1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/workqueue.h> 4 #include <linux/rtnetlink.h> 5 #include <linux/cache.h> 6 #include <linux/slab.h> 7 #include <linux/list.h> 8 #include <linux/delay.h> 9 #include <linux/sched.h> 10 #include <linux/idr.h> 11 #include <linux/rculist.h> 12 #include <linux/nsproxy.h> 13 #include <linux/fs.h> 14 #include <linux/proc_ns.h> 15 #include <linux/file.h> 16 #include <linux/export.h> 17 #include <linux/user_namespace.h> 18 #include <linux/net_namespace.h> 19 #include <linux/sched/task.h> 20 #include <linux/uidgid.h> 21 22 #include <net/sock.h> 23 #include <net/netlink.h> 24 #include <net/net_namespace.h> 25 #include <net/netns/generic.h> 26 27 /* 28 * Our network namespace constructor/destructor lists 29 */ 30 31 static LIST_HEAD(pernet_list); 32 static struct list_head *first_device = &pernet_list; 33 34 LIST_HEAD(net_namespace_list); 35 EXPORT_SYMBOL_GPL(net_namespace_list); 36 37 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 38 DECLARE_RWSEM(net_rwsem); 39 EXPORT_SYMBOL_GPL(net_rwsem); 40 41 struct net init_net = { 42 .count = REFCOUNT_INIT(1), 43 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 44 }; 45 EXPORT_SYMBOL(init_net); 46 47 static bool init_net_initialized; 48 /* 49 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 50 * init_net_initialized and first_device pointer. 51 * This is internal net namespace object. Please, don't use it 52 * outside. 53 */ 54 DECLARE_RWSEM(pernet_ops_rwsem); 55 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 56 57 #define MIN_PERNET_OPS_ID \ 58 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 59 60 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 61 62 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 63 64 static struct net_generic *net_alloc_generic(void) 65 { 66 struct net_generic *ng; 67 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 68 69 ng = kzalloc(generic_size, GFP_KERNEL); 70 if (ng) 71 ng->s.len = max_gen_ptrs; 72 73 return ng; 74 } 75 76 static int net_assign_generic(struct net *net, unsigned int id, void *data) 77 { 78 struct net_generic *ng, *old_ng; 79 80 BUG_ON(id < MIN_PERNET_OPS_ID); 81 82 old_ng = rcu_dereference_protected(net->gen, 83 lockdep_is_held(&pernet_ops_rwsem)); 84 if (old_ng->s.len > id) { 85 old_ng->ptr[id] = data; 86 return 0; 87 } 88 89 ng = net_alloc_generic(); 90 if (ng == NULL) 91 return -ENOMEM; 92 93 /* 94 * Some synchronisation notes: 95 * 96 * The net_generic explores the net->gen array inside rcu 97 * read section. Besides once set the net->gen->ptr[x] 98 * pointer never changes (see rules in netns/generic.h). 99 * 100 * That said, we simply duplicate this array and schedule 101 * the old copy for kfree after a grace period. 102 */ 103 104 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 105 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 106 ng->ptr[id] = data; 107 108 rcu_assign_pointer(net->gen, ng); 109 kfree_rcu(old_ng, s.rcu); 110 return 0; 111 } 112 113 static int ops_init(const struct pernet_operations *ops, struct net *net) 114 { 115 int err = -ENOMEM; 116 void *data = NULL; 117 118 if (ops->id && ops->size) { 119 data = kzalloc(ops->size, GFP_KERNEL); 120 if (!data) 121 goto out; 122 123 err = net_assign_generic(net, *ops->id, data); 124 if (err) 125 goto cleanup; 126 } 127 err = 0; 128 if (ops->init) 129 err = ops->init(net); 130 if (!err) 131 return 0; 132 133 cleanup: 134 kfree(data); 135 136 out: 137 return err; 138 } 139 140 static void ops_free(const struct pernet_operations *ops, struct net *net) 141 { 142 if (ops->id && ops->size) { 143 kfree(net_generic(net, *ops->id)); 144 } 145 } 146 147 static void ops_exit_list(const struct pernet_operations *ops, 148 struct list_head *net_exit_list) 149 { 150 struct net *net; 151 if (ops->exit) { 152 list_for_each_entry(net, net_exit_list, exit_list) 153 ops->exit(net); 154 } 155 if (ops->exit_batch) 156 ops->exit_batch(net_exit_list); 157 } 158 159 