1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 #include <linux/proc_fs.h> 24 25 #include <net/sock.h> 26 #include <net/netlink.h> 27 #include <net/net_namespace.h> 28 #include <net/netns/generic.h> 29 30 /* 31 * Our network namespace constructor/destructor lists 32 */ 33 34 static LIST_HEAD(pernet_list); 35 static struct list_head *first_device = &pernet_list; 36 37 LIST_HEAD(net_namespace_list); 38 EXPORT_SYMBOL_GPL(net_namespace_list); 39 40 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 41 DECLARE_RWSEM(net_rwsem); 42 EXPORT_SYMBOL_GPL(net_rwsem); 43 44 #ifdef CONFIG_KEYS 45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 46 #endif 47 48 struct net init_net; 49 EXPORT_SYMBOL(init_net); 50 51 static bool init_net_initialized; 52 /* 53 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 54 * init_net_initialized and first_device pointer. 55 * This is internal net namespace object. Please, don't use it 56 * outside. 57 */ 58 DECLARE_RWSEM(pernet_ops_rwsem); 59 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 60 61 #define MIN_PERNET_OPS_ID \ 62 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 63 64 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 65 66 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 67 68 DEFINE_COOKIE(net_cookie); 69 70 static struct net_generic *net_alloc_generic(void) 71 { 72 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs); 73 unsigned int generic_size; 74 struct net_generic *ng; 75 76 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]); 77 78 ng = kzalloc(generic_size, GFP_KERNEL); 79 if (ng) 80 ng->s.len = gen_ptrs; 81 82 return ng; 83 } 84 85 static int net_assign_generic(struct net *net, unsigned int id, void *data) 86 { 87 struct net_generic *ng, *old_ng; 88 89 BUG_ON(id < MIN_PERNET_OPS_ID); 90 91 old_ng = rcu_dereference_protected(net->gen, 92 lockdep_is_held(&pernet_ops_rwsem)); 93 if (old_ng->s.len > id) { 94 old_ng->ptr[id] = data; 95 return 0; 96 } 97 98 ng = net_alloc_generic(); 99 if (!ng) 100 return -ENOMEM; 101 102 /* 103 * Some synchronisation notes: 104 * 105 * The net_generic explores the net->gen array inside rcu 106 * read section. Besides once set the net->gen->ptr[x] 107 * pointer never changes (see rules in netns/generic.h). 108 * 109 * That said, we simply duplicate this array and schedule 110 * the old copy for kfree after a grace period. 111 */ 112 113 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 114 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 115 ng->ptr[id] = data; 116 117 rcu_assign_pointer(net->gen, ng); 118 kfree_rcu(old_ng, s.rcu); 119 return 0; 120 } 121 122 static int ops_init(const struct pernet_operations *ops, struct net *net) 123 { 124 struct net_generic *ng; 125 int err = -ENOMEM; 126 void *data = NULL; 127 128 if (ops->id && ops->size) { 129 data = kzalloc(ops->size, GFP_KERNEL); 130 if (!data) 131 goto out; 132 133 err = net_assign_generic(net, *ops->id, data); 134 if (err) 135 goto cleanup; 136 } 137 err = 0; 138 if (ops->init) 139 err = ops->init(net); 140 if (!err) 141 return 0; 142 143 if (ops->id && ops->size) { 144 ng = rcu_dereference_protected(net->gen, 145 lockdep_is_held(&pernet_ops_rwsem)); 146 ng->ptr[*ops->id] = NULL; 147 } 148 149 cleanup: 150 kfree(data); 151 152 out: 153 return err; 154 } 155 156 static void ops_pre_exit_list(const struct pernet_operations *ops, 157 struct list_head *net_exit_list) 158 { 159 struct net *net; 160 161 if (ops->pre_exit) { 162 list_for_each_entry(net, net_exit_list, exit_list) 163 ops->pre_exit(net); 164 } 165 } 166 167 static void ops_exit_list(const struct pernet_operations *ops, 168 struct list_head *net_exit_list) 169 { 170 struct net *net; 171 if (ops->exit) { 172 list_for_each_entry(net, net_exit_list, exit_list) { 173 ops->exit(net); 174 cond_resched(); 175 } 176 } 177 if (ops->exit_batch) 178 ops->exit_batch(net_exit_list); 179 } 180 181 static void ops_free_list(const struct pernet_operations *ops, 182 struct list_head *net_exit_list) 183 { 184 struct net *net; 185 if (ops->size && ops->id) { 186 list_for_each_entry(net, net_exit_list, exit_list) 187 kfree(net_generic(net, *ops->id)); 188 } 189 } 190 191 /* should be called with nsid_lock held */ 192 static int alloc_netid(struct net *net, struct net *peer, int reqid) 193 { 194 int min = 0, max = 0; 195 196 if (reqid >= 0) { 197 min = reqid; 198 max = reqid + 1; 199 } 200 201 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 202 } 203 204 /* This function is used by idr_for_each(). If net is equal to peer, the 205 * function returns the id so that idr_for_each() stops. Because we cannot 206 * returns the id 0 (idr_for_each() will