are created and 935 * destroyed respectively. 936 * 937 * When registered all network namespace init functions are 938 * called for every existing network namespace. Allowing kernel 939 * modules to have a race free view of the set of network namespaces. 940 * 941 * When a new network namespace is created all of the init 942 * methods are called in the order in which they were registered. 943 * 944 * When a network namespace is destroyed all of the exit methods 945 * are called in the reverse of the order with which they were 946 * registered. 947 */ 948 int register_pernet_subsys(struct pernet_operations *ops) 949 { 950 int error; 951 mutex_lock(&net_mutex); 952 error = register_pernet_operations(first_device, ops); 953 mutex_unlock(&net_mutex); 954 return error; 955 } 956 EXPORT_SYMBOL_GPL(register_pernet_subsys); 957 958 /** 959 * unregister_pernet_subsys - unregister a network namespace subsystem 960 * @ops: pernet operations structure to manipulate 961 * 962 * Remove the pernet operations structure from the list to be 963 * used when network namespaces are created or destroyed. In 964 * addition run the exit method for all existing network 965 * namespaces. 966 */ 967 void unregister_pernet_subsys(struct pernet_operations *ops) 968 { 969 mutex_lock(&net_mutex); 970 unregister_pernet_operations(ops); 971 mutex_unlock(&net_mutex); 972 } 973 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 974 975 /** 976 * register_pernet_device - register a network namespace device 977 * @ops: pernet operations structure for the subsystem 978 * 979 * Register a device which has init and exit functions 980 * that are called when network namespaces are created and 981 * destroyed respectively. 982 * 983 * When registered all network namespace init functions are 984 * called for every existing network namespace. Allowing kernel 985 * modules to have a race free view of the set of network namespaces. 986 * 987 * When a new network namespace is created all of the init 988 * methods are called in the order in which they were registered. 989 * 990 * When a network namespace is destroyed all of the exit methods 991 * are called in the reverse of the order with which they were 992 * registered. 993 */ 994 int register_pernet_device(struct pernet_operations *ops) 995 { 996 int error; 997 mutex_lock(&net_mutex); 998 error = register_pernet_operations(&pernet_list, ops); 999 if (!error && (first_device == &pernet_list)) 1000 first_device = &ops->list; 1001 mutex_unlock(&net_mutex); 1002 return error; 1003 } 1004 EXPORT_SYMBOL_GPL(register_pernet_device); 1005 1006 /** 1007 * unregister_pernet_device - unregister a network namespace netdevice 1008 * @ops: pernet operations structure to manipulate 1009 * 1010 * Remove the pernet operations structure from the list to be 1011 * used when network namespaces are created or destroyed. In 1012 * addition run the exit method for all existing network 1013 * namespaces. 1014 */ 1015 void unregister_pernet_device(struct pernet_operations *ops) 1016 { 1017 mutex_lock(&net_mutex); 1018 if (&ops->list == first_device) 1019 first_device = first_device->next; 1020 unregister_pernet_operations(ops); 1021 mutex_unlock(&net_mutex); 1022 } 1023 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1024 1025 #ifdef CONFIG_NET_NS 1026 static struct ns_common *netns_get(struct task_struct *task) 1027 { 1028 struct net *net = NULL; 1029 struct nsproxy *nsproxy; 1030 1031 task_lock(task); 1032 nsproxy = task->nsproxy; 1033 if (nsproxy) 1034 net = get_net(nsproxy->net_ns); 1035 task_unlock(task); 1036 1037 return net ? &net->ns : NULL; 1038 } 1039 1040 static inline struct net *to_net_ns(struct ns_common *ns) 1041 { 1042 return container_of(ns, struct net, ns); 1043 } 1044 1045 static void netns_put(struct ns_common *ns) 1046 { 1047 put_net(to_net_ns(ns)); 1048 } 1049 1050 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns) 1051 { 1052 struct net *net = to_net_ns(ns); 1053 1054 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1055 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 1056 return -EPERM; 1057 1058 put_net(nsproxy->net_ns); 1059 nsproxy->net_ns = get_net(net); 1060 return 0; 1061 } 1062 1063 static struct user_namespace *netns_owner(struct ns_common *ns) 1064 { 1065 return to_net_ns(ns)->user_ns; 1066 } 1067 1068 const struct proc_ns_operations netns_operations = { 1069 .name = "net", 1070 .type = CLONE_NEWNET, 1071 .get = netns_get, 1072 .put = netns_put, 1073 .install = netns_install, 1074 .owner = netns_owner, 1075 }; 1076 #endif 1077