1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 #include <linux/proc_fs.h> 24 25 #include <net/sock.h> 26 #include <net/netlink.h> 27 #include <net/net_namespace.h> 28 #include <net/netns/generic.h> 29 30 /* 31 * Our network namespace constructor/destructor lists 32 */ 33 34 static LIST_HEAD(pernet_list); 35 static struct list_head *first_device = &pernet_list; 36 37 LIST_HEAD(net_namespace_list); 38 EXPORT_SYMBOL_GPL(net_namespace_list); 39 40 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 41 DECLARE_RWSEM(net_rwsem); 42 EXPORT_SYMBOL_GPL(net_rwsem); 43 44 #ifdef CONFIG_KEYS 45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 46 #endif 47 48 struct net init_net; 49 EXPORT_SYMBOL(init_net); 50 51 static bool init_net_initialized; 52 /* 53 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 54 * init_net_initialized and first_device pointer. 55 * This is internal net namespace object. Please, don't use it 56 * outside. 57 */ 58 DECLARE_RWSEM(pernet_ops_rwsem); 59 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 60 61 #define MIN_PERNET_OPS_ID \ 62 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 63 64 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 65 66 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 67 68 DEFINE_COOKIE(net_cookie); 69 70 static struct net_generic *net_alloc_generic(void) 71 { 72 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs); 73 unsigned int generic_size; 74 struct net_generic *ng; 75 76 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]); 77 78 ng = kzalloc(generic_size, GFP_KERNEL); 79 if (ng) 80 ng->s.len = gen_ptrs; 81 82 return ng; 83 } 84 85 static int net_assign_generic(struct net *net, unsigned int id, void *data) 86 { 87 struct net_generic *ng, *old_ng; 88 89 BUG_ON(id < MIN_PERNET_OPS_ID); 90 91 old_ng = rcu_dereference_protected(net->gen, 92 lockdep_is_held(&pernet_ops_rwsem)); 93 if (old_ng->s.len > id) { 94 old_ng->ptr[id] = data; 95 return 0; 96 } 97 98 ng = net_alloc_generic(); 99 if (!ng) 100 return -ENOMEM; 101 102 /* 103 * Some synchronisation notes: 104 * 105 * The net_generic explores the net->gen array inside rcu 106 * read section. Besides once set the net->gen->ptr[x] 107 * pointer never changes (see rules in netns/generic.h). 108 * 109 * That said, we simply duplicate this array and schedule 110 * the old copy for kfree after a grace period. 111 */ 112 113 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 114 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 115 ng->ptr[id] = data; 116 117 rcu_assign_pointer(net->gen, ng); 118 kfree_rcu(old_ng, s.rcu); 119 return 0; 120 } 121 122 static int ops_init(const struct pernet_operations *ops, struct net *net) 123 { 124 struct net_generic *ng; 125 int err = -ENOMEM; 126 void *data = NULL; 127 128 if (ops->id && ops->size) { 129 data = kzalloc(ops->size, GFP_KERNEL); 130 if (!data) 131 goto out; 132 133 err = net_assign_generic(net, *ops->id, data); 134 if (err) 135 goto cleanup; 136 } 137 err = 0; 138 if (ops->init) 139 err = ops->init(net); 140 if (!err) 141 return 0; 142 143 if (ops->id && ops->size) { 144 ng = rcu_dereference_protected(net->gen, 145 lockdep_is_held(&pernet_ops_rwsem)); 146 ng->ptr[*ops->id] = NULL; 147 } 148 149 cleanup: 150 kfree(data); 151 152 out: 153 return err; 154 } 155 156 static void ops_pre_exit_list(const struct pernet_operations *ops, 157 struct list_head *net_exit_list) 158 { 159 struct net *net; 160 161 if (ops->pre_exit) { 162 list_for_each_entry(net, net_exit_list, exit_list) 163 ops->pre_exit(net); 164 } 165 } 166 167 static void ops_exit_list(const struct pernet_operations *ops, 168 struct list_head *net_exit_list) 169 { 170 struct net *net; 171 if (ops->exit) { 172 list_for_each_entry(net, net_exit_list, exit_list) { 173 ops->exit(net); 174 cond_resched(); 175 } 176 } 177 if (ops->exit_batch) 178 ops->exit_batch(net_exit_list); 179 } 180 181 static void ops_free_list(const struct pernet_operations *ops, 182 struct list_head *net_exit_list) 183 { 184 struct net *net; 185 if (ops->size && ops->id) { 186 list_for_each_entry(net, net_exit_list, exit_list) 187 kfree(net_generic(net, *ops->id)); 188 } 189 } 190 191 /* should be called with nsid_lock held */ 192 static int alloc_netid(struct net *net, struct net *peer, int reqid) 193 { 194 int min = 0, max = 0; 195 196 if (reqid >= 0) { 197 min = reqid; 198 max = reqid + 1; 199 } 200 201 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 202 } 203 204 /* This function is used by idr_for_each(). If net is equal to peer, the 205 * function returns the id so that idr_for_each() stops. Because we cannot 206 * returns the id 0 (idr_for_each() will not stop), we return the magic value 207 * NET_ID_ZERO (-1) for