static void ops_free_list(const struct pernet_operations *ops, 160 struct list_head *net_exit_list) 161 { 162 struct net *net; 163 if (ops->size && ops->id) { 164 list_for_each_entry(net, net_exit_list, exit_list) 165 ops_free(ops, net); 166 } 167 } 168 169 /* should be called with nsid_lock held */ 170 static int alloc_netid(struct net *net, struct net *peer, int reqid) 171 { 172 int min = 0, max = 0; 173 174 if (reqid >= 0) { 175 min = reqid; 176 max = reqid + 1; 177 } 178 179 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 180 } 181 182 /* This function is used by idr_for_each(). If net is equal to peer, the 183 * function returns the id so that idr_for_each() stops. Because we cannot 184 * returns the id 0 (idr_for_each() will not stop), we return the magic value 185 * NET_ID_ZERO (-1) for it. 186 */ 187 #define NET_ID_ZERO -1 188 static int net_eq_idr(int id, void *net, void *peer) 189 { 190 if (net_eq(net, peer)) 191 return id ? : NET_ID_ZERO; 192 return 0; 193 } 194 195 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc 196 * is set to true, thus the caller knows that the new id must be notified via 197 * rtnl. 198 */ 199 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc) 200 { 201 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 202 bool alloc_it = *alloc; 203 204 *alloc = false; 205 206 /* Magic value for id 0. */ 207 if (id == NET_ID_ZERO) 208 return 0; 209 if (id > 0) 210 return id; 211 212 if (alloc_it) { 213 id = alloc_netid(net, peer, -1); 214 *alloc = true; 215 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED; 216 } 217 218 return NETNSA_NSID_NOT_ASSIGNED; 219 } 220 221 /* should be called with nsid_lock held */ 222 static int __peernet2id(struct net *net, struct net *peer) 223 { 224 bool no = false; 225 226 return __peernet2id_alloc(net, peer, &no); 227 } 228 229 static void rtnl_net_notifyid(struct net *net, int cmd, int id); 230 /* This function returns the id of a peer netns. If no id is assigned, one will 231 * be allocated and returned. 232 */ 233 int peernet2id_alloc(struct net *net, struct net *peer) 234 { 235 bool alloc = false, alive = false; 236 int id; 237 238 if (refcount_read(&net->count) == 0) 239 return NETNSA_NSID_NOT_ASSIGNED; 240 spin_lock_bh(&net->nsid_lock); 241 /* 242 * When peer is obtained from RCU lists, we may race with 243 * its cleanup. Check whether it's alive, and this guarantees 244 * we never hash a peer back to net->netns_ids, after it has 245 * just been idr_remove()'d from there in cleanup_net(). 246 */ 247 if (maybe_get_net(peer)) 248 alive = alloc = true; 249 id = __peernet2id_alloc(net, peer, &alloc); 250 spin_unlock_bh(&net->nsid_lock); 251 if (alloc && id >= 0) 252 rtnl_net_notifyid(net, RTM_NEWNSID, id); 253 if (alive) 254 put_net(peer); 255 return id; 256 } 257 EXPORT_SYMBOL_GPL(peernet2id_alloc); 258 259 /* This function returns, if assigned, the id of a peer netns. */ 260 int peernet2id(struct net *net, struct net *peer) 261 { 262 int id; 263 264 spin_lock_bh(&net->nsid_lock); 265 id = __peernet2id(net, peer); 266 spin_unlock_bh(&net->nsid_lock); 267 return id; 268 } 269 EXPORT_SYMBOL(peernet2id); 270 271 /* This function returns true is the peer netns has an id assigned into the 272 * current netns. 273 */ 274 bool peernet_has_id(struct net *net, struct net *peer) 275 { 276 return peernet2id(net, peer) >= 0; 277 } 278 279 struct net *get_net_ns_by_id(struct net *net, int id) 280 { 281 struct net *peer; 282 283 if (id < 0) 284 return NULL; 285 286 rcu_read_lock(); 287 peer = idr_find(&net->netns_ids, id); 288 if (peer) 289 peer = maybe_get_net(peer); 290 rcu_read_unlock(); 291 292 return peer; 293 } 294 295 /* 296 * setup_net runs the initializers for the network namespace object. 