xref: /openbmc/linux/net/core/net_namespace.c (revision e4781421e883340b796da5a724bda7226817990b)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34 
35 struct net init_net = {
36 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39 
40 static bool init_net_initialized;
41 
42 #define MIN_PERNET_OPS_ID	\
43 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
44 
45 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
46 
47 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
48 
49 static struct net_generic *net_alloc_generic(void)
50 {
51 	struct net_generic *ng;
52 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
53 
54 	ng = kzalloc(generic_size, GFP_KERNEL);
55 	if (ng)
56 		ng->s.len = max_gen_ptrs;
57 
58 	return ng;
59 }
60 
61 static int net_assign_generic(struct net *net, unsigned int id, void *data)
62 {
63 	struct net_generic *ng, *old_ng;
64 
65 	BUG_ON(!mutex_is_locked(&net_mutex));
66 	BUG_ON(id < MIN_PERNET_OPS_ID);
67 
68 	old_ng = rcu_dereference_protected(net->gen,
69 					   lockdep_is_held(&net_mutex));
70 	if (old_ng->s.len > id) {
71 		old_ng->ptr[id] = data;
72 		return 0;
73 	}
74 
75 	ng = net_alloc_generic();
76 	if (ng == NULL)
77 		return -ENOMEM;
78 
79 	/*
80 	 * Some synchronisation notes:
81 	 *
82 	 * The net_generic explores the net->gen array inside rcu
83 	 * read section. Besides once set the net->gen->ptr[x]
84 	 * pointer never changes (see rules in netns/generic.h).
85 	 *
86 	 * That said, we simply duplicate this array and schedule
87 	 * the old copy for kfree after a grace period.
88 	 */
89 
90 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
91 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
92 	ng->ptr[id] = data;
93 
94 	rcu_assign_pointer(net->gen, ng);
95 	kfree_rcu(old_ng, s.rcu);
96 	return 0;
97 }
98 
99 static int ops_init(const struct pernet_operations *ops, struct net *net)
100 {
101 	int err = -ENOMEM;
102 	void *data = NULL;
103 
104 	if (ops->id && ops->size) {
105 		data = kzalloc(ops->size, GFP_KERNEL);
106 		if (!data)
107 			goto out;
108 
109 		err = net_assign_generic(net, *ops->id, data);
110 		if (err)
111 			goto cleanup;
112 	}
113 	err = 0;
114 	if (ops->init)
115 		err = ops->init(net);
116 	if (!err)
117 		return 0;
118 
119 cleanup:
120 	kfree(data);
121 
122 out:
123 	return err;
124 }
125 
126 static void ops_free(const struct pernet_operations *ops, struct net *net)
127 {
128 	if (ops->id && ops->size) {
129 		kfree(net_generic(net, *ops->id));
130 	}
131 }
132 
133 static void ops_exit_list(const struct pernet_operations *ops,
134 			  struct list_head *net_exit_list)
135 {
136 	struct net *net;
137 	if (ops->exit) {
138 		list_for_each_entry(net, net_exit_list, exit_list)
139 			ops->exit(net);
140 	}
141 	if (ops->exit_batch)
142 		ops->exit_batch(net_exit_list);
143 }
144 
145 static void ops_free_list(const struct pernet_operations *ops,
146 			  struct list_head *net_exit_list)
147 {
148 	struct net *net;
149 	if (ops->size && ops->id) {
150 		list_for_each_entry(net, net_exit_list, exit_list)
151 			ops_free(ops, net);
152 	}
153 }
154 
155 /* should be called with nsid_lock held */
156 static int alloc_netid(struct net *net, struct net *peer, int reqid)
157 {
158 	int min = 0, max = 0;
159 
160 	if (reqid >= 0) {
161 		min = reqid;
162 		max = reqid + 1;
163 	}
164 
165 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
166 }
167 
168 /* This function is used by idr_for_each(). If net is equal to peer, the
169  * function returns the id so that idr_for_each() stops. Because we cannot
170  * returns the id 0 (idr_for_each() will not stop), we return the magic value
171  * NET_ID_ZERO (-1) for it.
172  */
173 #define NET_ID_ZERO -1
174 static int net_eq_idr(int id, void *net, void *peer)
175 {
176 	if (net_eq(net, peer))
177 		return id ? : NET_ID_ZERO;
178 	return 0;
179 }
180 
181 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
182  * is set to true, thus the caller knows that the new id must be notified via
183  * rtnl.
