1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 23 #include <net/sock.h> 24 #include <net/netlink.h> 25 #include <net/net_namespace.h> 26 #include <net/netns/generic.h> 27 28 /* 29 * Our network namespace constructor/destructor lists 30 */ 31 32 static LIST_HEAD(pernet_list); 33 static struct list_head *first_device = &pernet_list; 34 35 LIST_HEAD(net_namespace_list); 36 EXPORT_SYMBOL_GPL(net_namespace_list); 37 38 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 39 DECLARE_RWSEM(net_rwsem); 40 EXPORT_SYMBOL_GPL(net_rwsem); 41 42 #ifdef CONFIG_KEYS 43 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 44 #endif 45 46 struct net init_net = { 47 .count = REFCOUNT_INIT(1), 48 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 49 #ifdef CONFIG_KEYS 50 .key_domain = &init_net_key_domain, 51 #endif 52 }; 53 EXPORT_SYMBOL(init_net); 54 55 static bool init_net_initialized; 56 /* 57 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 58 * init_net_initialized and first_device pointer. 59 * This is internal net namespace object. Please, don't use it 60 * outside. 61 */ 62 DECLARE_RWSEM(pernet_ops_rwsem); 63 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 64 65 #define MIN_PERNET_OPS_ID \ 66 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 67 68 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 69 70 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 71 72 static struct net_generic *net_alloc_generic(void) 73 { 74 struct net_generic *ng; 75 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 76 77 ng = kzalloc(generic_size, GFP_KERNEL); 78 if (ng) 79 ng->s.len = max_gen_ptrs; 80 81 return ng; 82 } 83 84 static int net_assign_generic(struct net *net, unsigned int id, void *data) 85 { 86 struct net_generic *ng, *old_ng; 87 88 BUG_ON(id < MIN_PERNET_OPS_ID); 89 90 old_ng = rcu_dereference_protected(net->gen, 91 lockdep_is_held(&pernet_ops_rwsem)); 92 if (old_ng->s.len > id) { 93 old_ng->ptr[id] = data; 94 return 0; 95 } 96 97 ng = net_alloc_generic(); 98 if (ng == NULL) 99 return -ENOMEM; 100 101 /* 102 * Some synchronisation notes: 103 * 104 * The net_generic explores the net->gen array inside rcu 105 * read section. Besides once set the net->gen->ptr[x] 106 * pointer never changes (see rules in netns/generic.h). 107 * 108 * That said, we simply duplicate this array and schedule 109 * the old copy for kfree after a grace period. 110 */ 111 112 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 113 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 114 ng->ptr[id] = data; 115 116 rcu_assign_pointer(net->gen, ng); 117 kfree_rcu(old_ng, s.rcu); 118 return 0; 119 } 120 121 static int ops_init(const struct pernet_operations *ops, struct net *net) 122 { 123 int err = -ENOMEM; 124 void *data = NULL; 125 126 if (ops->id && ops->size) { 127 data = kzalloc(ops->size, GFP_KERNEL); 128 if (!data) 129 goto out; 130 131 err = net_assign_generic(net, *ops->id, data); 132 if (err) 133 goto cleanup; 134 } 135 err = 0; 136 if (ops->init) 137 err = ops->init(net); 138 if (!err) 139 return 0; 140 141 cleanup: 142 kfree(data); 143 144 out: 145 return err; 146 } 147 148 static void ops_free(const struct pernet_operations *ops, struct net *net) 149 { 150 if (ops->id && ops->size) { 151 kfree(net_generic(net, *ops->id)); 152 } 153 } 154 155 static void ops_pre_exit_list(const struct pernet_operations *ops, 156 struct list_head *net_exit_list) 157 { 158 struct net *net; 159 160 if (ops->pre_exit) { 161 list_for_each_entry(net, net_exit_list, exit_list) 162 ops->pre_exit(net); 163 } 164 } 165 166 static void ops_exit_list(const struct pernet_operations *ops, 167 struct list_head *net_exit_list) 168 { 169 struct net *net; 170 if (ops->exit) { 171 list_for_each_entry(net, net_exit_list, exit_list) 172 ops->exit(net); 173 } 174 if (ops->exit_batch) 175 ops->exit_batch(net_exit_list); 176 } 177 178 static void ops_free_list(const struct pernet_operations *ops, 179 struct list_head *net_exit_list) 180 { 181 struct net *net; 182 if (ops->size && ops->id) { 183 list_for_each_entry(net, net_exit_list, exit_list) 184 ops_free(ops, net); 185 } 186 } 187 188 /* should be called with nsid_lock held */ 189 static int alloc_netid(struct net *net, struct net *peer, int reqid) 190 { 191 int min = 0, max = 0; 192 193 if (reqid >= 0) { 194 min = reqid; 195 max = reqid + 1; 196 } 197 198 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 199 } 200 201 /* This function is used by idr_for_each(). If net is equal to peer, the 202 * function returns the id so that