not stop), we return the magic value 207 * NET_ID_ZERO (-1) for it. 208 */ 209 #define NET_ID_ZERO -1 210 static int net_eq_idr(int id, void *net, void *peer) 211 { 212 if (net_eq(net, peer)) 213 return id ? : NET_ID_ZERO; 214 return 0; 215 } 216 217 /* Must be called from RCU-critical section or with nsid_lock held */ 218 static int __peernet2id(const struct net *net, struct net *peer) 219 { 220 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 221 222 /* Magic value for id 0. */ 223 if (id == NET_ID_ZERO) 224 return 0; 225 if (id > 0) 226 return id; 227 228 return NETNSA_NSID_NOT_ASSIGNED; 229 } 230 231 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 232 struct nlmsghdr *nlh, gfp_t gfp); 233 /* This function returns the id of a peer netns. If no id is assigned, one will 234 * be allocated and returned. 235 */ 236 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 237 { 238 int id; 239 240 if (refcount_read(&net->ns.count) == 0) 241 return NETNSA_NSID_NOT_ASSIGNED; 242 243 spin_lock_bh(&net->nsid_lock); 244 id = __peernet2id(net, peer); 245 if (id >= 0) { 246 spin_unlock_bh(&net->nsid_lock); 247 return id; 248 } 249 250 /* When peer is obtained from RCU lists, we may race with 251 * its cleanup. Check whether it's alive, and this guarantees 252 * we never hash a peer back to net->netns_ids, after it has 253 * just been idr_remove()'d from there in cleanup_net(). 254 */ 255 if (!maybe_get_net(peer)) { 256 spin_unlock_bh(&net->nsid_lock); 257 return NETNSA_NSID_NOT_ASSIGNED; 258 } 259 260 id = alloc_netid(net, peer, -1); 261 spin_unlock_bh(&net->nsid_lock); 262 263 put_net(peer); 264 if (id < 0) 265 return NETNSA_NSID_NOT_ASSIGNED; 266 267 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 268 269 return id; 270 } 271 EXPORT_SYMBOL_GPL(peernet2id_alloc); 272 273 /* This function returns, if assigned, the id of a peer netns. */ 274 int peernet2id(const struct net *net, struct net *peer) 275 { 276 int id; 277 278 rcu_read_lock(); 279 id = __peernet2id(net, peer); 280 rcu_read_unlock(); 281 282 return id; 283 } 284 EXPORT_SYMBOL(peernet2id); 285 286 /* This function returns true is the peer netns has an id assigned into the 287 * current netns. 288 */ 289 bool peernet_has_id(const struct net *net, struct net *peer) 290 { 291 return peernet2id(net, peer) >= 0; 292 } 293 294 struct net *get_net_ns_by_id(const struct net *net, int id) 295 { 296 struct net *peer; 297 298 if (id < 0) 299 return NULL; 300 301 rcu_read_lock(); 302 peer = idr_find(&net->netns_ids, id); 303 if (peer) 304 peer = maybe_get_net(peer); 305 rcu_read_unlock(); 306 307 return peer; 308 } 309 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 310 311 /* init code that must occur even if setup_net() is not called. */ 312 static __net_init void preinit_net(struct net *net) 313 { 314 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt"); 315 } 316 317 /* 318 * setup_net runs the initializers for the network namespace object. 319 */ 320 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 321 { 322 /* Must be called with pernet_ops_rwsem held */ 323 const struct pernet_operations *ops, *saved_ops; 324 int error = 0; 325 LIST_HEAD(net_exit_list); 326 327 refcount_set(&net->ns.count, 1); 328 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt"); 329 330 refcount_set(&net->passive, 1); 331 get_random_bytes(&net->hash_mix, sizeof(u32)); 332 preempt_disable(); 333 net->net_cookie = gen_cookie_next(&net_cookie); 334 preempt_enable(); 335 net->dev_base_seq = 1; 336 net->user_ns = user_ns; 337 idr_init(&net->netns_ids); 338 spin_lock_init(&net->nsid_lock); 339 mutex_init(&net->ipv4.ra_mutex); 340 341 list_for_each_entry(ops, &pernet_list, list) { 342 error = ops_init(ops, net); 343 if (error < 0) 344 goto out_undo; 345 } 346 down_write(&net_rwsem); 347 list_add_tail_rcu(&net->list, &net_namespace_list); 348 up_write(&net_rwsem); 349 out: 350 return error; 351 352 out_undo: 353 /* Walk through the list backwards calling the exit functions 354 * for the pernet modules whose init functions did not fail. 355 */ 356 list_add(&net->exit_list, &net_exit_list); 357 saved_ops = ops; 358 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 359 ops_pre_exit_list(ops, &net_exit_list); 360 361 synchronize_rcu(); 362 363 ops = saved_ops; 364 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 365 ops_exit_list(ops, &net_exit_list); 366 367 ops = saved_ops; 368 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 369 ops_free_list(ops, &net_exit_list); 370 371 rcu_barrier(); 372 goto out; 373 } 374 375 static int __net_init net_defaults_init_net(struct net *net) 376 { 377 net->core.sysctl_somaxconn = SOMAXCONN; 378 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 379 380 return 0; 381 } 382 383 static struct pernet_operations net_defaults_ops = { 384 .init = net_defaults_init_net, 385 }; 386 387 static __init int net_defaults_init(void) 388 { 389 if (register_pernet_subsys(&net_defaults_ops)) 390 panic("Cannot initialize net default settings"); 391 392 return 0; 393 } 394 395 core_initcall(net_defaults_init); 396 397 #ifdef CONFIG_NET_NS 398 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 399 { 400 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 401 } 402 403 static void dec_net_namespaces(struct ucounts *ucounts) 404 { 405 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 406 } 407 408 static struct kmem_cache *net_cachep __ro_after_init; 409 static struct workqueue_struct *netns_wq; 410 411 static struct net *net_alloc(void) 412 { 413 struct net *net = NULL; 414 struct net_generic *ng; 415 416 ng = net_alloc_generic(); 417 if (!ng) 418 goto out; 419 420 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 421 if (!net) 422 goto out_free; 423 424 #ifdef CONFIG_KEYS 425 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 426 if (!net->key_domain) 427 goto out_free_2; 428 refcount_set(&net->key_domain->usage, 1); 429 #endif 430 431 rcu_assign_pointer(net->gen, ng); 432 out: 433 return net; 434 435 #ifdef CONFIG_KEYS 436 out_free_2: 437 kmem_cache_free(net_cachep, net); 438 net = NULL; 439 #endif 440 out_free: 441 kfree(ng); 442 goto out; 443 } 444 445 static void net_free(struct net *net) 446 { 447 if (refcount_dec_and_test(&net->passive)) { 448 kfree(rcu_access_pointer(net->gen)); 449 450 /* There should not be any trackers left there. */ 451 ref_tracker_dir_exit(&net->notrefcnt_tracker); 452 453 kmem_cache_free(net_cachep, net); 454 } 455 } 456 457 void net_drop_ns(void *p) 458 { 459 struct net *net = (struct net *)p; 460 461 if (net) 462 net_free(net); 463 } 464 465 struct net *copy_net_ns(unsigned long flags, 466 struct user_namespace *user_ns, struct net *old_net) 467 { 468 struct ucounts *ucounts; 469 struct net *net; 470 int rv; 471 472 if (!(flags & CLONE_NEWNET)) 473 return get_net(old_net); 474 475 ucounts = inc_net_namespaces(user_ns); 476 if (!ucounts) 477 return ERR_PTR(-ENOSPC); 478 479 net = net_alloc(); 480 if (!net) { 481 rv = -ENOMEM; 482 goto dec_ucounts; 483 } 484 485 preinit_net(net); 486 refcount_set(&net->passive, 1); 487 net->ucounts = ucounts; 488 get_user_ns(user_ns); 489 490 rv = down_read_killable(&pernet_ops_rwsem); 491 if (rv < 0) 492 goto put_userns; 493 494 rv = setup_net(net, user_ns); 495 496 up_read(&pernet_ops_rwsem); 497 498 if (rv < 0) { 499 put_userns: 500 #ifdef CONFIG_KEYS 501 key_remove_domain(net->key_domain); 502 #endif 503 put_user_ns(user_ns); 504 net_free(net); 505 dec_ucounts: 506 dec_net_namespaces(ucounts); 507 return ERR_PTR(rv); 508 } 509 return net; 510 } 511 512 /** 513 * net_ns_get_ownership - get sysfs ownership data for @net 514 * @net: network namespace in question (can be NULL) 515 * @uid: kernel user ID for sysfs objects 516 * @gid: kernel group ID for sysfs objects 517 * 518 * Returns the uid/gid pair of root in the user namespace associated with the 519 * given network namespace. 520 */ 521 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 522 { 523 if (net) { 524 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 525 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 526 527 if (uid_valid(ns_root_uid)) 528 *uid = ns_root_uid; 529 530 if (gid_valid(ns_root_gid)) 531 *gid = ns_root_gid; 532 } else { 533 *uid = GLOBAL_ROOT_UID; 534 *gid = GLOBAL_ROOT_GID; 535 } 536 } 537 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 538 539 static void unhash_nsid(struct net *net, struct net *last) 540 { 541 struct net *tmp; 542 /* This function is only called from cleanup_net() work, 543 * and this work is the only process, that may delete 544 * a net from net_namespace_list. So, when the below 545 * is executing, the list may only grow. Thus, we do not 546 * use for_each_net_rcu() or net_rwsem. 