1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 23 #include <net/sock.h> 24 #include <net/netlink.h> 25 #include <net/net_namespace.h> 26 #include <net/netns/generic.h> 27 28 /* 29 * Our network namespace constructor/destructor lists 30 */ 31 32 static LIST_HEAD(pernet_list); 33 static struct list_head *first_device = &pernet_list; 34 35 LIST_HEAD(net_namespace_list); 36 EXPORT_SYMBOL_GPL(net_namespace_list); 37 38 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 39 DECLARE_RWSEM(net_rwsem); 40 EXPORT_SYMBOL_GPL(net_rwsem); 41 42 #ifdef CONFIG_KEYS 43 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 44 #endif 45 46 struct net init_net = { 47 .count = REFCOUNT_INIT(1), 48 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 49 #ifdef CONFIG_KEYS 50 .key_domain = &init_net_key_domain, 51 #endif 52 }; 53 EXPORT_SYMBOL(init_net); 54 55 static bool init_net_initialized; 56 /* 57 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 58 * init_net_initialized and first_device pointer. 59 * This is internal net namespace object. Please, don't use it 60 * outside. 61 */ 62 DECLARE_RWSEM(pernet_ops_rwsem); 63 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 64 65 #define MIN_PERNET_OPS_ID \ 66 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 67 68 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 69 70 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 71 72 static struct net_generic *net_alloc_generic(void) 73 { 74 struct net_generic *ng; 75 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 76 77 ng = kzalloc(generic_size, GFP_KERNEL); 78 if (ng) 79 ng->s.len = max_gen_ptrs; 80 81 return ng; 82 } 83 84 static int net_assign_generic(struct net *net, unsigned int id, void *data) 85 { 86 struct net_generic *ng, *old_ng; 87 88 BUG_ON(id < MIN_PERNET_OPS_ID); 89 90 old_ng = rcu_dereference_protected(net->gen, 91 lockdep_is_held(&pernet_ops_rwsem)); 92 if (old_ng->s.len > id) { 93 old_ng->ptr[id] = data; 94 return 0; 95 } 96 97 ng = net_alloc_generic(); 98 if (ng == NULL) 99 return -ENOMEM; 100 101 /* 102 * Some synchronisation notes: 103 * 104 * The net_generic explores the net->gen array inside rcu 105 * read section. Besides once set the net->gen->ptr[x] 106 * pointer never changes (see rules in netns/generic.h). 107 * 108 * That said, we simply duplicate this array and schedule 109 * the old copy for kfree after a grace period. 110 */ 111 112 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 113 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 114 ng->ptr[id] = data; 115 116 rcu_assign_pointer(net->gen, ng); 117 kfree_rcu(old_ng, s.rcu); 118 return 0; 119 } 120 121 static int ops_init(const struct pernet_operations *ops, struct net *net) 122 { 123 int err = -ENOMEM; 124 void *data = NULL; 125 126 if (ops->id && ops->size) { 127 data = kzalloc(ops->size, GFP_KERNEL); 128 if (!data) 129 goto out; 130 131 err = net_assign_generic(net, *ops->id, data); 132 if (err) 133 goto cleanup; 134 } 135 err = 0; 136 if (ops->init) 137 err = ops->init(net); 138 if (!err) 139 return 0; 140 141 cleanup: 142 kfree(data); 143 144 out: 145 return err; 146 } 147 148 static void ops_free(const struct pernet_operations *ops, struct net *net) 149 { 150 if (ops->id && ops->size) { 151 kfree(net_generic(net, *ops->id)); 152 } 153 } 154 155 static void ops_pre_exit_list(const struct pernet_operations *ops, 156 struct list_head *net_exit_list) 157 { 158 struct net *net; 159 160 if (ops->pre_exit) { 161 list_for_each_entry(net, net_exit_list, exit_list) 162 ops->pre_exit(net); 163 } 164 } 165 166 static void ops_exit_list(const struct pernet_operations *ops, 167 struct list_head *net_exit_list) 168 { 169 struct net *net; 170 if (ops->exit) { 171 list_for_each_entry(net, net_exit_list, exit_list) 172 ops->exit(net); 173 } 174 if (ops->exit_batch) 175 ops->exit_batch(net_exit_list); 176 } 177 178 static void ops_free_list(const struct pernet_operations *ops, 179 struct list_head *net_exit_list) 180 { 181 struct net *net; 182 if (ops->size && ops->id) { 183 list_for_each_entry(net, net_exit_list, exit_list) 184 ops_free(ops, net); 185 } 186 } 187 188 /* should be called with nsid_lock held */ 189 static int alloc_netid(struct net *net, struct net *peer, int reqid) 190 { 191 int min = 0, max = 0; 192 193 if (reqid >= 0) { 194 min = reqid; 195 max = reqid + 1; 196 } 197 198 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 199 } 200 201 /* This function is used by idr_for_each(). If net is