it. 208 */ 209 #define NET_ID_ZERO -1 210 static int net_eq_idr(int id, void *net, void *peer) 211 { 212 if (net_eq(net, peer)) 213 return id ? : NET_ID_ZERO; 214 return 0; 215 } 216 217 /* Must be called from RCU-critical section or with nsid_lock held */ 218 static int __peernet2id(const struct net *net, struct net *peer) 219 { 220 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 221 222 /* Magic value for id 0. */ 223 if (id == NET_ID_ZERO) 224 return 0; 225 if (id > 0) 226 return id; 227 228 return NETNSA_NSID_NOT_ASSIGNED; 229 } 230 231 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 232 struct nlmsghdr *nlh, gfp_t gfp); 233 /* This function returns the id of a peer netns. If no id is assigned, one will 234 * be allocated and returned. 235 */ 236 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 237 { 238 int id; 239 240 if (refcount_read(&net->ns.count) == 0) 241 return NETNSA_NSID_NOT_ASSIGNED; 242 243 spin_lock_bh(&net->nsid_lock); 244 id = __peernet2id(net, peer); 245 if (id >= 0) { 246 spin_unlock_bh(&net->nsid_lock); 247 return id; 248 } 249 250 /* When peer is obtained from RCU lists, we may race with 251 * its cleanup. Check whether it's alive, and this guarantees 252 * we never hash a peer back to net->netns_ids, after it has 253 * just been idr_remove()'d from there in cleanup_net(). 254 */ 255 if (!maybe_get_net(peer)) { 256 spin_unlock_bh(&net->nsid_lock); 257 return NETNSA_NSID_NOT_ASSIGNED; 258 } 259 260 id = alloc_netid(net, peer, -1); 261 spin_unlock_bh(&net->nsid_lock); 262 263 put_net(peer); 264 if (id < 0) 265 return NETNSA_NSID_NOT_ASSIGNED; 266 267 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 268 269 return id; 270 } 271 EXPORT_SYMBOL_GPL(peernet2id_alloc); 272 273 /* This function returns, if assigned, the id of a peer netns. */ 274 int peernet2id(const struct net *net, struct net *peer) 275 { 276 int id; 277 278 rcu_read_lock(); 279 id = __peernet2id(net, peer); 280 rcu_read_unlock(); 281 282 return id; 283 } 284 EXPORT_SYMBOL(peernet2id); 285 286 /* This function returns true is the peer netns has an id assigned into the 287 * current netns. 288 */ 289 bool peernet_has_id(const struct net *net, struct net *peer) 290 { 291 return peernet2id(net, peer) >= 0; 292 } 293 294 struct net *get_net_ns_by_id(const struct net *net, int id) 295 { 296 struct net *peer; 297 298 if (id < 0) 299 return NULL; 300 301 rcu_read_lock(); 302 peer = idr_find(&net->netns_ids, id); 303 if (peer) 304 peer = maybe_get_net(peer); 305 rcu_read_unlock(); 306 307 return peer; 308 } 309 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 310 311 /* init code that must occur even if setup_net() is not called. */ 312 static __net_init void preinit_net(struct net *net) 313 { 314 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt"); 315 } 316 317 /* 318 * setup_net runs the initializers for the network namespace object. 319 */ 320 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 321 { 322 /* Must be called with pernet_ops_rwsem held */ 323 const struct pernet_operations *ops, *saved_ops; 324 int error = 0; 325 LIST_HEAD(net_exit_list); 326 327 refcount_set(&net->ns.count, 1); 328 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt"); 329 330 refcount_set(&net->passive, 1); 331 get_random_bytes(&net->hash_mix, sizeof(u32)); 332 preempt_disable(); 333 net->net_cookie = gen_cookie_next(&net_cookie); 334 preempt_enable(); 335 net->dev_base_seq = 1; 336 net->user_ns = user_ns; 337 idr_init(&net->netns_ids); 338 spin_lock_init(&net->nsid_lock); 339 mutex_init(&net->ipv4.ra_mutex); 340 341 list_for_each_entry(ops, &pernet_list, list) { 342 error = ops_init(ops, net); 343 if (error < 0) 344 goto out_undo; 345 } 346 down_write(&net_rwsem); 347 list_add_tail_rcu(&net->list, &net_namespace_list); 348 up_write(&net_rwsem); 349 out: 350 return error; 351 352 out_undo: 353 /* Walk through the list backwards calling the exit functions 354 * for the pernet modules whose init functions did not fail. 355 */ 356 list_add(&net->exit_list, &net_exit_list); 357 saved_ops = ops; 358 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 359 ops_pre_exit_list(ops, &net_exit_list); 360 361 synchronize_rcu(); 362 363 ops = saved_ops; 364 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 365 ops_exit_list(ops, &net_exit_list); 366 367 ops = saved_ops; 368 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 369 ops_free_list(ops, &net_exit_list); 370 371 rcu_barrier(); 372 goto out; 373 } 374 375 static int __net_init net_defaults_init_net(struct net *net) 376 { 377 net->core.sysctl_somaxconn = SOMAXCONN; 378 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 379 380 return 0; 381 } 382 383 static struct pernet_operations