547 */ 548 for_each_net(tmp) { 549 int id; 550 551 spin_lock_bh(&tmp->nsid_lock); 552 id = __peernet2id(tmp, net); 553 if (id >= 0) 554 idr_remove(&tmp->netns_ids, id); 555 spin_unlock_bh(&tmp->nsid_lock); 556 if (id >= 0) 557 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 558 GFP_KERNEL); 559 if (tmp == last) 560 break; 561 } 562 spin_lock_bh(&net->nsid_lock); 563 idr_destroy(&net->netns_ids); 564 spin_unlock_bh(&net->nsid_lock); 565 } 566 567 static LLIST_HEAD(cleanup_list); 568 569 static void cleanup_net(struct work_struct *work) 570 { 571 const struct pernet_operations *ops; 572 struct net *net, *tmp, *last; 573 struct llist_node *net_kill_list; 574 LIST_HEAD(net_exit_list); 575 576 /* Atomically snapshot the list of namespaces to cleanup */ 577 net_kill_list = llist_del_all(&cleanup_list); 578 579 down_read(&pernet_ops_rwsem); 580 581 /* Don't let anyone else find us. */ 582 down_write(&net_rwsem); 583 llist_for_each_entry(net, net_kill_list, cleanup_list) 584 list_del_rcu(&net->list); 585 /* Cache last net. After we unlock rtnl, no one new net 586 * added to net_namespace_list can assign nsid pointer 587 * to a net from net_kill_list (see peernet2id_alloc()). 588 * So, we skip them in unhash_nsid(). 589 * 590 * Note, that unhash_nsid() does not delete nsid links 591 * between net_kill_list's nets, as they've already 592 * deleted from net_namespace_list. But, this would be 593 * useless anyway, as netns_ids are destroyed there. 594 */ 595 last = list_last_entry(&net_namespace_list, struct net, list); 596 up_write(&net_rwsem); 597 598 llist_for_each_entry(net, net_kill_list, cleanup_list) { 599 unhash_nsid(net, last); 600 list_add_tail(&net->exit_list, &net_exit_list); 601 } 602 603 /* Run all of the network namespace pre_exit methods */ 604 list_for_each_entry_reverse(ops, &pernet_list, list) 605 ops_pre_exit_list(ops, &net_exit_list); 606 607 /* 608 * Another CPU might be rcu-iterating the list, wait for it. 609 * This needs to be before calling the exit() notifiers, so 610 * the rcu_barrier() below isn't sufficient alone. 611 * Also the pre_exit() and exit() methods need this barrier. 612 */ 613 synchronize_rcu(); 614 615 /* Run all of the network namespace exit methods */ 616 list_for_each_entry_reverse(ops, &pernet_list, list) 617 ops_exit_list(ops, &net_exit_list); 618 619 /* Free the net generic variables */ 620 list_for_each_entry_reverse(ops, &pernet_list, list) 621 ops_free_list(ops, &net_exit_list); 622 623 up_read(&pernet_ops_rwsem); 624 625 /* Ensure there are no outstanding rcu callbacks using this 626 * network namespace. 627 */ 628 rcu_barrier(); 629 630 /* Finally it is safe to free my network namespace structure */ 631 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 632 list_del_init(&net->exit_list); 633 dec_net_namespaces(net->ucounts); 634 #ifdef CONFIG_KEYS 635 key_remove_domain(net->key_domain); 636 #endif 637 put_user_ns(net->user_ns); 638 net_free(net); 639 } 640 } 641 642 /** 643 * net_ns_barrier - wait until concurrent net_cleanup_work is done 644 * 645 * cleanup_net runs from work queue and will first remove namespaces 646 * from the global list, then run net exit functions. 647 * 648 * Call this in module exit path to make sure that all netns 649 * ->exit ops have been invoked before the function is removed. 650 */ 651 void net_ns_barrier(void) 652 { 653 down_write(&pernet_ops_rwsem); 654 up_write(&pernet_ops_rwsem); 655 } 656 EXPORT_SYMBOL(net_ns_barrier); 657 658 static DECLARE_WORK(net_cleanup_work, cleanup_net); 659 660 void __put_net(struct net *net) 661 { 662 ref_tracker_dir_exit(&net->refcnt_tracker); 663 /* Cleanup the network namespace in process context */ 664 if (llist_add(&net->cleanup_list, &cleanup_list)) 665 queue_work(netns_wq, &net_cleanup_work); 666 } 667 EXPORT_SYMBOL_GPL(__put_net); 668 669 /** 670 * get_net_ns - increment the refcount of the network namespace 671 * @ns: common namespace (net) 672 * 673 * Returns the net's common namespace or ERR_PTR() if ref is zero. 674 */ 675 struct ns_common *get_net_ns(struct ns_common *ns) 676 { 677 struct net *net; 678 679 net = maybe_get_net(container_of(ns, struct net, ns)); 680 if (net) 681 return &net->ns; 682 return ERR_PTR(-EINVAL); 683 } 684 EXPORT_SYMBOL_GPL(get_net_ns); 685 686 struct net *get_net_ns_by_fd(int fd) 687 { 688 struct fd f = fdget(fd); 689 struct net *net = ERR_PTR(-EINVAL); 690 691 if (!f.file) 692 return ERR_PTR(-EBADF); 693 694 if (proc_ns_file(f.file)) { 695 struct ns_common *ns = get_proc_ns(file_inode(f.file)); 696 if (ns->ops == &netns_operations) 697 net = get_net(container_of(ns, struct net, ns)); 698 } 699 fdput(f); 700 701 return net; 702 } 703 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 704 #endif 705 706 struct net *get_net_ns_by_pid(pid_t pid) 707 { 708 struct task_struct *tsk; 709 struct net *net; 710 711 /* Lookup the network namespace */ 712 net = ERR_PTR(-ESRCH); 713 rcu_read_lock(); 714 tsk = find_task_by_vpid(pid); 715 if (tsk) { 716 struct nsproxy *nsproxy; 717 task_lock(tsk); 718 nsproxy = tsk->nsproxy; 719 if (nsproxy) 720 net = get_net(nsproxy->net_ns); 721 task_unlock(tsk); 722 } 723 rcu_read_unlock(); 724 return net; 725 } 726 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 