297 */ 298 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 299 { 300 /* Must be called with pernet_ops_rwsem held */ 301 const struct pernet_operations *ops, *saved_ops; 302 int error = 0; 303 LIST_HEAD(net_exit_list); 304 305 refcount_set(&net->count, 1); 306 refcount_set(&net->passive, 1); 307 net->dev_base_seq = 1; 308 net->user_ns = user_ns; 309 idr_init(&net->netns_ids); 310 spin_lock_init(&net->nsid_lock); 311 mutex_init(&net->ipv4.ra_mutex); 312 313 list_for_each_entry(ops, &pernet_list, list) { 314 error = ops_init(ops, net); 315 if (error < 0) 316 goto out_undo; 317 } 318 down_write(&net_rwsem); 319 list_add_tail_rcu(&net->list, &net_namespace_list); 320 up_write(&net_rwsem); 321 out: 322 return error; 323 324 out_undo: 325 /* Walk through the list backwards calling the exit functions 326 * for the pernet modules whose init functions did not fail. 327 */ 328 list_add(&net->exit_list, &net_exit_list); 329 saved_ops = ops; 330 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 331 ops_exit_list(ops, &net_exit_list); 332 333 ops = saved_ops; 334 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 335 ops_free_list(ops, &net_exit_list); 336 337 rcu_barrier(); 338 goto out; 339 } 340 341 static int __net_init net_defaults_init_net(struct net *net) 342 { 343 net->core.sysctl_somaxconn = SOMAXCONN; 344 return 0; 345 } 346 347 static struct pernet_operations net_defaults_ops = { 348 .init = net_defaults_init_net, 349 }; 350 351 static __init int net_defaults_init(void) 352 { 353 if (register_pernet_subsys(&net_defaults_ops)) 354 panic("Cannot initialize net default settings"); 355 356 return 0; 357 } 358 359 core_initcall(net_defaults_init); 360 361 #ifdef CONFIG_NET_NS 362 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 363 { 364 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 365 } 366 367 static void dec_net_namespaces(struct ucounts *ucounts) 368 { 369 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 370 } 371 372 static struct kmem_cache *net_cachep __ro_after_init; 373 static struct workqueue_struct *netns_wq; 374 375 static struct net *net_alloc(void) 376 { 377 struct net *net = NULL; 378 struct net_generic *ng; 379 380 ng = net_alloc_generic(); 381 if (!ng) 382 goto out; 383 384 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 385 if (!net) 386 goto out_free; 387 388 rcu_assign_pointer(net->gen, ng); 389 out: 390 return net; 391 392 out_free: 393 kfree(ng); 394 goto out; 395 } 396 397 static void net_free(struct net *net) 398 { 399 kfree(rcu_access_pointer(net->gen)); 400 kmem_cache_free(net_cachep, net); 401 } 402 403 void net_drop_ns(void *p) 404 { 405 struct net *ns = p; 406 if (ns && refcount_dec_and_test(&ns->passive)) 407 net_free(ns); 408 } 409 410 struct net *copy_net_ns(unsigned long flags, 411 struct user_namespace *user_ns, struct net *old_net) 412 { 413 struct ucounts *ucounts; 414 struct net *net; 415 int rv; 416 417 if (!(flags & CLONE_NEWNET)) 418 return get_net(old_net); 419 420 ucounts = inc_net_namespaces(user_ns); 421 if (!ucounts) 422 return ERR_PTR(-ENOSPC); 423 424 net = net_alloc(); 425 if (!net) { 426 rv = -ENOMEM; 427 goto dec_ucounts; 428 } 429 refcount_set(&net->passive, 1); 430 net->ucounts = ucounts; 431 get_user_ns(user_ns); 432 433 rv = down_read_killable(&pernet_ops_rwsem); 434 if (rv < 0) 435 goto put_userns; 436 437 rv = setup_net(net, user_ns); 438 439 up_read(&pernet_ops_rwsem); 440 441 if (rv < 0) { 442 put_userns: 443 put_user_ns(user_ns); 444 net_drop_ns(net); 445 dec_ucounts: 446 dec_net_namespaces(ucounts); 447 return ERR_PTR(rv); 448 } 449 return net; 450 } 451 452 /** 453 * net_ns_get_ownership - get sysfs ownership data for @net 454 * @net: network namespace in question (can be NULL) 455 * @uid: kernel user ID for sysfs objects 456 * @gid: kernel group ID for sysfs objects 457 * 458 * Returns the uid/gid pair of root in the user namespace associated with the 459 * given network namespace. 