1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/workqueue.h> 4 #include <linux/rtnetlink.h> 5 #include <linux/cache.h> 6 #include <linux/slab.h> 7 #include <linux/list.h> 8 #include <linux/delay.h> 9 #include <linux/sched.h> 10 #include <linux/idr.h> 11 #include <linux/rculist.h> 12 #include <linux/nsproxy.h> 13 #include <linux/fs.h> 14 #include <linux/proc_ns.h> 15 #include <linux/file.h> 16 #include <linux/export.h> 17 #include <linux/user_namespace.h> 18 #include <linux/net_namespace.h> 19 #include <linux/sched/task.h> 20 #include <linux/uidgid.h> 21 22 #include <net/sock.h> 23 #include <net/netlink.h> 24 #include <net/net_namespace.h> 25 #include <net/netns/generic.h> 26 27 /* 28 * Our network namespace constructor/destructor lists 29 */ 30 31 static LIST_HEAD(pernet_list); 32 static struct list_head *first_device = &pernet_list; 33 34 LIST_HEAD(net_namespace_list); 35 EXPORT_SYMBOL_GPL(net_namespace_list); 36 37 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 38 DECLARE_RWSEM(net_rwsem); 39 EXPORT_SYMBOL_GPL(net_rwsem); 40 41 struct net init_net = { 42 .count = REFCOUNT_INIT(1), 43 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 44 }; 45 EXPORT_SYMBOL(init_net); 46 47 static bool init_net_initialized; 48 /* 49 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 50 * init_net_initialized and first_device pointer. 51 * This is internal net namespace object. Please, don't use it 52 * outside. 53 */ 54 DECLARE_RWSEM(pernet_ops_rwsem); 55 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 56 57 #define MIN_PERNET_OPS_ID \ 58 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 59 60 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 61 62 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 63 64 static struct net_generic *net_alloc_generic(void) 65 { 66 struct net_generic *ng; 67 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 68 69 ng = kzalloc(generic_size, GFP_KERNEL); 70 if (ng) 71 ng->s.len = max_gen_ptrs; 72 73 return ng; 74 } 75 76 static int net_assign_generic(struct net *net, unsigned int id, void *data) 77 { 78 struct net_generic *ng, *old_ng; 79 80 BUG_ON(id < MIN_PERNET_OPS_ID); 81 82 old_ng = rcu_dereference_protected(net->gen, 83 lockdep_is_held(&pernet_ops_rwsem)); 84 if (old_ng->s.len > id) { 85 old_ng->ptr[id] = data; 86 return 0; 87 } 88 89 ng = net_alloc_generic(); 90 if (ng == NULL) 91 return -ENOMEM; 92 93 /* 94 * Some synchronisation notes: 95 * 96 * The net_generic explores the net->gen array inside rcu 97 * read section. Besides once set the net->gen->ptr[x] 98 * pointer never changes (see rules in netns/generic.h). 99 * 100 * That said, we simply duplicate this array and schedule 101 * the old copy for kfree after a grace period. 102 */ 103 104 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 105 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 106 ng->ptr[id] = data; 107 108 rcu_assign_pointer(net->gen, ng); 109 kfree_rcu(old_ng, s.rcu); 110 return 0; 111 } 112 113 static int ops_init(const struct pernet_operations *ops, struct net *net) 114 { 115 int err = -ENOMEM; 116 void *data = NULL; 117 118 if (ops->id && ops->size) { 119 data = kzalloc(ops->size, GFP_KERNEL); 120 if (!data) 121 goto out; 122 123 err = net_assign_generic(net, *ops->id, data); 124 if (err) 125 goto cleanup; 126 } 127 err = 0; 128 if (ops->init) 129 err = ops->init(net); 130 if (!err) 131 return 0; 132 133 cleanup: 134 kfree(data); 135 136 out: 137 return err; 138 } 139 140 static void ops_free(const struct pernet_operations *ops, struct net *net) 141 { 142 if (ops->id && ops->size) { 143 kfree(net_generic(net, *ops->id)); 144 } 145 } 146 147 static void ops_exit_list(const struct pernet_operations *ops, 148 struct list_head *net_exit_list) 149 { 150 struct net *net; 151 if (ops->exit) { 152 list_for_each_entry(net, net_exit_list, exit_list) 153 ops->exit(net); 154 } 155 if (ops->exit_batch) 156 ops->exit_batch(net_exit_list); 157 } 158 159 static void ops_free_list(const struct pernet_operations *ops, 160 struct list_head *net_exit_list) 161 { 162 struct net *net; 163 if (ops->size && ops->id) { 164 list_for_each_entry(net, net_exit_list, exit_list) 165 ops_free(ops, net); 166 } 167 } 168 169 /* should be called with nsid_lock held */ 170 static int alloc_netid(struct net *net, struct net *peer, int reqid) 171 { 172 int min = 0, max = 0; 173 174 if (reqid >= 0) { 175 min = reqid; 176 max = reqid + 1; 177 } 178 179 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 180 } 181 182 /* This function is used by idr_for_each(). If net is equal to peer, the 183 * function returns the id so that idr_for_each() stops. Because we cannot 184 * returns the id 0 (idr_for_each() will not stop), we return the magic value 185 * NET_ID_ZERO (-1) for it. 186 */ 187 #define NET_ID_ZERO -1 188 static int net_eq_idr(int id, void *net, void *peer) 189 { 190 if (net_eq(net, peer)) 191 return id ? : NET_ID_ZERO; 192 return 0; 193 } 194 195 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc 196 * is set to true, thus the caller knows that the new id must be notified via 197 * rtnl. 198 */ 199 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc) 200 { 201 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 202 bool alloc_it = *alloc; 203 204 *alloc = false; 205 206 /* Magic value for id 0. */ 207 if (id == NET_ID_ZERO) 208 return 0; 209 if (id > 0) 210 return id; 211 212 if (alloc_it) { 213 id = alloc_netid(net, peer, -1); 214 *alloc = true; 215 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED; 216 } 217 218 return NETNSA_NSID_NOT_ASSIGNED; 219 } 220 221 /* should be called with nsid_lock held */ 222 static int __peernet2id(struct net *net, struct net *peer) 223 { 224 bool no = false; 225 226 return __peernet2id_alloc(net, peer, &no); 227 } 228 229 static void rtnl_net_notifyid(struct net *net, int cmd, int id); 230 /* This function returns the id of a peer netns. If no id is assigned, one will 231 * be allocated and returned. 232 */ 233 int peernet2id_alloc(struct net *net, struct net *peer) 234 { 235 bool alloc = false, alive = false; 236 int id; 237 238 if (refcount_read(&net->count) == 0) 239 return NETNSA_NSID_NOT_ASSIGNED; 240 spin_lock_bh(&net->nsid_lock); 241 /* 242 * When peer is obtained from RCU lists, we may race with 243 * its cleanup. Check whether it's alive, and this guarantees 244 * we never hash a peer back to net->netns_ids, after it has 245 * just been idr_remove()'d from there in cleanup_net(). 246 */ 247 if (maybe_get_net(peer)) 248 alive = alloc = true; 249 id = __peernet2id_alloc(net, peer, &alloc); 250 spin_unlock_bh(&net->nsid_lock); 251 if (alloc && id >= 0) 252 rtnl_net_notifyid(net, RTM_NEWNSID, id); 253 if (alive) 254 put_net(peer); 255 return id; 256 } 257 EXPORT_SYMBOL_GPL(peernet2id_alloc); 258 259 /* This function returns, if assigned, the id of a peer netns. */ 260 int peernet2id(struct net *net, struct net *peer) 261 { 262 int id; 263 264 spin_lock_bh(&net->nsid_lock); 265 id = __peernet2id(net, peer); 266 spin_unlock_bh(&net->nsid_lock); 267 return id; 268 } 269 EXPORT_SYMBOL(peernet2id); 270 271 /* This function returns true is the peer netns has an id assigned into the 272 * current netns. 273 */ 274 bool peernet_has_id(struct net *net, struct net *peer) 275 { 276 return peernet2id(net, peer) >= 0; 277 } 278 279 struct net *get_net_ns_by_id(struct net *net, int id) 280 { 281 struct net *peer; 282 283 if (id < 0) 284 return NULL; 285 286 rcu_read_lock(); 287 peer = idr_find(&net->netns_ids, id); 288 if (peer) 289 peer = maybe_get_net(peer); 290 rcu_read_unlock(); 291 292 return peer; 293 } 294 295 /* 296 * setup_net runs the initializers for the network namespace object. 297 */ 298 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 299 { 300 /* Must be called with pernet_ops_rwsem held */ 301 const struct pernet_operations *ops, *saved_ops; 302 int error = 0; 303 LIST_HEAD(net_exit_list); 304 305 refcount_set(&net->count, 1); 306 refcount_set(&net->passive, 1); 307 net->dev_base_seq = 1; 308 net->user_ns = user_ns; 309 idr_init(&net->netns_ids); 310 spin_lock_init(&net->nsid_lock); 311 mutex_init(&net->ipv4.ra_mutex); 312 313 list_for_each_entry(ops, &pernet_list, list) { 314 error = ops_init(ops, net); 315 if (error < 0) 316 goto out_undo; 317 } 318 down_write(&net_rwsem); 319 list_add_tail_rcu(&net->list, &net_namespace_list); 320 up_write(&net_rwsem); 321 out: 322 return error; 323 324 out_undo: 325 /* Walk through the list backwards calling the exit functions 326 * for the pernet modules whose init functions did not fail. 327 */ 328 list_add(&net->exit_list, &net_exit_list); 329 saved_ops = ops; 330 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 331 ops_exit_list(ops, &net_exit_list); 332 333 ops = saved_ops; 334 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 335 ops_free_list(ops, &net_exit_list); 