1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/workqueue.h> 4 #include <linux/rtnetlink.h> 5 #include <linux/cache.h> 6 #include <linux/slab.h> 7 #include <linux/list.h> 8 #include <linux/delay.h> 9 #include <linux/sched.h> 10 #include <linux/idr.h> 11 #include <linux/rculist.h> 12 #include <linux/nsproxy.h> 13 #include <linux/fs.h> 14 #include <linux/proc_ns.h> 15 #include <linux/file.h> 16 #include <linux/export.h> 17 #include <linux/user_namespace.h> 18 #include <linux/net_namespace.h> 19 #include <net/sock.h> 20 #include <net/netlink.h> 21 #include <net/net_namespace.h> 22 #include <net/netns/generic.h> 23 24 /* 25 * Our network namespace constructor/destructor lists 26 */ 27 28 static LIST_HEAD(pernet_list); 29 static struct list_head *first_device = &pernet_list; 30 DEFINE_MUTEX(net_mutex); 31 32 LIST_HEAD(net_namespace_list); 33 EXPORT_SYMBOL_GPL(net_namespace_list); 34 35 struct net init_net = { 36 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 37 }; 38 EXPORT_SYMBOL(init_net); 39 40 static bool init_net_initialized; 41 42 #define MIN_PERNET_OPS_ID \ 43 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 44 45 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 46 47 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 48 49 static struct net_generic *net_alloc_generic(void) 50 { 51 struct net_generic *ng; 52 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 53 54 ng = kzalloc(generic_size, GFP_KERNEL); 55 if (ng) 56 ng->s.len = max_gen_ptrs; 57 58 return ng; 59 } 60 61 static int net_assign_generic(struct net *net, unsigned int id, void *data) 62 { 63 struct net_generic *ng, *old_ng; 64 65 BUG_ON(!mutex_is_locked(&net_mutex)); 66 BUG_ON(id < MIN_PERNET_OPS_ID); 67 68 old_ng = rcu_dereference_protected(net->gen, 69 lockdep_is_held(&net_mutex)); 70 if (old_ng->s.len > id) { 71 old_ng->ptr[id] = data; 72 return 0; 73 } 74 75 ng = net_alloc_generic(); 76 if (ng == NULL) 77 return -ENOMEM; 78 79 /* 80 * Some synchronisation notes: 81 * 82 * The net_generic explores the net->gen array inside rcu 83 * read section. Besides once set the net->gen->ptr[x] 84 * pointer never changes (see rules in netns/generic.h). 85 * 86 * That said, we simply duplicate this array and schedule 87 * the old copy for kfree after a grace period. 88 */ 89 90 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 91 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 92 ng->ptr[id] = data; 93 94 rcu_assign_pointer(net->gen, ng); 95 kfree_rcu(old_ng, s.rcu); 96 return 0; 97 } 98 99 static int ops_init(const struct pernet_operations *ops, struct net *net) 100 { 101 int err = -ENOMEM; 102 void *data = NULL; 103 104 if (ops->id && ops->size) { 105 data = kzalloc(ops->size, GFP_KERNEL); 106 if (!data) 107 goto out; 108 109 err = net_assign_generic(net, *ops->id, data); 110 if (err) 111 goto cleanup; 112 } 113 err = 0; 114 if (ops->init) 115 err = ops->init(net); 116 if (!err) 117 return 0; 118 119 cleanup: 120 kfree(data); 121 122 out: 123 return err; 124 } 125 126 static void ops_free(const struct pernet_operations *ops, struct net *net) 127 { 128 if (ops->id && ops->size) { 129 kfree(net_generic(net, *ops->id)); 130 } 131 } 132 133 static void ops_exit_list(const struct pernet_operations *ops, 134 struct list_head *net_exit_list) 135 { 136 struct net *net; 137 if (ops->exit) { 138 list_for_each_entry(net, net_exit_list, exit_list) 139 ops->exit(net); 140 } 141 if (ops->exit_batch) 142 ops->exit_batch(net_exit_list); 143 } 144 145 static void ops_free_list(const struct pernet_operations *ops, 146 struct list_head *net_exit_list) 147 { 148 struct net *net; 149 if (ops->size && ops->id) { 150 list_for_each_entry(net, net_exit_list, exit_list) 151 ops_free(ops, net); 152 } 153 } 154 155 /* should be called with nsid_lock held */ 156 static int alloc_netid(struct net *net, struct net *peer, int reqid) 157 { 158 int min = 0, max = 0; 159 160 if (reqid >= 0) { 161 min = reqid; 162 max = reqid + 1; 163 } 164 165 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 166 } 167 168 /* This function is used by idr_for_each(). If net is equal to peer, the 169 * function returns the id so that idr_for_each() stops. Because we cannot 170 * returns the id 0 (idr_for_each() will not stop), we return the magic value 171 * NET_ID_ZERO (-1) for it. 172 */ 173 #define NET_ID_ZERO -1 174 static int net_eq_idr(int id, void *net, void *peer) 175 { 176 if (net_eq(net, peer)) 177 return id ? : NET_ID_ZERO; 178 return 0; 179 } 180 181 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc 182 * is set to true, thus the caller knows that the new id must be notified via 183 * rtnl. 184 */ 185 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc) 186 { 187 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 188 bool alloc_it = *alloc; 189 190 *alloc = false; 191 192 /* Magic value for id 0. */ 193 if (id == NET_ID_ZERO) 194 return 0; 195 if (id > 0) 196 return id; 197 198 if (alloc_it) { 199 id = alloc_netid(net, peer, -1); 200 *alloc = true; 201 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED; 202 } 203 204 return NETNSA_NSID_NOT_ASSIGNED; 205 } 206 207 /* should be called with nsid_lock held */ 208 static int __peernet2id(struct net *net, struct net *peer) 209 { 210 bool no = false; 211 212 return __peernet2id_alloc(net, peer, &no); 213 } 214 215 static void rtnl_net_notifyid(struct net *net, int cmd, int id); 216 /* This function returns the id of a peer netns. If no id is assigned, one will 217 * be allocated and returned. 218 */ 219 int peernet2id_alloc(struct net *net, struct net *peer) 220 { 221 bool alloc; 222 int id; 223 224 if (atomic_read(&net->count) == 0) 225 return NETNSA_NSID_NOT_ASSIGNED; 226 spin_lock_bh(&net->nsid_lock); 227 alloc = atomic_read(&peer->count) == 0 ? false : true; 228 id = __peernet2id_alloc(net, peer, &alloc); 229 spin_unlock_bh(&net->nsid_lock); 230 if (alloc && id >= 0) 231 rtnl_net_notifyid(net, RTM_NEWNSID, id); 232 return id; 233 } 234 235 /* This function returns, if assigned, the id of a peer netns. */ 236 int peernet2id(struct net *net, struct net *peer) 237 { 238 int id; 239 240 spin_lock_bh(&net->nsid_lock); 241 id = __peernet2id(net, peer); 242 spin_unlock_bh(&net->nsid_lock); 243 return id; 244 } 245 EXPORT_SYMBOL(peernet2id); 246 247 /* This function returns true is the peer netns has an id assigned into the 248 * current netns. 249 */ 250 bool peernet_has_id(struct net *net, struct net *peer) 251 { 252 return peernet2id(net, peer) >= 0; 253 } 254 255 struct net *get_net_ns_by_id(struct net *net, int id) 256 { 257 struct net *peer; 258 259 if (id < 0) 260 return NULL; 261 262 rcu_read_lock(); 263 spin_lock_bh(&net->nsid_lock); 264 peer = idr_find(&net->netns_ids, id); 265 if (peer) 266 get_net(peer); 267 spin_unlock_bh(&net->nsid_lock); 268 rcu_read_unlock(); 269 270 return peer; 271 } 272 273 /* 274 * setup_net runs the initializers for the network namespace object. 275 */ 276 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 277 { 278 /* Must be called with net_mutex held */ 279 const struct pernet_operations *ops, *saved_ops; 280 int error = 0; 281 LIST_HEAD(net_exit_list); 282 283 atomic_set(&net->count, 1); 284 atomic_set(&net->passive, 1); 285 net->dev_base_seq = 1; 286 net->user_ns = user_ns; 287 idr_init(&net->netns_ids); 288 spin_lock_init(&net->nsid_lock); 289 290 list_for_each_entry(ops, &pernet_list, list) { 291 error = ops_init(ops, net); 292 if (error < 0) 293 goto out_undo; 294 } 295 out: 296 return error; 297 298 out_undo: 299 /* Walk through the list backwards calling the exit functions 300 * for the pernet modules whose init functions did not fail. 301 */ 302 list_add(&net->exit_list, &net_exit_list); 303 