xref: /openbmc/linux/net/core/net_namespace.c (revision df75e774)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34 
35 struct net init_net = {
36 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39 
40 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
41 
42 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
43 
44 static struct net_generic *net_alloc_generic(void)
45 {
46 	struct net_generic *ng;
47 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
48 
49 	ng = kzalloc(generic_size, GFP_KERNEL);
50 	if (ng)
51 		ng->len = max_gen_ptrs;
52 
53 	return ng;
54 }
55 
56 static int net_assign_generic(struct net *net, int id, void *data)
57 {
58 	struct net_generic *ng, *old_ng;
59 
60 	BUG_ON(!mutex_is_locked(&net_mutex));
61 	BUG_ON(id == 0);
62 
63 	old_ng = rcu_dereference_protected(net->gen,
64 					   lockdep_is_held(&net_mutex));
65 	ng = old_ng;
66 	if (old_ng->len >= id)
67 		goto assign;
68 
69 	ng = net_alloc_generic();
70 	if (ng == NULL)
71 		return -ENOMEM;
72 
73 	/*
74 	 * Some synchronisation notes:
75 	 *
76 	 * The net_generic explores the net->gen array inside rcu
77 	 * read section. Besides once set the net->gen->ptr[x]
78 	 * pointer never changes (see rules in netns/generic.h).
79 	 *
80 	 * That said, we simply duplicate this array and schedule
81 	 * the old copy for kfree after a grace period.
82 	 */
83 
84 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
85 
86 	rcu_assign_pointer(net->gen, ng);
87 	kfree_rcu(old_ng, rcu);
88 assign:
89 	ng->ptr[id - 1] = data;
90 	return 0;
91 }
92 
93 static int ops_init(const struct pernet_operations *ops, struct net *net)
94 {
95 	int err = -ENOMEM;
96 	void *data = NULL;
97 
98 	if (ops->id && ops->size) {
99 		data = kzalloc(ops->size, GFP_KERNEL);
100 		if (!data)
101 			goto out;
102 
103 		err = net_assign_generic(net, *ops->id, data);
104 		if (err)
105 			goto cleanup;
106 	}
107 	err = 0;
108 	if (ops->init)
109 		err = ops->init(net);
110 	if (!err)
111 		return 0;
112 
113 cleanup:
114 	kfree(data);
115 
116 out:
117 	return err;
118 }
119 
120 static void ops_free(const struct pernet_operations *ops, struct net *net)
121 {
122 	if (ops->id && ops->size) {
123 		int id = *ops->id;
124 		kfree(net_generic(net, id));
125 	}
126 }
127 
128 static void ops_exit_list(const struct pernet_operations *ops,
129 			  struct list_head *net_exit_list)
130 {
131 	struct net *net;
132 	if (ops->exit) {
133 		list_for_each_entry(net, net_exit_list, exit_list)
134 			ops->exit(net);
135 	}
136 	if (ops->exit_batch)
137 		ops->exit_batch(net_exit_list);
138 }
139 
140 static void ops_free_list(const struct pernet_operations *ops,
141 			  struct list_head *net_exit_list)
142 {
143 	struct net *net;
144 	if (ops->size && ops->id) {
145 		list_for_each_entry(net, net_exit_list, exit_list)
146 			ops_free(ops, net);
147 	}
148 }
149 
150 /* should be called with nsid_lock held */
151 static int alloc_netid(struct net *net, struct net *peer, int reqid)
152 {
153 	int min = 0, max = 0;
154 
155 	if (reqid >= 0) {
156 		min = reqid;
157 		max = reqid + 1;
158 	}
159 
160 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
161 }
162 
163 /* This function is used by idr_for_each(). If net is equal to peer, the
164  * function returns the id so that idr_for_each() stops. Because we cannot
165  * returns the id 0 (idr_for_each() will not stop), we return the magic value
166  * NET_ID_ZERO (-1) for it.
167  */
168 #define NET_ID_ZERO -1
169 static int net_eq_idr(int id, void *net, void *peer)
170 {
171 	if (net_eq(net, peer))
172 		return id ? : NET_ID_ZERO;
173 	return 0;
174 }
175 
176 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
177  * is set to true, thus the caller knows that the new id must be notified via
178  * rtnl.