equal to peer, the 202 * function returns the id so that idr_for_each() stops. Because we cannot 203 * returns the id 0 (idr_for_each() will not stop), we return the magic value 204 * NET_ID_ZERO (-1) for it. 205 */ 206 #define NET_ID_ZERO -1 207 static int net_eq_idr(int id, void *net, void *peer) 208 { 209 if (net_eq(net, peer)) 210 return id ? : NET_ID_ZERO; 211 return 0; 212 } 213 214 /* Must be called from RCU-critical section or with nsid_lock held */ 215 static int __peernet2id(const struct net *net, struct net *peer) 216 { 217 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 218 219 /* Magic value for id 0. */ 220 if (id == NET_ID_ZERO) 221 return 0; 222 if (id > 0) 223 return id; 224 225 return NETNSA_NSID_NOT_ASSIGNED; 226 } 227 228 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 229 struct nlmsghdr *nlh, gfp_t gfp); 230 /* This function returns the id of a peer netns. If no id is assigned, one will 231 * be allocated and returned. 232 */ 233 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 234 { 235 int id; 236 237 if (refcount_read(&net->count) == 0) 238 return NETNSA_NSID_NOT_ASSIGNED; 239 240 spin_lock(&net->nsid_lock); 241 id = __peernet2id(net, peer); 242 if (id >= 0) { 243 spin_unlock(&net->nsid_lock); 244 return id; 245 } 246 247 /* When peer is obtained from RCU lists, we may race with 248 * its cleanup. Check whether it's alive, and this guarantees 249 * we never hash a peer back to net->netns_ids, after it has 250 * just been idr_remove()'d from there in cleanup_net(). 251 */ 252 if (!maybe_get_net(peer)) { 253 spin_unlock(&net->nsid_lock); 254 return NETNSA_NSID_NOT_ASSIGNED; 255 } 256 257 id = alloc_netid(net, peer, -1); 258 spin_unlock(&net->nsid_lock); 259 260 put_net(peer); 261 if (id < 0) 262 return NETNSA_NSID_NOT_ASSIGNED; 263 264 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 265 266 return id; 267 } 268 EXPORT_SYMBOL_GPL(peernet2id_alloc); 269 270 /* This function returns, if assigned, the id of a peer netns. */ 271 int peernet2id(const struct net *net, struct net *peer) 272 { 273 int id; 274 275 rcu_read_lock(); 276 id = __peernet2id(net, peer); 277 rcu_read_unlock(); 278 279 return id; 280 } 281 EXPORT_SYMBOL(peernet2id); 282 283 /* This function returns true is the peer netns has an id assigned into the 284 * current netns. 285 */ 286 bool peernet_has_id(const struct net *net, struct net *peer) 287 { 288 return peernet2id(net, peer) >= 0; 289 } 290 291 struct net *get_net_ns_by_id(const struct net *net, int id) 292 { 293 struct net *peer; 294 295 if (id < 0) 296 return NULL; 297 298 rcu_read_lock(); 299 peer = idr_find(&net->netns_ids, id); 300 if (peer) 301 peer = maybe_get_net(peer); 302 rcu_read_unlock(); 303 304 return peer; 305 } 306 307 /* 308 * setup_net runs the initializers for the network namespace object. 309 */ 310 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 311 { 312 /* Must be called with pernet_ops_rwsem held */ 313 const struct pernet_operations *ops, *saved_ops; 314 int error = 0; 315 LIST_HEAD(net_exit_list); 316 317 refcount_set(&net->count, 1); 318 refcount_set(&net->passive, 1); 319 get_random_bytes(&net->hash_mix, sizeof(u32)); 320 net->dev_base_seq = 1; 321 net->user_ns = user_ns; 322 idr_init(&net->netns_ids); 323 spin_lock_init(&net->nsid_lock); 324 mutex_init(&net->ipv4.ra_mutex); 325 326 list_for_each_entry(ops, &pernet_list, list) { 327 error = ops_init(ops, net); 328 if (error < 0) 329 goto out_undo; 330 } 331 down_write(&net_rwsem); 332 list_add_tail_rcu(&net->list, &net_namespace_list); 333 up_write(&net_rwsem); 334 out: 335 return error; 336 337 out_undo: 338 /* Walk through the list backwards calling the exit functions 339 * for the pernet modules whose init functions did not fail. 340 */ 341 list_add(&net->exit_list, &net_exit_list); 342 saved_ops = ops; 343 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 344 ops_pre_exit_list(ops, &net_exit_list); 345 346 synchronize_rcu(); 347 348 ops = saved_ops; 349 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 350 ops_exit_list(ops, &net_exit_list); 351 352 ops = saved_ops; 353 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 354 ops_free_list(ops, &net_exit_list); 355 356 rcu_barrier(); 357 goto out; 358 } 359 360 static int __net_init net_defaults_init_net(struct net *net) 361 { 362 net->core.sysctl_somaxconn = SOMAXCONN; 363 return 0; 364 } 365 366 static struct pernet_operations net_defaults_ops = { 367 .init = net_defaults_init_net, 368 }; 369 370 static __init int net_defaults_init(void) 371 { 372 if (register_pernet_subsys(&net_defaults_ops)) 373 panic("Cannot initialize net default settings"); 374 375 return 0; 376 } 377 378 core_initcall(net_defaults_init); 379 380 #ifdef CONFIG_NET_NS 381 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 382 { 383 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 384 } 385 386 static void dec_net_namespaces(struct ucounts *ucounts) 387 { 388 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 389 } 390 391 static struct kmem_cache *net_cachep __ro_after_init; 392 static struct workqueue_struct *netns_wq; 393 394 static struct net *net_alloc(void) 395 { 396 struct net *net = NULL; 397 struct net_generic *ng; 398 399 ng = net_alloc_generic(); 400 if (!ng) 401 goto out; 402 403 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 404 if (!net) 405 goto out_free; 406 407 #ifdef CONFIG_KEYS 408 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 409 if (!net->key_domain) 410 goto out_free_2; 411 refcount_set(&net->key_domain->usage, 1); 412 #endif 413 414 rcu_assign_pointer(net->gen, ng); 415 out: 416 return net; 417 418 #ifdef CONFIG_KEYS 419 out_free_2: 420 kmem_cache_free(net_cachep, net); 421 net = NULL; 422 #endif 423 out_free: 424 kfree(ng); 425 goto out; 426 } 427 428 static void net_free(struct net *net) 429 { 430 kfree(rcu_access_pointer(net->gen)); 431 kmem_cache_free(net_cachep, net); 432 } 433 434 void net_drop_ns(void *p) 435 { 436 struct net *ns = p; 437 if (ns && refcount_dec_and_test(&ns->passive)) 438 net_free(ns); 439 } 440 441 struct net *copy_net_ns(unsigned long flags, 442 struct user_namespace *user_ns, struct net *old_net) 443 { 444 struct ucounts *ucounts; 445 struct net *net; 446 int rv; 447 448 if (!(flags & CLONE_NEWNET)) 449 return get_net(old_net); 450 451 ucounts = inc_net_namespaces(user_ns); 452 if (!ucounts) 453 return ERR_PTR(-ENOSPC); 454 455 net = net_alloc(); 456 if (!net) { 457 rv = -ENOMEM; 458 goto dec_ucounts; 459 } 460 refcount_set(&net->passive, 1); 461 net->ucounts = ucounts; 462 get_user_ns(user_ns); 463 464 rv = down_read_killable(&pernet_ops_rwsem); 465 if (rv < 0) 466 goto put_userns; 467 468 rv = setup_net(net, user_ns); 469 470 up_read(&pernet_ops_rwsem); 471 472 if (rv < 0) { 473 put_userns: 474 key_remove_domain(net->key_domain); 475 put_user_ns(user_ns); 476 net_drop_ns(net); 477 dec_ucounts: 478 dec_net_namespaces(ucounts); 479 return ERR_PTR(rv); 480 } 481 return net; 482 } 483 484 /** 485 * net_ns_get_ownership - get sysfs ownership data for @net 486 * @net: network namespace in question (can be NULL) 487 * @uid: kernel user ID for sysfs objects 488 * @gid: kernel group ID for sysfs objects 489 * 490 * Returns the uid/gid pair of root in the user namespace associated with the 491 * given network namespace. 492 */ 493 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 494 { 495 if (net) { 496 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 497 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 498 499 if (uid_valid(ns_root_uid)) 500 *uid = ns_root_uid; 501 502 if (gid_valid(ns_root_gid)) 503 *gid = ns_root_gid; 504 } else { 505 *uid = GLOBAL_ROOT_UID; 506 *gid = GLOBAL_ROOT_GID; 507 } 508 } 509 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 510 511 static void unhash_nsid(struct net *net, struct net *last) 512 { 513 struct net *tmp; 514 /* This function is only called from cleanup_net() work, 515 * and this work is the only process, that may delete 516 * a net from net_namespace_list. So, when the below 517 * is executing, the list may only grow. Thus, we do not 518 * use for_each_net_rcu() or net_rwsem. 519 */ 520 for_each_net(tmp) { 521 int id; 522 523 spin_lock(&tmp->nsid_lock); 524 id = __peernet2id(tmp, net); 525 if (id >= 0) 526 idr_remove(&tmp->netns_ids, id); 527 spin_unlock(&tmp->nsid_lock); 528 if (id >= 0) 529 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 530 GFP_KERNEL); 531 if (tmp == last) 532 break; 533 } 534 spin_lock(&net->nsid_lock); 535 idr_destroy(&net->netns_ids); 536 spin_unlock(&net->nsid_lock); 537 } 538 539 static LLIST_HEAD(cleanup_list); 540 541 static void cleanup_net(struct work_struct *work) 542 { 543 const struct pernet_operations *ops; 544 struct net *net, *tmp, *last; 545 struct llist_node *net_kill_list; 546 LIST_HEAD(net_exit_list); 547 548 /* Atomically snapshot the list of namespaces to cleanup */ 549 net_kill_list = llist_del_all(&cleanup_list); 550 551 down_read(&pernet_ops_rwsem); 552 553 /* Don't let anyone else find us. */ 554 down_write(&net_rwsem); 555 llist_for_each_entry(net, net_kill_list, cleanup_list) 556 list_del_rcu(&net->list); 557 /* Cache last net. After we unlock rtnl, no one new net 558 * added to net_namespace_list can assign nsid pointer 559 * to a net from net_kill_list (see peernet2id_alloc()). 