460 */ 461 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 462 { 463 if (net) { 464 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 465 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 466 467 if (uid_valid(ns_root_uid)) 468 *uid = ns_root_uid; 469 470 if (gid_valid(ns_root_gid)) 471 *gid = ns_root_gid; 472 } else { 473 *uid = GLOBAL_ROOT_UID; 474 *gid = GLOBAL_ROOT_GID; 475 } 476 } 477 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 478 479 static void unhash_nsid(struct net *net, struct net *last) 480 { 481 struct net *tmp; 482 /* This function is only called from cleanup_net() work, 483 * and this work is the only process, that may delete 484 * a net from net_namespace_list. So, when the below 485 * is executing, the list may only grow. Thus, we do not 486 * use for_each_net_rcu() or net_rwsem. 487 */ 488 for_each_net(tmp) { 489 int id; 490 491 spin_lock_bh(&tmp->nsid_lock); 492 id = __peernet2id(tmp, net); 493 if (id >= 0) 494 idr_remove(&tmp->netns_ids, id); 495 spin_unlock_bh(&tmp->nsid_lock); 496 if (id >= 0) 497 rtnl_net_notifyid(tmp, RTM_DELNSID, id); 498 if (tmp == last) 499 break; 500 } 501 spin_lock_bh(&net->nsid_lock); 502 idr_destroy(&net->netns_ids); 503 spin_unlock_bh(&net->nsid_lock); 504 } 505 506 static LLIST_HEAD(cleanup_list); 507 508 static void cleanup_net(struct work_struct *work) 509 { 510 const struct pernet_operations *ops; 511 struct net *net, *tmp, *last; 512 struct llist_node *net_kill_list; 513 LIST_HEAD(net_exit_list); 514 515 /* Atomically snapshot the list of namespaces to cleanup */ 516 net_kill_list = llist_del_all(&cleanup_list); 517 518 down_read(&pernet_ops_rwsem); 519 520 /* Don't let anyone else find us. */ 521 down_write(&net_rwsem); 522 llist_for_each_entry(net, net_kill_list, cleanup_list) 523 list_del_rcu(&net->list); 524 /* Cache last net. After we unlock rtnl, no one new net 525 * added to net_namespace_list can assign nsid pointer 526 * to a net from net_kill_list (see peernet2id_alloc()). 527 * So, we skip them in unhash_nsid(). 528 * 529 * Note, that unhash_nsid() does not delete nsid links 530 * between net_kill_list's nets, as they've already 531 * deleted from net_namespace_list. But, this would be 532 * useless anyway, as netns_ids are destroyed there. 533 */ 534 last = list_last_entry(&net_namespace_list, struct net, list); 535 up_write(&net_rwsem); 536 537 llist_for_each_entry(net, net_kill_list, cleanup_list) { 538 unhash_nsid(net, last); 539 list_add_tail(&net->exit_list, &net_exit_list); 540 } 541 542 /* 543 * Another CPU might be rcu-iterating the list, wait for it. 544 * This needs to be before calling the exit() notifiers, so 545 * the rcu_barrier() below isn't sufficient alone. 546 */ 547 synchronize_rcu(); 548 549 /* Run all of the network namespace exit methods */ 550 list_for_each_entry_reverse(ops, &pernet_list, list) 551 ops_exit_list(ops, &net_exit_list); 552 553 /* Free the net generic variables */ 554 list_for_each_entry_reverse(ops, &pernet_list, list) 555 ops_free_list(ops, &net_exit_list); 556 557 up_read(&pernet_ops_rwsem); 558 559 /* Ensure there are no outstanding rcu callbacks using this 560 * network namespace. 561 */ 562 rcu_barrier(); 563 564 /* Finally it is safe to free my network namespace structure */ 565 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 566 list_del_init(&net->exit_list); 567 dec_net_namespaces(net->ucounts); 568 put_user_ns(net->user_ns); 569 net_drop_ns(net); 570 } 571 } 572 573 /** 574 * net_ns_barrier - wait until concurrent net_cleanup_work is done 575 * 576 * cleanup_net runs from work queue and will first remove namespaces 577 * from the global list, then run net exit functions. 578 * 579 * Call this in module exit path to make sure that all netns 580 * ->exit ops have been invoked before the function is removed. 