net_defaults_ops = { 384 .init = net_defaults_init_net, 385 }; 386 387 static __init int net_defaults_init(void) 388 { 389 if (register_pernet_subsys(&net_defaults_ops)) 390 panic("Cannot initialize net default settings"); 391 392 return 0; 393 } 394 395 core_initcall(net_defaults_init); 396 397 #ifdef CONFIG_NET_NS 398 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 399 { 400 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 401 } 402 403 static void dec_net_namespaces(struct ucounts *ucounts) 404 { 405 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 406 } 407 408 static struct kmem_cache *net_cachep __ro_after_init; 409 static struct workqueue_struct *netns_wq; 410 411 static struct net *net_alloc(void) 412 { 413 struct net *net = NULL; 414 struct net_generic *ng; 415 416 ng = net_alloc_generic(); 417 if (!ng) 418 goto out; 419 420 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 421 if (!net) 422 goto out_free; 423 424 #ifdef CONFIG_KEYS 425 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 426 if (!net->key_domain) 427 goto out_free_2; 428 refcount_set(&net->key_domain->usage, 1); 429 #endif 430 431 rcu_assign_pointer(net->gen, ng); 432 out: 433 return net; 434 435 #ifdef CONFIG_KEYS 436 out_free_2: 437 kmem_cache_free(net_cachep, net); 438 net = NULL; 439 #endif 440 out_free: 441 kfree(ng); 442 goto out; 443 } 444 445 static LLIST_HEAD(defer_free_list); 446 447 static void net_complete_free(void) 448 { 449 struct llist_node *kill_list; 450 struct net *net, *next; 451 452 /* Get the list of namespaces to free from last round. */ 453 kill_list = llist_del_all(&defer_free_list); 454 455 llist_for_each_entry_safe(net, next, kill_list, defer_free_list) 456 kmem_cache_free(net_cachep, net); 457 458 } 459 460 static void net_free(struct net *net) 461 { 462 if (refcount_dec_and_test(&net->passive)) { 463 kfree(rcu_access_pointer(net->gen)); 464 465 /* There should not be any trackers left there. */ 466 ref_tracker_dir_exit(&net->notrefcnt_tracker); 467 468 /* Wait for an extra rcu_barrier() before final free. */ 469 llist_add(&net->defer_free_list, &defer_free_list); 470 } 471 } 472 473 void net_drop_ns(void *p) 474 { 475 struct net *net = (struct net *)p; 476 477 if (net) 478 net_free(net); 479 } 480 481 struct net *copy_net_ns(unsigned long flags, 482 struct user_namespace *user_ns, struct net *old_net) 483 { 484 struct ucounts *ucounts; 485 struct net *net; 486 int rv; 487 488 if (!(flags & CLONE_NEWNET)) 489 return get_net(old_net); 490 491 ucounts = inc_net_namespaces(user_ns); 492 if (!ucounts) 493 return ERR_PTR(-ENOSPC); 494 495 net = net_alloc(); 496 if (!net) { 497 rv = -ENOMEM; 498 goto dec_ucounts; 499 } 500 501 preinit_net(net); 502 refcount_set(&net->passive, 1); 503 net->ucounts = ucounts; 504 get_user_ns(user_ns); 505 506 rv = down_read_killable(&pernet_ops_rwsem); 507 if (rv < 0) 508 goto put_userns; 509 510 rv = setup_net(net, user_ns); 511 512 up_read(&pernet_ops_rwsem); 513 514 if (rv < 0) { 515 put_userns: 516 #ifdef CONFIG_KEYS 517 key_remove_domain(net->key_domain); 518 #endif 519 put_user_ns(user_ns); 520 net_free(net); 521 dec_ucounts: 522 dec_net_namespaces(ucounts); 523 return ERR_PTR(rv); 524 } 525 return net; 526 } 527 528 /** 529 * net_ns_get_ownership - get sysfs ownership data for @net 530 * @net: network namespace in question (can be NULL) 531 * @uid: kernel user ID for sysfs objects 532 * @gid: kernel group ID for sysfs objects 533 * 534 * Returns the uid/gid pair of root in the user namespace associated with the 535 * given network namespace. 536 */ 537 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 538 { 539 if (net) { 540 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 541 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 542 543 if (uid_valid(ns_root_uid)) 544 *uid = ns_root_uid; 545 546 if (gid_valid(ns_root_gid)) 547 *gid = ns_root_gid; 548 } else { 549 *uid = GLOBAL_ROOT_UID; 550 *gid = GLOBAL_ROOT_GID; 551 } 552 } 553 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 554 555 static void unhash_nsid(struct net *net, struct net *last) 556 { 557 struct net *tmp; 558 /* This function is only called from cleanup_net() work, 559 * and this work is the only process, that may delete 560 * a net from net_namespace_list. So, when the below 561 * is executing, the list may only grow. Thus, we do not 562 * use for_each_net_rcu() or net_rwsem. 