727 728 static __net_init int net_ns_net_init(struct net *net) 729 { 730 #ifdef CONFIG_NET_NS 731 net->ns.ops = &netns_operations; 732 #endif 733 return ns_alloc_inum(&net->ns); 734 } 735 736 static __net_exit void net_ns_net_exit(struct net *net) 737 { 738 ns_free_inum(&net->ns); 739 } 740 741 static struct pernet_operations __net_initdata net_ns_ops = { 742 .init = net_ns_net_init, 743 .exit = net_ns_net_exit, 744 }; 745 746 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 747 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 748 [NETNSA_NSID] = { .type = NLA_S32 }, 749 [NETNSA_PID] = { .type = NLA_U32 }, 750 [NETNSA_FD] = { .type = NLA_U32 }, 751 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 752 }; 753 754 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 755 struct netlink_ext_ack *extack) 756 { 757 struct net *net = sock_net(skb->sk); 758 struct nlattr *tb[NETNSA_MAX + 1]; 759 struct nlattr *nla; 760 struct net *peer; 761 int nsid, err; 762 763 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 764 NETNSA_MAX, rtnl_net_policy, extack); 765 if (err < 0) 766 return err; 767 if (!tb[NETNSA_NSID]) { 768 NL_SET_ERR_MSG(extack, "nsid is missing"); 769 return -EINVAL; 770 } 771 nsid = nla_get_s32(tb[NETNSA_NSID]); 772 773 if (tb[NETNSA_PID]) { 774 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 775 nla = tb[NETNSA_PID]; 776 } else if (tb[NETNSA_FD]) { 777 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 778 nla = tb[NETNSA_FD]; 779 } else { 780 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 781 return -EINVAL; 782 } 783 if (IS_ERR(peer)) { 784 NL_SET_BAD_ATTR(extack, nla); 785 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 786 return PTR_ERR(peer); 787 } 788 789 spin_lock_bh(&net->nsid_lock); 790 if (__peernet2id(net, peer) >= 0) { 791 spin_unlock_bh(&net->nsid_lock); 792 err = -EEXIST; 793 NL_SET_BAD_ATTR(extack, nla); 794 NL_SET_ERR_MSG(extack, 795 "Peer netns already has a nsid assigned"); 796 goto out; 797 } 798 799 err = alloc_netid(net, peer, nsid); 800 spin_unlock_bh(&net->nsid_lock); 801 if (err >= 0) { 802 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 803 nlh, GFP_KERNEL); 804 err = 0; 805 } else if (err == -ENOSPC && nsid >= 0) { 806 err = -EEXIST; 807 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 808 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 809 } 810 out: 811 put_net(peer); 812 return err; 813 } 814 815 static int rtnl_net_get_size(void) 816 { 817 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 818 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 819 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 820 ; 821 } 822 823 struct net_fill_args { 824 u32 portid; 825 u32 seq; 826 int flags; 827 int cmd; 828 int nsid; 829 bool add_ref; 830 int ref_nsid; 831 }; 832 833 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 834 { 835 struct nlmsghdr *nlh; 836 struct rtgenmsg *rth; 837 838 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 839 args->flags); 840 if (!nlh) 841 return -EMSGSIZE; 842 843 rth = nlmsg_data(nlh); 844 rth->rtgen_family = AF_UNSPEC; 845 846 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 847 goto nla_put_failure; 848 849 if (args->add_ref && 850 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 851 goto nla_put_failure; 852 853 nlmsg_end(skb, nlh); 854 return 0; 855 856 nla_put_failure: 857 nlmsg_cancel(skb, nlh); 858 return -EMSGSIZE; 859 } 860 861 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 862 const struct nlmsghdr *nlh, 863 struct nlattr **tb, 864 struct netlink_ext_ack *extack) 865 { 866 int i, err; 867 868 if (!netlink_strict_get_check(skb)) 869 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 870 tb, NETNSA_MAX, rtnl_net_policy, 871 extack); 872 873 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 874 NETNSA_MAX, rtnl_net_policy, 875 extack); 876 if (err) 877 return err; 878 879 for (i = 0; i <= NETNSA_MAX; i++) { 880 if (!tb[i]) 881 continue; 882 883 switch (i) { 884 case NETNSA_PID: 885 case NETNSA_FD: 886 case NETNSA_NSID: 887 case NETNSA_TARGET_NSID: 888 break; 889 default: 890 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 891 return -EINVAL; 892 } 893 } 894 895 return 0; 896 } 897 898 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 899 struct netlink_ext_ack *extack) 900 { 901 struct net *net = sock_net(skb->sk); 902 struct nlattr *tb[NETNSA_MAX + 1]; 903 struct net_fill_args fillargs = { 904 .portid = NETLINK_CB(skb).portid, 905 .seq = nlh->nlmsg_seq, 906 .cmd = RTM_NEWNSID, 907 }; 908 struct net *peer, *target = net; 909 struct nlattr *nla; 910 struct sk_buff *msg; 911 int err; 912 913 