581 */ 582 void net_ns_barrier(void) 583 { 584 down_write(&pernet_ops_rwsem); 585 up_write(&pernet_ops_rwsem); 586 } 587 EXPORT_SYMBOL(net_ns_barrier); 588 589 static DECLARE_WORK(net_cleanup_work, cleanup_net); 590 591 void __put_net(struct net *net) 592 { 593 /* Cleanup the network namespace in process context */ 594 if (llist_add(&net->cleanup_list, &cleanup_list)) 595 queue_work(netns_wq, &net_cleanup_work); 596 } 597 EXPORT_SYMBOL_GPL(__put_net); 598 599 struct net *get_net_ns_by_fd(int fd) 600 { 601 struct file *file; 602 struct ns_common *ns; 603 struct net *net; 604 605 file = proc_ns_fget(fd); 606 if (IS_ERR(file)) 607 return ERR_CAST(file); 608 609 ns = get_proc_ns(file_inode(file)); 610 if (ns->ops == &netns_operations) 611 net = get_net(container_of(ns, struct net, ns)); 612 else 613 net = ERR_PTR(-EINVAL); 614 615 fput(file); 616 return net; 617 } 618 619 #else 620 struct net *get_net_ns_by_fd(int fd) 621 { 622 return ERR_PTR(-EINVAL); 623 } 624 #endif 625 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 626 627 struct net *get_net_ns_by_pid(pid_t pid) 628 { 629 struct task_struct *tsk; 630 struct net *net; 631 632 /* Lookup the network namespace */ 633 net = ERR_PTR(-ESRCH); 634 rcu_read_lock(); 635 tsk = find_task_by_vpid(pid); 636 if (tsk) { 637 struct nsproxy *nsproxy; 638 task_lock(tsk); 639 nsproxy = tsk->nsproxy; 640 if (nsproxy) 641 net = get_net(nsproxy->net_ns); 642 task_unlock(tsk); 643 } 644 rcu_read_unlock(); 645 return net; 646 } 647 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 648 649 static __net_init int net_ns_net_init(struct net *net) 650 { 651 #ifdef CONFIG_NET_NS 652 net->ns.ops = &netns_operations; 653 #endif 654 return ns_alloc_inum(&net->ns); 655 } 656 657 static __net_exit void net_ns_net_exit(struct net *net) 658 { 659 ns_free_inum(&net->ns); 660 } 661 662 static struct pernet_operations __net_initdata net_ns_ops = { 663 .init = net_ns_net_init, 664 .exit = net_ns_net_exit, 665 }; 666 667 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 668 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 669 [NETNSA_NSID] = { .type = NLA_S32 }, 670 [NETNSA_PID] = { .type = NLA_U32 }, 671 [NETNSA_FD] = { .type = NLA_U32 }, 672 }; 673 674 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 675 struct netlink_ext_ack *extack) 676 { 677 struct net *net = sock_net(skb->sk); 678 struct nlattr *tb[NETNSA_MAX + 1]; 679 struct nlattr *nla; 680 struct net *peer; 681 int nsid, err; 682 683 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, 684 rtnl_net_policy, extack); 685 if (err < 0) 686 return err; 687 if (!tb[NETNSA_NSID]) { 688 NL_SET_ERR_MSG(extack, "nsid is missing"); 689 return -EINVAL; 690 } 691 nsid = nla_get_s32(tb[NETNSA_NSID]); 692 693 if (tb[NETNSA_PID]) { 694 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 695 nla = tb[NETNSA_PID]; 696 } else if (tb[NETNSA_FD]) { 697 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 698 nla = tb[NETNSA_FD]; 699 } else { 700 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 701 return -EINVAL; 702 } 703 if (IS_ERR(peer)) { 704 NL_SET_BAD_ATTR(extack, nla); 705 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 706 return PTR_ERR(peer); 707 } 708 709 spin_lock_bh(&net->nsid_lock); 710 if (__peernet2id(net, peer) >= 0) { 711 spin_unlock_bh(&net->nsid_lock); 712 err = -EEXIST; 713 NL_SET_BAD_ATTR(extack, nla); 714 NL_SET_ERR_MSG(extack, 715 "Peer netns already has a nsid assigned"); 716 goto out; 717 } 718 719 err = alloc_netid(net, peer, nsid); 720 spin_unlock_bh(&net->nsid_lock); 721 if (err >= 0) { 722 rtnl_net_notifyid(net, RTM_NEWNSID, err); 723 err = 0; 724 } else if (err == -ENOSPC && nsid >= 0) { 725 err = -EEXIST; 726 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 727 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 728 } 729 out: 730 put_net(peer); 731 return err; 732 } 733 734 static int rtnl_net_get_size(void) 735 { 736 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 737 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 738 ; 739 } 740 741 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags, 742 int cmd, struct net *net, int nsid) 743 { 744 struct nlmsghdr *nlh; 745 struct rtgenmsg *rth; 746 747 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags); 748 if (!nlh) 749 return -EMSGSIZE; 750 751 rth = nlmsg_data(nlh); 752 rth->rtgen_family = AF_UNSPEC; 753 754 if (nla_put_s32(skb, NETNSA_NSID, nsid)) 755 goto nla_put_failure; 756 757 nlmsg_end(skb, nlh); 758 return 0; 759 760 nla_put_failure: 761 nlmsg_cancel(skb, nlh); 762 return -EMSGSIZE; 763 } 764 765 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 766 struct netlink_ext_ack *extack) 767 { 768 struct net *net = sock_net(skb->sk); 769 struct nlattr *tb[NETNSA_MAX + 1]; 770 struct nlattr *nla; 771 struct sk_buff *msg; 772 struct net *peer; 773 int err, id; 774 775 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, 776 rtnl_net_policy, extack); 777 if (err < 0) 778 return err; 779 if (tb[NETNSA_PID]) { 780 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 781 nla = tb[NETNSA_PID]; 782 } else if (tb[NETNSA_FD]) { 783 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 784 nla = tb[NETNSA_FD]; 785 } else { 786 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 787 return -EINVAL; 788 } 789 790 if (IS_ERR(peer)) { 791 NL_SET_BAD_ATTR(extack, nla); 792 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 793 return PTR_ERR(peer); 794 } 795 796 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 797 if (!msg) { 798 err = -ENOMEM; 799 goto out; 800 } 801 802 id = peernet2id(net, peer); 803 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0, 804 RTM_NEWNSID, net, id); 805 if (err < 0) 806 goto err_out; 807 808 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 809 goto out; 810 811 err_out: 812 nlmsg_free(msg); 813 out: 814 put_net(peer); 815 return err; 816 } 817 818 struct rtnl_net_dump_cb { 819 struct net *net; 820 struct sk_buff *skb; 821 struct netlink_callback *cb; 822 int idx; 823 int s_idx; 824 }; 825 826 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 827 { 828 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 829 int ret; 830 831 if (net_cb->idx < net_cb->s_idx) 832 goto cont; 833 834 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid, 835 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI, 836 RTM_NEWNSID, net_cb->net, id); 837 if (ret < 0) 838 return ret; 839 840 cont: 841 net_cb->idx++; 842 return 0; 843 } 844 845 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 846 { 847 struct net *net = sock_net(skb->sk); 848 struct rtnl_net_dump_cb net_cb = { 849 .net = net, 850 .skb = skb, 851 .cb = cb, 852 .idx = 0, 853 .s_idx = cb->args[0], 854 }; 855 856 if (cb->strict_check && 857 nlmsg_attrlen(cb->nlh, sizeof(struct rtgenmsg))) { 858 NL_SET_ERR_MSG(cb->extack, "Unknown data in network namespace id dump request"); 859 return -EINVAL; 860 } 861 862 spin_lock_bh(&net->nsid_lock); 863 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb); 864 spin_unlock_bh(&net->nsid_lock); 865 866 cb->args[0] = net_cb.idx; 867 return skb->len; 868 } 869 870 static void rtnl_net_notifyid(struct net *net, int cmd, int id) 871 { 872 struct sk_buff *msg; 873 int err = -ENOMEM; 874 875 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 876 if (!msg) 877 goto out; 878 879 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id); 880 if (err < 0) 881 goto err_out; 882 883 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0); 884 return; 885 886 err_out: 887 nlmsg_free(msg); 888 out: 889 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 890 } 891 892 static int __init net_ns_init(void) 893 { 894 struct net_generic *ng; 895 896 #ifdef CONFIG_NET_NS 897 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 898 SMP_CACHE_BYTES, 899 SLAB_PANIC|SLAB_ACCOUNT, NULL); 900 901 /* Create workqueue for cleanup */ 902 netns_wq = create_singlethread_workqueue("netns"); 903 if (!netns_wq) 904 panic("Could not create netns workq"); 905 #endif 906 907 ng = net_alloc_generic(); 908 if (!ng) 909 panic("Could not allocate generic netns"); 910 911 rcu_assign_pointer(init_net.gen, ng); 912 913 down_write(&pernet_ops_rwsem); 914 if (setup_net(&init_net, &init_user_ns)) 915 panic("Could not setup the initial network