xref: /openbmc/linux/net/core/net_namespace.c (revision c7d03a00)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34 
35 struct net init_net = {
36 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39 
40 static bool init_net_initialized;
41 
42 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
43 
44 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
45 
46 static struct net_generic *net_alloc_generic(void)
47 {
48 	struct net_generic *ng;
49 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
50 
51 	ng = kzalloc(generic_size, GFP_KERNEL);
52 	if (ng)
53 		ng->len = max_gen_ptrs;
54 
55 	return ng;
56 }
57 
58 static int net_assign_generic(struct net *net, unsigned int id, void *data)
59 {
60 	struct net_generic *ng, *old_ng;
61 
62 	BUG_ON(!mutex_is_locked(&net_mutex));
63 	BUG_ON(id == 0);
64 
65 	old_ng = rcu_dereference_protected(net->gen,
66 					   lockdep_is_held(&net_mutex));
67 	ng = old_ng;
68 	if (old_ng->len >= id)
69 		goto assign;
70 
71 	ng = net_alloc_generic();
72 	if (ng == NULL)
73 		return -ENOMEM;
74 
75 	/*
76 	 * Some synchronisation notes:
77 	 *
78 	 * The net_generic explores the net->gen array inside rcu
79 	 * read section. Besides once set the net->gen->ptr[x]
80 	 * pointer never changes (see rules in netns/generic.h).
81 	 *
82 	 * That said, we simply duplicate this array and schedule
83 	 * the old copy for kfree after a grace period.
84 	 */
85 
86 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
87 
88 	rcu_assign_pointer(net->gen, ng);
89 	kfree_rcu(old_ng, rcu);
90 assign:
91 	ng->ptr[id - 1] = data;
92 	return 0;
93 }
94 
95 static int ops_init(const struct pernet_operations *ops, struct net *net)
96 {
97 	int err = -ENOMEM;
98 	void *data = NULL;
99 
100 	if (ops->id && ops->size) {
101 		data = kzalloc(ops->size, GFP_KERNEL);
102 		if (!data)
103 			goto out;
104 
105 		err = net_assign_generic(net, *ops->id, data);
106 		if (err)
107 			goto cleanup;
108 	}
109 	err = 0;
110 	if (ops->init)
111 		err = ops->init(net);
112 	if (!err)
113 		return 0;
114 
115 cleanup:
116 	kfree(data);
117 
118 out:
119 	return err;
120 }
121 
122 static void ops_free(const struct pernet_operations *ops, struct net *net)
123 {
124 	if (ops->id && ops->size) {
125 		kfree(net_generic(net, *ops->id));
126 	}
127 }
128 
129 static void ops_exit_list(const struct pernet_operations *ops,
130 			  struct list_head *net_exit_list)
131 {
132 	struct net *net;
133 	if (ops->exit) {
134 		list_for_each_entry(net, net_exit_list, exit_list)
135 			ops->exit(net);
136 	}
137 	if (ops->exit_batch)
138 		ops->exit_batch(net_exit_list);
139 }
140 
141 static void ops_free_list(const struct pernet_operations *ops,
142 			  struct list_head *net_exit_list)
143 {
144 	struct net *net;
145 	if (ops->size && ops->id) {
146 		list_for_each_entry(net, net_exit_list, exit_list)
147 			ops_free(ops, net);
148 	}
149 }
150 
151 /* should be called with nsid_lock held */
152 static int alloc_netid(struct net *net, struct net *peer, int reqid)
153 {
154 	int min = 0, max = 0;
155 
156 	if (reqid >= 0) {
157 		min = reqid;
158 		max = reqid + 1;
159 	}
160 
161 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
162 }
163 
164 /* This function is used by idr_for_each(). If net is equal to peer, the
165  * function returns the id so that idr_for_each() stops. Because we cannot
166  * returns the id 0 (idr_for_each() will not stop), we return the magic value
167  * NET_ID_ZERO (-1) for it.
168  */
169 #define NET_ID_ZERO -1
170 static int net_eq_idr(int id, void *net, void *peer)
171 {
172 	if (net_eq(net, peer))
173 		return id ? : NET_ID_ZERO;
174 	return 0;
175 }
176 
177 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
178  * is set to true, thus the caller knows that the new id must be notified via
179  * rtnl.
