xref: /openbmc/linux/net/core/net_namespace.c (revision f29119b301d598f245154edc797c69c712a8b7fe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 #include <linux/cookie.h>
23 #include <linux/proc_fs.h>
24 
25 #include <net/sock.h>
26 #include <net/netlink.h>
27 #include <net/net_namespace.h>
28 #include <net/netns/generic.h>
29 
30 /*
31  *	Our network namespace constructor/destructor lists
32  */
33 
34 static LIST_HEAD(pernet_list);
35 static struct list_head *first_device = &pernet_list;
36 
37 LIST_HEAD(net_namespace_list);
38 EXPORT_SYMBOL_GPL(net_namespace_list);
39 
40 /* Protects net_namespace_list. Nests iside rtnl_lock() */
41 DECLARE_RWSEM(net_rwsem);
42 EXPORT_SYMBOL_GPL(net_rwsem);
43 
44 #ifdef CONFIG_KEYS
45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
46 #endif
47 
48 struct net init_net;
49 EXPORT_SYMBOL(init_net);
50 
51 static bool init_net_initialized;
52 /*
53  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
54  * init_net_initialized and first_device pointer.
55  * This is internal net namespace object. Please, don't use it
56  * outside.
57  */
58 DECLARE_RWSEM(pernet_ops_rwsem);
59 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
60 
61 #define MIN_PERNET_OPS_ID	\
62 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
63 
64 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
65 
66 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
67 
68 DEFINE_COOKIE(net_cookie);
69 
70 static struct net_generic *net_alloc_generic(void)
71 {
72 	unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs);
73 	unsigned int generic_size;
74 	struct net_generic *ng;
75 
76 	generic_size = offsetof(struct net_generic, ptr[gen_ptrs]);
77 
78 	ng = kzalloc(generic_size, GFP_KERNEL);
79 	if (ng)
80 		ng->s.len = gen_ptrs;
81 
82 	return ng;
83 }
84 
85 static int net_assign_generic(struct net *net, unsigned int id, void *data)
86 {
87 	struct net_generic *ng, *old_ng;
88 
89 	BUG_ON(id < MIN_PERNET_OPS_ID);
90 
91 	old_ng = rcu_dereference_protected(net->gen,
92 					   lockdep_is_held(&pernet_ops_rwsem));
93 	if (old_ng->s.len > id) {
94 		old_ng->ptr[id] = data;
95 		return 0;
96 	}
97 
98 	ng = net_alloc_generic();
99 	if (!ng)
100 		return -ENOMEM;
101 
102 	/*
103 	 * Some synchronisation notes:
104 	 *
105 	 * The net_generic explores the net->gen array inside rcu
106 	 * read section. Besides once set the net->gen->ptr[x]
107 	 * pointer never changes (see rules in netns/generic.h).
108 	 *
109 	 * That said, we simply duplicate this array and schedule
110 	 * the old copy for kfree after a grace period.
111 	 */
112 
113 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
114 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
115 	ng->ptr[id] = data;
116 
117 	rcu_assign_pointer(net->gen, ng);
118 	kfree_rcu(old_ng, s.rcu);
119 	return 0;
120 }
121 
122 static int ops_init(const struct pernet_operations *ops, struct net *net)
123 {
124 	struct net_generic *ng;
125 	int err = -ENOMEM;
126 	void *data = NULL;
127 
128 	if (ops->id && ops->size) {
129 		data = kzalloc(ops->size, GFP_KERNEL);
130 		if (!data)
131 			goto out;
132 
133 		err = net_assign_generic(net, *ops->id, data);
134 		if (err)
135 			goto cleanup;
136 	}
137 	err = 0;
138 	if (ops->init)
139 		err = ops->init(net);
140 	if (!err)
141 		return 0;
142 
143 	if (ops->id && ops->size) {
144 		ng = rcu_dereference_protected(net->gen,
145 					       lockdep_is_held(&pernet_ops_rwsem));
146 		ng->ptr[*ops->id] = NULL;
147 	}
148 
149 cleanup:
150 	kfree(data);
151 
152 out:
153 	return err;
154 }
155 
156 static void ops_pre_exit_list(const struct pernet_operations *ops,
157 			      struct list_head *net_exit_list)
158 {
159 	struct net *net;
160 
161 	if (ops->pre_exit) {
162 		list_for_each_entry(net, net_exit_list, exit_list)
163 			ops->pre_exit(net);
164 	}
165 }
166 
167 static void ops_exit_list(const struct pernet_operations *ops,
168 			  struct list_head *net_exit_list)
169 {
170 	struct net *net;
171 	if (ops->exit) {
172 		list_for_each_entry(net, net_exit_list, exit_list) {
173 			ops->exit(net);
174 			cond_resched();
175 		}
176 	}
177 	if (ops->exit_batch)
178 		ops->exit_batch(net_exit_list);
179 }
180 
181 static void ops_free_list(const struct pernet_operations *ops,
182 			  struct list_head *net_exit_list)
183 {
184 	struct net *net;
185 	if (ops->size && ops->id) {
186 		list_for_each_entry(net, net_exit_list, exit_list)
187 			kfree(net_generic(net, *ops->id));
188 	}
189 }
190 
191 /* should be called with nsid_lock held */
192 static int alloc_netid(struct net *net, struct net *peer, int reqid)
193 {
194 	int min = 0, max = 0;
195 
196 	if (reqid >= 0) {
197 		min = reqid;
198 		max = reqid + 1;
199 	}
200 
201 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
202 }
203 
204 /* This function is used by idr_for_each(). If net is equal to peer, the
205  * function returns the id so that idr_for_each() stops. Because we cannot
206  * returns the id 0 (idr_for_each() will not stop), we return the magic value
207  * NET_ID_ZERO (-1) for it.