184  */
185 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
186 {
187 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
188 	bool alloc_it = *alloc;
189 
190 	*alloc = false;
191 
192 	/* Magic value for id 0. */
193 	if (id == NET_ID_ZERO)
194 		return 0;
195 	if (id > 0)
196 		return id;
197 
198 	if (alloc_it) {
199 		id = alloc_netid(net, peer, -1);
200 		*alloc = true;
201 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
202 	}
203 
204 	return NETNSA_NSID_NOT_ASSIGNED;
205 }
206 
207 /* should be called with nsid_lock held */
208 static int __peernet2id(struct net *net, struct net *peer)
209 {
210 	bool no = false;
211 
212 	return __peernet2id_alloc(net, peer, &no);
213 }
214 
215 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
216 /* This function returns the id of a peer netns. If no id is assigned, one will
217  * be allocated and returned.
218  */
219 int peernet2id_alloc(struct net *net, struct net *peer)
220 {
221 	bool alloc;
222 	int id;
223 
224 	if (atomic_read(&net->count) == 0)
225 		return NETNSA_NSID_NOT_ASSIGNED;
226 	spin_lock_bh(&net->nsid_lock);
227 	alloc = atomic_read(&peer->count) == 0 ? false : true;
228 	id = __peernet2id_alloc(net, peer, &alloc);
229 	spin_unlock_bh(&net->nsid_lock);
230 	if (alloc && id >= 0)
231 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
232 	return id;
233 }
234 
235 /* This function returns, if assigned, the id of a peer netns. */
236 int peernet2id(struct net *net, struct net *peer)
237 {
238 	int id;
239 
240 	spin_lock_bh(&net->nsid_lock);
241 	id = __peernet2id(net, peer);
242 	spin_unlock_bh(&net->nsid_lock);
243 	return id;
244 }
245 EXPORT_SYMBOL(peernet2id);
246 
247 /* This function returns true is the peer netns has an id assigned into the
248  * current netns.
249  */
250 bool peernet_has_id(struct net *net, struct net *peer)
251 {
252 	return peernet2id(net, peer) >= 0;
253 }
254 
255 struct net *get_net_ns_by_id(struct net *net, int id)
256 {
257 	struct net *peer;
258 
259 	if (id < 0)
260 		return NULL;
261 
262 	rcu_read_lock();
263 	spin_lock_bh(&net->nsid_lock);
264 	peer = idr_find(&net->netns_ids, id);
265 	if (peer)
266 		get_net(peer);
267 	spin_unlock_bh(&net->nsid_lock);
268 	rcu_read_unlock();
269 
270 	return peer;
271 }
272 
273 /*
274  * setup_net runs the initializers for the network namespace object.
275  */
276 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
277 {
278 	/* Must be called with net_mutex held */
279 	const struct pernet_operations *ops, *saved_ops;
280 	int error = 0;
281 	LIST_HEAD(net_exit_list);
282 
283 	atomic_set(&net->count, 1);
284 	atomic_set(&net->passive, 1);
285 	net->dev_base_seq = 1;
286 	net->user_ns = user_ns;
287 	idr_init(&net->netns_ids);
288 	spin_lock_init(&net->nsid_lock);
289 
290 	list_for_each_entry(ops, &pernet_list, list) {
291 		error = ops_init(ops, net);
292 		if (error < 0)
293 			goto out_undo;
294 	}
295 out:
296 	return error;
297 
298 out_undo:
299 	/* Walk through the list backwards calling the exit functions
300 	 * for the pernet modules whose init functions did not fail.