180  */
181 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
182 {
183 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
184 	bool alloc_it = *alloc;
185 
186 	*alloc = false;
187 
188 	/* Magic value for id 0. */
189 	if (id == NET_ID_ZERO)
190 		return 0;
191 	if (id > 0)
192 		return id;
193 
194 	if (alloc_it) {
195 		id = alloc_netid(net, peer, -1);
196 		*alloc = true;
197 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
198 	}
199 
200 	return NETNSA_NSID_NOT_ASSIGNED;
201 }
202 
203 /* should be called with nsid_lock held */
204 static int __peernet2id(struct net *net, struct net *peer)
205 {
206 	bool no = false;
207 
208 	return __peernet2id_alloc(net, peer, &no);
209 }
210 
211 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
212 /* This function returns the id of a peer netns. If no id is assigned, one will
213  * be allocated and returned.
214  */
215 int peernet2id_alloc(struct net *net, struct net *peer)
216 {
217 	unsigned long flags;
218 	bool alloc;
219 	int id;
220 
221 	spin_lock_irqsave(&net->nsid_lock, flags);
222 	alloc = atomic_read(&peer->count) == 0 ? false : true;
223 	id = __peernet2id_alloc(net, peer, &alloc);
224 	spin_unlock_irqrestore(&net->nsid_lock, flags);
225 	if (alloc && id >= 0)
226 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
227 	return id;
228 }
229 
230 /* This function returns, if assigned, the id of a peer netns. */
231 int peernet2id(struct net *net, struct net *peer)
232 {
233 	unsigned long flags;
234 	int id;
235 
236 	spin_lock_irqsave(&net->nsid_lock, flags);
237 	id = __peernet2id(net, peer);
238 	spin_unlock_irqrestore(&net->nsid_lock, flags);
239 	return id;
240 }
241 EXPORT_SYMBOL(peernet2id);
242 
243 /* This function returns true is the peer netns has an id assigned into the
244  * current netns.
245  */
246 bool peernet_has_id(struct net *net, struct net *peer)
247 {
248 	return peernet2id(net, peer) >= 0;
249 }
250 
251 struct net *get_net_ns_by_id(struct net *net, int id)
252 {
253 	unsigned long flags;
254 	struct net *peer;
255 
256 	if (id < 0)
257 		return NULL;
258 
259 	rcu_read_lock();
260 	spin_lock_irqsave(&net->nsid_lock, flags);
261 	peer = idr_find(&net->netns_ids, id);
262 	if (peer)
263 		get_net(peer);
264 	spin_unlock_irqrestore(&net->nsid_lock, flags);
265 	rcu_read_unlock();
266 
267 	return peer;
268 }
269 
270 /*
271  * setup_net runs the initializers for the network namespace object.
272  */
273 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
274 {
275 	/* Must be called with net_mutex held */
276 	const struct pernet_operations *ops, *saved_ops;
277 	int error = 0;
278 	LIST_HEAD(net_exit_list);
279 
280 	atomic_set(&net->count, 1);
281 	atomic_set(&net->passive, 1);
282 	net->dev_base_seq = 1;
283 	net->user_ns = user_ns;
284 	idr_init(&net->netns_ids);
285 	spin_lock_init(&net->nsid_lock);
286 
287 	list_for_each_entry(ops, &pernet_list, list) {
288 		error = ops_init(ops, net);
289 		if (error < 0)
290 			goto out_undo;
291 	}
292 out:
293 	return error;
294 
295 out_undo:
296 	/* Walk through the list backwards calling the exit functions
297 	 * for the pernet modules whose init functions did not fail.