208  */
209 #define NET_ID_ZERO -1
210 static int net_eq_idr(int id, void *net, void *peer)
211 {
212 	if (net_eq(net, peer))
213 		return id ? : NET_ID_ZERO;
214 	return 0;
215 }
216 
217 /* Must be called from RCU-critical section or with nsid_lock held */
218 static int __peernet2id(const struct net *net, struct net *peer)
219 {
220 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
221 
222 	/* Magic value for id 0. */
223 	if (id == NET_ID_ZERO)
224 		return 0;
225 	if (id > 0)
226 		return id;
227 
228 	return NETNSA_NSID_NOT_ASSIGNED;
229 }
230 
231 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
232 			      struct nlmsghdr *nlh, gfp_t gfp);
233 /* This function returns the id of a peer netns. If no id is assigned, one will
234  * be allocated and returned.
235  */
236 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
237 {
238 	int id;
239 
240 	if (refcount_read(&net->ns.count) == 0)
241 		return NETNSA_NSID_NOT_ASSIGNED;
242 
243 	spin_lock_bh(&net->nsid_lock);
244 	id = __peernet2id(net, peer);
245 	if (id >= 0) {
246 		spin_unlock_bh(&net->nsid_lock);
247 		return id;
248 	}
249 
250 	/* When peer is obtained from RCU lists, we may race with
251 	 * its cleanup. Check whether it's alive, and this guarantees
252 	 * we never hash a peer back to net->netns_ids, after it has
253 	 * just been idr_remove()'d from there in cleanup_net().
254 	 */
255 	if (!maybe_get_net(peer)) {
256 		spin_unlock_bh(&net->nsid_lock);
257 		return NETNSA_NSID_NOT_ASSIGNED;
258 	}
259 
260 	id = alloc_netid(net, peer, -1);
261 	spin_unlock_bh(&net->nsid_lock);
262 
263 	put_net(peer);
264 	if (id < 0)
265 		return NETNSA_NSID_NOT_ASSIGNED;
266 
267 	rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
268 
269 	return id;
270 }
271 EXPORT_SYMBOL_GPL(peernet2id_alloc);
272 
273 /* This function returns, if assigned, the id of a peer netns. */
274 int peernet2id(const struct net *net, struct net *peer)
275 {
276 	int id;
277 
278 	rcu_read_lock();
279 	id = __peernet2id(net, peer);
280 	rcu_read_unlock();
281 
282 	return id;
283 }
284 EXPORT_SYMBOL(peernet2id);
285 
286 /* This function returns true is the peer netns has an id assigned into the
287  * current netns.
288  */
289 bool peernet_has_id(const struct net *net, struct net *peer)
290 {
291 	return peernet2id(net, peer) >= 0;
292 }
293 
294 struct net *get_net_ns_by_id(const struct net *net, int id)
295 {
296 	struct net *peer;
297 
298 	if (id < 0)
299 		return NULL;
300 
301 	rcu_read_lock();
302 	peer = idr_find(&net->netns_ids, id);
303 	if (peer)
304 		peer = maybe_get_net(peer);
305 	rcu_read_unlock();
306 
307 	return peer;
308 }
309 EXPORT_SYMBOL_GPL(get_net_ns_by_id);
310 
311 /* init code that must occur even if setup_net() is not called. */
312 static __net_init void preinit_net(struct net *net)
313 {
314 	ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt");
315 }
316 
317 /*
318  * setup_net runs the initializers for the network namespace object.
319  */
320 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
321 {
322 	/* Must be called with pernet_ops_rwsem held */
323 	const struct pernet_operations *ops, *saved_ops;
324 	int error = 0;
325 	LIST_HEAD(net_exit_list);
326 
327 	refcount_set(&net->ns.count, 1);
328 	ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt");
329 
330 	refcount_set(&net->passive, 1);
331 	get_random_bytes(&net->hash_mix, sizeof(u32));
332 	preempt_disable();
333 	net->net_cookie = gen_cookie_next(&net_cookie);
334 	preempt_enable();
335 	net->dev_base_seq = 1;
336 	net->user_ns = user_ns;
337 	idr_init(&net->netns_ids);
338 	spin_lock_init(&net->nsid_lock);
339 	mutex_init(&net->ipv4.ra_mutex);
340 
341 	list_for_each_entry(ops, &pernet_list, list) {
342 		error = ops_init(ops, net);
343 		if (error < 0)
344 			goto out_undo;
345 	}
346 	down_write(&net_rwsem);
347 	list_add_tail_rcu(&net->list, &net_namespace_list);
348 	up_write(&net_rwsem);
349 out:
350 	return error;
351 
352 out_undo:
353 	/* Walk through the list backwards calling the exit functions
354 	 * for the pernet modules whose init functions did not fail.