560 * So, we skip them in unhash_nsid(). 561 * 562 * Note, that unhash_nsid() does not delete nsid links 563 * between net_kill_list's nets, as they've already 564 * deleted from net_namespace_list. But, this would be 565 * useless anyway, as netns_ids are destroyed there. 566 */ 567 last = list_last_entry(&net_namespace_list, struct net, list); 568 up_write(&net_rwsem); 569 570 llist_for_each_entry(net, net_kill_list, cleanup_list) { 571 unhash_nsid(net, last); 572 list_add_tail(&net->exit_list, &net_exit_list); 573 } 574 575 /* Run all of the network namespace pre_exit methods */ 576 list_for_each_entry_reverse(ops, &pernet_list, list) 577 ops_pre_exit_list(ops, &net_exit_list); 578 579 /* 580 * Another CPU might be rcu-iterating the list, wait for it. 581 * This needs to be before calling the exit() notifiers, so 582 * the rcu_barrier() below isn't sufficient alone. 583 * Also the pre_exit() and exit() methods need this barrier. 584 */ 585 synchronize_rcu(); 586 587 /* Run all of the network namespace exit methods */ 588 list_for_each_entry_reverse(ops, &pernet_list, list) 589 ops_exit_list(ops, &net_exit_list); 590 591 /* Free the net generic variables */ 592 list_for_each_entry_reverse(ops, &pernet_list, list) 593 ops_free_list(ops, &net_exit_list); 594 595 up_read(&pernet_ops_rwsem); 596 597 /* Ensure there are no outstanding rcu callbacks using this 598 * network namespace. 599 */ 600 rcu_barrier(); 601 602 /* Finally it is safe to free my network namespace structure */ 603 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 604 list_del_init(&net->exit_list); 605 dec_net_namespaces(net->ucounts); 606 key_remove_domain(net->key_domain); 607 put_user_ns(net->user_ns); 608 net_drop_ns(net); 609 } 610 } 611 612 /** 613 * net_ns_barrier - wait until concurrent net_cleanup_work is done 614 * 615 * cleanup_net runs from work queue and will first remove namespaces 616 * from the global list, then run net exit functions. 617 * 618 * Call this in module exit path to make sure that all netns 619 * ->exit ops have been invoked before the function is removed. 620 */ 621 void net_ns_barrier(void) 622 { 623 down_write(&pernet_ops_rwsem); 624 up_write(&pernet_ops_rwsem); 625 } 626 EXPORT_SYMBOL(net_ns_barrier); 627 628 static DECLARE_WORK(net_cleanup_work, cleanup_net); 629 630 void __put_net(struct net *net) 631 { 632 /* Cleanup the network namespace in process context */ 633 if (llist_add(&net->cleanup_list, &cleanup_list)) 634 queue_work(netns_wq, &net_cleanup_work); 635 } 636 EXPORT_SYMBOL_GPL(__put_net); 637 638 struct net *get_net_ns_by_fd(int fd) 639 { 640 struct file *file; 641 struct ns_common *ns; 642 struct net *net; 643 644 file = proc_ns_fget(fd); 645 if (IS_ERR(file)) 646 return ERR_CAST(file); 647 648 ns = get_proc_ns(file_inode(file)); 649 if (ns->ops == &netns_operations) 650 net = get_net(container_of(ns, struct net, ns)); 651 else 652 net = ERR_PTR(-EINVAL); 653 654 fput(file); 655 return net; 656 } 657 658 #else 659 struct net *get_net_ns_by_fd(int fd) 660 { 661 return ERR_PTR(-EINVAL); 662 } 663 #endif 664 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 665 666 struct net *get_net_ns_by_pid(pid_t pid) 667 { 668 struct task_struct *tsk; 669 struct net *net; 670 671 /* Lookup the network namespace */ 672 net = ERR_PTR(-ESRCH); 673 rcu_read_lock(); 674 tsk = find_task_by_vpid(pid); 675 if (tsk) { 676 struct nsproxy *nsproxy; 677 task_lock(tsk); 678 nsproxy = tsk->nsproxy; 679 if (nsproxy) 680 net = get_net(nsproxy->net_ns); 681 task_unlock(tsk); 682 } 683 rcu_read_unlock(); 684 return net; 685 } 686 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 687 688 static __net_init int net_ns_net_init(struct net *net) 689 { 690 #ifdef CONFIG_NET_NS 691 net->ns.ops = &netns_operations; 692 #endif 693 return ns_alloc_inum(&net->ns); 694 } 695 696 static __net_exit void net_ns_net_exit(struct net *net) 697 { 698 ns_free_inum(&net->ns); 699 } 700 701 static struct pernet_operations __net_initdata net_ns_ops = { 702 .init = net_ns_net_init, 703 .exit = net_ns_net_exit, 704 }; 705 706 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 