336 337 rcu_barrier(); 338 goto out; 339 } 340 341 static int __net_init net_defaults_init_net(struct net *net) 342 { 343 net->core.sysctl_somaxconn = SOMAXCONN; 344 return 0; 345 } 346 347 static struct pernet_operations net_defaults_ops = { 348 .init = net_defaults_init_net, 349 }; 350 351 static __init int net_defaults_init(void) 352 { 353 if (register_pernet_subsys(&net_defaults_ops)) 354 panic("Cannot initialize net default settings"); 355 356 return 0; 357 } 358 359 core_initcall(net_defaults_init); 360 361 #ifdef CONFIG_NET_NS 362 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 363 { 364 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 365 } 366 367 static void dec_net_namespaces(struct ucounts *ucounts) 368 { 369 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 370 } 371 372 static struct kmem_cache *net_cachep __ro_after_init; 373 static struct workqueue_struct *netns_wq; 374 375 static struct net *net_alloc(void) 376 { 377 struct net *net = NULL; 378 struct net_generic *ng; 379 380 ng = net_alloc_generic(); 381 if (!ng) 382 goto out; 383 384 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 385 if (!net) 386 goto out_free; 387 388 rcu_assign_pointer(net->gen, ng); 389 out: 390 return net; 391 392 out_free: 393 kfree(ng); 394 goto out; 395 } 396 397 static void net_free(struct net *net) 398 { 399 kfree(rcu_access_pointer(net->gen)); 400 kmem_cache_free(net_cachep, net); 401 } 402 403 void net_drop_ns(void *p) 404 { 405 struct net *ns = p; 406 if (ns && refcount_dec_and_test(&ns->passive)) 407 net_free(ns); 408 } 409 410 struct net *copy_net_ns(unsigned long flags, 411 struct user_namespace *user_ns, struct net *old_net) 412 { 413 struct ucounts *ucounts; 414 struct net *net; 415 int rv; 416 417 if (!(flags & CLONE_NEWNET)) 418 return get_net(old_net); 419 420 ucounts = inc_net_namespaces(user_ns); 421 if (!ucounts) 422 return ERR_PTR(-ENOSPC); 423 424 net = net_alloc(); 425 if (!net) { 426 rv = -ENOMEM; 427 goto dec_ucounts; 428 } 429 refcount_set(&net->passive, 1); 430 net->ucounts = ucounts; 431 get_user_ns(user_ns); 432 433 rv = down_read_killable(&pernet_ops_rwsem); 434 if (rv < 0) 435 goto put_userns; 436 437 rv = setup_net(net, user_ns); 438 439 up_read(&pernet_ops_rwsem); 440 441 if (rv < 0) { 442 put_userns: 443 put_user_ns(user_ns); 444 net_drop_ns(net); 445 dec_ucounts: 446 dec_net_namespaces(ucounts); 447 return ERR_PTR(rv); 448 } 449 return net; 450 } 451 452 /** 453 * net_ns_get_ownership - get sysfs ownership data for @net 454 * @net: network namespace in question (can be NULL) 455 * @uid: kernel user ID for sysfs objects 456 * @gid: kernel group ID for sysfs objects 457 * 458 * Returns the uid/gid pair of root in the user namespace associated with the 459 * given network namespace. 460 */ 461 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 462 { 463 if (net) { 464 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 465 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 466 467 if (uid_valid(ns_root_uid)) 468 *uid = ns_root_uid; 469 470 if (gid_valid(ns_root_gid)) 471 *gid = ns_root_gid; 472 } else { 473 *uid = GLOBAL_ROOT_UID; 474 *gid = GLOBAL_ROOT_GID; 475 } 476 } 477 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 478 479 static void unhash_nsid(struct net *net, struct net *last) 480 { 481 struct net *tmp; 482 /* This function is only called from cleanup_net() work, 483 * and this work is the only process, that may delete 484 * a net from net_namespace_list. So, when the below 485 * is executing, the list may only grow. Thus, we do not 486 * use for_each_net_rcu() or net_rwsem. 487 */ 488 for_each_net(tmp) { 489 int id; 490 491 spin_lock_bh(&tmp->nsid_lock); 492 id = __peernet2id(tmp, net); 493 if (id >= 0) 494 idr_remove(&tmp->netns_ids, id); 495 spin_unlock_bh(&tmp->nsid_lock); 496 if (id >= 0) 497 rtnl_net_notifyid(tmp, RTM_DELNSID, id); 498 if (tmp == last) 499 break; 500 } 501 spin_lock_bh(&net->nsid_lock); 502 idr_destroy(&net->netns_ids); 503 spin_unlock_bh(&net->nsid_lock); 504 } 505 506 static LLIST_HEAD(cleanup_list); 507 508 static void cleanup_net(struct work_struct *work) 509 { 510 const struct pernet_operations *ops; 511 struct net *net, *tmp, *last; 512 struct llist_node *net_kill_list; 513 LIST_HEAD(net_exit_list); 514 515 /* Atomically snapshot the list of namespaces to cleanup */ 516 net_kill_list = llist_del_all(&cleanup_list); 517 518 down_read(&pernet_ops_rwsem); 519 520 /* Don't let anyone else find us. */ 521 down_write(&net_rwsem); 522 llist_for_each_entry(net, net_kill_list, cleanup_list) 523 list_del_rcu(&net->list); 524 /* Cache last net. After we unlock rtnl, no one new net 525 * added to net_namespace_list can assign nsid pointer 526 * to a net from net_kill_list (see peernet2id_alloc()). 