saved_ops = ops; 304 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 305 ops_exit_list(ops, &net_exit_list); 306 307 ops = saved_ops; 308 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 309 ops_free_list(ops, &net_exit_list); 310 311 rcu_barrier(); 312 goto out; 313 } 314 315 316 #ifdef CONFIG_NET_NS 317 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 318 { 319 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 320 } 321 322 static void dec_net_namespaces(struct ucounts *ucounts) 323 { 324 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 325 } 326 327 static struct kmem_cache *net_cachep; 328 static struct workqueue_struct *netns_wq; 329 330 static struct net *net_alloc(void) 331 { 332 struct net *net = NULL; 333 struct net_generic *ng; 334 335 ng = net_alloc_generic(); 336 if (!ng) 337 goto out; 338 339 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 340 if (!net) 341 goto out_free; 342 343 rcu_assign_pointer(net->gen, ng); 344 out: 345 return net; 346 347 out_free: 348 kfree(ng); 349 goto out; 350 } 351 352 static void net_free(struct net *net) 353 { 354 kfree(rcu_access_pointer(net->gen)); 355 kmem_cache_free(net_cachep, net); 356 } 357 358 void net_drop_ns(void *p) 359 { 360 struct net *ns = p; 361 if (ns && atomic_dec_and_test(&ns->passive)) 362 net_free(ns); 363 } 364 365 struct net *copy_net_ns(unsigned long flags, 366 struct user_namespace *user_ns, struct net *old_net) 367 { 368 struct ucounts *ucounts; 369 struct net *net; 370 int rv; 371 372 if (!(flags & CLONE_NEWNET)) 373 return get_net(old_net); 374 375 ucounts = inc_net_namespaces(user_ns); 376 if (!ucounts) 377 return ERR_PTR(-ENOSPC); 378 379 net = net_alloc(); 380 if (!net) { 381 dec_net_namespaces(ucounts); 382 return ERR_PTR(-ENOMEM); 383 } 384 385 get_user_ns(user_ns); 386 387 rv = mutex_lock_killable(&net_mutex); 388 if (rv < 0) { 389 net_free(net); 390 dec_net_namespaces(ucounts); 391 put_user_ns(user_ns); 392 return ERR_PTR(rv); 393 } 394 395 net->ucounts = ucounts; 396 rv = setup_net(net, user_ns); 397 if (rv == 0) { 398 rtnl_lock(); 399 list_add_tail_rcu(&net->list, &net_namespace_list); 400 rtnl_unlock(); 401 } 402 mutex_unlock(&net_mutex); 403 if (rv < 0) { 404 dec_net_namespaces(ucounts); 405 put_user_ns(user_ns); 406 net_drop_ns(net); 407 return ERR_PTR(rv); 408 } 409 return net; 410 } 411 412 static DEFINE_SPINLOCK(cleanup_list_lock); 413 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */ 414 415 static void cleanup_net(struct work_struct *work) 416 { 417 const struct pernet_operations *ops; 418 struct net *net, *tmp; 419 struct list_head net_kill_list; 420 LIST_HEAD(net_exit_list); 421 422 /* Atomically snapshot the list of namespaces to cleanup */ 423 spin_lock_irq(&cleanup_list_lock); 424 list_replace_init(&cleanup_list, &net_kill_list); 425 spin_unlock_irq(&cleanup_list_lock); 426 427 mutex_lock(&net_mutex); 428 429 /* Don't let anyone else find us. */ 430 rtnl_lock(); 431 list_for_each_entry(net, &net_kill_list, cleanup_list) { 432 list_del_rcu(&net->list); 433 list_add_tail(&net->exit_list, &net_exit_list); 434 for_each_net(tmp) { 435 int id; 436 437 spin_lock_bh(&tmp->nsid_lock); 438 id = __peernet2id(tmp, net); 439 if (id >= 0) 440 idr_remove(&tmp->netns_ids, id); 441 spin_unlock_bh(&tmp->nsid_lock); 442 if (id >= 0) 443 rtnl_net_notifyid(tmp, RTM_DELNSID, id); 444 } 445 spin_lock_bh(&net->nsid_lock); 446 idr_destroy(&net->netns_ids); 447 spin_unlock_bh(&net->nsid_lock); 448 449 } 450 rtnl_unlock(); 451 452 /* 453 * Another CPU might be rcu-iterating the list, wait for it. 454 * This needs to be before calling the exit() notifiers, so 455 * the rcu_barrier() below isn't sufficient alone. 