355 	 */
356 	list_add(&net->exit_list, &net_exit_list);
357 	saved_ops = ops;
358 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
359 		ops_pre_exit_list(ops, &net_exit_list);
360 
361 	synchronize_rcu();
362 
363 	ops = saved_ops;
364 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
365 		ops_exit_list(ops, &net_exit_list);
366 
367 	ops = saved_ops;
368 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
369 		ops_free_list(ops, &net_exit_list);
370 
371 	rcu_barrier();
372 	goto out;
373 }
374 
375 static int __net_init net_defaults_init_net(struct net *net)
376 {
377 	net->core.sysctl_somaxconn = SOMAXCONN;
378 	net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED;
379 
380 	return 0;
381 }
382 
383 static struct pernet_operations net_defaults_ops = {
384 	.init = net_defaults_init_net,
385 };
386 
387 static __init int net_defaults_init(void)
388 {
389 	if (register_pernet_subsys(&net_defaults_ops))
390 		panic("Cannot initialize net default settings");
391 
392 	return 0;
393 }
394 
395 core_initcall(net_defaults_init);
396 
397 #ifdef CONFIG_NET_NS
398 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
399 {
400 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
401 }
402 
403 static void dec_net_namespaces(struct ucounts *ucounts)
404 {
405 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
406 }
407 
408 static struct kmem_cache *net_cachep __ro_after_init;
409 static struct workqueue_struct *netns_wq;
410 
411 static struct net *net_alloc(void)
412 {
413 	struct net *net = NULL;
414 	struct net_generic *ng;
415 
416 	ng = net_alloc_generic();
417 	if (!ng)
418 		goto out;
419 
420 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
421 	if (!net)
422 		goto out_free;
423 
424 #ifdef CONFIG_KEYS
425 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
426 	if (!net->key_domain)
427 		goto out_free_2;
428 	refcount_set(&net->key_domain->usage, 1);
429 #endif
430 
431 	rcu_assign_pointer(net->gen, ng);
432 out:
433 	return net;
434 
435 #ifdef CONFIG_KEYS
436 out_free_2:
437 	kmem_cache_free(net_cachep, net);
438 	net = NULL;
439 #endif
440 out_free:
441 	kfree(ng);
442 	goto out;
443 }
444 
445 static void net_free(struct net *net)
446 {
447 	if (refcount_dec_and_test(&net->passive)) {
448 		kfree(rcu_access_pointer(net->gen));
449 
450 		/* There should not be any trackers left there. */
451 		ref_tracker_dir_exit(&net->notrefcnt_tracker);
452 
453 		kmem_cache_free(net_cachep, net);
454 	}
455 }
456 
457 void net_drop_ns(void *p)
458 {
459 	struct net *net = (struct net *)p;
460 
461 	if (net)
462 		net_free(net);
463 }
464 
465 struct net *copy_net_ns(unsigned long flags,
466 			struct user_namespace *user_ns, struct net *old_net)
467 {
468 	struct ucounts *ucounts;
469 	struct net *net;
470 	int rv;
471 
472 	if (!(flags & CLONE_NEWNET))
473 		return get_net(old_net);
474 
475 	ucounts = inc_net_namespaces(user_ns);
476 	if (!ucounts)
477 		return ERR_PTR(-ENOSPC);
478 
479 	net = net_alloc();
480 	if (!net) {
481 		rv = -ENOMEM;
482 		goto dec_ucounts;
483 	}
484 
485 	preinit_net(net);
486 	refcount_set(&net->passive, 1);
487 	net->ucounts = ucounts;
488 	get_user_ns(user_ns);
489 
490 	rv = down_read_killable(&pernet_ops_rwsem);
491 	if (rv < 0)
492 		goto put_userns;
493 
494 	rv = setup_net(net, user_ns);
495 
496 	up_read(&pernet_ops_rwsem);
497 
498 	if (rv < 0) {
499 put_userns:
500 #ifdef CONFIG_KEYS
501 		key_remove_domain(net->key_domain);
502 #endif
503 		put_user_ns(user_ns);
504 		net_free(net);
505 dec_ucounts:
506 		dec_net_namespaces(ucounts);
507 		return ERR_PTR(rv);
508 	}
509 	return net;
510 }
511 
512 /**
513  * net_ns_get_ownership - get sysfs ownership data for @net
514  * @net: network namespace in question (can be NULL)
515  * @uid: kernel user ID for sysfs objects
516  * @gid: kernel group ID for sysfs objects
517  *
518  * Returns the uid/gid pair of root in the user namespace associated with the
519  * given network namespace.
520  */
521 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
522 {
523 	if (net) {
524 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
525 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
526 
527 		if (uid_valid(ns_root_uid))
528 			*uid = ns_root_uid;
529 
530 		if (gid_valid(ns_root_gid))
531 			*gid = ns_root_gid;
532 	} else {
533 		*uid = GLOBAL_ROOT_UID;
534 		*gid = GLOBAL_ROOT_GID;
535 	}
536 }
537 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
538 
539 static void unhash_nsid(struct net *net, struct net *last)
540 {
541 	struct net *tmp;
542 	/* This function is only called from cleanup_net() work,
543 	 * and this work is the only process, that may delete
544 	 * a net from net_namespace_list. So, when the below
545 	 * is executing, the list may only grow. Thus, we do not
546 	 * use for_each_net_rcu() or net_rwsem.