527 * So, we skip them in unhash_nsid(). 528 * 529 * Note, that unhash_nsid() does not delete nsid links 530 * between net_kill_list's nets, as they've already 531 * deleted from net_namespace_list. But, this would be 532 * useless anyway, as netns_ids are destroyed there. 533 */ 534 last = list_last_entry(&net_namespace_list, struct net, list); 535 up_write(&net_rwsem); 536 537 llist_for_each_entry(net, net_kill_list, cleanup_list) { 538 unhash_nsid(net, last); 539 list_add_tail(&net->exit_list, &net_exit_list); 540 } 541 542 /* 543 * Another CPU might be rcu-iterating the list, wait for it. 544 * This needs to be before calling the exit() notifiers, so 545 * the rcu_barrier() below isn't sufficient alone. 546 */ 547 synchronize_rcu(); 548 549 /* Run all of the network namespace exit methods */ 550 list_for_each_entry_reverse(ops, &pernet_list, list) 551 ops_exit_list(ops, &net_exit_list); 552 553 /* Free the net generic variables */ 554 list_for_each_entry_reverse(ops, &pernet_list, list) 555 ops_free_list(ops, &net_exit_list); 556 557 up_read(&pernet_ops_rwsem); 558 559 /* Ensure there are no outstanding rcu callbacks using this 560 * network namespace. 561 */ 562 rcu_barrier(); 563 564 /* Finally it is safe to free my network namespace structure */ 565 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 566 list_del_init(&net->exit_list); 567 dec_net_namespaces(net->ucounts); 568 put_user_ns(net->user_ns); 569 net_drop_ns(net); 570 } 571 } 572 573 /** 574 * net_ns_barrier - wait until concurrent net_cleanup_work is done 575 * 576 * cleanup_net runs from work queue and will first remove namespaces 577 * from the global list, then run net exit functions. 578 * 579 * Call this in module exit path to make sure that all netns 580 * ->exit ops have been invoked before the function is removed. 581 */ 582 void net_ns_barrier(void) 583 { 584 down_write(&pernet_ops_rwsem); 585 up_write(&pernet_ops_rwsem); 586 } 587 EXPORT_SYMBOL(net_ns_barrier); 588 589 static DECLARE_WORK(net_cleanup_work, cleanup_net); 590 591 void __put_net(struct net *net) 592 { 593 /* Cleanup the network namespace in process context */ 594 if (llist_add(&net->cleanup_list, &cleanup_list)) 595 queue_work(netns_wq, &net_cleanup_work); 596 } 597 EXPORT_SYMBOL_GPL(__put_net); 598 599 struct net *get_net_ns_by_fd(int fd) 600 { 601 struct file *file; 602 struct ns_common *ns; 603 struct net *net; 604 605 file = proc_ns_fget(fd); 606 if (IS_ERR(file)) 607 return ERR_CAST(file); 608 609 ns = get_proc_ns(file_inode(file)); 610 if (ns->ops == &netns_operations) 611 net = get_net(container_of(ns, struct net, ns)); 612 else 613 net = ERR_PTR(-EINVAL); 614 615 fput(file); 616 return net; 617 } 618 619 #else 620 struct net *get_net_ns_by_fd(int fd) 621 { 622 return ERR_PTR(-EINVAL); 623 } 624 #endif 625 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 626 627 struct net *get_net_ns_by_pid(pid_t pid) 628 { 629 struct task_struct *tsk; 630 struct net *net; 631 632 /* Lookup the network namespace */ 633 net = ERR_PTR(-ESRCH); 634 rcu_read_lock(); 635 tsk = find_task_by_vpid(pid); 636 if (tsk) { 637 struct nsproxy *nsproxy; 638 task_lock(tsk); 639 nsproxy = tsk->nsproxy; 640 if (nsproxy) 641 net = get_net(nsproxy->net_ns); 642 task_unlock(tsk); 643 } 644 rcu_read_unlock(); 645 return net; 646 } 647 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 648 649 static __net_init int net_ns_net_init(struct net *net) 650 { 651 #ifdef CONFIG_NET_NS 652 net->ns.ops = &netns_operations; 653 #endif 654 return ns_alloc_inum(&net->ns); 655 } 656 657 static __net_exit void net_ns_net_exit(struct net *net) 658 { 659 ns_free_inum(&net->ns); 660 } 661 662 static struct pernet_operations __net_initdata net_ns_ops = { 663 .init = net_ns_net_init, 664 .exit = net_ns_net_exit, 665 }; 666 667 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 668 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 669 [NETNSA_NSID] = { .type = NLA_S32 }, 670 [NETNSA_PID] = { .type = NLA_U32 }, 671 [NETNSA_FD] = { .type = NLA_U32 }, 672 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 