179  */
180 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
181 {
182 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
183 	bool alloc_it = *alloc;
184 
185 	*alloc = false;
186 
187 	/* Magic value for id 0. */
188 	if (id == NET_ID_ZERO)
189 		return 0;
190 	if (id > 0)
191 		return id;
192 
193 	if (alloc_it) {
194 		id = alloc_netid(net, peer, -1);
195 		*alloc = true;
196 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
197 	}
198 
199 	return NETNSA_NSID_NOT_ASSIGNED;
200 }
201 
202 /* should be called with nsid_lock held */
203 static int __peernet2id(struct net *net, struct net *peer)
204 {
205 	bool no = false;
206 
207 	return __peernet2id_alloc(net, peer, &no);
208 }
209 
210 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
211 /* This function returns the id of a peer netns. If no id is assigned, one will
212  * be allocated and returned.
213  */
214 int peernet2id_alloc(struct net *net, struct net *peer)
215 {
216 	unsigned long flags;
217 	bool alloc;
218 	int id;
219 
220 	spin_lock_irqsave(&net->nsid_lock, flags);
221 	alloc = atomic_read(&peer->count) == 0 ? false : true;
222 	id = __peernet2id_alloc(net, peer, &alloc);
223 	spin_unlock_irqrestore(&net->nsid_lock, flags);
224 	if (alloc && id >= 0)
225 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
226 	return id;
227 }
228 EXPORT_SYMBOL(peernet2id_alloc);
229 
230 /* This function returns, if assigned, the id of a peer netns. */
231 int peernet2id(struct net *net, struct net *peer)
232 {
233 	unsigned long flags;
234 	int id;
235 
236 	spin_lock_irqsave(&net->nsid_lock, flags);
237 	id = __peernet2id(net, peer);
238 	spin_unlock_irqrestore(&net->nsid_lock, flags);
239 	return id;
240 }
241 
242 /* This function returns true is the peer netns has an id assigned into the
243  * current netns.
244  */
245 bool peernet_has_id(struct net *net, struct net *peer)
246 {
247 	return peernet2id(net, peer) >= 0;
248 }
249 
250 struct net *get_net_ns_by_id(struct net *net, int id)
251 {
252 	unsigned long flags;
253 	struct net *peer;
254 
255 	if (id < 0)
256 		return NULL;
257 
258 	rcu_read_lock();
259 	spin_lock_irqsave(&net->nsid_lock, flags);
260 	peer = idr_find(&net->netns_ids, id);
261 	if (peer)
262 		get_net(peer);
263 	spin_unlock_irqrestore(&net->nsid_lock, flags);
264 	rcu_read_unlock();
265 
266 	return peer;
267 }
268 
269 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
270 {
271 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
272 }
273 
274 static void dec_net_namespaces(struct ucounts *ucounts)
275 {
276 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
277 }
278 
279 /*
280  * setup_net runs the initializers for the network namespace object.
281  */
282 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
283 {
284 	/* Must be called with net_mutex held */
285 	const struct pernet_operations *ops, *saved_ops;
286 	int error = 0;
287 	LIST_HEAD(net_exit_list);
288 
289 	atomic_set(&net->count, 1);
290 	atomic_set(&net->passive, 1);
291 	net->dev_base_seq = 1;
292 	net->user_ns = user_ns;
293 	idr_init(&net->netns_ids);
294 	spin_lock_init(&net->nsid_lock);
295 
296 	list_for_each_entry(ops, &pernet_list, list) {
297 		error = ops_init(ops, net);
298 		if (error < 0)
299 			goto out_undo;
300 	}
301 out:
302 	return error;
303 
304 out_undo:
305 	/* Walk through the list backwards calling the exit functions
306 	 * for the pernet modules whose init functions did not fail.