298 	 */
299 	list_add(&net->exit_list, &net_exit_list);
300 	saved_ops = ops;
301 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
302 		ops_exit_list(ops, &net_exit_list);
303 
304 	ops = saved_ops;
305 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
306 		ops_free_list(ops, &net_exit_list);
307 
308 	rcu_barrier();
309 	goto out;
310 }
311 
312 
313 #ifdef CONFIG_NET_NS
314 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
315 {
316 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
317 }
318 
319 static void dec_net_namespaces(struct ucounts *ucounts)
320 {
321 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
322 }
323 
324 static struct kmem_cache *net_cachep;
325 static struct workqueue_struct *netns_wq;
326 
327 static struct net *net_alloc(void)
328 {
329 	struct net *net = NULL;
330 	struct net_generic *ng;
331 
332 	ng = net_alloc_generic();
333 	if (!ng)
334 		goto out;
335 
336 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
337 	if (!net)
338 		goto out_free;
339 
340 	rcu_assign_pointer(net->gen, ng);
341 out:
342 	return net;
343 
344 out_free:
345 	kfree(ng);
346 	goto out;
347 }
348 
349 static void net_free(struct net *net)
350 {
351 	kfree(rcu_access_pointer(net->gen));
352 	kmem_cache_free(net_cachep, net);
353 }
354 
355 void net_drop_ns(void *p)
356 {
357 	struct net *ns = p;
358 	if (ns && atomic_dec_and_test(&ns->passive))
359 		net_free(ns);
360 }
361 
362 struct net *copy_net_ns(unsigned long flags,
363 			struct user_namespace *user_ns, struct net *old_net)
364 {
365 	struct ucounts *ucounts;
366 	struct net *net;
367 	int rv;
368 
369 	if (!(flags & CLONE_NEWNET))
370 		return get_net(old_net);
371 
372 	ucounts = inc_net_namespaces(user_ns);
373 	if (!ucounts)
374 		return ERR_PTR(-ENOSPC);
375 
376 	net = net_alloc();
377 	if (!net) {
378 		dec_net_namespaces(ucounts);
379 		return ERR_PTR(-ENOMEM);
380 	}
381 
382 	get_user_ns(user_ns);
383 
384 	rv = mutex_lock_killable(&net_mutex);
385 	if (rv < 0) {
386 		net_free(net);
387 		dec_net_namespaces(ucounts);
388 		put_user_ns(user_ns);
389 		return ERR_PTR(rv);
390 	}
391 
392 	net->ucounts = ucounts;
393 	rv = setup_net(net, user_ns);
394 	if (rv == 0) {
395 		rtnl_lock();
396 		list_add_tail_rcu(&net->list, &net_namespace_list);
397 		rtnl_unlock();
398 	}
399 	mutex_unlock(&net_mutex);
400 	if (rv < 0) {
401 		dec_net_namespaces(ucounts);
402 		put_user_ns(user_ns);
403 		net_drop_ns(net);
404 		return ERR_PTR(rv);
405 	}
406 	return net;
407 }
408 
409 static DEFINE_SPINLOCK(cleanup_list_lock);
410 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
411 
412 static void cleanup_net(struct work_struct *work)
413 {
414 	const struct pernet_operations *ops;
415 	struct net *net, *tmp;
416 	struct list_head net_kill_list;
417 	LIST_HEAD(net_exit_list);
418 
419 	/* Atomically snapshot the list of namespaces to cleanup */
420 	spin_lock_irq(&cleanup_list_lock);
421 	list_replace_init(&cleanup_list, &net_kill_list);
422 	spin_unlock_irq(&cleanup_list_lock);
423 
424 	mutex_lock(&net_mutex);
425 
426 	/* Don't let anyone else find us. */
427 	rtnl_lock();
428 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
429 		list_del_rcu(&net->list);
430 		list_add_tail(&net->exit_list, &net_exit_list);
431 		for_each_net(tmp) {
432 			int id;
433 
434 			spin_lock_irq(&tmp->nsid_lock);
435 			id = __peernet2id(tmp, net);
436 			if (id >= 0)
437 				idr_remove(&tmp->netns_ids, id);
438 			spin_unlock_irq(&tmp->nsid_lock);
439 			if (id >= 0)
440 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
441 		}
442 		spin_lock_irq(&net->nsid_lock);
443 		idr_destroy(&net->netns_ids);
444 		spin_unlock_irq(&net->nsid_lock);
445 
446 	}
447 	rtnl_unlock();
448 
449 	/*
450 	 * Another CPU might be rcu-iterating the list, wait for it.
451 	 * This needs to be before calling the exit() notifiers, so
452 	 * the rcu_barrier() below isn't sufficient alone.
453 	 */
454 	synchronize_rcu();
455 
456 	/* Run all of the network namespace exit methods */
457 	list_for_each_entry_reverse(ops, &pernet_list, list)
458 		ops_exit_list(ops, &net_exit_list);
459 
460 	/* Free the net generic variables */
461 	list_for_each_entry_reverse(ops, &pernet_list, list)
462 		ops_free_list(ops, &net_exit_list);
463 
464 	mutex_unlock(&net_mutex);
465 
466 	/* Ensure there are no outstanding rcu callbacks using this
467 	 * network namespace.