547 	 */
548 	for_each_net(tmp) {
549 		int id;
550 
551 		spin_lock_bh(&tmp->nsid_lock);
552 		id = __peernet2id(tmp, net);
553 		if (id >= 0)
554 			idr_remove(&tmp->netns_ids, id);
555 		spin_unlock_bh(&tmp->nsid_lock);
556 		if (id >= 0)
557 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
558 					  GFP_KERNEL);
559 		if (tmp == last)
560 			break;
561 	}
562 	spin_lock_bh(&net->nsid_lock);
563 	idr_destroy(&net->netns_ids);
564 	spin_unlock_bh(&net->nsid_lock);
565 }
566 
567 static LLIST_HEAD(cleanup_list);
568 
569 static void cleanup_net(struct work_struct *work)
570 {
571 	const struct pernet_operations *ops;
572 	struct net *net, *tmp, *last;
573 	struct llist_node *net_kill_list;
574 	LIST_HEAD(net_exit_list);
575 
576 	/* Atomically snapshot the list of namespaces to cleanup */
577 	net_kill_list = llist_del_all(&cleanup_list);
578 
579 	down_read(&pernet_ops_rwsem);
580 
581 	/* Don't let anyone else find us. */
582 	down_write(&net_rwsem);
583 	llist_for_each_entry(net, net_kill_list, cleanup_list)
584 		list_del_rcu(&net->list);
585 	/* Cache last net. After we unlock rtnl, no one new net
586 	 * added to net_namespace_list can assign nsid pointer
587 	 * to a net from net_kill_list (see peernet2id_alloc()).
588 	 * So, we skip them in unhash_nsid().
589 	 *
590 	 * Note, that unhash_nsid() does not delete nsid links
591 	 * between net_kill_list's nets, as they've already
592 	 * deleted from net_namespace_list. But, this would be
593 	 * useless anyway, as netns_ids are destroyed there.
594 	 */
595 	last = list_last_entry(&net_namespace_list, struct net, list);
596 	up_write(&net_rwsem);
597 
598 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
599 		unhash_nsid(net, last);
600 		list_add_tail(&net->exit_list, &net_exit_list);
601 	}
602 
603 	/* Run all of the network namespace pre_exit methods */
604 	list_for_each_entry_reverse(ops, &pernet_list, list)
605 		ops_pre_exit_list(ops, &net_exit_list);
606 
607 	/*
608 	 * Another CPU might be rcu-iterating the list, wait for it.
609 	 * This needs to be before calling the exit() notifiers, so
610 	 * the rcu_barrier() below isn't sufficient alone.
611 	 * Also the pre_exit() and exit() methods need this barrier.
612 	 */
613 	synchronize_rcu();
614 
615 	/* Run all of the network namespace exit methods */
616 	list_for_each_entry_reverse(ops, &pernet_list, list)
617 		ops_exit_list(ops, &net_exit_list);
618 
619 	/* Free the net generic variables */
620 	list_for_each_entry_reverse(ops, &pernet_list, list)
621 		ops_free_list(ops, &net_exit_list);
622 
623 	up_read(&pernet_ops_rwsem);
624 
625 	/* Ensure there are no outstanding rcu callbacks using this
626 	 * network namespace.
627 	 */
628 	rcu_barrier();
629 
630 	/* Finally it is safe to free my network namespace structure */
631 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
632 		list_del_init(&net->exit_list);
633 		dec_net_namespaces(net->ucounts);
634 #ifdef CONFIG_KEYS
635 		key_remove_domain(net->key_domain);
636 #endif
637 		put_user_ns(net->user_ns);
638 		net_free(net);
639 	}
640 }
641 
642 /**
643  * net_ns_barrier - wait until concurrent net_cleanup_work is done
644  *
645  * cleanup_net runs from work queue and will first remove namespaces
646  * from the global list, then run net exit functions.
647  *
648  * Call this in module exit path to make sure that all netns
649  * ->exit ops have been invoked before the function is removed.
650  */
651 void net_ns_barrier(void)
652 {
653 	down_write(&pernet_ops_rwsem);
654 	up_write(&pernet_ops_rwsem);
655 }
656 EXPORT_SYMBOL(net_ns_barrier);
657 
658 static DECLARE_WORK(net_cleanup_work, cleanup_net);
659 
660 void __put_net(struct net *net)
661 {
662 	ref_tracker_dir_exit(&net->refcnt_tracker);
663 	/* Cleanup the network namespace in process context */
664 	if (llist_add(&net->cleanup_list, &cleanup_list))
665 		queue_work(netns_wq, &net_cleanup_work);
666 }
667 EXPORT_SYMBOL_GPL(__put_net);
668 
669 /**
670  * get_net_ns - increment the refcount of the network namespace
671  * @ns: common namespace (net)
672  *
673  * Returns the net's common namespace or ERR_PTR() if ref is zero.