673 }; 674 675 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 676 struct netlink_ext_ack *extack) 677 { 678 struct net *net = sock_net(skb->sk); 679 struct nlattr *tb[NETNSA_MAX + 1]; 680 struct nlattr *nla; 681 struct net *peer; 682 int nsid, err; 683 684 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, 685 rtnl_net_policy, extack); 686 if (err < 0) 687 return err; 688 if (!tb[NETNSA_NSID]) { 689 NL_SET_ERR_MSG(extack, "nsid is missing"); 690 return -EINVAL; 691 } 692 nsid = nla_get_s32(tb[NETNSA_NSID]); 693 694 if (tb[NETNSA_PID]) { 695 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 696 nla = tb[NETNSA_PID]; 697 } else if (tb[NETNSA_FD]) { 698 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 699 nla = tb[NETNSA_FD]; 700 } else { 701 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 702 return -EINVAL; 703 } 704 if (IS_ERR(peer)) { 705 NL_SET_BAD_ATTR(extack, nla); 706 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 707 return PTR_ERR(peer); 708 } 709 710 spin_lock_bh(&net->nsid_lock); 711 if (__peernet2id(net, peer) >= 0) { 712 spin_unlock_bh(&net->nsid_lock); 713 err = -EEXIST; 714 NL_SET_BAD_ATTR(extack, nla); 715 NL_SET_ERR_MSG(extack, 716 "Peer netns already has a nsid assigned"); 717 goto out; 718 } 719 720 err = alloc_netid(net, peer, nsid); 721 spin_unlock_bh(&net->nsid_lock); 722 if (err >= 0) { 723 rtnl_net_notifyid(net, RTM_NEWNSID, err); 724 err = 0; 725 } else if (err == -ENOSPC && nsid >= 0) { 726 err = -EEXIST; 727 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 728 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 729 } 730 out: 731 put_net(peer); 732 return err; 733 } 734 735 static int rtnl_net_get_size(void) 736 { 737 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 738 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 739 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 740 ; 741 } 742 743 struct net_fill_args { 744 u32 portid; 745 u32 seq; 746 int flags; 747 int cmd; 748 int nsid; 749 bool add_ref; 750 int ref_nsid; 751 }; 752 753 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 754 { 755 struct nlmsghdr *nlh; 756 struct rtgenmsg *rth; 757 758 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 759 args->flags); 760 if (!nlh) 761 return -EMSGSIZE; 762 763 rth = nlmsg_data(nlh); 764 rth->rtgen_family = AF_UNSPEC; 765 766 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 767 goto nla_put_failure; 768 769 if (args->add_ref && 770 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 771 goto nla_put_failure; 772 773 nlmsg_end(skb, nlh); 774 return 0; 775 776 nla_put_failure: 777 nlmsg_cancel(skb, nlh); 778 return -EMSGSIZE; 779 } 780 781 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 782 const struct nlmsghdr *nlh, 783 struct nlattr **tb, 784 struct netlink_ext_ack *extack) 785 { 786 int i, err; 787 788 if (!netlink_strict_get_check(skb)) 789 return nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, 790 rtnl_net_policy, extack); 791 792 err = nlmsg_parse_strict(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, 793 rtnl_net_policy, extack); 794 if (err) 795 return err; 796 797 for (i = 0; i <= NETNSA_MAX; i++) { 798 if (!tb[i]) 799 continue; 800 801 switch (i) { 802 case NETNSA_PID: 803 case NETNSA_FD: 804 case NETNSA_NSID: 805 case NETNSA_TARGET_NSID: 806 break; 807 default: 808 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 809 return -EINVAL; 810 } 811 } 812 813 return 0; 814 } 815 816 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 817 struct netlink_ext_ack *extack) 818 { 819 struct net *net = sock_net(skb->sk); 820 struct nlattr *tb[NETNSA_MAX + 1]; 821 struct net_fill_args fillargs = { 822 .portid = NETLINK_CB(skb).portid, 823 .seq = nlh->nlmsg_seq, 824 .cmd = RTM_NEWNSID, 825 }; 826 struct net *peer, *target = net; 827 struct nlattr *nla; 828 struct sk_buff *msg; 829 int err; 830 831 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 832 if (err < 0) 833 return err; 834 if (tb[NETNSA_PID]) { 835 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 836 nla = tb[NETNSA_PID]; 837 } else if (tb[NETNSA_FD]) { 838 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 839 nla = tb[NETNSA_FD]; 840 } else if (tb[NETNSA_NSID]) { 841 peer = get_net_ns_by_id(net, nla_get_u32(tb[NETNSA_NSID])); 842 if (!peer) 843 peer = ERR_PTR(-ENOENT); 844 nla = tb[NETNSA_NSID]; 845 } else { 846 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 