468 	 */
469 	rcu_barrier();
470 
471 	/* Finally it is safe to free my network namespace structure */
472 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
473 		list_del_init(&net->exit_list);
474 		dec_net_namespaces(net->ucounts);
475 		put_user_ns(net->user_ns);
476 		net_drop_ns(net);
477 	}
478 }
479 static DECLARE_WORK(net_cleanup_work, cleanup_net);
480 
481 void __put_net(struct net *net)
482 {
483 	/* Cleanup the network namespace in process context */
484 	unsigned long flags;
485 
486 	spin_lock_irqsave(&cleanup_list_lock, flags);
487 	list_add(&net->cleanup_list, &cleanup_list);
488 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
489 
490 	queue_work(netns_wq, &net_cleanup_work);
491 }
492 EXPORT_SYMBOL_GPL(__put_net);
493 
494 struct net *get_net_ns_by_fd(int fd)
495 {
496 	struct file *file;
497 	struct ns_common *ns;
498 	struct net *net;
499 
500 	file = proc_ns_fget(fd);
501 	if (IS_ERR(file))
502 		return ERR_CAST(file);
503 
504 	ns = get_proc_ns(file_inode(file));
505 	if (ns->ops == &netns_operations)
506 		net = get_net(container_of(ns, struct net, ns));
507 	else
508 		net = ERR_PTR(-EINVAL);
509 
510 	fput(file);
511 	return net;
512 }
513 
514 #else
515 struct net *get_net_ns_by_fd(int fd)
516 {
517 	return ERR_PTR(-EINVAL);
518 }
519 #endif
520 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
521 
522 struct net *get_net_ns_by_pid(pid_t pid)
523 {
524 	struct task_struct *tsk;
525 	struct net *net;
526 
527 	/* Lookup the network namespace */
528 	net = ERR_PTR(-ESRCH);
529 	rcu_read_lock();
530 	tsk = find_task_by_vpid(pid);
531 	if (tsk) {
532 		struct nsproxy *nsproxy;
533 		task_lock(tsk);
534 		nsproxy = tsk->nsproxy;
535 		if (nsproxy)
536 			net = get_net(nsproxy->net_ns);
537 		task_unlock(tsk);
538 	}
539 	rcu_read_unlock();
540 	return net;
541 }
542 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
543 
544 static __net_init int net_ns_net_init(struct net *net)
545 {
546 #ifdef CONFIG_NET_NS
547 	net->ns.ops = &netns_operations;
548 #endif
549 	return ns_alloc_inum(&net->ns);
550 }
551 
552 static __net_exit void net_ns_net_exit(struct net *net)
553 {
554 	ns_free_inum(&net->ns);
555 }
556 
557 static struct pernet_operations __net_initdata net_ns_ops = {
558 	.init = net_ns_net_init,
559 	.exit = net_ns_net_exit,
560 };
561 
562 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
563 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
564 	[NETNSA_NSID]		= { .type = NLA_S32 },
565 	[NETNSA_PID]		= { .type = NLA_U32 },
566 	[NETNSA_FD]		= { .type = NLA_U32 },
567 };
568 
569 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
570 {
571 	struct net *net = sock_net(skb->sk);
572 	struct nlattr *tb[NETNSA_MAX + 1];
573 	unsigned long flags;
574 	struct net *peer;
575 	int nsid, err;
576 
577 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
578 			  rtnl_net_policy);
579 	if (err < 0)
580 		return err;
581 	if (!tb[NETNSA_NSID])
582 		return -EINVAL;
583 	nsid = nla_get_s32(tb[NETNSA_NSID]);
584 
585 	if (tb[NETNSA_PID])
586 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
587 	else if (tb[NETNSA_FD])
588 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
589 	else
590 		return -EINVAL;
591 	if (IS_ERR(peer))
592 		return PTR_ERR(peer);
593 
594 	spin_lock_irqsave(&net->nsid_lock, flags);
595 	if (__peernet2id(net, peer) >= 0) {
596 		spin_unlock_irqrestore(&net->nsid_lock, flags);
597 		err = -EEXIST;
598 		goto out;
599 	}
600 
601 	err = alloc_netid(net, peer, nsid);
602 	spin_unlock_irqrestore(&net->nsid_lock, flags);
603 	if (err >= 0) {
604 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
605 		err = 0;
606 	}
607 out:
608 	put_net(peer);
609 	return err;
610 }
611 
612 static int rtnl_net_get_size(void)
613 {
614 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
615 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
616 	       ;
617 }
618 