idr_for_each() stops. Because we cannot 203 * returns the id 0 (idr_for_each() will not stop), we return the magic value 204 * NET_ID_ZERO (-1) for it. 205 */ 206 #define NET_ID_ZERO -1 207 static int net_eq_idr(int id, void *net, void *peer) 208 { 209 if (net_eq(net, peer)) 210 return id ? : NET_ID_ZERO; 211 return 0; 212 } 213 214 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc 215 * is set to true, thus the caller knows that the new id must be notified via 216 * rtnl. 217 */ 218 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc) 219 { 220 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 221 bool alloc_it = *alloc; 222 223 *alloc = false; 224 225 /* Magic value for id 0. */ 226 if (id == NET_ID_ZERO) 227 return 0; 228 if (id > 0) 229 return id; 230 231 if (alloc_it) { 232 id = alloc_netid(net, peer, -1); 233 *alloc = true; 234 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED; 235 } 236 237 return NETNSA_NSID_NOT_ASSIGNED; 238 } 239 240 /* should be called with nsid_lock held */ 241 static int __peernet2id(struct net *net, struct net *peer) 242 { 243 bool no = false; 244 245 return __peernet2id_alloc(net, peer, &no); 246 } 247 248 static void rtnl_net_notifyid(struct net *net, int cmd, int id); 249 /* This function returns the id of a peer netns. If no id is assigned, one will 250 * be allocated and returned. 251 */ 252 int peernet2id_alloc(struct net *net, struct net *peer) 253 { 254 bool alloc = false, alive = false; 255 int id; 256 257 if (refcount_read(&net->count) == 0) 258 return NETNSA_NSID_NOT_ASSIGNED; 259 spin_lock_bh(&net->nsid_lock); 260 /* 261 * When peer is obtained from RCU lists, we may race with 262 * its cleanup. Check whether it's alive, and this guarantees 263 * we never hash a peer back to net->netns_ids, after it has 264 * just been idr_remove()'d from there in cleanup_net(). 265 */ 266 if (maybe_get_net(peer)) 267 alive = alloc = true; 268 id = __peernet2id_alloc(net, peer, &alloc); 269 spin_unlock_bh(&net->nsid_lock); 270 if (alloc && id >= 0) 271 rtnl_net_notifyid(net, RTM_NEWNSID, id); 272 if (alive) 273 put_net(peer); 274 return id; 275 } 276 EXPORT_SYMBOL_GPL(peernet2id_alloc); 277 278 /* This function returns, if assigned, the id of a peer netns. */ 279 int peernet2id(struct net *net, struct net *peer) 280 { 281 int id; 282 283 spin_lock_bh(&net->nsid_lock); 284 id = __peernet2id(net, peer); 285 spin_unlock_bh(&net->nsid_lock); 286 return id; 287 } 288 EXPORT_SYMBOL(peernet2id); 289 290 /* This function returns true is the peer netns has an id assigned into the 291 * current netns. 292 */ 293 bool peernet_has_id(struct net *net, struct net *peer) 294 { 295 return peernet2id(net, peer) >= 0; 296 } 297 298 struct net *get_net_ns_by_id(struct net *net, int id) 299 { 300 struct net *peer; 301 302 if (id < 0) 303 return NULL; 304 305 rcu_read_lock(); 306 peer = idr_find(&net->netns_ids, id); 307 if (peer) 308 peer = maybe_get_net(peer); 309 rcu_read_unlock(); 310 311 return peer; 312 } 313 314 /* 315 * setup_net runs the initializers for the network namespace object. 316 */ 317 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 318 { 319 /* Must be called with pernet_ops_rwsem held */ 320 const struct pernet_operations *ops, *saved_ops; 321 int error = 0; 322 LIST_HEAD(net_exit_list); 323 324 refcount_set(&net->count, 1); 325 refcount_set(&net->passive, 1); 326 get_random_bytes(&net->hash_mix, sizeof(u32)); 327 net->dev_base_seq = 1; 328 net->user_ns = user_ns; 329 idr_init(&net->netns_ids); 330 spin_lock_init(&net->nsid_lock); 331 mutex_init(&net->ipv4.ra_mutex); 332 333 list_for_each_entry(ops, &pernet_list, list) { 334 error = ops_init(ops, net); 335 if (error < 0) 336 goto out_undo; 337 } 338 down_write(&net_rwsem); 339 list_add_tail_rcu(&net->list, &net_namespace_list); 340 up_write(&net_rwsem); 341 out: 342 return error; 343 344 out_undo: 345 /* Walk through the list backwards calling the exit functions 346 * for the pernet modules whose init functions did not fail. 347 */ 348 list_add(&net->exit_list, &net_exit_list); 349 saved_ops = ops; 350 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 351 ops_pre_exit_list(ops, &net_exit_list); 352 353 synchronize_rcu(); 354 355 ops = saved_ops; 356 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 357 ops_exit_list(ops, &net_exit_list); 358 359 ops = saved_ops; 360 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 361 ops_free_list(ops, &net_exit_list); 362 363 rcu_barrier(); 364 goto out; 365 } 366 367 static int __net_init net_defaults_init_net(struct net *net) 368 { 369 net->core.sysctl_somaxconn = SOMAXCONN; 370 return 0; 371 } 372 373 static struct pernet_operations net_defaults_ops = { 374 .init = net_defaults_init_net, 375 }; 376 377 static __init int net_defaults_init(void) 378 { 379 if (register_pernet_subsys(&net_defaults_ops)) 380 panic("Cannot initialize net default settings"); 381 382 return 0; 383 } 384 385 core_initcall(net_defaults_init); 386 387 #ifdef CONFIG_NET_NS 388 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 389 { 390 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 391 } 392 393 static void dec_net_namespaces(struct ucounts *ucounts) 394 { 395 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 396 } 397 398 static struct kmem_cache *net_cachep __ro_after_init; 399 static struct workqueue_struct *netns_wq; 400 401 static struct net *net_alloc(void) 402 { 403 struct net *net = NULL; 404 struct net_generic *ng; 405 406 ng = net_alloc_generic(); 407 if (!ng) 408 goto out; 409 410 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 411 if (!net) 412 goto out_free; 413 414 #ifdef CONFIG_KEYS 415 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 416 if (!net->key_domain) 417 goto out_free_2; 418 refcount_set(&net->key_domain->usage, 1); 419 #endif 420 421 rcu_assign_pointer(net->gen, ng); 422 out: 423 return net; 424 425 #ifdef CONFIG_KEYS 426 out_free_2: 427 kmem_cache_free(net_cachep, net); 428 net = NULL; 429 #endif 430 out_free: 431 kfree(ng); 432 goto out; 433 } 434 435 static void net_free(struct net *net) 436 { 437 kfree(rcu_access_pointer(net->gen)); 438 kmem_cache_free(net_cachep, net); 439 } 440 441 void net_drop_ns(void *p) 442 { 443 struct net *ns = p; 444 if (ns && refcount_dec_and_test(&ns->passive)) 445 net_free(ns); 446 } 447 448 struct net *copy_net_ns(unsigned long flags, 449 struct user_namespace *user_ns, struct net *old_net) 450 { 451 struct ucounts *ucounts; 452 struct net *net; 453 int rv; 454 455 if (!(flags & CLONE_NEWNET)) 456 return get_net(old_net); 457 458 ucounts = inc_net_namespaces(user_ns); 459 if (!ucounts) 460 return ERR_PTR(-ENOSPC); 461 462 net = net_alloc(); 463 if (!net) { 464 rv = -ENOMEM; 465 goto dec_ucounts; 466 } 467 refcount_set(&net->passive, 1); 468 net->ucounts = ucounts; 469 get_user_ns(user_ns); 470 471 rv = down_read_killable(&pernet_ops_rwsem); 472 if (rv < 0) 473 goto put_userns; 474 475 rv = setup_net(net, user_ns); 476 477 up_read(&pernet_ops_rwsem); 478 479 if (rv < 0) { 480 put_userns: 481 put_user_ns(user_ns); 482 net_drop_ns(net); 483 dec_ucounts: 484 dec_net_namespaces(ucounts); 485 return ERR_PTR(rv); 486 } 487 return net; 488 } 489 490 /** 491 * net_ns_get_ownership - get sysfs ownership data for @net 492 * @net: network namespace in question (can be NULL) 493 * @uid: kernel user ID for sysfs objects 494 * @gid: kernel group ID for sysfs objects 495 * 496 * Returns the uid/gid pair of root in the user namespace associated with the 497 * given network namespace. 498 */ 499 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 500 { 501 if (net) { 502 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 503 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 504 505 if (uid_valid(ns_root_uid)) 506 *uid = ns_root_uid; 507 508 if (gid_valid(ns_root_gid)) 509 *gid = ns_root_gid; 510 } else { 511 *uid = GLOBAL_ROOT_UID; 512 *gid = GLOBAL_ROOT_GID; 513 } 514 } 515 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 516 517 static void unhash_nsid(struct net *net, struct net *last) 518 { 519 struct net *tmp; 520 /* This function is only called from cleanup_net() work, 521 * and this work is the only process, that may delete 522 * a net from net_namespace_list. So, when the below 523 * is executing, the list may only grow. Thus, we do not 524 * use for_each_net_rcu() or net_rwsem. 525 */ 526 for_each_net(tmp) { 527 int id; 528 529 spin_lock_bh(&tmp->nsid_lock); 530 id = __peernet2id(tmp, net); 531 if (id >= 0) 532 idr_remove(&tmp->netns_ids, id); 533 spin_unlock_bh(&tmp->nsid_lock); 534 if (id >= 0) 535 rtnl_net_notifyid(tmp, RTM_DELNSID, id); 536 if (tmp == last) 537 break; 538 } 539 spin_lock_bh(&net->nsid_lock); 540 idr_destroy(&net->netns_ids); 541 spin_unlock_bh(&net->nsid_lock); 542 } 543 544 static LLIST_HEAD(cleanup_list); 545 546 static void cleanup_net(struct work_struct *work) 547 { 548 const struct pernet_operations *ops; 549 struct net *net, *tmp, *last; 550 struct llist_node *net_kill_list; 551 LIST_HEAD(net_exit_list); 552 553 /* Atomically snapshot the list of namespaces to cleanup */ 554 net_kill_list = llist_del_all(&cleanup_list); 555 556 down_read(&pernet_ops_rwsem); 557 558 /* Don't let anyone else find us. */ 559 down_write(&net_rwsem); 560 llist_for_each_entry(net, net_kill_list, cleanup_list) 561 list_del_rcu(&net->list); 562 /* Cache last net. After we unlock rtnl, no one new net 563 * added to net_namespace_list can assign nsid pointer 564 * to a net from net_kill_list (see peernet2id_alloc()). 