847 return -EINVAL; 848 } 849 850 if (IS_ERR(peer)) { 851 NL_SET_BAD_ATTR(extack, nla); 852 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 853 return PTR_ERR(peer); 854 } 855 856 if (tb[NETNSA_TARGET_NSID]) { 857 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 858 859 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 860 if (IS_ERR(target)) { 861 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 862 NL_SET_ERR_MSG(extack, 863 "Target netns reference is invalid"); 864 err = PTR_ERR(target); 865 goto out; 866 } 867 fillargs.add_ref = true; 868 fillargs.ref_nsid = peernet2id(net, peer); 869 } 870 871 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 872 if (!msg) { 873 err = -ENOMEM; 874 goto out; 875 } 876 877 fillargs.nsid = peernet2id(target, peer); 878 err = rtnl_net_fill(msg, &fillargs); 879 if (err < 0) 880 goto err_out; 881 882 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 883 goto out; 884 885 err_out: 886 nlmsg_free(msg); 887 out: 888 if (fillargs.add_ref) 889 put_net(target); 890 put_net(peer); 891 return err; 892 } 893 894 struct rtnl_net_dump_cb { 895 struct net *tgt_net; 896 struct net *ref_net; 897 struct sk_buff *skb; 898 struct net_fill_args fillargs; 899 int idx; 900 int s_idx; 901 }; 902 903 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 904 { 905 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 906 int ret; 907 908 if (net_cb->idx < net_cb->s_idx) 909 goto cont; 910 911 net_cb->fillargs.nsid = id; 912 if (net_cb->fillargs.add_ref) 913 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 914 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 915 if (ret < 0) 916 return ret; 917 918 cont: 919 net_cb->idx++; 920 return 0; 921 } 922 923 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 924 struct rtnl_net_dump_cb *net_cb, 925 struct netlink_callback *cb) 926 { 927 struct netlink_ext_ack *extack = cb->extack; 928 struct nlattr *tb[NETNSA_MAX + 1]; 929 int err, i; 930 931 err = nlmsg_parse_strict(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, 932 rtnl_net_policy, extack); 933 if (err < 0) 934 return err; 935 936 for (i = 0; i <= NETNSA_MAX; i++) { 937 if (!tb[i]) 938 continue; 939 940 if (i == NETNSA_TARGET_NSID) { 941 struct net *net; 942 943 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 944 if (IS_ERR(net)) { 945 NL_SET_BAD_ATTR(extack, tb[i]); 946 NL_SET_ERR_MSG(extack, 947 "Invalid target network namespace id"); 948 return PTR_ERR(net); 949 } 950 net_cb->fillargs.add_ref = true; 951 net_cb->ref_net = net_cb->tgt_net; 952 net_cb->tgt_net = net; 953 } else { 954 NL_SET_BAD_ATTR(extack, tb[i]); 955 NL_SET_ERR_MSG(extack, 956 "Unsupported attribute in dump request"); 957 return -EINVAL; 958 } 959 } 960 961 return 0; 962 } 963 964 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 965 { 966 struct rtnl_net_dump_cb net_cb = { 967 .tgt_net = sock_net(skb->sk), 968 .skb = skb, 969 .fillargs = { 970 .portid = NETLINK_CB(cb->skb).portid, 971 .seq = cb->nlh->nlmsg_seq, 972 .flags = NLM_F_MULTI, 973 .cmd = RTM_NEWNSID, 974 }, 975 .idx = 0, 976 .s_idx = cb->args[0], 977 }; 978 int err = 0; 979 980 if (cb->strict_check) { 981 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 982 if (err < 0) 983 goto end; 984 } 985 986 spin_lock_bh(&net_cb.tgt_net->nsid_lock); 987 if (net_cb.fillargs.add_ref && 988 !net_eq(net_cb.ref_net, net_cb.tgt_net) && 989 !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) { 990 spin_unlock_bh(&net_cb.tgt_net->nsid_lock); 991 err = -EAGAIN; 992 goto end; 993 } 994 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 995 if (net_cb.fillargs.add_ref && 996 !net_eq(net_cb.ref_net, net_cb.tgt_net)) 997 spin_unlock_bh(&net_cb.ref_net->nsid_lock); 998 spin_unlock_bh(&net_cb.tgt_net->nsid_lock); 999 1000 cb->args[0] = net_cb.idx; 1001 end: 1002 if (net_cb.fillargs.add_ref) 1003 put_net(net_cb.tgt_net); 1004 return err < 0 ? err : skb->len; 1005 } 1006 1007 static void rtnl_net_notifyid(struct net *net, int cmd, int id) 1008 { 1009 struct net_fill_args fillargs = { 1010 .cmd = cmd, 1011 .nsid = id, 1012 }; 1013 struct sk_buff *msg; 1014 int err = -ENOMEM; 1015 1016 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 1017 if (!msg) 1018 goto out; 1019 1020 err = rtnl_net_fill(msg, &fillargs); 1021 if (err < 0) 1022 goto err_out; 1023 1024 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0); 1025 return; 1026 1027 err_out: 1028 nlmsg_free(msg); 