301 	 */
302 	list_add(&net->exit_list, &net_exit_list);
303 	saved_ops = ops;
304 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
305 		ops_exit_list(ops, &net_exit_list);
306 
307 	ops = saved_ops;
308 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
309 		ops_free_list(ops, &net_exit_list);
310 
311 	rcu_barrier();
312 	goto out;
313 }
314 
315 
316 #ifdef CONFIG_NET_NS
317 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
318 {
319 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
320 }
321 
322 static void dec_net_namespaces(struct ucounts *ucounts)
323 {
324 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
325 }
326 
327 static struct kmem_cache *net_cachep;
328 static struct workqueue_struct *netns_wq;
329 
330 static struct net *net_alloc(void)
331 {
332 	struct net *net = NULL;
333 	struct net_generic *ng;
334 
335 	ng = net_alloc_generic();
336 	if (!ng)
337 		goto out;
338 
339 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
340 	if (!net)
341 		goto out_free;
342 
343 	rcu_assign_pointer(net->gen, ng);
344 out:
345 	return net;
346 
347 out_free:
348 	kfree(ng);
349 	goto out;
350 }
351 
352 static void net_free(struct net *net)
353 {
354 	kfree(rcu_access_pointer(net->gen));
355 	kmem_cache_free(net_cachep, net);
356 }
357 
358 void net_drop_ns(void *p)
359 {
360 	struct net *ns = p;
361 	if (ns && atomic_dec_and_test(&ns->passive))
362 		net_free(ns);
363 }
364 
365 struct net *copy_net_ns(unsigned long flags,
366 			struct user_namespace *user_ns, struct net *old_net)
367 {
368 	struct ucounts *ucounts;
369 	struct net *net;
370 	int rv;
371 
372 	if (!(flags & CLONE_NEWNET))
373 		return get_net(old_net);
374 
375 	ucounts = inc_net_namespaces(user_ns);
376 	if (!ucounts)
377 		return ERR_PTR(-ENOSPC);
378 
379 	net = net_alloc();
380 	if (!net) {
381 		dec_net_namespaces(ucounts);
382 		return ERR_PTR(-ENOMEM);
383 	}
384 
385 	get_user_ns(user_ns);
386 
387 	rv = mutex_lock_killable(&net_mutex);
388 	if (rv < 0) {
389 		net_free(net);
390 		dec_net_namespaces(ucounts);
391 		put_user_ns(user_ns);
392 		return ERR_PTR(rv);
393 	}
394 
395 	net->ucounts = ucounts;
396 	rv = setup_net(net, user_ns);
397 	if (rv == 0) {
398 		rtnl_lock();
399 		list_add_tail_rcu(&net->list, &net_namespace_list);
400 		rtnl_unlock();
401 	}
402 	mutex_unlock(&net_mutex);
403 	if (rv < 0) {
404 		dec_net_namespaces(ucounts);
405 		put_user_ns(user_ns);
406 		net_drop_ns(net);
407 		return ERR_PTR(rv);
408 	}
409 	return net;
410 }
411 
412 static DEFINE_SPINLOCK(cleanup_list_lock);
413 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
414 
415 static void cleanup_net(struct work_struct *work)
416 {
417 	const struct pernet_operations *ops;
418 	struct net *net, *tmp;
419 	struct list_head net_kill_list;
420 	LIST_HEAD(net_exit_list);
421 
422 	/* Atomically snapshot the list of namespaces to cleanup */
423 	spin_lock_irq(&cleanup_list_lock);
424 	list_replace_init(&cleanup_list, &net_kill_list);
425 	spin_unlock_irq(&cleanup_list_lock);
426 
427 	mutex_lock(&net_mutex);
428 
429 	/* Don't let anyone else find us. */
430 	rtnl_lock();
431 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
432 		list_del_rcu(&net->list);
433 		list_add_tail(&net->exit_list, &net_exit_list);
434 		for_each_net(tmp) {
435 			int id;
436 
437 			spin_lock_bh(&tmp->nsid_lock);
438 			id = __peernet2id(tmp, net);
439 			if (id >= 0)
440 				idr_remove(&tmp->netns_ids, id);
441 			spin_unlock_bh(&tmp->nsid_lock);
442 			if (id >= 0)
443 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
444 		}
445 		spin_lock_bh(&net->nsid_lock);
446 		idr_destroy(&net->netns_ids);
447 		spin_unlock_bh(&net->nsid_lock);
448 
449 	}
450 	rtnl_unlock();
451 
452 	/*
453 	 * Another CPU might be rcu-iterating the list, wait for it.
454 	 * This needs to be before calling the exit() notifiers, so
455 	 * the rcu_barrier() below isn't sufficient alone.