563 */ 564 for_each_net(tmp) { 565 int id; 566 567 spin_lock_bh(&tmp->nsid_lock); 568 id = __peernet2id(tmp, net); 569 if (id >= 0) 570 idr_remove(&tmp->netns_ids, id); 571 spin_unlock_bh(&tmp->nsid_lock); 572 if (id >= 0) 573 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 574 GFP_KERNEL); 575 if (tmp == last) 576 break; 577 } 578 spin_lock_bh(&net->nsid_lock); 579 idr_destroy(&net->netns_ids); 580 spin_unlock_bh(&net->nsid_lock); 581 } 582 583 static LLIST_HEAD(cleanup_list); 584 585 static void cleanup_net(struct work_struct *work) 586 { 587 const struct pernet_operations *ops; 588 struct net *net, *tmp, *last; 589 struct llist_node *net_kill_list; 590 LIST_HEAD(net_exit_list); 591 592 /* Atomically snapshot the list of namespaces to cleanup */ 593 net_kill_list = llist_del_all(&cleanup_list); 594 595 down_read(&pernet_ops_rwsem); 596 597 /* Don't let anyone else find us. */ 598 down_write(&net_rwsem); 599 llist_for_each_entry(net, net_kill_list, cleanup_list) 600 list_del_rcu(&net->list); 601 /* Cache last net. After we unlock rtnl, no one new net 602 * added to net_namespace_list can assign nsid pointer 603 * to a net from net_kill_list (see peernet2id_alloc()). 604 * So, we skip them in unhash_nsid(). 605 * 606 * Note, that unhash_nsid() does not delete nsid links 607 * between net_kill_list's nets, as they've already 608 * deleted from net_namespace_list. But, this would be 609 * useless anyway, as netns_ids are destroyed there. 610 */ 611 last = list_last_entry(&net_namespace_list, struct net, list); 612 up_write(&net_rwsem); 613 614 llist_for_each_entry(net, net_kill_list, cleanup_list) { 615 unhash_nsid(net, last); 616 list_add_tail(&net->exit_list, &net_exit_list); 617 } 618 619 /* Run all of the network namespace pre_exit methods */ 620 list_for_each_entry_reverse(ops, &pernet_list, list) 621 ops_pre_exit_list(ops, &net_exit_list); 622 623 /* 624 * Another CPU might be rcu-iterating the list, wait for it. 625 * This needs to be before calling the exit() notifiers, so 626 * the rcu_barrier() below isn't sufficient alone. 627 * Also the pre_exit() and exit() methods need this barrier. 628 */ 629 synchronize_rcu(); 630 631 /* Run all of the network namespace exit methods */ 632 list_for_each_entry_reverse(ops, &pernet_list, list) 633 ops_exit_list(ops, &net_exit_list); 634 635 /* Free the net generic variables */ 636 list_for_each_entry_reverse(ops, &pernet_list, list) 637 ops_free_list(ops, &net_exit_list); 638 639 up_read(&pernet_ops_rwsem); 640 641 /* Ensure there are no outstanding rcu callbacks using this 642 * network namespace. 643 */ 644 rcu_barrier(); 645 646 net_complete_free(); 647 648 /* Finally it is safe to free my network namespace structure */ 649 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 650 list_del_init(&net->exit_list); 651 dec_net_namespaces(net->ucounts); 652 #ifdef CONFIG_KEYS 653 key_remove_domain(net->key_domain); 654 #endif 655 put_user_ns(net->user_ns); 656 net_free(net); 657 } 658 } 659 660 /** 661 * net_ns_barrier - wait until concurrent net_cleanup_work is done 662 * 663 * cleanup_net runs from work queue and will first remove namespaces 664 * from the global list, then run net exit functions. 665 * 666 * Call this in module exit path to make sure that all netns 667 * ->exit ops have been invoked before the function is removed. 668 */ 669 void net_ns_barrier(void) 670 { 671 down_write(&pernet_ops_rwsem); 672 up_write(&pernet_ops_rwsem); 673 } 674 EXPORT_SYMBOL(net_ns_barrier); 675 676 static DECLARE_WORK(net_cleanup_work, cleanup_net); 677 678 void __put_net(struct net *net) 679 { 680 ref_tracker_dir_exit(&net->refcnt_tracker); 681 /* Cleanup the network namespace in process context */ 682 if (llist_add(&net->cleanup_list, &cleanup_list)) 683 queue_work(netns_wq, &net_cleanup_work); 684 } 685 EXPORT_SYMBOL_GPL(__put_net); 686 687 /** 688 * get_net_ns - increment the refcount of the network namespace 689 * @ns: common namespace (net) 690 * 691 * Returns the net's common namespace or ERR_PTR() if ref is zero. 692 */ 693 struct ns_common *get_net_ns(struct ns_common *ns) 694 { 695 struct net *net; 696 697 net = maybe_get_net(container_of(ns, struct net, ns)); 698 if (net) 699 return &net->ns; 700 return ERR_PTR(-EINVAL); 701 } 702 EXPORT_SYMBOL_GPL(get_net_ns); 703 704 struct net *get_net_ns_by_fd(int fd) 705 { 706 struct fd f = fdget(fd); 707 struct net *net = ERR_PTR(-EINVAL); 708 709 if (!f.file) 710 return ERR_PTR(-EBADF); 711 712 if (proc_ns_file(f.file)) { 713 struct ns_common *ns = get_proc_ns(file_inode(f.file)); 714 if (ns->ops == &netns_operations) 715 net = get_net(container_of(ns, struct net, ns)); 716 } 717 fdput(f); 718 719 return net; 720 } 721 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 722 #endif 723 724 struct net *get_net_ns_by_pid(pid_t pid) 725 { 726 struct task_struct *tsk; 727 struct net *net; 728 729 /* Lookup the network namespace */ 730 net = ERR_PTR(-ESRCH); 731 rcu_read_lock(); 732 tsk = find_task_by_vpid(pid); 733 if (tsk) { 734 struct nsproxy *nsproxy; 735 task_lock(tsk); 736 nsproxy = tsk->nsproxy; 737 if (nsproxy) 738 net = get_net(nsproxy->net_ns); 739 task_unlock(tsk); 740 } 741 rcu_read_unlock(); 742 return net; 743 } 744 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 745 746 static __net_init int net_ns_net_init(struct net *net) 747 { 748 #ifdef CONFIG_NET_NS 749 net->ns.ops = &netns_operations; 750 #endif 751 return ns_alloc_inum(&net->ns); 752 } 753 754 static __net_exit void net_ns_net_exit(struct net *net) 755 { 756 ns_free_inum(&net->ns); 757 } 758 759 static struct pernet_operations __net_initdata net_ns_ops = { 760 .init = net_ns_net_init, 761 .exit = net_ns_net_exit, 762 }; 763 764 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 765 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 766 [NETNSA_NSID] = { .type = NLA_S32 }, 767 [NETNSA_PID] = { .type = NLA_U32 }, 768 [NETNSA_FD] = { .type = NLA_U32 }, 769 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 770 }; 771 772 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 773 struct netlink_ext_ack *extack) 774 { 775 struct net *net = sock_net(skb->sk); 776 struct nlattr *tb[NETNSA_MAX + 1]; 777 struct nlattr *nla; 778 struct net *peer; 779 int nsid, err; 780 781 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 782 NETNSA_MAX, rtnl_net_policy, extack); 783 if (err < 0) 784 return err; 785 if (!tb[NETNSA_NSID]) { 786 NL_SET_ERR_MSG(extack, "nsid is missing"); 787 return -EINVAL; 788 } 789 nsid = nla_get_s32(tb[NETNSA_NSID]); 790 791 if (tb[NETNSA_PID]) { 792 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 793 nla = tb[NETNSA_PID]; 794 } else if (tb[NETNSA_FD]) { 795 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 796 nla = tb[NETNSA_FD]; 797 } else { 798 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 799 return -EINVAL; 800 } 801 if (IS_ERR(peer)) { 802 NL_SET_BAD_ATTR(extack, nla); 803 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 804 return PTR_ERR(peer); 805 } 806 807 spin_lock_bh(&net->nsid_lock); 808 if (__peernet2id(net, peer) >= 0) { 809 spin_unlock_bh(&net->nsid_lock); 810 err = -EEXIST; 811 NL_SET_BAD_ATTR(extack, nla); 812 NL_SET_ERR_MSG(extack, 813 "Peer netns already has a nsid assigned"); 814 goto out; 815 } 816 817 err = alloc_netid(net, peer, nsid); 818 spin_unlock_bh(&net->nsid_lock); 819 if (err >= 0) { 820 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 821 nlh, GFP_KERNEL); 822 err = 0; 823 } else if (err == -ENOSPC && nsid >= 0) { 824 err = -EEXIST; 825 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 826 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 827 } 828 out: 829 put_net(peer); 830 return err; 831 } 832 833 static int rtnl_net_get_size(void) 834 { 835 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 836 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 837 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 838 ; 839 } 840 841 struct net_fill_args { 842 u32 portid; 843 u32 seq; 844 int flags; 845 int cmd; 846 int nsid; 847 bool add_ref; 848 int ref_nsid; 849 }; 850 851 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 852 { 853 struct nlmsghdr *nlh; 854 struct rtgenmsg *rth; 855 856 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 857 args->flags); 858 if (!nlh) 859 return -EMSGSIZE; 860 861 rth = nlmsg_data(nlh); 862 rth->rtgen_family = AF_UNSPEC; 863 864 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 865 goto nla_put_failure; 866 867 if (args->add_ref && 868 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 869 goto nla_put_failure; 870 871 nlmsg_end(skb, nlh); 872 return 0; 873 874 nla_put_failure: 875 nlmsg_cancel(skb, nlh); 876 return -EMSGSIZE; 877 } 878 879 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 880 const struct nlmsghdr *nlh, 881 struct nlattr **tb, 882 struct netlink_ext_ack *extack) 883 { 884 int i, err; 885 886 if (!netlink_strict_get_check(skb)) 887 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 888 tb, NETNSA_MAX, rtnl_net_policy, 889 extack); 890 891 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 892 NETNSA_MAX, rtnl_net_policy, 893 extack); 894 if (err) 895 return err; 896 897 for (i = 0; i <= NETNSA_MAX; i++) { 898 if (!tb[i]) 899 continue; 900 901 switch (i) { 902 case NETNSA_PID: 903 case NETNSA_FD: 904 case NETNSA_NSID: 905 case NETNSA_TARGET_NSID: 906 break; 907 default: 908 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 909 return -EINVAL; 910 } 911 } 912 913 return 0; 914 } 915 916 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 917 struct netlink_ext_ack *extack) 918 { 919 struct net *net = sock_net(skb->sk); 920 struct nlattr *tb[NETNSA_MAX + 1]; 921 struct net_fill_args fillargs = { 922 .portid = NETLINK_CB(skb).portid, 