1029 out: 1030 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1031 } 1032 1033 static int __init net_ns_init(void) 1034 { 1035 struct net_generic *ng; 1036 1037 #ifdef CONFIG_NET_NS 1038 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1039 SMP_CACHE_BYTES, 1040 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1041 1042 /* Create workqueue for cleanup */ 1043 netns_wq = create_singlethread_workqueue("netns"); 1044 if (!netns_wq) 1045 panic("Could not create netns workq"); 1046 #endif 1047 1048 ng = net_alloc_generic(); 1049 if (!ng) 1050 panic("Could not allocate generic netns"); 1051 1052 rcu_assign_pointer(init_net.gen, ng); 1053 1054 down_write(&pernet_ops_rwsem); 1055 if (setup_net(&init_net, &init_user_ns)) 1056 panic("Could not setup the initial network namespace"); 1057 1058 init_net_initialized = true; 1059 up_write(&pernet_ops_rwsem); 1060 1061 if (register_pernet_subsys(&net_ns_ops)) 1062 panic("Could not register network namespace subsystems"); 1063 1064 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1065 RTNL_FLAG_DOIT_UNLOCKED); 1066 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1067 RTNL_FLAG_DOIT_UNLOCKED); 1068 1069 return 0; 1070 } 1071 1072 pure_initcall(net_ns_init); 1073 1074 #ifdef CONFIG_NET_NS 1075 static int __register_pernet_operations(struct list_head *list, 1076 struct pernet_operations *ops) 1077 { 1078 struct net *net; 1079 int error; 1080 LIST_HEAD(net_exit_list); 1081 1082 list_add_tail(&ops->list, list); 1083 if (ops->init || (ops->id && ops->size)) { 1084 /* We held write locked pernet_ops_rwsem, and parallel 1085 * setup_net() and cleanup_net() are not possible. 1086 */ 1087 for_each_net(net) { 1088 error = ops_init(ops, net); 1089 if (error) 1090 goto out_undo; 1091 list_add_tail(&net->exit_list, &net_exit_list); 1092 } 1093 } 1094 return 0; 1095 1096 out_undo: 1097 /* If I have an error cleanup all namespaces I initialized */ 1098 list_del(&ops->list); 1099 ops_exit_list(ops, &net_exit_list); 1100 ops_free_list(ops, &net_exit_list); 1101 return error; 1102 } 1103 1104 static void __unregister_pernet_operations(struct pernet_operations *ops) 1105 { 1106 struct net *net; 1107 LIST_HEAD(net_exit_list); 1108 1109 list_del(&ops->list); 1110 /* See comment in __register_pernet_operations() */ 1111 for_each_net(net) 1112 list_add_tail(&net->exit_list, &net_exit_list); 1113 ops_exit_list(ops, &net_exit_list); 1114 ops_free_list(ops, &net_exit_list); 1115 } 1116 1117 #else 1118 1119 static int __register_pernet_operations(struct list_head *list, 1120 struct pernet_operations *ops) 1121 { 1122 if (!init_net_initialized) { 1123 list_add_tail(&ops->list, list); 1124 return 0; 1125 } 1126 1127 return ops_init(ops, &init_net); 1128 } 1129 1130 static void __unregister_pernet_operations(struct pernet_operations *ops) 1131 { 1132 if (!init_net_initialized) { 1133 list_del(&ops->list); 1134 } else { 1135 LIST_HEAD(net_exit_list); 1136 list_add(&init_net.exit_list, &net_exit_list); 1137 ops_exit_list(ops, &net_exit_list); 1138 ops_free_list(ops, &net_exit_list); 1139 } 1140 } 1141 1142 #endif /* CONFIG_NET_NS */ 1143 1144 static DEFINE_IDA(net_generic_ids); 1145 1146 static int register_pernet_operations(struct list_head *list, 1147 struct pernet_operations *ops) 1148 { 1149 int error; 1150 1151 if (ops->id) { 1152 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1153 GFP_KERNEL); 1154 if (error < 0) 1155 return error; 1156 *ops->id = error; 1157 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 1158 } 1159 error = __register_pernet_operations(list, ops); 1160 if (error) { 1161 rcu_barrier(); 1162 if (ops->id) 1163 ida_free(&net_generic_ids, *ops->id); 1164 } 1165 1166 return error; 1167 } 1168 1169 static void unregister_pernet_operations(struct pernet_operations *ops) 1170 { 1171 __unregister_pernet_operations(ops); 1172 rcu_barrier(); 1173 if (ops->id) 1174 ida_free(&net_generic_ids, *ops->id); 1175 } 1176 1177 /** 1178 * register_pernet_subsys - register a network namespace subsystem 1179 * @ops: pernet operations structure for the subsystem 1180 * 1181 * Register a subsystem which has init and exit functions 1182 * that are called when network namespaces are created and 1183 * destroyed respectively. 1184 * 1185 * When registered all network namespace init functions are 1186 * called for every existing network namespace. Allowing kernel 1187 * modules to have a race free view of the set of network namespaces. 