456 */ 457 synchronize_rcu(); 458 459 /* Run all of the network namespace exit methods */ 460 list_for_each_entry_reverse(ops, &pernet_list, list) 461 ops_exit_list(ops, &net_exit_list); 462 463 /* Free the net generic variables */ 464 list_for_each_entry_reverse(ops, &pernet_list, list) 465 ops_free_list(ops, &net_exit_list); 466 467 mutex_unlock(&net_mutex); 468 469 /* Ensure there are no outstanding rcu callbacks using this 470 * network namespace. 471 */ 472 rcu_barrier(); 473 474 /* Finally it is safe to free my network namespace structure */ 475 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 476 list_del_init(&net->exit_list); 477 dec_net_namespaces(net->ucounts); 478 put_user_ns(net->user_ns); 479 net_drop_ns(net); 480 } 481 } 482 static DECLARE_WORK(net_cleanup_work, cleanup_net); 483 484 void __put_net(struct net *net) 485 { 486 /* Cleanup the network namespace in process context */ 487 unsigned long flags; 488 489 spin_lock_irqsave(&cleanup_list_lock, flags); 490 list_add(&net->cleanup_list, &cleanup_list); 491 spin_unlock_irqrestore(&cleanup_list_lock, flags); 492 493 queue_work(netns_wq, &net_cleanup_work); 494 } 495 EXPORT_SYMBOL_GPL(__put_net); 496 497 struct net *get_net_ns_by_fd(int fd) 498 { 499 struct file *file; 500 struct ns_common *ns; 501 struct net *net; 502 503 file = proc_ns_fget(fd); 504 if (IS_ERR(file)) 505 return ERR_CAST(file); 506 507 ns = get_proc_ns(file_inode(file)); 508 if (ns->ops == &netns_operations) 509 net = get_net(container_of(ns, struct net, ns)); 510 else 511 net = ERR_PTR(-EINVAL); 512 513 fput(file); 514 return net; 515 } 516 517 #else 518 struct net *get_net_ns_by_fd(int fd) 519 { 520 return ERR_PTR(-EINVAL); 521 } 522 #endif 523 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 524 525 struct net *get_net_ns_by_pid(pid_t pid) 526 { 527 struct task_struct *tsk; 528 struct net *net; 529 530 /* Lookup the network namespace */ 531 net = ERR_PTR(-ESRCH); 532 rcu_read_lock(); 533 tsk = find_task_by_vpid(pid); 534 if (tsk) { 535 struct nsproxy *nsproxy; 536 task_lock(tsk); 537 nsproxy = tsk->nsproxy; 538 if (nsproxy) 539 net = get_net(nsproxy->net_ns); 540 task_unlock(tsk); 541 } 542 rcu_read_unlock(); 543 return net; 544 } 545 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 546 547 static __net_init int net_ns_net_init(struct net *net) 548 { 549 #ifdef CONFIG_NET_NS 550 net->ns.ops = &netns_operations; 551 #endif 552 return ns_alloc_inum(&net->ns); 553 } 554 555 static __net_exit void net_ns_net_exit(struct net *net) 556 { 557 ns_free_inum(&net->ns); 558 } 559 560 static struct pernet_operations __net_initdata net_ns_ops = { 561 .init = net_ns_net_init, 562 .exit = net_ns_net_exit, 563 }; 564 565 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 566 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 567 [NETNSA_NSID] = { .type = NLA_S32 }, 568 [NETNSA_PID] = { .type = NLA_U32 }, 569 [NETNSA_FD] = { .type = NLA_U32 }, 570 }; 571 572 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh) 573 { 574 struct net *net = sock_net(skb->sk); 575 struct nlattr *tb[NETNSA_MAX + 1]; 576 struct net *peer; 577 int nsid, err; 578 579 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, 580 rtnl_net_policy); 581 if (err < 0) 582 return err; 583 if (!tb[NETNSA_NSID]) 584 return -EINVAL; 585 nsid = nla_get_s32(tb[NETNSA_NSID]); 586 587 if (tb[NETNSA_PID]) 588 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 589 else if (tb[NETNSA_FD]) 590 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 591 else 592 return -EINVAL; 593 if (IS_ERR(peer)) 594 return PTR_ERR(peer); 595 596 spin_lock_bh(&net->nsid_lock); 597 if (__peernet2id(net, peer) >= 0) { 598 spin_unlock_bh(&net->nsid_lock); 599 err = -EEXIST; 600 goto out; 601 } 602 603 err = alloc_netid(net, peer, nsid); 604 spin_unlock_bh(&net->nsid_lock); 605 if (err >= 0) { 606 rtnl_net_notifyid(net, RTM_NEWNSID, err); 607 err = 0; 608 } 609 out: 610 put_net(peer); 611 return err; 612 } 613 614 static int rtnl_net_get_size(void) 615 { 616 