namespace"); 916 917 init_net_initialized = true; 918 up_write(&pernet_ops_rwsem); 919 920 register_pernet_subsys(&net_ns_ops); 921 922 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 923 RTNL_FLAG_DOIT_UNLOCKED); 924 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 925 RTNL_FLAG_DOIT_UNLOCKED); 926 927 return 0; 928 } 929 930 pure_initcall(net_ns_init); 931 932 #ifdef CONFIG_NET_NS 933 static int __register_pernet_operations(struct list_head *list, 934 struct pernet_operations *ops) 935 { 936 struct net *net; 937 int error; 938 LIST_HEAD(net_exit_list); 939 940 list_add_tail(&ops->list, list); 941 if (ops->init || (ops->id && ops->size)) { 942 /* We held write locked pernet_ops_rwsem, and parallel 943 * setup_net() and cleanup_net() are not possible. 944 */ 945 for_each_net(net) { 946 error = ops_init(ops, net); 947 if (error) 948 goto out_undo; 949 list_add_tail(&net->exit_list, &net_exit_list); 950 } 951 } 952 return 0; 953 954 out_undo: 955 /* If I have an error cleanup all namespaces I initialized */ 956 list_del(&ops->list); 957 ops_exit_list(ops, &net_exit_list); 958 ops_free_list(ops, &net_exit_list); 959 return error; 960 } 961 962 static void __unregister_pernet_operations(struct pernet_operations *ops) 963 { 964 struct net *net; 965 LIST_HEAD(net_exit_list); 966 967 list_del(&ops->list); 968 /* See comment in __register_pernet_operations() */ 969 for_each_net(net) 970 list_add_tail(&net->exit_list, &net_exit_list); 971 ops_exit_list(ops, &net_exit_list); 972 ops_free_list(ops, &net_exit_list); 973 } 974 975 #else 976 977 static int __register_pernet_operations(struct list_head *list, 978 struct pernet_operations *ops) 979 { 980 if (!init_net_initialized) { 981 list_add_tail(&ops->list, list); 982 return 0; 983 } 984 985 return ops_init(ops, &init_net); 986 } 987 988 static void __unregister_pernet_operations(struct pernet_operations *ops) 989 { 990 if (!init_net_initialized) { 991 list_del(&ops->list); 992 } else { 993 LIST_HEAD(net_exit_list); 994 list_add(&init_net.exit_list, &net_exit_list); 995 ops_exit_list(ops, &net_exit_list); 996 ops_free_list(ops, &net_exit_list); 997 } 998 } 999 1000 #endif /* CONFIG_NET_NS */ 1001 1002 static DEFINE_IDA(net_generic_ids); 1003 1004 static int register_pernet_operations(struct list_head *list, 1005 struct pernet_operations *ops) 1006 { 1007 int error; 1008 1009 if (ops->id) { 1010 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1011 GFP_KERNEL); 1012 if (error < 0) 1013 return error; 1014 *ops->id = error; 1015 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 1016 } 1017 error = __register_pernet_operations(list, ops); 1018 if (error) { 1019 rcu_barrier(); 1020 if (ops->id) 1021 ida_free(&net_generic_ids, *ops->id); 1022 } 1023 1024 return error; 1025 } 1026 1027 static void unregister_pernet_operations(struct pernet_operations *ops) 1028 { 1029 __unregister_pernet_operations(ops); 1030 rcu_barrier(); 1031 if (ops->id) 1032 ida_free(&net_generic_ids, *ops->id); 1033 } 1034 1035 /** 1036 * register_pernet_subsys - register a network namespace subsystem 1037 * @ops: pernet operations structure for the subsystem 1038 * 1039 * Register a subsystem which has init and exit functions 1040 * that are called when network namespaces are created and 1041 * destroyed respectively. 1042 * 1043 * When registered all network namespace init functions are 1044 * called for every existing network namespace. Allowing kernel 1045 * modules to have a race free view of the set of network namespaces. 1046 * 1047 * When a new network namespace is created all of the init 1048 * methods are called in the order in which they were registered. 1049 * 1050 * When a network namespace is destroyed all of the exit methods 1051 * are called in the reverse of the order with which they were 1052 * registered. 