707 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 708 [NETNSA_NSID] = { .type = NLA_S32 }, 709 [NETNSA_PID] = { .type = NLA_U32 }, 710 [NETNSA_FD] = { .type = NLA_U32 }, 711 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 712 }; 713 714 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 715 struct netlink_ext_ack *extack) 716 { 717 struct net *net = sock_net(skb->sk); 718 struct nlattr *tb[NETNSA_MAX + 1]; 719 struct nlattr *nla; 720 struct net *peer; 721 int nsid, err; 722 723 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 724 NETNSA_MAX, rtnl_net_policy, extack); 725 if (err < 0) 726 return err; 727 if (!tb[NETNSA_NSID]) { 728 NL_SET_ERR_MSG(extack, "nsid is missing"); 729 return -EINVAL; 730 } 731 nsid = nla_get_s32(tb[NETNSA_NSID]); 732 733 if (tb[NETNSA_PID]) { 734 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 735 nla = tb[NETNSA_PID]; 736 } else if (tb[NETNSA_FD]) { 737 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 738 nla = tb[NETNSA_FD]; 739 } else { 740 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 741 return -EINVAL; 742 } 743 if (IS_ERR(peer)) { 744 NL_SET_BAD_ATTR(extack, nla); 745 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 746 return PTR_ERR(peer); 747 } 748 749 spin_lock(&net->nsid_lock); 750 if (__peernet2id(net, peer) >= 0) { 751 spin_unlock(&net->nsid_lock); 752 err = -EEXIST; 753 NL_SET_BAD_ATTR(extack, nla); 754 NL_SET_ERR_MSG(extack, 755 "Peer netns already has a nsid assigned"); 756 goto out; 757 } 758 759 err = alloc_netid(net, peer, nsid); 760 spin_unlock(&net->nsid_lock); 761 if (err >= 0) { 762 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 763 nlh, GFP_KERNEL); 764 err = 0; 765 } else if (err == -ENOSPC && nsid >= 0) { 766 err = -EEXIST; 767 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 768 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 769 } 770 out: 771 put_net(peer); 772 return err; 773 } 774 775 static int rtnl_net_get_size(void) 776 { 777 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 778 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 779 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 780 ; 781 } 782 783 struct net_fill_args { 784 u32 portid; 785 u32 seq; 786 int flags; 787 int cmd; 788 int nsid; 789 bool add_ref; 790 int ref_nsid; 791 }; 792 793 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 794 { 795 struct nlmsghdr *nlh; 796 struct rtgenmsg *rth; 797 798 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 799 args->flags); 800 if (!nlh) 801 return -EMSGSIZE; 802 803 rth = nlmsg_data(nlh); 804 rth->rtgen_family = AF_UNSPEC; 805 806 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 807 goto nla_put_failure; 808 809 if (args->add_ref && 810 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 811 goto nla_put_failure; 812 813 nlmsg_end(skb, nlh); 814 return 0; 815 816 nla_put_failure: 817 nlmsg_cancel(skb, nlh); 818 return -EMSGSIZE; 819 } 820 821 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 822 const struct nlmsghdr *nlh, 823 struct nlattr **tb, 824 struct netlink_ext_ack *extack) 825 { 826 int i, err; 827 828 if (!netlink_strict_get_check(skb)) 829 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 830 tb, NETNSA_MAX, rtnl_net_policy, 831 extack); 832 833 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 834 NETNSA_MAX, rtnl_net_policy, 835 extack); 836 if (err) 837 return err; 838 839 for (i = 0; i <= NETNSA_MAX; i++) { 840 if (!tb[i]) 841 continue; 842 843 switch (i) { 844 case NETNSA_PID: 845 case NETNSA_FD: 846 case NETNSA_NSID: 847 case NETNSA_TARGET_NSID: 848 break; 849 default: 850 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 851 return -EINVAL; 852 } 853 } 854 855 return 0; 856 } 857 858 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 859 struct netlink_ext_ack *extack) 860 { 861 struct net *net = sock_net(skb->sk); 862 struct nlattr *tb[NETNSA_MAX + 1]; 863 struct net_fill_args fillargs = { 864 .portid = NETLINK_CB(skb).portid, 865 .seq = nlh->nlmsg_seq, 866 .cmd = RTM_NEWNSID, 867 }; 868 struct net *peer, *target = net; 869 struct nlattr *nla; 870 struct sk_buff *msg; 871 int err; 872 873 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 874 if (err < 0) 875 return err; 876 if (tb[NETNSA_PID]) { 877 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 878 nla = tb[NETNSA_PID]; 879 } else if (tb[NETNSA_FD]) { 880 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 881 nla = tb[NETNSA_FD]; 882 } else if (tb[NETNSA_NSID]) { 883 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 884 if (!peer) 885 peer = ERR_PTR(-ENOENT); 886 nla = tb[NETNSA_NSID]; 887 } else { 888 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 889 return -EINVAL; 890 } 891 892 if (IS_ERR(peer)) { 893 NL_SET_BAD_ATTR(extack, nla); 894 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 895 return PTR_ERR(peer); 896 } 897 898 if (tb[NETNSA_TARGET_NSID]) { 899 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 900 901 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 902 if (IS_ERR(target)) { 903 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 904 NL_SET_ERR_MSG(extack, 905 "Target netns reference is invalid"); 906 err = PTR_ERR(target); 907 goto out; 908 } 909 fillargs.add_ref = true; 910 fillargs.ref_nsid = peernet2id(net, peer); 911 } 912 913 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 914 if (!msg) { 915 err = -ENOMEM; 916 goto out; 917 } 918 919 fillargs.nsid = peernet2id(target, peer); 920 err = rtnl_net_fill(msg, &fillargs); 921 if (err < 0) 922 goto err_out; 923 924 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 925 goto out; 926 927 err_out: 928 nlmsg_free(msg); 929 out: 930 if (fillargs.add_ref) 931 put_net(target); 932 put_net(peer); 933 return err; 934 } 935 936 struct rtnl_net_dump_cb { 937 struct net *tgt_net; 938 struct net *ref_net; 939 struct sk_buff *skb; 940 struct net_fill_args fillargs; 941 int idx; 942 int s_idx; 943 }; 944 945 /* Runs in RCU-critical section. */ 946 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 947 { 948 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 949 int ret; 950 951 if (net_cb->idx < net_cb->s_idx) 952 goto cont; 953 954 net_cb->fillargs.nsid = id; 955 if (net_cb->fillargs.add_ref) 956 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 957 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 958 if (ret < 0) 959 return ret; 960 961 cont: 962 net_cb->idx++; 963 return 0; 964 } 965 966 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 967 struct rtnl_net_dump_cb *net_cb, 968 struct netlink_callback *cb) 969 { 970 struct netlink_ext_ack *extack = cb->extack; 971 struct nlattr *tb[NETNSA_MAX + 1]; 972 int err, i; 973 974 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 975 NETNSA_MAX, rtnl_net_policy, 976 extack); 977 if (err < 0) 978 return err; 979 980 for (i = 0; i <= NETNSA_MAX; i++) { 981 if (!tb[i]) 982 continue; 983 984 if (i == NETNSA_TARGET_NSID) { 985 struct net *net; 986 987 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 988 if (IS_ERR(net)) { 989 NL_SET_BAD_ATTR(extack, tb[i]); 990 NL_SET_ERR_MSG(extack, 991 "Invalid target network namespace id"); 992 return PTR_ERR(net); 993 } 994 net_cb->fillargs.add_ref = true; 995 net_cb->ref_net = net_cb->tgt_net; 996 net_cb->tgt_net = net; 997 } else { 998 NL_SET_BAD_ATTR(extack, tb[i]); 999 NL_SET_ERR_MSG(extack, 1000 "Unsupported attribute in dump request"); 1001 return -EINVAL; 1002 } 1003 } 1004 1005 return 0; 1006 } 1007 1008 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1009 { 1010 struct rtnl_net_dump_cb net_cb = { 1011 .tgt_net = sock_net(skb->sk), 1012 .skb = skb, 1013 .fillargs = { 1014 .portid = NETLINK_CB(cb->skb).portid, 1015 .seq = cb->nlh->nlmsg_seq, 1016 .flags = NLM_F_MULTI, 1017 .cmd = RTM_NEWNSID, 1018 }, 1019 .idx = 0, 1020 .s_idx = cb->args[0], 1021 }; 1022 int err = 0; 1023 1024 if (cb->strict_check) { 1025 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1026 if (err < 0) 1027 goto end; 1028 } 1029 1030 rcu_read_lock(); 1031 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1032 rcu_read_unlock(); 1033 1034 cb->args[0] = net_cb.idx; 1035 end: 1036 if (net_cb.fillargs.add_ref) 1037 put_net(net_cb.tgt_net); 1038 return err < 0 ? err : skb->len; 1039 } 1040 1041 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1042 struct nlmsghdr *nlh, gfp_t gfp) 1043 { 1044 struct net_fill_args fillargs = { 1045 .portid = portid, 1046 .seq = nlh ? nlh->nlmsg_seq : 0, 1047 .cmd = cmd, 1048 .nsid = id, 1049 }; 1050 struct sk_buff *msg; 1051 int err = -ENOMEM; 1052 1053 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1054 if (!msg) 1055 goto out; 1056 1057 err = rtnl_net_fill(msg, &fillargs); 1058 if (err < 0) 1059 goto err_out; 1060 1061 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1062 return; 1063 1064 err_out: 1065 nlmsg_free(msg); 1066 out: 1067 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1068 } 1069 1070 static int __init net_ns_init(void) 1071 { 1072 struct net_generic *ng; 1073 1074 #ifdef CONFIG_NET_NS 1075 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1076 SMP_CACHE_BYTES, 1077 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1078 1079 /* Create workqueue for cleanup */ 1080 netns_wq = create_singlethread_workqueue("netns"); 1081 if (!netns_wq) 1082 panic("Could not create netns workq"); 1083 #endif 1084 1085 ng = net_alloc_generic(); 1086 if (!ng) 1087 panic("Could not allocate generic netns"); 1088 1089 rcu_assign_pointer(init_net.gen, ng); 1090 1091 down_write(&pernet_ops_rwsem); 1092 if (setup_net(&init_net, &init_user_ns)) 1093 panic("Could not setup the initial network namespace"); 1094 1095 init_net_initialized = true; 1096 up_write(&pernet_ops_rwsem); 1097 1098 if (register_pernet_subsys(&net_ns_ops)) 1099 panic("Could not register network namespace subsystems"); 1100 1101 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1102 RTNL_FLAG_DOIT_UNLOCKED); 1103 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1104 RTNL_FLAG_DOIT_UNLOCKED); 1105 1106 return 0; 1107 } 1108 1109 pure_initcall(net_ns_init); 1110 1111 #ifdef CONFIG_NET_NS 1112 static int __register_pernet_operations(struct list_head *list, 1113 struct pernet_operations *ops) 1114 { 1115 struct net *net; 1116 int error; 1117 LIST_HEAD(net_exit_list); 1118 1119 list_add_tail(&ops->list, list); 1120 if (ops->init || (ops->id && ops->size)) { 1121 /* We held write locked pernet_ops_rwsem, and parallel 1122 * setup_net() and cleanup_net() are not possible. 1123 */ 1124 for_each_net(net) { 1125 error = ops_init(ops, net); 1126 if (error) 1127 goto out_undo; 1128 list_add_tail(&net->exit_list, &net_exit_list); 1129 } 1130 } 1131 return 0; 1132 1133 out_undo: 1134 /* If I have an error cleanup all namespaces I initialized */ 1135 list_del(&ops->list); 1136 ops_pre_exit_list(ops, &net_exit_list); 1137 synchronize_rcu(); 1138 ops_exit_list(ops, &net_exit_list); 1139 ops_free_list(ops, &net_exit_list); 1140 return error; 1141 } 1142 1143 static void __unregister_pernet_operations(struct pernet_operations *ops) 1144 { 1145 struct net *net; 1146 LIST_HEAD(net_exit_list); 1147 1148 list_del(&ops->list); 1149 /* See comment in __register_pernet_operations() */ 1150 for_each_net(net) 1151 list_add_tail(&net->exit_list, &net_exit_list); 1152 ops_pre_exit_list(ops, &net_exit_list); 1153 synchronize_rcu(); 1154 ops_exit_list(ops, &net_exit_list); 1155 ops_free_list(ops, &net_exit_list); 1156 } 1157 1158 #else 1159 1160 static int __register_pernet_operations(struct list_head *list, 1161 struct pernet_operations *ops) 1162 { 1163 if (!init_net_initialized) { 1164 list_add_tail(&ops->list, list); 1165 return 0; 1166 } 1167 1168 return ops_init(ops, &init_net); 1169 } 1170 1171 static void __unregister_pernet_operations(struct pernet_operations *ops) 1172 { 1173 if (!init_net_initialized) { 1174 list_del(&ops->list); 1175 } else { 1176 LIST_HEAD(net_exit_list); 1177 list_add(&init_net.exit_list, &net_exit_list); 1178 ops_pre_exit_list(ops, &net_exit_list); 1179 synchronize_rcu(); 1180 ops_exit_list(ops, &net_exit_list); 1181 ops_free_list(ops, &net_exit_list); 1182 } 1183 } 1184 1185 #endif /* CONFIG_NET_NS */ 1186 1187 static DEFINE_IDA(net_generic_ids); 1188 1189 static int register_pernet_operations(struct list_head *list, 1190 struct pernet_operations *ops) 1191 { 1192 int error; 1193 1194 if (ops->id) { 1195 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1196 GFP_KERNEL); 1197 if (error < 0) 1198 return error; 1199 *ops->id = error; 1200 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 1201 } 1202 error = __register_pernet_operations(list, ops); 1203 if (error) { 1204 rcu_barrier(); 1205 if (ops->id) 1206 ida_free(&net_generic_ids, *ops->id); 1207 } 1208 1209 return error; 1210 } 1211 1212 static void unregister_pernet_operations(struct pernet_operations *ops) 1213 { 1214 __unregister_pernet_operations(ops); 1215 rcu_barrier(); 1216 if (ops->id) 1217 ida_free(&net_generic_ids, *ops->id); 1218 } 1219 1220 /** 1221 * register_pernet_subsys - register a network namespace subsystem 1222 * @ops: pernet operations structure for the subsystem 1223 * 1224 * Register a subsystem which has init and exit functions 1225 * that are called when network namespaces are created and 1226 * destroyed respectively. 1227 * 1228 * When registered all network namespace init functions are 1229 * called for every existing network namespace. Allowing kernel 1230 * modules to have a race free view of the set of network namespaces. 