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 617 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 618 ; 619 } 620 621 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags, 622 int cmd, struct net *net, int nsid) 623 { 624 struct nlmsghdr *nlh; 625 struct rtgenmsg *rth; 626 627 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags); 628 if (!nlh) 629 return -EMSGSIZE; 630 631 rth = nlmsg_data(nlh); 632 rth->rtgen_family = AF_UNSPEC; 633 634 if (nla_put_s32(skb, NETNSA_NSID, nsid)) 635 goto nla_put_failure; 636 637 nlmsg_end(skb, nlh); 638 return 0; 639 640 nla_put_failure: 641 nlmsg_cancel(skb, nlh); 642 return -EMSGSIZE; 643 } 644 645 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh) 646 { 647 struct net *net = sock_net(skb->sk); 648 struct nlattr *tb[NETNSA_MAX + 1]; 649 struct sk_buff *msg; 650 struct net *peer; 651 int err, id; 652 653 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, 654 rtnl_net_policy); 655 if (err < 0) 656 return err; 657 if (tb[NETNSA_PID]) 658 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 659 else if (tb[NETNSA_FD]) 660 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 661 else 662 return -EINVAL; 663 664 if (IS_ERR(peer)) 665 return PTR_ERR(peer); 666 667 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 668 if (!msg) { 669 err = -ENOMEM; 670 goto out; 671 } 672 673 id = peernet2id(net, peer); 674 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0, 675 RTM_NEWNSID, net, id); 676 if (err < 0) 677 goto err_out; 678 679 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 680 goto out; 681 682 err_out: 683 nlmsg_free(msg); 684 out: 685 put_net(peer); 686 return err; 687 } 688 689 struct rtnl_net_dump_cb { 690 struct net *net; 691 struct sk_buff *skb; 692 struct netlink_callback *cb; 693 int idx; 694 int s_idx; 695 }; 696 697 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 698 { 699 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 700 int ret; 701 702 if (net_cb->idx < net_cb->s_idx) 703 goto cont; 704 705 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid, 706 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI, 707 RTM_NEWNSID, net_cb->net, id); 708 if (ret < 0) 709 return ret; 710 711 cont: 712 net_cb->idx++; 713 return 0; 714 } 715 716 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 717 { 718 struct net *net = sock_net(skb->sk); 719 struct rtnl_net_dump_cb net_cb = { 720 .net = net, 721 .skb = skb, 722 .cb = cb, 723 .idx = 0, 724 .s_idx = cb->args[0], 725 }; 726 727 spin_lock_bh(&net->nsid_lock); 728 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb); 729 spin_unlock_bh(&net->nsid_lock); 730 731 cb->args[0] = net_cb.idx; 732 return skb->len; 733 } 734 735 static void rtnl_net_notifyid(struct net *net, int cmd, int id) 736 { 737 struct sk_buff *msg; 738 int err = -ENOMEM; 739 740 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 741 if (!msg) 742 goto out; 743 744 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id); 745 if (err < 0) 746 goto err_out; 747 748 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0); 749 return; 750 751 err_out: 752 nlmsg_free(msg); 753 out: 754 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 755 } 756 757 static int __init net_ns_init(void) 758 { 759 struct net_generic *ng; 760 761 #ifdef CONFIG_NET_NS 762 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 763 SMP_CACHE_BYTES, 764 SLAB_PANIC, NULL); 765 766 /* Create workqueue for cleanup */ 767 netns_wq = create_singlethread_workqueue("netns"); 768 if (!netns_wq) 769 panic("Could not create netns workq"); 770 #endif 771 772 ng = net_alloc_generic(); 773 if (!ng) 774 panic("Could not allocate generic netns"); 775 776 rcu_assign_pointer(init_net.gen, ng); 777 778 mutex_lock(&net_mutex); 779 if (setup_net(&init_net, &init_user_ns)) 780 panic("Could not setup the initial network namespace"); 