923 .seq = nlh->nlmsg_seq, 924 .cmd = RTM_NEWNSID, 925 }; 926 struct net *peer, *target = net; 927 struct nlattr *nla; 928 struct sk_buff *msg; 929 int err; 930 931 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 932 if (err < 0) 933 return err; 934 if (tb[NETNSA_PID]) { 935 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 936 nla = tb[NETNSA_PID]; 937 } else if (tb[NETNSA_FD]) { 938 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 939 nla = tb[NETNSA_FD]; 940 } else if (tb[NETNSA_NSID]) { 941 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 942 if (!peer) 943 peer = ERR_PTR(-ENOENT); 944 nla = tb[NETNSA_NSID]; 945 } else { 946 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 947 return -EINVAL; 948 } 949 950 if (IS_ERR(peer)) { 951 NL_SET_BAD_ATTR(extack, nla); 952 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 953 return PTR_ERR(peer); 954 } 955 956 if (tb[NETNSA_TARGET_NSID]) { 957 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 958 959 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 960 if (IS_ERR(target)) { 961 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 962 NL_SET_ERR_MSG(extack, 963 "Target netns reference is invalid"); 964 err = PTR_ERR(target); 965 goto out; 966 } 967 fillargs.add_ref = true; 968 fillargs.ref_nsid = peernet2id(net, peer); 969 } 970 971 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 972 if (!msg) { 973 err = -ENOMEM; 974 goto out; 975 } 976 977 fillargs.nsid = peernet2id(target, peer); 978 err = rtnl_net_fill(msg, &fillargs); 979 if (err < 0) 980 goto err_out; 981 982 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 983 goto out; 984 985 err_out: 986 nlmsg_free(msg); 987 out: 988 if (fillargs.add_ref) 989 put_net(target); 990 put_net(peer); 991 return err; 992 } 993 994 struct rtnl_net_dump_cb { 995 struct net *tgt_net; 996 struct net *ref_net; 997 struct sk_buff *skb; 998 struct net_fill_args fillargs; 999 int idx; 1000 int s_idx; 1001 }; 1002 1003 /* Runs in RCU-critical section. */ 1004 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 1005 { 1006 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 1007 int ret; 1008 1009 if (net_cb->idx < net_cb->s_idx) 1010 goto cont; 1011 1012 net_cb->fillargs.nsid = id; 1013 if (net_cb->fillargs.add_ref) 1014 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 1015 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 1016 if (ret < 0) 1017 return ret; 1018 1019 cont: 1020 net_cb->idx++; 1021 return 0; 1022 } 1023 1024 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 1025 struct rtnl_net_dump_cb *net_cb, 1026 struct netlink_callback *cb) 1027 { 1028 struct netlink_ext_ack *extack = cb->extack; 1029 struct nlattr *tb[NETNSA_MAX + 1]; 1030 int err, i; 1031 1032 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 1033 NETNSA_MAX, rtnl_net_policy, 1034 extack); 1035 if (err < 0) 1036 return err; 1037 1038 for (i = 0; i <= NETNSA_MAX; i++) { 1039 if (!tb[i]) 1040 continue; 1041 1042 if (i == NETNSA_TARGET_NSID) { 1043 struct net *net; 1044 1045 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1046 if (IS_ERR(net)) { 1047 NL_SET_BAD_ATTR(extack, tb[i]); 1048 NL_SET_ERR_MSG(extack, 1049 "Invalid target network namespace id"); 1050 return PTR_ERR(net); 1051 } 1052 net_cb->fillargs.add_ref = true; 1053 net_cb->ref_net = net_cb->tgt_net; 1054 net_cb->tgt_net = net; 1055 } else { 1056 NL_SET_BAD_ATTR(extack, tb[i]); 1057 NL_SET_ERR_MSG(extack, 1058 "Unsupported attribute in dump request"); 1059 return -EINVAL; 1060 } 1061 } 1062 1063 return 0; 1064 } 1065 1066 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1067 { 1068 struct rtnl_net_dump_cb net_cb = { 1069 .tgt_net = sock_net(skb->sk), 1070 .skb = skb, 1071 .fillargs = { 1072 .portid = NETLINK_CB(cb->skb).portid, 1073 .seq = cb->nlh->nlmsg_seq, 1074 .flags = NLM_F_MULTI, 1075 .cmd = RTM_NEWNSID, 1076 }, 1077 .idx = 0, 1078 .s_idx = cb->args[0], 1079 }; 1080 int err = 0; 1081 1082 if (cb->strict_check) { 1083 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1084 if (err < 0) 1085 goto end; 1086 } 1087 1088 rcu_read_lock(); 1089 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1090 rcu_read_unlock(); 1091 1092 cb->args[0] = net_cb.idx; 1093 end: 1094 if (net_cb.fillargs.add_ref) 1095 put_net(net_cb.tgt_net); 1096 return err < 0 ? err : skb->len; 1097 } 1098 1099 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1100 struct nlmsghdr *nlh, gfp_t gfp) 1101 { 1102 struct net_fill_args fillargs = { 1103 .portid = portid, 1104 .seq = nlh ? nlh->nlmsg_seq : 0, 1105 .cmd = cmd, 1106 .nsid = id, 1107 }; 1108 struct sk_buff *msg; 1109 int err = -ENOMEM; 1110 1111 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1112 if (!msg) 1113 