307 	 */
308 	list_add(&net->exit_list, &net_exit_list);
309 	saved_ops = ops;
310 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
311 		ops_exit_list(ops, &net_exit_list);
312 
313 	ops = saved_ops;
314 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
315 		ops_free_list(ops, &net_exit_list);
316 
317 	rcu_barrier();
318 	goto out;
319 }
320 
321 
322 #ifdef CONFIG_NET_NS
323 static struct kmem_cache *net_cachep;
324 static struct workqueue_struct *netns_wq;
325 
326 static struct net *net_alloc(void)
327 {
328 	struct net *net = NULL;
329 	struct net_generic *ng;
330 
331 	ng = net_alloc_generic();
332 	if (!ng)
333 		goto out;
334 
335 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
336 	if (!net)
337 		goto out_free;
338 
339 	rcu_assign_pointer(net->gen, ng);
340 out:
341 	return net;
342 
343 out_free:
344 	kfree(ng);
345 	goto out;
346 }
347 
348 static void net_free(struct net *net)
349 {
350 	kfree(rcu_access_pointer(net->gen));
351 	kmem_cache_free(net_cachep, net);
352 }
353 
354 void net_drop_ns(void *p)
355 {
356 	struct net *ns = p;
357 	if (ns && atomic_dec_and_test(&ns->passive))
358 		net_free(ns);
359 }
360 
361 struct net *copy_net_ns(unsigned long flags,
362 			struct user_namespace *user_ns, struct net *old_net)
363 {
364 	struct ucounts *ucounts;
365 	struct net *net;
366 	int rv;
367 
368 	if (!(flags & CLONE_NEWNET))
369 		return get_net(old_net);
370 
371 	ucounts = inc_net_namespaces(user_ns);
372 	if (!ucounts)
373 		return ERR_PTR(-ENOSPC);
374 
375 	net = net_alloc();
376 	if (!net) {
377 		dec_net_namespaces(ucounts);
378 		return ERR_PTR(-ENOMEM);
379 	}
380 
381 	get_user_ns(user_ns);
382 
383 	mutex_lock(&net_mutex);
384 	net->ucounts = ucounts;
385 	rv = setup_net(net, user_ns);
386 	if (rv == 0) {
387 		rtnl_lock();
388 		list_add_tail_rcu(&net->list, &net_namespace_list);
389 		rtnl_unlock();
390 	}
391 	mutex_unlock(&net_mutex);
392 	if (rv < 0) {
393 		dec_net_namespaces(ucounts);
394 		put_user_ns(user_ns);
395 		net_drop_ns(net);
396 		return ERR_PTR(rv);
397 	}
398 	return net;
399 }
400 
401 static DEFINE_SPINLOCK(cleanup_list_lock);
402 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
403 
404 static void cleanup_net(struct work_struct *work)
405 {
406 	const struct pernet_operations *ops;
407 	struct net *net, *tmp;
408 	struct list_head net_kill_list;
409 	LIST_HEAD(net_exit_list);
410 
411 	/* Atomically snapshot the list of namespaces to cleanup */
412 	spin_lock_irq(&cleanup_list_lock);
413 	list_replace_init(&cleanup_list, &net_kill_list);
414 	spin_unlock_irq(&cleanup_list_lock);
415 
416 	mutex_lock(&net_mutex);
417 
418 	/* Don't let anyone else find us. */
419 	rtnl_lock();
420 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
421 		list_del_rcu(&net->list);
422 		list_add_tail(&net->exit_list, &net_exit_list);
423 		for_each_net(tmp) {
424 			int id;
425 
426 			spin_lock_irq(&tmp->nsid_lock);
427 			id = __peernet2id(tmp, net);
428 			if (id >= 0)
429 				idr_remove(&tmp->netns_ids, id);
430 			spin_unlock_irq(&tmp->nsid_lock);
431 			if (id >= 0)
432 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
433 		}
434 		spin_lock_irq(&net->nsid_lock);
435 		idr_destroy(&net->netns_ids);
436 		spin_unlock_irq(&net->nsid_lock);
437 
438 	}
439 	rtnl_unlock();
440 
441 	/*
442 	 * Another CPU might be rcu-iterating the list, wait for it.
443 	 * This needs to be before calling the exit() notifiers, so
444 	 * the rcu_barrier() below isn't sufficient alone.