781 782 init_net_initialized = true; 783 784 rtnl_lock(); 785 list_add_tail_rcu(&init_net.list, &net_namespace_list); 786 rtnl_unlock(); 787 788 mutex_unlock(&net_mutex); 789 790 register_pernet_subsys(&net_ns_ops); 791 792 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL); 793 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 794 NULL); 795 796 return 0; 797 } 798 799 pure_initcall(net_ns_init); 800 801 #ifdef CONFIG_NET_NS 802 static int __register_pernet_operations(struct list_head *list, 803 struct pernet_operations *ops) 804 { 805 struct net *net; 806 int error; 807 LIST_HEAD(net_exit_list); 808 809 list_add_tail(&ops->list, list); 810 if (ops->init || (ops->id && ops->size)) { 811 for_each_net(net) { 812 error = ops_init(ops, net); 813 if (error) 814 goto out_undo; 815 list_add_tail(&net->exit_list, &net_exit_list); 816 } 817 } 818 return 0; 819 820 out_undo: 821 /* If I have an error cleanup all namespaces I initialized */ 822 list_del(&ops->list); 823 ops_exit_list(ops, &net_exit_list); 824 ops_free_list(ops, &net_exit_list); 825 return error; 826 } 827 828 static void __unregister_pernet_operations(struct pernet_operations *ops) 829 { 830 struct net *net; 831 LIST_HEAD(net_exit_list); 832 833 list_del(&ops->list); 834 for_each_net(net) 835 list_add_tail(&net->exit_list, &net_exit_list); 836 ops_exit_list(ops, &net_exit_list); 837 ops_free_list(ops, &net_exit_list); 838 } 839 840 #else 841 842 static int __register_pernet_operations(struct list_head *list, 843 struct pernet_operations *ops) 844 { 845 if (!init_net_initialized) { 846 list_add_tail(&ops->list, list); 847 return 0; 848 } 849 850 return ops_init(ops, &init_net); 851 } 852 853 static void __unregister_pernet_operations(struct pernet_operations *ops) 854 { 855 if (!init_net_initialized) { 856 list_del(&ops->list); 857 } else { 858 LIST_HEAD(net_exit_list); 859 list_add(&init_net.exit_list, &net_exit_list); 860 ops_exit_list(ops, &net_exit_list); 861 ops_free_list(ops, &net_exit_list); 862 } 863 } 864 865 #endif /* CONFIG_NET_NS */ 866 867 static DEFINE_IDA(net_generic_ids); 868 869 static int register_pernet_operations(struct list_head *list, 870 struct pernet_operations *ops) 871 { 872 int error; 873 874 if (ops->id) { 875 again: 876 error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id); 877 if (error < 0) { 878 if (error == -EAGAIN) { 879 ida_pre_get(&net_generic_ids, GFP_KERNEL); 880 goto again; 881 } 882 return error; 883 } 884 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 885 } 886 error = __register_pernet_operations(list, ops); 887 if (error) { 888 rcu_barrier(); 889 if (ops->id) 890 ida_remove(&net_generic_ids, *ops->id); 891 } 892 893 return error; 894 } 895 896 static void unregister_pernet_operations(struct pernet_operations *ops) 897 { 898 899 __unregister_pernet_operations(ops); 900 rcu_barrier(); 901 if (ops->id) 902 ida_remove(&net_generic_ids, *ops->id); 903 } 904 905 /** 906 * register_pernet_subsys - register a network namespace subsystem 907 * @ops: pernet operations structure for the subsystem 908 * 909 * Register a subsystem which has init and exit functions 910 * that are called when network namespaces are created and 911 * destroyed respectively. 912 * 913 * When registered all network namespace init functions are 914 * called for every existing network namespace. Allowing kernel 915 * modules to have a race free view of the set of network namespaces. 916 * 917 * When a new network namespace is created all of the init 918 * methods are called in the order in which they were registered. 919 * 920 * When a network namespace is destroyed all of the exit methods 921 * are called in the reverse of the order with which they were 922 * registered. 