565 * So, we skip them in unhash_nsid(). 566 * 567 * Note, that unhash_nsid() does not delete nsid links 568 * between net_kill_list's nets, as they've already 569 * deleted from net_namespace_list. But, this would be 570 * useless anyway, as netns_ids are destroyed there. 571 */ 572 last = list_last_entry(&net_namespace_list, struct net, list); 573 up_write(&net_rwsem); 574 575 llist_for_each_entry(net, net_kill_list, cleanup_list) { 576 unhash_nsid(net, last); 577 list_add_tail(&net->exit_list, &net_exit_list); 578 } 579 580 /* Run all of the network namespace pre_exit methods */ 581 list_for_each_entry_reverse(ops, &pernet_list, list) 582 ops_pre_exit_list(ops, &net_exit_list); 583 584 /* 585 * Another CPU might be rcu-iterating the list, wait for it. 586 * This needs to be before calling the exit() notifiers, so 587 * the rcu_barrier() below isn't sufficient alone. 588 * Also the pre_exit() and exit() methods need this barrier. 589 */ 590 synchronize_rcu(); 591 592 /* Run all of the network namespace exit methods */ 593 list_for_each_entry_reverse(ops, &pernet_list, list) 594 ops_exit_list(ops, &net_exit_list); 595 596 /* Free the net generic variables */ 597 list_for_each_entry_reverse(ops, &pernet_list, list) 598 ops_free_list(ops, &net_exit_list); 599 600 up_read(&pernet_ops_rwsem); 601 602 /* Ensure there are no outstanding rcu callbacks using this 603 * network namespace. 604 */ 605 rcu_barrier(); 606 607 /* Finally it is safe to free my network namespace structure */ 608 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 609 list_del_init(&net->exit_list); 610 dec_net_namespaces(net->ucounts); 611 key_remove_domain(net->key_domain); 612 put_user_ns(net->user_ns); 613 net_drop_ns(net); 614 } 615 } 616 617 /** 618 * net_ns_barrier - wait until concurrent net_cleanup_work is done 619 * 620 * cleanup_net runs from work queue and will first remove namespaces 621 * from the global list, then run net exit functions. 622 * 623 * Call this in module exit path to make sure that all netns 624 * ->exit ops have been invoked before the function is removed. 625 */ 626 void net_ns_barrier(void) 627 { 628 down_write(&pernet_ops_rwsem); 629 up_write(&pernet_ops_rwsem); 630 } 631 EXPORT_SYMBOL(net_ns_barrier); 632 633 static DECLARE_WORK(net_cleanup_work, cleanup_net); 634 635 void __put_net(struct net *net) 636 { 637 /* Cleanup the network namespace in process context */ 638 if (llist_add(&net->cleanup_list, &cleanup_list)) 639 queue_work(netns_wq, &net_cleanup_work); 640 } 641 EXPORT_SYMBOL_GPL(__put_net); 642 643 struct net *get_net_ns_by_fd(int fd) 644 { 645 struct file *file; 646 struct ns_common *ns; 647 struct net *net; 648 649 file = proc_ns_fget(fd); 650 if (IS_ERR(file)) 651 return ERR_CAST(file); 652 653 ns = get_proc_ns(file_inode(file)); 654 if (ns->ops == &netns_operations) 655 net = get_net(container_of(ns, struct net, ns)); 656 else 657 net = ERR_PTR(-EINVAL); 658 659 fput(file); 660 return net; 661 } 662 663 #else 664 struct net *get_net_ns_by_fd(int fd) 665 { 666 return ERR_PTR(-EINVAL); 667 } 668 #endif 669 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 670 671 struct net *get_net_ns_by_pid(pid_t pid) 672 { 673 struct task_struct *tsk; 674 struct net *net; 675 676 /* Lookup the network namespace */ 677 net = ERR_PTR(-ESRCH); 678 rcu_read_lock(); 679 tsk = find_task_by_vpid(pid); 680 if (tsk) { 681 struct nsproxy *nsproxy; 682 task_lock(tsk); 683 nsproxy = tsk->nsproxy; 684 if (nsproxy) 685 net = get_net(nsproxy->net_ns); 686 task_unlock(tsk); 687 } 688 rcu_read_unlock(); 689 return net; 690 } 691 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 692 693 static __net_init int net_ns_net_init(struct net *net) 694 { 695 #ifdef CONFIG_NET_NS 696 net->ns.ops = &netns_operations; 697 #endif 698 return ns_alloc_inum(&net->ns); 699 } 700 701 static __net_exit void net_ns_net_exit(struct net *net) 702 { 703 ns_free_inum(&net->ns); 704 } 705 706 static struct pernet_operations __net_initdata net_ns_ops = { 707 .init = net_ns_net_init, 708 .exit = net_ns_net_exit, 709 }; 710 711 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 712 