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 914 if (err < 0) 915 return err; 916 if (tb[NETNSA_PID]) { 917 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 918 nla = tb[NETNSA_PID]; 919 } else if (tb[NETNSA_FD]) { 920 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 921 nla = tb[NETNSA_FD]; 922 } else if (tb[NETNSA_NSID]) { 923 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 924 if (!peer) 925 peer = ERR_PTR(-ENOENT); 926 nla = tb[NETNSA_NSID]; 927 } else { 928 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 929 return -EINVAL; 930 } 931 932 if (IS_ERR(peer)) { 933 NL_SET_BAD_ATTR(extack, nla); 934 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 935 return PTR_ERR(peer); 936 } 937 938 if (tb[NETNSA_TARGET_NSID]) { 939 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 940 941 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 942 if (IS_ERR(target)) { 943 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 944 NL_SET_ERR_MSG(extack, 945 "Target netns reference is invalid"); 946 err = PTR_ERR(target); 947 goto out; 948 } 949 fillargs.add_ref = true; 950 fillargs.ref_nsid = peernet2id(net, peer); 951 } 952 953 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 954 if (!msg) { 955 err = -ENOMEM; 956 goto out; 957 } 958 959 fillargs.nsid = peernet2id(target, peer); 960 err = rtnl_net_fill(msg, &fillargs); 961 if (err < 0) 962 goto err_out; 963 964 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 965 goto out; 966 967 err_out: 968 nlmsg_free(msg); 969 out: 970 if (fillargs.add_ref) 971 put_net(target); 972 put_net(peer); 973 return err; 974 } 975 976 struct rtnl_net_dump_cb { 977 struct net *tgt_net; 978 struct net *ref_net; 979 struct sk_buff *skb; 980 struct net_fill_args fillargs; 981 int idx; 982 int s_idx; 983 }; 984 985 /* Runs in RCU-critical section. */ 986 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 987 { 988 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 989 int ret; 990 991 if (net_cb->idx < net_cb->s_idx) 992 goto cont; 993 994 net_cb->fillargs.nsid = id; 995 if (net_cb->fillargs.add_ref) 996 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 997 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 998 if (ret < 0) 999 return ret; 1000 1001 cont: 1002 net_cb->idx++; 1003 return 0; 1004 } 1005 1006 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 1007 struct rtnl_net_dump_cb *net_cb, 1008 struct netlink_callback *cb) 1009 { 1010 struct netlink_ext_ack *extack = cb->extack; 1011 struct nlattr *tb[NETNSA_MAX + 1]; 1012 int err, i; 1013 1014 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 1015 NETNSA_MAX, rtnl_net_policy, 1016 extack); 1017 if (err < 0) 1018 return err; 1019 1020 for (i = 0; i <= NETNSA_MAX; i++) { 1021 if (!tb[i]) 1022 continue; 1023 1024 if (i == NETNSA_TARGET_NSID) { 1025 struct net *net; 1026 1027 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1028 if (IS_ERR(net)) { 1029 NL_SET_BAD_ATTR(extack, tb[i]); 1030 NL_SET_ERR_MSG(extack, 1031 "Invalid target network namespace id"); 1032 return PTR_ERR(net); 1033 } 1034 net_cb->fillargs.add_ref = true; 1035 net_cb->ref_net = net_cb->tgt_net; 1036 net_cb->tgt_net = net; 1037 } else { 1038 NL_SET_BAD_ATTR(extack, tb[i]); 1039 NL_SET_ERR_MSG(extack, 1040 "Unsupported attribute in dump request"); 1041 return -EINVAL; 1042 } 1043 } 1044 1045 return 0; 1046 } 1047 1048 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1049 { 1050 struct rtnl_net_dump_cb net_cb = { 1051 .tgt_net = sock_net(skb->sk), 1052 .skb = skb, 1053 .fillargs = { 1054 .portid = NETLINK_CB(cb->skb).portid, 1055 .seq = cb->nlh->nlmsg_seq, 1056 .flags = NLM_F_MULTI, 1057 .cmd = RTM_NEWNSID, 1058 }, 1059 .idx = 0, 1060 .s_idx = cb->args[0], 1061 }; 1062 int err = 0; 1063 1064 if (cb->strict_check) { 1065 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1066 if (err < 0) 1067 goto end; 1068 } 1069 1070 rcu_read_lock(); 1071 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1072 rcu_read_unlock(); 1073 1074 cb->args[0] = net_cb.idx; 1075 end: 1076 if (net_cb.fillargs.add_ref) 1077 put_net(net_cb.tgt_net); 1078 return err < 0 ? err : skb->len; 1079 } 1080 1081 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1082 struct nlmsghdr *nlh, gfp_t gfp) 1083 { 1084 struct net_fill_args fillargs = { 1085 .portid = portid, 1086 .seq = nlh ? nlh->nlmsg_seq : 0, 1087 .cmd = cmd, 1088 .nsid = id, 1089 }; 1090 struct sk_buff *msg; 1091 int err = -ENOMEM; 1092 1093 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1094 if (!msg) 1095 goto out; 1096 1097 err = rtnl_net_fill(msg, &fillargs); 1098 if (err < 0) 1099 goto err_out; 1100 1101 