1053 */ 1054 int register_pernet_subsys(struct pernet_operations *ops) 1055 { 1056 int error; 1057 down_write(&pernet_ops_rwsem); 1058 error = register_pernet_operations(first_device, ops); 1059 up_write(&pernet_ops_rwsem); 1060 return error; 1061 } 1062 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1063 1064 /** 1065 * unregister_pernet_subsys - unregister a network namespace subsystem 1066 * @ops: pernet operations structure to manipulate 1067 * 1068 * Remove the pernet operations structure from the list to be 1069 * used when network namespaces are created or destroyed. In 1070 * addition run the exit method for all existing network 1071 * namespaces. 1072 */ 1073 void unregister_pernet_subsys(struct pernet_operations *ops) 1074 { 1075 down_write(&pernet_ops_rwsem); 1076 unregister_pernet_operations(ops); 1077 up_write(&pernet_ops_rwsem); 1078 } 1079 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1080 1081 /** 1082 * register_pernet_device - register a network namespace device 1083 * @ops: pernet operations structure for the subsystem 1084 * 1085 * Register a device which has init and exit functions 1086 * that are called when network namespaces are created and 1087 * destroyed respectively. 1088 * 1089 * When registered all network namespace init functions are 1090 * called for every existing network namespace. Allowing kernel 1091 * modules to have a race free view of the set of network namespaces. 1092 * 1093 * When a new network namespace is created all of the init 1094 * methods are called in the order in which they were registered. 1095 * 1096 * When a network namespace is destroyed all of the exit methods 1097 * are called in the reverse of the order with which they were 1098 * registered. 1099 */ 1100 int register_pernet_device(struct pernet_operations *ops) 1101 { 1102 int error; 1103 down_write(&pernet_ops_rwsem); 1104 error = register_pernet_operations(&pernet_list, ops); 1105 if (!error && (first_device == &pernet_list)) 1106 first_device = &ops->list; 1107 up_write(&pernet_ops_rwsem); 1108 return error; 1109 } 1110 EXPORT_SYMBOL_GPL(register_pernet_device); 1111 1112 /** 1113 * unregister_pernet_device - unregister a network namespace netdevice 1114 * @ops: pernet operations structure to manipulate 1115 * 1116 * Remove the pernet operations structure from the list to be 1117 * used when network namespaces are created or destroyed. In 1118 * addition run the exit method for all existing network 1119 * namespaces. 1120 */ 1121 void unregister_pernet_device(struct pernet_operations *ops) 1122 { 1123 down_write(&pernet_ops_rwsem); 1124 if (&ops->list == first_device) 1125 first_device = first_device->next; 1126 unregister_pernet_operations(ops); 1127 up_write(&pernet_ops_rwsem); 1128 } 1129 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1130 1131 #ifdef CONFIG_NET_NS 1132 static struct ns_common *netns_get(struct task_struct *task) 1133 { 1134 struct net *net = NULL; 1135 struct nsproxy *nsproxy; 1136 1137 task_lock(task); 1138 nsproxy = task->nsproxy; 1139 if (nsproxy) 1140 net = get_net(nsproxy->net_ns); 1141 task_unlock(task); 1142 1143 return net ? &net->ns : NULL; 1144 } 1145 1146 static inline struct net *to_net_ns(struct ns_common *ns) 1147 { 1148 return container_of(ns, struct net, ns); 1149 } 1150 1151 static void netns_put(struct ns_common *ns) 1152 { 1153 put_net(to_net_ns(ns)); 1154 } 1155 1156 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns) 1157 { 1158 struct net *net = to_net_ns(ns); 1159 1160 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1161 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 1162 return -EPERM; 1163 1164 put_net(nsproxy->net_ns); 1165 nsproxy->net_ns = get_net(net); 1166 return 0; 1167 } 1168 1169 static struct user_namespace *netns_owner(struct ns_common *ns) 1170 { 1171 return to_net_ns(ns)->user_ns; 1172 } 1173 1174 const struct proc_ns_operations netns_operations = { 1175 .name = "net", 1176 .type = CLONE_NEWNET, 1177 .get = netns_get, 1178 .put = netns_put, 1179 .install = netns_install, 1180 .owner = netns_owner, 1181 }; 1182 #endif 1183