619 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
620 			 int cmd, struct net *net, int nsid)
621 {
622 	struct nlmsghdr *nlh;
623 	struct rtgenmsg *rth;
624 
625 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
626 	if (!nlh)
627 		return -EMSGSIZE;
628 
629 	rth = nlmsg_data(nlh);
630 	rth->rtgen_family = AF_UNSPEC;
631 
632 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
633 		goto nla_put_failure;
634 
635 	nlmsg_end(skb, nlh);
636 	return 0;
637 
638 nla_put_failure:
639 	nlmsg_cancel(skb, nlh);
640 	return -EMSGSIZE;
641 }
642 
643 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
644 {
645 	struct net *net = sock_net(skb->sk);
646 	struct nlattr *tb[NETNSA_MAX + 1];
647 	struct sk_buff *msg;
648 	struct net *peer;
649 	int err, id;
650 
651 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
652 			  rtnl_net_policy);
653 	if (err < 0)
654 		return err;
655 	if (tb[NETNSA_PID])
656 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
657 	else if (tb[NETNSA_FD])
658 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
659 	else
660 		return -EINVAL;
661 
662 	if (IS_ERR(peer))
663 		return PTR_ERR(peer);
664 
665 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
666 	if (!msg) {
667 		err = -ENOMEM;
668 		goto out;
669 	}
670 
671 	id = peernet2id(net, peer);
672 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
673 			    RTM_NEWNSID, net, id);
674 	if (err < 0)
675 		goto err_out;
676 
677 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
678 	goto out;
679 
680 err_out:
681 	nlmsg_free(msg);
682 out:
683 	put_net(peer);
684 	return err;
685 }
686 
687 struct rtnl_net_dump_cb {
688 	struct net *net;
689 	struct sk_buff *skb;
690 	struct netlink_callback *cb;
691 	int idx;
692 	int s_idx;
693 };
694 
695 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
696 {
697 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
698 	int ret;
699 
700 	if (net_cb->idx < net_cb->s_idx)
701 		goto cont;
702 
703 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
704 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
705 			    RTM_NEWNSID, net_cb->net, id);
706 	if (ret < 0)
707 		return ret;
708 
709 cont:
710 	net_cb->idx++;
711 	return 0;
712 }
713 
714 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
715 {
716 	struct net *net = sock_net(skb->sk);
717 	struct rtnl_net_dump_cb net_cb = {
718 		.net = net,
719 		.skb = skb,
720 		.cb = cb,
721 		.idx = 0,
722 		.s_idx = cb->args[0],
723 	};
724 	unsigned long flags;
725 
726 	spin_lock_irqsave(&net->nsid_lock, flags);
727 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
728 	spin_unlock_irqrestore(&net->nsid_lock, flags);
729 
730 	cb->args[0] = net_cb.idx;
731 	return skb->len;
732 }
733 
734 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
735 {
736 	struct sk_buff *msg;
737 	int err = -ENOMEM;
738 
739 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
740 	if (!msg)
741 		goto out;
742 
743 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
744 	if (err < 0)
745 		goto err_out;
746 
747 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
748 	return;
749 
750 err_out:
751 	nlmsg_free(msg);
752 out:
753 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
754 }
755 
756 static int __init net_ns_init(void)
757 {
758 	struct net_generic *ng;
759 
760 #ifdef CONFIG_NET_NS
761 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
762 					SMP_CACHE_BYTES,
763 					SLAB_PANIC, NULL);
764 
765 	/* Create workqueue for cleanup */
766 	netns_wq = create_singlethread_workqueue("netns");
767 	if (!netns_wq)
768 		panic("Could not create netns workq");
769 #endif
770 
771 	ng = net_alloc_generic();
772 	if (!ng)
773 		panic("Could not allocate generic netns");
774 
775 	rcu_assign_pointer(init_net.gen, ng);
776 
777 	mutex_lock(&net_mutex);
778 	if (setup_net(&init_net, &init_user_ns))
779 		panic("Could not setup the initial network namespace");