goto out; 1114 1115 err = rtnl_net_fill(msg, &fillargs); 1116 if (err < 0) 1117 goto err_out; 1118 1119 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1120 return; 1121 1122 err_out: 1123 nlmsg_free(msg); 1124 out: 1125 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1126 } 1127 1128 void __init net_ns_init(void) 1129 { 1130 struct net_generic *ng; 1131 1132 #ifdef CONFIG_NET_NS 1133 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1134 SMP_CACHE_BYTES, 1135 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1136 1137 /* Create workqueue for cleanup */ 1138 netns_wq = create_singlethread_workqueue("netns"); 1139 if (!netns_wq) 1140 panic("Could not create netns workq"); 1141 #endif 1142 1143 ng = net_alloc_generic(); 1144 if (!ng) 1145 panic("Could not allocate generic netns"); 1146 1147 rcu_assign_pointer(init_net.gen, ng); 1148 1149 #ifdef CONFIG_KEYS 1150 init_net.key_domain = &init_net_key_domain; 1151 #endif 1152 down_write(&pernet_ops_rwsem); 1153 preinit_net(&init_net); 1154 if (setup_net(&init_net, &init_user_ns)) 1155 panic("Could not setup the initial network namespace"); 1156 1157 init_net_initialized = true; 1158 up_write(&pernet_ops_rwsem); 1159 1160 if (register_pernet_subsys(&net_ns_ops)) 1161 panic("Could not register network namespace subsystems"); 1162 1163 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1164 RTNL_FLAG_DOIT_UNLOCKED); 1165 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1166 RTNL_FLAG_DOIT_UNLOCKED); 1167 } 1168 1169 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list) 1170 { 1171 ops_pre_exit_list(ops, net_exit_list); 1172 synchronize_rcu(); 1173 ops_exit_list(ops, net_exit_list); 1174 ops_free_list(ops, net_exit_list); 1175 } 1176 1177 #ifdef CONFIG_NET_NS 1178 static int __register_pernet_operations(struct list_head *list, 1179 struct pernet_operations *ops) 1180 { 1181 struct net *net; 1182 int error; 1183 LIST_HEAD(net_exit_list); 1184 1185 list_add_tail(&ops->list, list); 1186 if (ops->init || (ops->id && ops->size)) { 1187 /* We held write locked pernet_ops_rwsem, and parallel 1188 * setup_net() and cleanup_net() are not possible. 1189 */ 1190 for_each_net(net) { 1191 error = ops_init(ops, net); 1192 if (error) 1193 goto out_undo; 1194 list_add_tail(&net->exit_list, &net_exit_list); 1195 } 1196 } 1197 return 0; 1198 1199 out_undo: 1200 /* If I have an error cleanup all namespaces I initialized */ 1201 list_del(&ops->list); 1202 free_exit_list(ops, &net_exit_list); 1203 return error; 1204 } 1205 1206 static void __unregister_pernet_operations(struct pernet_operations *ops) 1207 { 1208 struct net *net; 1209 LIST_HEAD(net_exit_list); 1210 1211 list_del(&ops->list); 1212 /* See comment in __register_pernet_operations() */ 1213 for_each_net(net) 1214 list_add_tail(&net->exit_list, &net_exit_list); 1215 1216 free_exit_list(ops, &net_exit_list); 1217 } 1218 1219 #else 1220 1221 static int __register_pernet_operations(struct list_head *list, 1222 struct pernet_operations *ops) 1223 { 1224 if (!init_net_initialized) { 1225 list_add_tail(&ops->list, list); 1226 return 0; 1227 } 1228 1229 return ops_init(ops, &init_net); 1230 } 1231 1232 static void __unregister_pernet_operations(struct pernet_operations *ops) 1233 { 1234 if (!init_net_initialized) { 1235 list_del(&ops->list); 1236 } else { 1237 LIST_HEAD(net_exit_list); 1238 list_add(&init_net.exit_list, &net_exit_list); 1239 free_exit_list(ops, &net_exit_list); 1240 } 1241 } 1242 1243 #endif /* CONFIG_NET_NS */ 1244 1245 static DEFINE_IDA(net_generic_ids); 1246 1247 static int register_pernet_operations(struct list_head *list, 1248 struct pernet_operations *ops) 1249 { 1250 int error; 1251 1252 if (ops->id) { 1253 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1254 GFP_KERNEL); 1255 if (error < 0) 1256 return error; 1257 *ops->id = error; 1258 /* This does not require READ_ONCE as writers already hold 1259 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect 1260 * net_alloc_generic. 1261 */ 1262 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1)); 1263 } 1264 error = __register_pernet_operations(list, ops); 1265 if (error) { 1266 rcu_barrier(); 1267 if (ops->id) 1268 ida_free(&net_generic_ids, *ops->id); 1269 } 1270 1271 return error; 1272 } 1273 1274 static void unregister_pernet_operations(struct pernet_operations *ops) 1275 { 1276 __unregister_pernet_operations(ops); 1277 rcu_barrier(); 1278 if (ops->id) 1279 ida_free(&net_generic_ids, *ops->id); 1280 } 1281 1282 /** 1283 * register_pernet_subsys - register a network namespace subsystem 1284 * @ops: pernet operations structure for the subsystem 1285 * 1286 * Register a subsystem which has init and exit functions 1287 * that are called when network namespaces are created and 1288 * destroyed respectively. 