923 */ 924 int register_pernet_subsys(struct pernet_operations *ops) 925 { 926 int error; 927 mutex_lock(&net_mutex); 928 error = register_pernet_operations(first_device, ops); 929 mutex_unlock(&net_mutex); 930 return error; 931 } 932 EXPORT_SYMBOL_GPL(register_pernet_subsys); 933 934 /** 935 * unregister_pernet_subsys - unregister a network namespace subsystem 936 * @ops: pernet operations structure to manipulate 937 * 938 * Remove the pernet operations structure from the list to be 939 * used when network namespaces are created or destroyed. In 940 * addition run the exit method for all existing network 941 * namespaces. 942 */ 943 void unregister_pernet_subsys(struct pernet_operations *ops) 944 { 945 mutex_lock(&net_mutex); 946 unregister_pernet_operations(ops); 947 mutex_unlock(&net_mutex); 948 } 949 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 950 951 /** 952 * register_pernet_device - register a network namespace device 953 * @ops: pernet operations structure for the subsystem 954 * 955 * Register a device which has init and exit functions 956 * that are called when network namespaces are created and 957 * destroyed respectively. 958 * 959 * When registered all network namespace init functions are 960 * called for every existing network namespace. Allowing kernel 961 * modules to have a race free view of the set of network namespaces. 962 * 963 * When a new network namespace is created all of the init 964 * methods are called in the order in which they were registered. 965 * 966 * When a network namespace is destroyed all of the exit methods 967 * are called in the reverse of the order with which they were 968 * registered. 969 */ 970 int register_pernet_device(struct pernet_operations *ops) 971 { 972 int error; 973 mutex_lock(&net_mutex); 974 error = register_pernet_operations(&pernet_list, ops); 975 if (!error && (first_device == &pernet_list)) 976 first_device = &ops->list; 977 mutex_unlock(&net_mutex); 978 return error; 979 } 980 EXPORT_SYMBOL_GPL(register_pernet_device); 981 982 /** 983 * unregister_pernet_device - unregister a network namespace netdevice 984 * @ops: pernet operations structure to manipulate 985 * 986 * Remove the pernet operations structure from the list to be 987 * used when network namespaces are created or destroyed. In 988 * addition run the exit method for all existing network 989 * namespaces. 990 */ 991 void unregister_pernet_device(struct pernet_operations *ops) 992 { 993 mutex_lock(&net_mutex); 994 if (&ops->list == first_device) 995 first_device = first_device->next; 996 unregister_pernet_operations(ops); 997 mutex_unlock(&net_mutex); 998 } 999 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1000 1001 #ifdef CONFIG_NET_NS 1002 static struct ns_common *netns_get(struct task_struct *task) 1003 { 1004 struct net *net = NULL; 1005 struct nsproxy *nsproxy; 1006 1007 task_lock(task); 1008 nsproxy = task->nsproxy; 1009 if (nsproxy) 1010 net = get_net(nsproxy->net_ns); 1011 task_unlock(task); 1012 1013 return net ? &net->ns : NULL; 1014 } 1015 1016 static inline struct net *to_net_ns(struct ns_common *ns) 1017 { 1018 return container_of(ns, struct net, ns); 1019 } 1020 1021 static void netns_put(struct ns_common *ns) 1022 { 1023 put_net(to_net_ns(ns)); 1024 } 1025 1026 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns) 1027 { 1028 struct net *net = to_net_ns(ns); 1029 1030 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1031 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 1032 return -EPERM; 1033 1034 put_net(nsproxy->net_ns); 1035 nsproxy->net_ns = get_net(net); 1036 return 0; 1037 } 1038 1039 static struct user_namespace *netns_owner(struct ns_common *ns) 1040 { 1041 return to_net_ns(ns)->user_ns; 1042 } 1043 1044 const struct proc_ns_operations netns_operations = { 1045 .name = "net", 1046 .type = CLONE_NEWNET, 1047 .get = netns_get, 1048 .put = netns_put, 1049 .install = netns_install, 1050 .owner = netns_owner, 1051 }; 1052 #endif 1053