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 713 [NETNSA_NSID] = { .type = NLA_S32 }, 714 [NETNSA_PID] = { .type = NLA_U32 }, 715 [NETNSA_FD] = { .type = NLA_U32 }, 716 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 717 }; 718 719 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 720 struct netlink_ext_ack *extack) 721 { 722 struct net *net = sock_net(skb->sk); 723 struct nlattr *tb[NETNSA_MAX + 1]; 724 struct nlattr *nla; 725 struct net *peer; 726 int nsid, err; 727 728 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 729 NETNSA_MAX, rtnl_net_policy, extack); 730 if (err < 0) 731 return err; 732 if (!tb[NETNSA_NSID]) { 733 NL_SET_ERR_MSG(extack, "nsid is missing"); 734 return -EINVAL; 735 } 736 nsid = nla_get_s32(tb[NETNSA_NSID]); 737 738 if (tb[NETNSA_PID]) { 739 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 740 nla = tb[NETNSA_PID]; 741 } else if (tb[NETNSA_FD]) { 742 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 743 nla = tb[NETNSA_FD]; 744 } else { 745 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 746 return -EINVAL; 747 } 748 if (IS_ERR(peer)) { 749 NL_SET_BAD_ATTR(extack, nla); 750 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 751 return PTR_ERR(peer); 752 } 753 754 spin_lock_bh(&net->nsid_lock); 755 if (__peernet2id(net, peer) >= 0) { 756 spin_unlock_bh(&net->nsid_lock); 757 err = -EEXIST; 758 NL_SET_BAD_ATTR(extack, nla); 759 NL_SET_ERR_MSG(extack, 760 "Peer netns already has a nsid assigned"); 761 goto out; 762 } 763 764 err = alloc_netid(net, peer, nsid); 765 spin_unlock_bh(&net->nsid_lock); 766 if (err >= 0) { 767 rtnl_net_notifyid(net, RTM_NEWNSID, err); 768 err = 0; 769 } else if (err == -ENOSPC && nsid >= 0) { 770 err = -EEXIST; 771 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 772 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 773 } 774 out: 775 put_net(peer); 776 return err; 777 } 778 779 static int rtnl_net_get_size(void) 780 { 781 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 782 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 783 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 784 ; 785 } 786 787 struct net_fill_args { 788 u32 portid; 789 u32 seq; 790 int flags; 791 int cmd; 792 int nsid; 793 bool add_ref; 794 int ref_nsid; 795 }; 796 797 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 798 { 799 struct nlmsghdr *nlh; 800 struct rtgenmsg *rth; 801 802 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 803 args->flags); 804 if (!nlh) 805 return -EMSGSIZE; 806 807 rth = nlmsg_data(nlh); 808 rth->rtgen_family = AF_UNSPEC; 809 810 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 811 goto nla_put_failure; 812 813 if (args->add_ref && 814 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 815 goto nla_put_failure; 816 817 nlmsg_end(skb, nlh); 818 return 0; 819 820 nla_put_failure: 821 nlmsg_cancel(skb, nlh); 822 return -EMSGSIZE; 823 } 824 825 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 826 const struct nlmsghdr *nlh, 827 struct nlattr **tb, 828 struct netlink_ext_ack *extack) 829 { 830 int i, err; 831 832 if (!netlink_strict_get_check(skb)) 833 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 834 tb, NETNSA_MAX, rtnl_net_policy, 835 extack); 836 837 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 838 NETNSA_MAX, rtnl_net_policy, 839 extack); 840 if (err) 841 return err; 842 843 for (i = 0; i <= NETNSA_MAX; i++) { 844 if (!tb[i]) 845 continue; 846 847 switch (i) { 848 case NETNSA_PID: 849 case NETNSA_FD: 850 case NETNSA_NSID: 851 case NETNSA_TARGET_NSID: 852 break; 853 default: 854 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 855 return -EINVAL; 856 } 857 } 858 859 return 0; 860 } 861 862 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 863 struct netlink_ext_ack *extack) 864 { 865 struct net *net = sock_net(skb->sk); 866 struct nlattr *tb[NETNSA_MAX + 1]; 867 struct net_fill_args fillargs = { 868 .portid = NETLINK_CB(skb).portid, 869 .seq = nlh->nlmsg_seq, 870 .cmd = RTM_NEWNSID, 871 }; 872 struct net *peer, *target = net; 873 struct nlattr *nla; 874 struct sk_buff *msg; 875 int err; 876 877 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 878 if (err < 0) 879 return err; 880 if (tb[NETNSA_PID]) { 881 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 882 nla = tb[NETNSA_PID]; 883 } else if (tb[NETNSA_FD]) { 884 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 885 nla = tb[NETNSA_FD]; 886 } else if (tb[NETNSA_NSID]) { 887 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 888 if (!peer) 889 peer = ERR_PTR(-ENOENT); 890 nla = tb[NETNSA_NSID]; 891 } else { 892 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 893 return -EINVAL; 894 } 895 896 if (IS_ERR(peer)) { 897 NL_SET_BAD_ATTR(extack, nla); 898 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 899 return PTR_ERR(peer); 900 } 901 902 if (tb[NETNSA_TARGET_NSID]) { 903 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 904 905 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 906 if (IS_ERR(target)) { 907 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 908 NL_SET_ERR_MSG(extack, 909 "Target netns reference is invalid"); 910 err = PTR_ERR(target); 911 goto out; 912 } 913 fillargs.add_ref = true; 914 fillargs.ref_nsid = peernet2id(net, peer); 915 } 916 917 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 918 if (!msg) { 919 err = -ENOMEM; 920 goto out; 921 } 922 923 fillargs.nsid = peernet2id(target, peer); 924 err = rtnl_net_fill(msg, &fillargs); 925 if (err < 0) 926 goto err_out; 927 928 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 929 goto out; 930 931 err_out: 932 nlmsg_free(msg); 933 out: 934 if (fillargs.add_ref) 935 put_net(target); 936 put_net(peer); 937 return err; 938 } 939 940 struct rtnl_net_dump_cb { 941 struct net *tgt_net; 942 struct net *ref_net; 943 struct sk_buff *skb; 944 struct net_fill_args fillargs; 945 int idx; 946 int s_idx; 947 }; 948 949 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 950 { 951 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 952 int ret; 953 954 if (net_cb->idx < net_cb->s_idx) 955 goto cont; 956 957 net_cb->fillargs.nsid = id; 958 if (net_cb->fillargs.add_ref) 959 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 960 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 961 if (ret < 0) 962 return ret; 963 964 cont: 965 net_cb->idx++; 966 return 0; 967 } 968 969 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 970 struct rtnl_net_dump_cb *net_cb, 971 struct netlink_callback *cb) 972 { 973 struct netlink_ext_ack *extack = cb->extack; 974 struct nlattr *tb[NETNSA_MAX + 1]; 975 int err, i; 976 977 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 978 NETNSA_MAX, rtnl_net_policy, 979 extack); 980 if (err < 0) 981 return err; 982 983 for (i = 0; i <= NETNSA_MAX; i++) { 984 if (!tb[i]) 985 continue; 986 987 if (i == NETNSA_TARGET_NSID) { 988 struct net *net; 989 990 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 991 if (IS_ERR(net)) { 992 NL_SET_BAD_ATTR(extack, tb[i]); 993 NL_SET_ERR_MSG(extack, 994 "Invalid target network namespace id"); 995 return PTR_ERR(net); 996 } 997 net_cb->fillargs.add_ref = true; 998 net_cb->ref_net = net_cb->tgt_net; 999 net_cb->tgt_net = net; 1000 } else { 1001 NL_SET_BAD_ATTR(extack, tb[i]); 1002 NL_SET_ERR_MSG(extack, 1003 "Unsupported attribute in dump request"); 1004 return -EINVAL; 1005 } 1006 } 1007 1008 return 0; 1009 } 1010 1011 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1012 { 1013 struct rtnl_net_dump_cb net_cb = { 1014 .tgt_net = sock_net(skb->sk), 1015 .skb = skb, 1016 .fillargs = { 1017 .portid = NETLINK_CB(cb->skb).portid, 1018 .seq = cb->nlh->nlmsg_seq, 1019 .flags = NLM_F_MULTI, 1020 .cmd = RTM_NEWNSID, 1021 }, 1022 .idx = 0, 1023 .s_idx = cb->args[0], 1024 }; 1025 int err = 0; 1026 1027 if (cb->strict_check) { 1028 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1029 if (err < 0) 1030 goto end; 1031 } 1032 1033 spin_lock_bh(&net_cb.tgt_net->nsid_lock); 1034 if (net_cb.fillargs.add_ref && 1035 !net_eq(net_cb.ref_net, net_cb.tgt_net) && 1036 !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) { 1037 spin_unlock_bh(&net_cb.tgt_net->nsid_lock); 1038 err = -EAGAIN; 1039 goto end; 1040 } 1041 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1042 if (net_cb.fillargs.add_ref && 1043 !net_eq(net_cb.ref_net, net_cb.tgt_net)) 1044 spin_unlock_bh(&net_cb.ref_net->nsid_lock); 1045 spin_unlock_bh(&net_cb.tgt_net->nsid_lock); 1046 1047 cb->args[0] = net_cb.idx; 1048 end: 1049 if (net_cb.fillargs.add_ref) 1050 put_net(net_cb.tgt_net); 1051 return err < 0 ? err : skb->len; 1052 } 1053 1054 static void rtnl_net_notifyid(struct net *net, int cmd, int id) 1055 { 1056 struct net_fill_args fillargs = { 1057 .cmd = cmd, 1058 .nsid = id, 1059 }; 1060 struct sk_buff *msg; 1061 int err = -ENOMEM; 1062 1063 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 1064 if (!msg) 1065 goto out; 1066 1067 err = rtnl_net_fill(msg, &fillargs); 1068 if (err < 0) 1069 goto err_out; 1070 1071 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0); 1072 return; 1073 1074 