1231 * 1232 * When a new network namespace is created all of the init 1233 * methods are called in the order in which they were registered. 1234 * 1235 * When a network namespace is destroyed all of the exit methods 1236 * are called in the reverse of the order with which they were 1237 * registered. 1238 */ 1239 int register_pernet_subsys(struct pernet_operations *ops) 1240 { 1241 int error; 1242 down_write(&pernet_ops_rwsem); 1243 error = register_pernet_operations(first_device, ops); 1244 up_write(&pernet_ops_rwsem); 1245 return error; 1246 } 1247 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1248 1249 /** 1250 * unregister_pernet_subsys - unregister a network namespace subsystem 1251 * @ops: pernet operations structure to manipulate 1252 * 1253 * Remove the pernet operations structure from the list to be 1254 * used when network namespaces are created or destroyed. In 1255 * addition run the exit method for all existing network 1256 * namespaces. 1257 */ 1258 void unregister_pernet_subsys(struct pernet_operations *ops) 1259 { 1260 down_write(&pernet_ops_rwsem); 1261 unregister_pernet_operations(ops); 1262 up_write(&pernet_ops_rwsem); 1263 } 1264 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1265 1266 /** 1267 * register_pernet_device - register a network namespace device 1268 * @ops: pernet operations structure for the subsystem 1269 * 1270 * Register a device which has init and exit functions 1271 * that are called when network namespaces are created and 1272 * destroyed respectively. 1273 * 1274 * When registered all network namespace init functions are 1275 * called for every existing network namespace. Allowing kernel 1276 * modules to have a race free view of the set of network namespaces. 1277 * 1278 * When a new network namespace is created all of the init 1279 * methods are called in the order in which they were registered. 1280 * 1281 * When a network namespace is destroyed all of the exit methods 1282 * are called in the reverse of the order with which they were 1283 * registered. 1284 */ 1285 int register_pernet_device(struct pernet_operations *ops) 1286 { 1287 int error; 1288 down_write(&pernet_ops_rwsem); 1289 error = register_pernet_operations(&pernet_list, ops); 1290 if (!error && (first_device == &pernet_list)) 1291 first_device = &ops->list; 1292 up_write(&pernet_ops_rwsem); 1293 return error; 1294 } 1295 EXPORT_SYMBOL_GPL(register_pernet_device); 1296 1297 /** 1298 * unregister_pernet_device - unregister a network namespace netdevice 1299 * @ops: pernet operations structure to manipulate 1300 * 1301 * Remove the pernet operations structure from the list to be 1302 * used when network namespaces are created or destroyed. In 1303 * addition run the exit method for all existing network 1304 * namespaces. 1305 */ 1306 void unregister_pernet_device(struct pernet_operations *ops) 1307 { 1308 down_write(&pernet_ops_rwsem); 1309 if (&ops->list == first_device) 1310 first_device = first_device->next; 1311 unregister_pernet_operations(ops); 1312 up_write(&pernet_ops_rwsem); 1313 } 1314 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1315 1316 #ifdef CONFIG_NET_NS 1317 static struct ns_common *netns_get(struct task_struct *task) 1318 { 1319 struct net *net = NULL; 1320 struct nsproxy *nsproxy; 1321 1322 task_lock(task); 1323 nsproxy = task->nsproxy; 1324 if (nsproxy) 1325 net = get_net(nsproxy->net_ns); 1326 task_unlock(task); 1327 1328 return net ? &net->ns : NULL; 1329 } 1330 1331 static inline struct net *to_net_ns(struct ns_common *ns) 1332 { 1333 return container_of(ns, struct net, ns); 1334 } 1335 1336 static void netns_put(struct ns_common *ns) 1337 { 1338 put_net(to_net_ns(ns)); 1339 } 1340 1341 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns) 1342 { 1343 struct net *net = to_net_ns(ns); 1344 1345 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1346 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 1347 return -EPERM; 1348 1349 put_net(nsproxy->net_ns); 1350 nsproxy->net_ns = get_net(net); 1351 return 0; 1352 } 1353 1354 static struct user_namespace *netns_owner(struct ns_common *ns) 1355 { 1356 return to_net_ns(ns)->user_ns; 1357 } 1358 1359 const struct proc_ns_operations netns_operations = { 1360 .name = "net", 1361 .type = CLONE_NEWNET, 1362 .get = netns_get, 1363 .put = netns_put, 1364 .install = netns_install, 1365 .owner = netns_owner, 1366 }; 1367 #endif 1368