445 	 */
446 	synchronize_rcu();
447 
448 	/* Run all of the network namespace exit methods */
449 	list_for_each_entry_reverse(ops, &pernet_list, list)
450 		ops_exit_list(ops, &net_exit_list);
451 
452 	/* Free the net generic variables */
453 	list_for_each_entry_reverse(ops, &pernet_list, list)
454 		ops_free_list(ops, &net_exit_list);
455 
456 	mutex_unlock(&net_mutex);
457 
458 	/* Ensure there are no outstanding rcu callbacks using this
459 	 * network namespace.
460 	 */
461 	rcu_barrier();
462 
463 	/* Finally it is safe to free my network namespace structure */
464 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
465 		list_del_init(&net->exit_list);
466 		dec_net_namespaces(net->ucounts);
467 		put_user_ns(net->user_ns);
468 		net_drop_ns(net);
469 	}
470 }
471 static DECLARE_WORK(net_cleanup_work, cleanup_net);
472 
473 void __put_net(struct net *net)
474 {
475 	/* Cleanup the network namespace in process context */
476 	unsigned long flags;
477 
478 	spin_lock_irqsave(&cleanup_list_lock, flags);
479 	list_add(&net->cleanup_list, &cleanup_list);
480 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
481 
482 	queue_work(netns_wq, &net_cleanup_work);
483 }
484 EXPORT_SYMBOL_GPL(__put_net);
485 
486 struct net *get_net_ns_by_fd(int fd)
487 {
488 	struct file *file;
489 	struct ns_common *ns;
490 	struct net *net;
491 
492 	file = proc_ns_fget(fd);
493 	if (IS_ERR(file))
494 		return ERR_CAST(file);
495 
496 	ns = get_proc_ns(file_inode(file));
497 	if (ns->ops == &netns_operations)
498 		net = get_net(container_of(ns, struct net, ns));
499 	else
500 		net = ERR_PTR(-EINVAL);
501 
502 	fput(file);
503 	return net;
504 }
505 
506 #else
507 struct net *get_net_ns_by_fd(int fd)
508 {
509 	return ERR_PTR(-EINVAL);
510 }
511 #endif
512 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
513 
514 struct net *get_net_ns_by_pid(pid_t pid)
515 {
516 	struct task_struct *tsk;
517 	struct net *net;
518 
519 	/* Lookup the network namespace */
520 	net = ERR_PTR(-ESRCH);
521 	rcu_read_lock();
522 	tsk = find_task_by_vpid(pid);
523 	if (tsk) {
524 		struct nsproxy *nsproxy;
525 		task_lock(tsk);
526 		nsproxy = tsk->nsproxy;
527 		if (nsproxy)
528 			net = get_net(nsproxy->net_ns);
529 		task_unlock(tsk);
530 	}
531 	rcu_read_unlock();
532 	return net;
533 }
534 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
535 
536 static __net_init int net_ns_net_init(struct net *net)
537 {
538 #ifdef CONFIG_NET_NS
539 	net->ns.ops = &netns_operations;
540 #endif
541 	return ns_alloc_inum(&net->ns);
542 }
543 
544 static __net_exit void net_ns_net_exit(struct net *net)
545 {
546 	ns_free_inum(&net->ns);
547 }
548 
549 static struct pernet_operations __net_initdata net_ns_ops = {
550 	.init = net_ns_net_init,
551 	.exit = net_ns_net_exit,
552 };
553 
554 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
555 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
556 	[NETNSA_NSID]		= { .type = NLA_S32 },
557 	[NETNSA_PID]		= { .type = NLA_U32 },
558 	[NETNSA_FD]		= { .type = NLA_U32 },
559 };
560 
561 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
562 {
563 	struct net *net = sock_net(skb->sk);
564 	struct nlattr *tb[NETNSA_MAX + 1];
565 	unsigned long flags;
566 	struct net *peer;
567 	int nsid, err;
568 
569 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
570 			  rtnl_net_policy);
571 	if (err < 0)
572 		return err;
573 	if (!tb[NETNSA_NSID])
574 		return -EINVAL;
575 	nsid = nla_get_s32(tb[NETNSA_NSID]);
576 
577 	if (tb[NETNSA_PID])
578 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
579 	else if (tb[NETNSA_FD])
580 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
581 	else
582 		return -EINVAL;
583 	if (IS_ERR(peer))
584 		return PTR_ERR(peer);
585 
586 	spin_lock_irqsave(&net->nsid_lock, flags);
587 	if (__peernet2id(net, peer) >= 0) {
588 		spin_unlock_irqrestore(&net->nsid_lock, flags);
589 		err = -EEXIST;
590 		goto out;
591 	}
592 