674  */
675 struct ns_common *get_net_ns(struct ns_common *ns)
676 {
677 	struct net *net;
678 
679 	net = maybe_get_net(container_of(ns, struct net, ns));
680 	if (net)
681 		return &net->ns;
682 	return ERR_PTR(-EINVAL);
683 }
684 EXPORT_SYMBOL_GPL(get_net_ns);
685 
686 struct net *get_net_ns_by_fd(int fd)
687 {
688 	struct fd f = fdget(fd);
689 	struct net *net = ERR_PTR(-EINVAL);
690 
691 	if (!f.file)
692 		return ERR_PTR(-EBADF);
693 
694 	if (proc_ns_file(f.file)) {
695 		struct ns_common *ns = get_proc_ns(file_inode(f.file));
696 		if (ns->ops == &netns_operations)
697 			net = get_net(container_of(ns, struct net, ns));
698 	}
699 	fdput(f);
700 
701 	return net;
702 }
703 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
704 #endif
705 
706 struct net *get_net_ns_by_pid(pid_t pid)
707 {
708 	struct task_struct *tsk;
709 	struct net *net;
710 
711 	/* Lookup the network namespace */
712 	net = ERR_PTR(-ESRCH);
713 	rcu_read_lock();
714 	tsk = find_task_by_vpid(pid);
715 	if (tsk) {
716 		struct nsproxy *nsproxy;
717 		task_lock(tsk);
718 		nsproxy = tsk->nsproxy;
719 		if (nsproxy)
720 			net = get_net(nsproxy->net_ns);
721 		task_unlock(tsk);
722 	}
723 	rcu_read_unlock();
724 	return net;
725 }
726 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
727 
728 static __net_init int net_ns_net_init(struct net *net)
729 {
730 #ifdef CONFIG_NET_NS
731 	net->ns.ops = &netns_operations;
732 #endif
733 	return ns_alloc_inum(&net->ns);
734 }
735 
736 static __net_exit void net_ns_net_exit(struct net *net)
737 {
738 	ns_free_inum(&net->ns);
739 }
740 
741 static struct pernet_operations __net_initdata net_ns_ops = {
742 	.init = net_ns_net_init,
743 	.exit = net_ns_net_exit,
744 };
745 
746 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
747 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
748 	[NETNSA_NSID]		= { .type = NLA_S32 },
749 	[NETNSA_PID]		= { .type = NLA_U32 },
750 	[NETNSA_FD]		= { .type = NLA_U32 },
751 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
752 };
753 
754 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
755 			  struct netlink_ext_ack *extack)
756 {
757 	struct net *net = sock_net(skb->sk);
758 	struct nlattr *tb[NETNSA_MAX + 1];
759 	struct nlattr *nla;
760 	struct net *peer;
761 	int nsid, err;
762 
763 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
764 				     NETNSA_MAX, rtnl_net_policy, extack);
765 	if (err < 0)
766 		return err;
767 	if (!tb[NETNSA_NSID]) {
768 		NL_SET_ERR_MSG(extack, "nsid is missing");
769 		return -EINVAL;
770 	}
771 	nsid = nla_get_s32(tb[NETNSA_NSID]);
772 
773 	if (tb[NETNSA_PID]) {
774 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
775 		nla = tb[NETNSA_PID];
776 	} else if (tb[NETNSA_FD]) {
777 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
778 		nla = tb[NETNSA_FD];
779 	} else {
780 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
781 		return -EINVAL;
782 	}
783 	if (IS_ERR(peer)) {
784 		NL_SET_BAD_ATTR(extack, nla);
785 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
786 		return PTR_ERR(peer);
787 	}
788 
789 	spin_lock_bh(&net->nsid_lock);
790 	if (__peernet2id(net, peer) >= 0) {
791 		spin_unlock_bh(&net->nsid_lock);
792 		err = -EEXIST;
793 		NL_SET_BAD_ATTR(extack, nla);
794 		NL_SET_ERR_MSG(extack,
795 			       "Peer netns already has a nsid assigned");
796 		goto out;
797 	}
798 
799 	err = alloc_netid(net, peer, nsid);
800 	spin_unlock_bh(&net->nsid_lock);
801 	if (err >= 0) {
802 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
803 				  nlh, GFP_KERNEL);
804 		err = 0;
805 	} else if (err == -ENOSPC && nsid >= 0) {
806 		err = -EEXIST;
807 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
808 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
809 	}
810 out:
811 	put_net(peer);
812 	return err;
813 }
814 
815 static int rtnl_net_get_size(void)
816 {
817 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
818 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
819 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
820 	       ;
821 }
822 
823 struct net_fill_args {
824 	u32 portid;
825 	u32 seq;
826 	int flags;
827 	int cmd;
828 	int nsid;
829 	bool add_ref;
830 	int ref_nsid;
831 };
832 
833 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
834 {
835 	struct nlmsghdr *nlh;
836 	struct rtgenmsg *rth;
837 
838 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
839 			args->flags);
840 	if (!nlh)
841 		return -EMSGSIZE;
842 
843 	rth = nlmsg_data(nlh);
844 	rth->rtgen_family = AF_UNSPEC;
845 
846 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
847 		goto nla_put_failure;
848 
849 	if (args->add_ref &&
850 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
851 		goto nla_put_failure;
852 
853 	nlmsg_end(skb, nlh);
854 	return 0;
855 
856 nla_put_failure:
857 	nlmsg_cancel(skb, nlh);
858 	return -EMSGSIZE;
859 }
860 
861 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
862 				    const struct nlmsghdr *nlh,
863 				    struct nlattr **tb,
864 				    struct netlink_ext_ack *extack)
865 {