780 
781 	init_net_initialized = true;
782 
783 	rtnl_lock();
784 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
785 	rtnl_unlock();
786 
787 	mutex_unlock(&net_mutex);
788 
789 	register_pernet_subsys(&net_ns_ops);
790 
791 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
792 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
793 		      NULL);
794 
795 	return 0;
796 }
797 
798 pure_initcall(net_ns_init);
799 
800 #ifdef CONFIG_NET_NS
801 static int __register_pernet_operations(struct list_head *list,
802 					struct pernet_operations *ops)
803 {
804 	struct net *net;
805 	int error;
806 	LIST_HEAD(net_exit_list);
807 
808 	list_add_tail(&ops->list, list);
809 	if (ops->init || (ops->id && ops->size)) {
810 		for_each_net(net) {
811 			error = ops_init(ops, net);
812 			if (error)
813 				goto out_undo;
814 			list_add_tail(&net->exit_list, &net_exit_list);
815 		}
816 	}
817 	return 0;
818 
819 out_undo:
820 	/* If I have an error cleanup all namespaces I initialized */
821 	list_del(&ops->list);
822 	ops_exit_list(ops, &net_exit_list);
823 	ops_free_list(ops, &net_exit_list);
824 	return error;
825 }
826 
827 static void __unregister_pernet_operations(struct pernet_operations *ops)
828 {
829 	struct net *net;
830 	LIST_HEAD(net_exit_list);
831 
832 	list_del(&ops->list);
833 	for_each_net(net)
834 		list_add_tail(&net->exit_list, &net_exit_list);
835 	ops_exit_list(ops, &net_exit_list);
836 	ops_free_list(ops, &net_exit_list);
837 }
838 
839 #else
840 
841 static int __register_pernet_operations(struct list_head *list,
842 					struct pernet_operations *ops)
843 {
844 	if (!init_net_initialized) {
845 		list_add_tail(&ops->list, list);
846 		return 0;
847 	}
848 
849 	return ops_init(ops, &init_net);
850 }
851 
852 static void __unregister_pernet_operations(struct pernet_operations *ops)
853 {
854 	if (!init_net_initialized) {
855 		list_del(&ops->list);
856 	} else {
857 		LIST_HEAD(net_exit_list);
858 		list_add(&init_net.exit_list, &net_exit_list);
859 		ops_exit_list(ops, &net_exit_list);
860 		ops_free_list(ops, &net_exit_list);
861 	}
862 }
863 
864 #endif /* CONFIG_NET_NS */
865 
866 static DEFINE_IDA(net_generic_ids);
867 
868 static int register_pernet_operations(struct list_head *list,
869 				      struct pernet_operations *ops)
870 {
871 	int error;
872 
873 	if (ops->id) {
874 again:
875 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
876 		if (error < 0) {
877 			if (error == -EAGAIN) {
878 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
879 				goto again;
880 			}
881 			return error;
882 		}
883 		max_gen_ptrs = max(max_gen_ptrs, *ops->id);
884 	}
885 	error = __register_pernet_operations(list, ops);
886 	if (error) {
887 		rcu_barrier();
888 		if (ops->id)
889 			ida_remove(&net_generic_ids, *ops->id);
890 	}
891 
892 	return error;
893 }
894 
895 static void unregister_pernet_operations(struct pernet_operations *ops)
896 {
897 
898 	__unregister_pernet_operations(ops);
899 	rcu_barrier();
900 	if (ops->id)
901 		ida_remove(&net_generic_ids, *ops->id);
902 }
903 
904 /**
905  *      register_pernet_subsys - register a network namespace subsystem
906  *	@ops:  pernet operations structure for the subsystem
907  *
908  *	Register a subsystem which has init and exit functions
909  *	that are called when network namespaces are created and
910  *	destroyed respectively.
911  *
912  *	When registered all network namespace init functions are
913  *	called for every existing network namespace.  Allowing kernel
914  *	modules to have a race free view of the set of network namespaces.
915  *
916  *	When a new network namespace is created all of the init
917  *	methods are called in the order in which they were registered.
918  *
919  *	When a network namespace is destroyed all of the exit methods
920  *	are called in the reverse of the order with which they were
921  *	registered.