593 	err = alloc_netid(net, peer, nsid);
594 	spin_unlock_irqrestore(&net->nsid_lock, flags);
595 	if (err >= 0) {
596 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
597 		err = 0;
598 	}
599 out:
600 	put_net(peer);
601 	return err;
602 }
603 
604 static int rtnl_net_get_size(void)
605 {
606 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
607 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
608 	       ;
609 }
610 
611 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
612 			 int cmd, struct net *net, int nsid)
613 {
614 	struct nlmsghdr *nlh;
615 	struct rtgenmsg *rth;
616 
617 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
618 	if (!nlh)
619 		return -EMSGSIZE;
620 
621 	rth = nlmsg_data(nlh);
622 	rth->rtgen_family = AF_UNSPEC;
623 
624 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
625 		goto nla_put_failure;
626 
627 	nlmsg_end(skb, nlh);
628 	return 0;
629 
630 nla_put_failure:
631 	nlmsg_cancel(skb, nlh);
632 	return -EMSGSIZE;
633 }
634 
635 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
636 {
637 	struct net *net = sock_net(skb->sk);
638 	struct nlattr *tb[NETNSA_MAX + 1];
639 	struct sk_buff *msg;
640 	struct net *peer;
641 	int err, id;
642 
643 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
644 			  rtnl_net_policy);
645 	if (err < 0)
646 		return err;
647 	if (tb[NETNSA_PID])
648 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
649 	else if (tb[NETNSA_FD])
650 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
651 	else
652 		return -EINVAL;
653 
654 	if (IS_ERR(peer))
655 		return PTR_ERR(peer);
656 
657 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
658 	if (!msg) {
659 		err = -ENOMEM;
660 		goto out;
661 	}
662 
663 	id = peernet2id(net, peer);
664 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
665 			    RTM_NEWNSID, net, id);
666 	if (err < 0)
667 		goto err_out;
668 
669 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
670 	goto out;
671 
672 err_out:
673 	nlmsg_free(msg);
674 out:
675 	put_net(peer);
676 	return err;
677 }
678 
679 struct rtnl_net_dump_cb {
680 	struct net *net;
681 	struct sk_buff *skb;
682 	struct netlink_callback *cb;
683 	int idx;
684 	int s_idx;
685 };
686 
687 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
688 {
689 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
690 	int ret;
691 
692 	if (net_cb->idx < net_cb->s_idx)
693 		goto cont;
694 
695 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
696 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
697 			    RTM_NEWNSID, net_cb->net, id);
698 	if (ret < 0)
699 		return ret;
700 
701 cont:
702 	net_cb->idx++;
703 	return 0;
704 }
705 
706 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
707 {
708 	struct net *net = sock_net(skb->sk);
709 	struct rtnl_net_dump_cb net_cb = {
710 		.net = net,
711 		.skb = skb,
712 		.cb = cb,
713 		.idx = 0,
714 		.s_idx = cb->args[0],
715 	};
716 	unsigned long flags;
717 
718 	spin_lock_irqsave(&net->nsid_lock, flags);
719 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
720 	spin_unlock_irqrestore(&net->nsid_lock, flags);
721 
722 	cb->args[0] = net_cb.idx;
723 	return skb->len;
724 }
725 
726 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
727 {
728 	struct sk_buff *msg;
729 	int err = -ENOMEM;
730 
731 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
732 	if (!msg)
733 		goto out;
734 
735 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
736 	if (err < 0)
737 		goto err_out;
738 
739 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
740 	return;
741 
742 err_out:
743 	nlmsg_free(msg);
744 out:
745 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
746 }
747 
748 static int __init net_ns_init(void)
749 {
750 	struct net_generic *ng;
751 
752 #ifdef CONFIG_NET_NS
753 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
754 					SMP_CACHE_BYTES,
755 					SLAB_PANIC, NULL);
756 
757 	/* Create workqueue for cleanup */