456 	 */
457 	synchronize_rcu();
458 
459 	/* Run all of the network namespace exit methods */
460 	list_for_each_entry_reverse(ops, &pernet_list, list)
461 		ops_exit_list(ops, &net_exit_list);
462 
463 	/* Free the net generic variables */
464 	list_for_each_entry_reverse(ops, &pernet_list, list)
465 		ops_free_list(ops, &net_exit_list);
466 
467 	mutex_unlock(&net_mutex);
468 
469 	/* Ensure there are no outstanding rcu callbacks using this
470 	 * network namespace.
471 	 */
472 	rcu_barrier();
473 
474 	/* Finally it is safe to free my network namespace structure */
475 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
476 		list_del_init(&net->exit_list);
477 		dec_net_namespaces(net->ucounts);
478 		put_user_ns(net->user_ns);
479 		net_drop_ns(net);
480 	}
481 }
482 static DECLARE_WORK(net_cleanup_work, cleanup_net);
483 
484 void __put_net(struct net *net)
485 {
486 	/* Cleanup the network namespace in process context */
487 	unsigned long flags;
488 
489 	spin_lock_irqsave(&cleanup_list_lock, flags);
490 	list_add(&net->cleanup_list, &cleanup_list);
491 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
492 
493 	queue_work(netns_wq, &net_cleanup_work);
494 }
495 EXPORT_SYMBOL_GPL(__put_net);
496 
497 struct net *get_net_ns_by_fd(int fd)
498 {
499 	struct file *file;
500 	struct ns_common *ns;
501 	struct net *net;
502 
503 	file = proc_ns_fget(fd);
504 	if (IS_ERR(file))
505 		return ERR_CAST(file);
506 
507 	ns = get_proc_ns(file_inode(file));
508 	if (ns->ops == &netns_operations)
509 		net = get_net(container_of(ns, struct net, ns));
510 	else
511 		net = ERR_PTR(-EINVAL);
512 
513 	fput(file);
514 	return net;
515 }
516 
517 #else
518 struct net *get_net_ns_by_fd(int fd)
519 {
520 	return ERR_PTR(-EINVAL);
521 }
522 #endif
523 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
524 
525 struct net *get_net_ns_by_pid(pid_t pid)
526 {
527 	struct task_struct *tsk;
528 	struct net *net;
529 
530 	/* Lookup the network namespace */
531 	net = ERR_PTR(-ESRCH);
532 	rcu_read_lock();
533 	tsk = find_task_by_vpid(pid);
534 	if (tsk) {
535 		struct nsproxy *nsproxy;
536 		task_lock(tsk);
537 		nsproxy = tsk->nsproxy;
538 		if (nsproxy)
539 			net = get_net(nsproxy->net_ns);
540 		task_unlock(tsk);
541 	}
542 	rcu_read_unlock();
543 	return net;
544 }
545 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
546 
547 static __net_init int net_ns_net_init(struct net *net)
548 {
549 #ifdef CONFIG_NET_NS
550 	net->ns.ops = &netns_operations;
551 #endif
552 	return ns_alloc_inum(&net->ns);
553 }
554 
555 static __net_exit void net_ns_net_exit(struct net *net)
556 {
557 	ns_free_inum(&net->ns);
558 }
559 
560 static struct pernet_operations __net_initdata net_ns_ops = {
561 	.init = net_ns_net_init,
562 	.exit = net_ns_net_exit,
563 };
564 
565 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
566 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
567 	[NETNSA_NSID]		= { .type = NLA_S32 },
568 	[NETNSA_PID]		= { .type = NLA_U32 },
569 	[NETNSA_FD]		= { .type = NLA_U32 },
570 };
571 
572 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
573 {
574 	struct net *net = sock_net(skb->sk);
575 	struct nlattr *tb[NETNSA_MAX + 1];
576 	struct net *peer;
577 	int nsid, err;
578 
579 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
580 			  rtnl_net_policy);
581 	if (err < 0)
582 		return err;
583 	if (!tb[NETNSA_NSID])
584 		return -EINVAL;
585 	nsid = nla_get_s32(tb[NETNSA_NSID]);
586 
587 	if (tb[NETNSA_PID])
588 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
589 	else if (tb[NETNSA_FD])
590 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
591 	else
592 		return -EINVAL;
593 	if (IS_ERR(peer))
594 		return PTR_ERR(peer);
595 
596 	spin_lock_bh(&net->nsid_lock);
597 	if (__peernet2id(net, peer) >= 0) {
598 		spin_unlock_bh(&net->nsid_lock);
599 		err = -EEXIST;
600 		goto out;
601 	}
602 
603 	err = alloc_netid(net, peer, nsid);
604 	spin_unlock_bh(&net->nsid_lock);
605 	if (err >= 0) {
606 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