err_out: 1075 nlmsg_free(msg); 1076 out: 1077 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1078 } 1079 1080 static int __init net_ns_init(void) 1081 { 1082 struct net_generic *ng; 1083 1084 #ifdef CONFIG_NET_NS 1085 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1086 SMP_CACHE_BYTES, 1087 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1088 1089 /* Create workqueue for cleanup */ 1090 netns_wq = create_singlethread_workqueue("netns"); 1091 if (!netns_wq) 1092 panic("Could not create netns workq"); 1093 #endif 1094 1095 ng = net_alloc_generic(); 1096 if (!ng) 1097 panic("Could not allocate generic netns"); 1098 1099 rcu_assign_pointer(init_net.gen, ng); 1100 1101 down_write(&pernet_ops_rwsem); 1102 if (setup_net(&init_net, &init_user_ns)) 1103 panic("Could not setup the initial network namespace"); 1104 1105 init_net_initialized = true; 1106 up_write(&pernet_ops_rwsem); 1107 1108 if (register_pernet_subsys(&net_ns_ops)) 1109 panic("Could not register network namespace subsystems"); 1110 1111 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1112 RTNL_FLAG_DOIT_UNLOCKED); 1113 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1114 RTNL_FLAG_DOIT_UNLOCKED); 1115 1116 return 0; 1117 } 1118 1119 pure_initcall(net_ns_init); 1120 1121 #ifdef CONFIG_NET_NS 1122 static int __register_pernet_operations(struct list_head *list, 1123 struct pernet_operations *ops) 1124 { 1125 struct net *net; 1126 int error; 1127 LIST_HEAD(net_exit_list); 1128 1129 list_add_tail(&ops->list, list); 1130 if (ops->init || (ops->id && ops->size)) { 1131 /* We held write locked pernet_ops_rwsem, and parallel 1132 * setup_net() and cleanup_net() are not possible. 1133 */ 1134 for_each_net(net) { 1135 error = ops_init(ops, net); 1136 if (error) 1137 goto out_undo; 1138 list_add_tail(&net->exit_list, &net_exit_list); 1139 } 1140 } 1141 return 0; 1142 1143 out_undo: 1144 /* If I have an error cleanup all namespaces I initialized */ 1145 list_del(&ops->list); 1146 ops_pre_exit_list(ops, &net_exit_list); 1147 synchronize_rcu(); 1148 ops_exit_list(ops, &net_exit_list); 1149 ops_free_list(ops, &net_exit_list); 1150 return error; 1151 } 1152 1153 static void __unregister_pernet_operations(struct pernet_operations *ops) 1154 { 1155 struct net *net; 1156 LIST_HEAD(net_exit_list); 1157 1158 list_del(&ops->list); 1159 /* See comment in __register_pernet_operations() */ 1160 for_each_net(net) 1161 list_add_tail(&net->exit_list, &net_exit_list); 1162 ops_pre_exit_list(ops, &net_exit_list); 1163 synchronize_rcu(); 1164 ops_exit_list(ops, &net_exit_list); 1165 ops_free_list(ops, &net_exit_list); 1166 } 1167 1168 #else 1169 1170 static int __register_pernet_operations(struct list_head *list, 1171 struct pernet_operations *ops) 1172 { 1173 if (!init_net_initialized) { 1174 list_add_tail(&ops->list, list); 1175 return 0; 1176 } 1177 1178 return ops_init(ops, &init_net); 1179 } 1180 1181 static void __unregister_pernet_operations(struct pernet_operations *ops) 1182 { 1183 if (!init_net_initialized) { 1184 list_del(&ops->list); 1185 } else { 1186 LIST_HEAD(net_exit_list); 1187 list_add(&init_net.exit_list, &net_exit_list); 1188 ops_pre_exit_list(ops, &net_exit_list); 1189 synchronize_rcu(); 1190 ops_exit_list(ops, &net_exit_list); 1191 ops_free_list(ops, &net_exit_list); 1192 } 1193 } 1194 1195 #endif /* CONFIG_NET_NS */ 1196 1197 static DEFINE_IDA(net_generic_ids); 1198 1199 static int register_pernet_operations(struct list_head *list, 1200 struct pernet_operations *ops) 1201 { 1202 int error; 1203 1204 if (ops->id) { 1205 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1206 GFP_KERNEL); 1207 if (error < 0) 1208 return error; 1209 *ops->id = error; 1210 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 1211 } 1212 error = __register_pernet_operations(list, ops); 1213 if (error) { 1214 rcu_barrier(); 1215 if (ops->id) 1216 ida_free(&net_generic_ids, *ops->id); 1217 } 1218 1219 return error; 1220 } 1221 1222 static void unregister_pernet_operations(struct pernet_operations *ops) 1223 { 1224 __unregister_pernet_operations(ops); 1225 rcu_barrier(); 1226 if (ops->id) 1227 ida_free(&net_generic_ids, *ops->id); 1228 } 1229 1230 /** 1231 * register_pernet_subsys - register a network namespace subsystem 1232 * @ops: pernet operations structure for the subsystem 1233 * 1234 * Register a subsystem which has init and exit functions 1235 * that are called when network namespaces are created and 1236 * destroyed respectively. 