758 	netns_wq = create_singlethread_workqueue("netns");
759 	if (!netns_wq)
760 		panic("Could not create netns workq");
761 #endif
762 
763 	ng = net_alloc_generic();
764 	if (!ng)
765 		panic("Could not allocate generic netns");
766 
767 	rcu_assign_pointer(init_net.gen, ng);
768 
769 	mutex_lock(&net_mutex);
770 	if (setup_net(&init_net, &init_user_ns))
771 		panic("Could not setup the initial network namespace");
772 
773 	rtnl_lock();
774 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
775 	rtnl_unlock();
776 
777 	mutex_unlock(&net_mutex);
778 
779 	register_pernet_subsys(&net_ns_ops);
780 
781 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
782 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
783 		      NULL);
784 
785 	return 0;
786 }
787 
788 pure_initcall(net_ns_init);
789 
790 #ifdef CONFIG_NET_NS
791 static int __register_pernet_operations(struct list_head *list,
792 					struct pernet_operations *ops)
793 {
794 	struct net *net;
795 	int error;
796 	LIST_HEAD(net_exit_list);
797 
798 	list_add_tail(&ops->list, list);
799 	if (ops->init || (ops->id && ops->size)) {
800 		for_each_net(net) {
801 			error = ops_init(ops, net);
802 			if (error)
803 				goto out_undo;
804 			list_add_tail(&net->exit_list, &net_exit_list);
805 		}
806 	}
807 	return 0;
808 
809 out_undo:
810 	/* If I have an error cleanup all namespaces I initialized */
811 	list_del(&ops->list);
812 	ops_exit_list(ops, &net_exit_list);
813 	ops_free_list(ops, &net_exit_list);
814 	return error;
815 }
816 
817 static void __unregister_pernet_operations(struct pernet_operations *ops)
818 {
819 	struct net *net;
820 	LIST_HEAD(net_exit_list);
821 
822 	list_del(&ops->list);
823 	for_each_net(net)
824 		list_add_tail(&net->exit_list, &net_exit_list);
825 	ops_exit_list(ops, &net_exit_list);
826 	ops_free_list(ops, &net_exit_list);
827 }
828 
829 #else
830 
831 static int __register_pernet_operations(struct list_head *list,
832 					struct pernet_operations *ops)
833 {
834 	return ops_init(ops, &init_net);
835 }
836 
837 static void __unregister_pernet_operations(struct pernet_operations *ops)
838 {
839 	LIST_HEAD(net_exit_list);
840 	list_add(&init_net.exit_list, &net_exit_list);
841 	ops_exit_list(ops, &net_exit_list);
842 	ops_free_list(ops, &net_exit_list);
843 }
844 
845 #endif /* CONFIG_NET_NS */
846 
847 static DEFINE_IDA(net_generic_ids);
848 
849 static int register_pernet_operations(struct list_head *list,
850 				      struct pernet_operations *ops)
851 {
852 	int error;
853 
854 	if (ops->id) {
855 again:
856 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
857 		if (error < 0) {
858 			if (error == -EAGAIN) {
859 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
860 				goto again;
861 			}
862 			return error;
863 		}
864 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
865 	}
866 	error = __register_pernet_operations(list, ops);
867 	if (error) {
868 		rcu_barrier();
869 		if (ops->id)
870 			ida_remove(&net_generic_ids, *ops->id);
871 	}
872 
873 	return error;
874 }
875 
876 static void unregister_pernet_operations(struct pernet_operations *ops)
877 {
878 
879 	__unregister_pernet_operations(ops);
880 	rcu_barrier();
881 	if (ops->id)
882 		ida_remove(&net_generic_ids, *ops->id);
883 }
884 
885 /**
886  *      register_pernet_subsys - register a network namespace subsystem
887  *	@ops:  pernet operations structure for the subsystem
888  *
889  *	Register a subsystem which has init and exit functions
890  *	that are called when network namespaces are created and
891  *	destroyed respectively.
892  *
893  *	When registered all network namespace init functions are
894  *	called for every existing network namespace.  Allowing kernel
895  *	modules to have a race free view of the set of network namespaces.
896  *
897  *	When a new network namespace is created all of the init
898  *	methods are called in the order in which they were registered.