607 		err = 0;
608 	}
609 out:
610 	put_net(peer);
611 	return err;
612 }
613 
614 static int rtnl_net_get_size(void)
615 {
616 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
617 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
618 	       ;
619 }
620 
621 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
622 			 int cmd, struct net *net, int nsid)
623 {
624 	struct nlmsghdr *nlh;
625 	struct rtgenmsg *rth;
626 
627 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
628 	if (!nlh)
629 		return -EMSGSIZE;
630 
631 	rth = nlmsg_data(nlh);
632 	rth->rtgen_family = AF_UNSPEC;
633 
634 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
635 		goto nla_put_failure;
636 
637 	nlmsg_end(skb, nlh);
638 	return 0;
639 
640 nla_put_failure:
641 	nlmsg_cancel(skb, nlh);
642 	return -EMSGSIZE;
643 }
644 
645 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
646 {
647 	struct net *net = sock_net(skb->sk);
648 	struct nlattr *tb[NETNSA_MAX + 1];
649 	struct sk_buff *msg;
650 	struct net *peer;
651 	int err, id;
652 
653 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
654 			  rtnl_net_policy);
655 	if (err < 0)
656 		return err;
657 	if (tb[NETNSA_PID])
658 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
659 	else if (tb[NETNSA_FD])
660 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
661 	else
662 		return -EINVAL;
663 
664 	if (IS_ERR(peer))
665 		return PTR_ERR(peer);
666 
667 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
668 	if (!msg) {
669 		err = -ENOMEM;
670 		goto out;
671 	}
672 
673 	id = peernet2id(net, peer);
674 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
675 			    RTM_NEWNSID, net, id);
676 	if (err < 0)
677 		goto err_out;
678 
679 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
680 	goto out;
681 
682 err_out:
683 	nlmsg_free(msg);
684 out:
685 	put_net(peer);
686 	return err;
687 }
688 
689 struct rtnl_net_dump_cb {
690 	struct net *net;
691 	struct sk_buff *skb;
692 	struct netlink_callback *cb;
693 	int idx;
694 	int s_idx;
695 };
696 
697 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
698 {
699 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
700 	int ret;
701 
702 	if (net_cb->idx < net_cb->s_idx)
703 		goto cont;
704 
705 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
706 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
707 			    RTM_NEWNSID, net_cb->net, id);
708 	if (ret < 0)
709 		return ret;
710 
711 cont:
712 	net_cb->idx++;
713 	return 0;
714 }
715 
716 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
717 {
718 	struct net *net = sock_net(skb->sk);
719 	struct rtnl_net_dump_cb net_cb = {
720 		.net = net,
721 		.skb = skb,
722 		.cb = cb,
723 		.idx = 0,
724 		.s_idx = cb->args[0],
725 	};
726 
727 	spin_lock_bh(&net->nsid_lock);
728 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
729 	spin_unlock_bh(&net->nsid_lock);
730 
731 	cb->args[0] = net_cb.idx;
732 	return skb->len;
733 }
734 
735 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
736 {
737 	struct sk_buff *msg;
738 	int err = -ENOMEM;
739 
740 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
741 	if (!msg)
742 		goto out;
743 
744 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
745 	if (err < 0)
746 		goto err_out;
747 
748 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
749 	return;
750 
751 err_out:
752 	nlmsg_free(msg);
753 out:
754 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
755 }
756 
757 static int __init net_ns_init(void)
758 {
759 	struct net_generic *ng;
760 
761 #ifdef CONFIG_NET_NS
762 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
763 					SMP_CACHE_BYTES,
764 					SLAB_PANIC, NULL);
765 
766 	/* Create workqueue for cleanup */
767 	netns_wq = create_singlethread_workqueue("netns");
768 	if (!netns_wq)
769 		panic("Could not create netns workq");
770 #endif
771 
772 	ng = net_alloc_generic();
773 	if (!ng)
774 		panic("Could not allocate generic netns");
775 
776 	rcu_assign_pointer(init_net.gen, ng);
777 