866 	int i, err;
867 
868 	if (!netlink_strict_get_check(skb))
869 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
870 					      tb, NETNSA_MAX, rtnl_net_policy,
871 					      extack);
872 
873 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
874 					    NETNSA_MAX, rtnl_net_policy,
875 					    extack);
876 	if (err)
877 		return err;
878 
879 	for (i = 0; i <= NETNSA_MAX; i++) {
880 		if (!tb[i])
881 			continue;
882 
883 		switch (i) {
884 		case NETNSA_PID:
885 		case NETNSA_FD:
886 		case NETNSA_NSID:
887 		case NETNSA_TARGET_NSID:
888 			break;
889 		default:
890 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
891 			return -EINVAL;
892 		}
893 	}
894 
895 	return 0;
896 }
897 
898 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
899 			  struct netlink_ext_ack *extack)
900 {
901 	struct net *net = sock_net(skb->sk);
902 	struct nlattr *tb[NETNSA_MAX + 1];
903 	struct net_fill_args fillargs = {
904 		.portid = NETLINK_CB(skb).portid,
905 		.seq = nlh->nlmsg_seq,
906 		.cmd = RTM_NEWNSID,
907 	};
908 	struct net *peer, *target = net;
909 	struct nlattr *nla;
910 	struct sk_buff *msg;
911 	int err;
912 
913 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
914 	if (err < 0)
915 		return err;
916 	if (tb[NETNSA_PID]) {
917 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
918 		nla = tb[NETNSA_PID];
919 	} else if (tb[NETNSA_FD]) {
920 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
921 		nla = tb[NETNSA_FD];
922 	} else if (tb[NETNSA_NSID]) {
923 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
924 		if (!peer)
925 			peer = ERR_PTR(-ENOENT);
926 		nla = tb[NETNSA_NSID];
927 	} else {
928 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
929 		return -EINVAL;
930 	}
931 
932 	if (IS_ERR(peer)) {
933 		NL_SET_BAD_ATTR(extack, nla);
934 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
935 		return PTR_ERR(peer);
936 	}
937 
938 	if (tb[NETNSA_TARGET_NSID]) {
939 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
940 
941 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
942 		if (IS_ERR(target)) {
943 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
944 			NL_SET_ERR_MSG(extack,
945 				       "Target netns reference is invalid");
946 			err = PTR_ERR(target);
947 			goto out;
948 		}
949 		fillargs.add_ref = true;
950 		fillargs.ref_nsid = peernet2id(net, peer);
951 	}
952 
953 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
954 	if (!msg) {
955 		err = -ENOMEM;
956 		goto out;
957 	}
958 
959 	fillargs.nsid = peernet2id(target, peer);
960 	err = rtnl_net_fill(msg, &fillargs);
961 	if (err < 0)
962 		goto err_out;
963 
964 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
965 	goto out;
966 
967 err_out:
968 	nlmsg_free(msg);
969 out:
970 	if (fillargs.add_ref)
971 		put_net(target);
972 	put_net(peer);
973 	return err;
974 }
975 
976 struct rtnl_net_dump_cb {
977 	struct net *tgt_net;
978 	struct net *ref_net;
979 	struct sk_buff *skb;
980 	struct net_fill_args fillargs;
981 	int idx;
982 	int s_idx;
983 };
984 
985 /* Runs in RCU-critical section. */
986 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
987 {
988 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
989 	int ret;
990 
991 	if (net_cb->idx < net_cb->s_idx)
992 		goto cont;
993 
994 	net_cb->fillargs.nsid = id;
995 	if (net_cb->fillargs.add_ref)
996 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
997 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
998 	if (ret < 0)
999 		return ret;
1000 
1001 cont:
1002 	net_cb->idx++;
1003 	return 0;
1004 }
1005 
1006 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
1007 				   struct rtnl_net_dump_cb *net_cb,
1008 				   struct netlink_callback *cb)
1009 {
1010 	struct netlink_ext_ack *extack = cb->extack;
1011 	struct nlattr *tb[NETNSA_MAX + 1];
1012 	int err, i;
1013 
1014 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
1015 					    NETNSA_MAX, rtnl_net_policy,
1016 					    extack);
1017 	if (err < 0)
1018 		return err;
1019 
1020 	for (i = 0; i <= NETNSA_MAX; i++) {
1021 		if (!tb[i])
1022 			continue;
1023 
1024 		if (i == NETNSA_TARGET_NSID) {
1025 			struct net *net;
1026 
1027 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1028 			if (IS_ERR(net)) {
1029 				NL_SET_BAD_ATTR(extack, tb[i]);
1030 				NL_SET_ERR_MSG(extack,
1031 					       "Invalid target network namespace id");
1032 				return PTR_ERR(net);
1033 			}
1034 			net_cb->fillargs.add_ref = true;
1035 			net_cb->ref_net = net_cb->tgt_net;
1036 			net_cb->tgt_net = net;
1037 		} else {
1038 			NL_SET_BAD_ATTR(extack, tb[i]);
1039 			NL_SET_ERR_MSG(extack,
1040 				       "Unsupported attribute in dump request");
1041 			return -EINVAL;
1042 		}
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1049 {
1050 	struct rtnl_net_dump_cb net_cb = {
1051 		.tgt_net = sock_net(skb->sk),
1052 		.skb = skb,
1053 		.fillargs = {
1054 			.portid = NETLINK_CB(cb->skb).portid,
1055 			.seq = cb->nlh->nlmsg_seq,
1056 			.flags = NLM_F_MULTI,
1057 			.cmd = RTM_NEWNSID,
1058 		},
1059 		.idx = 0,