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1102 return; 1103 1104 err_out: 1105 nlmsg_free(msg); 1106 out: 1107 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1108 } 1109 1110 void __init net_ns_init(void) 1111 { 1112 struct net_generic *ng; 1113 1114 #ifdef CONFIG_NET_NS 1115 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1116 SMP_CACHE_BYTES, 1117 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1118 1119 /* Create workqueue for cleanup */ 1120 netns_wq = create_singlethread_workqueue("netns"); 1121 if (!netns_wq) 1122 panic("Could not create netns workq"); 1123 #endif 1124 1125 ng = net_alloc_generic(); 1126 if (!ng) 1127 panic("Could not allocate generic netns"); 1128 1129 rcu_assign_pointer(init_net.gen, ng); 1130 1131 #ifdef CONFIG_KEYS 1132 init_net.key_domain = &init_net_key_domain; 1133 #endif 1134 down_write(&pernet_ops_rwsem); 1135 preinit_net(&init_net); 1136 if (setup_net(&init_net, &init_user_ns)) 1137 panic("Could not setup the initial network namespace"); 1138 1139 init_net_initialized = true; 1140 up_write(&pernet_ops_rwsem); 1141 1142 if (register_pernet_subsys(&net_ns_ops)) 1143 panic("Could not register network namespace subsystems"); 1144 1145 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1146 RTNL_FLAG_DOIT_UNLOCKED); 1147 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1148 RTNL_FLAG_DOIT_UNLOCKED); 1149 } 1150 1151 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list) 1152 { 1153 ops_pre_exit_list(ops, net_exit_list); 1154 synchronize_rcu(); 1155 ops_exit_list(ops, net_exit_list); 1156 ops_free_list(ops, net_exit_list); 1157 } 1158 1159 #ifdef CONFIG_NET_NS 1160 static int __register_pernet_operations(struct list_head *list, 1161 struct pernet_operations *ops) 1162 { 1163 struct net *net; 1164 int error; 1165 LIST_HEAD(net_exit_list); 1166 1167 list_add_tail(&ops->list, list); 1168 if (ops->init || (ops->id && ops->size)) { 1169 /* We held write locked pernet_ops_rwsem, and parallel 1170 * setup_net() and cleanup_net() are not possible. 1171 */ 1172 for_each_net(net) { 1173 error = ops_init(ops, net); 1174 if (error) 1175 goto out_undo; 1176 list_add_tail(&net->exit_list, &net_exit_list); 1177 } 1178 } 1179 return 0; 1180 1181 out_undo: 1182 /* If I have an error cleanup all namespaces I initialized */ 1183 list_del(&ops->list); 1184 free_exit_list(ops, &net_exit_list); 1185 return error; 1186 } 1187 1188 static void __unregister_pernet_operations(struct pernet_operations *ops) 1189 { 1190 struct net *net; 1191 LIST_HEAD(net_exit_list); 1192 1193 list_del(&ops->list); 1194 /* See comment in __register_pernet_operations() */ 1195 for_each_net(net) 1196 list_add_tail(&net->exit_list, &net_exit_list); 1197 1198 free_exit_list(ops, &net_exit_list); 1199 } 1200 1201 #else 1202 1203 static int __register_pernet_operations(struct list_head *list, 1204 struct pernet_operations *ops) 1205 { 1206 if (!init_net_initialized) { 1207 list_add_tail(&ops->list, list); 1208 return 0; 1209 } 1210 1211 return ops_init(ops, &init_net); 1212 } 1213 1214 static void __unregister_pernet_operations(struct pernet_operations *ops) 1215 { 1216 if (!init_net_initialized) { 1217 list_del(&ops->list); 1218 } else { 1219 LIST_HEAD(net_exit_list); 1220 list_add(&init_net.exit_list, &net_exit_list); 1221 free_exit_list(ops, &net_exit_list); 1222 } 1223 } 1224 1225 #endif /* CONFIG_NET_NS */ 1226 1227 static DEFINE_IDA(net_generic_ids); 1228 1229 static int register_pernet_operations(struct list_head *list, 1230 struct pernet_operations *ops) 1231 { 1232 int error; 1233 1234 if (ops->id) { 1235 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1236 GFP_KERNEL); 1237 if (error < 0) 1238 return error; 1239 *ops->id = error; 1240 /* This does not require READ_ONCE as writers already hold 1241 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect 1242 * net_alloc_generic. 1243 */ 1244 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1)); 1245 } 1246 error = __register_pernet_operations(list, ops); 1247 if (error) { 1248 rcu_barrier(); 1249 if (ops->id) 1250 ida_free(&net_generic_ids, *ops->id); 1251 } 1252 1253 return error; 1254 } 1255 1256 static void unregister_pernet_operations(struct pernet_operations *ops) 1257 { 1258 __unregister_pernet_operations(ops); 1259 rcu_barrier(); 1260 if (ops->id) 1261 ida_free(&net_generic_ids, *ops->id); 1262 } 1263 1264 /** 1265 * register_pernet_subsys - register a network namespace subsystem 1266 * @ops: pernet operations structure for the subsystem 1267 * 1268 * Register a subsystem which has init and exit functions 1269 * that are called when network namespaces are created and 1270 * destroyed respectively. 