1289 * 1290 * When registered all network namespace init functions are 1291 * called for every existing network namespace. Allowing kernel 1292 * modules to have a race free view of the set of network namespaces. 1293 * 1294 * When a new network namespace is created all of the init 1295 * methods are called in the order in which they were registered. 1296 * 1297 * When a network namespace is destroyed all of the exit methods 1298 * are called in the reverse of the order with which they were 1299 * registered. 1300 */ 1301 int register_pernet_subsys(struct pernet_operations *ops) 1302 { 1303 int error; 1304 down_write(&pernet_ops_rwsem); 1305 error = register_pernet_operations(first_device, ops); 1306 up_write(&pernet_ops_rwsem); 1307 return error; 1308 } 1309 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1310 1311 /** 1312 * unregister_pernet_subsys - unregister a network namespace subsystem 1313 * @ops: pernet operations structure to manipulate 1314 * 1315 * Remove the pernet operations structure from the list to be 1316 * used when network namespaces are created or destroyed. In 1317 * addition run the exit method for all existing network 1318 * namespaces. 1319 */ 1320 void unregister_pernet_subsys(struct pernet_operations *ops) 1321 { 1322 down_write(&pernet_ops_rwsem); 1323 unregister_pernet_operations(ops); 1324 up_write(&pernet_ops_rwsem); 1325 } 1326 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1327 1328 /** 1329 * register_pernet_device - register a network namespace device 1330 * @ops: pernet operations structure for the subsystem 1331 * 1332 * Register a device which has init and exit functions 1333 * that are called when network namespaces are created and 1334 * destroyed respectively. 1335 * 1336 * When registered all network namespace init functions are 1337 * called for every existing network namespace. Allowing kernel 1338 * modules to have a race free view of the set of network namespaces. 1339 * 1340 * When a new network namespace is created all of the init 1341 * methods are called in the order in which they were registered. 1342 * 1343 * When a network namespace is destroyed all of the exit methods 1344 * are called in the reverse of the order with which they were 1345 * registered. 1346 */ 1347 int register_pernet_device(struct pernet_operations *ops) 1348 { 1349 int error; 1350 down_write(&pernet_ops_rwsem); 1351 error = register_pernet_operations(&pernet_list, ops); 1352 if (!error && (first_device == &pernet_list)) 1353 first_device = &ops->list; 1354 up_write(&pernet_ops_rwsem); 1355 return error; 1356 } 1357 EXPORT_SYMBOL_GPL(register_pernet_device); 1358 1359 /** 1360 * unregister_pernet_device - unregister a network namespace netdevice 1361 * @ops: pernet operations structure to manipulate 1362 * 1363 * Remove the pernet operations structure from the list to be 1364 * used when network namespaces are created or destroyed. In 1365 * addition run the exit method for all existing network 1366 * namespaces. 1367 */ 1368 void unregister_pernet_device(struct pernet_operations *ops) 1369 { 1370 down_write(&pernet_ops_rwsem); 1371 if (&ops->list == first_device) 1372 first_device = first_device->next; 1373 unregister_pernet_operations(ops); 1374 up_write(&pernet_ops_rwsem); 1375 } 1376 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1377 1378 #ifdef CONFIG_NET_NS 1379 static struct ns_common *netns_get(struct task_struct *task) 1380 { 1381 struct net *net = NULL; 1382 struct nsproxy *nsproxy; 1383 1384 task_lock(task); 1385 nsproxy = task->nsproxy; 1386 if (nsproxy) 1387 net = get_net(nsproxy->net_ns); 1388 task_unlock(task); 1389 1390 return net ? &net->ns : NULL; 1391 } 1392 1393 static inline struct net *to_net_ns(struct ns_common *ns) 1394 { 1395 return container_of(ns, struct net, ns); 1396 } 1397 1398 static void netns_put(struct ns_common *ns) 1399 { 1400 put_net(to_net_ns(ns)); 1401 } 1402 1403 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1404 { 1405 struct nsproxy *nsproxy = nsset->nsproxy; 1406 struct net *net = to_net_ns(ns); 1407 1408 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1409 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1410 return -EPERM; 1411 1412 put_net(nsproxy->net_ns); 1413 nsproxy->net_ns = get_net(net); 1414 return 0; 1415 } 1416 1417 static struct user_namespace *netns_owner(struct ns_common *ns) 1418 { 1419 return to_net_ns(ns)->user_ns; 1420 } 1421 1422 const struct proc_ns_operations netns_operations = { 1423 .name = "net", 1424 .type = CLONE_NEWNET, 1425 .get = netns_get, 1426 .put = netns_put, 1427 .install = netns_install, 1428 .owner = netns_owner, 1429 }; 1430 #endif 1431