1060 		.s_idx = cb->args[0],
1061 	};
1062 	int err = 0;
1063 
1064 	if (cb->strict_check) {
1065 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1066 		if (err < 0)
1067 			goto end;
1068 	}
1069 
1070 	rcu_read_lock();
1071 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1072 	rcu_read_unlock();
1073 
1074 	cb->args[0] = net_cb.idx;
1075 end:
1076 	if (net_cb.fillargs.add_ref)
1077 		put_net(net_cb.tgt_net);
1078 	return err < 0 ? err : skb->len;
1079 }
1080 
1081 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1082 			      struct nlmsghdr *nlh, gfp_t gfp)
1083 {
1084 	struct net_fill_args fillargs = {
1085 		.portid = portid,
1086 		.seq = nlh ? nlh->nlmsg_seq : 0,
1087 		.cmd = cmd,
1088 		.nsid = id,
1089 	};
1090 	struct sk_buff *msg;
1091 	int err = -ENOMEM;
1092 
1093 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1094 	if (!msg)
1095 		goto out;
1096 
1097 	err = rtnl_net_fill(msg, &fillargs);
1098 	if (err < 0)
1099 		goto err_out;
1100 
1101 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1102 	return;
1103 
1104 err_out:
1105 	nlmsg_free(msg);
1106 out:
1107 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1108 }
1109 
1110 void __init net_ns_init(void)
1111 {
1112 	struct net_generic *ng;
1113 
1114 #ifdef CONFIG_NET_NS
1115 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1116 					SMP_CACHE_BYTES,
1117 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1118 
1119 	/* Create workqueue for cleanup */
1120 	netns_wq = create_singlethread_workqueue("netns");
1121 	if (!netns_wq)
1122 		panic("Could not create netns workq");
1123 #endif
1124 
1125 	ng = net_alloc_generic();
1126 	if (!ng)
1127 		panic("Could not allocate generic netns");
1128 
1129 	rcu_assign_pointer(init_net.gen, ng);
1130 
1131 #ifdef CONFIG_KEYS
1132 	init_net.key_domain = &init_net_key_domain;
1133 #endif
1134 	down_write(&pernet_ops_rwsem);
1135 	preinit_net(&init_net);
1136 	if (setup_net(&init_net, &init_user_ns))
1137 		panic("Could not setup the initial network namespace");
1138 
1139 	init_net_initialized = true;
1140 	up_write(&pernet_ops_rwsem);
1141 
1142 	if (register_pernet_subsys(&net_ns_ops))
1143 		panic("Could not register network namespace subsystems");
1144 
1145 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1146 		      RTNL_FLAG_DOIT_UNLOCKED);
1147 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1148 		      RTNL_FLAG_DOIT_UNLOCKED);
1149 }
1150 
1151 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list)
1152 {
1153 	ops_pre_exit_list(ops, net_exit_list);
1154 	synchronize_rcu();
1155 	ops_exit_list(ops, net_exit_list);
1156 	ops_free_list(ops, net_exit_list);
1157 }
1158 
1159 #ifdef CONFIG_NET_NS
1160 static int __register_pernet_operations(struct list_head *list,
1161 					struct pernet_operations *ops)
1162 {
1163 	struct net *net;
1164 	int error;
1165 	LIST_HEAD(net_exit_list);
1166 
1167 	list_add_tail(&ops->list, list);
1168 	if (ops->init || (ops->id && ops->size)) {
1169 		/* We held write locked pernet_ops_rwsem, and parallel
1170 		 * setup_net() and cleanup_net() are not possible.
1171 		 */
1172 		for_each_net(net) {
1173 			error = ops_init(ops, net);
1174 			if (error)
1175 				goto out_undo;
1176 			list_add_tail(&net->exit_list, &net_exit_list);
1177 		}
1178 	}
1179 	return 0;
1180 
1181 out_undo:
1182 	/* If I have an error cleanup all namespaces I initialized */
1183 	list_del(&ops->list);
1184 	free_exit_list(ops, &net_exit_list);
1185 	return error;
1186 }
1187 
1188 static void __unregister_pernet_operations(struct pernet_operations *ops)
1189 {
1190 	struct net *net;
1191 	LIST_HEAD(net_exit_list);
1192 
1193 	list_del(&ops->list);
1194 	/* See comment in __register_pernet_operations() */
1195 	for_each_net(net)
1196 		list_add_tail(&net->exit_list, &net_exit_list);
1197 
1198 	free_exit_list(ops, &net_exit_list);
1199 }
1200 
1201 #else
1202 
1203 static int __register_pernet_operations(struct list_head *list,
1204 					struct pernet_operations *ops)
1205 {
1206 	if (!init_net_initialized) {
1207 		list_add_tail(&ops->list, list);
1208 		return 0;
1209 	}
1210 
1211 	return ops_init(ops, &init_net);
1212 }
1213 
1214 static void __unregister_pernet_operations(struct pernet_operations *ops)
1215 {
1216 	if (!init_net_initialized) {
1217 		list_del(&ops->list);
1218 	} else {
1219 		LIST_HEAD(net_exit_list);
1220 		list_add(&init_net.exit_list, &net_exit_list);
1221 		free_exit_list(ops, &net_exit_list);
1222 	}
1223 }
1224 
1225 #endif /* CONFIG_NET_NS */
1226 
1227 static DEFINE_IDA(net_generic_ids);
1228 
1229 static int register_pernet_operations(struct list_head *list,
1230 				      struct pernet_operations *ops)
1231 {
1232 	int error;
1233 
1234 	if (ops->id) {
1235 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1236 				GFP_KERNEL);
1237 		if (error < 0)
1238 			return error;
1239 		*ops->id = error;
1240 		/* This does not require READ_ONCE as writers already hold
1241 		 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect
1242 		 * net_alloc_generic.