922  */
923 int register_pernet_subsys(struct pernet_operations *ops)
924 {
925 	int error;
926 	mutex_lock(&net_mutex);
927 	error =  register_pernet_operations(first_device, ops);
928 	mutex_unlock(&net_mutex);
929 	return error;
930 }
931 EXPORT_SYMBOL_GPL(register_pernet_subsys);
932 
933 /**
934  *      unregister_pernet_subsys - unregister a network namespace subsystem
935  *	@ops: pernet operations structure to manipulate
936  *
937  *	Remove the pernet operations structure from the list to be
938  *	used when network namespaces are created or destroyed.  In
939  *	addition run the exit method for all existing network
940  *	namespaces.
941  */
942 void unregister_pernet_subsys(struct pernet_operations *ops)
943 {
944 	mutex_lock(&net_mutex);
945 	unregister_pernet_operations(ops);
946 	mutex_unlock(&net_mutex);
947 }
948 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
949 
950 /**
951  *      register_pernet_device - register a network namespace device
952  *	@ops:  pernet operations structure for the subsystem
953  *
954  *	Register a device which has init and exit functions
955  *	that are called when network namespaces are created and
956  *	destroyed respectively.
957  *
958  *	When registered all network namespace init functions are
959  *	called for every existing network namespace.  Allowing kernel
960  *	modules to have a race free view of the set of network namespaces.
961  *
962  *	When a new network namespace is created all of the init
963  *	methods are called in the order in which they were registered.
964  *
965  *	When a network namespace is destroyed all of the exit methods
966  *	are called in the reverse of the order with which they were
967  *	registered.
968  */
969 int register_pernet_device(struct pernet_operations *ops)
970 {
971 	int error;
972 	mutex_lock(&net_mutex);
973 	error = register_pernet_operations(&pernet_list, ops);
974 	if (!error && (first_device == &pernet_list))
975 		first_device = &ops->list;
976 	mutex_unlock(&net_mutex);
977 	return error;
978 }
979 EXPORT_SYMBOL_GPL(register_pernet_device);
980 
981 /**
982  *      unregister_pernet_device - unregister a network namespace netdevice
983  *	@ops: pernet operations structure to manipulate
984  *
985  *	Remove the pernet operations structure from the list to be
986  *	used when network namespaces are created or destroyed.  In
987  *	addition run the exit method for all existing network
988  *	namespaces.
989  */
990 void unregister_pernet_device(struct pernet_operations *ops)
991 {
992 	mutex_lock(&net_mutex);
993 	if (&ops->list == first_device)
994 		first_device = first_device->next;
995 	unregister_pernet_operations(ops);
996 	mutex_unlock(&net_mutex);
997 }
998 EXPORT_SYMBOL_GPL(unregister_pernet_device);
999 
1000 #ifdef CONFIG_NET_NS
1001 static struct ns_common *netns_get(struct task_struct *task)
1002 {
1003 	struct net *net = NULL;
1004 	struct nsproxy *nsproxy;
1005 
1006 	task_lock(task);
1007 	nsproxy = task->nsproxy;
1008 	if (nsproxy)
1009 		net = get_net(nsproxy->net_ns);
1010 	task_unlock(task);
1011 
1012 	return net ? &net->ns : NULL;
1013 }
1014 
1015 static inline struct net *to_net_ns(struct ns_common *ns)
1016 {
1017 	return container_of(ns, struct net, ns);
1018 }
1019 
1020 static void netns_put(struct ns_common *ns)
1021 {
1022 	put_net(to_net_ns(ns));
1023 }
1024 
1025 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1026 {
1027 	struct net *net = to_net_ns(ns);
1028 
1029 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1030 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1031 		return -EPERM;
1032 
1033 	put_net(nsproxy->net_ns);
1034 	nsproxy->net_ns = get_net(net);
1035 	return 0;
1036 }
1037 
1038 static struct user_namespace *netns_owner(struct ns_common *ns)
1039 {
1040 	return to_net_ns(ns)->user_ns;
1041 }
1042 
1043 const struct proc_ns_operations netns_operations = {
1044 	.name		= "net",
1045 	.type		= CLONE_NEWNET,
1046 	.get		= netns_get,
1047 	.put		= netns_put,
1048 	.install	= netns_install,
1049 	.owner		= netns_owner,
1050 };
1051 #endif
1052