1271 * 1272 * When registered all network namespace init functions are 1273 * called for every existing network namespace. Allowing kernel 1274 * modules to have a race free view of the set of network namespaces. 1275 * 1276 * When a new network namespace is created all of the init 1277 * methods are called in the order in which they were registered. 1278 * 1279 * When a network namespace is destroyed all of the exit methods 1280 * are called in the reverse of the order with which they were 1281 * registered. 1282 */ 1283 int register_pernet_subsys(struct pernet_operations *ops) 1284 { 1285 int error; 1286 down_write(&pernet_ops_rwsem); 1287 error = register_pernet_operations(first_device, ops); 1288 up_write(&pernet_ops_rwsem); 1289 return error; 1290 } 1291 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1292 1293 /** 1294 * unregister_pernet_subsys - unregister a network namespace subsystem 1295 * @ops: pernet operations structure to manipulate 1296 * 1297 * Remove the pernet operations structure from the list to be 1298 * used when network namespaces are created or destroyed. In 1299 * addition run the exit method for all existing network 1300 * namespaces. 1301 */ 1302 void unregister_pernet_subsys(struct pernet_operations *ops) 1303 { 1304 down_write(&pernet_ops_rwsem); 1305 unregister_pernet_operations(ops); 1306 up_write(&pernet_ops_rwsem); 1307 } 1308 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1309 1310 /** 1311 * register_pernet_device - register a network namespace device 1312 * @ops: pernet operations structure for the subsystem 1313 * 1314 * Register a device which has init and exit functions 1315 * that are called when network namespaces are created and 1316 * destroyed respectively. 1317 * 1318 * When registered all network namespace init functions are 1319 * called for every existing network namespace. Allowing kernel 1320 * modules to have a race free view of the set of network namespaces. 1321 * 1322 * When a new network namespace is created all of the init 1323 * methods are called in the order in which they were registered. 1324 * 1325 * When a network namespace is destroyed all of the exit methods 1326 * are called in the reverse of the order with which they were 1327 * registered. 1328 */ 1329 int register_pernet_device(struct pernet_operations *ops) 1330 { 1331 int error; 1332 down_write(&pernet_ops_rwsem); 1333 error = register_pernet_operations(&pernet_list, ops); 1334 if (!error && (first_device == &pernet_list)) 1335 first_device = &ops->list; 1336 up_write(&pernet_ops_rwsem); 1337 return error; 1338 } 1339 EXPORT_SYMBOL_GPL(register_pernet_device); 1340 1341 /** 1342 * unregister_pernet_device - unregister a network namespace netdevice 1343 * @ops: pernet operations structure to manipulate 1344 * 1345 * Remove the pernet operations structure from the list to be 1346 * used when network namespaces are created or destroyed. In 1347 * addition run the exit method for all existing network 1348 * namespaces. 1349 */ 1350 void unregister_pernet_device(struct pernet_operations *ops) 1351 { 1352 down_write(&pernet_ops_rwsem); 1353 if (&ops->list == first_device) 1354 first_device = first_device->next; 1355 unregister_pernet_operations(ops); 1356 up_write(&pernet_ops_rwsem); 1357 } 1358 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1359 1360 #ifdef CONFIG_NET_NS 1361 static struct ns_common *netns_get(struct task_struct *task) 1362 { 1363 struct net *net = NULL; 1364 struct nsproxy *nsproxy; 1365 1366 task_lock(task); 1367 nsproxy = task->nsproxy; 1368 if (nsproxy) 1369 net = get_net(nsproxy->net_ns); 1370 task_unlock(task); 1371 1372 return net ? &net->ns : NULL; 1373 } 1374 1375 static inline struct net *to_net_ns(struct ns_common *ns) 1376 { 1377 return container_of(ns, struct net, ns); 1378 } 1379 1380 static void netns_put(struct ns_common *ns) 1381 { 1382 put_net(to_net_ns(ns)); 1383 } 1384 1385 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1386 { 1387 struct nsproxy *nsproxy = nsset->nsproxy; 1388 struct net *net = to_net_ns(ns); 1389 1390 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1391 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1392 return -EPERM; 1393 1394 put_net(nsproxy->net_ns); 1395 nsproxy->net_ns = get_net(net); 1396 return 0; 1397 } 1398 1399 static struct user_namespace *netns_owner(struct ns_common *ns) 1400 { 1401 return to_net_ns(ns)->user_ns; 1402 } 1403 1404 const struct proc_ns_operations netns_operations = { 1405 .name = "net", 1406 .type = CLONE_NEWNET, 1407 .get = netns_get, 1408 .put = netns_put, 1409 .install = netns_install, 1410 .owner = netns_owner, 1411 }; 1412 #endif 1413