778 	mutex_lock(&net_mutex);
779 	if (setup_net(&init_net, &init_user_ns))
780 		panic("Could not setup the initial network namespace");
781 
782 	init_net_initialized = true;
783 
784 	rtnl_lock();
785 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
786 	rtnl_unlock();
787 
788 	mutex_unlock(&net_mutex);
789 
790 	register_pernet_subsys(&net_ns_ops);
791 
792 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
793 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
794 		      NULL);
795 
796 	return 0;
797 }
798 
799 pure_initcall(net_ns_init);
800 
801 #ifdef CONFIG_NET_NS
802 static int __register_pernet_operations(struct list_head *list,
803 					struct pernet_operations *ops)
804 {
805 	struct net *net;
806 	int error;
807 	LIST_HEAD(net_exit_list);
808 
809 	list_add_tail(&ops->list, list);
810 	if (ops->init || (ops->id && ops->size)) {
811 		for_each_net(net) {
812 			error = ops_init(ops, net);
813 			if (error)
814 				goto out_undo;
815 			list_add_tail(&net->exit_list, &net_exit_list);
816 		}
817 	}
818 	return 0;
819 
820 out_undo:
821 	/* If I have an error cleanup all namespaces I initialized */
822 	list_del(&ops->list);
823 	ops_exit_list(ops, &net_exit_list);
824 	ops_free_list(ops, &net_exit_list);
825 	return error;
826 }
827 
828 static void __unregister_pernet_operations(struct pernet_operations *ops)
829 {
830 	struct net *net;
831 	LIST_HEAD(net_exit_list);
832 
833 	list_del(&ops->list);
834 	for_each_net(net)
835 		list_add_tail(&net->exit_list, &net_exit_list);
836 	ops_exit_list(ops, &net_exit_list);
837 	ops_free_list(ops, &net_exit_list);
838 }
839 
840 #else
841 
842 static int __register_pernet_operations(struct list_head *list,
843 					struct pernet_operations *ops)
844 {
845 	if (!init_net_initialized) {
846 		list_add_tail(&ops->list, list);
847 		return 0;
848 	}
849 
850 	return ops_init(ops, &init_net);
851 }
852 
853 static void __unregister_pernet_operations(struct pernet_operations *ops)
854 {
855 	if (!init_net_initialized) {
856 		list_del(&ops->list);
857 	} else {
858 		LIST_HEAD(net_exit_list);
859 		list_add(&init_net.exit_list, &net_exit_list);
860 		ops_exit_list(ops, &net_exit_list);
861 		ops_free_list(ops, &net_exit_list);
862 	}
863 }
864 
865 #endif /* CONFIG_NET_NS */
866 
867 static DEFINE_IDA(net_generic_ids);
868 
869 static int register_pernet_operations(struct list_head *list,
870 				      struct pernet_operations *ops)
871 {
872 	int error;
873 
874 	if (ops->id) {
875 again:
876 		error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
877 		if (error < 0) {
878 			if (error == -EAGAIN) {
879 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
880 				goto again;
881 			}
882 			return error;
883 		}
884 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
885 	}
886 	error = __register_pernet_operations(list, ops);
887 	if (error) {
888 		rcu_barrier();
889 		if (ops->id)
890 			ida_remove(&net_generic_ids, *ops->id);
891 	}
892 
893 	return error;
894 }
895 
896 static void unregister_pernet_operations(struct pernet_operations *ops)
897 {
898 
899 	__unregister_pernet_operations(ops);
900 	rcu_barrier();
901 	if (ops->id)
902 		ida_remove(&net_generic_ids, *ops->id);
903 }
904 
905 /**
906  *      register_pernet_subsys - register a network namespace subsystem
907  *	@ops:  pernet operations structure for the subsystem
908  *
909  *	Register a subsystem which has init and exit functions
910  *	that are called when network namespaces are created and
911  *	destroyed respectively.
912  *
913  *	When registered all network namespace init functions are
914  *	called for every existing network namespace.  Allowing kernel
915  *	modules to have a race free view of the set of network namespaces.
916  *
917  *	When a new network namespace is created all of the init
918  *	methods are called in the order in which they were registered.
919  *
920  *	When a network namespace is destroyed all of the exit methods
921  *	are called in the reverse of the order with which they were
922  *	registered.