1188 * 1189 * When a new network namespace is created all of the init 1190 * methods are called in the order in which they were registered. 1191 * 1192 * When a network namespace is destroyed all of the exit methods 1193 * are called in the reverse of the order with which they were 1194 * registered. 1195 */ 1196 int register_pernet_subsys(struct pernet_operations *ops) 1197 { 1198 int error; 1199 down_write(&pernet_ops_rwsem); 1200 error = register_pernet_operations(first_device, ops); 1201 up_write(&pernet_ops_rwsem); 1202 return error; 1203 } 1204 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1205 1206 /** 1207 * unregister_pernet_subsys - unregister a network namespace subsystem 1208 * @ops: pernet operations structure to manipulate 1209 * 1210 * Remove the pernet operations structure from the list to be 1211 * used when network namespaces are created or destroyed. In 1212 * addition run the exit method for all existing network 1213 * namespaces. 1214 */ 1215 void unregister_pernet_subsys(struct pernet_operations *ops) 1216 { 1217 down_write(&pernet_ops_rwsem); 1218 unregister_pernet_operations(ops); 1219 up_write(&pernet_ops_rwsem); 1220 } 1221 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1222 1223 /** 1224 * register_pernet_device - register a network namespace device 1225 * @ops: pernet operations structure for the subsystem 1226 * 1227 * Register a device which has init and exit functions 1228 * that are called when network namespaces are created and 1229 * destroyed respectively. 1230 * 1231 * When registered all network namespace init functions are 1232 * called for every existing network namespace. Allowing kernel 1233 * modules to have a race free view of the set of network namespaces. 1234 * 1235 * When a new network namespace is created all of the init 1236 * methods are called in the order in which they were registered. 1237 * 1238 * When a network namespace is destroyed all of the exit methods 1239 * are called in the reverse of the order with which they were 1240 * registered. 1241 */ 1242 int register_pernet_device(struct pernet_operations *ops) 1243 { 1244 int error; 1245 down_write(&pernet_ops_rwsem); 1246 error = register_pernet_operations(&pernet_list, ops); 1247 if (!error && (first_device == &pernet_list)) 1248 first_device = &ops->list; 1249 up_write(&pernet_ops_rwsem); 1250 return error; 1251 } 1252 EXPORT_SYMBOL_GPL(register_pernet_device); 1253 1254 /** 1255 * unregister_pernet_device - unregister a network namespace netdevice 1256 * @ops: pernet operations structure to manipulate 1257 * 1258 * Remove the pernet operations structure from the list to be 1259 * used when network namespaces are created or destroyed. In 1260 * addition run the exit method for all existing network 1261 * namespaces. 1262 */ 1263 void unregister_pernet_device(struct pernet_operations *ops) 1264 { 1265 down_write(&pernet_ops_rwsem); 1266 if (&ops->list == first_device) 1267 first_device = first_device->next; 1268 unregister_pernet_operations(ops); 1269 up_write(&pernet_ops_rwsem); 1270 } 1271 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1272 1273 #ifdef CONFIG_NET_NS 1274 static struct ns_common *netns_get(struct task_struct *task) 1275 { 1276 struct net *net = NULL; 1277 struct nsproxy *nsproxy; 1278 1279 task_lock(task); 1280 nsproxy = task->nsproxy; 1281 if (nsproxy) 1282 net = get_net(nsproxy->net_ns); 1283 task_unlock(task); 1284 1285 return net ? &net->ns : NULL; 1286 } 1287 1288 static inline struct net *to_net_ns(struct ns_common *ns) 1289 { 1290 return container_of(ns, struct net, ns); 1291 } 1292 1293 static void netns_put(struct ns_common *ns) 1294 { 1295 put_net(to_net_ns(ns)); 1296 } 1297 1298 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns) 1299 { 1300 struct net *net = to_net_ns(ns); 1301 1302 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1303 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 1304 return -EPERM; 1305 1306 put_net(nsproxy->net_ns); 1307 nsproxy->net_ns = get_net(net); 1308 return 0; 1309 } 1310 1311 static struct user_namespace *netns_owner(struct ns_common *ns) 1312 { 1313 return to_net_ns(ns)->user_ns; 1314 } 1315 1316 const struct proc_ns_operations netns_operations = { 1317 .name = "net", 1318 .type = CLONE_NEWNET, 1319 .get = netns_get, 1320 .put = netns_put, 1321 .install = netns_install, 1322 .owner = netns_owner, 1323 }; 1324 #endif 1325