1243 		 */
1244 		WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1));
1245 	}
1246 	error = __register_pernet_operations(list, ops);
1247 	if (error) {
1248 		rcu_barrier();
1249 		if (ops->id)
1250 			ida_free(&net_generic_ids, *ops->id);
1251 	}
1252 
1253 	return error;
1254 }
1255 
1256 static void unregister_pernet_operations(struct pernet_operations *ops)
1257 {
1258 	__unregister_pernet_operations(ops);
1259 	rcu_barrier();
1260 	if (ops->id)
1261 		ida_free(&net_generic_ids, *ops->id);
1262 }
1263 
1264 /**
1265  *      register_pernet_subsys - register a network namespace subsystem
1266  *	@ops:  pernet operations structure for the subsystem
1267  *
1268  *	Register a subsystem which has init and exit functions
1269  *	that are called when network namespaces are created and
1270  *	destroyed respectively.
1271  *
1272  *	When registered all network namespace init functions are
1273  *	called for every existing network namespace.  Allowing kernel
1274  *	modules to have a race free view of the set of network namespaces.
1275  *
1276  *	When a new network namespace is created all of the init
1277  *	methods are called in the order in which they were registered.
1278  *
1279  *	When a network namespace is destroyed all of the exit methods
1280  *	are called in the reverse of the order with which they were
1281  *	registered.
1282  */
1283 int register_pernet_subsys(struct pernet_operations *ops)
1284 {
1285 	int error;
1286 	down_write(&pernet_ops_rwsem);
1287 	error =  register_pernet_operations(first_device, ops);
1288 	up_write(&pernet_ops_rwsem);
1289 	return error;
1290 }
1291 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1292 
1293 /**
1294  *      unregister_pernet_subsys - unregister a network namespace subsystem
1295  *	@ops: pernet operations structure to manipulate
1296  *
1297  *	Remove the pernet operations structure from the list to be
1298  *	used when network namespaces are created or destroyed.  In
1299  *	addition run the exit method for all existing network
1300  *	namespaces.
1301  */
1302 void unregister_pernet_subsys(struct pernet_operations *ops)
1303 {
1304 	down_write(&pernet_ops_rwsem);
1305 	unregister_pernet_operations(ops);
1306 	up_write(&pernet_ops_rwsem);
1307 }
1308 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1309 
1310 /**
1311  *      register_pernet_device - register a network namespace device
1312  *	@ops:  pernet operations structure for the subsystem
1313  *
1314  *	Register a device which has init and exit functions
1315  *	that are called when network namespaces are created and
1316  *	destroyed respectively.
1317  *
1318  *	When registered all network namespace init functions are
1319  *	called for every existing network namespace.  Allowing kernel
1320  *	modules to have a race free view of the set of network namespaces.
1321  *
1322  *	When a new network namespace is created all of the init
1323  *	methods are called in the order in which they were registered.
1324  *
1325  *	When a network namespace is destroyed all of the exit methods
1326  *	are called in the reverse of the order with which they were
1327  *	registered.
1328  */
1329 int register_pernet_device(struct pernet_operations *ops)
1330 {
1331 	int error;
1332 	down_write(&pernet_ops_rwsem);
1333 	error = register_pernet_operations(&pernet_list, ops);
1334 	if (!error && (first_device == &pernet_list))
1335 		first_device = &ops->list;
1336 	up_write(&pernet_ops_rwsem);
1337 	return error;
1338 }
1339 EXPORT_SYMBOL_GPL(register_pernet_device);
1340 
1341 /**
1342  *      unregister_pernet_device - unregister a network namespace netdevice
1343  *	@ops: pernet operations structure to manipulate
1344  *
1345  *	Remove the pernet operations structure from the list to be
1346  *	used when network namespaces are created or destroyed.  In
1347  *	addition run the exit method for all existing network
1348  *	namespaces.
1349  */
1350 void unregister_pernet_device(struct pernet_operations *ops)
1351 {
1352 	down_write(&pernet_ops_rwsem);
1353 	if (&ops->list == first_device)
1354 		first_device = first_device->next;
1355 	unregister_pernet_operations(ops);
1356 	up_write(&pernet_ops_rwsem);
1357 }
1358 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1359 
1360 #ifdef CONFIG_NET_NS
1361 static struct ns_common *netns_get(struct task_struct *task)
1362 {
1363 	struct net *net = NULL;
1364 	struct nsproxy *nsproxy;
1365 
1366 	task_lock(task);
1367 	nsproxy = task->nsproxy;
1368 	if (nsproxy)
1369 		net = get_net(nsproxy->net_ns);
1370 	task_unlock(task);
1371 
1372 	return net ? &net->ns : NULL;
1373 }
1374 
1375 static inline struct net *to_net_ns(struct ns_common *ns)
1376 {
1377 	return container_of(ns, struct net, ns);
1378 }
1379 
1380 static void netns_put(struct ns_common *ns)
1381 {
1382 	put_net(to_net_ns(ns));
1383 }
1384 
1385 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1386 {
1387 	struct nsproxy *nsproxy = nsset->nsproxy;
1388 	struct net *net = to_net_ns(ns);
1389 
1390 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1391 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1392 		return -EPERM;
1393 
1394 	put_net(nsproxy->net_ns);
1395 	nsproxy->net_ns = get_net(net);
1396 	return 0;
1397 }
1398 
1399 static struct user_namespace *netns_owner(struct ns_common *ns)
1400 {
1401 	return to_net_ns(ns)->user_ns;
1402 }
1403 
1404 const struct proc_ns_operations netns_operations = {
1405 	.name		= "net",
1406 	.type		= CLONE_NEWNET,
1407 	.get		= netns_get,
1408 	.put		= netns_put,
1409 	.install	= netns_install,
1410 	.owner		= netns_owner,
1411 };
1412 #endif
1413