1237 * 1238 * When registered all network namespace init functions are 1239 * called for every existing network namespace. Allowing kernel 1240 * modules to have a race free view of the set of network namespaces. 1241 * 1242 * When a new network namespace is created all of the init 1243 * methods are called in the order in which they were registered. 1244 * 1245 * When a network namespace is destroyed all of the exit methods 1246 * are called in the reverse of the order with which they were 1247 * registered. 1248 */ 1249 int register_pernet_subsys(struct pernet_operations *ops) 1250 { 1251 int error; 1252 down_write(&pernet_ops_rwsem); 1253 error = register_pernet_operations(first_device, ops); 1254 up_write(&pernet_ops_rwsem); 1255 return error; 1256 } 1257 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1258 1259 /** 1260 * unregister_pernet_subsys - unregister a network namespace subsystem 1261 * @ops: pernet operations structure to manipulate 1262 * 1263 * Remove the pernet operations structure from the list to be 1264 * used when network namespaces are created or destroyed. In 1265 * addition run the exit method for all existing network 1266 * namespaces. 1267 */ 1268 void unregister_pernet_subsys(struct pernet_operations *ops) 1269 { 1270 down_write(&pernet_ops_rwsem); 1271 unregister_pernet_operations(ops); 1272 up_write(&pernet_ops_rwsem); 1273 } 1274 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1275 1276 /** 1277 * register_pernet_device - register a network namespace device 1278 * @ops: pernet operations structure for the subsystem 1279 * 1280 * Register a device which has init and exit functions 1281 * that are called when network namespaces are created and 1282 * destroyed respectively. 1283 * 1284 * When registered all network namespace init functions are 1285 * called for every existing network namespace. Allowing kernel 1286 * modules to have a race free view of the set of network namespaces. 1287 * 1288 * When a new network namespace is created all of the init 1289 * methods are called in the order in which they were registered. 1290 * 1291 * When a network namespace is destroyed all of the exit methods 1292 * are called in the reverse of the order with which they were 1293 * registered. 1294 */ 1295 int register_pernet_device(struct pernet_operations *ops) 1296 { 1297 int error; 1298 down_write(&pernet_ops_rwsem); 1299 error = register_pernet_operations(&pernet_list, ops); 1300 if (!error && (first_device == &pernet_list)) 1301 first_device = &ops->list; 1302 up_write(&pernet_ops_rwsem); 1303 return error; 1304 } 1305 EXPORT_SYMBOL_GPL(register_pernet_device); 1306 1307 /** 1308 * unregister_pernet_device - unregister a network namespace netdevice 1309 * @ops: pernet operations structure to manipulate 1310 * 1311 * Remove the pernet operations structure from the list to be 1312 * used when network namespaces are created or destroyed. In 1313 * addition run the exit method for all existing network 1314 * namespaces. 1315 */ 1316 void unregister_pernet_device(struct pernet_operations *ops) 1317 { 1318 down_write(&pernet_ops_rwsem); 1319 if (&ops->list == first_device) 1320 first_device = first_device->next; 1321 unregister_pernet_operations(ops); 1322 up_write(&pernet_ops_rwsem); 1323 } 1324 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1325 1326 #ifdef CONFIG_NET_NS 1327 static struct ns_common *netns_get(struct task_struct *task) 1328 { 1329 struct net *net = NULL; 1330 struct nsproxy *nsproxy; 1331 1332 task_lock(task); 1333 nsproxy = task->nsproxy; 1334 if (nsproxy) 1335 net = get_net(nsproxy->net_ns); 1336 task_unlock(task); 1337 1338 return net ? &net->ns : NULL; 1339 } 1340 1341 static inline struct net *to_net_ns(struct ns_common *ns) 1342 { 1343 return container_of(ns, struct net, ns); 1344 } 1345 1346 static void netns_put(struct ns_common *ns) 1347 { 1348 put_net(to_net_ns(ns)); 1349 } 1350 1351 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns) 1352 { 1353 struct net *net = to_net_ns(ns); 1354 1355 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1356 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 1357 return -EPERM; 1358 1359 put_net(nsproxy->net_ns); 1360 nsproxy->net_ns = get_net(net); 1361 return 0; 1362 } 1363 1364 static struct user_namespace *netns_owner(struct ns_common *ns) 1365 { 1366 return to_net_ns(ns)->user_ns; 1367 } 1368 1369 const struct proc_ns_operations netns_operations = { 1370 .name = "net", 1371 .type = CLONE_NEWNET, 1372 .get = netns_get, 1373 .put = netns_put, 1374 .install = netns_install, 1375 .owner = netns_owner, 1376 }; 1377 #endif 1378