923  */
924 int register_pernet_subsys(struct pernet_operations *ops)
925 {
926 	int error;
927 	mutex_lock(&net_mutex);
928 	error =  register_pernet_operations(first_device, ops);
929 	mutex_unlock(&net_mutex);
930 	return error;
931 }
932 EXPORT_SYMBOL_GPL(register_pernet_subsys);
933 
934 /**
935  *      unregister_pernet_subsys - unregister a network namespace subsystem
936  *	@ops: pernet operations structure to manipulate
937  *
938  *	Remove the pernet operations structure from the list to be
939  *	used when network namespaces are created or destroyed.  In
940  *	addition run the exit method for all existing network
941  *	namespaces.
942  */
943 void unregister_pernet_subsys(struct pernet_operations *ops)
944 {
945 	mutex_lock(&net_mutex);
946 	unregister_pernet_operations(ops);
947 	mutex_unlock(&net_mutex);
948 }
949 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
950 
951 /**
952  *      register_pernet_device - register a network namespace device
953  *	@ops:  pernet operations structure for the subsystem
954  *
955  *	Register a device which has init and exit functions
956  *	that are called when network namespaces are created and
957  *	destroyed respectively.
958  *
959  *	When registered all network namespace init functions are
960  *	called for every existing network namespace.  Allowing kernel
961  *	modules to have a race free view of the set of network namespaces.
962  *
963  *	When a new network namespace is created all of the init
964  *	methods are called in the order in which they were registered.
965  *
966  *	When a network namespace is destroyed all of the exit methods
967  *	are called in the reverse of the order with which they were
968  *	registered.
969  */
970 int register_pernet_device(struct pernet_operations *ops)
971 {
972 	int error;
973 	mutex_lock(&net_mutex);
974 	error = register_pernet_operations(&pernet_list, ops);
975 	if (!error && (first_device == &pernet_list))
976 		first_device = &ops->list;
977 	mutex_unlock(&net_mutex);
978 	return error;
979 }
980 EXPORT_SYMBOL_GPL(register_pernet_device);
981 
982 /**
983  *      unregister_pernet_device - unregister a network namespace netdevice
984  *	@ops: pernet operations structure to manipulate
985  *
986  *	Remove the pernet operations structure from the list to be
987  *	used when network namespaces are created or destroyed.  In
988  *	addition run the exit method for all existing network
989  *	namespaces.
990  */
991 void unregister_pernet_device(struct pernet_operations *ops)
992 {
993 	mutex_lock(&net_mutex);
994 	if (&ops->list == first_device)
995 		first_device = first_device->next;
996 	unregister_pernet_operations(ops);
997 	mutex_unlock(&net_mutex);
998 }
999 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1000 
1001 #ifdef CONFIG_NET_NS
1002 static struct ns_common *netns_get(struct task_struct *task)
1003 {
1004 	struct net *net = NULL;
1005 	struct nsproxy *nsproxy;
1006 
1007 	task_lock(task);
1008 	nsproxy = task->nsproxy;
1009 	if (nsproxy)
1010 		net = get_net(nsproxy->net_ns);
1011 	task_unlock(task);
1012 
1013 	return net ? &net->ns : NULL;
1014 }
1015 
1016 static inline struct net *to_net_ns(struct ns_common *ns)
1017 {
1018 	return container_of(ns, struct net, ns);
1019 }
1020 
1021 static void netns_put(struct ns_common *ns)
1022 {
1023 	put_net(to_net_ns(ns));
1024 }
1025 
1026 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1027 {
1028 	struct net *net = to_net_ns(ns);
1029 
1030 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1031 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1032 		return -EPERM;
1033 
1034 	put_net(nsproxy->net_ns);
1035 	nsproxy->net_ns = get_net(net);
1036 	return 0;
1037 }
1038 
1039 static struct user_namespace *netns_owner(struct ns_common *ns)
1040 {
1041 	return to_net_ns(ns)->user_ns;
1042 }
1043 
1044 const struct proc_ns_operations netns_operations = {
1045 	.name		= "net",
1046 	.type		= CLONE_NEWNET,
1047 	.get		= netns_get,
1048 	.put		= netns_put,
1049 	.install	= netns_install,
1050 	.owner		= netns_owner,
1051 };
1052 #endif
1053