899  *
900  *	When a network namespace is destroyed all of the exit methods
901  *	are called in the reverse of the order with which they were
902  *	registered.
903  */
904 int register_pernet_subsys(struct pernet_operations *ops)
905 {
906 	int error;
907 	mutex_lock(&net_mutex);
908 	error =  register_pernet_operations(first_device, ops);
909 	mutex_unlock(&net_mutex);
910 	return error;
911 }
912 EXPORT_SYMBOL_GPL(register_pernet_subsys);
913 
914 /**
915  *      unregister_pernet_subsys - unregister a network namespace subsystem
916  *	@ops: pernet operations structure to manipulate
917  *
918  *	Remove the pernet operations structure from the list to be
919  *	used when network namespaces are created or destroyed.  In
920  *	addition run the exit method for all existing network
921  *	namespaces.
922  */
923 void unregister_pernet_subsys(struct pernet_operations *ops)
924 {
925 	mutex_lock(&net_mutex);
926 	unregister_pernet_operations(ops);
927 	mutex_unlock(&net_mutex);
928 }
929 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
930 
931 /**
932  *      register_pernet_device - register a network namespace device
933  *	@ops:  pernet operations structure for the subsystem
934  *
935  *	Register a device which has init and exit functions
936  *	that are called when network namespaces are created and
937  *	destroyed respectively.
938  *
939  *	When registered all network namespace init functions are
940  *	called for every existing network namespace.  Allowing kernel
941  *	modules to have a race free view of the set of network namespaces.
942  *
943  *	When a new network namespace is created all of the init
944  *	methods are called in the order in which they were registered.
945  *
946  *	When a network namespace is destroyed all of the exit methods
947  *	are called in the reverse of the order with which they were
948  *	registered.
949  */
950 int register_pernet_device(struct pernet_operations *ops)
951 {
952 	int error;
953 	mutex_lock(&net_mutex);
954 	error = register_pernet_operations(&pernet_list, ops);
955 	if (!error && (first_device == &pernet_list))
956 		first_device = &ops->list;
957 	mutex_unlock(&net_mutex);
958 	return error;
959 }
960 EXPORT_SYMBOL_GPL(register_pernet_device);
961 
962 /**
963  *      unregister_pernet_device - unregister a network namespace netdevice
964  *	@ops: pernet operations structure to manipulate
965  *
966  *	Remove the pernet operations structure from the list to be
967  *	used when network namespaces are created or destroyed.  In
968  *	addition run the exit method for all existing network
969  *	namespaces.
970  */
971 void unregister_pernet_device(struct pernet_operations *ops)
972 {
973 	mutex_lock(&net_mutex);
974 	if (&ops->list == first_device)
975 		first_device = first_device->next;
976 	unregister_pernet_operations(ops);
977 	mutex_unlock(&net_mutex);
978 }
979 EXPORT_SYMBOL_GPL(unregister_pernet_device);
980 
981 #ifdef CONFIG_NET_NS
982 static struct ns_common *netns_get(struct task_struct *task)
983 {
984 	struct net *net = NULL;
985 	struct nsproxy *nsproxy;
986 
987 	task_lock(task);
988 	nsproxy = task->nsproxy;
989 	if (nsproxy)
990 		net = get_net(nsproxy->net_ns);
991 	task_unlock(task);
992 
993 	return net ? &net->ns : NULL;
994 }
995 
996 static inline struct net *to_net_ns(struct ns_common *ns)
997 {
998 	return container_of(ns, struct net, ns);
999 }
1000 
1001 static void netns_put(struct ns_common *ns)
1002 {
1003 	put_net(to_net_ns(ns));
1004 }
1005 
1006 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1007 {
1008 	struct net *net = to_net_ns(ns);
1009 
1010 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1011 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1012 		return -EPERM;
1013 
1014 	put_net(nsproxy->net_ns);
1015 	nsproxy->net_ns = get_net(net);
1016 	return 0;
1017 }
1018 
1019 const struct proc_ns_operations netns_operations = {
1020 	.name		= "net",
1021 	.type		= CLONE_NEWNET,
1022 	.get		= netns_get,
1023 	.put		= netns_put,
1024 	.install	= netns_install,
1025 };
1026 #endif
1027